1 | //===- LoopFusionUtils.cpp ---- Utilities for loop fusion ----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements loop fusion transformation utility functions. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "mlir/Dialect/Affine/LoopFusionUtils.h" |
14 | #include "mlir/Analysis/SliceAnalysis.h" |
15 | #include "mlir/Analysis/TopologicalSortUtils.h" |
16 | #include "mlir/Dialect/Affine/Analysis/AffineAnalysis.h" |
17 | #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h" |
18 | #include "mlir/Dialect/Affine/Analysis/Utils.h" |
19 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
20 | #include "mlir/Dialect/Affine/LoopUtils.h" |
21 | #include "mlir/IR/IRMapping.h" |
22 | #include "mlir/IR/Operation.h" |
23 | #include "mlir/IR/PatternMatch.h" |
24 | #include "llvm/Support/Debug.h" |
25 | #include "llvm/Support/raw_ostream.h" |
26 | #include <optional> |
27 | |
28 | #define DEBUG_TYPE "affine-fusion-utils" |
29 | |
30 | using namespace mlir; |
31 | using namespace mlir::affine; |
32 | |
33 | // Gathers all load and store memref accesses in 'opA' into 'values', where |
34 | // 'values[memref] == true' for each store operation. |
35 | static void getLoadAndStoreMemRefAccesses(Operation *opA, |
36 | DenseMap<Value, bool> &values) { |
37 | opA->walk(callback: [&](Operation *op) { |
38 | if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) { |
39 | if (values.count(Val: loadOp.getMemRef()) == 0) |
40 | values[loadOp.getMemRef()] = false; |
41 | } else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) { |
42 | values[storeOp.getMemRef()] = true; |
43 | } |
44 | }); |
45 | } |
46 | |
47 | /// Returns true if 'op' is a load or store operation which access a memref |
48 | /// accessed 'values' and at least one of the access is a store operation. |
49 | /// Returns false otherwise. |
50 | static bool isDependentLoadOrStoreOp(Operation *op, |
51 | DenseMap<Value, bool> &values) { |
52 | if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) |
53 | return values.count(Val: loadOp.getMemRef()) > 0 && values[loadOp.getMemRef()]; |
54 | if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) |
55 | return values.count(Val: storeOp.getMemRef()) > 0; |
56 | return false; |
57 | } |
58 | |
59 | // Returns the first operation in range ('opA', 'opB') which has a data |
60 | // dependence on 'opA'. Returns 'nullptr' of no dependence exists. |
61 | static Operation *getFirstDependentOpInRange(Operation *opA, Operation *opB) { |
62 | // Record memref values from all loads/store in loop nest rooted at 'opA'. |
63 | // Map from memref value to bool which is true if store, false otherwise. |
64 | DenseMap<Value, bool> values; |
65 | getLoadAndStoreMemRefAccesses(opA, values); |
66 | |
67 | // For each 'opX' in block in range ('opA', 'opB'), check if there is a data |
68 | // dependence from 'opA' to 'opX' ('opA' and 'opX' access the same memref |
69 | // and at least one of the accesses is a store). |
70 | Operation *firstDepOp = nullptr; |
71 | for (Block::iterator it = std::next(x: Block::iterator(opA)); |
72 | it != Block::iterator(opB); ++it) { |
73 | Operation *opX = &(*it); |
74 | opX->walk(callback: [&](Operation *op) { |
75 | if (!firstDepOp && isDependentLoadOrStoreOp(op, values)) |
76 | firstDepOp = opX; |
77 | }); |
78 | if (firstDepOp) |
79 | break; |
80 | } |
81 | return firstDepOp; |
82 | } |
83 | |
84 | // Returns the last operation 'opX' in range ('opA', 'opB'), for which there |
85 | // exists a data dependence from 'opX' to 'opB'. |
86 | // Returns 'nullptr' of no dependence exists. |
87 | static Operation *getLastDependentOpInRange(Operation *opA, Operation *opB) { |
88 | // Record memref values from all loads/store in loop nest rooted at 'opB'. |
