1 | //===- PipelineDataTransfer.cpp --- Pass for pipelining data movement ---*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements a pass to pipeline data transfers. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "mlir/Dialect/Affine/Passes.h" |
14 | |
15 | #include "mlir/Dialect/Affine/Analysis/AffineAnalysis.h" |
16 | #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h" |
17 | #include "mlir/Dialect/Affine/Analysis/Utils.h" |
18 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
19 | #include "mlir/Dialect/Affine/LoopUtils.h" |
20 | #include "mlir/Dialect/Affine/Utils.h" |
21 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
22 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
23 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
24 | #include "mlir/IR/Builders.h" |
25 | #include "mlir/Transforms/Passes.h" |
26 | #include "llvm/ADT/DenseMap.h" |
27 | #include "llvm/Support/Debug.h" |
28 | |
29 | namespace mlir { |
30 | namespace affine { |
31 | #define GEN_PASS_DEF_AFFINEPIPELINEDATATRANSFER |
32 | #include "mlir/Dialect/Affine/Passes.h.inc" |
33 | } // namespace affine |
34 | } // namespace mlir |
35 | |
36 | #define DEBUG_TYPE "affine-pipeline-data-transfer" |
37 | |
38 | using namespace mlir; |
39 | using namespace mlir::affine; |
40 | |
41 | namespace { |
42 | struct PipelineDataTransfer |
43 | : public affine::impl::AffinePipelineDataTransferBase< |
44 | PipelineDataTransfer> { |
45 | void runOnOperation() override; |
46 | void runOnAffineForOp(AffineForOp forOp); |
47 | |
48 | std::vector<AffineForOp> forOps; |
49 | }; |
50 | |
51 | } // namespace |
52 | |
53 | /// Creates a pass to pipeline explicit movement of data across levels of the |
54 | /// memory hierarchy. |
55 | std::unique_ptr<OperationPass<func::FuncOp>> |
56 | mlir::affine::createPipelineDataTransferPass() { |
57 | return std::make_unique<PipelineDataTransfer>(); |
58 | } |
59 | |
60 | // Returns the position of the tag memref operand given a DMA operation. |
61 | // Temporary utility: will be replaced when DmaStart/DmaFinish abstract op's are |
62 | // added. |
63 | static unsigned getTagMemRefPos(Operation &dmaOp) { |
64 | assert((isa<AffineDmaStartOp, AffineDmaWaitOp>(dmaOp))); |
65 | if (auto dmaStartOp = dyn_cast<AffineDmaStartOp>(dmaOp)) { |
66 | return dmaStartOp.getTagMemRefOperandIndex(); |
67 | } |
68 | // First operand for a dma finish operation. |
69 | return 0; |
70 | } |
71 | |
72 | /// Doubles the buffer of the supplied memref on the specified 'affine.for' |
73 | /// operation by adding a leading dimension of size two to the memref. |
74 | /// Replaces all uses of the old memref by the new one while indexing the newly |
75 | /// added dimension by the loop IV of the specified 'affine.for' operation |
76 | /// modulo 2. Returns false if such a replacement cannot be performed. |
77 | static bool doubleBuffer(Value oldMemRef, AffineForOp forOp) { |
78 | auto *forBody = forOp.getBody(); |
79 | OpBuilder bInner(forBody, forBody->begin()); |
80 | |
81 | // Doubles the shape with a leading dimension extent of 2. |
82 | auto doubleShape = [&](MemRefType oldMemRefType) -> MemRefType { |
83 | // Add the leading dimension in the shape for the double buffer. |
84 | ArrayRef<int64_t> oldShape = oldMemRefType.getShape(); |
85 | SmallVector<int64_t, 4> newShape(1 + oldMemRefType.getRank()); |
86 | newShape[0] = 2; |
87 | std::copy(first: oldShape.begin(), last: oldShape.end(), result: newShape.begin() + 1); |
88 | return MemRefType::Builder(oldMemRefType).setShape(newShape).setLayout({}); |
89 | }; |
90 | |
91 | auto oldMemRefType = cast<MemRefType>(oldMemRef.getType()); |
92 | auto newMemRefType = doubleShape(oldMemRefType); |
93 | |
94 | // The double buffer is allocated right before 'forOp'. |
95 | OpBuilder bOuter(forOp); |
96 | // Put together alloc operands for any dynamic dimensions of the memref. |
97 | SmallVector<Value, 4> allocOperands; |
98 | for (const auto &dim : llvm::enumerate(oldMemRefType.getShape())) { |
99 | if (dim.value() == ShapedType::kDynamic) |
