1//===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements scf.parallel to scf.for + async.execute conversion pass.
10//
11//===----------------------------------------------------------------------===//
12
13#include "mlir/Dialect/Async/Passes.h"
14
15#include "PassDetail.h"
16#include "mlir/Dialect/Arith/IR/Arith.h"
17#include "mlir/Dialect/Async/IR/Async.h"
18#include "mlir/Dialect/Async/Transforms.h"
19#include "mlir/Dialect/Func/IR/FuncOps.h"
20#include "mlir/Dialect/SCF/IR/SCF.h"
21#include "mlir/IR/IRMapping.h"
22#include "mlir/IR/ImplicitLocOpBuilder.h"
23#include "mlir/IR/Matchers.h"
24#include "mlir/IR/PatternMatch.h"
25#include "mlir/Support/LLVM.h"
26#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
27#include "mlir/Transforms/RegionUtils.h"
28#include <utility>
29
30namespace mlir {
31#define GEN_PASS_DEF_ASYNCPARALLELFORPASS
32#include "mlir/Dialect/Async/Passes.h.inc"
33} // namespace mlir
34
35using namespace mlir;
36using namespace mlir::async;
37
38#define DEBUG_TYPE "async-parallel-for"
39
40namespace {
41
42// Rewrite scf.parallel operation into multiple concurrent async.execute
43// operations over non overlapping subranges of the original loop.
44//
45// Example:
46//
47// scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) {
48// "do_some_compute"(%i, %j): () -> ()
49// }
50//
51// Converted to:
52//
53// // Parallel compute function that executes the parallel body region for
54// // a subset of the parallel iteration space defined by the one-dimensional
55// // compute block index.
56// func parallel_compute_function(%block_index : index, %block_size : index,
57// <parallel operation properties>, ...) {
58// // Compute multi-dimensional loop bounds for %block_index.
59// %block_lbi, %block_lbj = ...
60// %block_ubi, %block_ubj = ...
61//
62// // Clone parallel operation body into the scf.for loop nest.
63// scf.for %i = %blockLbi to %blockUbi {
64// scf.for %j = block_lbj to %block_ubj {
65// "do_some_compute"(%i, %j): () -> ()
66// }
67// }
68// }
69//
70// And a dispatch function depending on the `asyncDispatch` option.
71//
72// When async dispatch is on: (pseudocode)
73//
74// %block_size = ... compute parallel compute block size
75// %block_count = ... compute the number of compute blocks
76//
77// func @async_dispatch(%block_start : index, %block_end : index, ...) {
78// // Keep splitting block range until we reached a range of size 1.
79// while (%block_end - %block_start > 1) {
80// %mid_index = block_start + (block_end - block_start) / 2;
81// async.execute { call @async_dispatch(%mid_index, %block_end); }
82// %block_end = %mid_index
83// }
84//
85// // Call parallel compute function for a single block.
86// call @parallel_compute_fn(%block_start, %block_size, ...);
87// }
88//
89// // Launch async dispatch for [0, block_count) range.
90// call @async_dispatch(%c0, %block_count);
91//
92// When async dispatch is off:
93//
94// %block_size = ... compute parallel compute block size
95// %block_count = ... compute the number of compute blocks
96//
97// scf.for %block_index = %c0 to %block_count {
98// call @parallel_compute_fn(%block_index, %block_size, ...)
99// }
100//
101struct AsyncParallelForPass
102 : public impl::AsyncParallelForPassBase<AsyncParallelForPass> {
103 using Base::Base;
104
105 void runOnOperation() override;
106};
107
108struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> {
109public:
110 AsyncParallelForRewrite(
111 MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads,
112 AsyncMinTaskSizeComputationFunction computeMinTaskSize)
113 : OpRewritePattern(ctx), asyncDispatch(asyncDispatch),
114 numWorkerThreads(numWorkerThreads),
115 computeMinTaskSize(std::move(computeMinTaskSize)) {}
116
117 LogicalResult matchAndRewrite(scf::ParallelOp op,
118 PatternRewriter &rewriter) const override;
119
120private:
121 bool asyncDispatch;
122 int32_t numWorkerThreads;
123 AsyncMinTaskSizeComputationFunction computeMinTaskSize;
124};
125
126struct ParallelComputeFunctionType {
127 FunctionType type;
128 SmallVector<Value> captures;
129};
130
131// Helper struct to parse parallel compute function argument list.
