| 1 | //===- BufferizableOpInterface.cpp - Bufferizable Ops ---=----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
| 10 | #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
| 11 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 12 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 13 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 14 | #include "mlir/IR/AsmState.h" |
| 15 | #include "mlir/IR/BuiltinOps.h" |
| 16 | #include "mlir/IR/IRMapping.h" |
| 17 | #include "mlir/IR/Operation.h" |
| 18 | #include "mlir/IR/TypeUtilities.h" |
| 19 | #include "mlir/IR/Value.h" |
| 20 | #include "mlir/Interfaces/ControlFlowInterfaces.h" |
| 21 | #include "llvm/ADT/ScopeExit.h" |
| 22 | #include "llvm/Support/Debug.h" |
| 23 | |
| 24 | //===----------------------------------------------------------------------===// |
| 25 | // BufferizableOpInterface |
| 26 | //===----------------------------------------------------------------------===// |
| 27 | |
| 28 | namespace mlir { |
| 29 | namespace bufferization { |
| 30 | |
| 31 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.cpp.inc" |
| 32 | |
| 33 | } // namespace bufferization |
| 34 | } // namespace mlir |
| 35 | |
| 36 | MLIR_DEFINE_EXPLICIT_TYPE_ID(mlir::bufferization::AnalysisState) |
| 37 | |
| 38 | #define DEBUG_TYPE "bufferizable-op-interface" |
| 39 | #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") |
| 40 | #define LDBG(X) LLVM_DEBUG(DBGS() << (X)) |
| 41 | |
| 42 | using namespace mlir; |
| 43 | using namespace bufferization; |
| 44 | |
| 45 | static bool isRepetitiveRegion(Region *region, |
| 46 | const BufferizationOptions &options) { |
| 47 | Operation *op = region->getParentOp(); |
| 48 | if (auto bufferizableOp = options.dynCastBufferizableOp(op)) |
| 49 | if (bufferizableOp.isRepetitiveRegion(region->getRegionNumber())) |
| 50 | return true; |
| 51 | return false; |
| 52 | } |
| 53 | |
| 54 | Region *AnalysisState::getEnclosingRepetitiveRegion( |
| 55 | Operation *op, const BufferizationOptions &options) { |
| 56 | if (!op->getBlock()) |
| 57 | return nullptr; |
| 58 | if (auto iter = enclosingRepetitiveRegionCache.find_as(op); |
| 59 | iter != enclosingRepetitiveRegionCache.end()) |
| 60 | return iter->second; |
| 61 | return enclosingRepetitiveRegionCache[op] = |
| 62 | getEnclosingRepetitiveRegion(op->getBlock(), options); |
| 63 | } |
| 64 | |
| 65 | Region *AnalysisState::getEnclosingRepetitiveRegion( |
| 66 | Value value, const BufferizationOptions &options) { |
| 67 | if (auto iter = enclosingRepetitiveRegionCache.find_as(value); |
| 68 | iter != enclosingRepetitiveRegionCache.end()) |
| 69 | return iter->second; |
| 70 | |
| 71 | Region *region = value.getParentRegion(); |
| 72 | // Collect all visited regions since we only know the repetitive region we |
| 73 | // want to map it to later on |
| 74 | SmallVector<Region *> visitedRegions; |
| 75 | while (region) { |
| 76 | visitedRegions.push_back(Elt: region); |
| 77 | if (isRepetitiveRegion(region, options)) |
| 78 | break; |
| 79 | region = region->getParentRegion(); |
| 80 | } |
| 81 | enclosingRepetitiveRegionCache[value] = region; |
| 82 | for (Region *r : visitedRegions) |
| 83 | enclosingRepetitiveRegionCache[r] = region; |
| 84 | return region; |
| 85 | } |
| 86 | |
| 87 | Region *AnalysisState::getEnclosingRepetitiveRegion( |
| 88 | Block *block, const BufferizationOptions &options) { |
| 89 | if (auto iter = enclosingRepetitiveRegionCache.find_as(block); |
| 90 | iter != enclosingRepetitiveRegionCache.end()) |
| 91 | return iter->second; |
| 92 | |
| 93 | Region *region = block->getParent(); |
| 94 | Operation *op = nullptr; |
| 95 | // Collect all visited regions since we only know the repetitive region we |
| 96 | // want to map it to later on |
| 97 | SmallVector<Region *> visitedRegions; |
| 98 | do { |
| 99 | op = region->getParentOp(); |
| 100 | if (isRepetitiveRegion(region, options)) |
| 101 | break; |
| 102 | } while ((region = op->getParentRegion())); |
| 103 | |
| 104 | enclosingRepetitiveRegionCache[block] = region; |
| 105 | for (Region *r : visitedRegions) |
| 106 | enclosingRepetitiveRegionCache[r] = region; |
| 107 | return region; |
| 108 | } |
| 109 | |
| 110 | bool AnalysisState::insideMutuallyExclusiveRegions(Operation *op0, |
| 111 | Operation *op1) { |
| 112 | auto key = std::make_pair(x&: op0, y&: op1); |
| 113 | if (auto iter = insideMutuallyExclusiveRegionsCache.find(key); |
| 114 | iter != insideMutuallyExclusiveRegionsCache.end()) |
| 115 | return iter->second; |
| 116 | bool result = ::mlir::insideMutuallyExclusiveRegions(a: op0, b: op1); |
| 117 | // Populate results for both orderings of the ops. |
| 118 | insideMutuallyExclusiveRegionsCache[key] = result; |
| 119 | insideMutuallyExclusiveRegionsCache[std::make_pair(op1, op0)] = result; |
| 120 | return result; |
| 121 | } |
| 122 | |
| 123 | void AnalysisState::resetCache() { |
| 124 | enclosingRepetitiveRegionCache.clear(); |
| 125 | insideMutuallyExclusiveRegionsCache.clear(); |
| 126 | } |
| 127 | |
| 128 | SymbolTableCollection &BufferizationState::getSymbolTables() { |
| 129 | return symbolTables; |
| 130 | } |
| 131 | |
| 132 | Region *bufferization::getNextEnclosingRepetitiveRegion( |
| 133 | Region *region, const BufferizationOptions &options) { |
| 134 | assert(isRepetitiveRegion(region, options) && "expected repetitive region" ); |
| 135 | while ((region = region->getParentRegion())) { |
| 136 | if (isRepetitiveRegion(region, options)) |
| 137 | break; |
| 138 | } |
| 139 | return region; |
| 140 | } |
| 141 | |
| 142 | Region *bufferization::getParallelRegion(Region *region, |
| 143 | const BufferizationOptions &options) { |
| 144 | while (region) { |
| 145 | auto bufferizableOp = options.dynCastBufferizableOp(region->getParentOp()); |
| 146 | if (bufferizableOp && |
| 147 | bufferizableOp.isParallelRegion(region->getRegionNumber())) { |
| 148 | assert(isRepetitiveRegion(region, options) && |
