| 1 | //===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h" |
| 10 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
| 11 | #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
| 12 | #include "mlir/Dialect/Bufferization/IR/UnstructuredControlFlow.h" |
| 13 | #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" |
| 14 | #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" |
| 15 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 16 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 17 | #include "mlir/IR/Dialect.h" |
| 18 | #include "mlir/IR/Operation.h" |
| 19 | #include <optional> |
| 20 | |
| 21 | namespace mlir { |
| 22 | /// Return all func.return ops in the given function. |
| 23 | SmallVector<func::ReturnOp> bufferization::getReturnOps(func::FuncOp funcOp) { |
| 24 | SmallVector<func::ReturnOp> result; |
| 25 | for (Block &b : funcOp.getBody()) |
| 26 | if (auto returnOp = dyn_cast<func::ReturnOp>(b.getTerminator())) |
| 27 | result.push_back(returnOp); |
| 28 | return result; |
| 29 | } |
| 30 | |
| 31 | namespace bufferization { |
| 32 | namespace func_ext { |
| 33 | |
| 34 | void FuncAnalysisState::startFunctionAnalysis(FuncOp funcOp) { |
| 35 | analyzedFuncOps[funcOp] = FuncOpAnalysisState::InProgress; |
| 36 | auto createdEquiv = equivalentFuncArgs.try_emplace(funcOp, IndexMapping()); |
| 37 | auto createdAliasingResults = |
| 38 | aliasingReturnVals.try_emplace(funcOp, IndexToIndexListMapping()); |
| 39 | auto createdRead = readBbArgs.try_emplace(funcOp, BbArgIndexSet()); |
| 40 | auto createdWritten = writtenBbArgs.try_emplace(funcOp, BbArgIndexSet()); |
| 41 | (void)createdEquiv; |
| 42 | (void)createdAliasingResults; |
| 43 | (void)createdRead; |
| 44 | (void)createdWritten; |
| 45 | #ifndef NDEBUG |
| 46 | assert(createdEquiv.second && "equivalence info exists already" ); |
| 47 | assert(createdAliasingResults.second && "aliasing info exists already" ); |
| 48 | assert(createdRead.second && "bbarg access info exists already" ); |
| 49 | assert(createdWritten.second && "bbarg access info exists already" ); |
| 50 | #endif // NDEBUG |
| 51 | } |
| 52 | |
| 53 | /// Return the index-th bufferized function argument type. This assumes that the |
| 54 | /// specified argument is a tensor. If the tensor is ranked, a layout map may be |
| 55 | /// specified by the user (as per `options.functionArgTypeConverterFn`). |
| 56 | static BaseMemRefType |
| 57 | getBufferizedFunctionArgType(FuncOp funcOp, int64_t index, |
| 58 | const BufferizationOptions &options) { |
| 59 | auto tensorType = |
| 60 | dyn_cast<TensorType>(funcOp.getFunctionType().getInput(index)); |
| 61 | assert(tensorType && "expected TensorType" ); |
| 62 | |
| 63 | BaseMemRefType memrefType = options.functionArgTypeConverterFn( |
| 64 | tensorType, *options.defaultMemorySpaceFn(tensorType), funcOp, options); |
| 65 | |
| 66 | auto layoutAttr = funcOp.getArgAttrOfType<MemRefLayoutAttrInterface>( |
| 67 | index, BufferizationDialect::kBufferLayoutAttrName); |
| 68 | if (!layoutAttr) |
| 69 | return memrefType; |
| 70 | |
| 71 | auto rankedMemrefType = dyn_cast<MemRefType>(memrefType); |
| 72 | assert(rankedMemrefType && "buffer layout not supported on unranked tensors" ); |
| 73 | return MemRefType::get(rankedMemrefType.getShape(), |
| 74 | rankedMemrefType.getElementType(), layoutAttr, |