132struct ParallelComputeFunctionArgs {
133 BlockArgument blockIndex();
134 BlockArgument blockSize();
135 ArrayRef<BlockArgument> tripCounts();
136 ArrayRef<BlockArgument> lowerBounds();
137 ArrayRef<BlockArgument> steps();
138 ArrayRef<BlockArgument> captures();
139
140 unsigned numLoops;
141 ArrayRef<BlockArgument> args;
142};
143
144struct ParallelComputeFunctionBounds {
145 SmallVector<IntegerAttr> tripCounts;
146 SmallVector<IntegerAttr> lowerBounds;
147 SmallVector<IntegerAttr> upperBounds;
148 SmallVector<IntegerAttr> steps;
149};
150
151struct ParallelComputeFunction {
152 unsigned numLoops;
153 func::FuncOp func;
154 llvm::SmallVector<Value> captures;
155};
156
157} // namespace
158
159BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; }
160BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; }
161
162ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() {
163 return args.drop_front(N: 2).take_front(N: numLoops);
164}
165
166ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() {
167 return args.drop_front(N: 2 + 1 * numLoops).take_front(N: numLoops);
168}
169
170ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() {
171 return args.drop_front(N: 2 + 3 * numLoops).take_front(N: numLoops);
172}
173
174ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() {
175 return args.drop_front(N: 2 + 4 * numLoops);
176}
177
178template <typename ValueRange>
179static SmallVector<IntegerAttr> integerConstants(ValueRange values) {
180 SmallVector<IntegerAttr> attrs(values.size());
181 for (unsigned i = 0; i < values.size(); ++i)
182 matchPattern(values[i], m_Constant(&attrs[i]));
183 return attrs;
184}
185
186// Converts one-dimensional iteration index in the [0, tripCount) interval
187// into multidimensional iteration coordinate.
188static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index,
189 ArrayRef<Value> tripCounts) {
190 SmallVector<Value> coords(tripCounts.size());
191 assert(!tripCounts.empty() && "tripCounts must be not empty");
192
193 for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) {
194 coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]);
195 index = b.create<arith::DivSIOp>(index, tripCounts[i]);
196 }
197
198 return coords;
199}
200
201// Returns a function type and implicit captures for a parallel compute
202// function. We'll need a list of implicit captures to setup block and value
203// mapping when we'll clone the body of the parallel operation.
204static ParallelComputeFunctionType
205getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) {
206 // Values implicitly captured by the parallel operation.
207 llvm::SetVector<Value> captures;
208 getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures);
209
210 SmallVector<Type> inputs;
211 inputs.reserve(N: 2 + 4 * op.getNumLoops() + captures.size());
212
213 Type indexTy = rewriter.getIndexType();
214
215 // One-dimensional iteration space defined by the block index and size.
216 inputs.push_back(Elt: indexTy); // blockIndex
217 inputs.push_back(Elt: indexTy); // blockSize
218
219 // Multi-dimensional parallel iteration space defined by the loop trip counts.
220 for (unsigned i = 0; i < op.getNumLoops(); ++i)
221 inputs.push_back(Elt: indexTy); // loop tripCount
222
223 // Parallel operation lower bound, upper bound and step. Lower bound, upper
224 // bound and step passed as contiguous arguments:
225 // call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...)
226 for (unsigned i = 0; i < op.getNumLoops(); ++i) {
227 inputs.push_back(Elt: indexTy); // lower bound
228 inputs.push_back(Elt: indexTy); // upper bound
229 inputs.push_back(Elt: indexTy); // step
230 }
231
232 // Types of the implicit captures.
233 for (Value capture : captures)
234 inputs.push_back(Elt: capture.getType());
235
236 // Convert captures to vector for later convenience.
237 SmallVector<Value> capturesVector(captures.begin(), captures.end());
238 return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector};
239}
240
241// Create a parallel compute fuction from the parallel operation.
242static ParallelComputeFunction createParallelComputeFunction(
243 scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds,
244 unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) {
245 OpBuilder::InsertionGuard guard(rewriter);
246 ImplicitLocOpBuilder b(op.getLoc(), rewriter);
247
248 ModuleOp module = op->getParentOfType<ModuleOp>();
249
250 ParallelComputeFunctionType computeFuncType =
251 getParallelComputeFunctionType(op, rewriter);
252
253 FunctionType type = computeFuncType.type;
254 func::FuncOp func = func::FuncOp::create(
255 op.getLoc(),
256 numBlockAlignedInnerLoops > 0 ? "parallel_compute_fn_with_aligned_loops"
257 : "parallel_compute_fn",
258 type);
259 func.setPrivate();
260
261 // Insert function into the module symbol table and assign it unique name.
262 SymbolTable symbolTable(module);
263 symbolTable.insert(symbol: func);
264 rewriter.getListener()->notifyOperationInserted(op: func, /*previous=*/{});
265
266 // Create function entry block.
267 Block *block =
268 b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
269 SmallVector<Location>(type.getNumInputs(), op.getLoc()));
270 b.setInsertionPointToEnd(block);
271
272 ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()};
273
274 // Block iteration position defined by the block index and size.