| 149 | "expected that all parallel regions are also repetitive regions" ); |
| 150 | return region; |
| 151 | } |
| 152 | region = region->getParentRegion(); |
| 153 | } |
| 154 | return nullptr; |
| 155 | } |
| 156 | |
| 157 | Operation *bufferization::getOwnerOfValue(Value value) { |
| 158 | if (auto opResult = llvm::dyn_cast<OpResult>(Val&: value)) |
| 159 | return opResult.getDefiningOp(); |
| 160 | return llvm::cast<BlockArgument>(Val&: value).getOwner()->getParentOp(); |
| 161 | } |
| 162 | |
| 163 | /// Create an AllocTensorOp for the given shaped value. If `copy` is set, the |
| 164 | /// shaped value is copied. Otherwise, a tensor with undefined contents is |
| 165 | /// allocated. |
| 166 | FailureOr<Value> bufferization::allocateTensorForShapedValue( |
| 167 | OpBuilder &b, Location loc, Value shapedValue, |
| 168 | const BufferizationOptions &options, const BufferizationState &state, |
| 169 | bool copy) { |
| 170 | Value tensor; |
| 171 | if (llvm::isa<RankedTensorType>(Val: shapedValue.getType())) { |
| 172 | tensor = shapedValue; |
| 173 | } else if (llvm::isa<MemRefType>(Val: shapedValue.getType())) { |
| 174 | tensor = b.create<ToTensorOp>(loc, shapedValue); |
| 175 | } else if (llvm::isa<UnrankedTensorType>(shapedValue.getType()) || |
| 176 | llvm::isa<UnrankedMemRefType>(shapedValue.getType())) { |
| 177 | return getOwnerOfValue(value: shapedValue) |
| 178 | ->emitError(message: "copying of unranked tensors is not implemented" ); |
| 179 | } else { |
| 180 | llvm_unreachable("expected RankedTensorType or MemRefType" ); |
| 181 | } |
| 182 | RankedTensorType tensorType = llvm::cast<RankedTensorType>(tensor.getType()); |
| 183 | SmallVector<Value> dynamicSizes; |
| 184 | if (!copy) { |
| 185 | // Compute the dynamic part of the shape. |
| 186 | // First try to query the shape via ReifyRankedShapedTypeOpInterface. |
| 187 | bool reifiedShapes = false; |
| 188 | if (llvm::isa<RankedTensorType>(Val: shapedValue.getType()) && |
| 189 | llvm::isa<OpResult>(Val: shapedValue)) { |
| 190 | ReifiedRankedShapedTypeDims resultDims; |
| 191 | if (succeeded( |
| 192 | Result: reifyResultShapes(b, op: shapedValue.getDefiningOp(), reifiedReturnShapes&: resultDims))) { |
| 193 | reifiedShapes = true; |
| 194 | auto &shape = |
| 195 | resultDims[llvm::cast<OpResult>(Val&: shapedValue).getResultNumber()]; |
| 196 | for (const auto &dim : enumerate(tensorType.getShape())) |
| 197 | if (ShapedType::isDynamic(dim.value())) |
| 198 | dynamicSizes.push_back(cast<Value>(shape[dim.index()])); |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | // If the shape could not be reified, create DimOps. |
| 203 | if (!reifiedShapes) |
| 204 | populateDynamicDimSizes(b, loc, shapedValue: tensor, dynamicDims&: dynamicSizes); |
| 205 | } |
| 206 | |
| 207 | // Create AllocTensorOp. |
| 208 | auto allocTensorOp = b.create<AllocTensorOp>(loc, tensorType, dynamicSizes, |
| 209 | copy ? tensor : Value()); |
| 210 | |
| 211 | // Add 'memory_space' attribute. Not needed if 'copy' operand is specified. |
| 212 | if (copy) |
| 213 | return allocTensorOp.getResult(); |
| 214 | FailureOr<BaseMemRefType> copyBufferType = |
| 215 | getBufferType(value: tensor, options, state); |
| 216 | if (failed(Result: copyBufferType)) |
| 217 | return failure(); |
| 218 | std::optional<Attribute> memorySpace = copyBufferType->getMemorySpace(); |
| 219 | if (!memorySpace) |
| 220 | memorySpace = options.defaultMemorySpaceFn(tensorType); |
| 221 | if (memorySpace.has_value()) |
| 222 | allocTensorOp.setMemorySpaceAttr(memorySpace.value()); |
| 223 | return allocTensorOp.getResult(); |
| 224 | } |
| 225 | |
| 226 | LogicalResult BufferizableOpInterface::resolveTensorOpOperandConflicts( |
| 227 | RewriterBase &rewriter, const AnalysisState &analysisState, |
| 228 | const BufferizationState &bufferizationState) { |
| 229 | OpBuilder::InsertionGuard g(rewriter); |
| 230 | Operation *op = getOperation(); |
| 231 | SmallVector<OpOperand *> outOfPlaceOpOperands; |
| 232 | DenseSet<OpOperand *> copiedOpOperands; |
| 233 | SmallVector<Value> outOfPlaceValues; |
| 234 | DenseSet<Value> copiedOpValues; |
| 235 | |
| 236 | // Find all out-of-place OpOperands. |
| 237 | for (OpOperand &opOperand : op->getOpOperands()) { |
| 238 | Type operandType = opOperand.get().getType(); |
| 239 | if (!llvm::isa<TensorType>(operandType)) |
| 240 | continue; |
| 241 | if (analysisState.isInPlace(opOperand)) |
| 242 | continue; |
| 243 | if (llvm::isa<UnrankedTensorType>(operandType)) |
| 244 | return op->emitError("copying of unranked tensors is not implemented" ); |
| 245 | |
| 246 | AliasingValueList aliasingValues = |
| 247 | analysisState.getAliasingValues(opOperand); |
| 248 | if (aliasingValues.getNumAliases() == 1 && |
| 249 | isa<OpResult>(aliasingValues.getAliases()[0].value) && |
| 250 | !analysisState.bufferizesToMemoryWrite(opOperand) && |
| 251 | analysisState |
| 252 | .getAliasingOpOperands(aliasingValues.getAliases()[0].value) |
| 253 | .getNumAliases() == 1 && |
| 254 | !isa<UnrankedTensorType>( |
| 255 | aliasingValues.getAliases()[0].value.getType())) { |
| 256 | // The op itself does not write but may create exactly one alias. Instead |
| 257 | // of copying the OpOperand, copy the OpResult. The OpResult can sometimes |
| 258 | // be smaller than the OpOperand (e.g., in the case of an extract_slice, |
| 259 | // where the result is usually a smaller part of the source). Do not apply |
| 260 | // this optimization if the OpResult is an unranked tensor (because those |
| 261 | // cannot be copied at the moment). |
| 262 | Value value = aliasingValues.getAliases()[0].value; |
| 263 | outOfPlaceValues.push_back(value); |
| 264 | if (!analysisState.canOmitTensorCopy(opOperand)) |
| 265 | copiedOpValues.insert(value); |
| 266 | } else { |
| 267 | // In all other cases, make a copy of the OpOperand. |
| 268 | outOfPlaceOpOperands.push_back(&opOperand); |
