| 1 | //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements scf.parallel to scf.for + async.execute conversion pass. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Dialect/Async/Passes.h" |
| 14 | |
| 15 | #include "PassDetail.h" |
| 16 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 17 | #include "mlir/Dialect/Async/IR/Async.h" |
| 18 | #include "mlir/Dialect/Async/Transforms.h" |
| 19 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 20 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 21 | #include "mlir/IR/IRMapping.h" |
| 22 | #include "mlir/IR/ImplicitLocOpBuilder.h" |
| 23 | #include "mlir/IR/Matchers.h" |
| 24 | #include "mlir/IR/PatternMatch.h" |
| 25 | #include "mlir/Support/LLVM.h" |
| 26 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 27 | #include "mlir/Transforms/RegionUtils.h" |
| 28 | #include <utility> |
| 29 | |
| 30 | namespace mlir { |
| 31 | #define GEN_PASS_DEF_ASYNCPARALLELFORPASS |
| 32 | #include "mlir/Dialect/Async/Passes.h.inc" |
| 33 | } // namespace mlir |
| 34 | |
| 35 | using namespace mlir; |
| 36 | using namespace mlir::async; |
| 37 | |
| 38 | #define DEBUG_TYPE "async-parallel-for" |
| 39 | |
| 40 | namespace { |
| 41 | |
| 42 | // Rewrite scf.parallel operation into multiple concurrent async.execute |
| 43 | // operations over non overlapping subranges of the original loop. |
| 44 | // |
| 45 | // Example: |
| 46 | // |
| 47 | // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) { |
| 48 | // "do_some_compute"(%i, %j): () -> () |
| 49 | // } |
| 50 | // |
| 51 | // Converted to: |
| 52 | // |
| 53 | // // Parallel compute function that executes the parallel body region for |
| 54 | // // a subset of the parallel iteration space defined by the one-dimensional |
| 55 | // // compute block index. |
| 56 | // func parallel_compute_function(%block_index : index, %block_size : index, |
| 57 | // <parallel operation properties>, ...) { |
| 58 | // // Compute multi-dimensional loop bounds for %block_index. |
| 59 | // %block_lbi, %block_lbj = ... |
| 60 | // %block_ubi, %block_ubj = ... |
| 61 | // |
| 62 | // // Clone parallel operation body into the scf.for loop nest. |
| 63 | // scf.for %i = %blockLbi to %blockUbi { |
| 64 | // scf.for %j = block_lbj to %block_ubj { |
| 65 | // "do_some_compute"(%i, %j): () -> () |
| 66 | // } |
| 67 | // } |
| 68 | // } |
| 69 | // |
| 70 | // And a dispatch function depending on the `asyncDispatch` option. |
| 71 | // |
| 72 | // When async dispatch is on: (pseudocode) |
| 73 | // |
| 74 | // %block_size = ... compute parallel compute block size |
| 75 | // %block_count = ... compute the number of compute blocks |
| 76 | // |
| 77 | // func @async_dispatch(%block_start : index, %block_end : index, ...) { |
| 78 | // // Keep splitting block range until we reached a range of size 1. |
| 79 | // while (%block_end - %block_start > 1) { |
| 80 | // %mid_index = block_start + (block_end - block_start) / 2; |
| 81 | // async.execute { call @async_dispatch(%mid_index, %block_end); } |
| 82 | // %block_end = %mid_index |
| 83 | // } |
| 84 | // |
| 85 | // // Call parallel compute function for a single block. |
| 86 | // call @parallel_compute_fn(%block_start, %block_size, ...); |
| 87 | // } |
| 88 | // |
| 89 | // // Launch async dispatch for [0, block_count) range. |
| 90 | // call @async_dispatch(%c0, %block_count); |
| 91 | // |
| 92 | // When async dispatch is off: |
| 93 | // |
| 94 | // %block_size = ... compute parallel compute block size |
| 95 | // %block_count = ... compute the number of compute blocks |
| 96 | // |
| 97 | // scf.for %block_index = %c0 to %block_count { |
| 98 | // call @parallel_compute_fn(%block_index, %block_size, ...) |
| 99 | // } |
| 100 | // |
| 101 | struct AsyncParallelForPass |
| 102 | : public impl::AsyncParallelForPassBase<AsyncParallelForPass> { |
| 103 | using Base::Base; |
| 104 | |
| 105 | void runOnOperation() override; |
| 106 | }; |
| 107 | |
| 108 | struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> { |
| 109 | public: |
| 110 | AsyncParallelForRewrite( |
| 111 | MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads, |
| 112 | AsyncMinTaskSizeComputationFunction computeMinTaskSize) |
| 113 | : OpRewritePattern(ctx), asyncDispatch(asyncDispatch), |
| 114 | numWorkerThreads(numWorkerThreads), |
| 115 | computeMinTaskSize(std::move(computeMinTaskSize)) {} |
| 116 | |
| 117 | LogicalResult matchAndRewrite(scf::ParallelOp op, |
| 118 | PatternRewriter &rewriter) const override; |
| 119 | |
| 120 | private: |
| 121 | bool asyncDispatch; |
| 122 | int32_t numWorkerThreads; |
| 123 | AsyncMinTaskSizeComputationFunction computeMinTaskSize; |
| 124 | }; |
| 125 | |
| 126 | struct ParallelComputeFunctionType { |
| 127 | FunctionType type; |
| 128 | SmallVector<Value> captures; |
| 129 | }; |
| 130 | |
| 131 | // Helper struct to parse parallel compute function argument list. |
| 132 | struct ParallelComputeFunctionArgs { |
| 133 | BlockArgument blockIndex(); |
| 134 | BlockArgument blockSize(); |
| 135 | ArrayRef<BlockArgument> tripCounts(); |
| 136 | ArrayRef<BlockArgument> lowerBounds(); |
| 137 | ArrayRef<BlockArgument> steps(); |
| 138 | ArrayRef<BlockArgument> captures(); |
| 139 | |
| 140 | unsigned numLoops; |
| 141 | ArrayRef<BlockArgument> args; |
| 142 | }; |
| 143 | |
| 144 | struct ParallelComputeFunctionBounds { |
| 145 | SmallVector<IntegerAttr> tripCounts; |
| 146 | SmallVector<IntegerAttr> lowerBounds; |
| 147 | SmallVector<IntegerAttr> upperBounds; |