275 BlockArgument blockIndex = args.blockIndex();
276 BlockArgument blockSize = args.blockSize();
277
278 // Constants used below.
279 Value c0 = b.create<arith::ConstantIndexOp>(args: 0);
280 Value c1 = b.create<arith::ConstantIndexOp>(args: 1);
281
282 // Materialize known constants as constant operation in the function body.
283 auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) {
284 return llvm::to_vector(
285 Range: llvm::map_range(C: llvm::zip(t&: args, u&: attrs), F: [&](auto tuple) -> Value {
286 if (IntegerAttr attr = std::get<1>(tuple))
287 return b.create<arith::ConstantOp>(attr);
288 return std::get<0>(tuple);
289 }));
290 };
291
292 // Multi-dimensional parallel iteration space defined by the loop trip counts.
293 auto tripCounts = values(args.tripCounts(), bounds.tripCounts);
294
295 // Parallel operation lower bound and step.
296 auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds);
297 auto steps = values(args.steps(), bounds.steps);
298
299 // Remaining arguments are implicit captures of the parallel operation.
300 ArrayRef<BlockArgument> captures = args.captures();
301
302 // Compute a product of trip counts to get the size of the flattened
303 // one-dimensional iteration space.
304 Value tripCount = tripCounts[0];
305 for (unsigned i = 1; i < tripCounts.size(); ++i)
306 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
307
308 // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]:
309 // blockFirstIndex = blockIndex * blockSize
310 Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize);
311
312 // The last one-dimensional index in the block defined by the `blockIndex`:
313 // blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1
314 Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize);
315 Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount);
316 Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1);
317
318 // Convert one-dimensional indices to multi-dimensional coordinates.
319 auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts);
320 auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts);
321
322 // Compute loops upper bounds derived from the block last coordinates:
323 // blockEndCoord[i] = blockLastCoord[i] + 1
324 //
325 // Block first and last coordinates can be the same along the outer compute
326 // dimension when inner compute dimension contains multiple blocks.
327 SmallVector<Value> blockEndCoord(op.getNumLoops());
328 for (size_t i = 0; i < blockLastCoord.size(); ++i)
329 blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1);
330
331 // Construct a loop nest out of scf.for operations that will iterate over
332 // all coordinates in [blockFirstCoord, blockLastCoord] range.
333 using LoopBodyBuilder =
334 std::function<void(OpBuilder &, Location, Value, ValueRange)>;
335 using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>;
336
337 // Parallel region induction variables computed from the multi-dimensional
338 // iteration coordinate using parallel operation bounds and step:
339 //
340 // computeBlockInductionVars[loopIdx] =
341 // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx]
342 SmallVector<Value> computeBlockInductionVars(op.getNumLoops());
343
344 // We need to know if we are in the first or last iteration of the
345 // multi-dimensional loop for each loop in the nest, so we can decide what
346 // loop bounds should we use for the nested loops: bounds defined by compute
347 // block interval, or bounds defined by the parallel operation.
348 //
349 // Example: 2d parallel operation
350 // i j
351 // loop sizes: [50, 50]
352 // first coord: [25, 25]
353 // last coord: [30, 30]
354 //
355 // If `i` is equal to 25 then iteration over `j` should start at 25, when `i`
356 // is between 25 and 30 it should start at 0. The upper bound for `j` should
357 // be 50, except when `i` is equal to 30, then it should also be 30.
358 //
359 // Value at ith position specifies if all loops in [0, i) range of the loop
360 // nest are in the first/last iteration.
361 SmallVector<Value> isBlockFirstCoord(op.getNumLoops());
362 SmallVector<Value> isBlockLastCoord(op.getNumLoops());
363
364 // Builds inner loop nest inside async.execute operation that does all the
365 // work concurrently.
366 LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder {
367 return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv,
368 ValueRange args) {
369 ImplicitLocOpBuilder b(loc, nestedBuilder);
370
371 // Compute induction variable for `loopIdx`.
372 computeBlockInductionVars[loopIdx] = b.create<arith::AddIOp>(
373 lowerBounds[loopIdx], b.create<arith::MulIOp>(iv, steps[loopIdx]));
374
375 // Check if we are inside first or last iteration of the loop.
376 isBlockFirstCoord[loopIdx] = b.create<arith::CmpIOp>(
377 arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]);
378 isBlockLastCoord[loopIdx] = b.create<arith::CmpIOp>(
379 arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]);
380
381 // Check if the previous loop is in its first or last iteration.
382 if (loopIdx > 0) {
383 isBlockFirstCoord[loopIdx] = b.create<arith::AndIOp>(
384 isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]);
385 isBlockLastCoord[loopIdx] = b.create<arith::AndIOp>(
386 isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]);
387 }
388
389 // Keep building loop nest.
