1 | //===- LoopFusionUtils.cpp ---- Utilities for loop fusion ----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements loop fusion transformation utility functions. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "mlir/Dialect/Affine/LoopFusionUtils.h" |
14 | #include "mlir/Analysis/SliceAnalysis.h" |
15 | #include "mlir/Dialect/Affine/Analysis/AffineAnalysis.h" |
16 | #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h" |
17 | #include "mlir/Dialect/Affine/Analysis/Utils.h" |
18 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
19 | #include "mlir/Dialect/Affine/LoopUtils.h" |
20 | #include "mlir/IR/IRMapping.h" |
21 | #include "mlir/IR/Operation.h" |
22 | #include "mlir/IR/PatternMatch.h" |
23 | #include "llvm/Support/Debug.h" |
24 | #include "llvm/Support/raw_ostream.h" |
25 | #include <optional> |
26 | |
27 | #define DEBUG_TYPE "loop-fusion-utils" |
28 | |
29 | using namespace mlir; |
30 | using namespace mlir::affine; |
31 | |
32 | // Gathers all load and store memref accesses in 'opA' into 'values', where |
33 | // 'values[memref] == true' for each store operation. |
34 | static void getLoadAndStoreMemRefAccesses(Operation *opA, |
35 | DenseMap<Value, bool> &values) { |
36 | opA->walk(callback: [&](Operation *op) { |
37 | if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) { |
38 | if (values.count(Val: loadOp.getMemRef()) == 0) |
39 | values[loadOp.getMemRef()] = false; |
40 | } else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) { |
41 | values[storeOp.getMemRef()] = true; |
42 | } |
43 | }); |
44 | } |
45 | |
46 | /// Returns true if 'op' is a load or store operation which access a memref |
47 | /// accessed 'values' and at least one of the access is a store operation. |
48 | /// Returns false otherwise. |
49 | static bool isDependentLoadOrStoreOp(Operation *op, |
50 | DenseMap<Value, bool> &values) { |
51 | if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) { |
52 | return values.count(Val: loadOp.getMemRef()) > 0 && values[loadOp.getMemRef()]; |
53 | } |
54 | if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) { |
55 | return values.count(Val: storeOp.getMemRef()) > 0; |
56 | } |
57 | return false; |
58 | } |
59 | |
60 | // Returns the first operation in range ('opA', 'opB') which has a data |
61 | // dependence on 'opA'. Returns 'nullptr' of no dependence exists. |
62 | static Operation *getFirstDependentOpInRange(Operation *opA, Operation *opB) { |
63 | // Record memref values from all loads/store in loop nest rooted at 'opA'. |
64 | // Map from memref value to bool which is true if store, false otherwise. |
65 | DenseMap<Value, bool> values; |
66 | getLoadAndStoreMemRefAccesses(opA, values); |
67 | |
68 | // For each 'opX' in block in range ('opA', 'opB'), check if there is a data |
69 | // dependence from 'opA' to 'opX' ('opA' and 'opX' access the same memref |
70 | // and at least one of the accesses is a store). |
71 | Operation *firstDepOp = nullptr; |
72 | for (Block::iterator it = std::next(x: Block::iterator(opA)); |
73 | it != Block::iterator(opB); ++it) { |
74 | Operation *opX = &(*it); |
75 | opX->walk(callback: [&](Operation *op) { |
76 | if (!firstDepOp && isDependentLoadOrStoreOp(op, values)) |
77 | firstDepOp = opX; |
78 | }); |
79 | if (firstDepOp) |
80 | break; |
81 | } |
82 | return firstDepOp; |
83 | } |
84 | |
85 | // Returns the last operation 'opX' in range ('opA', 'opB'), for which there |
86 | // exists a data dependence from 'opX' to 'opB'. |
87 | // Returns 'nullptr' of no dependence exists. |
88 | static Operation *getLastDependentOpInRange(Operation *opA, Operation *opB) { |
89 | // Record memref values from all loads/store in loop nest rooted at 'opB'. |