100 | allocOperands.push_back(bOuter.createOrFold<memref::DimOp>( |
101 | forOp.getLoc(), oldMemRef, dim.index())); |
102 | } |
103 | |
104 | // Create and place the alloc right before the 'affine.for' operation. |
105 | Value newMemRef = bOuter.create<memref::AllocOp>( |
106 | forOp.getLoc(), newMemRefType, allocOperands); |
107 | |
108 | // Create 'iv mod 2' value to index the leading dimension. |
109 | auto d0 = bInner.getAffineDimExpr(position: 0); |
110 | int64_t step = forOp.getStepAsInt(); |
111 | auto modTwoMap = |
112 | AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, d0.floorDiv(step) % 2); |
113 | auto ivModTwoOp = bInner.create<AffineApplyOp>(forOp.getLoc(), modTwoMap, |
114 | forOp.getInductionVar()); |
115 | |
116 | // replaceAllMemRefUsesWith will succeed unless the forOp body has |
117 | // non-dereferencing uses of the memref (dealloc's are fine though). |
118 | if (failed(replaceAllMemRefUsesWith( |
119 | oldMemRef, newMemRef, |
120 | /*extraIndices=*/{ivModTwoOp}, |
121 | /*indexRemap=*/AffineMap(), |
122 | /*extraOperands=*/{}, |
123 | /*symbolOperands=*/{}, |
124 | /*domOpFilter=*/&*forOp.getBody()->begin()))) { |
125 | LLVM_DEBUG( |
126 | forOp.emitError("memref replacement for double buffering failed" )); |
127 | ivModTwoOp.erase(); |
128 | return false; |
129 | } |
130 | // Insert the dealloc op right after the for loop. |
131 | bOuter.setInsertionPointAfter(forOp); |
132 | bOuter.create<memref::DeallocOp>(forOp.getLoc(), newMemRef); |
133 | |
134 | return true; |
135 | } |
136 | |
137 | /// Returns success if the IR is in a valid state. |
138 | void PipelineDataTransfer::runOnOperation() { |
139 | // Do a post order walk so that inner loop DMAs are processed first. This is |
140 | // necessary since 'affine.for' operations nested within would otherwise |
141 | // become invalid (erased) when the outer loop is pipelined (the pipelined one |
142 | // gets deleted and replaced by a prologue, a new steady-state loop and an |
143 | // epilogue). |
144 | forOps.clear(); |
145 | getOperation().walk([&](AffineForOp forOp) { forOps.push_back(forOp); }); |
146 | for (auto forOp : forOps) |
147 | runOnAffineForOp(forOp); |
148 | } |
149 | |
150 | // Check if tags of the dma start op and dma wait op match. |
151 | static bool checkTagMatch(AffineDmaStartOp startOp, AffineDmaWaitOp waitOp) { |
152 | if (startOp.getTagMemRef() != waitOp.getTagMemRef()) |
153 | return false; |
154 | auto startIndices = startOp.getTagIndices(); |
155 | auto waitIndices = waitOp.getTagIndices(); |
156 | // Both of these have the same number of indices since they correspond to the |
157 | // same tag memref. |
158 | for (auto it = startIndices.begin(), wIt = waitIndices.begin(), |
159 | e = startIndices.end(); |
160 | it != e; ++it, ++wIt) { |
161 | // Keep it simple for now, just checking if indices match. |
162 | // TODO: this would in general need to check if there is no |
163 | // intervening write writing to the same tag location, i.e., memory last |
164 | // write/data flow analysis. This is however sufficient/powerful enough for |
165 | // now since the DMA generation pass or the input for it will always have |
166 | // start/wait with matching tags (same SSA operand indices). |
167 | if (*it != *wIt) |
168 | return false; |
169 | } |
170 | return true; |
171 | } |
172 | |
173 | // Identify matching DMA start/finish operations to overlap computation with. |
174 | static void findMatchingStartFinishInsts( |
175 | AffineForOp forOp, |
176 | SmallVectorImpl<std::pair<Operation *, Operation *>> &startWaitPairs) { |
177 | |
178 | // Collect outgoing DMA operations - needed to check for dependences below. |
179 | SmallVector<AffineDmaStartOp, 4> outgoingDmaOps; |
180 | for (auto &op : *forOp.getBody()) { |
181 | auto dmaStartOp = dyn_cast<AffineDmaStartOp>(op); |
182 | if (dmaStartOp && dmaStartOp.isSrcMemorySpaceFaster()) |
183 | outgoingDmaOps.push_back(dmaStartOp); |
184 | } |
185 | |
186 | SmallVector<Operation *, 4> dmaStartInsts, dmaFinishInsts; |
