1 | //===- BufferizableOpInterface.cpp - Bufferizable Ops ---=----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
10 | #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
11 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
12 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
13 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
14 | #include "mlir/IR/AsmState.h" |
15 | #include "mlir/IR/BuiltinOps.h" |
16 | #include "mlir/IR/IRMapping.h" |
17 | #include "mlir/IR/Operation.h" |
18 | #include "mlir/IR/TypeUtilities.h" |
19 | #include "mlir/IR/Value.h" |
20 | #include "mlir/Interfaces/ControlFlowInterfaces.h" |
21 | #include "llvm/ADT/ScopeExit.h" |
22 | #include "llvm/Support/Debug.h" |
23 | |
24 | //===----------------------------------------------------------------------===// |
25 | // BufferizableOpInterface |
26 | //===----------------------------------------------------------------------===// |
27 | |
28 | namespace mlir { |
29 | namespace bufferization { |
30 | |
31 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.cpp.inc" |
32 | |
33 | } // namespace bufferization |
34 | } // namespace mlir |
35 | |
36 | MLIR_DEFINE_EXPLICIT_TYPE_ID(mlir::bufferization::AnalysisState) |
37 | |
38 | #define DEBUG_TYPE "bufferizable-op-interface" |
39 | #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") |
40 | #define LDBG(X) LLVM_DEBUG(DBGS() << (X)) |
41 | |
42 | using namespace mlir; |
43 | using namespace bufferization; |
44 | |
45 | static bool isRepetitiveRegion(Region *region, |
46 | const BufferizationOptions &options) { |
47 | Operation *op = region->getParentOp(); |
48 | if (auto bufferizableOp = options.dynCastBufferizableOp(op)) |
49 | if (bufferizableOp.isRepetitiveRegion(region->getRegionNumber())) |
50 | return true; |
51 | return false; |
52 | } |
53 | |
54 | Region *AnalysisState::getEnclosingRepetitiveRegion( |
55 | Operation *op, const BufferizationOptions &options) { |
56 | if (!op->getBlock()) |
57 | return nullptr; |
58 | if (auto iter = enclosingRepetitiveRegionCache.find_as(op); |
59 | iter != enclosingRepetitiveRegionCache.end()) |
60 | return iter->second; |
61 | return enclosingRepetitiveRegionCache[op] = |
62 | getEnclosingRepetitiveRegion(op->getBlock(), options); |
63 | } |
64 | |
65 | Region *AnalysisState::getEnclosingRepetitiveRegion( |
66 | Value value, const BufferizationOptions &options) { |
67 | if (auto iter = enclosingRepetitiveRegionCache.find_as(value); |
68 | iter != enclosingRepetitiveRegionCache.end()) |
69 | return iter->second; |
70 | |
71 | Region *region = value.getParentRegion(); |
72 | // Collect all visited regions since we only know the repetitive region we |
73 | // want to map it to later on |
74 | SmallVector<Region *> visitedRegions; |
75 | while (region) { |
76 | visitedRegions.push_back(Elt: region); |
77 | if (isRepetitiveRegion(region, options)) |
78 | break; |
79 | region = region->getParentRegion(); |
80 | } |
81 | enclosingRepetitiveRegionCache[value] = region; |
82 | for (Region *r : visitedRegions) |
83 | enclosingRepetitiveRegionCache[r] = region; |
84 | return region; |
85 | } |
86 | |
87 | Region *AnalysisState::getEnclosingRepetitiveRegion( |
88 | Block *block, const BufferizationOptions &options) { |
89 | if (auto iter = enclosingRepetitiveRegionCache.find_as(block); |
90 | iter != enclosingRepetitiveRegionCache.end()) |
91 | return iter->second; |
92 | |
93 | Region *region = block->getParent(); |
94 | Operation *op = nullptr; |
95 | // Collect all visited regions since we only know the repetitive region we |
96 | // want to map it to later on |
97 | SmallVector<Region *> visitedRegions; |
98 | do { |
99 | op = region->getParentOp(); |
100 | if (isRepetitiveRegion(region, options)) |
101 | break; |
102 | } while ((region = op->getParentRegion())); |
103 | |
104 | enclosingRepetitiveRegionCache[block] = region; |
105 | for (Region *r : visitedRegions) |
106 | enclosingRepetitiveRegionCache[r] = region; |
107 | return region; |
108 | } |
109 | |
110 | bool AnalysisState::insideMutuallyExclusiveRegions(Operation *op0, |
111 | Operation *op1) { |
112 | auto key = std::make_pair(x&: op0, y&: op1); |
113 | if (auto iter = insideMutuallyExclusiveRegionsCache.find(key); |
114 | iter != insideMutuallyExclusiveRegionsCache.end()) |
115 | return iter->second; |
116 | bool result = ::mlir::insideMutuallyExclusiveRegions(a: op0, b: op1); |
117 | // Populate results for both orderings of the ops. |
118 | insideMutuallyExclusiveRegionsCache[key] = result; |
119 | insideMutuallyExclusiveRegionsCache[std::make_pair(op1, op0)] = result; |
120 | return result; |
121 | } |
122 | |
123 | void AnalysisState::resetCache() { |
124 | enclosingRepetitiveRegionCache.clear(); |
125 | insideMutuallyExclusiveRegionsCache.clear(); |
126 | } |
127 | |
128 | SymbolTableCollection &BufferizationState::getSymbolTables() { |
129 | return symbolTables; |
130 | } |
131 | |
132 | Region *bufferization::getNextEnclosingRepetitiveRegion( |
133 | Region *region, const BufferizationOptions &options) { |
134 | assert(isRepetitiveRegion(region, options) && "expected repetitive region" ); |
135 | while ((region = region->getParentRegion())) { |
136 | if (isRepetitiveRegion(region, options)) |
137 | break; |
138 | } |
139 | return region; |
140 | } |
141 | |
142 | Region *bufferization::getParallelRegion(Region *region, |
143 | const BufferizationOptions &options) { |
144 | while (region) { |
145 | auto bufferizableOp = options.dynCastBufferizableOp(region->getParentOp()); |
146 | if (bufferizableOp && |
147 | bufferizableOp.isParallelRegion(region->getRegionNumber())) { |
148 | assert(isRepetitiveRegion(region, options) && |