390 if (loopIdx < op.getNumLoops() - 1) {
391 if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) {
392 // For block aligned loops we always iterate starting from 0 up to
393 // the loop trip counts.
394 b.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(),
395 workLoopBuilder(loopIdx + 1));
396
397 } else {
398 // Select nested loop lower/upper bounds depending on our position in
399 // the multi-dimensional iteration space.
400 auto lb = b.create<arith::SelectOp>(isBlockFirstCoord[loopIdx],
401 blockFirstCoord[loopIdx + 1], c0);
402
403 auto ub = b.create<arith::SelectOp>(isBlockLastCoord[loopIdx],
404 blockEndCoord[loopIdx + 1],
405 tripCounts[loopIdx + 1]);
406
407 b.create<scf::ForOp>(lb, ub, c1, ValueRange(),
408 workLoopBuilder(loopIdx + 1));
409 }
410
411 b.create<scf::YieldOp>(loc);
412 return;
413 }
414
415 // Copy the body of the parallel op into the inner-most loop.
416 IRMapping mapping;
417 mapping.map(op.getInductionVars(), computeBlockInductionVars);
418 mapping.map(computeFuncType.captures, captures);
419
420 for (auto &bodyOp : op.getRegion().front().without_terminator())
421 b.clone(bodyOp, mapping);
422 b.create<scf::YieldOp>(loc);
423 };
424 };
425
426 b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(),
427 workLoopBuilder(0));
428 b.create<func::ReturnOp>(ValueRange());
429
430 return {op.getNumLoops(), func, std::move(computeFuncType.captures)};
431}
432
433// Creates recursive async dispatch function for the given parallel compute
434// function. Dispatch function keeps splitting block range into halves until it
435// reaches a single block, and then excecutes it inline.
436//
437// Function pseudocode (mix of C++ and MLIR):
438//
439// func @async_dispatch(%block_start : index, %block_end : index, ...) {
440//
441// // Keep splitting block range until we reached a range of size 1.
442// while (%block_end - %block_start > 1) {
443// %mid_index = block_start + (block_end - block_start) / 2;
444// async.execute { call @async_dispatch(%mid_index, %block_end); }
445// %block_end = %mid_index
446// }
447//
448// // Call parallel compute function for a single block.
449// call @parallel_compute_fn(%block_start, %block_size, ...);
450// }
451//
452static func::FuncOp
453createAsyncDispatchFunction(ParallelComputeFunction &computeFunc,
454 PatternRewriter &rewriter) {
455 OpBuilder::InsertionGuard guard(rewriter);
456 Location loc = computeFunc.func.getLoc();
457 ImplicitLocOpBuilder b(loc, rewriter);
458
459 ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>();
460
461 ArrayRef<Type> computeFuncInputTypes =
462 computeFunc.func.getFunctionType().getInputs();
463
464 // Compared to the parallel compute function async dispatch function takes
465 // additional !async.group argument. Also instead of a single `blockIndex` it
466 // takes `blockStart` and `blockEnd` arguments to define the range of
467 // dispatched blocks.
468 SmallVector<Type> inputTypes;
469 inputTypes.push_back(async::GroupType::get(rewriter.getContext()));
470 inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument
471 inputTypes.append(in_start: computeFuncInputTypes.begin(), in_end: computeFuncInputTypes.end());
472
473 FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange());
474 func::FuncOp func = func::FuncOp::create(loc, "async_dispatch_fn", type);
475 func.setPrivate();
476
477 // Insert function into the module symbol table and assign it unique name.
478 SymbolTable symbolTable(module);
479 symbolTable.insert(symbol: func);
480 rewriter.getListener()->notifyOperationInserted(op: func, /*previous=*/{});
481
482 // Create function entry block.
483 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
484 SmallVector<Location>(type.getNumInputs(), loc));
485 b.setInsertionPointToEnd(block);
486
487 Type indexTy = b.getIndexType();
488 Value c1 = b.create<arith::ConstantIndexOp>(args: 1);
489 Value c2 = b.create<arith::ConstantIndexOp>(args: 2);
490
491 // Get the async group that will track async dispatch completion.
492 Value group = block->getArgument(i: 0);
493
494 // Get the block iteration range: [blockStart, blockEnd)
495 Value blockStart = block->getArgument(i: 1);
496 Value blockEnd = block->getArgument(i: 2);
497
498 // Create a work splitting while loop for the [blockStart, blockEnd) range.
499 SmallVector<Type> types = {indexTy, indexTy};
500 SmallVector<Value> operands = {blockStart, blockEnd};
501 SmallVector<Location> locations = {loc, loc};
502
503 // Create a recursive dispatch loop.