90 | // Map from memref value to bool which is true if store, false otherwise. |
91 | DenseMap<Value, bool> values; |
92 | getLoadAndStoreMemRefAccesses(opA: opB, values); |
93 | |
94 | // For each 'opX' in block in range ('opA', 'opB') in reverse order, |
95 | // check if there is a data dependence from 'opX' to 'opB': |
96 | // *) 'opX' and 'opB' access the same memref and at least one of the accesses |
97 | // is a store. |
98 | // *) 'opX' produces an SSA Value which is used by 'opB'. |
99 | Operation *lastDepOp = nullptr; |
100 | for (Block::reverse_iterator it = std::next(x: Block::reverse_iterator(opB)); |
101 | it != Block::reverse_iterator(opA); ++it) { |
102 | Operation *opX = &(*it); |
103 | opX->walk(callback: [&](Operation *op) { |
104 | if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) { |
105 | if (isDependentLoadOrStoreOp(op, values)) { |
106 | lastDepOp = opX; |
107 | return WalkResult::interrupt(); |
108 | } |
109 | return WalkResult::advance(); |
110 | } |
111 | for (Value value : op->getResults()) { |
112 | for (Operation *user : value.getUsers()) { |
113 | SmallVector<AffineForOp, 4> loops; |
114 | // Check if any loop in loop nest surrounding 'user' is 'opB'. |
115 | getAffineForIVs(*user, &loops); |
116 | if (llvm::is_contained(loops, cast<AffineForOp>(opB))) { |
117 | lastDepOp = opX; |
118 | return WalkResult::interrupt(); |
119 | } |
120 | } |
121 | } |
122 | return WalkResult::advance(); |
123 | }); |
124 | if (lastDepOp) |
125 | break; |
126 | } |
127 | return lastDepOp; |
128 | } |
129 | |
130 | // Computes and returns an insertion point operation, before which the |
131 | // the fused <srcForOp, dstForOp> loop nest can be inserted while preserving |
132 | // dependences. Returns nullptr if no such insertion point is found. |
133 | static Operation *getFusedLoopNestInsertionPoint(AffineForOp srcForOp, |
134 | AffineForOp dstForOp) { |
135 | bool isSrcForOpBeforeDstForOp = srcForOp->isBeforeInBlock(dstForOp); |
136 | auto forOpA = isSrcForOpBeforeDstForOp ? srcForOp : dstForOp; |
137 | auto forOpB = isSrcForOpBeforeDstForOp ? dstForOp : srcForOp; |
138 | |
139 | Operation *firstDepOpA = getFirstDependentOpInRange(forOpA, forOpB); |
140 | Operation *lastDepOpB = getLastDependentOpInRange(forOpA, forOpB); |
141 | // Block: |
142 | // ... |
143 | // |-- opA |
144 | // | ... |
145 | // | lastDepOpB --| |
146 | // | ... | |
147 | // |-> firstDepOpA | |
148 | // ... | |
149 | // opB <--------- |
150 | // |
151 | // Valid insertion point range: (lastDepOpB, firstDepOpA) |
152 | // |
153 | if (firstDepOpA) { |
154 | if (lastDepOpB) { |
155 | if (firstDepOpA->isBeforeInBlock(other: lastDepOpB) || firstDepOpA == lastDepOpB) |
156 | // No valid insertion point exists which preserves dependences. |
157 | return nullptr; |
158 | } |
159 | // Return insertion point in valid range closest to 'opB'. |
160 | // TODO: Consider other insertion points in valid range. |
161 | return firstDepOpA; |
162 | } |
163 | // No dependences from 'opA' to operation in range ('opA', 'opB'), return |
164 | // 'opB' insertion point. |
165 | return forOpB; |
166 | } |
167 | |
168 | // Gathers all load and store ops in loop nest rooted at 'forOp' into |
169 | // 'loadAndStoreOps'. |
170 | static bool |
171 | gatherLoadsAndStores(AffineForOp forOp, |
172 | SmallVectorImpl<Operation *> &loadAndStoreOps) { |
173 | bool hasIfOp = false; |
174 | forOp.walk([&](Operation *op) { |
175 | if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) |
176 | loadAndStoreOps.push_back(Elt: op); |
177 | else if (isa<AffineIfOp>(Val: op)) |
178 | hasIfOp = true; |
179 | }); |
180 | return !hasIfOp; |
181 | } |
182 | |
183 | /// Returns the maximum loop depth at which we could fuse producer loop |