149 | "expected that all parallel regions are also repetitive regions" ); |
150 | return region; |
151 | } |
152 | region = region->getParentRegion(); |
153 | } |
154 | return nullptr; |
155 | } |
156 | |
157 | Operation *bufferization::getOwnerOfValue(Value value) { |
158 | if (auto opResult = llvm::dyn_cast<OpResult>(Val&: value)) |
159 | return opResult.getDefiningOp(); |
160 | return llvm::cast<BlockArgument>(Val&: value).getOwner()->getParentOp(); |
161 | } |
162 | |
163 | /// Create an AllocTensorOp for the given shaped value. If `copy` is set, the |
164 | /// shaped value is copied. Otherwise, a tensor with undefined contents is |
165 | /// allocated. |
166 | FailureOr<Value> bufferization::allocateTensorForShapedValue( |
167 | OpBuilder &b, Location loc, Value shapedValue, |
168 | const BufferizationOptions &options, const BufferizationState &state, |
169 | bool copy) { |
170 | Value tensor; |
171 | if (llvm::isa<RankedTensorType>(Val: shapedValue.getType())) { |
172 | tensor = shapedValue; |
173 | } else if (llvm::isa<MemRefType>(Val: shapedValue.getType())) { |
174 | tensor = b.create<ToTensorOp>(loc, shapedValue); |
175 | } else if (llvm::isa<UnrankedTensorType>(shapedValue.getType()) || |
176 | llvm::isa<UnrankedMemRefType>(shapedValue.getType())) { |
177 | return getOwnerOfValue(value: shapedValue) |
178 | ->emitError(message: "copying of unranked tensors is not implemented" ); |
179 | } else { |
180 | llvm_unreachable("expected RankedTensorType or MemRefType" ); |
181 | } |
182 | RankedTensorType tensorType = llvm::cast<RankedTensorType>(tensor.getType()); |
183 | SmallVector<Value> dynamicSizes; |
184 | if (!copy) { |
185 | // Compute the dynamic part of the shape. |
186 | // First try to query the shape via ReifyRankedShapedTypeOpInterface. |
187 | bool reifiedShapes = false; |
188 | if (llvm::isa<RankedTensorType>(Val: shapedValue.getType()) && |
189 | llvm::isa<OpResult>(Val: shapedValue)) { |
190 | ReifiedRankedShapedTypeDims resultDims; |
191 | if (succeeded( |
192 | Result: reifyResultShapes(b, op: shapedValue.getDefiningOp(), reifiedReturnShapes&: resultDims))) { |
193 | reifiedShapes = true; |
194 | auto &shape = |
195 | resultDims[llvm::cast<OpResult>(Val&: shapedValue).getResultNumber()]; |
196 | for (const auto &dim : enumerate(tensorType.getShape())) |
197 | if (ShapedType::isDynamic(dim.value())) |
198 | dynamicSizes.push_back(cast<Value>(shape[dim.index()])); |
199 | } |
200 | } |
201 | |
202 | // If the shape could not be reified, create DimOps. |
203 | if (!reifiedShapes) |
204 | populateDynamicDimSizes(b, loc, shapedValue: tensor, dynamicDims&: dynamicSizes); |
205 | } |
206 | |
207 | // Create AllocTensorOp. |
208 | auto allocTensorOp = b.create<AllocTensorOp>(loc, tensorType, dynamicSizes, |
209 | copy ? tensor : Value()); |
210 | |
211 | // Add 'memory_space' attribute. Not needed if 'copy' operand is specified. |
212 | if (copy) |
213 | return allocTensorOp.getResult(); |
214 | FailureOr<BaseMemRefType> copyBufferType = |
215 | getBufferType(value: tensor, options, state); |
216 | if (failed(Result: copyBufferType)) |
217 | return failure(); |
218 | std::optional<Attribute> memorySpace = copyBufferType->getMemorySpace(); |
219 | if (!memorySpace) |
220 | memorySpace = options.defaultMemorySpaceFn(tensorType); |
221 | if (memorySpace.has_value()) |
222 | allocTensorOp.setMemorySpaceAttr(memorySpace.value()); |
223 | return allocTensorOp.getResult(); |
224 | } |
225 | |
226 | LogicalResult BufferizableOpInterface::resolveTensorOpOperandConflicts( |
227 | RewriterBase &rewriter, const AnalysisState &analysisState, |
228 | const BufferizationState &bufferizationState) { |
229 | OpBuilder::InsertionGuard g(rewriter); |
230 | Operation *op = getOperation(); |
231 | SmallVector<OpOperand *> outOfPlaceOpOperands; |
232 | DenseSet<OpOperand *> copiedOpOperands; |
233 | SmallVector<Value> outOfPlaceValues; |
234 | DenseSet<Value> copiedOpValues; |
235 | |
236 | // Find all out-of-place OpOperands. |
237 | for (OpOperand &opOperand : op->getOpOperands()) { |
238 | Type operandType = opOperand.get().getType(); |
239 | if (!llvm::isa<TensorType>(operandType)) |
240 | continue; |
241 | if (analysisState.isInPlace(opOperand)) |
242 | continue; |
243 | if (llvm::isa<UnrankedTensorType>(operandType)) |
244 | return op->emitError("copying of unranked tensors is not implemented" ); |
245 | |
246 | AliasingValueList aliasingValues = |
247 | analysisState.getAliasingValues(opOperand); |
248 | if (aliasingValues.getNumAliases() == 1 && |
249 | isa<OpResult>(aliasingValues.getAliases()[0].value) && |
250 | !analysisState.bufferizesToMemoryWrite(opOperand) && |
251 | analysisState |
252 | .getAliasingOpOperands(aliasingValues.getAliases()[0].value) |
253 | .getNumAliases() == 1 && |
254 | !isa<UnrankedTensorType>( |
255 | aliasingValues.getAliases()[0].value.getType())) { |
256 | // The op itself does not write but may create exactly one alias. Instead |
257 | // of copying the OpOperand, copy the OpResult. The OpResult can sometimes |
258 | // be smaller than the OpOperand (e.g., in the case of an extract_slice, |
259 | // where the result is usually a smaller part of the source). Do not apply |
260 | // this optimization if the OpResult is an unranked tensor (because those |
261 | // cannot be copied at the moment). |
262 | Value value = aliasingValues.getAliases()[0].value; |
263 | outOfPlaceValues.push_back(value); |
264 | if (!analysisState.canOmitTensorCopy(opOperand)) |
265 | copiedOpValues.insert(value); |
266 | } else { |
267 | // In all other cases, make a copy of the OpOperand. |