| 148 | SmallVector<IntegerAttr> steps; |
| 149 | }; |
| 150 | |
| 151 | struct ParallelComputeFunction { |
| 152 | unsigned numLoops; |
| 153 | func::FuncOp func; |
| 154 | llvm::SmallVector<Value> captures; |
| 155 | }; |
| 156 | |
| 157 | } // namespace |
| 158 | |
| 159 | BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; } |
| 160 | BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; } |
| 161 | |
| 162 | ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() { |
| 163 | return args.drop_front(N: 2).take_front(N: numLoops); |
| 164 | } |
| 165 | |
| 166 | ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() { |
| 167 | return args.drop_front(N: 2 + 1 * numLoops).take_front(N: numLoops); |
| 168 | } |
| 169 | |
| 170 | ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() { |
| 171 | return args.drop_front(N: 2 + 3 * numLoops).take_front(N: numLoops); |
| 172 | } |
| 173 | |
| 174 | ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() { |
| 175 | return args.drop_front(N: 2 + 4 * numLoops); |
| 176 | } |
| 177 | |
| 178 | template <typename ValueRange> |
| 179 | static SmallVector<IntegerAttr> integerConstants(ValueRange values) { |
| 180 | SmallVector<IntegerAttr> attrs(values.size()); |
| 181 | for (unsigned i = 0; i < values.size(); ++i) |
| 182 | matchPattern(values[i], m_Constant(&attrs[i])); |
| 183 | return attrs; |
| 184 | } |
| 185 | |
| 186 | // Converts one-dimensional iteration index in the [0, tripCount) interval |
| 187 | // into multidimensional iteration coordinate. |
| 188 | static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index, |
| 189 | ArrayRef<Value> tripCounts) { |
| 190 | SmallVector<Value> coords(tripCounts.size()); |
| 191 | assert(!tripCounts.empty() && "tripCounts must be not empty" ); |
| 192 | |
| 193 | for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) { |
| 194 | coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]); |
| 195 | index = b.create<arith::DivSIOp>(index, tripCounts[i]); |
| 196 | } |
| 197 | |
| 198 | return coords; |
| 199 | } |
| 200 | |
| 201 | // Returns a function type and implicit captures for a parallel compute |
| 202 | // function. We'll need a list of implicit captures to setup block and value |
| 203 | // mapping when we'll clone the body of the parallel operation. |
| 204 | static ParallelComputeFunctionType |
| 205 | getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) { |
| 206 | // Values implicitly captured by the parallel operation. |
| 207 | llvm::SetVector<Value> captures; |
| 208 | getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures); |
| 209 | |
| 210 | SmallVector<Type> inputs; |
| 211 | inputs.reserve(N: 2 + 4 * op.getNumLoops() + captures.size()); |
| 212 | |
| 213 | Type indexTy = rewriter.getIndexType(); |
| 214 | |
| 215 | // One-dimensional iteration space defined by the block index and size. |
| 216 | inputs.push_back(Elt: indexTy); // blockIndex |
| 217 | inputs.push_back(Elt: indexTy); // blockSize |
| 218 | |
| 219 | // Multi-dimensional parallel iteration space defined by the loop trip counts. |
| 220 | for (unsigned i = 0; i < op.getNumLoops(); ++i) |
| 221 | inputs.push_back(Elt: indexTy); // loop tripCount |
| 222 | |
| 223 | // Parallel operation lower bound, upper bound and step. Lower bound, upper |
| 224 | // bound and step passed as contiguous arguments: |
| 225 | // call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...) |
| 226 | for (unsigned i = 0; i < op.getNumLoops(); ++i) { |
| 227 | inputs.push_back(Elt: indexTy); // lower bound |
| 228 | inputs.push_back(Elt: indexTy); // upper bound |
| 229 | inputs.push_back(Elt: indexTy); // step |
| 230 | } |
| 231 | |
| 232 | // Types of the implicit captures. |
| 233 | for (Value capture : captures) |
| 234 | inputs.push_back(Elt: capture.getType()); |
| 235 | |
| 236 | // Convert captures to vector for later convenience. |
| 237 | SmallVector<Value> capturesVector(captures.begin(), captures.end()); |
| 238 | return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector}; |
| 239 | } |
| 240 | |
| 241 | // Create a parallel compute fuction from the parallel operation. |
| 242 | static ParallelComputeFunction createParallelComputeFunction( |
| 243 | scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds, |
| 244 | unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) { |
| 245 | OpBuilder::InsertionGuard guard(rewriter); |
| 246 | ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| 247 | |
| 248 | ModuleOp module = op->getParentOfType<ModuleOp>(); |
| 249 | |
| 250 | ParallelComputeFunctionType computeFuncType = |
| 251 | getParallelComputeFunctionType(op, rewriter); |
| 252 | |
| 253 | FunctionType type = computeFuncType.type; |
| 254 | func::FuncOp func = func::FuncOp::create( |
| 255 | op.getLoc(), |
| 256 | numBlockAlignedInnerLoops > 0 ? "parallel_compute_fn_with_aligned_loops" |
| 257 | : "parallel_compute_fn" , |
| 258 | type); |
| 259 | func.setPrivate(); |
| 260 | |
| 261 | // Insert function into the module symbol table and assign it unique name. |
| 262 | SymbolTable symbolTable(module); |
| 263 | symbolTable.insert(symbol: func); |
| 264 | rewriter.getListener()->notifyOperationInserted(op: func, /*previous=*/{}); |
| 265 | |
| 266 | // Create function entry block. |
| 267 | Block *block = |
| 268 | b.createBlock(&func.getBody(), func.begin(), type.getInputs(), |
| 269 | SmallVector<Location>(type.getNumInputs(), op.getLoc())); |
| 270 | b.setInsertionPointToEnd(block); |
| 271 | |
