1 | //======- BufferViewFlowAnalysis.cpp - Buffer alias analysis -*- C++ -*-======// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Dialect/Bufferization/Transforms/BufferViewFlowAnalysis.h" |
10 | |
11 | #include "mlir/Dialect/Bufferization/IR/BufferViewFlowOpInterface.h" |
12 | #include "mlir/Interfaces/CallInterfaces.h" |
13 | #include "mlir/Interfaces/ControlFlowInterfaces.h" |
14 | #include "mlir/Interfaces/FunctionInterfaces.h" |
15 | #include "mlir/Interfaces/ViewLikeInterface.h" |
16 | #include "llvm/ADT/SetOperations.h" |
17 | #include "llvm/ADT/SetVector.h" |
18 | |
19 | using namespace mlir; |
20 | using namespace mlir::bufferization; |
21 | |
22 | //===----------------------------------------------------------------------===// |
23 | // BufferViewFlowAnalysis |
24 | //===----------------------------------------------------------------------===// |
25 | |
26 | /// Constructs a new alias analysis using the op provided. |
27 | BufferViewFlowAnalysis::BufferViewFlowAnalysis(Operation *op) { build(op); } |
28 | |
29 | static BufferViewFlowAnalysis::ValueSetT |
30 | resolveValues(const BufferViewFlowAnalysis::ValueMapT &map, Value value) { |
31 | BufferViewFlowAnalysis::ValueSetT result; |
32 | SmallVector<Value, 8> queue; |
33 | queue.push_back(Elt: value); |
34 | while (!queue.empty()) { |
35 | Value currentValue = queue.pop_back_val(); |
36 | if (result.insert(Ptr: currentValue).second) { |
37 | auto it = map.find(Val: currentValue); |
38 | if (it != map.end()) { |
39 | for (Value aliasValue : it->second) |
40 | queue.push_back(Elt: aliasValue); |
41 | } |
42 | } |
43 | } |
44 | return result; |
45 | } |
46 | |
47 | /// Find all immediate and indirect dependent buffers this value could |
48 | /// potentially have. Note that the resulting set will also contain the value |
49 | /// provided as it is a dependent alias of itself. |
50 | BufferViewFlowAnalysis::ValueSetT |
51 | BufferViewFlowAnalysis::resolve(Value rootValue) const { |
52 | return resolveValues(map: dependencies, value: rootValue); |
53 | } |
54 | |
55 | BufferViewFlowAnalysis::ValueSetT |
56 | BufferViewFlowAnalysis::resolveReverse(Value rootValue) const { |
57 | return resolveValues(map: reverseDependencies, value: rootValue); |
58 | } |
59 | |
60 | /// Removes the given values from all alias sets. |
61 | void BufferViewFlowAnalysis::remove(const SetVector<Value> &aliasValues) { |
62 | for (auto &entry : dependencies) |
63 | llvm::set_subtract(S1&: entry.second, S2: aliasValues); |
64 | } |
65 | |
66 | void BufferViewFlowAnalysis::rename(Value from, Value to) { |
67 | dependencies[to] = dependencies[from]; |
68 | dependencies.erase(Val: from); |
69 | |
70 | for (auto &[_, value] : dependencies) { |
71 | if (value.contains(Ptr: from)) { |
72 | value.insert(Ptr: to); |
73 | value.erase(Ptr: from); |
74 | } |
75 | } |
76 | } |
77 | |
78 | /// This function constructs a mapping from values to its immediate |
79 | /// dependencies. It iterates over all blocks, gets their predecessors, |
80 | /// determines the values that will be passed to the corresponding block |
81 | /// arguments and inserts them into the underlying map. Furthermore, it wires |
82 | /// successor regions and branch-like return operations from nested regions. |
83 | void BufferViewFlowAnalysis::build(Operation *op) { |
84 | // Registers all dependencies of the given values. |
85 | auto registerDependencies = [&](ValueRange values, ValueRange dependencies) { |
86 | for (auto [value, dep] : llvm::zip_equal(t&: values, u&: dependencies)) { |
87 | this->dependencies[value].insert(Ptr: dep); |
88 | this->reverseDependencies[dep].insert(Ptr: value); |
89 | } |
90 | }; |
91 | |
92 | // Mark all buffer results and buffer region entry block arguments of the |