| 75 | rankedMemrefType.getMemorySpace()); |
| 76 | } |
| 77 | |
| 78 | /// Return the FuncOp called by `callOp`. |
| 79 | static FuncOp getCalledFunction(CallOpInterface callOp, |
| 80 | SymbolTableCollection &symbolTables) { |
| 81 | SymbolRefAttr sym = |
| 82 | llvm::dyn_cast_if_present<SymbolRefAttr>(callOp.getCallableForCallee()); |
| 83 | if (!sym) |
| 84 | return nullptr; |
| 85 | return dyn_cast_or_null<FuncOp>( |
| 86 | symbolTables.lookupNearestSymbolFrom(callOp, sym)); |
| 87 | } |
| 88 | |
| 89 | /// Return the FuncOp called by `callOp`. |
| 90 | static FuncOp getCalledFunction(CallOpInterface callOp, |
| 91 | const AnalysisState &state) { |
| 92 | auto &oneShotAnalysisState = static_cast<const OneShotAnalysisState &>(state); |
| 93 | |
| 94 | if (auto *funcAnalysisState = |
| 95 | oneShotAnalysisState.getExtension<FuncAnalysisState>()) { |
| 96 | // Use the cached symbol tables. |
| 97 | return getCalledFunction(callOp, funcAnalysisState->symbolTables); |
| 98 | } |
| 99 | |
| 100 | SymbolTableCollection symbolTables; |
| 101 | return getCalledFunction(callOp, symbolTables); |
| 102 | } |
| 103 | |
| 104 | /// Get FuncAnalysisState. |
| 105 | static const FuncAnalysisState & |
| 106 | getFuncAnalysisState(const AnalysisState &state) { |
| 107 | assert(isa<OneShotAnalysisState>(state) && "expected OneShotAnalysisState" ); |
| 108 | auto *result = static_cast<const OneShotAnalysisState &>(state) |
| 109 | .getExtension<FuncAnalysisState>(); |
| 110 | assert(result && "FuncAnalysisState does not exist" ); |
| 111 | return *result; |
| 112 | } |
| 113 | |
| 114 | /// Return the state (phase) of analysis of the FuncOp. |
| 115 | static FuncOpAnalysisState getFuncOpAnalysisState(const AnalysisState &state, |
| 116 | FuncOp funcOp) { |
| 117 | if (!isa<OneShotAnalysisState>(Val: state)) |
| 118 | return FuncOpAnalysisState::NotAnalyzed; |
| 119 | auto *funcState = static_cast<const OneShotAnalysisState &>(state) |
| 120 | .getExtension<FuncAnalysisState>(); |
| 121 | if (!funcState) |
| 122 | return FuncOpAnalysisState::NotAnalyzed; |
| 123 | const auto &analyzedFuncOps = funcState->analyzedFuncOps; |
| 124 | auto it = analyzedFuncOps.find(funcOp); |
| 125 | if (it == analyzedFuncOps.end()) |
| 126 | return FuncOpAnalysisState::NotAnalyzed; |
| 127 | return it->second; |
| 128 | } |
| 129 | |
| 130 | /// Return the index of the bbArg in the given FuncOp that is equivalent to the |
| 131 | /// specified return value (if any). |
| 132 | static std::optional<int64_t> |
| 133 | getEquivalentFuncArgIdx(FuncOp funcOp, const FuncAnalysisState &state, |
| 134 | int64_t returnValIdx) { |
| 135 | auto funcOpIt = state.equivalentFuncArgs.find(funcOp); |
| 136 | if (funcOpIt == state.equivalentFuncArgs.end()) |
| 137 | // No equivalence info stores for funcOp. |
| 138 | return std::nullopt; |
| 139 | |
| 140 | auto retValIt = funcOpIt->getSecond().find(returnValIdx); |
| 141 | if (retValIt == funcOpIt->getSecond().end()) |
| 142 | // Return value has no equivalent bbArg. |
| 143 | return std::nullopt; |
| 144 | |
| 145 | return retValIt->getSecond(); |
| 146 | } |
| 147 | |
| 148 | struct CallOpInterface |
| 149 | : public BufferizableOpInterface::ExternalModel<CallOpInterface, |
| 150 | func::CallOp> { |
| 151 | bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand, |