504 scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands);
505 Block *before = b.createBlock(&whileOp.getBefore(), {}, types, locations);
506 Block *after = b.createBlock(&whileOp.getAfter(), {}, types, locations);
507
508 // Setup dispatch loop condition block: decide if we need to go into the
509 // `after` block and launch one more async dispatch.
510 {
511 b.setInsertionPointToEnd(before);
512 Value start = before->getArgument(i: 0);
513 Value end = before->getArgument(i: 1);
514 Value distance = b.create<arith::SubIOp>(end, start);
515 Value dispatch =
516 b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1);
517 b.create<scf::ConditionOp>(dispatch, before->getArguments());
518 }
519
520 // Setup the async dispatch loop body: recursively call dispatch function
521 // for the seconds half of the original range and go to the next iteration.
522 {
523 b.setInsertionPointToEnd(after);
524 Value start = after->getArgument(i: 0);
525 Value end = after->getArgument(i: 1);
526 Value distance = b.create<arith::SubIOp>(end, start);
527 Value halfDistance = b.create<arith::DivSIOp>(distance, c2);
528 Value midIndex = b.create<arith::AddIOp>(start, halfDistance);
529
530 // Call parallel compute function inside the async.execute region.
531 auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
532 Location executeLoc, ValueRange executeArgs) {
533 // Update the original `blockStart` and `blockEnd` with new range.
534 SmallVector<Value> operands{block->getArguments().begin(),
535 block->getArguments().end()};
536 operands[1] = midIndex;
537 operands[2] = end;
538
539 executeBuilder.create<func::CallOp>(executeLoc, func.getSymName(),
540 func.getResultTypes(), operands);
541 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
542 };
543
544 // Create async.execute operation to dispatch half of the block range.
545 auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
546 executeBodyBuilder);
547 b.create<AddToGroupOp>(indexTy, execute.getToken(), group);
548 b.create<scf::YieldOp>(ValueRange({start, midIndex}));
549 }
550
551 // After dispatching async operations to process the tail of the block range
552 // call the parallel compute function for the first block of the range.
553 b.setInsertionPointAfter(whileOp);
554
555 // Drop async dispatch specific arguments: async group, block start and end.
556 auto forwardedInputs = block->getArguments().drop_front(N: 3);
557 SmallVector<Value> computeFuncOperands = {blockStart};
558 computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end());
559
560 b.create<func::CallOp>(computeFunc.func.getSymName(),
561 computeFunc.func.getResultTypes(),
562 computeFuncOperands);
563 b.create<func::ReturnOp>(ValueRange());
564
565 return func;
566}
567
568// Launch async dispatch of the parallel compute function.
569static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
570 ParallelComputeFunction &parallelComputeFunction,
571 scf::ParallelOp op, Value blockSize,
572 Value blockCount,
573 const SmallVector<Value> &tripCounts) {
574 MLIRContext *ctx = op->getContext();
575
576 // Add one more level of indirection to dispatch parallel compute functions
577 // using async operations and recursive work splitting.
578 func::FuncOp asyncDispatchFunction =
579 createAsyncDispatchFunction(parallelComputeFunction, rewriter);
580
581 Value c0 = b.create<arith::ConstantIndexOp>(args: 0);
582 Value c1 = b.create<arith::ConstantIndexOp>(args: 1);
583
584 // Appends operands shared by async dispatch and parallel compute functions to
585 // the given operands vector.
586 auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) {
587 operands.append(RHS: tripCounts);
588 operands.append(op.getLowerBound().begin(), op.getLowerBound().end());
589 operands.append(op.getUpperBound().begin(), op.getUpperBound().end());
590 operands.append(op.getStep().begin(), op.getStep().end());
591 operands.append(parallelComputeFunction.captures);
592 };
593
594 // Check if the block size is one, in this case we can skip the async dispatch
595 // completely. If this will be known statically, then canonicalization will
596 // erase async group operations.
597 Value isSingleBlock =
598 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1);
599
600 auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
601 ImplicitLocOpBuilder b(loc, nestedBuilder);
602
603 // Call parallel compute function for the single block.
604 SmallVector<Value> operands = {c0, blockSize};
605 appendBlockComputeOperands(operands);
606
607 b.create<func::CallOp>(parallelComputeFunction.func.getSymName(),
608 parallelComputeFunction.func.getResultTypes(),
609 operands);
610 b.create<scf::YieldOp>();
611 };
612
613 auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
614 ImplicitLocOpBuilder b(loc, nestedBuilder);
615
616 // Create an async.group to wait on all async tokens from the concurrent
617 // execution of multiple parallel compute function. First block will be
618 // executed synchronously in the caller thread.
619 Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
620 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
621
622 // Launch async dispatch function for [0, blockCount) range.