93 | // given op as terminals. |
94 | auto populateTerminalValues = [&](Operation *op) { |
95 | for (Value v : op->getResults()) |
96 | if (isa<BaseMemRefType>(Val: v.getType())) |
97 | this->terminals.insert(V: v); |
98 | for (Region &r : op->getRegions()) |
99 | for (BlockArgument v : r.getArguments()) |
100 | if (isa<BaseMemRefType>(Val: v.getType())) |
101 | this->terminals.insert(V: v); |
102 | }; |
103 | |
104 | op->walk(callback: [&](Operation *op) { |
105 | // Query BufferViewFlowOpInterface. If the op does not implement that |
106 | // interface, try to infer the dependencies from other interfaces that the |
107 | // op may implement. |
108 | if (auto bufferViewFlowOp = dyn_cast<BufferViewFlowOpInterface>(op)) { |
109 | bufferViewFlowOp.populateDependencies(registerDependencies); |
110 | for (Value v : op->getResults()) |
111 | if (isa<BaseMemRefType>(Val: v.getType()) && |
112 | bufferViewFlowOp.mayBeTerminalBuffer(v)) |
113 | this->terminals.insert(V: v); |
114 | for (Region &r : op->getRegions()) |
115 | for (BlockArgument v : r.getArguments()) |
116 | if (isa<BaseMemRefType>(Val: v.getType()) && |
117 | bufferViewFlowOp.mayBeTerminalBuffer(v)) |
118 | this->terminals.insert(V: v); |
119 | return WalkResult::advance(); |
120 | } |
121 | |
122 | // Add additional dependencies created by view changes to the alias list. |
123 | if (auto viewInterface = dyn_cast<ViewLikeOpInterface>(op)) { |
124 | registerDependencies(viewInterface.getViewSource(), |
125 | viewInterface->getResult(0)); |
126 | return WalkResult::advance(); |
127 | } |
128 | |
129 | if (auto branchInterface = dyn_cast<BranchOpInterface>(op)) { |
130 | // Query all branch interfaces to link block argument dependencies. |
131 | Block *parentBlock = branchInterface->getBlock(); |
132 | for (auto it = parentBlock->succ_begin(), e = parentBlock->succ_end(); |
133 | it != e; ++it) { |
134 | // Query the branch op interface to get the successor operands. |
135 | auto successorOperands = |
136 | branchInterface.getSuccessorOperands(it.getIndex()); |
137 | // Build the actual mapping of values to their immediate dependencies. |
138 | registerDependencies(successorOperands.getForwardedOperands(), |
139 | (*it)->getArguments().drop_front( |
140 | successorOperands.getProducedOperandCount())); |
141 | } |
142 | return WalkResult::advance(); |
143 | } |
144 | |
145 | if (auto regionInterface = dyn_cast<RegionBranchOpInterface>(op)) { |
146 | // Query the RegionBranchOpInterface to find potential successor regions. |
147 | // Extract all entry regions and wire all initial entry successor inputs. |
148 | SmallVector<RegionSuccessor, 2> entrySuccessors; |
149 | regionInterface.getSuccessorRegions(/*point=*/RegionBranchPoint::parent(), |
150 | entrySuccessors); |
151 | for (RegionSuccessor &entrySuccessor : entrySuccessors) { |
152 | // Wire the entry region's successor arguments with the initial |
153 | // successor inputs. |
154 | registerDependencies( |
155 | regionInterface.getEntrySuccessorOperands(entrySuccessor), |
156 | entrySuccessor.getSuccessorInputs()); |
157 | } |
158 | |
159 | // Wire flow between regions and from region exits. |
160 | for (Region ®ion : regionInterface->getRegions()) { |
161 | // Iterate over all successor region entries that are reachable from the |
162 | // current region. |
163 | SmallVector<RegionSuccessor, 2> successorRegions; |
164 | regionInterface.getSuccessorRegions(region, successorRegions); |
165 | for (RegionSuccessor &successorRegion : successorRegions) { |
166 | // Iterate over all immediate terminator operations and wire the |
167 | // successor inputs with the successor operands of each terminator. |
168 | for (Block &block : region) |
