| 1 | //===- EmptyTensorElimination.cpp - tensor.empty op elimination -----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Bufferization/Transforms/Passes.h" |
| 10 | |
| 11 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
| 12 | #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
| 13 | #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" |
| 14 | #include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h" |
| 15 | #include "mlir/Dialect/Bufferization/Transforms/Transforms.h" |
| 16 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 17 | #include "mlir/IR/Dominance.h" |
| 18 | #include "mlir/Interfaces/SubsetOpInterface.h" |
| 19 | #include "mlir/Pass/Pass.h" |
| 20 | |
| 21 | namespace mlir { |
| 22 | namespace bufferization { |
| 23 | #define GEN_PASS_DEF_EMPTYTENSORELIMINATIONPASS |
| 24 | #include "mlir/Dialect/Bufferization/Transforms/Passes.h.inc" |
| 25 | } // namespace bufferization |
| 26 | } // namespace mlir |
| 27 | |
| 28 | using namespace mlir; |
| 29 | using namespace mlir::bufferization; |
| 30 | |
| 31 | /// Return true if all `neededValues` are in scope at the given |
| 32 | /// `insertionPoint`. |
| 33 | static bool |
| 34 | neededValuesDominateInsertionPoint(const DominanceInfo &domInfo, |
| 35 | Operation *insertionPoint, |
| 36 | const SmallVector<Value> &neededValues) { |
| 37 | for (Value val : neededValues) { |
| 38 | if (auto bbArg = dyn_cast<BlockArgument>(val)) { |
| 39 | Block *owner = bbArg.getOwner(); |
| 40 | if (!owner->findAncestorOpInBlock(op&: *insertionPoint)) |
| 41 | return false; |
| 42 | } else { |
| 43 | auto opResult = cast<OpResult>(val); |
| 44 | if (!domInfo.properlyDominates(opResult.getOwner(), insertionPoint)) |
| 45 | return false; |
| 46 | } |
| 47 | } |
| 48 | return true; |
| 49 | } |
| 50 | |
| 51 | /// Find a valid insertion point for a replacement of `emptyTensorOp`'s |
| 52 | /// use of `user` operation, assuming that the replacement may use any |
| 53 | /// value from `neededValues`. |
| 54 | static Operation * |
| 55 | findValidInsertionPoint(Operation *emptyTensorOp, Operation *user, |
| 56 | const SmallVector<Value> &neededValues) { |
| 57 | DominanceInfo domInfo; |
| 58 | Operation *candidateInsertionPoint = emptyTensorOp; |
| 59 | |
| 60 | // Gather all possible insertion points: the location of |
| 61 | // `candidateInsertionPoint` and right after the definition of each value in |
| 62 | // `neededValues`. |
| 63 | SmallVector<Operation *> insertionPointCandidates; |
| 64 | insertionPointCandidates.push_back(Elt: candidateInsertionPoint); |
| 65 | for (Value val : neededValues) { |
| 66 | // Note: The anchor op is using all of `neededValues`, so: |
| 67 | // * in case of a block argument: There must be at least one op in the block |
| 68 | // (the anchor op or one of its parents). |
| 69 | // * in case of an OpResult: There must be at least one op right after the |
| 70 | // defining op (the anchor op or one of its |
| 71 | // parents). |
| 72 | if (auto bbArg = dyn_cast<BlockArgument>(Val&: val)) { |
| 73 | insertionPointCandidates.push_back( |
| 74 | Elt: &bbArg.getOwner()->getOperations().front()); |
| 75 | } else { |
| 76 | insertionPointCandidates.push_back(Elt: val.getDefiningOp()->getNextNode()); |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | // Select first matching insertion point. |
