| 1 | //===- OneShotAnalysis.cpp - One-Shot (Single Pass) Analysis --------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // One-Shot Analysis analyzes function bodies. By default, function boundaries |
| 10 | // (FuncOp bbArgs, CallOps, ReturnOps) are treated as "unknown" ops. |
| 11 | // OneShotModuleBufferization.cpp is an extension of One-Shot Analysis for |
| 12 | // simple call graphs without loops. |
| 13 | // |
| 14 | // One-Shot Bufferize consists of three phases. |
| 15 | // |
| 16 | // 1. Analyze ops to decide which OpOperands can bufferize inplace, i.e., |
| 17 | // without inserting buffer copies. The analysis queries op bufferization |
| 18 | // semantics via `BufferizableOpInterface`. |
| 19 | // 2. Insert copies for OpOperands that were decided to bufferize out-of-place |
| 20 | // in tensor land during `TensorCopyInsertion`. |
| 21 | // 3. Bufferize ops by calling `BufferizableOpInterface::bufferize`. |
| 22 | // |
| 23 | // This file contains only the analysis. For convenience, this file also |
| 24 | // contains a helper function `runOneShotBufferize` that analyzes an op (and its |
| 25 | // nested ops) and then bufferizes it. |
| 26 | // |
| 27 | // Inplace bufferization decisions are passed from the analysis to the |
| 28 | // `TensorCopyInsertion` phase via `AnalysisState`. They can be printed for |
| 29 | // debugging purposes with `testAnalysisOnly`. |
| 30 | // |
| 31 | // Ops that do not implement `BufferizableOpInterface` can be analyzed but are |
| 32 | // treated conservatively. E.g., the analysis has to assume that their tensor |
| 33 | // OpOperands bufferize to memory writes. While such ops can be analyzed, they |
| 34 | // are not bufferized and remain in the IR. to_tensor and to_buffer ops are |
| 35 | // inserted at the bufferization boundary. |
| 36 | // |
| 37 | // This analysis caters to high-performance codegen where buffer reuse is deemed |
| 38 | // critical: the analysis should fail if the bufferized form of the function |
| 39 | // needs to return a buffer, unless `allowReturnAllocs` is enabled. |
| 40 | |
| 41 | #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" |
| 42 | |
| 43 | #include <optional> |
| 44 | #include <random> |
| 45 | |
| 46 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
| 47 | #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
| 48 | #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" |
| 49 | #include "mlir/Dialect/Bufferization/Transforms/Transforms.h" |
| 50 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 51 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 52 | #include "mlir/IR/AsmState.h" |
| 53 | #include "mlir/IR/Dominance.h" |
| 54 | #include "mlir/IR/Iterators.h" |
| 55 | #include "mlir/IR/Operation.h" |
| 56 | #include "mlir/IR/TypeUtilities.h" |
| 57 | #include "mlir/Interfaces/ControlFlowInterfaces.h" |
| 58 | #include "mlir/Interfaces/SubsetOpInterface.h" |
| 59 | #include "llvm/ADT/DenseSet.h" |
| 60 | #include "llvm/ADT/SetVector.h" |
| 61 | |
| 62 | MLIR_DEFINE_EXPLICIT_TYPE_ID(mlir::bufferization::OneShotAnalysisState) |
| 63 | |
| 64 | // Run mlir-opt with `-debug-only="one-shot-analysis"` for detailed debug |
| 65 | // output. |
| 66 | #define DEBUG_TYPE "one-shot-analysis" |
| 67 | |
| 68 | using namespace mlir; |
| 69 | using namespace mlir::bufferization; |
| 70 | |
| 71 | static bool isaTensor(Type t) { return isa<TensorType>(Val: t); } |
| 72 | |
| 73 | //===----------------------------------------------------------------------===// |
| 74 | // Bufferization-specific attribute manipulation. |
| 75 | // These are for testing and debugging only. Bufferization information is stored |
| 76 | // in OneShotBufferizationState. When run with `testAnalysisOnly`, the IR is |
| 77 | // annotated with the results of the analysis, so that they can be checked in |
| 78 | // tests. |
| 79 | //===----------------------------------------------------------------------===// |
| 80 | |
| 81 | /// Attribute marker to specify op operands that bufferize in-place. |
| 82 | constexpr StringLiteral kInPlaceOperandsAttrName = "__inplace_operands_attr__" ; |
| 83 | |
| 84 | constexpr StringLiteral kOpResultAliasSetAttrName = |
| 85 | "__opresult_alias_set_attr__" ; |
| 86 | |
| 87 | constexpr StringLiteral kBbArgAliasSetAttrName = "__bbarg_alias_set_attr__" ; |
| 88 | |
| 89 | /// Mark whether OpOperand will be bufferized inplace. |
| 90 | static void setInPlaceOpOperand(OpOperand &opOperand, bool inPlace) { |
| 91 | Operation *op = opOperand.getOwner(); |
| 92 | SmallVector<StringRef> inPlaceVector; |
| 93 | if (auto attr = op->getAttr(name: kInPlaceOperandsAttrName)) { |
| 94 | inPlaceVector = SmallVector<StringRef>(llvm::to_vector<4>( |
| 95 | cast<ArrayAttr>(attr).getAsValueRange<StringAttr>())); |
| 96 | } else { |
| 97 | inPlaceVector = SmallVector<StringRef>(op->getNumOperands(), "none" ); |
| 98 | for (OpOperand &opOperand : op->getOpOperands()) |
| 99 | if (isa<TensorType>(Val: opOperand.get().getType())) |
| 100 | inPlaceVector[opOperand.getOperandNumber()] = "false" ; |
| 101 | } |
| 102 | inPlaceVector[opOperand.getOperandNumber()] = inPlace ? "true" : "false" ; |
| 103 | op->setAttr(kInPlaceOperandsAttrName, |
| 104 | OpBuilder(op).getStrArrayAttr(inPlaceVector)); |
| 105 | } |
| 106 | |
| 107 | //===----------------------------------------------------------------------===// |
| 108 | // OneShotAnalysisState |
| 109 | //===----------------------------------------------------------------------===// |
| 110 | |
| 111 | OneShotAnalysisState::OneShotAnalysisState( |
| 112 | Operation *op, const OneShotBufferizationOptions &options) |
| 113 | : AnalysisState(options, TypeID::get<OneShotAnalysisState>()) { |
| 114 | // Set up alias sets. |
| 115 | op->walk(callback: [&](Operation *op) { |
| 116 | for (Value v : op->getResults()) |
| 117 | if (isa<TensorType>(Val: v.getType())) |
| 118 | createAliasInfoEntry(v); |
| 119 | for (Region &r : op->getRegions()) |
| 120 | for (Block &b : r.getBlocks()) |
| 121 | for (auto bbArg : b.getArguments()) |
| 122 | if (isa<TensorType>(Val: bbArg.getType())) |
| 123 | createAliasInfoEntry(v: bbArg); |
| 124 | }); |
| 125 | |
| 126 | // Mark OpOperands in-place that must bufferize in-place. |
| 127 | op->walk([&](BufferizableOpInterface bufferizableOp) { |
| 128 | if (!options.isOpAllowed(op: bufferizableOp)) |
| 129 | return WalkResult::skip(); |
| 130 | for (OpOperand &opOperand : bufferizableOp->getOpOperands()) |
| 131 | if (isa<TensorType>(opOperand.get().getType())) |
| 132 | if (bufferizableOp.mustBufferizeInPlace(opOperand, *this)) |
| 133 | bufferizeInPlace(opOperand); |
| 134 | return WalkResult::advance(); |
| 135 | }); |
| 136 | } |
| 137 | |
| 138 | void OneShotAnalysisState::applyOnEquivalenceClass( |
| 139 | Value v, function_ref<void(Value)> fun) const { |
| 140 | auto leaderIt = equivalentInfo.findLeader(V: v); |
| 141 | for (auto mit = leaderIt, meit = equivalentInfo.member_end(); mit != meit; |
| 142 | ++mit) { |
| 143 | fun(*mit); |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | void OneShotAnalysisState::applyOnAliases(Value v, |
| 148 | function_ref<void(Value)> fun) const { |
| 149 | auto leaderIt = aliasInfo.findLeader(V: v); |
| 150 | for (auto mit = leaderIt, meit = aliasInfo.member_end(); mit != meit; ++mit) { |
| 151 | fun(*mit); |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | bool OneShotAnalysisState::areEquivalentBufferizedValues(Value v1, |
| 156 | Value v2) const { |
| 157 | return equivalentInfo.isEquivalent(V1: v1, V2: v2); |