| 269 | if (!analysisState.canOmitTensorCopy(opOperand)) |
| 270 | copiedOpOperands.insert(&opOperand); |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | // Insert copies of OpOperands. |
| 275 | rewriter.setInsertionPoint(op); |
| 276 | for (OpOperand *opOperand : outOfPlaceOpOperands) { |
| 277 | FailureOr<Value> copy = allocateTensorForShapedValue( |
| 278 | rewriter, op->getLoc(), opOperand->get(), analysisState.getOptions(), |
| 279 | bufferizationState, copiedOpOperands.contains(opOperand)); |
| 280 | if (failed(copy)) |
| 281 | return failure(); |
| 282 | rewriter.modifyOpInPlace(op, [&]() { opOperand->set(*copy); }); |
| 283 | } |
| 284 | |
| 285 | // Insert copies of Values. |
| 286 | rewriter.setInsertionPointAfter(op); |
| 287 | for (Value value : outOfPlaceValues) { |
| 288 | FailureOr<Value> copy = allocateTensorForShapedValue( |
| 289 | rewriter, op->getLoc(), value, analysisState.getOptions(), |
| 290 | bufferizationState, copiedOpValues.count(value)); |
| 291 | if (failed(copy)) |
| 292 | return failure(); |
| 293 | SmallVector<OpOperand *> uses = llvm::to_vector( |
| 294 | llvm::map_range(value.getUses(), [](OpOperand &use) { return &use; })); |
| 295 | for (OpOperand *use : uses) { |
| 296 | // Do not update the alloc_tensor op that we just created. |
| 297 | if (use->getOwner() == copy->getDefiningOp()) |
| 298 | continue; |
| 299 | // tensor.dim ops may have been created to be used as alloc_tensor op |
| 300 | // dynamic extents. Do not update these either. |
| 301 | if (isa<tensor::DimOp>(use->getOwner())) |
| 302 | continue; |
| 303 | rewriter.modifyOpInPlace(use->getOwner(), [&]() { use->set(*copy); }); |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | return success(); |
| 308 | } |
| 309 | |
| 310 | //===----------------------------------------------------------------------===// |
| 311 | // OpFilter |
| 312 | //===----------------------------------------------------------------------===// |
| 313 | |
| 314 | bool OpFilter::isOpAllowed(Operation *op) const { |
| 315 | // All other ops: Allow/disallow according to filter. |
| 316 | bool isAllowed = !hasAllowRule(); |
| 317 | for (const Entry &entry : entries) { |
| 318 | bool filterResult = entry.fn(op); |
| 319 | switch (entry.type) { |
| 320 | case Entry::ALLOW: |
| 321 | isAllowed |= filterResult; |
| 322 | break; |
| 323 | case Entry::DENY: |
| 324 | if (filterResult) |
| 325 | // DENY filter matches. This op is no allowed. (Even if other ALLOW |
| 326 | // filters may match.) |
| 327 | return false; |
| 328 | }; |
| 329 | } |
| 330 | return isAllowed; |
| 331 | } |
| 332 | |
| 333 | //===----------------------------------------------------------------------===// |
| 334 | // BufferizationOptions |
| 335 | //===----------------------------------------------------------------------===// |
| 336 | |
| 337 | namespace { |
| 338 | |
| 339 | /// Default function arg type converter: Use a fully dynamic layout map. |
| 340 | BaseMemRefType |
| 341 | defaultFunctionArgTypeConverter(TensorType type, Attribute memorySpace, |
| 342 | func::FuncOp funcOp, |
| 343 | const BufferizationOptions &options) { |
| 344 | return getMemRefTypeWithFullyDynamicLayout(tensorType: type, memorySpace); |
| 345 | } |
| 346 | /// Default unknown type converter: Use a fully dynamic layout map. |
| 347 | BaseMemRefType |
| 348 | defaultUnknownTypeConverter(Value value, Attribute memorySpace, |
| 349 | const BufferizationOptions &options) { |
| 350 | return getMemRefTypeWithFullyDynamicLayout( |
| 351 | tensorType: llvm::cast<TensorType>(Val: value.getType()), memorySpace); |
| 352 | } |
| 353 | |
| 354 | } // namespace |
| 355 | |
| 356 | // Default constructor for BufferizationOptions. |
| 357 | BufferizationOptions::BufferizationOptions() |
| 358 | : functionArgTypeConverterFn(defaultFunctionArgTypeConverter), |
| 359 | unknownTypeConverterFn(defaultUnknownTypeConverter) {} |
| 360 | |
| 361 | bool BufferizationOptions::isOpAllowed(Operation *op) const { |
| 362 | // Special case: If function boundary bufferization is deactivated, do not |
| 363 | // allow ops that belong to the `func` dialect. |
| 364 | bool isFuncBoundaryOp = isa_and_nonnull<func::FuncDialect>(op->getDialect()); |
| 365 | if (!bufferizeFunctionBoundaries && isFuncBoundaryOp) |
| 366 | return false; |
| 367 | |
| 368 | return opFilter.isOpAllowed(op); |
| 369 | } |
| 370 | |
| 371 | BufferizableOpInterface |
| 372 | BufferizationOptions::dynCastBufferizableOp(Operation *op) const { |
| 373 | if (!isOpAllowed(op)) |
| 374 | return nullptr; |
| 375 | auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op); |
| 376 | if (!bufferizableOp) |
| 377 | return nullptr; |
| 378 | return bufferizableOp; |
| 379 | } |
| 380 | |
| 381 | BufferizableOpInterface |
| 382 | BufferizationOptions::dynCastBufferizableOp(Value value) const { |
| 383 | return dynCastBufferizableOp(getOwnerOfValue(value)); |
| 384 | } |
| 385 | |
| 386 | void BufferizationOptions::setFunctionBoundaryTypeConversion( |
| 387 | LayoutMapOption layoutMapOption) { |
| 388 | functionArgTypeConverterFn = [=](TensorType tensorType, Attribute memorySpace, |
| 389 | func::FuncOp funcOp, |
| 390 | const BufferizationOptions &options) { |
| 391 | if (layoutMapOption == LayoutMapOption::IdentityLayoutMap) |
| 392 | return bufferization::getMemRefTypeWithStaticIdentityLayout(tensorType, |
| 393 | memorySpace); |
| 394 | return bufferization::getMemRefTypeWithFullyDynamicLayout(tensorType, |
| 395 | memorySpace); |
| 396 | }; |
| 397 | inferFunctionResultLayout = |
| 398 | layoutMapOption == LayoutMapOption::InferLayoutMap; |
| 399 | } |
| 400 | |
| 401 | //===----------------------------------------------------------------------===// |
| 402 | // Helper functions for BufferizableOpInterface |
| 403 | //===----------------------------------------------------------------------===// |
| 404 | |