184 | /// 'srcForOp' into consumer loop 'dstForOp' without violating data dependences. |
185 | // TODO: Generalize this check for sibling and more generic fusion scenarios. |
186 | // TODO: Support forward slice fusion. |
187 | static unsigned getMaxLoopDepth(ArrayRef<Operation *> srcOps, |
188 | ArrayRef<Operation *> dstOps) { |
189 | if (dstOps.empty()) |
190 | // Expected at least one memory operation. |
191 | // TODO: Revisit this case with a specific example. |
192 | return 0; |
193 | |
194 | // Filter out ops in 'dstOps' that do not use the producer-consumer memref so |
195 | // that they are not considered for analysis. |
196 | DenseSet<Value> producerConsumerMemrefs; |
197 | gatherProducerConsumerMemrefs(srcOps, dstOps, producerConsumerMemrefs); |
198 | SmallVector<Operation *, 4> targetDstOps; |
199 | for (Operation *dstOp : dstOps) { |
200 | auto loadOp = dyn_cast<AffineReadOpInterface>(dstOp); |
201 | Value memref = loadOp ? loadOp.getMemRef() |
202 | : cast<AffineWriteOpInterface>(dstOp).getMemRef(); |
203 | if (producerConsumerMemrefs.count(V: memref) > 0) |
204 | targetDstOps.push_back(Elt: dstOp); |
205 | } |
206 | |
207 | assert(!targetDstOps.empty() && |
208 | "No dependences between 'srcForOp' and 'dstForOp'?" ); |
209 | |
210 | // Compute the innermost common loop depth for loads and stores. |
211 | unsigned loopDepth = getInnermostCommonLoopDepth(ops: targetDstOps); |
212 | |
213 | // Return common loop depth for loads if there are no store ops. |
214 | if (all_of(targetDstOps, llvm::IsaPred<AffineReadOpInterface>)) |
215 | return loopDepth; |
216 | |
217 | // Check dependences on all pairs of ops in 'targetDstOps' and store the |
218 | // minimum loop depth at which a dependence is satisfied. |
219 | for (unsigned i = 0, e = targetDstOps.size(); i < e; ++i) { |
220 | Operation *srcOpInst = targetDstOps[i]; |
221 | MemRefAccess srcAccess(srcOpInst); |
222 | for (unsigned j = 0; j < e; ++j) { |
223 | auto *dstOpInst = targetDstOps[j]; |
224 | MemRefAccess dstAccess(dstOpInst); |
225 | |
226 | unsigned numCommonLoops = |
227 | getNumCommonSurroundingLoops(a&: *srcOpInst, b&: *dstOpInst); |
228 | for (unsigned d = 1; d <= numCommonLoops + 1; ++d) { |
229 | // TODO: Cache dependence analysis results, check cache here. |
230 | DependenceResult result = |
231 | checkMemrefAccessDependence(srcAccess, dstAccess, loopDepth: d); |
232 | if (hasDependence(result)) { |
233 | // Store minimum loop depth and break because we want the min 'd' at |
234 | // which there is a dependence. |
235 | loopDepth = std::min(a: loopDepth, b: d - 1); |
236 | break; |
237 | } |
238 | } |
239 | } |
240 | } |
241 | |
242 | return loopDepth; |
243 | } |
244 | |
245 | // TODO: This pass performs some computation that is the same for all the depths |
246 | // (e.g., getMaxLoopDepth). Implement a version of this utility that processes |
247 | // all the depths at once or only the legal maximal depth for maximal fusion. |
248 | FusionResult mlir::affine::canFuseLoops(AffineForOp srcForOp, |
249 | AffineForOp dstForOp, |
250 | unsigned dstLoopDepth, |
251 | ComputationSliceState *srcSlice, |
252 | FusionStrategy fusionStrategy) { |
253 | // Return 'failure' if 'dstLoopDepth == 0'. |
254 | if (dstLoopDepth == 0) { |
255 | LLVM_DEBUG(llvm::dbgs() << "Cannot fuse loop nests at depth 0\n" ); |
256 | return FusionResult::FailPrecondition; |
257 | } |
258 | // Return 'failure' if 'srcForOp' and 'dstForOp' are not in the same block. |
259 | auto *block = srcForOp->getBlock(); |
260 | if (block != dstForOp->getBlock()) { |
261 | LLVM_DEBUG(llvm::dbgs() << "Cannot fuse loop nests in different blocks\n" ); |
262 | return FusionResult::FailPrecondition; |
263 | } |
264 | |