| 158 | } |
| 159 | |
| 160 | bool OneShotAnalysisState::areAliasingBufferizedValues(Value v1, |
| 161 | Value v2) const { |
| 162 | return aliasInfo.isEquivalent(V1: v1, V2: v2); |
| 163 | } |
| 164 | |
| 165 | void OneShotAnalysisState::bufferizeInPlace(OpOperand &operand) { |
| 166 | if (inplaceBufferized.contains(V: &operand)) |
| 167 | return; |
| 168 | inplaceBufferized.insert(V: &operand); |
| 169 | for (AliasingValue alias : getAliasingValues(operand)) |
| 170 | aliasInfo.unionSets(alias.value, operand.get()); |
| 171 | ++statNumTensorInPlace; |
| 172 | } |
| 173 | |
| 174 | void OneShotAnalysisState::bufferizeOutOfPlace(OpOperand &operand) { |
| 175 | assert(!inplaceBufferized.contains(&operand) && |
| 176 | "OpOperand was already decided to bufferize inplace" ); |
| 177 | ++statNumTensorOutOfPlace; |
| 178 | } |
| 179 | |
| 180 | void OneShotAnalysisState::createAliasInfoEntry(Value v) { |
| 181 | aliasInfo.insert(Data: v); |
| 182 | equivalentInfo.insert(Data: v); |
| 183 | } |
| 184 | |
| 185 | void OneShotAnalysisState::gatherUndefinedTensorUses(Operation *op) { |
| 186 | op->walk(callback: [&](Operation *op) { |
| 187 | // Skip unknown ops. |
| 188 | auto bufferizableOp = getOptions().dynCastBufferizableOp(op); |
| 189 | if (!bufferizableOp) |
| 190 | return WalkResult::skip(); |
| 191 | |
| 192 | // Check all tensor OpResults. |
| 193 | for (OpResult opResult : op->getOpResults()) { |
| 194 | if (!isa<TensorType>(Val: opResult.getType())) |
| 195 | continue; |
| 196 | |
| 197 | // If there is no preceding definition, the tensor contents are |
| 198 | // undefined. |
| 199 | if (opResult.getUses().empty()) |
| 200 | continue; |
| 201 | // It does not really matter which use to take to search about |
| 202 | // the value's definitions. |
| 203 | OpOperand *opOperand = &(*opResult.getUses().begin()); |
| 204 | if (findDefinitionsCached(opOperand).empty()) |
| 205 | for (OpOperand &use : opResult.getUses()) |
| 206 | undefinedTensorUses.insert(V: &use); |
| 207 | } |
| 208 | |
| 209 | return WalkResult::advance(); |
| 210 | }); |
| 211 | } |
| 212 | |
| 213 | bool OneShotAnalysisState::hasUndefinedContents(OpOperand *opOperand) const { |
| 214 | return undefinedTensorUses.contains(V: opOperand); |
| 215 | } |
| 216 | |
| 217 | bool OneShotAnalysisState::isInPlace(OpOperand &opOperand) const { |
| 218 | return inplaceBufferized.contains(V: &opOperand); |
| 219 | } |
| 220 | |
| 221 | bool OneShotAnalysisState::isValueWritten(Value value) const { |
| 222 | bool isWritten = false; |
| 223 | applyOnAliases(v: value, fun: [&](Value val) { |
| 224 | for (OpOperand &use : val.getUses()) |
| 225 | if (isInPlace(opOperand&: use) && bufferizesToMemoryWrite(use)) |
| 226 | isWritten = true; |
| 227 | }); |
| 228 | return isWritten; |
| 229 | } |
| 230 | |
| 231 | bool OneShotAnalysisState::isWritable(Value value) const { |
| 232 | // TODO: Out-of-place bufferized value could be considered writable. |
| 233 | // Query BufferizableOpInterface to see if the BlockArgument is writable. |
| 234 | if (auto bufferizableOp = |
| 235 | getOptions().dynCastBufferizableOp(getOwnerOfValue(value))) |
| 236 | return bufferizableOp.isWritable(value, *this); |
| 237 | |
| 238 | // Not a bufferizable op: The conservative answer is "not writable". |
| 239 | return false; |
| 240 | } |
| 241 | |
| 242 | void OneShotAnalysisState::unionAliasSets(Value v1, Value v2) { |
| 243 | aliasInfo.unionSets(V1: v1, V2: v2); |
| 244 | } |
| 245 | |
| 246 | void OneShotAnalysisState::unionEquivalenceClasses(Value v1, Value v2) { |
| 247 | equivalentInfo.unionSets(V1: v1, V2: v2); |
| 248 | } |
| 249 | |
| 250 | OneShotAnalysisState::Extension::~Extension() = default; |
| 251 | |
| 252 | //===----------------------------------------------------------------------===// |
| 253 | // Bufferization-specific alias analysis. |
| 254 | //===----------------------------------------------------------------------===// |
| 255 | |
| 256 | /// Return true if opOperand has been decided to bufferize in-place. |
| 257 | static bool isInplaceMemoryWrite(OpOperand &opOperand, |
| 258 | const OneShotAnalysisState &state) { |
| 259 | // OpOperands that do not bufferize to a memory write do not write in-place. |
| 260 | if (!state.bufferizesToMemoryWrite(opOperand)) |
| 261 | return false; |
| 262 | // Check current bufferization decisions. |
| 263 | return state.isInPlace(opOperand); |
| 264 | } |
| 265 | |
| 266 | /// Return true if `a` happens before `b`, i.e., `a` or one of its ancestors |
| 267 | /// properly dominates `b` and `b` is not inside `a`. |
| 268 | static bool happensBefore(Operation *a, Operation *b, |
| 269 | const DominanceInfo &domInfo) { |
| 270 | do { |
| 271 | // TODO: Instead of isProperAncestor + properlyDominates, we should use |
| 272 | // properlyDominatesImpl(a, b, /*enclosingOpOk=*/false) |
| 273 | if (a->isProperAncestor(other: b)) |
| 274 | return false; |
| 275 | if (domInfo.properlyDominates(a, b)) |
| 276 | return true; |
| 277 | } while ((a = a->getParentOp())); |
| 278 | return false; |
| 279 | } |
| 280 | |
| 281 | /// Return `true` if op dominance can be used to rule out a read-after-write |
| 282 | /// conflicts based on the ordering of ops. Returns `false` if op dominance |
| 283 | /// cannot be used to due region-based loops. |
| 284 | /// |
| 285 | /// Generalized op dominance can often be used to rule out potential conflicts |
| 286 | /// due to "read happens before write". E.g., the following IR is not a RaW |
| 287 | /// conflict because the read happens *before* the write. |
| 288 | /// |
| 289 | /// Example 1: |
| 290 | /// %0 = ... : tensor<?xf32> // DEF |
| 291 | /// "reading_op"(%0) : tensor<?xf32> // READ |
| 292 | /// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32> // WRITE |
| 293 | /// |
| 294 | /// This is no longer true inside loops (or repetitive regions). In such cases, |
| 295 | /// there may not be a meaningful `happensBefore` relationship because ops |
| 296 | /// could be executed multiple times. E.g.: |
| 297 | /// |
| 298 | /// Example 2: |
| 299 | /// %0 = ... : tensor<?xf32> // DEF |
| 300 | /// scf.for ... { |
| 301 | /// "reading_op"(%0) : tensor<?xf32> // READ |
| 302 | /// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32> // WRITE |
| 303 | /// ... |
| 304 | /// } |
| 305 | /// |
| 306 | /// In the above example, reading_op happens before writing_op according to |
| 307 | /// op dominance. However, both ops may happen multiple times; in |
| 308 | /// particular, the second execution of reading_op happens after the first |
| 309 | /// execution of writing_op. This is problematic because the tensor %0 they |
| 310 | /// operate on (i.e., the "definition") is defined outside of the loop. |
| 311 | /// |
| 312 | /// On a high-level, there is a potential RaW in a program if there exists a |
| 313 | /// possible program execution such that there is a sequence of DEF, followed |
| 314 | /// by WRITE, followed by READ. Each additional DEF resets the sequence. |
| 315 | /// |
| 316 | /// E.g.: |
| 317 | /// No conflict: DEF, WRITE, DEF, READ |
| 318 | /// Potential conflict: DEF, READ, WRITE, READ, WRITE |
| 319 | /// |
| 320 | /// Example 1 has no conflict: DEF, READ, WRITE |
| 321 | /// Example 2 has a potential conflict: DEF, (READ, WRITE)* |
| 322 | // |
| 323 | /// Example 3: |
| 324 | /// scf.for ... { |
| 325 | /// %0 = ... : tensor<?xf32> |
| 326 | /// "reading_op"(%0) : tensor<?xf32> |
| 327 | /// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32> |