169 | if (auto terminator = dyn_cast<RegionBranchTerminatorOpInterface>( |
170 | block.getTerminator())) |
171 | registerDependencies( |
172 | terminator.getSuccessorOperands(successorRegion), |
173 | successorRegion.getSuccessorInputs()); |
174 | } |
175 | } |
176 | |
177 | return WalkResult::advance(); |
178 | } |
179 | |
180 | // Region terminators are handled together with RegionBranchOpInterface. |
181 | if (isa<RegionBranchTerminatorOpInterface>(op)) |
182 | return WalkResult::advance(); |
183 | |
184 | if (isa<CallOpInterface>(op)) { |
185 | // This is an intra-function analysis. We have no information about other |
186 | // functions. Conservatively assume that each operand may alias with each |
187 | // result. Also mark the results are terminals because the function could |
188 | // return newly allocated buffers. |
189 | populateTerminalValues(op); |
190 | for (Value operand : op->getOperands()) |
191 | for (Value result : op->getResults()) |
192 | registerDependencies({operand}, {result}); |
193 | return WalkResult::advance(); |
194 | } |
195 | |
196 | // We have no information about unknown ops. |
197 | populateTerminalValues(op); |
198 | |
199 | return WalkResult::advance(); |
200 | }); |
201 | } |
202 | |
203 | bool BufferViewFlowAnalysis::mayBeTerminalBuffer(Value value) const { |
204 | assert(isa<BaseMemRefType>(value.getType()) && "expected memref" ); |
205 | return terminals.contains(V: value); |
206 | } |
207 | |
208 | //===----------------------------------------------------------------------===// |
209 | // BufferOriginAnalysis |
210 | //===----------------------------------------------------------------------===// |
211 | |
212 | /// Return "true" if the given value is the result of a memory allocation. |
213 | static bool hasAllocateSideEffect(Value v) { |
214 | Operation *op = v.getDefiningOp(); |
215 | if (!op) |
216 | return false; |
217 | return hasEffect<MemoryEffects::Allocate>(op, value: v); |
218 | } |
219 | |
220 | /// Return "true" if the given value is a function block argument. |
221 | static bool isFunctionArgument(Value v) { |
222 | auto bbArg = dyn_cast<BlockArgument>(Val&: v); |
223 | if (!bbArg) |
224 | return false; |
225 | Block *b = bbArg.getOwner(); |
226 | auto funcOp = dyn_cast<FunctionOpInterface>(b->getParentOp()); |
227 | if (!funcOp) |
228 | return false; |
229 | return bbArg.getOwner() == &funcOp.getFunctionBody().front(); |
230 | } |
231 | |
232 | /// Given a memref value, return the "base" value by skipping over all |
233 | /// ViewLikeOpInterface ops (if any) in the reverse use-def chain. |
234 | static Value getViewBase(Value value) { |
235 | while (auto viewLikeOp = value.getDefiningOp<ViewLikeOpInterface>()) |
236 | value = viewLikeOp.getViewSource(); |
237 | return value; |
238 | } |
239 | |
240 | BufferOriginAnalysis::BufferOriginAnalysis(Operation *op) : analysis(op) {} |
241 | |
242 | std::optional<bool> BufferOriginAnalysis::isSameAllocation(Value v1, Value v2) { |
243 | assert(isa<BaseMemRefType>(v1.getType()) && "expected buffer" ); |
244 | assert(isa<BaseMemRefType>(v2.getType()) && "expected buffer" ); |
245 | |
246 | // Skip over all view-like ops. |
247 | v1 = getViewBase(value: v1); |
248 | v2 = getViewBase(value: v2); |
249 | |
250 | // Fast path: If both buffers are the same SSA value, we can be sure that |
251 | // they originate from the same allocation. |
252 | if (v1 == v2) |
253 | return true; |
254 | |
255 | // Compute the SSA values from which the buffers `v1` and `v2` originate. |
256 | SmallPtrSet<Value, 16> origin1 = analysis.resolveReverse(rootValue: v1); |
257 | SmallPtrSet<Value, 16> origin2 = analysis.resolveReverse(rootValue: v2); |
258 | |
259 | // Originating buffers are "terminal" if they could not be traced back any |