265 | // Return 'failure' if no valid insertion point for fused loop nest in 'block' |
266 | // exists which would preserve dependences. |
267 | if (!getFusedLoopNestInsertionPoint(srcForOp, dstForOp)) { |
268 | LLVM_DEBUG(llvm::dbgs() << "Fusion would violate dependences in block\n" ); |
269 | return FusionResult::FailBlockDependence; |
270 | } |
271 | |
272 | // Check if 'srcForOp' precedes 'dstForOp' in 'block'. |
273 | bool isSrcForOpBeforeDstForOp = srcForOp->isBeforeInBlock(dstForOp); |
274 | // 'forOpA' executes before 'forOpB' in 'block'. |
275 | auto forOpA = isSrcForOpBeforeDstForOp ? srcForOp : dstForOp; |
276 | auto forOpB = isSrcForOpBeforeDstForOp ? dstForOp : srcForOp; |
277 | |
278 | // Gather all load and store from 'forOpA' which precedes 'forOpB' in 'block'. |
279 | SmallVector<Operation *, 4> opsA; |
280 | if (!gatherLoadsAndStores(forOpA, opsA)) { |
281 | LLVM_DEBUG(llvm::dbgs() << "Fusing loops with affine.if unsupported\n" ); |
282 | return FusionResult::FailPrecondition; |
283 | } |
284 | |
285 | // Gather all load and store from 'forOpB' which succeeds 'forOpA' in 'block'. |
286 | SmallVector<Operation *, 4> opsB; |
287 | if (!gatherLoadsAndStores(forOpB, opsB)) { |
288 | LLVM_DEBUG(llvm::dbgs() << "Fusing loops with affine.if unsupported\n" ); |
289 | return FusionResult::FailPrecondition; |
290 | } |
291 | |
292 | // Return 'failure' if fusing loops at depth 'dstLoopDepth' wouldn't preserve |
293 | // loop dependences. |
294 | // TODO: Enable this check for sibling and more generic loop fusion |
295 | // strategies. |
296 | if (fusionStrategy.getStrategy() == FusionStrategy::ProducerConsumer) { |
297 | // TODO: 'getMaxLoopDepth' does not support forward slice fusion. |
298 | assert(isSrcForOpBeforeDstForOp && "Unexpected forward slice fusion" ); |
299 | if (getMaxLoopDepth(srcOps: opsA, dstOps: opsB) < dstLoopDepth) { |
300 | LLVM_DEBUG(llvm::dbgs() << "Fusion would violate loop dependences\n" ); |
301 | return FusionResult::FailFusionDependence; |
302 | } |
303 | } |
304 | |
305 | // Calculate the number of common loops surrounding 'srcForOp' and 'dstForOp'. |
306 | unsigned numCommonLoops = |
307 | affine::getNumCommonSurroundingLoops(a&: *srcForOp, b&: *dstForOp); |
308 | |
309 | // Filter out ops in 'opsA' to compute the slice union based on the |
310 | // assumptions made by the fusion strategy. |
311 | SmallVector<Operation *, 4> strategyOpsA; |
312 | switch (fusionStrategy.getStrategy()) { |
313 | case FusionStrategy::Generic: |
314 | // Generic fusion. Take into account all the memory operations to compute |
315 | // the slice union. |
316 | strategyOpsA.append(in_start: opsA.begin(), in_end: opsA.end()); |
317 | break; |
318 | case FusionStrategy::ProducerConsumer: |
319 | // Producer-consumer fusion (AffineLoopFusion pass) only takes into |
320 | // account stores in 'srcForOp' to compute the slice union. |
321 | for (Operation *op : opsA) { |
322 | if (isa<AffineWriteOpInterface>(op)) |
323 | strategyOpsA.push_back(Elt: op); |
324 | } |
325 | break; |
326 | case FusionStrategy::Sibling: |
327 | // Sibling fusion (AffineLoopFusion pass) only takes into account the loads |
328 | // to 'memref' in 'srcForOp' to compute the slice union. |
329 | for (Operation *op : opsA) { |
330 | auto load = dyn_cast<AffineReadOpInterface>(op); |
331 | if (load && load.getMemRef() == fusionStrategy.getSiblingFusionMemRef()) |
332 | strategyOpsA.push_back(Elt: op); |
333 | } |
334 | break; |
335 | } |
336 | |
337 | // Compute union of computation slices computed between all pairs of ops |
338 | // from 'forOpA' and 'forOpB'. |
339 | SliceComputationResult sliceComputationResult = affine::computeSliceUnion( |
340 | opsA: strategyOpsA, opsB, loopDepth: dstLoopDepth, numCommonLoops, |