| 405 | static void setInsertionPointAfter(OpBuilder &b, Value value) { |
| 406 | if (auto bbArg = llvm::dyn_cast<BlockArgument>(Val&: value)) { |
| 407 | b.setInsertionPointToStart(bbArg.getOwner()); |
| 408 | } else { |
| 409 | b.setInsertionPointAfter(value.getDefiningOp()); |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | /// Determine which OpOperand* will alias with `value` if the op is bufferized |
| 414 | /// in place. Return all tensor OpOperand* if the op is not bufferizable. |
| 415 | AliasingOpOperandList AnalysisState::getAliasingOpOperands(Value value) const { |
| 416 | if (Operation *op = getOwnerOfValue(value)) |
| 417 | if (auto bufferizableOp = getOptions().dynCastBufferizableOp(op)) |
| 418 | return bufferizableOp.getAliasingOpOperands(value, *this); |
| 419 | |
| 420 | // The op is not bufferizable. |
| 421 | return detail::unknownGetAliasingOpOperands(value); |
| 422 | } |
| 423 | |
| 424 | /// Determine which Values will alias with `opOperand` if the op is bufferized |
| 425 | /// in place. Return all tensor Values if the op is not bufferizable. |
| 426 | AliasingValueList AnalysisState::getAliasingValues(OpOperand &opOperand) const { |
| 427 | if (auto bufferizableOp = |
| 428 | getOptions().dynCastBufferizableOp(opOperand.getOwner())) |
| 429 | return bufferizableOp.getAliasingValues(opOperand, *this); |
| 430 | |
| 431 | // The op is not bufferizable. |
| 432 | return detail::unknownGetAliasingValues(opOperand); |
| 433 | } |
| 434 | |
| 435 | /// Return true if `opOperand` bufferizes to a memory read. Return `true` if the |
| 436 | /// op is not bufferizable. |
| 437 | bool AnalysisState::bufferizesToMemoryRead(OpOperand &opOperand) const { |
| 438 | if (auto bufferizableOp = |
| 439 | getOptions().dynCastBufferizableOp(opOperand.getOwner())) |
| 440 | return bufferizableOp.bufferizesToMemoryRead(opOperand, *this); |
| 441 | |
| 442 | // Unknown op that returns a tensor. The inplace analysis does not support it. |
| 443 | // Conservatively return true. |
| 444 | return true; |
| 445 | } |
| 446 | |
| 447 | /// Return true if `opOperand` bufferizes to a memory write. Return |
| 448 | /// `true` if the op is not bufferizable. |
| 449 | bool AnalysisState::bufferizesToMemoryWrite(OpOperand &opOperand) const { |
| 450 | if (auto bufferizableOp = |
| 451 | getOptions().dynCastBufferizableOp(opOperand.getOwner())) |
| 452 | return bufferizableOp.bufferizesToMemoryWrite(opOperand, *this); |
| 453 | |
| 454 | // Unknown op that returns a tensor. The inplace analysis does not support it. |
| 455 | // Conservatively return true. |
| 456 | return true; |
| 457 | } |
| 458 | |
| 459 | /// Return true if `opOperand` does neither read nor write but bufferizes to an |
| 460 | /// alias. Return false if the op is not bufferizable. |
| 461 | bool AnalysisState::bufferizesToAliasOnly(OpOperand &opOperand) const { |
| 462 | if (auto bufferizableOp = |
| 463 | getOptions().dynCastBufferizableOp(opOperand.getOwner())) |
| 464 | return bufferizableOp.bufferizesToAliasOnly(opOperand, *this); |
| 465 | |
| 466 | // Unknown op that returns a tensor. The inplace analysis does not support it. |
| 467 | // Conservatively return false. |
| 468 | return false; |
| 469 | } |
| 470 | |
| 471 | bool AnalysisState::bufferizesToMemoryWrite(Value value) const { |
| 472 | auto opResult = llvm::dyn_cast<OpResult>(Val&: value); |
| 473 | if (!opResult) |
| 474 | return true; |
| 475 | auto bufferizableOp = getOptions().dynCastBufferizableOp(value); |
| 476 | if (!bufferizableOp) |
| 477 | return true; |
| 478 | return bufferizableOp.resultBufferizesToMemoryWrite(opResult, *this); |
| 479 | } |
| 480 | |
| 481 | /// Return true if the given value is read by an op that bufferizes to a memory |
| 482 | /// read. Also takes into account ops that create an alias but do not read by |
| 483 | /// themselves (e.g., ExtractSliceOp). |
| 484 | bool AnalysisState::isValueRead(Value value) const { |
| 485 | assert(llvm::isa<TensorType>(value.getType()) && "expected TensorType" ); |
| 486 | SmallVector<OpOperand *> workingSet; |
| 487 | DenseSet<OpOperand *> visited; |
| 488 | for (OpOperand &use : value.getUses()) |
| 489 | workingSet.push_back(Elt: &use); |
| 490 | |
| 491 | while (!workingSet.empty()) { |
| 492 | OpOperand *uMaybeReading = workingSet.pop_back_val(); |
| 493 | if (!visited.insert(V: uMaybeReading).second) |
| 494 | continue; |
| 495 | |
| 496 | // Skip over all ops that neither read nor write (but create an alias). |
| 497 | if (bufferizesToAliasOnly(*uMaybeReading)) |
| 498 | for (AliasingValue alias : getAliasingValues(*uMaybeReading)) |
| 499 | for (OpOperand &use : alias.value.getUses()) |
| 500 | workingSet.push_back(&use); |
| 501 | if (bufferizesToMemoryRead(opOperand&: *uMaybeReading)) |
| 502 | return true; |
| 503 | } |
| 504 | |
| 505 | return false; |
| 506 | } |
| 507 | |
| 508 | // Starting from `opOperand`, follow the use-def chain in reverse, always |
| 509 | // selecting the aliasing OpOperands. Find and return Values for which |
| 510 | // `condition` evaluates to true. Uses of such matching Values are not |
| 511 | // traversed any further, the visited aliasing opOperands will be preserved |
| 512 | // through `visitedOpOperands`. |
| 513 | llvm::SetVector<Value> AnalysisState::findValueInReverseUseDefChain( |
| 514 | OpOperand *opOperand, llvm::function_ref<bool(Value)> condition, |
| 515 | TraversalConfig config, |
| 516 | llvm::DenseSet<OpOperand *> *visitedOpOperands) const { |
| 517 | llvm::DenseSet<Value> visited; |
| 518 | llvm::SetVector<Value> result, workingSet; |
| 519 | workingSet.insert(X: opOperand->get()); |
| 520 | |
| 521 | if (visitedOpOperands) |
| 522 | visitedOpOperands->insert(V: opOperand); |
| 523 | |
| 524 | while (!workingSet.empty()) { |
| 525 | Value value = workingSet.pop_back_val(); |
| 526 | |
| 527 | if (!config.revisitAlreadyVisitedValues && visited.contains(V: value)) { |