268 | outOfPlaceOpOperands.push_back(&opOperand); |
269 | if (!analysisState.canOmitTensorCopy(opOperand)) |
270 | copiedOpOperands.insert(&opOperand); |
271 | } |
272 | } |
273 | |
274 | // Insert copies of OpOperands. |
275 | rewriter.setInsertionPoint(op); |
276 | for (OpOperand *opOperand : outOfPlaceOpOperands) { |
277 | FailureOr<Value> copy = allocateTensorForShapedValue( |
278 | rewriter, op->getLoc(), opOperand->get(), analysisState.getOptions(), |
279 | bufferizationState, copiedOpOperands.contains(opOperand)); |
280 | if (failed(copy)) |
281 | return failure(); |
282 | rewriter.modifyOpInPlace(op, [&]() { opOperand->set(*copy); }); |
283 | } |
284 | |
285 | // Insert copies of Values. |
286 | rewriter.setInsertionPointAfter(op); |
287 | for (Value value : outOfPlaceValues) { |
288 | FailureOr<Value> copy = allocateTensorForShapedValue( |
289 | rewriter, op->getLoc(), value, analysisState.getOptions(), |
290 | bufferizationState, copiedOpValues.count(value)); |
291 | if (failed(copy)) |
292 | return failure(); |
293 | SmallVector<OpOperand *> uses = llvm::to_vector( |
294 | llvm::map_range(value.getUses(), [](OpOperand &use) { return &use; })); |
295 | for (OpOperand *use : uses) { |
296 | // Do not update the alloc_tensor op that we just created. |
297 | if (use->getOwner() == copy->getDefiningOp()) |
298 | continue; |
299 | // tensor.dim ops may have been created to be used as alloc_tensor op |
300 | // dynamic extents. Do not update these either. |
301 | if (isa<tensor::DimOp>(use->getOwner())) |
302 | continue; |
303 | rewriter.modifyOpInPlace(use->getOwner(), [&]() { use->set(*copy); }); |
304 | } |
305 | } |
306 | |
307 | return success(); |
308 | } |
309 | |
310 | //===----------------------------------------------------------------------===// |
311 | // OpFilter |
312 | //===----------------------------------------------------------------------===// |
313 | |
314 | bool OpFilter::isOpAllowed(Operation *op) const { |
315 | // All other ops: Allow/disallow according to filter. |
316 | bool isAllowed = !hasAllowRule(); |
317 | for (const Entry &entry : entries) { |
318 | bool filterResult = entry.fn(op); |
319 | switch (entry.type) { |
320 | case Entry::ALLOW: |
321 | isAllowed |= filterResult; |
322 | break; |
323 | case Entry::DENY: |
324 | if (filterResult) |
325 | // DENY filter matches. This op is no allowed. (Even if other ALLOW |
326 | // filters may match.) |
327 | return false; |
328 | }; |
329 | } |
330 | return isAllowed; |
331 | } |
332 | |
333 | //===----------------------------------------------------------------------===// |
334 | // BufferizationOptions |
335 | //===----------------------------------------------------------------------===// |
336 | |
337 | namespace { |
338 | |
339 | /// Default function arg type converter: Use a fully dynamic layout map. |
340 | BaseMemRefType |
341 | defaultFunctionArgTypeConverter(TensorType type, Attribute memorySpace, |
342 | func::FuncOp funcOp, |
343 | const BufferizationOptions &options) { |
344 | return getMemRefTypeWithFullyDynamicLayout(tensorType: type, memorySpace); |
345 | } |
346 | /// Default unknown type converter: Use a fully dynamic layout map. |
347 | BaseMemRefType |
348 | defaultUnknownTypeConverter(Value value, Attribute memorySpace, |
349 | const BufferizationOptions &options) { |
350 | return getMemRefTypeWithFullyDynamicLayout( |
351 | tensorType: llvm::cast<TensorType>(Val: value.getType()), memorySpace); |
352 | } |
353 | |
354 | } // namespace |
355 | |
356 | // Default constructor for BufferizationOptions. |
357 | BufferizationOptions::BufferizationOptions() |
358 | : functionArgTypeConverterFn(defaultFunctionArgTypeConverter), |
359 | unknownTypeConverterFn(defaultUnknownTypeConverter) {} |
360 | |
361 | bool BufferizationOptions::isOpAllowed(Operation *op) const { |
362 | // Special case: If function boundary bufferization is deactivated, do not |
363 | // allow ops that belong to the `func` dialect. |
364 | bool isFuncBoundaryOp = isa_and_nonnull<func::FuncDialect>(op->getDialect()); |
365 | if (!bufferizeFunctionBoundaries && isFuncBoundaryOp) |
366 | return false; |
367 | |
368 | return opFilter.isOpAllowed(op); |
369 | } |
370 | |
371 | BufferizableOpInterface |
372 | BufferizationOptions::dynCastBufferizableOp(Operation *op) const { |
373 | if (!isOpAllowed(op)) |
374 | return nullptr; |
375 | auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op); |
376 | if (!bufferizableOp) |
377 | return nullptr; |
378 | return bufferizableOp; |
379 | } |
380 | |
381 | BufferizableOpInterface |
382 | BufferizationOptions::dynCastBufferizableOp(Value value) const { |
383 | return dynCastBufferizableOp(getOwnerOfValue(value)); |
384 | } |
385 | |
386 | void BufferizationOptions::setFunctionBoundaryTypeConversion( |
387 | LayoutMapOption layoutMapOption) { |
388 | functionArgTypeConverterFn = [=](TensorType tensorType, Attribute memorySpace, |
389 | func::FuncOp funcOp, |
390 | const BufferizationOptions &options) { |
391 | if (layoutMapOption == LayoutMapOption::IdentityLayoutMap) |
392 | return bufferization::getMemRefTypeWithStaticIdentityLayout(tensorType, |
393 | memorySpace); |
394 | return bufferization::getMemRefTypeWithFullyDynamicLayout(tensorType, |
395 | memorySpace); |
396 | }; |
397 | inferFunctionResultLayout = |
398 | layoutMapOption == LayoutMapOption::InferLayoutMap; |
399 | } |
400 | |
401 | //===----------------------------------------------------------------------===// |
402 | // Helper functions for BufferizableOpInterface |
403 | //===----------------------------------------------------------------------===// |
404 | |
405 | static void setInsertionPointAfter(OpBuilder &b, Value value) { |