623 SmallVector<Value> operands = {group, c0, blockCount, blockSize};
624 appendBlockComputeOperands(operands);
625
626 b.create<func::CallOp>(asyncDispatchFunction.getSymName(),
627 asyncDispatchFunction.getResultTypes(), operands);
628
629 // Wait for the completion of all parallel compute operations.
630 b.create<AwaitAllOp>(group);
631
632 b.create<scf::YieldOp>();
633 };
634
635 // Dispatch either single block compute function, or launch async dispatch.
636 b.create<scf::IfOp>(isSingleBlock, syncDispatch, asyncDispatch);
637}
638
639// Dispatch parallel compute functions by submitting all async compute tasks
640// from a simple for loop in the caller thread.
641static void
642doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
643 ParallelComputeFunction &parallelComputeFunction,
644 scf::ParallelOp op, Value blockSize, Value blockCount,
645 const SmallVector<Value> &tripCounts) {
646 MLIRContext *ctx = op->getContext();
647
648 func::FuncOp compute = parallelComputeFunction.func;
649
650 Value c0 = b.create<arith::ConstantIndexOp>(args: 0);
651 Value c1 = b.create<arith::ConstantIndexOp>(args: 1);
652
653 // Create an async.group to wait on all async tokens from the concurrent
654 // execution of multiple parallel compute function. First block will be
655 // executed synchronously in the caller thread.
656 Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
657 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
658
659 // Call parallel compute function for all blocks.
660 using LoopBodyBuilder =
661 std::function<void(OpBuilder &, Location, Value, ValueRange)>;
662
663 // Returns parallel compute function operands to process the given block.
664 auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> {
665 SmallVector<Value> computeFuncOperands = {blockIndex, blockSize};
666 computeFuncOperands.append(RHS: tripCounts);
667 computeFuncOperands.append(op.getLowerBound().begin(),
668 op.getLowerBound().end());
669 computeFuncOperands.append(op.getUpperBound().begin(),
670 op.getUpperBound().end());
671 computeFuncOperands.append(op.getStep().begin(), op.getStep().end());
672 computeFuncOperands.append(parallelComputeFunction.captures);
673 return computeFuncOperands;
674 };
675
676 // Induction variable is the index of the block: [0, blockCount).
677 LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc,
678 Value iv, ValueRange args) {
679 ImplicitLocOpBuilder b(loc, loopBuilder);
680
681 // Call parallel compute function inside the async.execute region.
682 auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
683 Location executeLoc, ValueRange executeArgs) {
684 executeBuilder.create<func::CallOp>(executeLoc, compute.getSymName(),
685 compute.getResultTypes(),
686 computeFuncOperands(iv));
687 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
688 };
689
690 // Create async.execute operation to launch parallel computate function.
691 auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
692 executeBodyBuilder);
693 b.create<AddToGroupOp>(rewriter.getIndexType(), execute.getToken(), group);
694 b.create<scf::YieldOp>();
695 };
696
697 // Iterate over all compute blocks and launch parallel compute operations.
698 b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder);
699
700 // Call parallel compute function for the first block in the caller thread.
701 b.create<func::CallOp>(compute.getSymName(), compute.getResultTypes(),
702 computeFuncOperands(c0));
703
704 // Wait for the completion of all async compute operations.
705 b.create<AwaitAllOp>(group);
706}
707
708LogicalResult
709AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op,
710 PatternRewriter &rewriter) const {
711 // We do not currently support rewrite for parallel op with reductions.
712 if (op.getNumReductions() != 0)
713 return failure();
714
715 ImplicitLocOpBuilder b(op.getLoc(), rewriter);
716
717 // Computing minTaskSize emits IR and can be implemented as executing a cost
718 // model on the body of the scf.parallel. Thus it needs to be computed before
719 // the body of the scf.parallel has been manipulated.
720 Value minTaskSize = computeMinTaskSize(b, op);
721
722 // Make sure that all constants will be inside the parallel operation body to
723 // reduce the number of parallel compute function arguments.
724 cloneConstantsIntoTheRegion(op.getRegion(), rewriter);
725
726 // Compute trip count for each loop induction variable:
727 // tripCount = ceil_div(upperBound - lowerBound, step);
728 SmallVector<Value> tripCounts(op.getNumLoops());
729 for (size_t i = 0; i < op.getNumLoops(); ++i) {
730 auto lb = op.getLowerBound()[i];
731 auto ub = op.getUpperBound()[i];
732 auto step = op.getStep()[i];
733 auto range = b.createOrFold<arith::SubIOp>(ub, lb);
734 tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step);
735 }
736
737 // Compute a product of trip counts to get the 1-dimensional iteration space
738 // for the scf.parallel operation.