260 | // further by the `BufferViewFlowAnalysis`. Examples of terminal buffers: |
261 | // - function block arguments |
262 | // - values defined by allocation ops such as "memref.alloc" |
263 | // - values defined by ops that are unknown to the buffer view flow analysis |
264 | // - values that are marked as "terminal" in the `BufferViewFlowOpInterface` |
265 | SmallPtrSet<Value, 16> terminal1, terminal2; |
266 | |
267 | // While gathering terminal buffers, keep track of whether all terminal |
268 | // buffers are newly allocated buffer or function entry arguments. |
269 | bool allAllocs1 = true, allAllocs2 = true; |
270 | bool allAllocsOrFuncEntryArgs1 = true, allAllocsOrFuncEntryArgs2 = true; |
271 | |
272 | // Helper function that gathers terminal buffers among `origin`. |
273 | auto gatherTerminalBuffers = [this](const SmallPtrSet<Value, 16> &origin, |
274 | SmallPtrSet<Value, 16> &terminal, |
275 | bool &allAllocs, |
276 | bool &allAllocsOrFuncEntryArgs) { |
277 | for (Value v : origin) { |
278 | if (isa<BaseMemRefType>(Val: v.getType()) && analysis.mayBeTerminalBuffer(value: v)) { |
279 | terminal.insert(Ptr: v); |
280 | allAllocs &= hasAllocateSideEffect(v); |
281 | allAllocsOrFuncEntryArgs &= |
282 | isFunctionArgument(v) || hasAllocateSideEffect(v); |
283 | } |
284 | } |
285 | assert(!terminal.empty() && "expected non-empty terminal set" ); |
286 | }; |
287 | |
288 | // Gather terminal buffers for `v1` and `v2`. |
289 | gatherTerminalBuffers(origin1, terminal1, allAllocs1, |
290 | allAllocsOrFuncEntryArgs1); |
291 | gatherTerminalBuffers(origin2, terminal2, allAllocs2, |
292 | allAllocsOrFuncEntryArgs2); |
293 | |
294 | // If both `v1` and `v2` have a single matching terminal buffer, they are |
295 | // guaranteed to originate from the same buffer allocation. |
296 | if (llvm::hasSingleElement(C&: terminal1) && llvm::hasSingleElement(C&: terminal2) && |
297 | *terminal1.begin() == *terminal2.begin()) |
298 | return true; |
299 | |
300 | // At least one of the two values has multiple terminals. |
301 | |
302 | // Check if there is overlap between the terminal buffers of `v1` and `v2`. |
303 | bool distinctTerminalSets = true; |
304 | for (Value v : terminal1) |
305 | distinctTerminalSets &= !terminal2.contains(Ptr: v); |
306 | // If there is overlap between the terminal buffers of `v1` and `v2`, we |
307 | // cannot make an accurate decision without further analysis. |
308 | if (!distinctTerminalSets) |
309 | return std::nullopt; |
310 | |
311 | // If `v1` originates from only allocs, and `v2` is guaranteed to originate |
312 | // from different allocations (that is guaranteed if `v2` originates from |
313 | // only distinct allocs or function entry arguments), we can be sure that |
314 | // `v1` and `v2` originate from different allocations. The same argument can |
315 | // be made when swapping `v1` and `v2`. |
316 | bool isolatedAlloc1 = allAllocs1 && (allAllocs2 || allAllocsOrFuncEntryArgs2); |
317 | bool isolatedAlloc2 = (allAllocs1 || allAllocsOrFuncEntryArgs1) && allAllocs2; |
318 | if (isolatedAlloc1 || isolatedAlloc2) |
319 | return false; |
320 | |
321 | // Otherwise: We do not know whether `v1` and `v2` originate from the same |
322 | // allocation or not. |
323 | // TODO: Function arguments are currently handled conservatively. We assume |
324 | // that they could be the same allocation. |
325 | // TODO: Terminals other than allocations and function arguments are |
326 | // currently handled conservatively. We assume that they could be the same |
327 | // allocation. E.g., we currently return "nullopt" for values that originate |
328 | // from different "memref.get_global" ops (with different symbols). |
329 | return std::nullopt; |
330 | } |
331 | |