406 | if (auto bbArg = llvm::dyn_cast<BlockArgument>(Val&: value)) { |
407 | b.setInsertionPointToStart(bbArg.getOwner()); |
408 | } else { |
409 | b.setInsertionPointAfter(value.getDefiningOp()); |
410 | } |
411 | } |
412 | |
413 | /// Determine which OpOperand* will alias with `value` if the op is bufferized |
414 | /// in place. Return all tensor OpOperand* if the op is not bufferizable. |
415 | AliasingOpOperandList AnalysisState::getAliasingOpOperands(Value value) const { |
416 | if (Operation *op = getOwnerOfValue(value)) |
417 | if (auto bufferizableOp = getOptions().dynCastBufferizableOp(op)) |
418 | return bufferizableOp.getAliasingOpOperands(value, *this); |
419 | |
420 | // The op is not bufferizable. |
421 | return detail::unknownGetAliasingOpOperands(value); |
422 | } |
423 | |
424 | /// Determine which Values will alias with `opOperand` if the op is bufferized |
425 | /// in place. Return all tensor Values if the op is not bufferizable. |
426 | AliasingValueList AnalysisState::getAliasingValues(OpOperand &opOperand) const { |
427 | if (auto bufferizableOp = |
428 | getOptions().dynCastBufferizableOp(opOperand.getOwner())) |
429 | return bufferizableOp.getAliasingValues(opOperand, *this); |
430 | |
431 | // The op is not bufferizable. |
432 | return detail::unknownGetAliasingValues(opOperand); |
433 | } |
434 | |
435 | /// Return true if `opOperand` bufferizes to a memory read. Return `true` if the |
436 | /// op is not bufferizable. |
437 | bool AnalysisState::bufferizesToMemoryRead(OpOperand &opOperand) const { |
438 | if (auto bufferizableOp = |
439 | getOptions().dynCastBufferizableOp(opOperand.getOwner())) |
440 | return bufferizableOp.bufferizesToMemoryRead(opOperand, *this); |
441 | |
442 | // Unknown op that returns a tensor. The inplace analysis does not support it. |
443 | // Conservatively return true. |
444 | return true; |
445 | } |
446 | |
447 | /// Return true if `opOperand` bufferizes to a memory write. Return |
448 | /// `true` if the op is not bufferizable. |
449 | bool AnalysisState::bufferizesToMemoryWrite(OpOperand &opOperand) const { |
450 | if (auto bufferizableOp = |
451 | getOptions().dynCastBufferizableOp(opOperand.getOwner())) |
452 | return bufferizableOp.bufferizesToMemoryWrite(opOperand, *this); |
453 | |
454 | // Unknown op that returns a tensor. The inplace analysis does not support it. |
455 | // Conservatively return true. |
456 | return true; |
457 | } |
458 | |
459 | /// Return true if `opOperand` does neither read nor write but bufferizes to an |
460 | /// alias. Return false if the op is not bufferizable. |
461 | bool AnalysisState::bufferizesToAliasOnly(OpOperand &opOperand) const { |
462 | if (auto bufferizableOp = |
463 | getOptions().dynCastBufferizableOp(opOperand.getOwner())) |
464 | return bufferizableOp.bufferizesToAliasOnly(opOperand, *this); |
465 | |
466 | // Unknown op that returns a tensor. The inplace analysis does not support it. |
467 | // Conservatively return false. |
468 | return false; |
469 | } |
470 | |
471 | bool AnalysisState::bufferizesToMemoryWrite(Value value) const { |
472 | auto opResult = llvm::dyn_cast<OpResult>(Val&: value); |
473 | if (!opResult) |
474 | return true; |
475 | auto bufferizableOp = getOptions().dynCastBufferizableOp(value); |
476 | if (!bufferizableOp) |
477 | return true; |
478 | return bufferizableOp.resultBufferizesToMemoryWrite(opResult, *this); |
479 | } |
480 | |
481 | /// Return true if the given value is read by an op that bufferizes to a memory |
482 | /// read. Also takes into account ops that create an alias but do not read by |
483 | /// themselves (e.g., ExtractSliceOp). |
484 | bool AnalysisState::isValueRead(Value value) const { |
485 | assert(llvm::isa<TensorType>(value.getType()) && "expected TensorType" ); |
486 | SmallVector<OpOperand *> workingSet; |
487 | DenseSet<OpOperand *> visited; |
488 | for (OpOperand &use : value.getUses()) |
489 | workingSet.push_back(Elt: &use); |
490 | |
491 | while (!workingSet.empty()) { |
492 | OpOperand *uMaybeReading = workingSet.pop_back_val(); |
493 | if (!visited.insert(V: uMaybeReading).second) |
494 | continue; |
495 | |
496 | // Skip over all ops that neither read nor write (but create an alias). |
497 | if (bufferizesToAliasOnly(*uMaybeReading)) |
498 | for (AliasingValue alias : getAliasingValues(*uMaybeReading)) |
499 | for (OpOperand &use : alias.value.getUses()) |
500 | workingSet.push_back(&use); |
501 | if (bufferizesToMemoryRead(opOperand&: *uMaybeReading)) |
502 | return true; |
503 | } |
504 | |
505 | return false; |
506 | } |
507 | |
508 | // Starting from `opOperand`, follow the use-def chain in reverse, always |
509 | // selecting the aliasing OpOperands. Find and return Values for which |
510 | // `condition` evaluates to true. Uses of such matching Values are not |
511 | // traversed any further, the visited aliasing opOperands will be preserved |
512 | // through `visitedOpOperands`. |
513 | llvm::SetVector<Value> AnalysisState::findValueInReverseUseDefChain( |
514 | OpOperand *opOperand, llvm::function_ref<bool(Value)> condition, |
515 | TraversalConfig config, |
516 | llvm::DenseSet<OpOperand *> *visitedOpOperands) const { |
517 | llvm::DenseSet<Value> visited; |
518 | llvm::SetVector<Value> result, workingSet; |
519 | workingSet.insert(X: opOperand->get()); |
520 | |
521 | if (visitedOpOperands) |
522 | visitedOpOperands->insert(V: opOperand); |
523 | |
524 | while (!workingSet.empty()) { |
525 | Value value = workingSet.pop_back_val(); |
526 | |
527 | if (!config.revisitAlreadyVisitedValues && visited.contains(V: value)) { |