| 272 | ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()}; |
| 273 | |
| 274 | // Block iteration position defined by the block index and size. |
| 275 | BlockArgument blockIndex = args.blockIndex(); |
| 276 | BlockArgument blockSize = args.blockSize(); |
| 277 | |
| 278 | // Constants used below. |
| 279 | Value c0 = b.create<arith::ConstantIndexOp>(args: 0); |
| 280 | Value c1 = b.create<arith::ConstantIndexOp>(args: 1); |
| 281 | |
| 282 | // Materialize known constants as constant operation in the function body. |
| 283 | auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) { |
| 284 | return llvm::to_vector( |
| 285 | Range: llvm::map_range(C: llvm::zip(t&: args, u&: attrs), F: [&](auto tuple) -> Value { |
| 286 | if (IntegerAttr attr = std::get<1>(tuple)) |
| 287 | return b.create<arith::ConstantOp>(attr); |
| 288 | return std::get<0>(tuple); |
| 289 | })); |
| 290 | }; |
| 291 | |
| 292 | // Multi-dimensional parallel iteration space defined by the loop trip counts. |
| 293 | auto tripCounts = values(args.tripCounts(), bounds.tripCounts); |
| 294 | |
| 295 | // Parallel operation lower bound and step. |
| 296 | auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds); |
| 297 | auto steps = values(args.steps(), bounds.steps); |
| 298 | |
| 299 | // Remaining arguments are implicit captures of the parallel operation. |
| 300 | ArrayRef<BlockArgument> captures = args.captures(); |
| 301 | |
| 302 | // Compute a product of trip counts to get the size of the flattened |
| 303 | // one-dimensional iteration space. |
| 304 | Value tripCount = tripCounts[0]; |
| 305 | for (unsigned i = 1; i < tripCounts.size(); ++i) |
| 306 | tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); |
| 307 | |
| 308 | // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]: |
| 309 | // blockFirstIndex = blockIndex * blockSize |
| 310 | Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize); |
| 311 | |
| 312 | // The last one-dimensional index in the block defined by the `blockIndex`: |
| 313 | // blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1 |
| 314 | Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize); |
| 315 | Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount); |
| 316 | Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1); |
| 317 | |
| 318 | // Convert one-dimensional indices to multi-dimensional coordinates. |
| 319 | auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts); |
| 320 | auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts); |
| 321 | |
| 322 | // Compute loops upper bounds derived from the block last coordinates: |
| 323 | // blockEndCoord[i] = blockLastCoord[i] + 1 |
| 324 | // |
| 325 | // Block first and last coordinates can be the same along the outer compute |
| 326 | // dimension when inner compute dimension contains multiple blocks. |
| 327 | SmallVector<Value> blockEndCoord(op.getNumLoops()); |
| 328 | for (size_t i = 0; i < blockLastCoord.size(); ++i) |
| 329 | blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1); |
| 330 | |
| 331 | // Construct a loop nest out of scf.for operations that will iterate over |
| 332 | // all coordinates in [blockFirstCoord, blockLastCoord] range. |
| 333 | using LoopBodyBuilder = |
| 334 | std::function<void(OpBuilder &, Location, Value, ValueRange)>; |
| 335 | using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>; |
| 336 | |
| 337 | // Parallel region induction variables computed from the multi-dimensional |
| 338 | // iteration coordinate using parallel operation bounds and step: |
| 339 | // |
| 340 | // computeBlockInductionVars[loopIdx] = |
| 341 | // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx] |
| 342 | SmallVector<Value> computeBlockInductionVars(op.getNumLoops()); |
| 343 | |
| 344 | // We need to know if we are in the first or last iteration of the |
| 345 | // multi-dimensional loop for each loop in the nest, so we can decide what |
| 346 | // loop bounds should we use for the nested loops: bounds defined by compute |
| 347 | // block interval, or bounds defined by the parallel operation. |
| 348 | // |
| 349 | // Example: 2d parallel operation |
| 350 | // i j |
| 351 | // loop sizes: [50, 50] |
| 352 | // first coord: [25, 25] |
| 353 | // last coord: [30, 30] |
| 354 | // |
| 355 | // If `i` is equal to 25 then iteration over `j` should start at 25, when `i` |
| 356 | // is between 25 and 30 it should start at 0. The upper bound for `j` should |
| 357 | // be 50, except when `i` is equal to 30, then it should also be 30. |
| 358 | // |
| 359 | // Value at ith position specifies if all loops in [0, i) range of the loop |
| 360 | // nest are in the first/last iteration. |
| 361 | SmallVector<Value> isBlockFirstCoord(op.getNumLoops()); |
| 362 | SmallVector<Value> isBlockLastCoord(op.getNumLoops()); |
| 363 | |
| 364 | // Builds inner loop nest inside async.execute operation that does all the |
| 365 | // work concurrently. |
| 366 | LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder { |
| 367 | return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv, |
| 368 | ValueRange args) { |
| 369 | ImplicitLocOpBuilder b(loc, nestedBuilder); |
| 370 | |
| 371 | // Compute induction variable for `loopIdx`. |
| 372 | computeBlockInductionVars[loopIdx] = b.create<arith::AddIOp>( |
| 373 | lowerBounds[loopIdx], b.create<arith::MulIOp>(iv, steps[loopIdx])); |
| 374 | |
| 375 | // Check if we are inside first or last iteration of the loop. |
| 376 | isBlockFirstCoord[loopIdx] = b.create<arith::CmpIOp>( |