| 152 | const AnalysisState &state) const { |
| 153 | func::CallOp callOp = cast<func::CallOp>(op); |
| 154 | FuncOp funcOp = getCalledFunction(callOp, state); |
| 155 | assert(funcOp && "expected CallOp to a FuncOp" ); |
| 156 | |
| 157 | if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed) |
| 158 | // FuncOp not analyzed yet. Assume that OpOperand is read. |
| 159 | return true; |
| 160 | |
| 161 | const FuncAnalysisState &funcState = getFuncAnalysisState(state); |
| 162 | return funcState.readBbArgs.lookup(Val: funcOp).contains( |
| 163 | opOperand.getOperandNumber()); |
| 164 | } |
| 165 | |
| 166 | bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand, |
| 167 | const AnalysisState &state) const { |
| 168 | func::CallOp callOp = cast<func::CallOp>(op); |
| 169 | FuncOp funcOp = getCalledFunction(callOp, state); |
| 170 | assert(funcOp && "expected CallOp to a FuncOp" ); |
| 171 | |
| 172 | if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed) |
| 173 | // FuncOp not analyzed yet. Assume that OpOperand is written. |
| 174 | return true; |
| 175 | |
| 176 | const FuncAnalysisState &funcState = getFuncAnalysisState(state); |
| 177 | return funcState.writtenBbArgs.lookup(Val: funcOp).contains( |
| 178 | opOperand.getOperandNumber()); |
| 179 | } |
| 180 | |
| 181 | AliasingValueList getAliasingValues(Operation *op, OpOperand &opOperand, |
| 182 | const AnalysisState &state) const { |
| 183 | func::CallOp callOp = cast<func::CallOp>(op); |
| 184 | FuncOp funcOp = getCalledFunction(callOp, state); |
| 185 | assert(funcOp && "expected CallOp to a FuncOp" ); |
| 186 | if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed) |
| 187 | // FuncOp not analyzed yet. Any OpResult may be aliasing. |
| 188 | return detail::unknownGetAliasingValues(opOperand); |
| 189 | |
| 190 | // Get aliasing results from state. |
| 191 | const FuncAnalysisState &funcState = getFuncAnalysisState(state); |
| 192 | auto aliasingReturnVals = |
| 193 | funcState.aliasingReturnVals.lookup(Val: funcOp).lookup( |
| 194 | opOperand.getOperandNumber()); |
| 195 | |
| 196 | // Check if the aliasing OpResult is equivalent to the OpOperand. |
| 197 | std::optional<int64_t> equivalent = {}; |
| 198 | if (aliasingReturnVals.size() == 1) { |
| 199 | equivalent = getEquivalentFuncArgIdx(funcOp, funcState, |
| 200 | aliasingReturnVals.front()); |
| 201 | assert((!equivalent.has_value() || |
| 202 | *equivalent == opOperand.getOperandNumber()) && |
| 203 | "inconsistent analysis state" ); |
| 204 | } |
| 205 | AliasingValueList result; |
| 206 | for (int64_t resultIdx : aliasingReturnVals) |
| 207 | result.addAlias({callOp->getOpResult(resultIdx), |
| 208 | equivalent.has_value() ? BufferRelation::Equivalent |
| 209 | : BufferRelation::Unknown, |
| 210 | /*isDefinite=*/equivalent.has_value()}); |
| 211 | return result; |
| 212 | } |
| 213 | |
| 214 | FailureOr<BaseMemRefType> |
| 215 | getBufferType(Operation *op, Value value, const BufferizationOptions &options, |
| 216 | const BufferizationState &state, |
| 217 | SmallVector<Value> &invocationStack) const { |
| 218 | auto callOp = cast<func::CallOp>(op); |
| 219 | |
| 220 | // TODO Avoid recomputing the symbol tables every time. |
| 221 | SymbolTableCollection symbolTable; |
| 222 | |
| 223 | FuncOp funcOp = getCalledFunction(callOp, symbolTable); |
