1 | //===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h" |
10 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
11 | #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
12 | #include "mlir/Dialect/Bufferization/IR/UnstructuredControlFlow.h" |
13 | #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" |
14 | #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" |
15 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
16 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
17 | #include "mlir/IR/Dialect.h" |
18 | #include "mlir/IR/Operation.h" |
19 | #include <optional> |
20 | |
21 | namespace mlir { |
22 | /// Return all func.return ops in the given function. |
23 | SmallVector<func::ReturnOp> bufferization::getReturnOps(func::FuncOp funcOp) { |
24 | SmallVector<func::ReturnOp> result; |
25 | for (Block &b : funcOp.getBody()) |
26 | if (auto returnOp = dyn_cast<func::ReturnOp>(b.getTerminator())) |
27 | result.push_back(returnOp); |
28 | return result; |
29 | } |
30 | |
31 | namespace bufferization { |
32 | namespace func_ext { |
33 | |
34 | void FuncAnalysisState::startFunctionAnalysis(FuncOp funcOp) { |
35 | analyzedFuncOps[funcOp] = FuncOpAnalysisState::InProgress; |
36 | auto createdEquiv = equivalentFuncArgs.try_emplace(funcOp, IndexMapping()); |
37 | auto createdAliasingResults = |
38 | aliasingReturnVals.try_emplace(funcOp, IndexToIndexListMapping()); |
39 | auto createdRead = readBbArgs.try_emplace(funcOp, BbArgIndexSet()); |
40 | auto createdWritten = writtenBbArgs.try_emplace(funcOp, BbArgIndexSet()); |
41 | (void)createdEquiv; |
42 | (void)createdAliasingResults; |
43 | (void)createdRead; |
44 | (void)createdWritten; |
45 | #ifndef NDEBUG |
46 | assert(createdEquiv.second && "equivalence info exists already" ); |
47 | assert(createdAliasingResults.second && "aliasing info exists already" ); |
48 | assert(createdRead.second && "bbarg access info exists already" ); |
49 | assert(createdWritten.second && "bbarg access info exists already" ); |
50 | #endif // NDEBUG |
51 | } |
52 | |
53 | /// Return the index-th bufferized function argument type. This assumes that the |
54 | /// specified argument is a tensor. If the tensor is ranked, a layout map may be |
55 | /// specified by the user (as per `options.functionArgTypeConverterFn`). |
56 | static BaseMemRefType |
57 | getBufferizedFunctionArgType(FuncOp funcOp, int64_t index, |
58 | const BufferizationOptions &options) { |
59 | auto tensorType = |
60 | dyn_cast<TensorType>(funcOp.getFunctionType().getInput(index)); |
61 | assert(tensorType && "expected TensorType" ); |
62 | |
63 | BaseMemRefType memrefType = options.functionArgTypeConverterFn( |
64 | tensorType, *options.defaultMemorySpaceFn(tensorType), funcOp, options); |
65 | |
66 | auto layoutAttr = funcOp.getArgAttrOfType<MemRefLayoutAttrInterface>( |
67 | index, BufferizationDialect::kBufferLayoutAttrName); |
68 | if (!layoutAttr) |
69 | return memrefType; |
70 | |
71 | auto rankedMemrefType = dyn_cast<MemRefType>(memrefType); |
72 | assert(rankedMemrefType && "buffer layout not supported on unranked tensors" ); |
73 | return MemRefType::get(rankedMemrefType.getShape(), |
74 | rankedMemrefType.getElementType(), layoutAttr, |
75 | rankedMemrefType.getMemorySpace()); |
76 | } |
77 | |
78 | /// Return the FuncOp called by `callOp`. |
79 | static FuncOp getCalledFunction(CallOpInterface callOp, |
80 | SymbolTableCollection &symbolTables) { |
81 | SymbolRefAttr sym = |
82 | llvm::dyn_cast_if_present<SymbolRefAttr>(callOp.getCallableForCallee()); |
83 | if (!sym) |
84 | return nullptr; |
85 | return dyn_cast_or_null<FuncOp>( |
86 | symbolTables.lookupNearestSymbolFrom(callOp, sym)); |
87 | } |
88 | |
89 | /// Return the FuncOp called by `callOp`. |
