| 1 | //======- BufferViewFlowAnalysis.cpp - Buffer alias analysis -*- C++ -*-======// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Bufferization/Transforms/BufferViewFlowAnalysis.h" |
| 10 | |
| 11 | #include "mlir/Dialect/Bufferization/IR/BufferViewFlowOpInterface.h" |
| 12 | #include "mlir/Interfaces/CallInterfaces.h" |
| 13 | #include "mlir/Interfaces/ControlFlowInterfaces.h" |
| 14 | #include "mlir/Interfaces/FunctionInterfaces.h" |
| 15 | #include "mlir/Interfaces/ViewLikeInterface.h" |
| 16 | #include "llvm/ADT/SetOperations.h" |
| 17 | #include "llvm/ADT/SetVector.h" |
| 18 | |
| 19 | using namespace mlir; |
| 20 | using namespace mlir::bufferization; |
| 21 | |
| 22 | //===----------------------------------------------------------------------===// |
| 23 | // BufferViewFlowAnalysis |
| 24 | //===----------------------------------------------------------------------===// |
| 25 | |
| 26 | /// Constructs a new alias analysis using the op provided. |
| 27 | BufferViewFlowAnalysis::BufferViewFlowAnalysis(Operation *op) { build(op); } |
| 28 | |
| 29 | static BufferViewFlowAnalysis::ValueSetT |
| 30 | resolveValues(const BufferViewFlowAnalysis::ValueMapT &map, Value value) { |
| 31 | BufferViewFlowAnalysis::ValueSetT result; |
| 32 | SmallVector<Value, 8> queue; |
| 33 | queue.push_back(Elt: value); |
| 34 | while (!queue.empty()) { |
| 35 | Value currentValue = queue.pop_back_val(); |
| 36 | if (result.insert(Ptr: currentValue).second) { |
| 37 | auto it = map.find(Val: currentValue); |
| 38 | if (it != map.end()) { |
| 39 | for (Value aliasValue : it->second) |
| 40 | queue.push_back(Elt: aliasValue); |
| 41 | } |
| 42 | } |
| 43 | } |
| 44 | return result; |
| 45 | } |
| 46 | |
| 47 | /// Find all immediate and indirect dependent buffers this value could |
| 48 | /// potentially have. Note that the resulting set will also contain the value |
| 49 | /// provided as it is a dependent alias of itself. |
| 50 | BufferViewFlowAnalysis::ValueSetT |
| 51 | BufferViewFlowAnalysis::resolve(Value rootValue) const { |
| 52 | return resolveValues(map: dependencies, value: rootValue); |
| 53 | } |
| 54 | |
| 55 | BufferViewFlowAnalysis::ValueSetT |
| 56 | BufferViewFlowAnalysis::resolveReverse(Value rootValue) const { |
| 57 | return resolveValues(map: reverseDependencies, value: rootValue); |
| 58 | } |
| 59 | |
| 60 | /// Removes the given values from all alias sets. |
| 61 | void BufferViewFlowAnalysis::remove(const SetVector<Value> &aliasValues) { |
| 62 | for (auto &entry : dependencies) |
| 63 | llvm::set_subtract(S1&: entry.second, S2: aliasValues); |
| 64 | } |
| 65 | |
| 66 | void BufferViewFlowAnalysis::rename(Value from, Value to) { |
| 67 | dependencies[to] = dependencies[from]; |
| 68 | dependencies.erase(Val: from); |
| 69 | |
| 70 | for (auto &[_, value] : dependencies) { |
| 71 | if (value.contains(Ptr: from)) { |
| 72 | value.insert(Ptr: to); |
| 73 | value.erase(Ptr: from); |
| 74 | } |
| 75 | } |
| 76 | } |
| 77 | |
| 78 | /// This function constructs a mapping from values to its immediate |
| 79 | /// dependencies. It iterates over all blocks, gets their predecessors, |
| 80 | /// determines the values that will be passed to the corresponding block |
| 81 | /// arguments and inserts them into the underlying map. Furthermore, it wires |
| 82 | /// successor regions and branch-like return operations from nested regions. |
| 83 | void BufferViewFlowAnalysis::build(Operation *op) { |
| 84 | // Registers all dependencies of the given values. |
| 85 | auto registerDependencies = [&](ValueRange values, ValueRange dependencies) { |
| 86 | for (auto [value, dep] : llvm::zip_equal(t&: values, u&: dependencies)) { |
| 87 | this->dependencies[value].insert(Ptr: dep); |
| 88 | this->reverseDependencies[dep].insert(Ptr: value); |
| 89 | } |
| 90 | }; |
| 91 | |
| 92 | // Mark all buffer results and buffer region entry block arguments of the |