| 528 | // Stop traversal if value was already visited. |
| 529 | if (config.alwaysIncludeLeaves) |
| 530 | result.insert(X: value); |
| 531 | continue; |
| 532 | } |
| 533 | visited.insert(V: value); |
| 534 | |
| 535 | if (condition(value)) { |
| 536 | result.insert(X: value); |
| 537 | continue; |
| 538 | } |
| 539 | |
| 540 | if (!config.followUnknownOps && !options.dynCastBufferizableOp(value)) { |
| 541 | // Stop iterating if `followUnknownOps` is unset and the op is either |
| 542 | // not bufferizable or excluded in the OpFilter. |
| 543 | if (config.alwaysIncludeLeaves) |
| 544 | result.insert(X: value); |
| 545 | continue; |
| 546 | } |
| 547 | |
| 548 | AliasingOpOperandList aliases = getAliasingOpOperands(value); |
| 549 | if (aliases.getNumAliases() == 0) { |
| 550 | // The traversal ends naturally if there are no more OpOperands that |
| 551 | // could be followed. |
| 552 | if (config.alwaysIncludeLeaves) |
| 553 | result.insert(X: value); |
| 554 | continue; |
| 555 | } |
| 556 | |
| 557 | for (AliasingOpOperand a : aliases) { |
| 558 | if (config.followEquivalentOnly && |
| 559 | a.relation != BufferRelation::Equivalent) { |
| 560 | // Stop iterating if `followEquivalentOnly` is set but the alias is not |
| 561 | // equivalent. |
| 562 | if (config.alwaysIncludeLeaves) |
| 563 | result.insert(value); |
| 564 | continue; |
| 565 | } |
| 566 | |
| 567 | if (config.followInPlaceOnly && !isInPlace(*a.opOperand)) { |
| 568 | // Stop iterating if `followInPlaceOnly` is set but the alias is |
| 569 | // out-of-place. |
| 570 | if (config.alwaysIncludeLeaves) |
| 571 | result.insert(value); |
| 572 | continue; |
| 573 | } |
| 574 | |
| 575 | if (config.followSameTypeOrCastsOnly && |
| 576 | a.opOperand->get().getType() != value.getType() && |
| 577 | !value.getDefiningOp<CastOpInterface>()) { |
| 578 | // Stop iterating if `followSameTypeOrCastsOnly` is set but the alias is |
| 579 | // has a different type and the op is not a cast. |
| 580 | if (config.alwaysIncludeLeaves) |
| 581 | result.insert(value); |
| 582 | continue; |
| 583 | } |
| 584 | |
| 585 | workingSet.insert(a.opOperand->get()); |
| 586 | if (visitedOpOperands) |
| 587 | visitedOpOperands->insert(a.opOperand); |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | return result; |
| 592 | } |
| 593 | |
| 594 | // Find the values that define the contents of the given operand's value. |
| 595 | llvm::SetVector<Value> |
| 596 | AnalysisState::findDefinitions(OpOperand *opOperand) const { |
| 597 | TraversalConfig config; |
| 598 | config.alwaysIncludeLeaves = false; |
| 599 | return findValueInReverseUseDefChain( |
| 600 | opOperand, [&](Value v) { return this->bufferizesToMemoryWrite(v); }, |
| 601 | config); |
| 602 | } |
| 603 | |
| 604 | AnalysisState::AnalysisState(const BufferizationOptions &options) |
| 605 | : AnalysisState(options, TypeID::get<AnalysisState>()) {} |
| 606 | |
| 607 | AnalysisState::AnalysisState(const BufferizationOptions &options, TypeID type) |
| 608 | : options(options), type(type) { |
| 609 | for (const BufferizationOptions::AnalysisStateInitFn &fn : |
| 610 | options.stateInitializers) |
| 611 | fn(*this); |
| 612 | } |
| 613 | |
| 614 | bool AnalysisState::canOmitTensorCopy(OpOperand &opOperand) const { |
| 615 | // Do not copy if the tensor has undefined contents. |
| 616 | if (hasUndefinedContents(opOperand: &opOperand)) |
| 617 | return true; |
| 618 | |
| 619 | // Do not copy if the buffer of the tensor is entirely overwritten (with |
| 620 | // values that do not depend on the old tensor). |
| 621 | if (bufferizesToMemoryWrite(opOperand) && !bufferizesToMemoryRead(opOperand)) |
| 622 | return true; |
| 623 | |
| 624 | // Do not copy if the tensor is never read. |
| 625 | AliasingValueList aliases = getAliasingValues(opOperand); |
| 626 | if (!bufferizesToMemoryRead(opOperand) && |
| 627 | llvm::none_of(Range&: aliases, |
| 628 | P: [&](AliasingValue a) { return isValueRead(value: a.value); })) |
| 629 | return true; |
| 630 | |
| 631 | // Default: Cannot omit the copy. |
| 632 | return false; |
| 633 | } |
| 634 | |
| 635 | bool AnalysisState::isInPlace(OpOperand &opOperand) const { |
| 636 | // ToBufferOps are always in-place. |
| 637 | if (isa<ToBufferOp>(opOperand.getOwner())) |
| 638 | return true; |
| 639 | |
| 640 | // In the absence of analysis information, OpOperands that bufferize to a |
| 641 | // memory write are out-of-place, i.e., an alloc and copy is inserted. |
| 642 | return !bufferizesToMemoryWrite(opOperand); |
| 643 | } |
| 644 | |
| 645 | bool AnalysisState::areEquivalentBufferizedValues(Value v1, Value v2) const { |
| 646 | // In the absence of analysis information, we do not know if the values are |
| 647 | // equivalent. The conservative answer is "false". |
| 648 | return false; |
| 649 | } |
| 650 | |
| 651 | bool AnalysisState::areAliasingBufferizedValues(Value v1, Value v2) const { |
| 652 | // In the absence of analysis information, we do not know if the values may be |
| 653 | // aliasing. The conservative answer is "true". |
| 654 | return true; |
| 655 | } |
| 656 | |
| 657 | bool AnalysisState::hasUndefinedContents(OpOperand *opOperand) const { |
| 658 | // In the absence of analysis information, the conservative answer is "false". |
| 659 | return false; |
| 660 | } |
| 661 | |
| 662 | // bufferization.to_buffer is not allowed to change the rank. |
| 663 | static void ensureToBufferOpIsValid(Value tensor, Type memrefType) { |
| 664 | #ifndef NDEBUG |
| 665 | auto rankedTensorType = llvm::dyn_cast<RankedTensorType>(tensor.getType()); |
| 666 | assert((!rankedTensorType || llvm::cast<MemRefType>(memrefType).getRank() == |
| 667 | rankedTensorType.getRank()) && |
| 668 | "to_buffer would be invalid: mismatching ranks" ); |
| 669 | #endif |
| 670 | } |
| 671 | |
| 672 | FailureOr<Value> bufferization::getBuffer(RewriterBase &rewriter, Value value, |
| 673 | const BufferizationOptions &options, |