341 | isBackwardSlice: isSrcForOpBeforeDstForOp, sliceUnion: srcSlice); |
342 | if (sliceComputationResult.value == SliceComputationResult::GenericFailure) { |
343 | LLVM_DEBUG(llvm::dbgs() << "computeSliceUnion failed\n" ); |
344 | return FusionResult::FailPrecondition; |
345 | } |
346 | if (sliceComputationResult.value == |
347 | SliceComputationResult::IncorrectSliceFailure) { |
348 | LLVM_DEBUG(llvm::dbgs() << "Incorrect slice computation\n" ); |
349 | return FusionResult::FailIncorrectSlice; |
350 | } |
351 | |
352 | return FusionResult::Success; |
353 | } |
354 | |
355 | /// Patch the loop body of a forOp that is a single iteration reduction loop |
356 | /// into its containing block. |
357 | static LogicalResult promoteSingleIterReductionLoop(AffineForOp forOp, |
358 | bool siblingFusionUser) { |
359 | // Check if the reduction loop is a single iteration loop. |
360 | std::optional<uint64_t> tripCount = getConstantTripCount(forOp); |
361 | if (!tripCount || *tripCount != 1) |
362 | return failure(); |
363 | auto *parentOp = forOp->getParentOp(); |
364 | if (!isa<AffineForOp>(parentOp)) |
365 | return failure(); |
366 | SmallVector<Value> newOperands; |
367 | llvm::append_range(newOperands, |
368 | forOp.getBody()->getTerminator()->getOperands()); |
369 | IRRewriter rewriter(parentOp->getContext()); |
370 | int64_t parentOpNumResults = parentOp->getNumResults(); |
371 | // Replace the parent loop and add iteroperands and results from the `forOp`. |
372 | AffineForOp parentForOp = forOp->getParentOfType<AffineForOp>(); |
373 | AffineForOp newLoop = |
374 | cast<AffineForOp>(*parentForOp.replaceWithAdditionalYields( |
375 | rewriter, forOp.getInits(), /*replaceInitOperandUsesInLoop=*/false, |
376 | [&](OpBuilder &b, Location loc, ArrayRef<BlockArgument> newBbArgs) { |
377 | return newOperands; |
378 | })); |
379 | |
380 | // For sibling-fusion users, collect operations that use the results of the |
381 | // `forOp` outside the new parent loop that has absorbed all its iter args |
382 | // and operands. These operations will be moved later after the results |
383 | // have been replaced. |
384 | SetVector<Operation *> forwardSlice; |
385 | if (siblingFusionUser) { |
386 | for (unsigned i = 0, e = forOp.getNumResults(); i != e; ++i) { |
387 | SetVector<Operation *> tmpForwardSlice; |
388 | getForwardSlice(forOp.getResult(i), &tmpForwardSlice); |
389 | forwardSlice.set_union(tmpForwardSlice); |
390 | } |
391 | } |
392 | // Update the results of the `forOp` in the new loop. |
393 | for (unsigned i = 0, e = forOp.getNumResults(); i != e; ++i) { |
394 | forOp.getResult(i).replaceAllUsesWith( |
395 | newLoop.getResult(i + parentOpNumResults)); |
396 | } |
397 | // For sibling-fusion users, move operations that use the results of the |
398 | // `forOp` outside the new parent loop |
399 | if (siblingFusionUser) { |
400 | topologicalSort(toSort: forwardSlice); |
401 | for (Operation *op : llvm::reverse(C&: forwardSlice)) |
402 | op->moveAfter(newLoop); |
403 | } |
404 | // Replace the induction variable. |
405 | auto iv = forOp.getInductionVar(); |
406 | iv.replaceAllUsesWith(newLoop.getInductionVar()); |
407 | // Replace the iter args. |
408 | auto forOpIterArgs = forOp.getRegionIterArgs(); |
409 | for (auto it : llvm::zip(forOpIterArgs, newLoop.getRegionIterArgs().take_back( |
410 | forOpIterArgs.size()))) { |
411 | std::get<0>(it).replaceAllUsesWith(std::get<1>(it)); |
412 | } |
413 | // Move the loop body operations, except for its terminator, to the loop's |
414 | // containing block. |
415 | forOp.getBody()->back().erase(); |
416 | auto *parentBlock = forOp->getBlock(); |
417 | parentBlock->getOperations().splice(Block::iterator(forOp), |
418 | forOp.getBody()->getOperations()); |