| 93 | // given op as terminals. |
| 94 | auto populateTerminalValues = [&](Operation *op) { |
| 95 | for (Value v : op->getResults()) |
| 96 | if (isa<BaseMemRefType>(Val: v.getType())) |
| 97 | this->terminals.insert(V: v); |
| 98 | for (Region &r : op->getRegions()) |
| 99 | for (BlockArgument v : r.getArguments()) |
| 100 | if (isa<BaseMemRefType>(Val: v.getType())) |
| 101 | this->terminals.insert(V: v); |
| 102 | }; |
| 103 | |
| 104 | op->walk(callback: [&](Operation *op) { |
| 105 | // Query BufferViewFlowOpInterface. If the op does not implement that |
| 106 | // interface, try to infer the dependencies from other interfaces that the |
| 107 | // op may implement. |
| 108 | if (auto bufferViewFlowOp = dyn_cast<BufferViewFlowOpInterface>(op)) { |
| 109 | bufferViewFlowOp.populateDependencies(registerDependencies); |
| 110 | for (Value v : op->getResults()) |
| 111 | if (isa<BaseMemRefType>(Val: v.getType()) && |
| 112 | bufferViewFlowOp.mayBeTerminalBuffer(v)) |
| 113 | this->terminals.insert(V: v); |
| 114 | for (Region &r : op->getRegions()) |
| 115 | for (BlockArgument v : r.getArguments()) |
| 116 | if (isa<BaseMemRefType>(Val: v.getType()) && |
| 117 | bufferViewFlowOp.mayBeTerminalBuffer(v)) |
| 118 | this->terminals.insert(V: v); |
| 119 | return WalkResult::advance(); |
| 120 | } |
| 121 | |
| 122 | // Add additional dependencies created by view changes to the alias list. |
| 123 | if (auto viewInterface = dyn_cast<ViewLikeOpInterface>(op)) { |
| 124 | registerDependencies(viewInterface.getViewSource(), |
| 125 | viewInterface->getResult(0)); |
| 126 | return WalkResult::advance(); |
| 127 | } |
| 128 | |
| 129 | if (auto branchInterface = dyn_cast<BranchOpInterface>(op)) { |
| 130 | // Query all branch interfaces to link block argument dependencies. |
| 131 | Block *parentBlock = branchInterface->getBlock(); |
| 132 | for (auto it = parentBlock->succ_begin(), e = parentBlock->succ_end(); |
| 133 | it != e; ++it) { |
| 134 | // Query the branch op interface to get the successor operands. |
| 135 | auto successorOperands = |
| 136 | branchInterface.getSuccessorOperands(it.getIndex()); |
| 137 | // Build the actual mapping of values to their immediate dependencies. |
| 138 | registerDependencies(successorOperands.getForwardedOperands(), |
| 139 | (*it)->getArguments().drop_front( |
| 140 | successorOperands.getProducedOperandCount())); |
| 141 | } |
| 142 | return WalkResult::advance(); |
| 143 | } |
| 144 | |
| 145 | if (auto regionInterface = dyn_cast<RegionBranchOpInterface>(op)) { |
| 146 | // Query the RegionBranchOpInterface to find potential successor regions. |
| 147 | // Extract all entry regions and wire all initial entry successor inputs. |
| 148 | SmallVector<RegionSuccessor, 2> entrySuccessors; |
| 149 | regionInterface.getSuccessorRegions(/*point=*/RegionBranchPoint::parent(), |
| 150 | entrySuccessors); |
| 151 | for (RegionSuccessor &entrySuccessor : entrySuccessors) { |
| 152 | // Wire the entry region's successor arguments with the initial |
| 153 | // successor inputs. |
| 154 | registerDependencies( |
| 155 | regionInterface.getEntrySuccessorOperands(entrySuccessor), |
| 156 | entrySuccessor.getSuccessorInputs()); |
| 157 | } |
| 158 | |
| 159 | // Wire flow between regions and from region exits. |
| 160 | for (Region ®ion : regionInterface->getRegions()) { |
| 161 | // Iterate over all successor region entries that are reachable from the |
| 162 | // current region. |
| 163 | SmallVector<RegionSuccessor, 2> successorRegions; |
| 164 | regionInterface.getSuccessorRegions(region, successorRegions); |
| 165 | for (RegionSuccessor &successorRegion : successorRegions) { |
| 166 | // Iterate over all immediate terminator operations and wire the |
| 167 | // successor inputs with the successor operands of each terminator. |
| 168 | for (Block &block : region) |