| 328 | /// ... |
| 329 | /// } |
| 330 | /// This has no conflict: (DEF, READ, WRITE)* |
| 331 | /// |
| 332 | /// Example 4: |
| 333 | /// %0 = ... : tensor<?xf32> |
| 334 | /// scf.for ... { |
| 335 | /// scf.for ... { "reading_op"(%0) } |
| 336 | /// %1 = "writing_op"(%0) |
| 337 | /// } |
| 338 | /// This has a potential conflict: DEF, ((READ)*, WRITE)* |
| 339 | /// |
| 340 | /// Example 5: |
| 341 | /// %0 = ... : tensor<?xf32> |
| 342 | /// scf.for ... { %1 = "writing_op"(%0) } |
| 343 | /// scf.for ... { "reading_op"(%0) } |
| 344 | /// This has a potential conflict: DEF, WRITE*, READ* |
| 345 | /// |
| 346 | /// The following rules are used to rule out RaW conflicts via ordering of ops: |
| 347 | /// |
| 348 | /// 1. If the closest enclosing repetitive region of DEF is a proper ancestor of |
| 349 | /// a repetitive region that enclosing both READ and WRITE, we cannot rule |
| 350 | /// out RaW conflict due to the ordering of ops. |
| 351 | /// 2. Otherwise: There are no loops that interfere with our analysis; for |
| 352 | /// analysis purposes, we can assume that there are no loops/repetitive |
| 353 | /// regions. I.e., we can rule out a RaW conflict if READ happensBefore WRITE |
| 354 | /// or WRITE happensBefore DEF. (Checked in `hasReadAfterWriteInterference`.) |
| 355 | /// |
| 356 | static bool canUseOpDominanceDueToRegions(OpOperand *uRead, OpOperand *uWrite, |
| 357 | const SetVector<Value> &definitions, |
| 358 | AnalysisState &state) { |
| 359 | const BufferizationOptions &options = state.getOptions(); |
| 360 | for (Value def : definitions) { |
| 361 | Region *rRead = |
| 362 | state.getEnclosingRepetitiveRegion(op: uRead->getOwner(), options); |
| 363 | Region *rDef = state.getEnclosingRepetitiveRegion(value: def, options); |
| 364 | |
| 365 | // READ and DEF are in the same repetitive region. `happensBefore` can be |
| 366 | // used to rule out RaW conflicts due to op ordering. |
| 367 | if (rRead == rDef) |
| 368 | continue; |
| 369 | |
| 370 | // Find the enclosing repetitive region of READ that is closest to DEF but |
| 371 | // not the repetitive region of DEF itself. |
| 372 | while (true) { |
| 373 | Region *nextRegion = getNextEnclosingRepetitiveRegion(region: rRead, options); |
| 374 | if (nextRegion == rDef) |
| 375 | break; |
| 376 | assert(nextRegion && "expected to find another repetitive region" ); |
| 377 | rRead = nextRegion; |
| 378 | } |
| 379 | |
| 380 | // We cannot use op dominance if WRITE is inside the same repetitive region. |
| 381 | if (rRead->getParentOp()->isAncestor(other: uWrite->getOwner())) |
| 382 | return false; |
| 383 | } |
| 384 | |
| 385 | return true; |
| 386 | } |
| 387 | |
| 388 | /// Return `true` if op dominance can be used to rule out a read-after-write |
| 389 | /// conflicts based on the ordering of ops. Returns `false` if op dominance |
| 390 | /// cannot be used to due block-based loops within a region. |
| 391 | /// |
| 392 | /// Refer to the `canUseOpDominanceDueToRegions` documentation for details on |
| 393 | /// how op domiance is used during RaW conflict detection. |
| 394 | /// |
| 395 | /// On a high-level, there is a potential RaW in a program if there exists a |
| 396 | /// possible program execution such that there is a sequence of DEF, followed |
| 397 | /// by WRITE, followed by READ. Each additional DEF resets the sequence. |
| 398 | /// |
| 399 | /// Op dominance cannot be used if there is a path from block(READ) to |
| 400 | /// block(WRITE) and a path from block(WRITE) to block(READ). block(DEF) should |
| 401 | /// not appear on that path. |
| 402 | static bool canUseOpDominanceDueToBlocks(OpOperand *uRead, OpOperand *uWrite, |
| 403 | const SetVector<Value> &definitions, |
| 404 | AnalysisState &state) { |
| 405 | // Fast path: If READ and WRITE are in different regions, their block cannot |
| 406 | // be reachable just via unstructured control flow. (Loops due to regions are |
| 407 | // covered by `canUseOpDominanceDueToRegions`.) |
| 408 | if (uRead->getOwner()->getParentRegion() != |
| 409 | uWrite->getOwner()->getParentRegion()) |
| 410 | return true; |
| 411 | |
| 412 | Block *readBlock = uRead->getOwner()->getBlock(); |
| 413 | Block *writeBlock = uWrite->getOwner()->getBlock(); |
| 414 | for (Value def : definitions) { |
| 415 | Block *defBlock = def.getParentBlock(); |
| 416 | if (readBlock->isReachable(other: writeBlock, except: {defBlock}) && |
| 417 | writeBlock->isReachable(other: readBlock, except: {defBlock})) |
| 418 | return false; |
| 419 | } |
| 420 | |
| 421 | return true; |
| 422 | } |
| 423 | |
| 424 | static bool canUseOpDominance(OpOperand *uRead, OpOperand *uWrite, |
| 425 | const SetVector<Value> &definitions, |
| 426 | AnalysisState &state) { |
| 427 | return canUseOpDominanceDueToRegions(uRead, uWrite, definitions, state) && |
| 428 | canUseOpDominanceDueToBlocks(uRead, uWrite, definitions, state); |
| 429 | } |
| 430 | |
| 431 | /// Annotate IR with details about the detected RaW conflict. |
| 432 | static void annotateConflict(OpOperand *uRead, OpOperand *uConflictingWrite, |
| 433 | Value definition) { |
| 434 | static uint64_t counter = 0; |
| 435 | Operation *readingOp = uRead->getOwner(); |
| 436 | Operation *conflictingWritingOp = uConflictingWrite->getOwner(); |
| 437 | |
| 438 | OpBuilder b(conflictingWritingOp->getContext()); |
| 439 | std::string id = "C_" + std::to_string(val: counter++); |
| 440 | |
| 441 | std::string conflictingWriteAttr = |
| 442 | id + |
| 443 | "[CONFL-WRITE: " + std::to_string(val: uConflictingWrite->getOperandNumber()) + |
| 444 | "]" ; |
| 445 | conflictingWritingOp->setAttr(conflictingWriteAttr, b.getUnitAttr()); |
| 446 | |
| 447 | std::string readAttr = |
| 448 | id + "[READ: " + std::to_string(val: uRead->getOperandNumber()) + "]" ; |
| 449 | readingOp->setAttr(readAttr, b.getUnitAttr()); |
| 450 | |
| 451 | if (auto opResult = dyn_cast<OpResult>(Val&: definition)) { |
| 452 | std::string defAttr = |
| 453 | id + "[DEF: result " + std::to_string(val: opResult.getResultNumber()) + "]" ; |
| 454 | opResult.getDefiningOp()->setAttr(defAttr, b.getUnitAttr()); |
| 455 | } else { |
| 456 | auto bbArg = cast<BlockArgument>(Val&: definition); |
| 457 | std::string defAttr = |
| 458 | id + "[DEF: bbArg " + std::to_string(val: bbArg.getArgNumber()) + "]" ; |
| 459 | bbArg.getOwner()->getParentOp()->setAttr(defAttr, b.getUnitAttr()); |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | /// Return 'true' if a tensor that is equivalent to `other` can be found in the |
| 464 | /// reverse use-def chain of `start`. Note: If an OpOperand bufferizes out of |
| 465 | /// place along that use-def chain, the two tensors may not materialize as |
| 466 | /// equivalent buffers (but separate allocations). |
| 467 | /// |
| 468 | /// Note: This function also requires that the two tensors have equivalent |
| 469 | /// indexing. I.e., the tensor types do not change along the use-def chain, |
| 470 | /// apart from static <-> dynamic dim casts. |
| 471 | static bool hasEquivalentValueInReverseUseDefChain(AnalysisState &state, |
| 472 | OpOperand *start, |
| 473 | Value other) { |
| 474 | TraversalConfig config; |
| 475 | config.followEquivalentOnly = true; |
| 476 | config.alwaysIncludeLeaves = false; |
| 477 | config.followSameTypeOrCastsOnly = true; |
| 478 | return !state |
| 479 | .findValueInReverseUseDefChain( |
| 480 | start, [&](Value v) { return v == other; }, config) |
| 481 | .empty(); |
| 482 | } |
| 483 | |