90 | static FuncOp getCalledFunction(CallOpInterface callOp, |
91 | const AnalysisState &state) { |
92 | auto &oneShotAnalysisState = static_cast<const OneShotAnalysisState &>(state); |
93 | |
94 | if (auto *funcAnalysisState = |
95 | oneShotAnalysisState.getExtension<FuncAnalysisState>()) { |
96 | // Use the cached symbol tables. |
97 | return getCalledFunction(callOp, funcAnalysisState->symbolTables); |
98 | } |
99 | |
100 | SymbolTableCollection symbolTables; |
101 | return getCalledFunction(callOp, symbolTables); |
102 | } |
103 | |
104 | /// Get FuncAnalysisState. |
105 | static const FuncAnalysisState & |
106 | getFuncAnalysisState(const AnalysisState &state) { |
107 | assert(isa<OneShotAnalysisState>(state) && "expected OneShotAnalysisState" ); |
108 | auto *result = static_cast<const OneShotAnalysisState &>(state) |
109 | .getExtension<FuncAnalysisState>(); |
110 | assert(result && "FuncAnalysisState does not exist" ); |
111 | return *result; |
112 | } |
113 | |
114 | /// Return the state (phase) of analysis of the FuncOp. |
115 | static FuncOpAnalysisState getFuncOpAnalysisState(const AnalysisState &state, |
116 | FuncOp funcOp) { |
117 | if (!isa<OneShotAnalysisState>(Val: state)) |
118 | return FuncOpAnalysisState::NotAnalyzed; |
119 | auto *funcState = static_cast<const OneShotAnalysisState &>(state) |
120 | .getExtension<FuncAnalysisState>(); |
121 | if (!funcState) |
122 | return FuncOpAnalysisState::NotAnalyzed; |
123 | const auto &analyzedFuncOps = funcState->analyzedFuncOps; |
124 | auto it = analyzedFuncOps.find(funcOp); |
125 | if (it == analyzedFuncOps.end()) |
126 | return FuncOpAnalysisState::NotAnalyzed; |
127 | return it->second; |
128 | } |
129 | |
130 | /// Return the index of the bbArg in the given FuncOp that is equivalent to the |
131 | /// specified return value (if any). |
132 | static std::optional<int64_t> |
133 | getEquivalentFuncArgIdx(FuncOp funcOp, const FuncAnalysisState &state, |
134 | int64_t returnValIdx) { |
135 | auto funcOpIt = state.equivalentFuncArgs.find(funcOp); |
136 | if (funcOpIt == state.equivalentFuncArgs.end()) |
137 | // No equivalence info stores for funcOp. |
138 | return std::nullopt; |
139 | |
140 | auto retValIt = funcOpIt->getSecond().find(returnValIdx); |
141 | if (retValIt == funcOpIt->getSecond().end()) |
142 | // Return value has no equivalent bbArg. |
143 | return std::nullopt; |
144 | |
145 | return retValIt->getSecond(); |
146 | } |
147 | |
148 | struct CallOpInterface |
149 | : public BufferizableOpInterface::ExternalModel<CallOpInterface, |
150 | func::CallOp> { |
151 | bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand, |
152 | const AnalysisState &state) const { |
153 | func::CallOp callOp = cast<func::CallOp>(op); |
154 | FuncOp funcOp = getCalledFunction(callOp, state); |
155 | assert(funcOp && "expected CallOp to a FuncOp" ); |
156 | |
157 | if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed) |
158 | // FuncOp not analyzed yet. Assume that OpOperand is read. |
159 | return true; |
160 | |
161 | const FuncAnalysisState &funcState = getFuncAnalysisState(state); |
162 | return funcState.readBbArgs.lookup(Val: funcOp).contains( |
163 | opOperand.getOperandNumber()); |
164 | } |
165 | |
166 | bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand, |
167 | const AnalysisState &state) const { |
168 | func::CallOp callOp = cast<func::CallOp>(op); |
169 | FuncOp funcOp = getCalledFunction(callOp, state); |
170 | assert(funcOp && "expected CallOp to a FuncOp" ); |
171 | |
172 | if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed) |
173 | // FuncOp not analyzed yet. Assume that OpOperand is written. |
174 | return true; |
175 | |