89 | // Map from memref value to bool which is true if store, false otherwise. |
90 | DenseMap<Value, bool> values; |
91 | getLoadAndStoreMemRefAccesses(opA: opB, values); |
92 | |
93 | // For each 'opX' in block in range ('opA', 'opB') in reverse order, |
94 | // check if there is a data dependence from 'opX' to 'opB': |
95 | // *) 'opX' and 'opB' access the same memref and at least one of the accesses |
96 | // is a store. |
97 | // *) 'opX' produces an SSA Value which is used by 'opB'. |
98 | Operation *lastDepOp = nullptr; |
99 | for (Block::reverse_iterator it = std::next(x: Block::reverse_iterator(opB)); |
100 | it != Block::reverse_iterator(opA); ++it) { |
101 | Operation *opX = &(*it); |
102 | opX->walk(callback: [&](Operation *op) { |
103 | if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) { |
104 | if (isDependentLoadOrStoreOp(op, values)) { |
105 | lastDepOp = opX; |
106 | return WalkResult::interrupt(); |
107 | } |
108 | return WalkResult::advance(); |
109 | } |
110 | for (Value value : op->getResults()) { |
111 | for (Operation *user : value.getUsers()) { |
112 | SmallVector<AffineForOp, 4> loops; |
113 | // Check if any loop in loop nest surrounding 'user' is 'opB'. |
114 | getAffineForIVs(*user, &loops); |
115 | if (llvm::is_contained(loops, cast<AffineForOp>(opB))) { |
116 | lastDepOp = opX; |
117 | return WalkResult::interrupt(); |
118 | } |
119 | } |
120 | } |
121 | return WalkResult::advance(); |
122 | }); |
123 | if (lastDepOp) |
124 | break; |
125 | } |
126 | return lastDepOp; |
127 | } |
128 | |
129 | // Computes and returns an insertion point operation, before which the |
130 | // the fused <srcForOp, dstForOp> loop nest can be inserted while preserving |
131 | // dependences. Returns nullptr if no such insertion point is found. |
132 | static Operation *getFusedLoopNestInsertionPoint(AffineForOp srcForOp, |
133 | AffineForOp dstForOp) { |
134 | bool isSrcForOpBeforeDstForOp = srcForOp->isBeforeInBlock(dstForOp); |
135 | auto forOpA = isSrcForOpBeforeDstForOp ? srcForOp : dstForOp; |
136 | auto forOpB = isSrcForOpBeforeDstForOp ? dstForOp : srcForOp; |
137 | |
138 | Operation *firstDepOpA = getFirstDependentOpInRange(forOpA, forOpB); |
139 | Operation *lastDepOpB = getLastDependentOpInRange(forOpA, forOpB); |
140 | // Block: |
141 | // ... |
142 | // |-- opA |
143 | // | ... |
144 | // | lastDepOpB --| |
145 | // | ... | |
146 | // |-> firstDepOpA | |
147 | // ... | |
148 | // opB <--------- |
149 | // |
150 | // Valid insertion point range: (lastDepOpB, firstDepOpA) |
151 | // |
152 | if (firstDepOpA) { |
153 | if (lastDepOpB) { |
154 | if (firstDepOpA->isBeforeInBlock(other: lastDepOpB) || firstDepOpA == lastDepOpB) |
155 | // No valid insertion point exists which preserves dependences. |
156 | return nullptr; |
157 | } |
158 | // Return insertion point in valid range closest to 'opB'. |
159 | // TODO: Consider other insertion points in valid range. |
160 | return firstDepOpA; |
161 | } |
162 | // No dependences from 'opA' to operation in range ('opA', 'opB'), return |
163 | // 'opB' insertion point. |
164 | return forOpB; |
165 | } |
166 | |
167 | // Gathers all load and store ops in loop nest rooted at 'forOp' into |
168 | // 'loadAndStoreOps'. |
169 | static bool |
170 | gatherLoadsAndStores(AffineForOp forOp, |
171 | SmallVectorImpl<Operation *> &loadAndStoreOps) { |
172 | bool hasIfOp = false; |
173 | forOp.walk([&](Operation *op) { |
174 | if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) |
175 | loadAndStoreOps.push_back(Elt: op); |
176 | else if (isa<AffineIfOp>(Val: op)) |
177 | hasIfOp = true; |
178 | }); |
179 | return !hasIfOp; |
180 | } |
181 | |
182 | /// Returns the maximum loop depth at which we could fuse producer loop |