528 | // Stop traversal if value was already visited. |
529 | if (config.alwaysIncludeLeaves) |
530 | result.insert(X: value); |
531 | continue; |
532 | } |
533 | visited.insert(V: value); |
534 | |
535 | if (condition(value)) { |
536 | result.insert(X: value); |
537 | continue; |
538 | } |
539 | |
540 | if (!config.followUnknownOps && !options.dynCastBufferizableOp(value)) { |
541 | // Stop iterating if `followUnknownOps` is unset and the op is either |
542 | // not bufferizable or excluded in the OpFilter. |
543 | if (config.alwaysIncludeLeaves) |
544 | result.insert(X: value); |
545 | continue; |
546 | } |
547 | |
548 | AliasingOpOperandList aliases = getAliasingOpOperands(value); |
549 | if (aliases.getNumAliases() == 0) { |
550 | // The traversal ends naturally if there are no more OpOperands that |
551 | // could be followed. |
552 | if (config.alwaysIncludeLeaves) |
553 | result.insert(X: value); |
554 | continue; |
555 | } |
556 | |
557 | for (AliasingOpOperand a : aliases) { |
558 | if (config.followEquivalentOnly && |
559 | a.relation != BufferRelation::Equivalent) { |
560 | // Stop iterating if `followEquivalentOnly` is set but the alias is not |
561 | // equivalent. |
562 | if (config.alwaysIncludeLeaves) |
563 | result.insert(value); |
564 | continue; |
565 | } |
566 | |
567 | if (config.followInPlaceOnly && !isInPlace(*a.opOperand)) { |
568 | // Stop iterating if `followInPlaceOnly` is set but the alias is |
569 | // out-of-place. |
570 | if (config.alwaysIncludeLeaves) |
571 | result.insert(value); |
572 | continue; |
573 | } |
574 | |
575 | if (config.followSameTypeOrCastsOnly && |
576 | a.opOperand->get().getType() != value.getType() && |
577 | !value.getDefiningOp<CastOpInterface>()) { |
578 | // Stop iterating if `followSameTypeOrCastsOnly` is set but the alias is |
579 | // has a different type and the op is not a cast. |
580 | if (config.alwaysIncludeLeaves) |
581 | result.insert(value); |
582 | continue; |
583 | } |
584 | |
585 | workingSet.insert(a.opOperand->get()); |
586 | if (visitedOpOperands) |
587 | visitedOpOperands->insert(a.opOperand); |
588 | } |
589 | } |
590 | |
591 | return result; |
592 | } |
593 | |
594 | // Find the values that define the contents of the given operand's value. |
595 | llvm::SetVector<Value> |
596 | AnalysisState::findDefinitions(OpOperand *opOperand) const { |
597 | TraversalConfig config; |
598 | config.alwaysIncludeLeaves = false; |
599 | return findValueInReverseUseDefChain( |
600 | opOperand, [&](Value v) { return this->bufferizesToMemoryWrite(v); }, |
601 | config); |
602 | } |
603 | |
604 | AnalysisState::AnalysisState(const BufferizationOptions &options) |
605 | : AnalysisState(options, TypeID::get<AnalysisState>()) {} |
606 | |
607 | AnalysisState::AnalysisState(const BufferizationOptions &options, TypeID type) |
608 | : options(options), type(type) { |
609 | for (const BufferizationOptions::AnalysisStateInitFn &fn : |
610 | options.stateInitializers) |
611 | fn(*this); |
612 | } |
613 | |
614 | bool AnalysisState::canOmitTensorCopy(OpOperand &opOperand) const { |
615 | // Do not copy if the tensor has undefined contents. |
616 | if (hasUndefinedContents(opOperand: &opOperand)) |
617 | return true; |
618 | |
619 | // Do not copy if the buffer of the tensor is entirely overwritten (with |
620 | // values that do not depend on the old tensor). |
621 | if (bufferizesToMemoryWrite(opOperand) && !bufferizesToMemoryRead(opOperand)) |
622 | return true; |
623 | |
624 | // Do not copy if the tensor is never read. |
625 | AliasingValueList aliases = getAliasingValues(opOperand); |
626 | if (!bufferizesToMemoryRead(opOperand) && |
627 | llvm::none_of(Range&: aliases, |
628 | P: [&](AliasingValue a) { return isValueRead(value: a.value); })) |
629 | return true; |
630 | |
631 | // Default: Cannot omit the copy. |
632 | return false; |
633 | } |
634 | |
635 | bool AnalysisState::isInPlace(OpOperand &opOperand) const { |
636 | // ToBufferOps are always in-place. |
637 | if (isa<ToBufferOp>(opOperand.getOwner())) |
638 | return true; |
639 | |
640 | // In the absence of analysis information, OpOperands that bufferize to a |
641 | // memory write are out-of-place, i.e., an alloc and copy is inserted. |
642 | return !bufferizesToMemoryWrite(opOperand); |
643 | } |
644 | |
645 | bool AnalysisState::areEquivalentBufferizedValues(Value v1, Value v2) const { |
646 | // In the absence of analysis information, we do not know if the values are |
647 | // equivalent. The conservative answer is "false". |
648 | return false; |
649 | } |
650 | |
651 | bool AnalysisState::areAliasingBufferizedValues(Value v1, Value v2) const { |
652 | // In the absence of analysis information, we do not know if the values may be |
653 | // aliasing. The conservative answer is "true". |
654 | return true; |
655 | } |
656 | |
657 | bool AnalysisState::hasUndefinedContents(OpOperand *opOperand) const { |
658 | // In the absence of analysis information, the conservative answer is "false". |
659 | return false; |
660 | } |
661 | |
662 | // bufferization.to_buffer is not allowed to change the rank. |
663 | static void ensureToBufferOpIsValid(Value tensor, Type memrefType) { |
664 | #ifndef NDEBUG |
665 | auto rankedTensorType = llvm::dyn_cast<RankedTensorType>(tensor.getType()); |
666 | assert((!rankedTensorType || llvm::cast<MemRefType>(memrefType).getRank() == |
667 | rankedTensorType.getRank()) && |
668 | "to_buffer would be invalid: mismatching ranks" ); |
669 | #endif |
670 | } |
671 | |
672 | FailureOr<Value> bufferization::getBuffer(RewriterBase &rewriter, Value value, |
673 | const BufferizationOptions &options, |
674 | const BufferizationState &state) { |