176 | const FuncAnalysisState &funcState = getFuncAnalysisState(state); |
177 | return funcState.writtenBbArgs.lookup(Val: funcOp).contains( |
178 | opOperand.getOperandNumber()); |
179 | } |
180 | |
181 | AliasingValueList getAliasingValues(Operation *op, OpOperand &opOperand, |
182 | const AnalysisState &state) const { |
183 | func::CallOp callOp = cast<func::CallOp>(op); |
184 | FuncOp funcOp = getCalledFunction(callOp, state); |
185 | assert(funcOp && "expected CallOp to a FuncOp" ); |
186 | if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed) |
187 | // FuncOp not analyzed yet. Any OpResult may be aliasing. |
188 | return detail::unknownGetAliasingValues(opOperand); |
189 | |
190 | // Get aliasing results from state. |
191 | const FuncAnalysisState &funcState = getFuncAnalysisState(state); |
192 | auto aliasingReturnVals = |
193 | funcState.aliasingReturnVals.lookup(Val: funcOp).lookup( |
194 | opOperand.getOperandNumber()); |
195 | |
196 | // Check if the aliasing OpResult is equivalent to the OpOperand. |
197 | std::optional<int64_t> equivalent = {}; |
198 | if (aliasingReturnVals.size() == 1) { |
199 | equivalent = getEquivalentFuncArgIdx(funcOp, funcState, |
200 | aliasingReturnVals.front()); |
201 | assert((!equivalent.has_value() || |
202 | *equivalent == opOperand.getOperandNumber()) && |
203 | "inconsistent analysis state" ); |
204 | } |
205 | AliasingValueList result; |
206 | for (int64_t resultIdx : aliasingReturnVals) |
207 | result.addAlias({callOp->getOpResult(resultIdx), |
208 | equivalent.has_value() ? BufferRelation::Equivalent |
209 | : BufferRelation::Unknown, |
210 | /*isDefinite=*/equivalent.has_value()}); |
211 | return result; |
212 | } |
213 | |
214 | FailureOr<BaseMemRefType> |
215 | getBufferType(Operation *op, Value value, const BufferizationOptions &options, |
216 | const BufferizationState &state, |
217 | SmallVector<Value> &invocationStack) const { |
218 | auto callOp = cast<func::CallOp>(op); |
219 | |
220 | // TODO Avoid recomputing the symbol tables every time. |
221 | SymbolTableCollection symbolTable; |
222 | |
223 | FuncOp funcOp = getCalledFunction(callOp, symbolTable); |
224 | assert(funcOp && "expected CallOp to a FuncOp" ); |
225 | |
226 | // If the callee was already bufferized, we can directly take the type from |
227 | // its signature. |
228 | FunctionType funcType = funcOp.getFunctionType(); |
229 | Type resultType = |
230 | funcType.getResult(cast<OpResult>(Val&: value).getResultNumber()); |
231 | if (auto bufferizedType = dyn_cast<BaseMemRefType>(resultType)) |
232 | return bufferizedType; |
233 | |
234 | // Otherwise, call the type converter to compute the bufferized type. |
235 | auto tensorType = cast<TensorType>(Val&: resultType); |
236 | return options.functionArgTypeConverterFn( |
237 | tensorType, *options.defaultMemorySpaceFn(tensorType), funcOp, options); |
238 | } |
239 | |
240 | /// All function arguments are writable. It is the responsibility of the |
241 | /// CallOp to insert buffer copies where necessary. |
242 | LogicalResult bufferize(Operation *op, RewriterBase &rewriter, |
243 | const BufferizationOptions &options, |
244 | BufferizationState &state) const { |
245 | func::CallOp callOp = cast<func::CallOp>(op); |
246 | |
247 | // 1. Compute the result types of the new CallOp. |
248 | SmallVector<Type> resultTypes; |
249 | for (Value result : callOp.getResults()) { |
250 | Type returnType = result.getType(); |
251 | if (!isa<TensorType>(returnType)) { |
252 | // Non-tensor values are returned. |
253 | resultTypes.push_back(returnType); |
254 | continue; |
255 | } |
256 | |
257 | // Returning a memref. |
258 | FailureOr<BaseMemRefType> resultType = |
259 | bufferization::getBufferType(result, options, state); |