183 | /// 'srcForOp' into consumer loop 'dstForOp' without violating data dependences. |
184 | // TODO: Generalize this check for sibling and more generic fusion scenarios. |
185 | // TODO: Support forward slice fusion. |
186 | static unsigned getMaxLoopDepth(ArrayRef<Operation *> srcOps, |
187 | ArrayRef<Operation *> dstOps) { |
188 | if (dstOps.empty()) |
189 | // Expected at least one memory operation. |
190 | // TODO: Revisit this case with a specific example. |
191 | return 0; |
192 | |
193 | // Filter out ops in 'dstOps' that do not use the producer-consumer memref so |
194 | // that they are not considered for analysis. |
195 | DenseSet<Value> producerConsumerMemrefs; |
196 | gatherProducerConsumerMemrefs(srcOps, dstOps, producerConsumerMemrefs); |
197 | SmallVector<Operation *, 4> targetDstOps; |
198 | for (Operation *dstOp : dstOps) { |
199 | auto loadOp = dyn_cast<AffineReadOpInterface>(dstOp); |
200 | Value memref = loadOp ? loadOp.getMemRef() |
201 | : cast<AffineWriteOpInterface>(dstOp).getMemRef(); |
202 | if (producerConsumerMemrefs.count(V: memref) > 0) |
203 | targetDstOps.push_back(Elt: dstOp); |
204 | } |
205 | |
206 | assert(!targetDstOps.empty() && |
207 | "No dependences between 'srcForOp' and 'dstForOp'?" ); |
208 | |
209 | // Compute the innermost common loop depth for loads and stores. |
210 | unsigned loopDepth = getInnermostCommonLoopDepth(ops: targetDstOps); |
211 | |
212 | // Return common loop depth for loads if there are no store ops. |
213 | if (all_of(targetDstOps, llvm::IsaPred<AffineReadOpInterface>)) |
214 | return loopDepth; |
215 | |
216 | // Check dependences on all pairs of ops in 'targetDstOps' and store the |
217 | // minimum loop depth at which a dependence is satisfied. |
218 | for (unsigned i = 0, e = targetDstOps.size(); i < e; ++i) { |
219 | Operation *srcOpInst = targetDstOps[i]; |
220 | MemRefAccess srcAccess(srcOpInst); |
221 | for (unsigned j = 0; j < e; ++j) { |
222 | auto *dstOpInst = targetDstOps[j]; |
223 | MemRefAccess dstAccess(dstOpInst); |
224 | |
225 | unsigned numCommonLoops = |
226 | getNumCommonSurroundingLoops(a&: *srcOpInst, b&: *dstOpInst); |
227 | for (unsigned d = 1; d <= numCommonLoops + 1; ++d) { |
228 | // TODO: Cache dependence analysis results, check cache here. |
229 | DependenceResult result = |
230 | checkMemrefAccessDependence(srcAccess, dstAccess, loopDepth: d); |
231 | if (hasDependence(result)) { |
232 | // Store minimum loop depth and break because we want the min 'd' at |
233 | // which there is a dependence. |
234 | loopDepth = std::min(a: loopDepth, b: d - 1); |
235 | break; |
236 | } |
237 | } |
238 | } |
239 | } |
240 | |
241 | return loopDepth; |
242 | } |
243 | |
244 | // TODO: This pass performs some computation that is the same for all the depths |
245 | // (e.g., getMaxLoopDepth). Implement a version of this utility that processes |
246 | // all the depths at once or only the legal maximal depth for maximal fusion. |
247 | FusionResult mlir::affine::canFuseLoops(AffineForOp srcForOp, |
248 | AffineForOp dstForOp, |
249 | unsigned dstLoopDepth, |
250 | ComputationSliceState *srcSlice, |
251 | FusionStrategy fusionStrategy) { |
252 | // Return 'failure' if 'dstLoopDepth == 0'. |
253 | if (dstLoopDepth == 0) { |
254 | LLVM_DEBUG(llvm::dbgs() << "Cannot fuse loop nests at depth 0\n" ); |
255 | return FusionResult::FailPrecondition; |
256 | } |
257 | // Return 'failure' if 'srcForOp' and 'dstForOp' are not in the same block. |
258 | auto *block = srcForOp->getBlock(); |
259 | if (block != dstForOp->getBlock()) { |
260 | LLVM_DEBUG(llvm::dbgs() << "Cannot fuse loop nests in different blocks\n" ); |
261 | return FusionResult::FailPrecondition; |