| 224 | assert(funcOp && "expected CallOp to a FuncOp" ); |
| 225 | |
| 226 | // If the callee was already bufferized, we can directly take the type from |
| 227 | // its signature. |
| 228 | FunctionType funcType = funcOp.getFunctionType(); |
| 229 | Type resultType = |
| 230 | funcType.getResult(cast<OpResult>(Val&: value).getResultNumber()); |
| 231 | if (auto bufferizedType = dyn_cast<BaseMemRefType>(resultType)) |
| 232 | return bufferizedType; |
| 233 | |
| 234 | // Otherwise, call the type converter to compute the bufferized type. |
| 235 | auto tensorType = cast<TensorType>(Val&: resultType); |
| 236 | return options.functionArgTypeConverterFn( |
| 237 | tensorType, *options.defaultMemorySpaceFn(tensorType), funcOp, options); |
| 238 | } |
| 239 | |
| 240 | /// All function arguments are writable. It is the responsibility of the |
| 241 | /// CallOp to insert buffer copies where necessary. |
| 242 | LogicalResult bufferize(Operation *op, RewriterBase &rewriter, |
| 243 | const BufferizationOptions &options, |
| 244 | BufferizationState &state) const { |
| 245 | func::CallOp callOp = cast<func::CallOp>(op); |
| 246 | |
| 247 | // 1. Compute the result types of the new CallOp. |
| 248 | SmallVector<Type> resultTypes; |
| 249 | for (Value result : callOp.getResults()) { |
| 250 | Type returnType = result.getType(); |
| 251 | if (!isa<TensorType>(returnType)) { |
| 252 | // Non-tensor values are returned. |
| 253 | resultTypes.push_back(returnType); |
| 254 | continue; |
| 255 | } |
| 256 | |
| 257 | // Returning a memref. |
| 258 | FailureOr<BaseMemRefType> resultType = |
| 259 | bufferization::getBufferType(result, options, state); |
| 260 | if (failed(resultType)) |
| 261 | return failure(); |
| 262 | resultTypes.push_back(*resultType); |
| 263 | } |
| 264 | |
| 265 | // 2. Rewrite tensor operands as memrefs based on type of the already |
| 266 | // bufferized callee. |
| 267 | SmallVector<Value> newOperands; |
| 268 | |
| 269 | FuncOp funcOp = getCalledFunction(callOp, state.getSymbolTables()); |
| 270 | assert(funcOp && "expected CallOp to a FuncOp" ); |
| 271 | FunctionType funcType = funcOp.getFunctionType(); |
| 272 | |
| 273 | for (OpOperand &opOperand : callOp->getOpOperands()) { |
| 274 | // Non-tensor operands are just copied. |
| 275 | if (!isa<TensorType>(opOperand.get().getType())) { |
| 276 | newOperands.push_back(opOperand.get()); |
| 277 | continue; |
| 278 | } |
| 279 | |
| 280 | // Retrieve buffers for tensor operands. |
| 281 | FailureOr<Value> maybeBuffer = |
| 282 | getBuffer(rewriter, opOperand.get(), options, state); |
| 283 | if (failed(maybeBuffer)) |
| 284 | return failure(); |
| 285 | Value buffer = *maybeBuffer; |
| 286 | |
| 287 | // Caller / callee type mismatch is handled with castOrReallocMemRefValue. |
| 288 | auto memRefType = funcType.getInput(opOperand.getOperandNumber()); |
| 289 | if (!isa<BaseMemRefType>(memRefType)) { |
| 290 | // The called function was not bufferized yet. This can happen when |
| 291 | // there cycles in the function call graph. Compute the bufferized |
| 292 | // result type. |
| 293 | FailureOr<BaseMemRefType> maybeMemRefType = |
| 294 | bufferization::getBufferType( |
| 295 | funcOp.getArgument(opOperand.getOperandNumber()), options, |
| 296 | state); |
| 297 | if (failed(maybeMemRefType)) |
| 298 | return failure(); |