675 | #ifndef NDEBUG |
676 | auto tensorType = llvm::dyn_cast<TensorType>(Val: value.getType()); |
677 | assert(tensorType && "unexpected non-tensor type" ); |
678 | #endif // NDEBUG |
679 | |
680 | // Replace "%t = to_tensor %m" with %m. |
681 | if (auto toTensorOp = value.getDefiningOp<bufferization::ToTensorOp>()) |
682 | return toTensorOp.getMemref(); |
683 | |
684 | // Insert to_buffer op. |
685 | OpBuilder::InsertionGuard g(rewriter); |
686 | setInsertionPointAfter(b&: rewriter, value); |
687 | FailureOr<BaseMemRefType> memrefType = getBufferType(value, options, state); |
688 | if (failed(Result: memrefType)) |
689 | return failure(); |
690 | ensureToBufferOpIsValid(tensor: value, memrefType: *memrefType); |
691 | return rewriter |
692 | .create<bufferization::ToBufferOp>(value.getLoc(), *memrefType, value) |
693 | .getResult(); |
694 | } |
695 | |
696 | /// Return the buffer type for a given Value (tensor) after bufferization. |
697 | FailureOr<BaseMemRefType> |
698 | bufferization::getBufferType(Value value, const BufferizationOptions &options, |
699 | const BufferizationState &state) { |
700 | SmallVector<Value> invocationStack; |
701 | return getBufferType(value, options, state, invocationStack); |
702 | } |
703 | |
704 | /// Return the buffer type for a given Value (tensor) after bufferization. |
705 | FailureOr<BaseMemRefType> |
706 | bufferization::getBufferType(Value value, const BufferizationOptions &options, |
707 | const BufferizationState &state, |
708 | SmallVector<Value> &invocationStack) { |
709 | assert(llvm::isa<TensorType>(value.getType()) && |
710 | "unexpected non-tensor type" ); |
711 | invocationStack.push_back(Elt: value); |
712 | auto popFromStack = |
713 | llvm::make_scope_exit(F: [&]() { invocationStack.pop_back(); }); |
714 | |
715 | // Try querying BufferizableOpInterface. |
716 | Operation *op = getOwnerOfValue(value); |
717 | auto bufferizableOp = options.dynCastBufferizableOp(op); |
718 | if (bufferizableOp) |
719 | return bufferizableOp.getBufferType(value, options, state, invocationStack); |
720 | |
721 | // Op is not bufferizable. |
722 | auto memSpace = |
723 | options.defaultMemorySpaceFn(cast<TensorType>(Val: value.getType())); |
724 | if (!memSpace.has_value()) |
725 | return op->emitError(message: "could not infer memory space" ); |
726 | |
727 | return getMemRefType(value, options, /*layout=*/{}, *memSpace); |
728 | } |
729 | |
730 | bool bufferization::hasTensorSemantics(Operation *op) { |
731 | if (auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op)) |
732 | return bufferizableOp.hasTensorSemantics(); |
733 | return detail::defaultHasTensorSemantics(op); |
734 | } |
735 | |
736 | void bufferization::replaceOpWithBufferizedValues(RewriterBase &rewriter, |
737 | Operation *op, |
738 | ValueRange values) { |
739 | assert(values.size() == op->getNumResults() && |
740 | "expected one value per OpResult" ); |
741 | OpBuilder::InsertionGuard g(rewriter); |
742 | |
743 | // Replace all OpResults with the given values. |
744 | SmallVector<Value> replacements; |
745 | for (OpResult opResult : op->getOpResults()) { |
746 | Value replacement = values[opResult.getResultNumber()]; |
747 | if (llvm::isa<TensorType>(Val: opResult.getType())) { |
748 | // The OpResult is a tensor. Such values are replaced with memrefs during |
749 | // bufferization. |
750 | assert((llvm::isa<MemRefType>(replacement.getType()) || |
751 | llvm::isa<UnrankedMemRefType>(replacement.getType())) && |
752 | "tensor op result should be replaced with a memref value" ); |
753 | // The existing uses of the OpResult still expect a tensor. Insert a |
754 | // ToTensorOp. Throughout bufferization, this ToTensorOp will gradually |
755 | // loose all of its users and eventually DCE away. |
756 | rewriter.setInsertionPointAfter(op); |
757 | replacement = rewriter.create<bufferization::ToTensorOp>( |
758 | replacement.getLoc(), opResult.getType(), replacement); |
759 | } |
760 | replacements.push_back(Elt: replacement); |
761 | } |
762 | |
763 | rewriter.replaceOp(op, newValues: replacements); |
764 | } |
765 | |
766 | //===----------------------------------------------------------------------===// |
767 | // Bufferization-specific scoped alloc insertion support. |
768 | //===----------------------------------------------------------------------===// |
769 | |
770 | /// Create a memref allocation with the given type and dynamic extents. |
771 | FailureOr<Value> BufferizationOptions::createAlloc(OpBuilder &b, Location loc, |
772 | MemRefType type, |
773 | ValueRange dynShape) const { |
774 | if (allocationFn) |
775 | return (*allocationFn)(b, loc, type, dynShape, bufferAlignment); |
776 | |
777 | // Default bufferallocation via AllocOp. |
778 | if (bufferAlignment != 0) |
779 | return b |
780 | .create<memref::AllocOp>(loc, type, dynShape, |
781 | b.getI64IntegerAttr(bufferAlignment)) |
782 | .getResult(); |
783 | return b.create<memref::AllocOp>(loc, type, dynShape).getResult(); |
784 | } |
785 | |
786 | /// Create a memory copy between two memref buffers. |
787 | LogicalResult BufferizationOptions::createMemCpy(OpBuilder &b, Location loc, |
788 | Value from, Value to) const { |
789 | if (memCpyFn) |
790 | return (*memCpyFn)(b, loc, from, to); |
791 | |
792 | b.create<memref::CopyOp>(loc, from, to); |
793 | return success(); |
794 | } |
795 | |
796 | //===----------------------------------------------------------------------===// |
797 | // Bufferization-specific IRMapping support with debugging. |
798 | //===----------------------------------------------------------------------===// |
799 | |
800 | BaseMemRefType bufferization::getMemRefType(Value value, |