| 484 | /// Return "true" if the given operand's value is originating from a subset |
| 485 | /// that is equivalent to the subset that `subsetOp` inserts into. |
| 486 | static bool matchesInsertDestination(const AnalysisState &state, |
| 487 | OpOperand *opOperand, |
| 488 | SubsetInsertionOpInterface subsetOp) { |
| 489 | auto matchingSubset = [&](Value val) { |
| 490 | if (auto opResult = dyn_cast<OpResult>(Val&: val)) |
| 491 | if (subsetOp.isEquivalentSubset(opResult, [&](Value v1, Value v2) { |
| 492 | return state.areEquivalentBufferizedValues(v1, v2); |
| 493 | })) |
| 494 | return true; |
| 495 | return false; |
| 496 | }; |
| 497 | // There may be multiple leaves at which the reverse SSA use-def chain lookup |
| 498 | // terminates. All of them must be equivalent subsets. |
| 499 | SetVector<Value> backwardSlice = |
| 500 | state.findValueInReverseUseDefChain(opOperand, matchingSubset); |
| 501 | return static_cast<bool>(llvm::all_of(Range&: backwardSlice, P: matchingSubset)); |
| 502 | } |
| 503 | |
| 504 | /// Return "true" if the given "read" and potentially conflicting "write" are |
| 505 | /// not conflicting due to their subset relationship. The comments in this |
| 506 | /// function are expressed in terms of tensor.extract_slice/tensor.insert_slice |
| 507 | /// pairs, but apply to any subset ops that implement the |
| 508 | /// `SubsetInsertionOpInterface`. |
| 509 | static bool areNonConflictingSubsets(OpOperand *uRead, |
| 510 | OpOperand *uConflictingWrite, |
| 511 | const AnalysisState &state) { |
| 512 | Operation *readingOp = uRead->getOwner(); |
| 513 | Operation *conflictingWritingOp = uConflictingWrite->getOwner(); |
| 514 | |
| 515 | // Special rules for matching ExtractSliceOp/InsertSliceOp pairs. If |
| 516 | // uRead is an InsertSliceOp... |
| 517 | if (auto subsetOp = dyn_cast<SubsetInsertionOpInterface>(readingOp)) { |
| 518 | // As an example, consider the following IR. |
| 519 | // |
| 520 | // %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace = [true] } |
| 521 | // %1 = linalg.fill %cst, %0 {inplace= [true] } |
| 522 | // %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1] |
| 523 | // {inplace= [true] } |
| 524 | |
| 525 | if (uRead == &subsetOp.getDestinationOperand() && |
| 526 | matchesInsertDestination(state, uConflictingWrite, subsetOp)) |
| 527 | // Case 1: The main insight is that InsertSliceOp reads only part of |
| 528 | // the destination tensor. The overwritten area is not read. If |
| 529 | // uConflictingWrite writes into exactly the memory location that is |
| 530 | // being read by uRead, this is not a conflict. |
| 531 | // |
| 532 | // In the above example: |
| 533 | // uRead = OpOperand 1 (%t) of tensor.insert_slice |
| 534 | // uConflictingWrite = OpOperand 1 (%0) of linalg.fill |
| 535 | // |
| 536 | // The read of %t does not conflict with the write of the FillOp |
| 537 | // (same aliases!) because the area that the FillOp operates on is |
| 538 | // exactly the one that is *not* read via %t. |
| 539 | return true; |
| 540 | |
| 541 | if (uRead == &subsetOp.getSourceOperand() && |
| 542 | uConflictingWrite == &subsetOp.getDestinationOperand() && |
| 543 | matchesInsertDestination(state, uRead, subsetOp)) |
| 544 | // Case 2: The read of the source tensor and the write to the dest |
| 545 | // tensor via an InsertSliceOp is not a conflict if the read is |
| 546 | // reading exactly that part of an equivalent tensor that the |
| 547 | // InsertSliceOp is writing. |
| 548 | // |
| 549 | // In the above example: |
| 550 | // uRead = OpOperand 0 (%1) of tensor.insert_slice |
| 551 | // uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice |
| 552 | return true; |
| 553 | } |
| 554 | |
| 555 | // If uConflictingWrite is an InsertSliceOp... |
| 556 | if (auto subsetOp = |
| 557 | dyn_cast<SubsetInsertionOpInterface>(conflictingWritingOp)) |
| 558 | // As an example, consider the following IR. |
| 559 | // |
| 560 | // %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace = [true] } |
| 561 | // %1 = linalg.fill %cst, %0 {inplace= [true] } |
| 562 | // %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1] |
| 563 | // {inplace= [true] } |
| 564 | // %3 = vector.transfer_read %1, %cst |
| 565 | // |
| 566 | // In the above example: |
| 567 | // uRead = OpOperand 0 (%1) of vector.transfer_read |
| 568 | // uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice |
| 569 | // definition = %1 |
| 570 | // |
| 571 | // This is not a conflict because the InsertSliceOp overwrites the |
| 572 | // memory segment of %1 with the exact same data. (Effectively, there |
| 573 | // is no memory write here.) |
| 574 | if (uConflictingWrite == &subsetOp.getDestinationOperand() && |
| 575 | state.areEquivalentBufferizedValues( |
| 576 | v1: uRead->get(), v2: subsetOp.getSourceOperand().get()) && |
| 577 | matchesInsertDestination(state, &subsetOp.getSourceOperand(), subsetOp)) |
| 578 | return true; |
| 579 | |
| 580 | return false; |
| 581 | } |
| 582 | |
| 583 | /// Given sets of uses and writes, return true if there is a RaW conflict under |
| 584 | /// the assumption that all given reads/writes alias the same buffer and that |
| 585 | /// all given writes bufferize inplace. |
| 586 | /// |
| 587 | /// A conflict is: According to SSA use-def chains, a read R is supposed to read |
| 588 | /// the result of a definition W1. But because of bufferization decisions, R |
| 589 | /// actually reads another definition W2. |
| 590 | static bool |
| 591 | hasReadAfterWriteInterference(const DenseSet<OpOperand *> &usesRead, |
| 592 | const DenseSet<OpOperand *> &usesWrite, |
| 593 | const DominanceInfo &domInfo, |
| 594 | OneShotAnalysisState &state) { |
| 595 | const BufferizationOptions &options = state.getOptions(); |
| 596 | |
| 597 | // Before going through the main RaW analysis, find cases where a buffer must |
| 598 | // be privatized due to parallelism. If the result of a write is never read, |
| 599 | // privatization is not necessary (and large parts of the IR are likely dead). |
| 600 | if (options.checkParallelRegions && !usesRead.empty()) { |
| 601 | for (OpOperand *uConflictingWrite : usesWrite) { |
| 602 | // Find the allocation point or last write (definition) of the buffer. |
| 603 | // Note: In contrast to `findDefinitions`, this also returns results of |
| 604 | // ops that do not bufferize to memory write when no other definition |
| 605 | // could be found. E.g., "bufferization.alloc_tensor" would be included, |
| 606 | // even though that op just bufferizes to an allocation but does define |
| 607 | // the contents of the buffer. |
| 608 | SetVector<Value> definitionsOrLeaves = |
| 609 | state.findValueInReverseUseDefChain(uConflictingWrite, [&](Value v) { |
| 610 | return state.bufferizesToMemoryWrite(v); |
| 611 | }); |
| 612 | assert(!definitionsOrLeaves.empty() && |
| 613 | "expected at least one definition or leaf" ); |
| 614 | |
| 615 | // The writing op must bufferize out-of-place if the definition is in a |
| 616 | // different parallel region than this write. |
| 617 | for (Value def : definitionsOrLeaves) { |
| 618 | if (getParallelRegion(def.getParentRegion(), options) != |
| 619 | getParallelRegion(uConflictingWrite->getOwner()->getParentRegion(), |
| 620 | options)) { |
| 621 | LLVM_DEBUG( |
| 622 | llvm::dbgs() |
| 623 | << "\n- bufferizes out-of-place due to parallel region:\n" ); |
| 624 | LLVM_DEBUG(llvm::dbgs() |
| 625 | << " unConflictingWrite = operand " |
| 626 | << uConflictingWrite->getOperandNumber() << " of " |