| 299 | memRefType = *maybeMemRefType; |
| 300 | } |
| 301 | |
| 302 | // Since we don't yet have a clear layout story, to_buffer may |
| 303 | // conservatively turn tensors into more dynamic memref than necessary. |
| 304 | // If the memref type of the callee fails, introduce an extra memref.cast |
| 305 | // that will either canonicalize away or fail compilation until we can do |
| 306 | // something better. Insert a reallocation + copy if it cannot be |
| 307 | // statically guaranteed that a direct cast would be valid. |
| 308 | if (buffer.getType() != memRefType) { |
| 309 | auto memrefDstType = dyn_cast<MemRefType>(memRefType); |
| 310 | assert(memrefDstType && |
| 311 | "buffer layout not supported on unranked tensors" ); |
| 312 | FailureOr<Value> replacement = bufferization::castOrReallocMemRefValue( |
| 313 | rewriter, buffer, memrefDstType, options); |
| 314 | if (failed(replacement)) |
| 315 | return failure(); |
| 316 | buffer = *replacement; |
| 317 | } |
| 318 | newOperands.push_back(buffer); |
| 319 | } |
| 320 | |
| 321 | // 3. Create the new CallOp. |
| 322 | Operation *newCallOp = rewriter.create<func::CallOp>( |
| 323 | callOp.getLoc(), funcOp.getSymName(), resultTypes, newOperands); |
| 324 | newCallOp->setAttrs(callOp->getAttrs()); |
| 325 | |
| 326 | // 4. Replace the old op with the new op. |
| 327 | replaceOpWithBufferizedValues(rewriter, callOp, newCallOp->getResults()); |
| 328 | |
| 329 | return success(); |
| 330 | } |
| 331 | }; |
| 332 | |
| 333 | struct ReturnOpInterface |
| 334 | : public BufferizableOpInterface::ExternalModel<ReturnOpInterface, |
| 335 | func::ReturnOp> { |
| 336 | bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand, |
| 337 | const AnalysisState &state) const { |
| 338 | return true; |
| 339 | } |
| 340 | |
| 341 | bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand, |
| 342 | const AnalysisState &state) const { |
| 343 | return false; |
| 344 | } |
| 345 | |
| 346 | AliasingValueList getAliasingValues(Operation *op, OpOperand &opOperand, |
| 347 | const AnalysisState &state) const { |
| 348 | return {}; |
| 349 | } |
| 350 | |
| 351 | LogicalResult bufferize(Operation *op, RewriterBase &rewriter, |
| 352 | const BufferizationOptions &options, |
| 353 | BufferizationState &state) const { |
| 354 | #ifndef NDEBUG |
| 355 | auto returnOp = cast<func::ReturnOp>(op); |
| 356 | assert(isa<FuncOp>(returnOp->getParentOp()) && |
| 357 | "only support FuncOp parent for ReturnOp" ); |
| 358 | #endif // NDEBUG |
| 359 | |
| 360 | // ReturnOps are bufferized as part of FuncOps. |
| 361 | return success(); |
| 362 | } |
| 363 | }; |
| 364 | |
| 365 | struct FuncOpInterface |
| 366 | : public OpWithUnstructuredControlFlowBufferizableOpInterfaceExternalModel< |
| 367 | FuncOpInterface, FuncOp> { |
| 368 | |
| 369 | static bool supportsUnstructuredControlFlow() { return true; } |
| 370 | |
| 371 | bool hasTensorSemantics(Operation *op) const { |
| 372 | auto isaTensor = llvm::IsaPred<TensorType>; |
| 373 | |
| 374 | // A function has tensor semantics if it has tensor arguments/results. |
| 375 | auto funcOp = cast<FuncOp>(op); |
| 376 | bool hasTensorArg = any_of(funcOp.getArgumentTypes(), isaTensor); |
| 377 | bool hasTensorResult = any_of(funcOp.getResultTypes(), isaTensor); |
| 378 | if (hasTensorArg || hasTensorResult) |
| 379 | return true; |