260 | if (failed(resultType)) |
261 | return failure(); |
262 | resultTypes.push_back(*resultType); |
263 | } |
264 | |
265 | // 2. Rewrite tensor operands as memrefs based on type of the already |
266 | // bufferized callee. |
267 | SmallVector<Value> newOperands; |
268 | |
269 | FuncOp funcOp = getCalledFunction(callOp, state.getSymbolTables()); |
270 | assert(funcOp && "expected CallOp to a FuncOp" ); |
271 | FunctionType funcType = funcOp.getFunctionType(); |
272 | |
273 | for (OpOperand &opOperand : callOp->getOpOperands()) { |
274 | // Non-tensor operands are just copied. |
275 | if (!isa<TensorType>(opOperand.get().getType())) { |
276 | newOperands.push_back(opOperand.get()); |
277 | continue; |
278 | } |
279 | |
280 | // Retrieve buffers for tensor operands. |
281 | FailureOr<Value> maybeBuffer = |
282 | getBuffer(rewriter, opOperand.get(), options, state); |
283 | if (failed(maybeBuffer)) |
284 | return failure(); |
285 | Value buffer = *maybeBuffer; |
286 | |
287 | // Caller / callee type mismatch is handled with castOrReallocMemRefValue. |
288 | auto memRefType = funcType.getInput(opOperand.getOperandNumber()); |
289 | if (!isa<BaseMemRefType>(memRefType)) { |
290 | // The called function was not bufferized yet. This can happen when |
291 | // there cycles in the function call graph. Compute the bufferized |
292 | // result type. |
293 | FailureOr<BaseMemRefType> maybeMemRefType = |
294 | bufferization::getBufferType( |
295 | funcOp.getArgument(opOperand.getOperandNumber()), options, |
296 | state); |
297 | if (failed(maybeMemRefType)) |
298 | return failure(); |
299 | memRefType = *maybeMemRefType; |
300 | } |
301 | |
302 | // Since we don't yet have a clear layout story, to_buffer may |
303 | // conservatively turn tensors into more dynamic memref than necessary. |
304 | // If the memref type of the callee fails, introduce an extra memref.cast |
305 | // that will either canonicalize away or fail compilation until we can do |
306 | // something better. Insert a reallocation + copy if it cannot be |
307 | // statically guaranteed that a direct cast would be valid. |
308 | if (buffer.getType() != memRefType) { |
309 | auto memrefDstType = dyn_cast<MemRefType>(memRefType); |
310 | assert(memrefDstType && |
311 | "buffer layout not supported on unranked tensors" ); |
312 | FailureOr<Value> replacement = bufferization::castOrReallocMemRefValue( |
313 | rewriter, buffer, memrefDstType, options); |
314 | if (failed(replacement)) |
315 | return failure(); |
316 | buffer = *replacement; |
317 | } |
318 | newOperands.push_back(buffer); |
319 | } |
320 | |
321 | // 3. Create the new CallOp. |
322 | Operation *newCallOp = rewriter.create<func::CallOp>( |
323 | callOp.getLoc(), funcOp.getSymName(), resultTypes, newOperands); |
324 | newCallOp->setAttrs(callOp->getAttrs()); |
325 | |
326 | // 4. Replace the old op with the new op. |
327 | replaceOpWithBufferizedValues(rewriter, callOp, newCallOp->getResults()); |
328 | |
329 | return success(); |
330 | } |
331 | }; |
332 | |
333 | struct ReturnOpInterface |
334 | : public BufferizableOpInterface::ExternalModel<ReturnOpInterface, |
335 | func::ReturnOp> { |
336 | bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand, |
337 | const AnalysisState &state) const { |
338 | return true; |
339 | } |
340 | |
341 | bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand, |
342 | const AnalysisState &state) const { |
343 | return false; |
344 | } |
345 | |
346 | AliasingValueList getAliasingValues(Operation *op, OpOperand &opOperand, |
347 | const AnalysisState &state) const { |
348 | return {}; |
349 | } |
350 | |
351 | LogicalResult bufferize(Operation *op, RewriterBase &rewriter, |