| 377 | arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]); |
| 378 | isBlockLastCoord[loopIdx] = b.create<arith::CmpIOp>( |
| 379 | arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]); |
| 380 | |
| 381 | // Check if the previous loop is in its first or last iteration. |
| 382 | if (loopIdx > 0) { |
| 383 | isBlockFirstCoord[loopIdx] = b.create<arith::AndIOp>( |
| 384 | isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]); |
| 385 | isBlockLastCoord[loopIdx] = b.create<arith::AndIOp>( |
| 386 | isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]); |
| 387 | } |
| 388 | |
| 389 | // Keep building loop nest. |
| 390 | if (loopIdx < op.getNumLoops() - 1) { |
| 391 | if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) { |
| 392 | // For block aligned loops we always iterate starting from 0 up to |
| 393 | // the loop trip counts. |
| 394 | b.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(), |
| 395 | workLoopBuilder(loopIdx + 1)); |
| 396 | |
| 397 | } else { |
| 398 | // Select nested loop lower/upper bounds depending on our position in |
| 399 | // the multi-dimensional iteration space. |
| 400 | auto lb = b.create<arith::SelectOp>(isBlockFirstCoord[loopIdx], |
| 401 | blockFirstCoord[loopIdx + 1], c0); |
| 402 | |
| 403 | auto ub = b.create<arith::SelectOp>(isBlockLastCoord[loopIdx], |
| 404 | blockEndCoord[loopIdx + 1], |
| 405 | tripCounts[loopIdx + 1]); |
| 406 | |
| 407 | b.create<scf::ForOp>(lb, ub, c1, ValueRange(), |
| 408 | workLoopBuilder(loopIdx + 1)); |
| 409 | } |
| 410 | |
| 411 | b.create<scf::YieldOp>(loc); |
| 412 | return; |
| 413 | } |
| 414 | |
| 415 | // Copy the body of the parallel op into the inner-most loop. |
| 416 | IRMapping mapping; |
| 417 | mapping.map(op.getInductionVars(), computeBlockInductionVars); |
| 418 | mapping.map(computeFuncType.captures, captures); |
| 419 | |
| 420 | for (auto &bodyOp : op.getRegion().front().without_terminator()) |
| 421 | b.clone(bodyOp, mapping); |
| 422 | b.create<scf::YieldOp>(loc); |
| 423 | }; |
| 424 | }; |
| 425 | |
| 426 | b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(), |
| 427 | workLoopBuilder(0)); |
| 428 | b.create<func::ReturnOp>(ValueRange()); |
| 429 | |
| 430 | return {op.getNumLoops(), func, std::move(computeFuncType.captures)}; |
| 431 | } |
| 432 | |
| 433 | // Creates recursive async dispatch function for the given parallel compute |
| 434 | // function. Dispatch function keeps splitting block range into halves until it |
| 435 | // reaches a single block, and then excecutes it inline. |
| 436 | // |
| 437 | // Function pseudocode (mix of C++ and MLIR): |
| 438 | // |
| 439 | // func @async_dispatch(%block_start : index, %block_end : index, ...) { |
| 440 | // |
| 441 | // // Keep splitting block range until we reached a range of size 1. |
| 442 | // while (%block_end - %block_start > 1) { |
| 443 | // %mid_index = block_start + (block_end - block_start) / 2; |
| 444 | // async.execute { call @async_dispatch(%mid_index, %block_end); } |
| 445 | // %block_end = %mid_index |
| 446 | // } |
| 447 | // |
| 448 | // // Call parallel compute function for a single block. |
| 449 | // call @parallel_compute_fn(%block_start, %block_size, ...); |
| 450 | // } |
| 451 | // |
| 452 | static func::FuncOp |
| 453 | createAsyncDispatchFunction(ParallelComputeFunction &computeFunc, |
| 454 | PatternRewriter &rewriter) { |
| 455 | OpBuilder::InsertionGuard guard(rewriter); |
| 456 | Location loc = computeFunc.func.getLoc(); |
| 457 | ImplicitLocOpBuilder b(loc, rewriter); |
| 458 | |
| 459 | ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>(); |
| 460 | |
| 461 | ArrayRef<Type> computeFuncInputTypes = |
| 462 | computeFunc.func.getFunctionType().getInputs(); |
| 463 | |
| 464 | // Compared to the parallel compute function async dispatch function takes |
| 465 | // additional !async.group argument. Also instead of a single `blockIndex` it |
| 466 | // takes `blockStart` and `blockEnd` arguments to define the range of |
| 467 | // dispatched blocks. |
| 468 | SmallVector<Type> inputTypes; |
| 469 | inputTypes.push_back(async::GroupType::get(rewriter.getContext())); |
| 470 | inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument |
| 471 | inputTypes.append(in_start: computeFuncInputTypes.begin(), in_end: computeFuncInputTypes.end()); |
| 472 | |
| 473 | FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange()); |
| 474 | func::FuncOp func = func::FuncOp::create(loc, "async_dispatch_fn" , type); |
| 475 | func.setPrivate(); |
| 476 | |
| 477 | // Insert function into the module symbol table and assign it unique name. |
| 478 | SymbolTable symbolTable(module); |
| 479 | symbolTable.insert(symbol: func); |
| 480 | rewriter.getListener()->notifyOperationInserted(op: func, /*previous=*/{}); |
| 481 | |
| 482 | // Create function entry block. |
| 483 | Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs(), |
| 484 | SmallVector<Location>(type.getNumInputs(), loc)); |
| 485 | b.setInsertionPointToEnd(block); |
| 486 | |
| 487 | Type indexTy = b.getIndexType(); |
| 488 | Value c1 = b.create<arith::ConstantIndexOp>(args: 1); |
| 489 | Value c2 = b.create<arith::ConstantIndexOp>(args: 2); |
| 490 | |
| 491 | // Get the async group that will track async dispatch completion. |
| 492 | Value group = block->getArgument(i: 0); |
| 493 | |
| 494 | // Get the block iteration range: [blockStart, blockEnd) |
| 495 | Value blockStart = block->getArgument(i: 1); |