| 81 | for (Operation *insertionPoint : insertionPointCandidates) { |
| 82 | // Check if all needed values are in scope. |
| 83 | if (!neededValuesDominateInsertionPoint(domInfo, insertionPoint, |
| 84 | neededValues)) |
| 85 | continue; |
| 86 | // Check if the insertion point is before the use to be replaced. |
| 87 | if (!domInfo.dominates(a: insertionPoint, b: user)) |
| 88 | continue; |
| 89 | return insertionPoint; |
| 90 | } |
| 91 | |
| 92 | // No suitable insertion point was found. |
| 93 | return nullptr; |
| 94 | } |
| 95 | |
| 96 | Value mlir::bufferization::(RewriterBase &rewriter, |
| 97 | SubsetInsertionOpInterface op, |
| 98 | tensor::EmptyOp emptyTensorOp, |
| 99 | Operation *user) { |
| 100 | |
| 101 | mlir::OpBuilder::InsertionGuard guard(rewriter); |
| 102 | // All values that are needed to create the replacement op. |
| 103 | SmallVector<Value> neededValues = op.getValuesNeededToBuildSubsetExtraction(); |
| 104 | // Find a suitable insertion point. If no suitable insertion point |
| 105 | // for the replacement can be found, return an empty value to skip |
| 106 | // this replacement. |
| 107 | Operation *insertionPoint = |
| 108 | findValidInsertionPoint(emptyTensorOp, user, neededValues); |
| 109 | if (!insertionPoint) |
| 110 | return {}; |
| 111 | |
| 112 | rewriter.setInsertionPoint(insertionPoint); |
| 113 | Value replacement = |
| 114 | op.buildSubsetExtraction(rewriter, emptyTensorOp->getLoc()); |
| 115 | return replacement; |
| 116 | } |
| 117 | |
| 118 | LogicalResult mlir::bufferization::eliminateEmptyTensors( |
| 119 | RewriterBase &rewriter, Operation *op, OneShotAnalysisState &state, |
| 120 | ControlBuildSubsetExtractionFn ) { |
| 121 | OpBuilder::InsertionGuard g(rewriter); |
| 122 | llvm::DenseSet<OpOperand *> visitedOpOperands; |
| 123 | op->walk([&](SubsetInsertionOpInterface op) { |
| 124 | visitedOpOperands.clear(); |
| 125 | OpOperand &source = op.getSourceOperand(); |
| 126 | // Skip operands that do not bufferize inplace. "tensor.empty" could still |
| 127 | // be replaced, but the transformation may not be beneficial. |
| 128 | if (!state.isInPlace(opOperand&: source)) |
| 129 | return WalkResult::skip(); |
| 130 | |
| 131 | // Find tensor.empty ops on the reverse SSA use-def chain. Only follow |
| 132 | // equivalent tensors. I.e., stop when there are ops such as extract_slice |
| 133 | // on the path. |
| 134 | TraversalConfig config; |
| 135 | config.followEquivalentOnly = true; |
| 136 | config.alwaysIncludeLeaves = false; |
| 137 | // Replace only if the types match or are static <-> dynamic casts. We do |
| 138 | // not support slices or reshapes. |
| 139 | // TODO: This could be extended to support IR such as: |
| 140 | // %0 = tensor.empty() : tensor<128xf32> |
| 141 | // %1 = "some_op"(%0) : (tensor<128xf32>) -> (tensor<128xf32>) |
| 142 | // %2 = tensor.expand_shape %1 ... |
| 143 | // %3 = tensor.insert_slice %2 into ... |
| 144 | config.followSameTypeOrCastsOnly = true; |
| 145 | SetVector<Value> emptyTensors = state.findValueInReverseUseDefChain( |
| 146 | &source, /*condition=*/ |
| 147 | [&](Value val) { return val.getDefiningOp<tensor::EmptyOp>(); }, config, |