352 | const BufferizationOptions &options, |
353 | BufferizationState &state) const { |
354 | #ifndef NDEBUG |
355 | auto returnOp = cast<func::ReturnOp>(op); |
356 | assert(isa<FuncOp>(returnOp->getParentOp()) && |
357 | "only support FuncOp parent for ReturnOp" ); |
358 | #endif // NDEBUG |
359 | |
360 | // ReturnOps are bufferized as part of FuncOps. |
361 | return success(); |
362 | } |
363 | }; |
364 | |
365 | struct FuncOpInterface |
366 | : public OpWithUnstructuredControlFlowBufferizableOpInterfaceExternalModel< |
367 | FuncOpInterface, FuncOp> { |
368 | |
369 | static bool supportsUnstructuredControlFlow() { return true; } |
370 | |
371 | bool hasTensorSemantics(Operation *op) const { |
372 | auto isaTensor = llvm::IsaPred<TensorType>; |
373 | |
374 | // A function has tensor semantics if it has tensor arguments/results. |
375 | auto funcOp = cast<FuncOp>(op); |
376 | bool hasTensorArg = any_of(funcOp.getArgumentTypes(), isaTensor); |
377 | bool hasTensorResult = any_of(funcOp.getResultTypes(), isaTensor); |
378 | if (hasTensorArg || hasTensorResult) |
379 | return true; |
380 | |
381 | // It also has tensor semantics if it has tensor block arguments. |
382 | // TODO: Decouple bufferization of unstructured control flow from |
383 | // BufferizableOpInterface implementations. We should only care about |
384 | // region entry block arguments here (which are already covered by the |
385 | // argument types of the function). |
386 | for (Block &block : funcOp.getBody()) |
387 | if (any_of(block.getArgumentTypes(), isaTensor)) |
388 | return true; |
389 | |
390 | return false; |
391 | } |
392 | |
393 | AliasingOpOperandList |
394 | getAliasingOpOperands(Operation *op, Value value, |
395 | const AnalysisState &state) const { |
396 | return getAliasingBranchOpOperands(op, bbArg: cast<BlockArgument>(Val&: value), state); |
397 | } |
398 | |
399 | FailureOr<BaseMemRefType> |
400 | getBufferType(Operation *op, Value value, const BufferizationOptions &options, |
401 | const BufferizationState &state, |
402 | SmallVector<Value> &invocationStack) const { |
403 | auto funcOp = cast<FuncOp>(op); |
404 | auto bbArg = cast<BlockArgument>(Val&: value); |
405 | |
406 | // Function arguments are special. |
407 | if (bbArg.getOwner() == &funcOp.getBody().front()) |
408 | return getBufferizedFunctionArgType(funcOp, bbArg.getArgNumber(), |
409 | options); |
410 | |
411 | return OpWithUnstructuredControlFlowBufferizableOpInterfaceExternalModel:: |
412 | getBufferType(op, value, options, state, invocationStack); |
413 | } |
414 | |
415 | /// Rewrite function bbArgs and return values into buffer form. This function |
416 | /// bufferizes the function signature and the ReturnOp. When the entire |
417 | /// function body has been bufferized, function return types can be switched |
418 | /// to more concise memref types as part of `foldMemRefCasts`. |
419 | /// |
420 | /// All function bbArgs are writable unless they are explicitly marked as |
421 | /// read-only. Callers must insert copies when needed. |
422 | LogicalResult bufferize(Operation *op, RewriterBase &rewriter, |
423 | const BufferizationOptions &options, |
424 | BufferizationState &state) const { |
425 | auto funcOp = cast<FuncOp>(op); |
426 | FunctionType funcType = funcOp.getFunctionType(); |
427 | |
428 | // Compute the argument types. |
429 | SmallVector<Type> argTypes; |
430 | for (const auto &it : llvm::enumerate(funcType.getInputs())) { |
431 | Type argType = it.value(); |
432 | if (isa<TensorType>(argType)) { |
433 | argTypes.push_back( |
434 | getBufferizedFunctionArgType(funcOp, it.index(), options)); |
435 | continue; |
436 | } |
437 | argTypes.push_back(argType); |
438 | } |
439 | |
440 | // Compute the result types. |