419 | forOp.erase(); |
420 | return success(); |
421 | } |
422 | |
423 | /// Fuses 'srcForOp' into 'dstForOp' with destination loop block insertion point |
424 | /// and source slice loop bounds specified in 'srcSlice'. |
425 | void mlir::affine::fuseLoops(AffineForOp srcForOp, AffineForOp dstForOp, |
426 | const ComputationSliceState &srcSlice, |
427 | bool isInnermostSiblingInsertion) { |
428 | // Clone 'srcForOp' into 'dstForOp' at 'srcSlice->insertPoint'. |
429 | OpBuilder b(srcSlice.insertPoint->getBlock(), srcSlice.insertPoint); |
430 | IRMapping mapper; |
431 | b.clone(*srcForOp, mapper); |
432 | |
433 | // Update 'sliceLoopNest' upper and lower bounds from computed 'srcSlice'. |
434 | SmallVector<AffineForOp, 4> sliceLoops; |
435 | for (unsigned i = 0, e = srcSlice.ivs.size(); i < e; ++i) { |
436 | auto loopIV = mapper.lookupOrNull(from: srcSlice.ivs[i]); |
437 | if (!loopIV) |
438 | continue; |
439 | auto forOp = getForInductionVarOwner(loopIV); |
440 | sliceLoops.push_back(forOp); |
441 | if (AffineMap lbMap = srcSlice.lbs[i]) { |
442 | auto lbOperands = srcSlice.lbOperands[i]; |
443 | canonicalizeMapAndOperands(map: &lbMap, operands: &lbOperands); |
444 | forOp.setLowerBound(lbOperands, lbMap); |
445 | } |
446 | if (AffineMap ubMap = srcSlice.ubs[i]) { |
447 | auto ubOperands = srcSlice.ubOperands[i]; |
448 | canonicalizeMapAndOperands(map: &ubMap, operands: &ubOperands); |
449 | forOp.setUpperBound(ubOperands, ubMap); |
450 | } |
451 | } |
452 | |
453 | llvm::SmallDenseMap<Operation *, uint64_t, 8> sliceTripCountMap; |
454 | auto srcIsUnitSlice = [&]() { |
455 | return (buildSliceTripCountMap(slice: srcSlice, tripCountMap: &sliceTripCountMap) && |
456 | (getSliceIterationCount(sliceTripCountMap) == 1)); |
457 | }; |
458 | // Fix up and if possible, eliminate single iteration loops. |
459 | for (AffineForOp forOp : sliceLoops) { |
460 | if (isLoopParallelAndContainsReduction(forOp) && |
461 | isInnermostSiblingInsertion && srcIsUnitSlice()) |
462 | // Patch reduction loop - only ones that are sibling-fused with the |
463 | // destination loop - into the parent loop. |
464 | (void)promoteSingleIterReductionLoop(forOp, true); |
465 | else |
466 | // Promote any single iteration slice loops. |
467 | (void)promoteIfSingleIteration(forOp); |
468 | } |
469 | } |
470 | |
471 | /// Collect loop nest statistics (eg. loop trip count and operation count) |
472 | /// in 'stats' for loop nest rooted at 'forOp'. Returns true on success, |
473 | /// returns false otherwise. |
474 | bool mlir::affine::getLoopNestStats(AffineForOp forOpRoot, |
475 | LoopNestStats *stats) { |
476 | auto walkResult = forOpRoot.walk([&](AffineForOp forOp) { |
477 | auto *childForOp = forOp.getOperation(); |
478 | auto *parentForOp = forOp->getParentOp(); |
479 | if (forOp != forOpRoot) { |
480 | if (!isa<AffineForOp>(parentForOp)) { |
481 | LLVM_DEBUG(llvm::dbgs() << "Expected parent AffineForOp\n" ); |
482 | return WalkResult::interrupt(); |
483 | } |
484 | // Add mapping to 'forOp' from its parent AffineForOp. |
485 | stats->loopMap[parentForOp].push_back(forOp); |
486 | } |
487 | |
488 | // Record the number of op operations in the body of 'forOp'. |
489 | unsigned count = 0; |
490 | stats->opCountMap[childForOp] = 0; |
491 | for (auto &op : *forOp.getBody()) { |
492 | if (!isa<AffineForOp, AffineIfOp>(op)) |
493 | ++count; |
494 | } |
495 | stats->opCountMap[childForOp] = count; |
496 | |
497 | // Record trip count for 'forOp'. Set flag if trip count is not |
498 | // constant. |
499 | std::optional<uint64_t> maybeConstTripCount = getConstantTripCount(forOp); |
500 | if (!maybeConstTripCount) { |
501 | // Currently only constant trip count loop nests are supported. |