739 Value tripCount = tripCounts[0];
740 for (size_t i = 1; i < tripCounts.size(); ++i)
741 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
742
743 // Short circuit no-op parallel loops (zero iterations) that can arise from
744 // the memrefs with dynamic dimension(s) equal to zero.
745 Value c0 = b.create<arith::ConstantIndexOp>(args: 0);
746 Value isZeroIterations =
747 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0);
748
749 // Do absolutely nothing if the trip count is zero.
750 auto noOp = [&](OpBuilder &nestedBuilder, Location loc) {
751 nestedBuilder.create<scf::YieldOp>(loc);
752 };
753
754 // Compute the parallel block size and dispatch concurrent tasks computing
755 // results for each block.
756 auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) {
757 ImplicitLocOpBuilder b(loc, nestedBuilder);
758
759 // Collect statically known constants defining the loop nest in the parallel
760 // compute function. LLVM can't always push constants across the non-trivial
761 // async dispatch call graph, by providing these values explicitly we can
762 // choose to build more efficient loop nest, and rely on a better constant
763 // folding, loop unrolling and vectorization.
764 ParallelComputeFunctionBounds staticBounds = {
765 integerConstants(tripCounts),
766 integerConstants(op.getLowerBound()),
767 integerConstants(op.getUpperBound()),
768 integerConstants(op.getStep()),
769 };
770
771 // Find how many inner iteration dimensions are statically known, and their
772 // product is smaller than the `512`. We align the parallel compute block
773 // size by the product of statically known dimensions, so that we can
774 // guarantee that the inner loops executes from 0 to the loop trip counts
775 // and we can elide dynamic loop boundaries, and give LLVM an opportunity to
776 // unroll the loops. The constant `512` is arbitrary, it should depend on
777 // how many iterations LLVM will typically decide to unroll.
778 static constexpr int64_t maxUnrollableIterations = 512;
779
780 // The number of inner loops with statically known number of iterations less
781 // than the `maxUnrollableIterations` value.
782 int numUnrollableLoops = 0;
783
784 auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; };
785
786 SmallVector<int64_t> numIterations(op.getNumLoops());
787 numIterations.back() = getInt(staticBounds.tripCounts.back());
788
789 for (int i = op.getNumLoops() - 2; i >= 0; --i) {
790 int64_t tripCount = getInt(staticBounds.tripCounts[i]);
791 int64_t innerIterations = numIterations[i + 1];
792 numIterations[i] = tripCount * innerIterations;
793
794 // Update the number of inner loops that we can potentially unroll.
795 if (innerIterations > 0 && innerIterations <= maxUnrollableIterations)
796 numUnrollableLoops++;
797 }
798
799 Value numWorkerThreadsVal;
800 if (numWorkerThreads >= 0)
801 numWorkerThreadsVal = b.create<arith::ConstantIndexOp>(args: numWorkerThreads);
802 else
803 numWorkerThreadsVal = b.create<async::RuntimeNumWorkerThreadsOp>();
804
805 // With large number of threads the value of creating many compute blocks
806 // is reduced because the problem typically becomes memory bound. For this
807 // reason we scale the number of workers using an equivalent to the
808 // following logic:
809 // float overshardingFactor = numWorkerThreads <= 4 ? 8.0
810 // : numWorkerThreads <= 8 ? 4.0
811 // : numWorkerThreads <= 16 ? 2.0
812 // : numWorkerThreads <= 32 ? 1.0
813 // : numWorkerThreads <= 64 ? 0.8
814 // : 0.6;
815
816 // Pairs of non-inclusive lower end of the bracket and factor that the
817 // number of workers needs to be scaled with if it falls in that bucket.
818 const SmallVector<std::pair<int, float>> overshardingBrackets = {
819 {4, 4.0f}, {8, 2.0f}, {16, 1.0f}, {32, 0.8f}, {64, 0.6f}};
820 const float initialOvershardingFactor = 8.0f;
821
822 Value scalingFactor = b.create<arith::ConstantFloatOp>(
823 args: llvm::APFloat(initialOvershardingFactor), args: b.getF32Type());
824 for (const std::pair<int, float> &p : overshardingBrackets) {
825 Value bracketBegin = b.create<arith::ConstantIndexOp>(args: p.first);
826 Value inBracket = b.create<arith::CmpIOp>(
827 arith::CmpIPredicate::sgt, numWorkerThreadsVal, bracketBegin);
828 Value bracketScalingFactor = b.create<arith::ConstantFloatOp>(
829 args: llvm::APFloat(p.second), args: b.getF32Type());
830 scalingFactor = b.create<arith::SelectOp>(inBracket, bracketScalingFactor,
831 scalingFactor);
832 }
833 Value numWorkersIndex =
834 b.create<arith::IndexCastOp>(b.getI32Type(), numWorkerThreadsVal);
835 Value numWorkersFloat =
836 b.create<arith::SIToFPOp>(b.getF32Type(), numWorkersIndex);
837 Value scaledNumWorkers =
838 b.create<arith::MulFOp>(scalingFactor, numWorkersFloat);
839 Value scaledNumInt =
840 b.create<arith::FPToSIOp>(b.getI32Type(), scaledNumWorkers);
841 Value scaledWorkers =
842 b.create<arith::IndexCastOp>(b.getIndexType(), scaledNumInt);
843
844 Value maxComputeBlocks = b.create<arith::MaxSIOp>(
845 b.create<arith::ConstantIndexOp>(1), scaledWorkers);
846
847 // Compute parallel block size from the parallel problem size:
848 // blockSize = min(tripCount,
849 // max(ceil_div(tripCount, maxComputeBlocks),
850 // minTaskSize))
851 Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks);
852 Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize);
853 Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1);
854
855 // Dispatch parallel compute function using async recursive work splitting,
856 // or by submitting compute task sequentially from a caller thread.