| 169 | if (auto terminator = dyn_cast<RegionBranchTerminatorOpInterface>( |
| 170 | block.getTerminator())) |
| 171 | registerDependencies( |
| 172 | terminator.getSuccessorOperands(successorRegion), |
| 173 | successorRegion.getSuccessorInputs()); |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | return WalkResult::advance(); |
| 178 | } |
| 179 | |
| 180 | // Region terminators are handled together with RegionBranchOpInterface. |
| 181 | if (isa<RegionBranchTerminatorOpInterface>(op)) |
| 182 | return WalkResult::advance(); |
| 183 | |
| 184 | if (isa<CallOpInterface>(Val: op)) { |
| 185 | // This is an intra-function analysis. We have no information about other |
| 186 | // functions. Conservatively assume that each operand may alias with each |
| 187 | // result. Also mark the results are terminals because the function could |
| 188 | // return newly allocated buffers. |
| 189 | populateTerminalValues(op); |
| 190 | for (Value operand : op->getOperands()) |
| 191 | for (Value result : op->getResults()) |
| 192 | registerDependencies({operand}, {result}); |
| 193 | return WalkResult::advance(); |
| 194 | } |
| 195 | |
| 196 | // We have no information about unknown ops. |
| 197 | populateTerminalValues(op); |
| 198 | |
| 199 | return WalkResult::advance(); |
| 200 | }); |
| 201 | } |
| 202 | |
| 203 | bool BufferViewFlowAnalysis::mayBeTerminalBuffer(Value value) const { |
| 204 | assert(isa<BaseMemRefType>(value.getType()) && "expected memref" ); |
| 205 | return terminals.contains(V: value); |
| 206 | } |
| 207 | |
| 208 | //===----------------------------------------------------------------------===// |
| 209 | // BufferOriginAnalysis |
| 210 | //===----------------------------------------------------------------------===// |
| 211 | |
| 212 | /// Return "true" if the given value is the result of a memory allocation. |
| 213 | static bool hasAllocateSideEffect(Value v) { |
| 214 | Operation *op = v.getDefiningOp(); |
| 215 | if (!op) |
| 216 | return false; |
| 217 | return hasEffect<MemoryEffects::Allocate>(op, value: v); |
| 218 | } |
| 219 | |
| 220 | /// Return "true" if the given value is a function block argument. |
| 221 | static bool isFunctionArgument(Value v) { |
| 222 | auto bbArg = dyn_cast<BlockArgument>(Val&: v); |
| 223 | if (!bbArg) |
| 224 | return false; |
| 225 | Block *b = bbArg.getOwner(); |
| 226 | auto funcOp = dyn_cast<FunctionOpInterface>(b->getParentOp()); |
| 227 | if (!funcOp) |
| 228 | return false; |
| 229 | return bbArg.getOwner() == &funcOp.getFunctionBody().front(); |
| 230 | } |
| 231 | |
| 232 | /// Given a memref value, return the "base" value by skipping over all |
| 233 | /// ViewLikeOpInterface ops (if any) in the reverse use-def chain. |
| 234 | static Value getViewBase(Value value) { |
| 235 | while (auto viewLikeOp = value.getDefiningOp<ViewLikeOpInterface>()) |
| 236 | value = viewLikeOp.getViewSource(); |
| 237 | return value; |
| 238 | } |
| 239 | |
| 240 | BufferOriginAnalysis::BufferOriginAnalysis(Operation *op) : analysis(op) {} |
| 241 | |
| 242 | std::optional<bool> BufferOriginAnalysis::isSameAllocation(Value v1, Value v2) { |
| 243 | assert(isa<BaseMemRefType>(v1.getType()) && "expected buffer" ); |
| 244 | assert(isa<BaseMemRefType>(v2.getType()) && "expected buffer" ); |
| 245 | |
| 246 | // Skip over all view-like ops. |
| 247 | v1 = getViewBase(value: v1); |
| 248 | v2 = getViewBase(value: v2); |
| 249 | |
| 250 | // Fast path: If both buffers are the same SSA value, we can be sure that |
| 251 | // they originate from the same allocation. |
| 252 | if (v1 == v2) |
| 253 | return true; |
| 254 | |
| 255 | // Compute the SSA values from which the buffers `v1` and `v2` originate. |
| 256 | SmallPtrSet<Value, 16> origin1 = analysis.resolveReverse(rootValue: v1); |
| 257 | SmallPtrSet<Value, 16> origin2 = analysis.resolveReverse(rootValue: v2); |
| 258 | |
| 259 | // Originating buffers are "terminal" if they could not be traced back any |