| 380 | |
| 381 | // It also has tensor semantics if it has tensor block arguments. |
| 382 | // TODO: Decouple bufferization of unstructured control flow from |
| 383 | // BufferizableOpInterface implementations. We should only care about |
| 384 | // region entry block arguments here (which are already covered by the |
| 385 | // argument types of the function). |
| 386 | for (Block &block : funcOp.getBody()) |
| 387 | if (any_of(block.getArgumentTypes(), isaTensor)) |
| 388 | return true; |
| 389 | |
| 390 | return false; |
| 391 | } |
| 392 | |
| 393 | AliasingOpOperandList |
| 394 | getAliasingOpOperands(Operation *op, Value value, |
| 395 | const AnalysisState &state) const { |
| 396 | return getAliasingBranchOpOperands(op, bbArg: cast<BlockArgument>(Val&: value), state); |
| 397 | } |
| 398 | |
| 399 | FailureOr<BaseMemRefType> |
| 400 | getBufferType(Operation *op, Value value, const BufferizationOptions &options, |
| 401 | const BufferizationState &state, |
| 402 | SmallVector<Value> &invocationStack) const { |
| 403 | auto funcOp = cast<FuncOp>(op); |
| 404 | auto bbArg = cast<BlockArgument>(Val&: value); |
| 405 | |
| 406 | // Function arguments are special. |
| 407 | if (bbArg.getOwner() == &funcOp.getBody().front()) |
| 408 | return getBufferizedFunctionArgType(funcOp, bbArg.getArgNumber(), |
| 409 | options); |
| 410 | |
| 411 | return OpWithUnstructuredControlFlowBufferizableOpInterfaceExternalModel:: |
| 412 | getBufferType(op, value, options, state, invocationStack); |
| 413 | } |
| 414 | |
| 415 | /// Rewrite function bbArgs and return values into buffer form. This function |
| 416 | /// bufferizes the function signature and the ReturnOp. When the entire |
| 417 | /// function body has been bufferized, function return types can be switched |
| 418 | /// to more concise memref types as part of `foldMemRefCasts`. |
| 419 | /// |
| 420 | /// All function bbArgs are writable unless they are explicitly marked as |
| 421 | /// read-only. Callers must insert copies when needed. |
| 422 | LogicalResult bufferize(Operation *op, RewriterBase &rewriter, |
| 423 | const BufferizationOptions &options, |
| 424 | BufferizationState &state) const { |
| 425 | auto funcOp = cast<FuncOp>(op); |
| 426 | FunctionType funcType = funcOp.getFunctionType(); |
| 427 | |
| 428 | // Compute the argument types. |
| 429 | SmallVector<Type> argTypes; |
| 430 | for (const auto &it : llvm::enumerate(funcType.getInputs())) { |
| 431 | Type argType = it.value(); |
| 432 | if (isa<TensorType>(argType)) { |
| 433 | argTypes.push_back( |
| 434 | getBufferizedFunctionArgType(funcOp, it.index(), options)); |
| 435 | continue; |
| 436 | } |
| 437 | argTypes.push_back(argType); |
| 438 | } |
| 439 | |
| 440 | // Compute the result types. |
| 441 | SmallVector<Type> retTypes; |
| 442 | for (Type resultType : funcType.getResults()) { |
| 443 | if (auto tensorType = dyn_cast<TensorType>(resultType)) { |
| 444 | BaseMemRefType resultType = options.functionArgTypeConverterFn( |
| 445 | tensorType, *options.defaultMemorySpaceFn(tensorType), funcOp, |
| 446 | options); |
| 447 | retTypes.push_back(resultType); |
| 448 | continue; |
| 449 | } |
| 450 | retTypes.push_back(resultType); |
| 451 | } |
| 452 | |
| 453 | // Compute the new function type. |
| 454 | auto newFuncType = FunctionType::get(op->getContext(), argTypes, retTypes); |