262 | } |
263 | |
264 | // Return 'failure' if no valid insertion point for fused loop nest in 'block' |
265 | // exists which would preserve dependences. |
266 | if (!getFusedLoopNestInsertionPoint(srcForOp, dstForOp)) { |
267 | LLVM_DEBUG(llvm::dbgs() << "Fusion would violate dependences in block\n" ); |
268 | return FusionResult::FailBlockDependence; |
269 | } |
270 | |
271 | // Check if 'srcForOp' precedes 'dstForOp' in 'block'. |
272 | bool isSrcForOpBeforeDstForOp = srcForOp->isBeforeInBlock(dstForOp); |
273 | // 'forOpA' executes before 'forOpB' in 'block'. |
274 | auto forOpA = isSrcForOpBeforeDstForOp ? srcForOp : dstForOp; |
275 | auto forOpB = isSrcForOpBeforeDstForOp ? dstForOp : srcForOp; |
276 | |
277 | // Gather all load and store from 'forOpA' which precedes 'forOpB' in 'block'. |
278 | SmallVector<Operation *, 4> opsA; |
279 | if (!gatherLoadsAndStores(forOpA, opsA)) { |
280 | LLVM_DEBUG(llvm::dbgs() << "Fusing loops with affine.if unsupported\n" ); |
281 | return FusionResult::FailPrecondition; |
282 | } |
283 | |
284 | // Gather all load and store from 'forOpB' which succeeds 'forOpA' in 'block'. |
285 | SmallVector<Operation *, 4> opsB; |
286 | if (!gatherLoadsAndStores(forOpB, opsB)) { |
287 | LLVM_DEBUG(llvm::dbgs() << "Fusing loops with affine.if unsupported\n" ); |
288 | return FusionResult::FailPrecondition; |
289 | } |
290 | |
291 | // Return 'failure' if fusing loops at depth 'dstLoopDepth' wouldn't preserve |
292 | // loop dependences. |
293 | // TODO: Enable this check for sibling and more generic loop fusion |
294 | // strategies. |
295 | if (fusionStrategy.getStrategy() == FusionStrategy::ProducerConsumer) { |
296 | // TODO: 'getMaxLoopDepth' does not support forward slice fusion. |
297 | assert(isSrcForOpBeforeDstForOp && "Unexpected forward slice fusion" ); |
298 | if (getMaxLoopDepth(srcOps: opsA, dstOps: opsB) < dstLoopDepth) { |
299 | LLVM_DEBUG(llvm::dbgs() << "Fusion would violate loop dependences\n" ); |
300 | return FusionResult::FailFusionDependence; |
301 | } |
302 | } |
303 | |
304 | // Calculate the number of common loops surrounding 'srcForOp' and 'dstForOp'. |
305 | unsigned numCommonLoops = |
306 | affine::getNumCommonSurroundingLoops(a&: *srcForOp, b&: *dstForOp); |
307 | |
308 | // Filter out ops in 'opsA' to compute the slice union based on the |
309 | // assumptions made by the fusion strategy. |
310 | SmallVector<Operation *, 4> strategyOpsA; |
311 | switch (fusionStrategy.getStrategy()) { |
312 | case FusionStrategy::Generic: |
313 | // Generic fusion. Take into account all the memory operations to compute |
314 | // the slice union. |
315 | strategyOpsA.append(in_start: opsA.begin(), in_end: opsA.end()); |
316 | break; |
317 | case FusionStrategy::ProducerConsumer: |
318 | // Producer-consumer fusion (AffineLoopFusion pass) only takes into |
319 | // account stores in 'srcForOp' to compute the slice union. |
320 | for (Operation *op : opsA) { |
321 | if (isa<AffineWriteOpInterface>(op)) |
322 | strategyOpsA.push_back(Elt: op); |
323 | } |
324 | break; |
325 | case FusionStrategy::Sibling: |
326 | // Sibling fusion (AffineLoopFusion pass) only takes into account the loads |
327 | // to 'memref' in 'srcForOp' to compute the slice union. |
328 | for (Operation *op : opsA) { |
329 | auto load = dyn_cast<AffineReadOpInterface>(op); |
330 | if (load && load.getMemRef() == fusionStrategy.getSiblingFusionMemRef()) |
331 | strategyOpsA.push_back(Elt: op); |
332 | } |
333 | break; |
334 | } |
335 | |
336 | // Compute union of computation slices computed between all pairs of ops |
337 | // from 'forOpA' and 'forOpB'. |
338 | SliceComputationResult sliceComputationResult = affine::computeSliceUnion( |