801 | const BufferizationOptions &options, |
802 | MemRefLayoutAttrInterface layout, |
803 | Attribute memorySpace) { |
804 | auto tensorType = llvm::cast<TensorType>(Val: value.getType()); |
805 | |
806 | // Case 1: Unranked memref type. |
807 | if (auto unrankedTensorType = |
808 | llvm::dyn_cast<UnrankedTensorType>(tensorType)) { |
809 | assert(!layout && "UnrankedTensorType cannot have a layout map" ); |
810 | return UnrankedMemRefType::get(unrankedTensorType.getElementType(), |
811 | memorySpace); |
812 | } |
813 | |
814 | // Case 2: Ranked memref type with specified layout. |
815 | auto rankedTensorType = llvm::cast<RankedTensorType>(tensorType); |
816 | if (layout) { |
817 | return MemRefType::get(rankedTensorType.getShape(), |
818 | rankedTensorType.getElementType(), layout, |
819 | memorySpace); |
820 | } |
821 | |
822 | return options.unknownTypeConverterFn(value, memorySpace, options); |
823 | } |
824 | |
825 | BaseMemRefType |
826 | bufferization::getMemRefTypeWithFullyDynamicLayout(TensorType tensorType, |
827 | Attribute memorySpace) { |
828 | // Case 1: Unranked memref type. |
829 | if (auto unrankedTensorType = |
830 | llvm::dyn_cast<UnrankedTensorType>(tensorType)) { |
831 | return UnrankedMemRefType::get(unrankedTensorType.getElementType(), |
832 | memorySpace); |
833 | } |
834 | |
835 | // Case 2: Ranked memref type. |
836 | auto rankedTensorType = llvm::cast<RankedTensorType>(tensorType); |
837 | int64_t dynamicOffset = ShapedType::kDynamic; |
838 | SmallVector<int64_t> dynamicStrides(rankedTensorType.getRank(), |
839 | ShapedType::kDynamic); |
840 | auto stridedLayout = StridedLayoutAttr::get(tensorType.getContext(), |
841 | dynamicOffset, dynamicStrides); |
842 | return MemRefType::get(rankedTensorType.getShape(), |
843 | rankedTensorType.getElementType(), stridedLayout, |
844 | memorySpace); |
845 | } |
846 | |
847 | /// Return a MemRef type with a static identity layout (i.e., no layout map). If |
848 | /// the given tensor type is unranked, return an unranked MemRef type. |
849 | BaseMemRefType |
850 | bufferization::getMemRefTypeWithStaticIdentityLayout(TensorType tensorType, |
851 | Attribute memorySpace) { |
852 | // Case 1: Unranked memref type. |
853 | if (auto unrankedTensorType = |
854 | llvm::dyn_cast<UnrankedTensorType>(tensorType)) { |
855 | return UnrankedMemRefType::get(unrankedTensorType.getElementType(), |
856 | memorySpace); |
857 | } |
858 | |
859 | // Case 2: Ranked memref type. |
860 | auto rankedTensorType = llvm::cast<RankedTensorType>(tensorType); |
861 | MemRefLayoutAttrInterface layout = {}; |
862 | return MemRefType::get(rankedTensorType.getShape(), |
863 | rankedTensorType.getElementType(), layout, |
864 | memorySpace); |
865 | } |
866 | |
867 | //===----------------------------------------------------------------------===// |
868 | // Default implementations of interface methods |
869 | //===----------------------------------------------------------------------===// |
870 | |
871 | bool bufferization::detail::defaultResultBufferizesToMemoryWrite( |
872 | OpResult opResult, const AnalysisState &state) { |
873 | auto bufferizableOp = cast<BufferizableOpInterface>(opResult.getDefiningOp()); |
874 | AliasingOpOperandList opOperands = |
875 | bufferizableOp.getAliasingOpOperands(opResult, state); |
876 | |
877 | // Case 1: OpResults that have no aliasing OpOperand usually bufferize to |
878 | // memory writes. |
879 | if (opOperands.getAliases().empty()) |
880 | return true; |
881 | |
882 | // Case 2: If an aliasing OpOperand bufferizes to a memory write, the OpResult |
883 | // may bufferize to a memory write. |
884 | if (llvm::any_of(Range&: opOperands, P: [&](AliasingOpOperand alias) { |
885 | return state.bufferizesToMemoryWrite(opOperand&: *alias.opOperand); |
886 | })) |
887 | return true; |
888 | |
889 | // Case 3: Check if a nested aliasing OpOperand value bufferizes to a memory |
890 | // write. (Or: The reverse SSA use-def chain ends inside the reigon.) In that |
891 | // case, the OpResult bufferizes to a memory write. E.g.: |
892 | // |
893 | // %0 = "some_writing_op" : tensor<?xf32> |
894 | // %r = scf.if ... -> tensor<?xf32> { |
895 | // scf.yield %0 : tensor<?xf32> |
896 | // } else { |
897 | // %1 = "another_writing_op"(%0) : tensor<?xf32> |
898 | // scf.yield %1 : tensor<?xf32> |
899 | // } |
900 | // "some_reading_op"(%r) |
901 | // |
902 | // %r bufferizes to a memory write because an aliasing OpOperand value (%1) |
903 | // bufferizes to a memory write and the defining op is inside the scf.if. |
904 | // |
905 | // Note: This treatment of surrouding ops is useful for ops that have a |
906 | // region but no OpOperand such as scf.if or scf.execute_region. It simplifies |
907 | // the analysis considerably. |
908 | // |
909 | // "another_writing_op" in the above example should be able to bufferize |
910 | // inplace in the absence of another read of %0. However, if the scf.if op |
911 | // would not be considered a "write", the analysis would detect the |
912 | // following conflict: |
913 | // |
914 | // * read = some_reading_op |
915 | // * lastWrite = %0 (Note: The last write of %r would be a set: {%0, %1}.) |
916 | // * conflictingWrite = %1 |
917 | // |
918 | auto isMemoryWriteInsideOp = [&](Value v) { |
919 | Operation *op = getOwnerOfValue(value: v); |
920 | if (!opResult.getDefiningOp()->isAncestor(other: op)) |
921 | return false; |
922 | return state.bufferizesToMemoryWrite(value: v); |
923 | }; |
924 | TraversalConfig config; |
925 | config.alwaysIncludeLeaves = false; |
926 | for (AliasingOpOperand alias : opOperands) { |
927 | if (!state |