| 496 | Value blockEnd = block->getArgument(i: 2); |
| 497 | |
| 498 | // Create a work splitting while loop for the [blockStart, blockEnd) range. |
| 499 | SmallVector<Type> types = {indexTy, indexTy}; |
| 500 | SmallVector<Value> operands = {blockStart, blockEnd}; |
| 501 | SmallVector<Location> locations = {loc, loc}; |
| 502 | |
| 503 | // Create a recursive dispatch loop. |
| 504 | scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands); |
| 505 | Block *before = b.createBlock(&whileOp.getBefore(), {}, types, locations); |
| 506 | Block *after = b.createBlock(&whileOp.getAfter(), {}, types, locations); |
| 507 | |
| 508 | // Setup dispatch loop condition block: decide if we need to go into the |
| 509 | // `after` block and launch one more async dispatch. |
| 510 | { |
| 511 | b.setInsertionPointToEnd(before); |
| 512 | Value start = before->getArgument(i: 0); |
| 513 | Value end = before->getArgument(i: 1); |
| 514 | Value distance = b.create<arith::SubIOp>(end, start); |
| 515 | Value dispatch = |
| 516 | b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1); |
| 517 | b.create<scf::ConditionOp>(dispatch, before->getArguments()); |
| 518 | } |
| 519 | |
| 520 | // Setup the async dispatch loop body: recursively call dispatch function |
| 521 | // for the seconds half of the original range and go to the next iteration. |
| 522 | { |
| 523 | b.setInsertionPointToEnd(after); |
| 524 | Value start = after->getArgument(i: 0); |
| 525 | Value end = after->getArgument(i: 1); |
| 526 | Value distance = b.create<arith::SubIOp>(end, start); |
| 527 | Value halfDistance = b.create<arith::DivSIOp>(distance, c2); |
| 528 | Value midIndex = b.create<arith::AddIOp>(start, halfDistance); |
| 529 | |
| 530 | // Call parallel compute function inside the async.execute region. |
| 531 | auto executeBodyBuilder = [&](OpBuilder &executeBuilder, |
| 532 | Location executeLoc, ValueRange executeArgs) { |
| 533 | // Update the original `blockStart` and `blockEnd` with new range. |
| 534 | SmallVector<Value> operands{block->getArguments().begin(), |
| 535 | block->getArguments().end()}; |
| 536 | operands[1] = midIndex; |
| 537 | operands[2] = end; |
| 538 | |
| 539 | executeBuilder.create<func::CallOp>(executeLoc, func.getSymName(), |
| 540 | func.getResultTypes(), operands); |
| 541 | executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); |
| 542 | }; |
| 543 | |
| 544 | // Create async.execute operation to dispatch half of the block range. |
| 545 | auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), |
| 546 | executeBodyBuilder); |
| 547 | b.create<AddToGroupOp>(indexTy, execute.getToken(), group); |
| 548 | b.create<scf::YieldOp>(ValueRange({start, midIndex})); |
| 549 | } |
| 550 | |
| 551 | // After dispatching async operations to process the tail of the block range |
| 552 | // call the parallel compute function for the first block of the range. |
| 553 | b.setInsertionPointAfter(whileOp); |
| 554 | |
| 555 | // Drop async dispatch specific arguments: async group, block start and end. |
| 556 | auto forwardedInputs = block->getArguments().drop_front(N: 3); |
| 557 | SmallVector<Value> computeFuncOperands = {blockStart}; |
| 558 | computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end()); |
| 559 | |
| 560 | b.create<func::CallOp>(computeFunc.func.getSymName(), |
| 561 | computeFunc.func.getResultTypes(), |
| 562 | computeFuncOperands); |
| 563 | b.create<func::ReturnOp>(ValueRange()); |
| 564 | |
| 565 | return func; |
| 566 | } |
| 567 | |
| 568 | // Launch async dispatch of the parallel compute function. |
| 569 | static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, |
| 570 | ParallelComputeFunction ¶llelComputeFunction, |
| 571 | scf::ParallelOp op, Value blockSize, |
| 572 | Value blockCount, |
| 573 | const SmallVector<Value> &tripCounts) { |
| 574 | MLIRContext *ctx = op->getContext(); |
| 575 | |
| 576 | // Add one more level of indirection to dispatch parallel compute functions |
| 577 | // using async operations and recursive work splitting. |
| 578 | func::FuncOp asyncDispatchFunction = |
| 579 | createAsyncDispatchFunction(parallelComputeFunction, rewriter); |
| 580 | |
| 581 | Value c0 = b.create<arith::ConstantIndexOp>(args: 0); |
| 582 | Value c1 = b.create<arith::ConstantIndexOp>(args: 1); |
| 583 | |
| 584 | // Appends operands shared by async dispatch and parallel compute functions to |
| 585 | // the given operands vector. |
| 586 | auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) { |
| 587 | operands.append(RHS: tripCounts); |
| 588 | operands.append(op.getLowerBound().begin(), op.getLowerBound().end()); |
| 589 | operands.append(op.getUpperBound().begin(), op.getUpperBound().end()); |
| 590 | operands.append(op.getStep().begin(), op.getStep().end()); |
| 591 | operands.append(parallelComputeFunction.captures); |
| 592 | }; |
| 593 | |
| 594 | // Check if the block size is one, in this case we can skip the async dispatch |
| 595 | // completely. If this will be known statically, then canonicalization will |
| 596 | // erase async group operations. |
| 597 | Value isSingleBlock = |
| 598 | b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1); |
| 599 | |
| 600 | auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { |
| 601 | ImplicitLocOpBuilder b(loc, nestedBuilder); |
| 602 | |
| 603 | // Call parallel compute function for the single block. |
| 604 | SmallVector<Value> operands = {c0, blockSize}; |
| 605 | appendBlockComputeOperands(operands); |
| 606 | |