339 | opsA: strategyOpsA, opsB, loopDepth: dstLoopDepth, numCommonLoops, |
340 | isBackwardSlice: isSrcForOpBeforeDstForOp, sliceUnion: srcSlice); |
341 | if (sliceComputationResult.value == SliceComputationResult::GenericFailure) { |
342 | LLVM_DEBUG(llvm::dbgs() << "computeSliceUnion failed\n" ); |
343 | return FusionResult::FailPrecondition; |
344 | } |
345 | if (sliceComputationResult.value == |
346 | SliceComputationResult::IncorrectSliceFailure) { |
347 | LLVM_DEBUG(llvm::dbgs() << "Incorrect slice computation\n" ); |
348 | return FusionResult::FailIncorrectSlice; |
349 | } |
350 | |
351 | return FusionResult::Success; |
352 | } |
353 | |
354 | /// Patch the loop body of a forOp that is a single iteration reduction loop |
355 | /// into its containing block. |
356 | static LogicalResult promoteSingleIterReductionLoop(AffineForOp forOp, |
357 | bool siblingFusionUser) { |
358 | // Check if the reduction loop is a single iteration loop. |
359 | std::optional<uint64_t> tripCount = getConstantTripCount(forOp); |
360 | if (!tripCount || *tripCount != 1) |
361 | return failure(); |
362 | auto *parentOp = forOp->getParentOp(); |
363 | if (!isa<AffineForOp>(parentOp)) |
364 | return failure(); |
365 | SmallVector<Value> newOperands; |
366 | llvm::append_range(newOperands, |
367 | forOp.getBody()->getTerminator()->getOperands()); |
368 | IRRewriter rewriter(parentOp->getContext()); |
369 | int64_t parentOpNumResults = parentOp->getNumResults(); |
370 | // Replace the parent loop and add iteroperands and results from the `forOp`. |
371 | AffineForOp parentForOp = forOp->getParentOfType<AffineForOp>(); |
372 | AffineForOp newLoop = |
373 | cast<AffineForOp>(*parentForOp.replaceWithAdditionalYields( |
374 | rewriter, forOp.getInits(), /*replaceInitOperandUsesInLoop=*/false, |
375 | [&](OpBuilder &b, Location loc, ArrayRef<BlockArgument> newBbArgs) { |
376 | return newOperands; |
377 | })); |
378 | |
379 | // For sibling-fusion users, collect operations that use the results of the |
380 | // `forOp` outside the new parent loop that has absorbed all its iter args |
381 | // and operands. These operations will be moved later after the results |
382 | // have been replaced. |
383 | SetVector<Operation *> forwardSlice; |
384 | if (siblingFusionUser) { |
385 | for (unsigned i = 0, e = forOp.getNumResults(); i != e; ++i) { |
386 | SetVector<Operation *> tmpForwardSlice; |
387 | getForwardSlice(forOp.getResult(i), &tmpForwardSlice); |
388 | forwardSlice.set_union(tmpForwardSlice); |
389 | } |
390 | } |
391 | // Update the results of the `forOp` in the new loop. |
392 | for (unsigned i = 0, e = forOp.getNumResults(); i != e; ++i) { |
393 | forOp.getResult(i).replaceAllUsesWith( |
394 | newLoop.getResult(i + parentOpNumResults)); |
395 | } |
396 | // For sibling-fusion users, move operations that use the results of the |
397 | // `forOp` outside the new parent loop |
398 | if (siblingFusionUser) { |
399 | topologicalSort(toSort: forwardSlice); |
400 | for (Operation *op : llvm::reverse(C&: forwardSlice)) |
401 | op->moveAfter(newLoop); |
402 | } |
403 | // Replace the induction variable. |
404 | auto iv = forOp.getInductionVar(); |
405 | iv.replaceAllUsesWith(newLoop.getInductionVar()); |
406 | // Replace the iter args. |
407 | auto forOpIterArgs = forOp.getRegionIterArgs(); |
408 | for (auto it : llvm::zip(forOpIterArgs, newLoop.getRegionIterArgs().take_back( |
409 | forOpIterArgs.size()))) { |
410 | std::get<0>(it).replaceAllUsesWith(std::get<1>(it)); |
411 | } |
412 | // Move the loop body operations, except for its terminator, to the loop's |
413 | // containing block. |
414 | forOp.getBody()->back().erase(); |
415 | auto *parentBlock = forOp->getBlock(); |