928 | .findValueInReverseUseDefChain(alias.opOperand, |
929 | isMemoryWriteInsideOp, config) |
930 | .empty()) |
931 | return true; |
932 | } |
933 | return false; |
934 | } |
935 | |
936 | // Compute the AliasingOpOperandList for a given Value based on |
937 | // getAliasingValues. |
938 | AliasingOpOperandList bufferization::detail::defaultGetAliasingOpOperands( |
939 | Value value, const AnalysisState &state) { |
940 | Operation *op = getOwnerOfValue(value); |
941 | SmallVector<AliasingOpOperand> result; |
942 | for (OpOperand &opOperand : op->getOpOperands()) { |
943 | if (!llvm::isa<TensorType>(Val: opOperand.get().getType())) |
944 | continue; |
945 | AliasingValueList aliasingValues = state.getAliasingValues(opOperand); |
946 | for (const auto &it : aliasingValues) |
947 | if (it.value == value) |
948 | result.emplace_back(&opOperand, it.relation, it.isDefinite); |
949 | } |
950 | return AliasingOpOperandList(std::move(result)); |
951 | } |
952 | |
953 | FailureOr<BaseMemRefType> bufferization::detail::defaultGetBufferType( |
954 | Value value, const BufferizationOptions &options, |
955 | const BufferizationState &bufferizationState, |
956 | SmallVector<Value> &invocationStack) { |
957 | assert(llvm::isa<TensorType>(value.getType()) && "expected tensor type" ); |
958 | |
959 | // No further analysis is possible for a block argument. |
960 | if (llvm::isa<BlockArgument>(Val: value)) |
961 | return bufferization::getMemRefType(value, options); |
962 | |
963 | // Value is an OpResult. |
964 | Operation *op = getOwnerOfValue(value); |
965 | auto opResult = llvm::cast<OpResult>(Val&: value); |
966 | AnalysisState analysisState(options); |
967 | AliasingOpOperandList aliases = analysisState.getAliasingOpOperands(opResult); |
968 | if (aliases.getNumAliases() > 0 && |
969 | aliases.getAliases()[0].relation == BufferRelation::Equivalent) { |
970 | // If the OpResult has an equivalent OpOperand, both OpResult and |
971 | // OpOperand bufferize to the exact same buffer type. |
972 | Value equivalentOperand = aliases.getAliases().front().opOperand->get(); |
973 | return getBufferType(value: equivalentOperand, options, state: bufferizationState, |
974 | invocationStack); |
975 | } |
976 | |
977 | // If we do not know the memory space and there is no default memory space, |
978 | // report a failure. |
979 | auto memSpace = |
980 | options.defaultMemorySpaceFn(cast<TensorType>(Val: value.getType())); |
981 | if (!memSpace.has_value()) |
982 | return op->emitError(message: "could not infer memory space" ); |
983 | |
984 | return getMemRefType(value, options, /*layout=*/{}, *memSpace); |
985 | } |
986 | |
987 | bool bufferization::detail::defaultIsRepetitiveRegion( |
988 | BufferizableOpInterface bufferizableOp, unsigned index) { |
989 | assert(index < bufferizableOp->getNumRegions() && "invalid region index" ); |
990 | auto regionInterface = |
991 | dyn_cast<RegionBranchOpInterface>(bufferizableOp.getOperation()); |
992 | if (!regionInterface) |
993 | return false; |
994 | return regionInterface.isRepetitiveRegion(index); |
995 | } |
996 | |
997 | AliasingOpOperandList |
998 | bufferization::detail::unknownGetAliasingOpOperands(Value value) { |
999 | // TODO: Take into account successor blocks. |
1000 | // No aliasing in case of non-entry blocks. |
1001 | if (auto bbArg = dyn_cast<BlockArgument>(Val&: value)) |
1002 | if (bbArg.getOwner() != &bbArg.getOwner()->getParent()->getBlocks().front()) |
1003 | return {}; |
1004 | |
1005 | // Unknown op: Conservatively assume that each OpResult may alias with every |
1006 | // OpOperand. In addition, each block argument of an entry block may alias |
1007 | // with every OpOperand. |
1008 | AliasingOpOperandList r; |
1009 | for (OpOperand &operand : value.getDefiningOp()->getOpOperands()) |
1010 | if (isa<TensorType>(Val: operand.get().getType())) |
1011 | r.addAlias(alias: {&operand, BufferRelation::Unknown, /*isDefinite=*/false}); |
1012 | return r; |
1013 | } |
1014 | |
1015 | AliasingValueList |
1016 | bufferization::detail::unknownGetAliasingValues(OpOperand &opOperand) { |
1017 | // TODO: Take into account successor blocks. |
1018 | // Unknown op: Conservatively assume that each OpResult may alias with every |
1019 | // OpOperand. In addition, each block argument of an entry block may alias |
1020 | // with every OpOperand. |
1021 | AliasingValueList r; |
1022 | for (OpResult result : opOperand.getOwner()->getOpResults()) |
1023 | if (llvm::isa<TensorType>(Val: result.getType())) |
1024 | r.addAlias(alias: {result, BufferRelation::Unknown, /*isDefinite=*/false}); |
1025 | for (Region ®ion : opOperand.getOwner()->getRegions()) |
1026 | if (!region.getBlocks().empty()) |
1027 | for (BlockArgument bbArg : region.getBlocks().front().getArguments()) |
1028 | if (isa<TensorType>(Val: bbArg.getType())) |
1029 | r.addAlias(alias: {bbArg, BufferRelation::Unknown, /*isDefinite=*/false}); |
1030 | return r; |
1031 | } |
1032 | |
1033 | bool bufferization::detail::defaultHasTensorSemantics(Operation *op) { |
1034 | auto isaTensor = [](Type t) { return isa<TensorType>(Val: t); }; |
1035 | bool hasTensorBlockArgument = any_of(Range: op->getRegions(), P: [&](Region &r) { |
1036 | return any_of(Range&: r.getBlocks(), P: [&](Block &b) { |
1037 | return any_of(Range: b.getArguments(), P: [&](BlockArgument bbArg) { |
1038 | return isaTensor(bbArg.getType()); |
1039 | }); |
1040 | }); |
1041 | }); |
1042 | if (hasTensorBlockArgument) |
1043 | return true; |
1044 | |
1045 | if (any_of(Range: op->getResultTypes(), P: isaTensor)) |
1046 | return true; |
1047 | return any_of(Range: op->getOperandTypes(), P: isaTensor); |
1048 | } |
1049 | |