| 627 | << *uConflictingWrite->getOwner() << "\n" ); |
| 628 | return true; |
| 629 | } |
| 630 | } |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | for (OpOperand *uRead : usesRead) { |
| 635 | Operation *readingOp = uRead->getOwner(); |
| 636 | LLVM_DEBUG(llvm::dbgs() << "\n- check conflict:\n" ); |
| 637 | LLVM_DEBUG(llvm::dbgs() << " uRead = operand " << uRead->getOperandNumber() |
| 638 | << " of " << *readingOp << "\n" ); |
| 639 | |
| 640 | // Find the definition of uRead by following the SSA use-def chain. |
| 641 | // E.g.: |
| 642 | // |
| 643 | // %0 = "writing_op"(%t) : tensor<?x32> -> tensor<?xf32> |
| 644 | // %1 = "aliasing_op"(%0) : tensor<?x32> -> tensor<?xf32> |
| 645 | // %2 = "reading_op"(%1) : : tensor<?x32> -> not_a_tensor_type |
| 646 | // |
| 647 | // In the above example, if uRead is the OpOperand of reading_op, the |
| 648 | // definition is %0. Note that operations that create an alias but do not |
| 649 | // bufferize to a memory write (such as ExtractSliceOp) are skipped. |
| 650 | const SetVector<Value> &definitions = state.findDefinitionsCached(opOperand: uRead); |
| 651 | if (definitions.empty()) { |
| 652 | // Fast path: No conflict if there are no definitions. |
| 653 | LLVM_DEBUG(llvm::dbgs() |
| 654 | << " no conflict: read value has no definitions\n" ); |
| 655 | continue; |
| 656 | } |
| 657 | |
| 658 | // Look for conflicting memory writes. Potential conflicts are writes to an |
| 659 | // alias that have been decided to bufferize inplace. |
| 660 | for (OpOperand *uConflictingWrite : usesWrite) { |
| 661 | LLVM_DEBUG(llvm::dbgs() << " unConflictingWrite = operand " |
| 662 | << uConflictingWrite->getOperandNumber() << " of " |
| 663 | << *uConflictingWrite->getOwner() << "\n" ); |
| 664 | |
| 665 | // Check if op dominance can be used to rule out read-after-write |
| 666 | // conflicts. |
| 667 | bool useDominance = |
| 668 | canUseOpDominance(uRead, uConflictingWrite, definitions, state); |
| 669 | LLVM_DEBUG(llvm::dbgs() << "\n- useDominance = " << useDominance << "\n" ); |
| 670 | |
| 671 | // Throughout this loop, check for multiple requirements that have to be |
| 672 | // met for uConflictingWrite to be an actual conflict. |
| 673 | Operation *conflictingWritingOp = uConflictingWrite->getOwner(); |
| 674 | |
| 675 | // Inside of repetitive regions, ops may be executed multiple times and op |
| 676 | // dominance cannot be used to rule out conflicts. |
| 677 | if (useDominance) { |
| 678 | // No conflict if the readingOp dominates conflictingWritingOp, i.e., |
| 679 | // the write is not visible when reading. |
| 680 | // |
| 681 | // Note: If ops are executed multiple times (e.g., because they are |
| 682 | // inside a loop), there may be no meaningful `happensBefore` |
| 683 | // relationship. |
| 684 | if (happensBefore(a: readingOp, b: conflictingWritingOp, domInfo)) { |
| 685 | LLVM_DEBUG(llvm::dbgs() |
| 686 | << " no conflict: read happens before write\n" ); |
| 687 | continue; |
| 688 | } |
| 689 | |
| 690 | // No conflict if the reading use equals the use of the conflicting |
| 691 | // write. A use cannot conflict with itself. |
| 692 | // |
| 693 | // Note: Just being the same op is not enough. It has to be the same |
| 694 | // use. |
| 695 | // Note: If the op is executed multiple times (e.g., because it is |
| 696 | // inside a loop), it may be conflicting with itself. |
| 697 | if (uConflictingWrite == uRead) { |
| 698 | LLVM_DEBUG(llvm::dbgs() |
| 699 | << " no conflict: read and write are same use\n" ); |
| 700 | continue; |
| 701 | } |
| 702 | |
| 703 | // Ops are not conflicting if they are in mutually exclusive regions. |
| 704 | // |
| 705 | // Note: If ops are executed multiple times (e.g., because they are |
| 706 | // inside a loop), mutually exclusive regions may be executed |
| 707 | // multiple times. |
| 708 | if (state.insideMutuallyExclusiveRegions(readingOp, |
| 709 | conflictingWritingOp)) { |
| 710 | LLVM_DEBUG(llvm::dbgs() << " no conflict: read and write are in " |
| 711 | "mutually exclusive regions\n" ); |
| 712 | continue; |
| 713 | } |
| 714 | |
| 715 | // Two equivalent operands of the same op are not conflicting if the op |
| 716 | // bufferizes to element-wise access. I.e., all loads at a position |
| 717 | // happen before all stores to the same position. |
| 718 | if (conflictingWritingOp == readingOp) { |
| 719 | if (auto bufferizableOp = options.dynCastBufferizableOp(readingOp)) { |
| 720 | if (bufferizableOp.bufferizesToElementwiseAccess( |
| 721 | state, {uRead, uConflictingWrite})) { |
| 722 | if (hasEquivalentValueInReverseUseDefChain( |
| 723 | state, uRead, uConflictingWrite->get()) || |
| 724 | hasEquivalentValueInReverseUseDefChain( |
| 725 | state, uConflictingWrite, uRead->get())) { |
| 726 | LLVM_DEBUG( |
| 727 | llvm::dbgs() |
| 728 | << " no conflict: op bufferizes to element-wise access\n" ); |
| 729 | continue; |
| 730 | } |
| 731 | } |
| 732 | } |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | // No conflict if the operands are non-conflicting subsets. |
| 737 | if (areNonConflictingSubsets(uRead, uConflictingWrite, state)) { |
| 738 | LLVM_DEBUG(llvm::dbgs() << " no conflict: non-conflicting subsets\n" ); |
| 739 | continue; |
| 740 | } |
| 741 | |
| 742 | // No conflict if the op interface says so. |
| 743 | if (auto bufferizableOp = options.dynCastBufferizableOp(readingOp)) { |
| 744 | if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state)) { |
| 745 | LLVM_DEBUG(llvm::dbgs() |
| 746 | << " no conflict: op interace of reading op says 'no'\n" ); |
| 747 | continue; |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | if (conflictingWritingOp != readingOp) { |
| 752 | if (auto bufferizableOp = |
| 753 | options.dynCastBufferizableOp(conflictingWritingOp)) { |
| 754 | if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, |
| 755 | state)) { |
| 756 | LLVM_DEBUG( |
| 757 | llvm::dbgs() |
| 758 | << " no conflict: op interace of writing op says 'no'\n" ); |
| 759 | continue; |
| 760 | } |
| 761 | } |
| 762 | } |
| 763 | |
| 764 | // Check all possible definitions. |
| 765 | for (Value definition : definitions) { |
| 766 | LLVM_DEBUG(llvm::dbgs() << " * definition = " << definition << "\n" ); |
| 767 | |
| 768 | // No conflict if the conflicting write happens before the definition. |
| 769 | if (Operation *defOp = definition.getDefiningOp()) { |
| 770 | if (happensBefore(a: conflictingWritingOp, b: defOp, domInfo)) { |
| 771 | // conflictingWritingOp happens before defOp. No conflict. |
| 772 | LLVM_DEBUG(llvm::dbgs() |
| 773 | << " no conflict: write happens before definition\n" ); |
| 774 | continue; |
| 775 | } |
| 776 | // No conflict if conflictingWritingOp is contained in defOp. |
| 777 | if (defOp->isProperAncestor(other: conflictingWritingOp)) { |
| 778 | LLVM_DEBUG( |
| 779 | llvm::dbgs() |
| 780 | << " no conflict: write is contained in definition\n" ); |
| 781 | continue; |
| 782 | } |
| 783 | } else { |
| 784 | auto bbArg = cast<BlockArgument>(Val&: definition); |
| 785 | Block *block = bbArg.getOwner(); |
| 786 | if (!block->findAncestorOpInBlock(op&: *conflictingWritingOp)) { |
| 787 | LLVM_DEBUG(llvm::dbgs() << " no conflict: definition is bbArg " |
| 788 | "and write happens outside of block\n" ); |
| 789 | // conflictingWritingOp happens outside of the block. No |
| 790 | // conflict. |
| 791 | continue; |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | // No conflict if the conflicting write and the definition are the same |
| 796 | // use. |