416 | parentBlock->getOperations().splice(Block::iterator(forOp), |
417 | forOp.getBody()->getOperations()); |
418 | forOp.erase(); |
419 | return success(); |
420 | } |
421 | |
422 | /// Fuses 'srcForOp' into 'dstForOp' with destination loop block insertion point |
423 | /// and source slice loop bounds specified in 'srcSlice'. |
424 | void mlir::affine::fuseLoops(AffineForOp srcForOp, AffineForOp dstForOp, |
425 | const ComputationSliceState &srcSlice, |
426 | bool isInnermostSiblingInsertion) { |
427 | // Clone 'srcForOp' into 'dstForOp' at 'srcSlice->insertPoint'. |
428 | OpBuilder b(srcSlice.insertPoint->getBlock(), srcSlice.insertPoint); |
429 | IRMapping mapper; |
430 | b.clone(*srcForOp, mapper); |
431 | |
432 | // Update 'sliceLoopNest' upper and lower bounds from computed 'srcSlice'. |
433 | SmallVector<AffineForOp, 4> sliceLoops; |
434 | for (unsigned i = 0, e = srcSlice.ivs.size(); i < e; ++i) { |
435 | auto loopIV = mapper.lookupOrNull(from: srcSlice.ivs[i]); |
436 | if (!loopIV) |
437 | continue; |
438 | auto forOp = getForInductionVarOwner(loopIV); |
439 | sliceLoops.push_back(forOp); |
440 | if (AffineMap lbMap = srcSlice.lbs[i]) { |
441 | auto lbOperands = srcSlice.lbOperands[i]; |
442 | canonicalizeMapAndOperands(map: &lbMap, operands: &lbOperands); |
443 | forOp.setLowerBound(lbOperands, lbMap); |
444 | } |
445 | if (AffineMap ubMap = srcSlice.ubs[i]) { |
446 | auto ubOperands = srcSlice.ubOperands[i]; |
447 | canonicalizeMapAndOperands(map: &ubMap, operands: &ubOperands); |
448 | forOp.setUpperBound(ubOperands, ubMap); |
449 | } |
450 | } |
451 | |
452 | llvm::SmallDenseMap<Operation *, uint64_t, 8> sliceTripCountMap; |
453 | auto srcIsUnitSlice = [&]() { |
454 | return (buildSliceTripCountMap(slice: srcSlice, tripCountMap: &sliceTripCountMap) && |
455 | (getSliceIterationCount(sliceTripCountMap) == 1)); |
456 | }; |
457 | // Fix up and if possible, eliminate single iteration loops. |
458 | for (AffineForOp forOp : sliceLoops) { |
459 | if (isLoopParallelAndContainsReduction(forOp) && |
460 | isInnermostSiblingInsertion && srcIsUnitSlice()) |
461 | // Patch reduction loop - only ones that are sibling-fused with the |
462 | // destination loop - into the parent loop. |
463 | (void)promoteSingleIterReductionLoop(forOp, true); |
464 | else |
465 | // Promote any single iteration slice loops. |
466 | (void)promoteIfSingleIteration(forOp); |
467 | } |
468 | } |
469 | |
470 | /// Collect loop nest statistics (eg. loop trip count and operation count) |
471 | /// in 'stats' for loop nest rooted at 'forOp'. Returns true on success, |
472 | /// returns false otherwise. |
473 | bool mlir::affine::getLoopNestStats(AffineForOp forOpRoot, |
474 | LoopNestStats *stats) { |
475 | auto walkResult = forOpRoot.walk([&](AffineForOp forOp) { |
476 | auto *childForOp = forOp.getOperation(); |
477 | auto *parentForOp = forOp->getParentOp(); |
478 | if (forOp != forOpRoot) { |
479 | if (!isa<AffineForOp>(parentForOp)) { |
480 | LLVM_DEBUG(llvm::dbgs() << "Expected parent AffineForOp\n" ); |
481 | return WalkResult::interrupt(); |
482 | } |
483 | // Add mapping to 'forOp' from its parent AffineForOp. |
484 | stats->loopMap[parentForOp].push_back(forOp); |
485 | } |
486 | |
487 | // Record the number of op operations in the body of 'forOp'. |
488 | unsigned count = 0; |
489 | stats->opCountMap[childForOp] = 0; |
490 | for (auto &op : *forOp.getBody()) { |
491 | if (!isa<AffineForOp, AffineIfOp>(op)) |
492 | ++count; |
493 | } |
494 | stats->opCountMap[childForOp] = count; |
495 | |
496 | // Record trip count for 'forOp'. Set flag if trip count is not |
497 | // constant. |
498 | std::optional<uint64_t> maybeConstTripCount = getConstantTripCount(forOp); |
499 | if (!maybeConstTripCount) { |