| 607 | b.create<func::CallOp>(parallelComputeFunction.func.getSymName(), |
| 608 | parallelComputeFunction.func.getResultTypes(), |
| 609 | operands); |
| 610 | b.create<scf::YieldOp>(); |
| 611 | }; |
| 612 | |
| 613 | auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { |
| 614 | ImplicitLocOpBuilder b(loc, nestedBuilder); |
| 615 | |
| 616 | // Create an async.group to wait on all async tokens from the concurrent |
| 617 | // execution of multiple parallel compute function. First block will be |
| 618 | // executed synchronously in the caller thread. |
| 619 | Value groupSize = b.create<arith::SubIOp>(blockCount, c1); |
| 620 | Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); |
| 621 | |
| 622 | // Launch async dispatch function for [0, blockCount) range. |
| 623 | SmallVector<Value> operands = {group, c0, blockCount, blockSize}; |
| 624 | appendBlockComputeOperands(operands); |
| 625 | |
| 626 | b.create<func::CallOp>(asyncDispatchFunction.getSymName(), |
| 627 | asyncDispatchFunction.getResultTypes(), operands); |
| 628 | |
| 629 | // Wait for the completion of all parallel compute operations. |
| 630 | b.create<AwaitAllOp>(group); |
| 631 | |
| 632 | b.create<scf::YieldOp>(); |
| 633 | }; |
| 634 | |
| 635 | // Dispatch either single block compute function, or launch async dispatch. |
| 636 | b.create<scf::IfOp>(isSingleBlock, syncDispatch, asyncDispatch); |
| 637 | } |
| 638 | |
| 639 | // Dispatch parallel compute functions by submitting all async compute tasks |
| 640 | // from a simple for loop in the caller thread. |
| 641 | static void |
| 642 | doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, |
| 643 | ParallelComputeFunction ¶llelComputeFunction, |
| 644 | scf::ParallelOp op, Value blockSize, Value blockCount, |
| 645 | const SmallVector<Value> &tripCounts) { |
| 646 | MLIRContext *ctx = op->getContext(); |
| 647 | |
| 648 | func::FuncOp compute = parallelComputeFunction.func; |
| 649 | |
| 650 | Value c0 = b.create<arith::ConstantIndexOp>(args: 0); |
| 651 | Value c1 = b.create<arith::ConstantIndexOp>(args: 1); |
| 652 | |
| 653 | // Create an async.group to wait on all async tokens from the concurrent |
| 654 | // execution of multiple parallel compute function. First block will be |
| 655 | // executed synchronously in the caller thread. |
| 656 | Value groupSize = b.create<arith::SubIOp>(blockCount, c1); |
| 657 | Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); |
| 658 | |
| 659 | // Call parallel compute function for all blocks. |
| 660 | using LoopBodyBuilder = |
| 661 | std::function<void(OpBuilder &, Location, Value, ValueRange)>; |
| 662 | |
| 663 | // Returns parallel compute function operands to process the given block. |
| 664 | auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> { |
| 665 | SmallVector<Value> computeFuncOperands = {blockIndex, blockSize}; |
| 666 | computeFuncOperands.append(RHS: tripCounts); |
| 667 | computeFuncOperands.append(op.getLowerBound().begin(), |
| 668 | op.getLowerBound().end()); |
| 669 | computeFuncOperands.append(op.getUpperBound().begin(), |
| 670 | op.getUpperBound().end()); |
| 671 | computeFuncOperands.append(op.getStep().begin(), op.getStep().end()); |
| 672 | computeFuncOperands.append(parallelComputeFunction.captures); |
| 673 | return computeFuncOperands; |
| 674 | }; |
| 675 | |
| 676 | // Induction variable is the index of the block: [0, blockCount). |
| 677 | LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc, |
| 678 | Value iv, ValueRange args) { |
| 679 | ImplicitLocOpBuilder b(loc, loopBuilder); |
| 680 | |
| 681 | // Call parallel compute function inside the async.execute region. |
| 682 | auto executeBodyBuilder = [&](OpBuilder &executeBuilder, |
| 683 | Location executeLoc, ValueRange executeArgs) { |
| 684 | executeBuilder.create<func::CallOp>(executeLoc, compute.getSymName(), |
| 685 | compute.getResultTypes(), |
| 686 | computeFuncOperands(iv)); |
| 687 | executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); |
| 688 | }; |
| 689 | |
| 690 | // Create async.execute operation to launch parallel computate function. |
| 691 | auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), |
| 692 | executeBodyBuilder); |
| 693 | b.create<AddToGroupOp>(rewriter.getIndexType(), execute.getToken(), group); |
| 694 | b.create<scf::YieldOp>(); |
| 695 | }; |
| 696 | |
| 697 | // Iterate over all compute blocks and launch parallel compute operations. |
| 698 | b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder); |
| 699 | |
| 700 | // Call parallel compute function for the first block in the caller thread. |
| 701 | b.create<func::CallOp>(compute.getSymName(), compute.getResultTypes(), |
| 702 | computeFuncOperands(c0)); |
| 703 | |
| 704 | // Wait for the completion of all async compute operations. |
| 705 | b.create<AwaitAllOp>(group); |
| 706 | } |
| 707 | |
| 708 | LogicalResult |
| 709 | AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op, |
| 710 | PatternRewriter &rewriter) const { |
| 711 | // We do not currently support rewrite for parallel op with reductions. |
| 712 | if (op.getNumReductions() != 0) |
| 713 | return failure(); |
| 714 | |
| 715 | ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| 716 | |
| 717 | // Computing minTaskSize emits IR and can be implemented as executing a cost |
| 718 | // model on the body of the scf.parallel. Thus it needs to be computed before |
| 719 | // the body of the scf.parallel has been manipulated. |
| 720 | Value minTaskSize = computeMinTaskSize(b, op); |