| 797 | AliasingValueList aliases = state.getAliasingValues(*uConflictingWrite); |
| 798 | if (aliases.getNumAliases() == 1 && |
| 799 | aliases.getAliases()[0].value == definition) { |
| 800 | LLVM_DEBUG(llvm::dbgs() |
| 801 | << " no conflict: definition and write are same\n" ); |
| 802 | continue; |
| 803 | } |
| 804 | |
| 805 | // All requirements are met. Conflict found! |
| 806 | |
| 807 | if (options.printConflicts) |
| 808 | annotateConflict(uRead, uConflictingWrite, definition); |
| 809 | LLVM_DEBUG(llvm::dbgs() << " => RaW CONFLICT FOUND\n" ); |
| 810 | return true; |
| 811 | } |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | return false; |
| 816 | } |
| 817 | |
| 818 | // Helper function to iterate on aliases of `root` and capture the writes. |
| 819 | static void getAliasingInplaceWrites(DenseSet<OpOperand *> &res, Value root, |
| 820 | const OneShotAnalysisState &state) { |
| 821 | state.applyOnAliases(v: root, fun: [&](Value alias) { |
| 822 | for (auto &use : alias.getUses()) |
| 823 | // Inplace write to a value that aliases root. |
| 824 | if (isInplaceMemoryWrite(opOperand&: use, state)) |
| 825 | res.insert(V: &use); |
| 826 | }); |
| 827 | } |
| 828 | |
| 829 | // Helper function to iterate on aliases of `root` and capture the reads. |
| 830 | static void getAliasingReads(DenseSet<OpOperand *> &res, Value root, |
| 831 | const OneShotAnalysisState &state) { |
| 832 | state.applyOnAliases(v: root, fun: [&](Value alias) { |
| 833 | for (auto &use : alias.getUses()) { |
| 834 | // Read of a value that aliases root. |
| 835 | if (state.bufferizesToMemoryRead(use)) { |
| 836 | res.insert(V: &use); |
| 837 | continue; |
| 838 | } |
| 839 | |
| 840 | // Read of a dependent value in the SSA use-def chain. E.g.: |
| 841 | // |
| 842 | // %0 = ... |
| 843 | // %1 = tensor.extract_slice %0 {not_analyzed_yet} |
| 844 | // "read"(%1) |
| 845 | // |
| 846 | // In the above example, getAliasingReads(%0) includes the first OpOperand |
| 847 | // of the tensor.extract_slice op. The extract_slice itself does not read |
| 848 | // but its aliasing result is eventually fed into an op that does. |
| 849 | // |
| 850 | // Note: This is considered a "read" only if the use does not bufferize to |
| 851 | // a memory write. (We already ruled out memory reads. In case of a memory |
| 852 | // write, the buffer would be entirely overwritten; in the above example |
| 853 | // there would then be no flow of data from the extract_slice operand to |
| 854 | // its result's uses.) |
| 855 | if (!state.bufferizesToMemoryWrite(use)) { |
| 856 | AliasingValueList aliases = state.getAliasingValues(use); |
| 857 | if (llvm::any_of(Range&: aliases, P: [&](AliasingValue a) { |
| 858 | return state.isValueRead(a.value); |
| 859 | })) |
| 860 | res.insert(V: &use); |
| 861 | } |
| 862 | } |
| 863 | }); |
| 864 | } |
| 865 | |
| 866 | /// Return true if bufferizing `operand` inplace would create a conflict. A read |
| 867 | /// R and a write W of the same alias set is a conflict if inplace bufferization |
| 868 | /// of W changes the value read by R to a value different from the one that |
| 869 | /// would be expected by tracing back R's origin through SSA use-def chains. |
| 870 | /// A conflict can only be introduced by a new alias and/or an inplace |
| 871 | /// bufferization decision. |
| 872 | /// |
| 873 | /// Example: |
| 874 | /// %0 = tensor.extract_slice %t[...][...][1, 1] {inplace?} |
| 875 | /// %1 = vector.transfer_write %v1, %t {inplace} : vector<5xf32>, tensor<?xf32> |
| 876 | /// %e = tensor.extract_slice %1 |
| 877 | /// %2 = vector.transfer_write %v2, %0 {inplace} : vector<6xf32>, tensor<?xf32> |
| 878 | /// %3 = vector.transfer_read %e, %cst : tensor<?xf32>, vector<7xf32> |
| 879 | /// |
| 880 | /// In the above example, the two TransferWriteOps have already been decided to |
| 881 | /// bufferize inplace. Bufferizing the ExtractSliceOp inplace would create a |
| 882 | /// conflict because: |
| 883 | /// * According to SSA use-def chains, we expect to read the result of %1. |
| 884 | /// * However, adding an alias {%0, %t} would mean that the second |
| 885 | /// TransferWriteOp overwrites the result of the first one. Therefore, the |
| 886 | /// TransferReadOp would no longer be reading the result of %1. |
| 887 | /// |
| 888 | /// If `checkConsistencyOnly` is true, this function checks if there is a |
| 889 | /// read-after-write conflict without bufferizing `operand` inplace. This would |
| 890 | /// indicate a problem with the current inplace bufferization decisions. |
| 891 | /// |
| 892 | /// Note: If `checkConsistencyOnly`, this function may be called with a null |
| 893 | /// OpResult. In that case, only the consistency of bufferization decisions |
| 894 | /// involving aliases of the given OpOperand are checked. |
| 895 | static bool wouldCreateReadAfterWriteInterference( |
| 896 | OpOperand &operand, const DominanceInfo &domInfo, |
| 897 | OneShotAnalysisState &state, bool checkConsistencyOnly = false) { |
| 898 | // Collect reads and writes of all aliases of OpOperand and OpResult. |
| 899 | DenseSet<OpOperand *> usesRead, usesWrite; |
| 900 | getAliasingReads(res&: usesRead, root: operand.get(), state); |
| 901 | getAliasingInplaceWrites(res&: usesWrite, root: operand.get(), state); |
| 902 | for (AliasingValue alias : state.getAliasingValues(operand)) { |
| 903 | getAliasingReads(usesRead, alias.value, state); |
| 904 | getAliasingInplaceWrites(usesWrite, alias.value, state); |
| 905 | } |
| 906 | if (!checkConsistencyOnly && state.bufferizesToMemoryWrite(operand)) |
| 907 | usesWrite.insert(V: &operand); |
| 908 | |
| 909 | return hasReadAfterWriteInterference(usesRead, usesWrite, domInfo, state); |
| 910 | } |
| 911 | |
| 912 | /// Annotate IR with details about the detected non-writability conflict. |
| 913 | static void annotateNonWritableTensor(Value value) { |
| 914 | static int64_t counter = 0; |
| 915 | OpBuilder b(value.getContext()); |
| 916 | std::string id = "W_" + std::to_string(val: counter++); |
| 917 | if (auto opResult = dyn_cast<OpResult>(Val&: value)) { |
| 918 | std::string attr = id + "[NOT-WRITABLE: result " + |
| 919 | std::to_string(val: opResult.getResultNumber()) + "]" ; |
| 920 | opResult.getDefiningOp()->setAttr(attr, b.getUnitAttr()); |
| 921 | } else { |
| 922 | auto bbArg = cast<BlockArgument>(Val&: value); |
| 923 | std::string attr = id + "[NOT-WRITABLE: bbArg " + |
| 924 | std::to_string(val: bbArg.getArgNumber()) + "]" ; |
| 925 | bbArg.getOwner()->getParentOp()->setAttr(attr, b.getUnitAttr()); |
| 926 | } |
| 927 | } |
| 928 | |
| 929 | /// Return true if bufferizing `operand` inplace would create a write to a |
| 930 | /// non-writable buffer. |
| 931 | static bool |
| 932 | wouldCreateWriteToNonWritableBuffer(OpOperand &operand, |
| 933 | OneShotAnalysisState &state, |
| 934 | bool checkConsistencyOnly = false) { |
| 935 | bool foundWrite = |
| 936 | !checkConsistencyOnly && state.bufferizesToMemoryWrite(operand); |
| 937 | |
| 938 | if (!foundWrite) { |
| 939 | // Collect writes of all aliases of OpOperand and OpResult. |
| 940 | DenseSet<OpOperand *> usesWrite; |
| 941 | getAliasingInplaceWrites(res&: usesWrite, root: operand.get(), state); |
| 942 | for (AliasingValue alias : state.getAliasingValues(operand)) |
| 943 | getAliasingInplaceWrites(usesWrite, alias.value, state); |
| 944 | foundWrite = !usesWrite.empty(); |
| 945 | } |
| 946 | |
| 947 | if (!foundWrite) |
| 948 | return false; |
| 949 | |