500 | // Currently only constant trip count loop nests are supported. |
501 | LLVM_DEBUG(llvm::dbgs() << "Non-constant trip count unsupported\n" ); |
502 | return WalkResult::interrupt(); |
503 | } |
504 | |
505 | stats->tripCountMap[childForOp] = *maybeConstTripCount; |
506 | return WalkResult::advance(); |
507 | }); |
508 | return !walkResult.wasInterrupted(); |
509 | } |
510 | |
511 | // Computes the total cost of the loop nest rooted at 'forOp'. |
512 | // Currently, the total cost is computed by counting the total operation |
513 | // instance count (i.e. total number of operations in the loop bodyloop |
514 | // operation count * loop trip count) for the entire loop nest. |
515 | // If 'tripCountOverrideMap' is non-null, overrides the trip count for loops |
516 | // specified in the map when computing the total op instance count. |
517 | // NOTEs: 1) This is used to compute the cost of computation slices, which are |
518 | // sliced along the iteration dimension, and thus reduce the trip count. |
519 | // If 'computeCostMap' is non-null, the total op count for forOps specified |
520 | // in the map is increased (not overridden) by adding the op count from the |
521 | // map to the existing op count for the for loop. This is done before |
522 | // multiplying by the loop's trip count, and is used to model the cost of |
523 | // inserting a sliced loop nest of known cost into the loop's body. |
524 | // 2) This is also used to compute the cost of fusing a slice of some loop nest |
525 | // within another loop. |
526 | static int64_t getComputeCostHelper( |
527 | Operation *forOp, LoopNestStats &stats, |
528 | llvm::SmallDenseMap<Operation *, uint64_t, 8> *tripCountOverrideMap, |
529 | DenseMap<Operation *, int64_t> *computeCostMap) { |
530 | // 'opCount' is the total number operations in one iteration of 'forOp' body, |
531 | // minus terminator op which is a no-op. |
532 | int64_t opCount = stats.opCountMap[forOp] - 1; |
533 | if (stats.loopMap.count(Val: forOp) > 0) { |
534 | for (auto childForOp : stats.loopMap[forOp]) { |
535 | opCount += getComputeCostHelper(childForOp, stats, tripCountOverrideMap, |
536 | computeCostMap); |
537 | } |
538 | } |
539 | // Add in additional op instances from slice (if specified in map). |
540 | if (computeCostMap) { |
541 | auto it = computeCostMap->find(Val: forOp); |
542 | if (it != computeCostMap->end()) { |
543 | opCount += it->second; |
544 | } |
545 | } |
546 | // Override trip count (if specified in map). |
547 | int64_t tripCount = stats.tripCountMap[forOp]; |
548 | if (tripCountOverrideMap) { |
549 | auto it = tripCountOverrideMap->find(Val: forOp); |
550 | if (it != tripCountOverrideMap->end()) { |
551 | tripCount = it->second; |
552 | } |
553 | } |
554 | // Returns the total number of dynamic instances of operations in loop body. |
555 | return tripCount * opCount; |
556 | } |
557 | |
558 | /// Computes the total cost of the loop nest rooted at 'forOp' using 'stats'. |
559 | /// Currently, the total cost is computed by counting the total operation |
560 | /// instance count (i.e. total number of operations in the loop body * loop |
561 | /// trip count) for the entire loop nest. |
562 | int64_t mlir::affine::getComputeCost(AffineForOp forOp, LoopNestStats &stats) { |
563 | return getComputeCostHelper(forOp, stats, |
564 | /*tripCountOverrideMap=*/nullptr, |
565 | /*computeCostMap=*/nullptr); |
566 | } |
567 | |
568 | /// Computes and returns in 'computeCost', the total compute cost of fusing the |
569 | /// 'slice' of the loop nest rooted at 'srcForOp' into 'dstForOp'. Currently, |
570 | /// the total cost is computed by counting the total operation instance count |