502 | LLVM_DEBUG(llvm::dbgs() << "Non-constant trip count unsupported\n" ); |
503 | return WalkResult::interrupt(); |
504 | } |
505 | |
506 | stats->tripCountMap[childForOp] = *maybeConstTripCount; |
507 | return WalkResult::advance(); |
508 | }); |
509 | return !walkResult.wasInterrupted(); |
510 | } |
511 | |
512 | // Computes the total cost of the loop nest rooted at 'forOp'. |
513 | // Currently, the total cost is computed by counting the total operation |
514 | // instance count (i.e. total number of operations in the loop bodyloop |
515 | // operation count * loop trip count) for the entire loop nest. |
516 | // If 'tripCountOverrideMap' is non-null, overrides the trip count for loops |
517 | // specified in the map when computing the total op instance count. |
518 | // NOTEs: 1) This is used to compute the cost of computation slices, which are |
519 | // sliced along the iteration dimension, and thus reduce the trip count. |
520 | // If 'computeCostMap' is non-null, the total op count for forOps specified |
521 | // in the map is increased (not overridden) by adding the op count from the |
522 | // map to the existing op count for the for loop. This is done before |
523 | // multiplying by the loop's trip count, and is used to model the cost of |
524 | // inserting a sliced loop nest of known cost into the loop's body. |
525 | // 2) This is also used to compute the cost of fusing a slice of some loop nest |
526 | // within another loop. |
527 | static int64_t getComputeCostHelper( |
528 | Operation *forOp, LoopNestStats &stats, |
529 | llvm::SmallDenseMap<Operation *, uint64_t, 8> *tripCountOverrideMap, |
530 | DenseMap<Operation *, int64_t> *computeCostMap) { |
531 | // 'opCount' is the total number operations in one iteration of 'forOp' body, |
532 | // minus terminator op which is a no-op. |
533 | int64_t opCount = stats.opCountMap[forOp] - 1; |
534 | if (stats.loopMap.count(Val: forOp) > 0) { |
535 | for (auto childForOp : stats.loopMap[forOp]) { |
536 | opCount += getComputeCostHelper(childForOp, stats, tripCountOverrideMap, |
537 | computeCostMap); |
538 | } |
539 | } |
540 | // Add in additional op instances from slice (if specified in map). |
541 | if (computeCostMap) { |
542 | auto it = computeCostMap->find(Val: forOp); |
543 | if (it != computeCostMap->end()) { |
544 | opCount += it->second; |
545 | } |
546 | } |
547 | // Override trip count (if specified in map). |
548 | int64_t tripCount = stats.tripCountMap[forOp]; |
549 | if (tripCountOverrideMap) { |
550 | auto it = tripCountOverrideMap->find(Val: forOp); |
551 | if (it != tripCountOverrideMap->end()) { |
552 | tripCount = it->second; |
553 | } |
554 | } |
555 | // Returns the total number of dynamic instances of operations in loop body. |
556 | return tripCount * opCount; |
557 | } |
558 | |
559 | /// Computes the total cost of the loop nest rooted at 'forOp' using 'stats'. |
560 | /// Currently, the total cost is computed by counting the total operation |
561 | /// instance count (i.e. total number of operations in the loop body * loop |
562 | /// trip count) for the entire loop nest. |
563 | int64_t mlir::affine::getComputeCost(AffineForOp forOp, LoopNestStats &stats) { |
564 | return getComputeCostHelper(forOp, stats, |
565 | /*tripCountOverrideMap=*/nullptr, |
566 | /*computeCostMap=*/nullptr); |
567 | } |
568 | |
569 | /// Computes and returns in 'computeCost', the total compute cost of fusing the |
570 | /// 'slice' of the loop nest rooted at 'srcForOp' into 'dstForOp'. Currently, |
571 | /// the total cost is computed by counting the total operation instance count |
572 | /// (i.e. total number of operations in the loop body * loop trip count) for |
573 | /// the entire loop nest. |