| 950 | // Look for a read-only tensor among all aliases. |
| 951 | bool foundReadOnly = false; |
| 952 | auto checkReadOnly = [&](Value v) { |
| 953 | if (!state.isWritable(value: v)) { |
| 954 | foundReadOnly = true; |
| 955 | if (state.getOptions().printConflicts) |
| 956 | annotateNonWritableTensor(value: v); |
| 957 | } |
| 958 | }; |
| 959 | state.applyOnAliases(v: operand.get(), fun: checkReadOnly); |
| 960 | for (AliasingValue alias : state.getAliasingValues(operand)) |
| 961 | state.applyOnAliases(alias.value, checkReadOnly); |
| 962 | if (foundReadOnly) { |
| 963 | LLVM_DEBUG(llvm::dbgs() << "=> NOT WRITABLE\n" ); |
| 964 | return true; |
| 965 | } |
| 966 | |
| 967 | return false; |
| 968 | } |
| 969 | |
| 970 | //===----------------------------------------------------------------------===// |
| 971 | // Bufferization analyses. |
| 972 | //===----------------------------------------------------------------------===// |
| 973 | |
| 974 | // Find the values that define the contents of the given operand's value. |
| 975 | const llvm::SetVector<Value> & |
| 976 | OneShotAnalysisState::findDefinitionsCached(OpOperand *opOperand) { |
| 977 | Value value = opOperand->get(); |
| 978 | if (!cachedDefinitions.count(value)) |
| 979 | cachedDefinitions[value] = findDefinitions(opOperand); |
| 980 | return cachedDefinitions[value]; |
| 981 | } |
| 982 | |
| 983 | void OneShotAnalysisState::resetCache() { |
| 984 | AnalysisState::resetCache(); |
| 985 | cachedDefinitions.clear(); |
| 986 | } |
| 987 | |
| 988 | /// Determine if `operand` can be bufferized in-place. |
| 989 | static LogicalResult |
| 990 | bufferizableInPlaceAnalysisImpl(OpOperand &operand, OneShotAnalysisState &state, |
| 991 | const DominanceInfo &domInfo) { |
| 992 | LLVM_DEBUG( |
| 993 | llvm::dbgs() << "//===-------------------------------------------===//\n" |
| 994 | << "Analyzing operand #" << operand.getOperandNumber() |
| 995 | << " of " << *operand.getOwner() << "\n" ); |
| 996 | |
| 997 | bool foundInterference = |
| 998 | wouldCreateWriteToNonWritableBuffer(operand, state) || |
| 999 | wouldCreateReadAfterWriteInterference(operand, domInfo, state); |
| 1000 | |
| 1001 | if (foundInterference) |
| 1002 | state.bufferizeOutOfPlace(operand); |
| 1003 | else |
| 1004 | state.bufferizeInPlace(operand); |
| 1005 | |
| 1006 | LLVM_DEBUG(llvm::dbgs() |
| 1007 | << "//===-------------------------------------------===//\n" ); |
| 1008 | return success(); |
| 1009 | } |
| 1010 | |
| 1011 | LogicalResult |
| 1012 | OneShotAnalysisState::analyzeSingleOp(Operation *op, |
| 1013 | const DominanceInfo &domInfo) { |
| 1014 | for (OpOperand &opOperand : op->getOpOperands()) |
| 1015 | if (isa<TensorType>(Val: opOperand.get().getType())) |
| 1016 | if (failed(Result: bufferizableInPlaceAnalysisImpl(operand&: opOperand, state&: *this, domInfo))) |
| 1017 | return failure(); |
| 1018 | return success(); |
| 1019 | } |
| 1020 | |
| 1021 | /// Analyze equivalence of tied OpResult/OpOperand pairs of the given ops. |
| 1022 | static void equivalenceAnalysis(SmallVector<Operation *> &ops, |
| 1023 | OneShotAnalysisState &state) { |
| 1024 | for (Operation *op : ops) { |
| 1025 | if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op)) { |
| 1026 | for (OpResult opResult : op->getOpResults()) { |
| 1027 | if (!isa<TensorType>(Val: opResult.getType())) |
| 1028 | continue; |
| 1029 | AliasingOpOperandList aliases = state.getAliasingOpOperands(opResult); |
| 1030 | if (aliases.getNumAliases() == 0) |
| 1031 | // Nothing to do if there are no aliasing OpOperands. |
| 1032 | continue; |
| 1033 | |
| 1034 | Value firstOperand = aliases.begin()->opOperand->get(); |
| 1035 | bool allEquivalent = true; |
| 1036 | for (AliasingOpOperand alias : aliases) { |
| 1037 | bool isEquiv = alias.relation == BufferRelation::Equivalent; |
| 1038 | bool isInPlace = state.isInPlace(*alias.opOperand); |
| 1039 | Value operand = alias.opOperand->get(); |
| 1040 | if (isEquiv && isInPlace && alias.isDefinite) { |
| 1041 | // Found a definite, equivalent alias. Merge equivalence sets. |
| 1042 | // There can only be one definite alias, so we can stop here. |
| 1043 | state.unionEquivalenceClasses(opResult, operand); |
| 1044 | allEquivalent = false; |
| 1045 | break; |
| 1046 | } |
| 1047 | if (!isEquiv || !isInPlace) |
| 1048 | allEquivalent = false; |
| 1049 | if (!state.areEquivalentBufferizedValues(operand, firstOperand)) |
| 1050 | allEquivalent = false; |
| 1051 | } |
| 1052 | |
| 1053 | // If all "maybe" aliases are equivalent and the OpResult is not a new |
| 1054 | // allocation, it is a definite, equivalent alias. E.g.: |
| 1055 | // |
| 1056 | // aliasingOpOperands(%r) = {(%t0, EQUIV, MAYBE), (%t1, EQUIV, MAYBE)} |
| 1057 | // aliasingValues(%t0) = {(%r, EQUIV, MAYBE)} |
| 1058 | // aliasingValues(%t1) = {(%r, EQUIV, MAYBE)} |
| 1059 | // %r = arith.select %c, %t0, %t1 : tensor<?xf32> |
| 1060 | // |
| 1061 | // If %t0 and %t1 are equivalent, it is safe to union the equivalence |
| 1062 | // classes of %r, %t0 and %t1. |
| 1063 | if (allEquivalent && !bufferizableOp.bufferizesToAllocation(opResult)) |
| 1064 | state.unionEquivalenceClasses(v1: opResult, v2: firstOperand); |
| 1065 | } |
| 1066 | } |
| 1067 | } |
| 1068 | } |
| 1069 | |
| 1070 | /// Analyze equivalence of tied OpResult/OpOperand pairs of all ops contained |
| 1071 | /// in `op`. |
| 1072 | static void equivalenceAnalysis(Operation *op, OneShotAnalysisState &state) { |
| 1073 | // Traverse ops in PostOrder: Nested ops first, then enclosing ops. |
| 1074 | SmallVector<Operation *> ops; |
| 1075 | op->walk<WalkOrder::PostOrder>(callback: [&](Operation *op) { |
| 1076 | // No tensors => no buffers. |
| 1077 | if (none_of(Range: op->getResultTypes(), P: isaTensor)) |
| 1078 | return; |
| 1079 | ops.push_back(Elt: op); |
| 1080 | }); |
| 1081 | |
| 1082 | equivalenceAnalysis(ops, state); |
| 1083 | } |
| 1084 | |
| 1085 | /// "Bottom-up from terminators" heuristic. |
| 1086 | static SmallVector<Operation *> |
| 1087 | bottomUpFromTerminatorsHeuristic(Operation *op, |
| 1088 | const OneShotAnalysisState &state) { |
| 1089 | SetVector<Operation *> traversedOps; |
| 1090 | |
| 1091 | // Find region terminators. |
| 1092 | op->walk<WalkOrder::PostOrder>(callback: [&](RegionBranchTerminatorOpInterface term) { |
| 1093 | if (!traversedOps.insert(term)) |
| 1094 | return; |
| 1095 | // Follow the reverse SSA use-def chain from each yielded value as long as |
| 1096 | // we stay within the same region. |
| 1097 | SmallVector<OpResult> worklist; |
| 1098 | for (Value v : term->getOperands()) { |
| 1099 | if (!isa<TensorType>(v.getType())) |
| 1100 | continue; |
| 1101 | auto opResult = dyn_cast<OpResult>(v); |
| 1102 | if (!opResult) |
| 1103 | continue; |
| 1104 | worklist.push_back(opResult); |
| 1105 | } |
| 1106 | while (!worklist.empty()) { |
| 1107 | OpResult opResult = worklist.pop_back_val(); |
| 1108 | Operation *defOp = opResult.getDefiningOp(); |
| 1109 | if (!traversedOps.insert(X: defOp)) |
| 1110 | continue; |
| 1111 | if (!term->getParentRegion()->findAncestorOpInRegion(*defOp)) |
| 1112 | continue; |
| 1113 | AliasingOpOperandList aliases = state.getAliasingOpOperands(opResult); |
| 1114 | for (auto alias : aliases) { |
| 1115 | Value v = alias.opOperand->get(); |
| 1116 | if (!isa<TensorType>(v.getType())) |
| 1117 | continue; |
| 1118 | auto opResult = dyn_cast<OpResult>(v); |
| 1119 | if (!opResult) |
| 1120 | continue; |
| 1121 | worklist.push_back(opResult); |
| 1122 | } |
| 1123 | } |
| 1124 | }); |