| 674 | const BufferizationState &state) { |
| 675 | #ifndef NDEBUG |
| 676 | auto tensorType = llvm::dyn_cast<TensorType>(Val: value.getType()); |
| 677 | assert(tensorType && "unexpected non-tensor type" ); |
| 678 | #endif // NDEBUG |
| 679 | |
| 680 | // Replace "%t = to_tensor %m" with %m. |
| 681 | if (auto toTensorOp = value.getDefiningOp<bufferization::ToTensorOp>()) |
| 682 | return toTensorOp.getMemref(); |
| 683 | |
| 684 | // Insert to_buffer op. |
| 685 | OpBuilder::InsertionGuard g(rewriter); |
| 686 | setInsertionPointAfter(b&: rewriter, value); |
| 687 | FailureOr<BaseMemRefType> memrefType = getBufferType(value, options, state); |
| 688 | if (failed(Result: memrefType)) |
| 689 | return failure(); |
| 690 | ensureToBufferOpIsValid(tensor: value, memrefType: *memrefType); |
| 691 | return rewriter |
| 692 | .create<bufferization::ToBufferOp>(value.getLoc(), *memrefType, value) |
| 693 | .getResult(); |
| 694 | } |
| 695 | |
| 696 | /// Return the buffer type for a given Value (tensor) after bufferization. |
| 697 | FailureOr<BaseMemRefType> |
| 698 | bufferization::getBufferType(Value value, const BufferizationOptions &options, |
| 699 | const BufferizationState &state) { |
| 700 | SmallVector<Value> invocationStack; |
| 701 | return getBufferType(value, options, state, invocationStack); |
| 702 | } |
| 703 | |
| 704 | /// Return the buffer type for a given Value (tensor) after bufferization. |
| 705 | FailureOr<BaseMemRefType> |
| 706 | bufferization::getBufferType(Value value, const BufferizationOptions &options, |
| 707 | const BufferizationState &state, |
| 708 | SmallVector<Value> &invocationStack) { |
| 709 | assert(llvm::isa<TensorType>(value.getType()) && |
| 710 | "unexpected non-tensor type" ); |
| 711 | invocationStack.push_back(Elt: value); |
| 712 | auto popFromStack = |
| 713 | llvm::make_scope_exit(F: [&]() { invocationStack.pop_back(); }); |
| 714 | |
| 715 | // Try querying BufferizableOpInterface. |
| 716 | Operation *op = getOwnerOfValue(value); |
| 717 | auto bufferizableOp = options.dynCastBufferizableOp(op); |
| 718 | if (bufferizableOp) |
| 719 | return bufferizableOp.getBufferType(value, options, state, invocationStack); |
| 720 | |
| 721 | // Op is not bufferizable. |
| 722 | auto memSpace = |
| 723 | options.defaultMemorySpaceFn(cast<TensorType>(Val: value.getType())); |
| 724 | if (!memSpace.has_value()) |
| 725 | return op->emitError(message: "could not infer memory space" ); |
| 726 | |
| 727 | return getMemRefType(value, options, /*layout=*/{}, *memSpace); |
| 728 | } |
| 729 | |
| 730 | bool bufferization::hasTensorSemantics(Operation *op) { |
| 731 | if (auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op)) |
| 732 | return bufferizableOp.hasTensorSemantics(); |
| 733 | return detail::defaultHasTensorSemantics(op); |
| 734 | } |
| 735 | |
| 736 | void bufferization::replaceOpWithBufferizedValues(RewriterBase &rewriter, |
| 737 | Operation *op, |
| 738 | ValueRange values) { |
| 739 | assert(values.size() == op->getNumResults() && |
| 740 | "expected one value per OpResult" ); |
| 741 | OpBuilder::InsertionGuard g(rewriter); |
| 742 | |
| 743 | // Replace all OpResults with the given values. |
| 744 | SmallVector<Value> replacements; |
| 745 | for (OpResult opResult : op->getOpResults()) { |
| 746 | Value replacement = values[opResult.getResultNumber()]; |
| 747 | if (llvm::isa<TensorType>(Val: opResult.getType())) { |
| 748 | // The OpResult is a tensor. Such values are replaced with memrefs during |
| 749 | // bufferization. |
| 750 | assert((llvm::isa<MemRefType>(replacement.getType()) || |
| 751 | llvm::isa<UnrankedMemRefType>(replacement.getType())) && |
| 752 | "tensor op result should be replaced with a memref value" ); |
| 753 | // The existing uses of the OpResult still expect a tensor. Insert a |
| 754 | // ToTensorOp. Throughout bufferization, this ToTensorOp will gradually |
| 755 | // loose all of its users and eventually DCE away. |
| 756 | rewriter.setInsertionPointAfter(op); |
| 757 | replacement = rewriter.create<bufferization::ToTensorOp>( |
| 758 | replacement.getLoc(), opResult.getType(), replacement); |
| 759 | } |
| 760 | replacements.push_back(Elt: replacement); |
| 761 | } |
| 762 | |
| 763 | rewriter.replaceOp(op, newValues: replacements); |
| 764 | } |
| 765 | |
| 766 | //===----------------------------------------------------------------------===// |
| 767 | // Bufferization-specific scoped alloc insertion support. |
| 768 | //===----------------------------------------------------------------------===// |
| 769 | |
| 770 | /// Create a memref allocation with the given type and dynamic extents. |
| 771 | FailureOr<Value> BufferizationOptions::createAlloc(OpBuilder &b, Location loc, |
| 772 | MemRefType type, |
| 773 | ValueRange dynShape) const { |
| 774 | if (allocationFn) |
| 775 | return (*allocationFn)(b, loc, type, dynShape, bufferAlignment); |
| 776 | |
| 777 | // Default bufferallocation via AllocOp. |
| 778 | if (bufferAlignment != 0) |
| 779 | return b |
| 780 | .create<memref::AllocOp>(loc, type, dynShape, |
| 781 | b.getI64IntegerAttr(bufferAlignment)) |
| 782 | .getResult(); |
| 783 | return b.create<memref::AllocOp>(loc, type, dynShape).getResult(); |
| 784 | } |
| 785 | |
| 786 | /// Create a memory copy between two memref buffers. |
| 787 | LogicalResult BufferizationOptions::createMemCpy(OpBuilder &b, Location loc, |
| 788 | Value from, Value to) const { |
| 789 | if (memCpyFn) |
| 790 | return (*memCpyFn)(b, loc, from, to); |
| 791 | |
| 792 | b.create<memref::CopyOp>(loc, from, to); |
| 793 | return success(); |
| 794 | } |
| 795 | |
| 796 | //===----------------------------------------------------------------------===// |
| 797 | // Bufferization-specific IRMapping support with debugging. |
| 798 | //===----------------------------------------------------------------------===// |
| 799 | |