| 455 | |
| 456 | // If the function has no body, set the new function type and we are done. |
| 457 | if (funcOp.isExternal()) { |
| 458 | funcOp.setType(newFuncType); |
| 459 | return success(); |
| 460 | } |
| 461 | |
| 462 | // 1. Bufferize every block. |
| 463 | for (Block &block : funcOp.getBody()) |
| 464 | if (failed(bufferization::bufferizeBlockSignature(&block, rewriter, |
| 465 | options, state))) |
| 466 | return failure(); |
| 467 | |
| 468 | // 2. Bufferize the operands of the all return op. |
| 469 | for (func::ReturnOp returnOp : getReturnOps(funcOp)) { |
| 470 | assert(returnOp->getNumOperands() == retTypes.size() && |
| 471 | "incorrect number of return values" ); |
| 472 | SmallVector<Value> returnValues; |
| 473 | for (auto [returnVal, bufferizedType] : |
| 474 | llvm::zip_equal(returnOp->getOperands(), retTypes)) { |
| 475 | auto tensorType = dyn_cast<TensorType>(returnVal.getType()); |
| 476 | rewriter.setInsertionPoint(returnOp); |
| 477 | |
| 478 | // If not a tensor type just forward it. |
| 479 | if (!tensorType) { |
| 480 | returnValues.push_back(returnVal); |
| 481 | continue; |
| 482 | } |
| 483 | |
| 484 | // Note: If `inferFunctionResultLayout = true`, casts are later folded |
| 485 | // away. |
| 486 | Value toBufferOp = rewriter.create<bufferization::ToBufferOp>( |
| 487 | returnOp.getLoc(), bufferizedType, returnVal); |
| 488 | returnValues.push_back(toBufferOp); |
| 489 | } |
| 490 | |
| 491 | returnOp.getOperandsMutable().assign(returnValues); |
| 492 | } |
| 493 | |
| 494 | // 3. Set the new function type. |
| 495 | funcOp.setType(newFuncType); |
| 496 | return success(); |
| 497 | } |
| 498 | |
| 499 | /// Return `true` if the given function argument is writable. |
| 500 | bool isWritable(Operation *op, Value value, |
| 501 | const AnalysisState &state) const { |
| 502 | auto funcOp = cast<FuncOp>(op); |
| 503 | BlockArgument bbArg = dyn_cast<BlockArgument>(Val&: value); |
| 504 | assert(bbArg && "expected BlockArgument" ); |
| 505 | |
| 506 | // Non-entry block arguments are always writable. (They may alias with |
| 507 | // values that are not writable, which will turn them into read-only.) |
| 508 | if (bbArg.getOwner() != &funcOp.getBody().front()) |
| 509 | return true; |
| 510 | |
| 511 | // "bufferization.writable" overrides other writability decisions. This is |
| 512 | // currently used for testing only. |
| 513 | if (BoolAttr writable = funcOp.getArgAttrOfType<BoolAttr>( |
| 514 | bbArg.getArgNumber(), BufferizationDialect::kWritableAttrName)) |
| 515 | return writable.getValue(); |
| 516 | |
| 517 | // All function arguments are writable by default. |
| 518 | return true; |
| 519 | } |
| 520 | }; |
| 521 | |
| 522 | } // namespace func_ext |
| 523 | } // namespace bufferization |
| 524 | } // namespace mlir |
| 525 | |
| 526 | void mlir::bufferization::func_ext:: |
| 527 | registerBufferizableOpInterfaceExternalModels(DialectRegistry ®istry) { |
| 528 | registry.addExtension(extensionFn: +[](MLIRContext *ctx, func::FuncDialect *dialect) { |
| 529 | func::CallOp::attachInterface<func_ext::CallOpInterface>(*ctx); |
| 530 | func::FuncOp::attachInterface<func_ext::FuncOpInterface>(*ctx); |
| 531 | func::ReturnOp::attachInterface<func_ext::ReturnOpInterface>(*ctx); |
| 532 | }); |
| 533 | } |
| 534 | |