441 | SmallVector<Type> retTypes; |
442 | for (Type resultType : funcType.getResults()) { |
443 | if (auto tensorType = dyn_cast<TensorType>(resultType)) { |
444 | BaseMemRefType resultType = options.functionArgTypeConverterFn( |
445 | tensorType, *options.defaultMemorySpaceFn(tensorType), funcOp, |
446 | options); |
447 | retTypes.push_back(resultType); |
448 | continue; |
449 | } |
450 | retTypes.push_back(resultType); |
451 | } |
452 | |
453 | // Compute the new function type. |
454 | auto newFuncType = FunctionType::get(op->getContext(), argTypes, retTypes); |
455 | |
456 | // If the function has no body, set the new function type and we are done. |
457 | if (funcOp.isExternal()) { |
458 | funcOp.setType(newFuncType); |
459 | return success(); |
460 | } |
461 | |
462 | // 1. Bufferize every block. |
463 | for (Block &block : funcOp.getBody()) |
464 | if (failed(bufferization::bufferizeBlockSignature(&block, rewriter, |
465 | options, state))) |
466 | return failure(); |
467 | |
468 | // 2. Bufferize the operands of the all return op. |
469 | for (func::ReturnOp returnOp : getReturnOps(funcOp)) { |
470 | assert(returnOp->getNumOperands() == retTypes.size() && |
471 | "incorrect number of return values" ); |
472 | SmallVector<Value> returnValues; |
473 | for (auto [returnVal, bufferizedType] : |
474 | llvm::zip_equal(returnOp->getOperands(), retTypes)) { |
475 | auto tensorType = dyn_cast<TensorType>(returnVal.getType()); |
476 | rewriter.setInsertionPoint(returnOp); |
477 | |
478 | // If not a tensor type just forward it. |
479 | if (!tensorType) { |
480 | returnValues.push_back(returnVal); |
481 | continue; |
482 | } |
483 | |
484 | // Note: If `inferFunctionResultLayout = true`, casts are later folded |
485 | // away. |
486 | Value toBufferOp = rewriter.create<bufferization::ToBufferOp>( |
487 | returnOp.getLoc(), bufferizedType, returnVal); |
488 | returnValues.push_back(toBufferOp); |
489 | } |
490 | |
491 | returnOp.getOperandsMutable().assign(returnValues); |
492 | } |
493 | |
494 | // 3. Set the new function type. |
495 | funcOp.setType(newFuncType); |
496 | return success(); |
497 | } |
498 | |
499 | /// Return `true` if the given function argument is writable. |
500 | bool isWritable(Operation *op, Value value, |
501 | const AnalysisState &state) const { |
502 | auto funcOp = cast<FuncOp>(op); |
503 | BlockArgument bbArg = dyn_cast<BlockArgument>(Val&: value); |
504 | assert(bbArg && "expected BlockArgument" ); |
505 | |
506 | // Non-entry block arguments are always writable. (They may alias with |
507 | // values that are not writable, which will turn them into read-only.) |
508 | if (bbArg.getOwner() != &funcOp.getBody().front()) |
509 | return true; |
510 | |
511 | // "bufferization.writable" overrides other writability decisions. This is |
512 | // currently used for testing only. |
513 | if (BoolAttr writable = funcOp.getArgAttrOfType<BoolAttr>( |
514 | bbArg.getArgNumber(), BufferizationDialect::kWritableAttrName)) |
515 | return writable.getValue(); |
516 | |
517 | // All function arguments are writable by default. |
518 | return true; |
519 | } |
520 | }; |
521 | |
522 | } // namespace func_ext |
523 | } // namespace bufferization |
524 | } // namespace mlir |
525 | |
526 | void mlir::bufferization::func_ext:: |
527 | registerBufferizableOpInterfaceExternalModels(DialectRegistry ®istry) { |
528 | registry.addExtension(extensionFn: +[](MLIRContext *ctx, func::FuncDialect *dialect) { |
529 | func::CallOp::attachInterface<func_ext::CallOpInterface>(*ctx); |
530 | func::FuncOp::attachInterface<func_ext::FuncOpInterface>(*ctx); |
531 | func::ReturnOp::attachInterface<func_ext::ReturnOpInterface>(*ctx); |
532 | }); |
533 | } |
534 | |