| 800 | BaseMemRefType bufferization::getMemRefType(Value value, |
| 801 | const BufferizationOptions &options, |
| 802 | MemRefLayoutAttrInterface layout, |
| 803 | Attribute memorySpace) { |
| 804 | auto tensorType = llvm::cast<TensorType>(Val: value.getType()); |
| 805 | |
| 806 | // Case 1: Unranked memref type. |
| 807 | if (auto unrankedTensorType = |
| 808 | llvm::dyn_cast<UnrankedTensorType>(tensorType)) { |
| 809 | assert(!layout && "UnrankedTensorType cannot have a layout map" ); |
| 810 | return UnrankedMemRefType::get(unrankedTensorType.getElementType(), |
| 811 | memorySpace); |
| 812 | } |
| 813 | |
| 814 | // Case 2: Ranked memref type with specified layout. |
| 815 | auto rankedTensorType = llvm::cast<RankedTensorType>(tensorType); |
| 816 | if (layout) { |
| 817 | return MemRefType::get(rankedTensorType.getShape(), |
| 818 | rankedTensorType.getElementType(), layout, |
| 819 | memorySpace); |
| 820 | } |
| 821 | |
| 822 | return options.unknownTypeConverterFn(value, memorySpace, options); |
| 823 | } |
| 824 | |
| 825 | BaseMemRefType |
| 826 | bufferization::getMemRefTypeWithFullyDynamicLayout(TensorType tensorType, |
| 827 | Attribute memorySpace) { |
| 828 | // Case 1: Unranked memref type. |
| 829 | if (auto unrankedTensorType = |
| 830 | llvm::dyn_cast<UnrankedTensorType>(tensorType)) { |
| 831 | return UnrankedMemRefType::get(unrankedTensorType.getElementType(), |
| 832 | memorySpace); |
| 833 | } |
| 834 | |
| 835 | // Case 2: Ranked memref type. |
| 836 | auto rankedTensorType = llvm::cast<RankedTensorType>(tensorType); |
| 837 | int64_t dynamicOffset = ShapedType::kDynamic; |
| 838 | SmallVector<int64_t> dynamicStrides(rankedTensorType.getRank(), |
| 839 | ShapedType::kDynamic); |
| 840 | auto stridedLayout = StridedLayoutAttr::get(tensorType.getContext(), |
| 841 | dynamicOffset, dynamicStrides); |
| 842 | return MemRefType::get(rankedTensorType.getShape(), |
| 843 | rankedTensorType.getElementType(), stridedLayout, |
| 844 | memorySpace); |
| 845 | } |
| 846 | |
| 847 | /// Return a MemRef type with a static identity layout (i.e., no layout map). If |
| 848 | /// the given tensor type is unranked, return an unranked MemRef type. |
| 849 | BaseMemRefType |
| 850 | bufferization::getMemRefTypeWithStaticIdentityLayout(TensorType tensorType, |
| 851 | Attribute memorySpace) { |
| 852 | // Case 1: Unranked memref type. |
| 853 | if (auto unrankedTensorType = |
| 854 | llvm::dyn_cast<UnrankedTensorType>(tensorType)) { |
| 855 | return UnrankedMemRefType::get(unrankedTensorType.getElementType(), |
| 856 | memorySpace); |
| 857 | } |
| 858 | |
| 859 | // Case 2: Ranked memref type. |
| 860 | auto rankedTensorType = llvm::cast<RankedTensorType>(tensorType); |
| 861 | MemRefLayoutAttrInterface layout = {}; |
| 862 | return MemRefType::get(rankedTensorType.getShape(), |
| 863 | rankedTensorType.getElementType(), layout, |
| 864 | memorySpace); |
| 865 | } |
| 866 | |
| 867 | //===----------------------------------------------------------------------===// |
| 868 | // Default implementations of interface methods |
| 869 | //===----------------------------------------------------------------------===// |
| 870 | |
| 871 | bool bufferization::detail::defaultResultBufferizesToMemoryWrite( |
| 872 | OpResult opResult, const AnalysisState &state) { |
| 873 | auto bufferizableOp = cast<BufferizableOpInterface>(opResult.getDefiningOp()); |
| 874 | AliasingOpOperandList opOperands = |
| 875 | bufferizableOp.getAliasingOpOperands(opResult, state); |
| 876 | |
| 877 | // Case 1: OpResults that have no aliasing OpOperand usually bufferize to |
| 878 | // memory writes. |
| 879 | if (opOperands.getAliases().empty()) |
| 880 | return true; |
| 881 | |
| 882 | // Case 2: If an aliasing OpOperand bufferizes to a memory write, the OpResult |
| 883 | // may bufferize to a memory write. |
| 884 | if (llvm::any_of(Range&: opOperands, P: [&](AliasingOpOperand alias) { |
| 885 | return state.bufferizesToMemoryWrite(opOperand&: *alias.opOperand); |
| 886 | })) |
| 887 | return true; |
| 888 | |
| 889 | // Case 3: Check if a nested aliasing OpOperand value bufferizes to a memory |
| 890 | // write. (Or: The reverse SSA use-def chain ends inside the reigon.) In that |
| 891 | // case, the OpResult bufferizes to a memory write. E.g.: |
| 892 | // |
| 893 | // %0 = "some_writing_op" : tensor<?xf32> |
| 894 | // %r = scf.if ... -> tensor<?xf32> { |
| 895 | // scf.yield %0 : tensor<?xf32> |
| 896 | // } else { |
| 897 | // %1 = "another_writing_op"(%0) : tensor<?xf32> |
| 898 | // scf.yield %1 : tensor<?xf32> |
| 899 | // } |
| 900 | // "some_reading_op"(%r) |
| 901 | // |
| 902 | // %r bufferizes to a memory write because an aliasing OpOperand value (%1) |
| 903 | // bufferizes to a memory write and the defining op is inside the scf.if. |
| 904 | // |
| 905 | // Note: This treatment of surrouding ops is useful for ops that have a |
| 906 | // region but no OpOperand such as scf.if or scf.execute_region. It simplifies |
| 907 | // the analysis considerably. |
| 908 | // |
| 909 | // "another_writing_op" in the above example should be able to bufferize |
| 910 | // inplace in the absence of another read of %0. However, if the scf.if op |
| 911 | // would not be considered a "write", the analysis would detect the |
| 912 | // following conflict: |
| 913 | // |
| 914 | // * read = some_reading_op |
| 915 | // * lastWrite = %0 (Note: The last write of %r would be a set: {%0, %1}.) |
| 916 | // * conflictingWrite = %1 |
| 917 | // |
| 918 | auto isMemoryWriteInsideOp = [&](Value v) { |
| 919 | Operation *op = getOwnerOfValue(value: v); |
| 920 | if (!opResult.getDefiningOp()->isAncestor(other: op)) |
| 921 | return false; |
| 922 | return state.bufferizesToMemoryWrite(value: v); |
| 923 | }; |
| 924 | TraversalConfig config; |
| 925 | config.alwaysIncludeLeaves = false; |
| 926 | for (AliasingOpOperand alias : opOperands) { |