574 | bool mlir::affine::getFusionComputeCost(AffineForOp srcForOp, |
575 | LoopNestStats &srcStats, |
576 | AffineForOp dstForOp, |
577 | LoopNestStats &dstStats, |
578 | const ComputationSliceState &slice, |
579 | int64_t *computeCost) { |
580 | llvm::SmallDenseMap<Operation *, uint64_t, 8> sliceTripCountMap; |
581 | DenseMap<Operation *, int64_t> computeCostMap; |
582 | |
583 | // Build trip count map for computation slice. |
584 | if (!buildSliceTripCountMap(slice, tripCountMap: &sliceTripCountMap)) |
585 | return false; |
586 | // Checks whether a store to load forwarding will happen. |
587 | int64_t sliceIterationCount = getSliceIterationCount(sliceTripCountMap); |
588 | assert(sliceIterationCount > 0); |
589 | bool storeLoadFwdGuaranteed = (sliceIterationCount == 1); |
590 | auto *insertPointParent = slice.insertPoint->getParentOp(); |
591 | |
592 | // The store and loads to this memref will disappear. |
593 | if (storeLoadFwdGuaranteed) { |
594 | // Subtract from operation count the loads/store we expect load/store |
595 | // forwarding to remove. |
596 | unsigned storeCount = 0; |
597 | llvm::SmallDenseSet<Value, 4> storeMemrefs; |
598 | srcForOp.walk([&](AffineWriteOpInterface storeOp) { |
599 | storeMemrefs.insert(storeOp.getMemRef()); |
600 | ++storeCount; |
601 | }); |
602 | // Subtract out any store ops in single-iteration src slice loop nest. |
603 | if (storeCount > 0) |
604 | computeCostMap[insertPointParent] = -storeCount; |
605 | // Subtract out any load users of 'storeMemrefs' nested below |
606 | // 'insertPointParent'. |
607 | for (Value memref : storeMemrefs) { |
608 | for (Operation *user : memref.getUsers()) { |
609 | if (!isa<AffineReadOpInterface>(user)) |
610 | continue; |
611 | SmallVector<AffineForOp, 4> loops; |
612 | // Check if any loop in loop nest surrounding 'user' is |
613 | // 'insertPointParent'. |
614 | getAffineForIVs(*user, &loops); |
615 | if (llvm::is_contained(loops, cast<AffineForOp>(insertPointParent))) { |
616 | if (auto forOp = dyn_cast_or_null<AffineForOp>(user->getParentOp())) { |
617 | if (computeCostMap.count(Val: forOp) == 0) |
618 | computeCostMap[forOp] = 0; |
619 | computeCostMap[forOp] -= 1; |
620 | } |
621 | } |
622 | } |
623 | } |
624 | } |
625 | |
626 | // Compute op instance count for the src loop nest with iteration slicing. |
627 | int64_t sliceComputeCost = getComputeCostHelper( |
628 | srcForOp, srcStats, &sliceTripCountMap, &computeCostMap); |
629 | |
630 | // Compute cost of fusion for this depth. |
631 | computeCostMap[insertPointParent] = sliceComputeCost; |
632 | |
633 | *computeCost = |
634 | getComputeCostHelper(dstForOp, dstStats, |
635 | /*tripCountOverrideMap=*/nullptr, &computeCostMap); |
636 | return true; |
637 | } |
638 | |
639 | /// Returns in 'producerConsumerMemrefs' the memrefs involved in a |
640 | /// producer-consumer dependence between write ops in 'srcOps' and read ops in |
641 | /// 'dstOps'. |
642 | void mlir::affine::gatherProducerConsumerMemrefs( |
643 | ArrayRef<Operation *> srcOps, ArrayRef<Operation *> dstOps, |
644 | DenseSet<Value> &producerConsumerMemrefs) { |
645 | // Gather memrefs from stores in 'srcOps'. |
646 | DenseSet<Value> srcStoreMemRefs; |
647 | for (Operation *op : srcOps) |
648 | if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) |
649 | srcStoreMemRefs.insert(storeOp.getMemRef()); |
650 | |
651 | // Compute the intersection between memrefs from stores in 'srcOps' and |
652 | // memrefs from loads in 'dstOps'. |
653 | for (Operation *op : dstOps) |
654 | if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) |
655 | if (srcStoreMemRefs.count(V: loadOp.getMemRef()) > 0) |
656 | producerConsumerMemrefs.insert(loadOp.getMemRef()); |
657 | } |
658 | |