| 148 | &visitedOpOperands); |
| 149 | |
| 150 | for (Value v : emptyTensors) { |
| 151 | auto emptyTensorOp = v.getDefiningOp<tensor::EmptyOp>(); |
| 152 | assert(emptyTensorOp && "expected tensor.empty op" ); |
| 153 | // Find the use to be replaced from the use-def chain. |
| 154 | auto iter = llvm::find_if( |
| 155 | visitedOpOperands, [&emptyTensorOp](OpOperand *opOperand) { |
| 156 | return llvm::count(emptyTensorOp->getUses(), *opOperand); |
| 157 | }); |
| 158 | |
| 159 | assert(iter != visitedOpOperands.end() && "could not find use" ); |
| 160 | OpOperand *useToBeReplaced = *iter; |
| 161 | Operation *user = useToBeReplaced->getOwner(); |
| 162 | auto replacement = subsetsExtractionFn(rewriter, op, emptyTensorOp, user); |
| 163 | if (!replacement) |
| 164 | continue; |
| 165 | if (emptyTensorOp == replacement.getDefiningOp()) |
| 166 | continue; |
| 167 | if (replacement.getType() != v.getType()) { |
| 168 | if (cast<ShapedType>(replacement.getType()).getElementType() != |
| 169 | cast<ShapedType>(v.getType()).getElementType()) |
| 170 | continue; |
| 171 | rewriter.setInsertionPointAfterValue(replacement); |
| 172 | replacement = rewriter.create<tensor::CastOp>(v.getLoc(), v.getType(), |
| 173 | replacement); |
| 174 | } |
| 175 | // Replace the specific use of the tensor::EmptyOp. |
| 176 | rewriter.modifyOpInPlace(user, [&]() { |
| 177 | user->setOperand(useToBeReplaced->getOperandNumber(), replacement); |
| 178 | }); |
| 179 | state.resetCache(); |
| 180 | } |
| 181 | |
| 182 | return WalkResult::advance(); |
| 183 | }); |
| 184 | |
| 185 | return success(); |
| 186 | } |
| 187 | |
| 188 | namespace { |
| 189 | struct EmptyTensorElimination |
| 190 | : public bufferization::impl::EmptyTensorEliminationPassBase< |
| 191 | EmptyTensorElimination> { |
| 192 | using Base::Base; |
| 193 | |
| 194 | void runOnOperation() override; |
| 195 | |
| 196 | void getDependentDialects(DialectRegistry ®istry) const override { |
| 197 | registry |
| 198 | .insert<bufferization::BufferizationDialect, tensor::TensorDialect>(); |
| 199 | } |
| 200 | }; |
| 201 | } // namespace |
| 202 | |
| 203 | LogicalResult mlir::bufferization::eliminateEmptyTensors(RewriterBase &rewriter, |
| 204 | Operation *op) { |
| 205 | auto moduleOp = dyn_cast<ModuleOp>(op); |
| 206 | OneShotBufferizationOptions options; |
| 207 | options.allowReturnAllocsFromLoops = true; |
| 208 | if (moduleOp) |
| 209 | options.bufferizeFunctionBoundaries = true; |
| 210 | OneShotAnalysisState state(op, options); |
| 211 | if (moduleOp) { |
| 212 | // Module analysis takes into account function boundaries. |
| 213 | if (failed(analyzeModuleOp(moduleOp, state))) |
| 214 | return failure(); |
| 215 | } else { |
| 216 | // Regular One-Shot Bufferize ignores func.func block arguments, func.call, |
| 217 | // func.return. |
| 218 | if (failed(Result: analyzeOp(op, state))) |
| 219 | return failure(); |
| 220 | } |
| 221 | |
| 222 | return bufferization::eliminateEmptyTensors(rewriter, op, state); |
| 223 | } |
| 224 | |
| 225 | void EmptyTensorElimination::runOnOperation() { |
| 226 | IRRewriter rewriter(getOperation()->getContext()); |
| 227 | if (failed(bufferization::eliminateEmptyTensors(rewriter, getOperation()))) |
| 228 | signalPassFailure(); |
| 229 | } |
| 230 | |