187 | for (auto &op : *forOp.getBody()) { |
188 | // Collect DMA finish operations. |
189 | if (isa<AffineDmaWaitOp>(op)) { |
190 | dmaFinishInsts.push_back(&op); |
191 | continue; |
192 | } |
193 | auto dmaStartOp = dyn_cast<AffineDmaStartOp>(op); |
194 | if (!dmaStartOp) |
195 | continue; |
196 | |
197 | // Only DMAs incoming into higher memory spaces are pipelined for now. |
198 | // TODO: handle outgoing DMA pipelining. |
199 | if (!dmaStartOp.isDestMemorySpaceFaster()) |
200 | continue; |
201 | |
202 | // Check for dependence with outgoing DMAs. Doing this conservatively. |
203 | // TODO: use the dependence analysis to check for |
204 | // dependences between an incoming and outgoing DMA in the same iteration. |
205 | auto *it = outgoingDmaOps.begin(); |
206 | for (; it != outgoingDmaOps.end(); ++it) { |
207 | if (it->getDstMemRef() == dmaStartOp.getSrcMemRef()) |
208 | break; |
209 | } |
210 | if (it != outgoingDmaOps.end()) |
211 | continue; |
212 | |
213 | // We only double buffer if the buffer is not live out of loop. |
214 | auto memref = dmaStartOp.getOperand(dmaStartOp.getFasterMemPos()); |
215 | bool escapingUses = false; |
216 | for (auto *user : memref.getUsers()) { |
217 | // We can double buffer regardless of dealloc's outside the loop. |
218 | if (isa<memref::DeallocOp>(user)) |
219 | continue; |
220 | if (!forOp.getBody()->findAncestorOpInBlock(*user)) { |
221 | LLVM_DEBUG(llvm::dbgs() |
222 | << "can't pipeline: buffer is live out of loop\n" ;); |
223 | escapingUses = true; |
224 | break; |
225 | } |
226 | } |
227 | if (!escapingUses) |
228 | dmaStartInsts.push_back(&op); |
229 | } |
230 | |
231 | // For each start operation, we look for a matching finish operation. |
232 | for (auto *dmaStartOp : dmaStartInsts) { |
233 | for (auto *dmaFinishOp : dmaFinishInsts) { |
234 | if (checkTagMatch(startOp: cast<AffineDmaStartOp>(Val: dmaStartOp), |
235 | waitOp: cast<AffineDmaWaitOp>(Val: dmaFinishOp))) { |
236 | startWaitPairs.push_back(Elt: {dmaStartOp, dmaFinishOp}); |
237 | break; |
238 | } |
239 | } |
240 | } |
241 | } |
242 | |
243 | /// Overlap DMA transfers with computation in this loop. If successful, |
244 | /// 'forOp' is deleted, and a prologue, a new pipelined loop, and epilogue are |
245 | /// inserted right before where it was. |
246 | void PipelineDataTransfer::runOnAffineForOp(AffineForOp forOp) { |
247 | auto mayBeConstTripCount = getConstantTripCount(forOp); |
248 | if (!mayBeConstTripCount) { |
249 | LLVM_DEBUG(forOp.emitRemark("won't pipeline due to unknown trip count" )); |
250 | return; |
251 | } |
252 | |
253 | SmallVector<std::pair<Operation *, Operation *>, 4> startWaitPairs; |
254 | findMatchingStartFinishInsts(forOp, startWaitPairs); |
255 | |
256 | if (startWaitPairs.empty()) { |
257 | LLVM_DEBUG(forOp.emitRemark("No dma start/finish pairs\n" )); |
258 | return; |
259 | } |
260 | |
261 | // Double the buffers for the higher memory space memref's. |
262 | // Identify memref's to replace by scanning through all DMA start |
263 | // operations. A DMA start operation has two memref's - the one from the |
264 | // higher level of memory hierarchy is the one to double buffer. |
265 | // TODO: check whether double-buffering is even necessary. |
266 | // TODO: make this work with different layouts: assuming here that |
267 | // the dimension we are adding here for the double buffering is the outermost |
268 | // dimension. |
269 | for (auto &pair : startWaitPairs) { |
270 | auto *dmaStartOp = pair.first; |
271 | Value oldMemRef = dmaStartOp->getOperand( |
272 | idx: cast<AffineDmaStartOp>(Val: dmaStartOp).getFasterMemPos()); |
273 | if (!doubleBuffer(oldMemRef, forOp)) { |
274 | // Normally, double buffering should not fail because we already checked |
275 | // that there are no uses outside. |
276 | LLVM_DEBUG(llvm::dbgs() |
277 | << "double buffering failed for" << dmaStartOp << "\n" ;); |
278 | // IR still valid and semantically correct. |
279 | return; |
280 | } |
281 | // If the old memref has no more uses, remove its 'dead' alloc if it was |