| 927 | if (!state |
| 928 | .findValueInReverseUseDefChain(alias.opOperand, |
| 929 | isMemoryWriteInsideOp, config) |
| 930 | .empty()) |
| 931 | return true; |
| 932 | } |
| 933 | return false; |
| 934 | } |
| 935 | |
| 936 | // Compute the AliasingOpOperandList for a given Value based on |
| 937 | // getAliasingValues. |
| 938 | AliasingOpOperandList bufferization::detail::defaultGetAliasingOpOperands( |
| 939 | Value value, const AnalysisState &state) { |
| 940 | Operation *op = getOwnerOfValue(value); |
| 941 | SmallVector<AliasingOpOperand> result; |
| 942 | for (OpOperand &opOperand : op->getOpOperands()) { |
| 943 | if (!llvm::isa<TensorType>(Val: opOperand.get().getType())) |
| 944 | continue; |
| 945 | AliasingValueList aliasingValues = state.getAliasingValues(opOperand); |
| 946 | for (const auto &it : aliasingValues) |
| 947 | if (it.value == value) |
| 948 | result.emplace_back(&opOperand, it.relation, it.isDefinite); |
| 949 | } |
| 950 | return AliasingOpOperandList(std::move(result)); |
| 951 | } |
| 952 | |
| 953 | FailureOr<BaseMemRefType> bufferization::detail::defaultGetBufferType( |
| 954 | Value value, const BufferizationOptions &options, |
| 955 | const BufferizationState &bufferizationState, |
| 956 | SmallVector<Value> &invocationStack) { |
| 957 | assert(llvm::isa<TensorType>(value.getType()) && "expected tensor type" ); |
| 958 | |
| 959 | // No further analysis is possible for a block argument. |
| 960 | if (llvm::isa<BlockArgument>(Val: value)) |
| 961 | return bufferization::getMemRefType(value, options); |
| 962 | |
| 963 | // Value is an OpResult. |
| 964 | Operation *op = getOwnerOfValue(value); |
| 965 | auto opResult = llvm::cast<OpResult>(Val&: value); |
| 966 | AnalysisState analysisState(options); |
| 967 | AliasingOpOperandList aliases = analysisState.getAliasingOpOperands(opResult); |
| 968 | if (aliases.getNumAliases() > 0 && |
| 969 | aliases.getAliases()[0].relation == BufferRelation::Equivalent) { |
| 970 | // If the OpResult has an equivalent OpOperand, both OpResult and |
| 971 | // OpOperand bufferize to the exact same buffer type. |
| 972 | Value equivalentOperand = aliases.getAliases().front().opOperand->get(); |
| 973 | return getBufferType(value: equivalentOperand, options, state: bufferizationState, |
| 974 | invocationStack); |
| 975 | } |
| 976 | |
| 977 | // If we do not know the memory space and there is no default memory space, |
| 978 | // report a failure. |
| 979 | auto memSpace = |
| 980 | options.defaultMemorySpaceFn(cast<TensorType>(Val: value.getType())); |
| 981 | if (!memSpace.has_value()) |
| 982 | return op->emitError(message: "could not infer memory space" ); |
| 983 | |
| 984 | return getMemRefType(value, options, /*layout=*/{}, *memSpace); |
| 985 | } |
| 986 | |
| 987 | bool bufferization::detail::defaultIsRepetitiveRegion( |
| 988 | BufferizableOpInterface bufferizableOp, unsigned index) { |
| 989 | assert(index < bufferizableOp->getNumRegions() && "invalid region index" ); |
| 990 | auto regionInterface = |
| 991 | dyn_cast<RegionBranchOpInterface>(bufferizableOp.getOperation()); |
| 992 | if (!regionInterface) |
| 993 | return false; |
| 994 | return regionInterface.isRepetitiveRegion(index); |
| 995 | } |
| 996 | |
| 997 | AliasingOpOperandList |
| 998 | bufferization::detail::unknownGetAliasingOpOperands(Value value) { |
| 999 | // TODO: Take into account successor blocks. |
| 1000 | // No aliasing in case of non-entry blocks. |
| 1001 | if (auto bbArg = dyn_cast<BlockArgument>(Val&: value)) |
| 1002 | if (bbArg.getOwner() != &bbArg.getOwner()->getParent()->getBlocks().front()) |
| 1003 | return {}; |
| 1004 | |
| 1005 | // Unknown op: Conservatively assume that each OpResult may alias with every |
| 1006 | // OpOperand. In addition, each block argument of an entry block may alias |
| 1007 | // with every OpOperand. |
| 1008 | AliasingOpOperandList r; |
| 1009 | for (OpOperand &operand : value.getDefiningOp()->getOpOperands()) |
| 1010 | if (isa<TensorType>(Val: operand.get().getType())) |
| 1011 | r.addAlias(alias: {&operand, BufferRelation::Unknown, /*isDefinite=*/false}); |
| 1012 | return r; |
| 1013 | } |
| 1014 | |
| 1015 | AliasingValueList |
| 1016 | bufferization::detail::unknownGetAliasingValues(OpOperand &opOperand) { |
| 1017 | // TODO: Take into account successor blocks. |
| 1018 | // Unknown op: Conservatively assume that each OpResult may alias with every |
| 1019 | // OpOperand. In addition, each block argument of an entry block may alias |
| 1020 | // with every OpOperand. |
| 1021 | AliasingValueList r; |
| 1022 | for (OpResult result : opOperand.getOwner()->getOpResults()) |
| 1023 | if (llvm::isa<TensorType>(Val: result.getType())) |
| 1024 | r.addAlias(alias: {result, BufferRelation::Unknown, /*isDefinite=*/false}); |
| 1025 | for (Region ®ion : opOperand.getOwner()->getRegions()) |
| 1026 | if (!region.getBlocks().empty()) |
| 1027 | for (BlockArgument bbArg : region.getBlocks().front().getArguments()) |
| 1028 | if (isa<TensorType>(Val: bbArg.getType())) |
| 1029 | r.addAlias(alias: {bbArg, BufferRelation::Unknown, /*isDefinite=*/false}); |
| 1030 | return r; |
| 1031 | } |
| 1032 | |
| 1033 | bool bufferization::detail::defaultHasTensorSemantics(Operation *op) { |
| 1034 | auto isaTensor = [](Type t) { return isa<TensorType>(Val: t); }; |
| 1035 | bool hasTensorBlockArgument = any_of(Range: op->getRegions(), P: [&](Region &r) { |
| 1036 | return any_of(Range&: r.getBlocks(), P: [&](Block &b) { |
| 1037 | return any_of(Range: b.getArguments(), P: [&](BlockArgument bbArg) { |
| 1038 | return isaTensor(bbArg.getType()); |
| 1039 | }); |
| 1040 | }); |
| 1041 | }); |
| 1042 | if (hasTensorBlockArgument) |
| 1043 | return true; |
| 1044 | |
| 1045 | if (any_of(Range: op->getResultTypes(), P: isaTensor)) |
| 1046 | return true; |
| 1047 | return any_of(Range: op->getOperandTypes(), P: isaTensor); |
| 1048 | } |
| 1049 | |