857 auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch;
858
859 // Create a parallel compute function that takes a block id and computes
860 // the parallel operation body for a subset of iteration space.
861
862 // Compute the number of parallel compute blocks.
863 Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize);
864
865 // Dispatch parallel compute function without hints to unroll inner loops.
866 auto dispatchDefault = [&](OpBuilder &nestedBuilder, Location loc) {
867 ParallelComputeFunction compute =
868 createParallelComputeFunction(op, staticBounds, 0, rewriter);
869
870 ImplicitLocOpBuilder b(loc, nestedBuilder);
871 doDispatch(b, rewriter, compute, op, blockSize, blockCount, tripCounts);
872 b.create<scf::YieldOp>();
873 };
874
875 // Dispatch parallel compute function with hints for unrolling inner loops.
876 auto dispatchBlockAligned = [&](OpBuilder &nestedBuilder, Location loc) {
877 ParallelComputeFunction compute = createParallelComputeFunction(
878 op, staticBounds, numUnrollableLoops, rewriter);
879
880 ImplicitLocOpBuilder b(loc, nestedBuilder);
881 // Align the block size to be a multiple of the statically known
882 // number of iterations in the inner loops.
883 Value numIters = b.create<arith::ConstantIndexOp>(
884 numIterations[op.getNumLoops() - numUnrollableLoops]);
885 Value alignedBlockSize = b.create<arith::MulIOp>(
886 b.create<arith::CeilDivSIOp>(blockSize, numIters), numIters);
887 doDispatch(b, rewriter, compute, op, alignedBlockSize, blockCount,
888 tripCounts);
889 b.create<scf::YieldOp>();
890 };
891
892 // Dispatch to block aligned compute function only if the computed block
893 // size is larger than the number of iterations in the unrollable inner
894 // loops, because otherwise it can reduce the available parallelism.
895 if (numUnrollableLoops > 0) {
896 Value numIters = b.create<arith::ConstantIndexOp>(
897 numIterations[op.getNumLoops() - numUnrollableLoops]);
898 Value useBlockAlignedComputeFn = b.create<arith::CmpIOp>(
899 arith::CmpIPredicate::sge, blockSize, numIters);
900
901 b.create<scf::IfOp>(useBlockAlignedComputeFn, dispatchBlockAligned,
902 dispatchDefault);
903 b.create<scf::YieldOp>();
904 } else {
905 dispatchDefault(b, loc);
906 }
907 };
908
909 // Replace the `scf.parallel` operation with the parallel compute function.
910 b.create<scf::IfOp>(isZeroIterations, noOp, dispatch);
911
912 // Parallel operation was replaced with a block iteration loop.
913 rewriter.eraseOp(op: op);
914
915 return success();
916}
917
918void AsyncParallelForPass::runOnOperation() {
919 MLIRContext *ctx = &getContext();
920
921 RewritePatternSet patterns(ctx);
922 populateAsyncParallelForPatterns(
923 patterns, asyncDispatch, numWorkerThreads,
924 [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) {
925 return builder.create<arith::ConstantIndexOp>(minTaskSize);
926 });
927 if (failed(applyPatternsGreedily(getOperation(), std::move(patterns))))
928 signalPassFailure();
929}
930
931void mlir::async::populateAsyncParallelForPatterns(
932 RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads,
933 const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) {
934 MLIRContext *ctx = patterns.getContext();
935 patterns.add<AsyncParallelForRewrite>(arg&: ctx, args&: asyncDispatch, args&: numWorkerThreads,
936 args: computeMinTaskSize);
937}
938

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of mlir/lib/Dialect/Async/Transforms/AsyncParallelFor.cpp