| 721 | |
| 722 | // Make sure that all constants will be inside the parallel operation body to |
| 723 | // reduce the number of parallel compute function arguments. |
| 724 | cloneConstantsIntoTheRegion(op.getRegion(), rewriter); |
| 725 | |
| 726 | // Compute trip count for each loop induction variable: |
| 727 | // tripCount = ceil_div(upperBound - lowerBound, step); |
| 728 | SmallVector<Value> tripCounts(op.getNumLoops()); |
| 729 | for (size_t i = 0; i < op.getNumLoops(); ++i) { |
| 730 | auto lb = op.getLowerBound()[i]; |
| 731 | auto ub = op.getUpperBound()[i]; |
| 732 | auto step = op.getStep()[i]; |
| 733 | auto range = b.createOrFold<arith::SubIOp>(ub, lb); |
| 734 | tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step); |
| 735 | } |
| 736 | |
| 737 | // Compute a product of trip counts to get the 1-dimensional iteration space |
| 738 | // for the scf.parallel operation. |
| 739 | Value tripCount = tripCounts[0]; |
| 740 | for (size_t i = 1; i < tripCounts.size(); ++i) |
| 741 | tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); |
| 742 | |
| 743 | // Short circuit no-op parallel loops (zero iterations) that can arise from |
| 744 | // the memrefs with dynamic dimension(s) equal to zero. |
| 745 | Value c0 = b.create<arith::ConstantIndexOp>(args: 0); |
| 746 | Value isZeroIterations = |
| 747 | b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0); |
| 748 | |
| 749 | // Do absolutely nothing if the trip count is zero. |
| 750 | auto noOp = [&](OpBuilder &nestedBuilder, Location loc) { |
| 751 | nestedBuilder.create<scf::YieldOp>(loc); |
| 752 | }; |
| 753 | |
| 754 | // Compute the parallel block size and dispatch concurrent tasks computing |
| 755 | // results for each block. |
| 756 | auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) { |
| 757 | ImplicitLocOpBuilder b(loc, nestedBuilder); |
| 758 | |
| 759 | // Collect statically known constants defining the loop nest in the parallel |
| 760 | // compute function. LLVM can't always push constants across the non-trivial |
| 761 | // async dispatch call graph, by providing these values explicitly we can |
| 762 | // choose to build more efficient loop nest, and rely on a better constant |
| 763 | // folding, loop unrolling and vectorization. |
| 764 | ParallelComputeFunctionBounds staticBounds = { |
| 765 | integerConstants(tripCounts), |
| 766 | integerConstants(op.getLowerBound()), |
| 767 | integerConstants(op.getUpperBound()), |
| 768 | integerConstants(op.getStep()), |
| 769 | }; |
| 770 | |
| 771 | // Find how many inner iteration dimensions are statically known, and their |
| 772 | // product is smaller than the `512`. We align the parallel compute block |
| 773 | // size by the product of statically known dimensions, so that we can |
| 774 | // guarantee that the inner loops executes from 0 to the loop trip counts |
| 775 | // and we can elide dynamic loop boundaries, and give LLVM an opportunity to |
| 776 | // unroll the loops. The constant `512` is arbitrary, it should depend on |
| 777 | // how many iterations LLVM will typically decide to unroll. |
| 778 | static constexpr int64_t maxUnrollableIterations = 512; |
| 779 | |
| 780 | // The number of inner loops with statically known number of iterations less |
| 781 | // than the `maxUnrollableIterations` value. |
| 782 | int numUnrollableLoops = 0; |
| 783 | |
| 784 | auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; }; |
| 785 | |
| 786 | SmallVector<int64_t> numIterations(op.getNumLoops()); |
| 787 | numIterations.back() = getInt(staticBounds.tripCounts.back()); |
| 788 | |
| 789 | for (int i = op.getNumLoops() - 2; i >= 0; --i) { |
| 790 | int64_t tripCount = getInt(staticBounds.tripCounts[i]); |
| 791 | int64_t innerIterations = numIterations[i + 1]; |
| 792 | numIterations[i] = tripCount * innerIterations; |
| 793 | |
| 794 | // Update the number of inner loops that we can potentially unroll. |
| 795 | if (innerIterations > 0 && innerIterations <= maxUnrollableIterations) |
| 796 | numUnrollableLoops++; |
| 797 | } |
| 798 | |
| 799 | Value numWorkerThreadsVal; |
| 800 | if (numWorkerThreads >= 0) |
| 801 | numWorkerThreadsVal = b.create<arith::ConstantIndexOp>(args: numWorkerThreads); |
| 802 | else |
| 803 | numWorkerThreadsVal = b.create<async::RuntimeNumWorkerThreadsOp>(); |
| 804 | |
| 805 | // With large number of threads the value of creating many compute blocks |
| 806 | // is reduced because the problem typically becomes memory bound. For this |
| 807 | // reason we scale the number of workers using an equivalent to the |
| 808 | // following logic: |
| 809 | // float overshardingFactor = numWorkerThreads <= 4 ? 8.0 |
| 810 | // : numWorkerThreads <= 8 ? 4.0 |
| 811 | // : numWorkerThreads <= 16 ? 2.0 |
| 812 | // : numWorkerThreads <= 32 ? 1.0 |
| 813 | // : numWorkerThreads <= 64 ? 0.8 |
| 814 | // : 0.6; |
| 815 | |
| 816 | // Pairs of non-inclusive lower end of the bracket and factor that the |
| 817 | // number of workers needs to be scaled with if it falls in that bucket. |
| 818 | const SmallVector<std::pair<int, float>> overshardingBrackets = { |
| 819 | {4, 4.0f}, {8, 2.0f}, {16, 1.0f}, {32, 0.8f}, {64, 0.6f}}; |
| 820 | const float initialOvershardingFactor = 8.0f; |
| 821 | |
| 822 | Value scalingFactor = b.create<arith::ConstantFloatOp>( |
| 823 | args: llvm::APFloat(initialOvershardingFactor), args: b.getF32Type()); |
| 824 | for (const std::pair<int, float> &p : overshardingBrackets) { |