282 | // alloc'ed. (note: DMA buffers are rarely function live-in; but a 'dim' |
283 | // operation could have been used on it if it was dynamically shaped in |
284 | // order to create the double buffer above.) |
285 | // '-canonicalize' does this in a more general way, but we'll anyway do the |
286 | // simple/common case so that the output / test cases looks clear. |
287 | if (auto *allocOp = oldMemRef.getDefiningOp()) { |
288 | if (oldMemRef.use_empty()) { |
289 | allocOp->erase(); |
290 | } else if (oldMemRef.hasOneUse()) { |
291 | if (auto dealloc = |
292 | dyn_cast<memref::DeallocOp>(*oldMemRef.user_begin())) { |
293 | dealloc.erase(); |
294 | allocOp->erase(); |
295 | } |
296 | } |
297 | } |
298 | } |
299 | |
300 | // Double the buffers for tag memrefs. |
301 | for (auto &pair : startWaitPairs) { |
302 | auto *dmaFinishOp = pair.second; |
303 | Value oldTagMemRef = dmaFinishOp->getOperand(idx: getTagMemRefPos(dmaOp&: *dmaFinishOp)); |
304 | if (!doubleBuffer(oldTagMemRef, forOp)) { |
305 | LLVM_DEBUG(llvm::dbgs() << "tag double buffering failed\n" ;); |
306 | return; |
307 | } |
308 | // If the old tag has no uses or a single dealloc use, remove it. |
309 | // (canonicalization handles more complex cases). |
310 | if (auto *tagAllocOp = oldTagMemRef.getDefiningOp()) { |
311 | if (oldTagMemRef.use_empty()) { |
312 | tagAllocOp->erase(); |
313 | } else if (oldTagMemRef.hasOneUse()) { |
314 | if (auto dealloc = |
315 | dyn_cast<memref::DeallocOp>(*oldTagMemRef.user_begin())) { |
316 | dealloc.erase(); |
317 | tagAllocOp->erase(); |
318 | } |
319 | } |
320 | } |
321 | } |
322 | |
323 | // Double buffering would have invalidated all the old DMA start/wait insts. |
324 | startWaitPairs.clear(); |
325 | findMatchingStartFinishInsts(forOp, startWaitPairs); |
326 | |
327 | // Store shift for operation for later lookup for AffineApplyOp's. |
328 | DenseMap<Operation *, unsigned> instShiftMap; |
329 | for (auto &pair : startWaitPairs) { |
330 | auto *dmaStartOp = pair.first; |
331 | assert(isa<AffineDmaStartOp>(dmaStartOp)); |
332 | instShiftMap[dmaStartOp] = 0; |
333 | // Set shifts for DMA start op's affine operand computation slices to 0. |
334 | SmallVector<AffineApplyOp, 4> sliceOps; |
335 | affine::createAffineComputationSlice(opInst: dmaStartOp, sliceOps: &sliceOps); |
336 | if (!sliceOps.empty()) { |
337 | for (auto sliceOp : sliceOps) { |
338 | instShiftMap[sliceOp.getOperation()] = 0; |
339 | } |
340 | } else { |
341 | // If a slice wasn't created, the reachable affine.apply op's from its |
342 | // operands are the ones that go with it. |
343 | SmallVector<Operation *, 4> affineApplyInsts; |
344 | SmallVector<Value, 4> operands(dmaStartOp->getOperands()); |
345 | getReachableAffineApplyOps(operands, affineApplyOps&: affineApplyInsts); |
346 | for (auto *op : affineApplyInsts) { |
347 | instShiftMap[op] = 0; |
348 | } |
349 | } |
350 | } |
351 | // Everything else (including compute ops and dma finish) are shifted by one. |
352 | for (auto &op : forOp.getBody()->without_terminator()) |
353 | if (!instShiftMap.contains(&op)) |
354 | instShiftMap[&op] = 1; |
355 | |
356 | // Get shifts stored in map. |
357 | SmallVector<uint64_t, 8> shifts(forOp.getBody()->getOperations().size()); |
358 | unsigned s = 0; |
359 | for (auto &op : forOp.getBody()->without_terminator()) { |
360 | assert(instShiftMap.contains(&op)); |
361 | shifts[s++] = instShiftMap[&op]; |
362 | |
363 | // Tagging operations with shifts for debugging purposes. |
364 | LLVM_DEBUG({ |
365 | OpBuilder b(&op); |
366 | op.setAttr("shift" , b.getI64IntegerAttr(shifts[s - 1])); |
367 | }); |
368 | } |
369 | |
370 | if (!isOpwiseShiftValid(forOp, shifts)) { |
371 | // Violates dependences. |
372 | LLVM_DEBUG(llvm::dbgs() << "Shifts invalid - unexpected\n" ;); |
373 | return; |
374 | } |
375 | |
376 | if (failed(affineForOpBodySkew(forOp, shifts))) { |
377 | LLVM_DEBUG(llvm::dbgs() << "op body skewing failed - unexpected\n" ;); |
378 | return; |
379 | } |
380 | } |
381 | |