571 | /// (i.e. total number of operations in the loop body * loop trip count) for |
572 | /// the entire loop nest. |
573 | bool mlir::affine::getFusionComputeCost(AffineForOp srcForOp, |
574 | LoopNestStats &srcStats, |
575 | AffineForOp dstForOp, |
576 | LoopNestStats &dstStats, |
577 | const ComputationSliceState &slice, |
578 | int64_t *computeCost) { |
579 | llvm::SmallDenseMap<Operation *, uint64_t, 8> sliceTripCountMap; |
580 | DenseMap<Operation *, int64_t> computeCostMap; |
581 | |
582 | // Build trip count map for computation slice. |
583 | if (!buildSliceTripCountMap(slice, tripCountMap: &sliceTripCountMap)) |
584 | return false; |
585 | // Checks whether a store to load forwarding will happen. |
586 | int64_t sliceIterationCount = getSliceIterationCount(sliceTripCountMap); |
587 | assert(sliceIterationCount > 0); |
588 | bool storeLoadFwdGuaranteed = (sliceIterationCount == 1); |
589 | auto *insertPointParent = slice.insertPoint->getParentOp(); |
590 | |
591 | // The store and loads to this memref will disappear. |
592 | if (storeLoadFwdGuaranteed) { |
593 | // Subtract from operation count the loads/store we expect load/store |
594 | // forwarding to remove. |
595 | unsigned storeCount = 0; |
596 | llvm::SmallDenseSet<Value, 4> storeMemrefs; |
597 | srcForOp.walk([&](AffineWriteOpInterface storeOp) { |
598 | storeMemrefs.insert(storeOp.getMemRef()); |
599 | ++storeCount; |
600 | }); |
601 | // Subtract out any store ops in single-iteration src slice loop nest. |
602 | if (storeCount > 0) |
603 | computeCostMap[insertPointParent] = -storeCount; |
604 | // Subtract out any load users of 'storeMemrefs' nested below |
605 | // 'insertPointParent'. |
606 | for (Value memref : storeMemrefs) { |
607 | for (Operation *user : memref.getUsers()) { |
608 | if (!isa<AffineReadOpInterface>(user)) |
609 | continue; |
610 | SmallVector<AffineForOp, 4> loops; |
611 | // Check if any loop in loop nest surrounding 'user' is |
612 | // 'insertPointParent'. |
613 | getAffineForIVs(*user, &loops); |
614 | if (llvm::is_contained(loops, cast<AffineForOp>(insertPointParent))) { |
615 | if (auto forOp = dyn_cast_or_null<AffineForOp>(user->getParentOp())) |
616 | --computeCostMap[forOp]; |
617 | } |
618 | } |
619 | } |
620 | } |
621 | |
622 | // Compute op instance count for the src loop nest with iteration slicing. |
623 | int64_t sliceComputeCost = getComputeCostHelper( |
624 | srcForOp, srcStats, &sliceTripCountMap, &computeCostMap); |
625 | |
626 | // Compute cost of fusion for this depth. |
627 | computeCostMap[insertPointParent] = sliceComputeCost; |
628 | |
629 | *computeCost = |
630 | getComputeCostHelper(dstForOp, dstStats, |
631 | /*tripCountOverrideMap=*/nullptr, &computeCostMap); |
632 | return true; |
633 | } |
634 | |
635 | /// Returns in 'producerConsumerMemrefs' the memrefs involved in a |
636 | /// producer-consumer dependence between write ops in 'srcOps' and read ops in |
637 | /// 'dstOps'. |
638 | void mlir::affine::gatherProducerConsumerMemrefs( |
639 | ArrayRef<Operation *> srcOps, ArrayRef<Operation *> dstOps, |
640 | DenseSet<Value> &producerConsumerMemrefs) { |
641 | // Gather memrefs from stores in 'srcOps'. |
642 | DenseSet<Value> srcStoreMemRefs; |
643 | for (Operation *op : srcOps) |
644 | if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) |
645 | srcStoreMemRefs.insert(storeOp.getMemRef()); |
646 | |
647 | // Compute the intersection between memrefs from stores in 'srcOps' and |
648 | // memrefs from loads in 'dstOps'. |
649 | for (Operation *op : dstOps) |
650 | if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) |
651 | if (srcStoreMemRefs.count(V: loadOp.getMemRef()) > 0) |
652 | producerConsumerMemrefs.insert(loadOp.getMemRef()); |
653 | } |
654 | |