| 825 | Value bracketBegin = b.create<arith::ConstantIndexOp>(args: p.first); |
| 826 | Value inBracket = b.create<arith::CmpIOp>( |
| 827 | arith::CmpIPredicate::sgt, numWorkerThreadsVal, bracketBegin); |
| 828 | Value bracketScalingFactor = b.create<arith::ConstantFloatOp>( |
| 829 | args: llvm::APFloat(p.second), args: b.getF32Type()); |
| 830 | scalingFactor = b.create<arith::SelectOp>(inBracket, bracketScalingFactor, |
| 831 | scalingFactor); |
| 832 | } |
| 833 | Value numWorkersIndex = |
| 834 | b.create<arith::IndexCastOp>(b.getI32Type(), numWorkerThreadsVal); |
| 835 | Value numWorkersFloat = |
| 836 | b.create<arith::SIToFPOp>(b.getF32Type(), numWorkersIndex); |
| 837 | Value scaledNumWorkers = |
| 838 | b.create<arith::MulFOp>(scalingFactor, numWorkersFloat); |
| 839 | Value scaledNumInt = |
| 840 | b.create<arith::FPToSIOp>(b.getI32Type(), scaledNumWorkers); |
| 841 | Value scaledWorkers = |
| 842 | b.create<arith::IndexCastOp>(b.getIndexType(), scaledNumInt); |
| 843 | |
| 844 | Value maxComputeBlocks = b.create<arith::MaxSIOp>( |
| 845 | b.create<arith::ConstantIndexOp>(1), scaledWorkers); |
| 846 | |
| 847 | // Compute parallel block size from the parallel problem size: |
| 848 | // blockSize = min(tripCount, |
| 849 | // max(ceil_div(tripCount, maxComputeBlocks), |
| 850 | // minTaskSize)) |
| 851 | Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks); |
| 852 | Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize); |
| 853 | Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1); |
| 854 | |
| 855 | // Dispatch parallel compute function using async recursive work splitting, |
| 856 | // or by submitting compute task sequentially from a caller thread. |
| 857 | auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch; |
| 858 | |
| 859 | // Create a parallel compute function that takes a block id and computes |
| 860 | // the parallel operation body for a subset of iteration space. |
| 861 | |
| 862 | // Compute the number of parallel compute blocks. |
| 863 | Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize); |
| 864 | |
| 865 | // Dispatch parallel compute function without hints to unroll inner loops. |
| 866 | auto dispatchDefault = [&](OpBuilder &nestedBuilder, Location loc) { |
| 867 | ParallelComputeFunction compute = |
| 868 | createParallelComputeFunction(op, staticBounds, 0, rewriter); |
| 869 | |
| 870 | ImplicitLocOpBuilder b(loc, nestedBuilder); |
| 871 | doDispatch(b, rewriter, compute, op, blockSize, blockCount, tripCounts); |
| 872 | b.create<scf::YieldOp>(); |
| 873 | }; |
| 874 | |
| 875 | // Dispatch parallel compute function with hints for unrolling inner loops. |
| 876 | auto dispatchBlockAligned = [&](OpBuilder &nestedBuilder, Location loc) { |
| 877 | ParallelComputeFunction compute = createParallelComputeFunction( |
| 878 | op, staticBounds, numUnrollableLoops, rewriter); |
| 879 | |
| 880 | ImplicitLocOpBuilder b(loc, nestedBuilder); |
| 881 | // Align the block size to be a multiple of the statically known |
| 882 | // number of iterations in the inner loops. |
| 883 | Value numIters = b.create<arith::ConstantIndexOp>( |
| 884 | numIterations[op.getNumLoops() - numUnrollableLoops]); |
| 885 | Value alignedBlockSize = b.create<arith::MulIOp>( |
| 886 | b.create<arith::CeilDivSIOp>(blockSize, numIters), numIters); |
| 887 | doDispatch(b, rewriter, compute, op, alignedBlockSize, blockCount, |
| 888 | tripCounts); |
| 889 | b.create<scf::YieldOp>(); |
| 890 | }; |
| 891 | |
| 892 | // Dispatch to block aligned compute function only if the computed block |
| 893 | // size is larger than the number of iterations in the unrollable inner |
| 894 | // loops, because otherwise it can reduce the available parallelism. |
| 895 | if (numUnrollableLoops > 0) { |
| 896 | Value numIters = b.create<arith::ConstantIndexOp>( |
| 897 | numIterations[op.getNumLoops() - numUnrollableLoops]); |
| 898 | Value useBlockAlignedComputeFn = b.create<arith::CmpIOp>( |
| 899 | arith::CmpIPredicate::sge, blockSize, numIters); |
| 900 | |
| 901 | b.create<scf::IfOp>(useBlockAlignedComputeFn, dispatchBlockAligned, |
| 902 | dispatchDefault); |
| 903 | b.create<scf::YieldOp>(); |
| 904 | } else { |
| 905 | dispatchDefault(b, loc); |
| 906 | } |
| 907 | }; |
| 908 | |
| 909 | // Replace the `scf.parallel` operation with the parallel compute function. |
| 910 | b.create<scf::IfOp>(isZeroIterations, noOp, dispatch); |
| 911 | |
| 912 | // Parallel operation was replaced with a block iteration loop. |
| 913 | rewriter.eraseOp(op: op); |
| 914 | |
| 915 | return success(); |
| 916 | } |
| 917 | |
| 918 | void AsyncParallelForPass::runOnOperation() { |
| 919 | MLIRContext *ctx = &getContext(); |
| 920 | |
| 921 | RewritePatternSet patterns(ctx); |
| 922 | populateAsyncParallelForPatterns( |
| 923 | patterns, asyncDispatch, numWorkerThreads, |
| 924 | [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) { |
| 925 | return builder.create<arith::ConstantIndexOp>(minTaskSize); |
| 926 | }); |
| 927 | if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) |
| 928 | signalPassFailure(); |
| 929 | } |
| 930 | |
| 931 | void mlir::async::populateAsyncParallelForPatterns( |
| 932 | RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads, |
| 933 | const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) { |
| 934 | MLIRContext *ctx = patterns.getContext(); |
| 935 | patterns.add<AsyncParallelForRewrite>(arg&: ctx, args&: asyncDispatch, args&: numWorkerThreads, |
| 936 | args: computeMinTaskSize); |
| 937 | } |
| 938 | |