| 260 | // further by the `BufferViewFlowAnalysis`. Examples of terminal buffers: |
| 261 | // - function block arguments |
| 262 | // - values defined by allocation ops such as "memref.alloc" |
| 263 | // - values defined by ops that are unknown to the buffer view flow analysis |
| 264 | // - values that are marked as "terminal" in the `BufferViewFlowOpInterface` |
| 265 | SmallPtrSet<Value, 16> terminal1, terminal2; |
| 266 | |
| 267 | // While gathering terminal buffers, keep track of whether all terminal |
| 268 | // buffers are newly allocated buffer or function entry arguments. |
| 269 | bool allAllocs1 = true, allAllocs2 = true; |
| 270 | bool allAllocsOrFuncEntryArgs1 = true, allAllocsOrFuncEntryArgs2 = true; |
| 271 | |
| 272 | // Helper function that gathers terminal buffers among `origin`. |
| 273 | auto gatherTerminalBuffers = [this](const SmallPtrSet<Value, 16> &origin, |
| 274 | SmallPtrSet<Value, 16> &terminal, |
| 275 | bool &allAllocs, |
| 276 | bool &allAllocsOrFuncEntryArgs) { |
| 277 | for (Value v : origin) { |
| 278 | if (isa<BaseMemRefType>(Val: v.getType()) && analysis.mayBeTerminalBuffer(value: v)) { |
| 279 | terminal.insert(Ptr: v); |
| 280 | allAllocs &= hasAllocateSideEffect(v); |
| 281 | allAllocsOrFuncEntryArgs &= |
| 282 | isFunctionArgument(v) || hasAllocateSideEffect(v); |
| 283 | } |
| 284 | } |
| 285 | assert(!terminal.empty() && "expected non-empty terminal set" ); |
| 286 | }; |
| 287 | |
| 288 | // Gather terminal buffers for `v1` and `v2`. |
| 289 | gatherTerminalBuffers(origin1, terminal1, allAllocs1, |
| 290 | allAllocsOrFuncEntryArgs1); |
| 291 | gatherTerminalBuffers(origin2, terminal2, allAllocs2, |
| 292 | allAllocsOrFuncEntryArgs2); |
| 293 | |
| 294 | // If both `v1` and `v2` have a single matching terminal buffer, they are |
| 295 | // guaranteed to originate from the same buffer allocation. |
| 296 | if (llvm::hasSingleElement(C&: terminal1) && llvm::hasSingleElement(C&: terminal2) && |
| 297 | *terminal1.begin() == *terminal2.begin()) |
| 298 | return true; |
| 299 | |
| 300 | // At least one of the two values has multiple terminals. |
| 301 | |
| 302 | // Check if there is overlap between the terminal buffers of `v1` and `v2`. |
| 303 | bool distinctTerminalSets = true; |
| 304 | for (Value v : terminal1) |
| 305 | distinctTerminalSets &= !terminal2.contains(Ptr: v); |
| 306 | // If there is overlap between the terminal buffers of `v1` and `v2`, we |
| 307 | // cannot make an accurate decision without further analysis. |
| 308 | if (!distinctTerminalSets) |
| 309 | return std::nullopt; |
| 310 | |
| 311 | // If `v1` originates from only allocs, and `v2` is guaranteed to originate |
| 312 | // from different allocations (that is guaranteed if `v2` originates from |
| 313 | // only distinct allocs or function entry arguments), we can be sure that |
| 314 | // `v1` and `v2` originate from different allocations. The same argument can |
| 315 | // be made when swapping `v1` and `v2`. |
| 316 | bool isolatedAlloc1 = allAllocs1 && (allAllocs2 || allAllocsOrFuncEntryArgs2); |
| 317 | bool isolatedAlloc2 = (allAllocs1 || allAllocsOrFuncEntryArgs1) && allAllocs2; |
| 318 | if (isolatedAlloc1 || isolatedAlloc2) |
| 319 | return false; |
| 320 | |
| 321 | // Otherwise: We do not know whether `v1` and `v2` originate from the same |
| 322 | // allocation or not. |
| 323 | // TODO: Function arguments are currently handled conservatively. We assume |
| 324 | // that they could be the same allocation. |
| 325 | // TODO: Terminals other than allocations and function arguments are |
| 326 | // currently handled conservatively. We assume that they could be the same |
| 327 | // allocation. E.g., we currently return "nullopt" for values that originate |
| 328 | // from different "memref.get_global" ops (with different symbols). |
| 329 | return std::nullopt; |
| 330 | } |
| 331 | |