| 1125 | |
| 1126 | // Analyze traversed ops, then all remaining ops. |
| 1127 | SmallVector<Operation *> result(traversedOps.begin(), traversedOps.end()); |
| 1128 | op->walk<WalkOrder::PostOrder, ReverseIterator>(callback: [&](Operation *op) { |
| 1129 | if (!traversedOps.contains(key: op) && hasTensorSemantics(op)) |
| 1130 | result.push_back(Elt: op); |
| 1131 | }); |
| 1132 | return result; |
| 1133 | } |
| 1134 | |
| 1135 | LogicalResult OneShotAnalysisState::analyzeOp(Operation *op, |
| 1136 | const DominanceInfo &domInfo) { |
| 1137 | OneShotBufferizationOptions::AnalysisHeuristic heuristic = |
| 1138 | getOptions().analysisHeuristic; |
| 1139 | |
| 1140 | SmallVector<Operation *> orderedOps; |
| 1141 | if (heuristic == |
| 1142 | OneShotBufferizationOptions::AnalysisHeuristic::BottomUpFromTerminators) { |
| 1143 | orderedOps = bottomUpFromTerminatorsHeuristic(op, state: *this); |
| 1144 | } else { |
| 1145 | op->walk(callback: [&](Operation *op) { |
| 1146 | // No tensors => no buffers. |
| 1147 | if (!hasTensorSemantics(op)) |
| 1148 | return; |
| 1149 | orderedOps.push_back(Elt: op); |
| 1150 | }); |
| 1151 | switch (heuristic) { |
| 1152 | case OneShotBufferizationOptions::AnalysisHeuristic::BottomUp: { |
| 1153 | // Default: Walk ops in reverse for better interference analysis. |
| 1154 | std::reverse(first: orderedOps.begin(), last: orderedOps.end()); |
| 1155 | break; |
| 1156 | } |
| 1157 | case OneShotBufferizationOptions::AnalysisHeuristic::TopDown: { |
| 1158 | // Ops are already sorted top-down in `orderedOps`. |
| 1159 | break; |
| 1160 | } |
| 1161 | case OneShotBufferizationOptions::AnalysisHeuristic::Fuzzer: { |
| 1162 | assert(getOptions().analysisFuzzerSeed && |
| 1163 | "expected that fuzzer seed it set" ); |
| 1164 | // This is a fuzzer. For testing purposes only. Randomize the order in |
| 1165 | // which operations are analyzed. The bufferization quality is likely |
| 1166 | // worse, but we want to make sure that no assertions are triggered |
| 1167 | // anywhere. |
| 1168 | std::mt19937 g(getOptions().analysisFuzzerSeed); |
| 1169 | llvm::shuffle(first: orderedOps.begin(), last: orderedOps.end(), g); |
| 1170 | break; |
| 1171 | } |
| 1172 | default: { |
| 1173 | llvm_unreachable("unsupported heuristic" ); |
| 1174 | } |
| 1175 | } |
| 1176 | } |
| 1177 | |
| 1178 | // Analyze ops in the computed order. |
| 1179 | for (Operation *op : orderedOps) |
| 1180 | if (failed(Result: analyzeSingleOp(op, domInfo))) |
| 1181 | return failure(); |
| 1182 | |
| 1183 | equivalenceAnalysis(op, state&: *this); |
| 1184 | return success(); |
| 1185 | } |
| 1186 | |
| 1187 | /// Perform various checks on the input IR to see if it contains IR constructs |
| 1188 | /// that are unsupported by One-Shot Bufferize. |
| 1189 | static LogicalResult |
| 1190 | checkPreBufferizationAssumptions(Operation *op, const DominanceInfo &domInfo, |
| 1191 | OneShotAnalysisState &state) { |
| 1192 | const BufferizationOptions &options = state.getOptions(); |
| 1193 | |
| 1194 | // Note: This walk cannot be combined with the one below because interface |
| 1195 | // methods of invalid/unsupported ops may be called during the second walk. |
| 1196 | // (On ops different from `op`.) |
| 1197 | WalkResult walkResult = op->walk([&](BufferizableOpInterface op) { |
| 1198 | // Skip ops that are not in the filter. |
| 1199 | if (!options.isOpAllowed(op: op.getOperation())) |
| 1200 | return WalkResult::advance(); |
| 1201 | |
| 1202 | // Check for unsupported unstructured control flow. |
| 1203 | if (!op.supportsUnstructuredControlFlow()) { |
| 1204 | for (Region &r : op->getRegions()) { |
| 1205 | if (r.getBlocks().size() > 1) { |
| 1206 | op->emitOpError("op or BufferizableOpInterface implementation does " |
| 1207 | "not support unstructured control flow, but at least " |
| 1208 | "one region has multiple blocks" ); |
| 1209 | return WalkResult::interrupt(); |
| 1210 | } |
| 1211 | } |
| 1212 | } |
| 1213 | |
| 1214 | return WalkResult::advance(); |
| 1215 | }); |
| 1216 | if (walkResult.wasInterrupted()) |
| 1217 | return failure(); |
| 1218 | |
| 1219 | walkResult = op->walk([&](BufferizableOpInterface op) { |
| 1220 | // Skip ops that are not in the filter. |
| 1221 | if (!options.isOpAllowed(op: op.getOperation())) |
| 1222 | return WalkResult::advance(); |
| 1223 | |
| 1224 | // Input IR may not contain any ToTensorOps without the "restrict" |
| 1225 | // attribute. Such tensors may alias any other tensor, which is currently |
| 1226 | // not handled in the analysis. |
| 1227 | if (auto toTensorOp = dyn_cast<ToTensorOp>(op.getOperation())) { |
| 1228 | if (!toTensorOp.getRestrict() && !toTensorOp->getUses().empty()) { |
| 1229 | op->emitOpError("to_tensor ops without `restrict` are not supported by " |
| 1230 | "One-Shot Analysis" ); |
| 1231 | return WalkResult::interrupt(); |
| 1232 | } |
| 1233 | } |
| 1234 | |
| 1235 | for (OpOperand &opOperand : op->getOpOperands()) { |
| 1236 | if (isa<TensorType>(opOperand.get().getType())) { |
| 1237 | if (wouldCreateReadAfterWriteInterference( |
| 1238 | opOperand, domInfo, state, |
| 1239 | /*checkConsistencyOnly=*/true)) { |
| 1240 | // This error can happen if certain "mustBufferizeInPlace" interface |
| 1241 | // methods are implemented incorrectly, such that the IR already has |
| 1242 | // a RaW conflict before making any bufferization decisions. It can |
| 1243 | // also happen if the bufferization.materialize_in_destination is used |
| 1244 | // in such a way that a RaW conflict is not avoidable. |
| 1245 | op->emitOpError("not bufferizable under the given constraints: " |
| 1246 | "cannot avoid RaW conflict" ); |
| 1247 | return WalkResult::interrupt(); |
| 1248 | } |
| 1249 | |
| 1250 | if (state.isInPlace(opOperand) && |
| 1251 | wouldCreateWriteToNonWritableBuffer( |
| 1252 | opOperand, state, /*checkConsistencyOnly=*/true)) { |
| 1253 | op->emitOpError("not bufferizable under the given constraints: would " |
| 1254 | "write to read-only buffer" ); |
| 1255 | return WalkResult::interrupt(); |
| 1256 | } |
| 1257 | } |
| 1258 | } |
| 1259 | |
| 1260 | return WalkResult::advance(); |
| 1261 | }); |
| 1262 | |
| 1263 | return success(IsSuccess: !walkResult.wasInterrupted()); |
| 1264 | } |
| 1265 | |
| 1266 | /// Annotate the IR with the result of the analysis. For testing/debugging only. |
| 1267 | static void |
| 1268 | annotateOpsWithBufferizationMarkers(Operation *op, |
| 1269 | const OneShotAnalysisState &state) { |
| 1270 | // Add __inplace_operands_attr__. |
| 1271 | op->walk(callback: [&](Operation *op) { |
| 1272 | for (OpOperand &opOperand : op->getOpOperands()) |
| 1273 | if (isa<TensorType>(Val: opOperand.get().getType())) |
| 1274 | setInPlaceOpOperand(opOperand, inPlace: state.isInPlace(opOperand)); |
| 1275 | }); |
| 1276 | } |
| 1277 | |
| 1278 | static void annotateOpsWithAliasSets(Operation *op, |
| 1279 | const OneShotAnalysisState &state) { |
| 1280 | AsmState asmState(op); |
| 1281 | Builder b(op->getContext()); |
| 1282 | // Helper function to build an array attribute of aliasing SSA value strings. |
| 1283 | auto buildAliasesArray = [&](Value v) { |
| 1284 | SmallVector<Attribute> aliases; |
| 1285 | state.applyOnAliases(v, fun: [&](Value alias) { |
| 1286 | std::string buffer; |
| 1287 | llvm::raw_string_ostream stream(buffer); |
| 1288 | alias.printAsOperand(os&: stream, state&: asmState); |
| 1289 | aliases.push_back(b.getStringAttr(buffer)); |
| 1290 | }); |
| 1291 | return b.getArrayAttr(aliases); |
| 1292 | }; |
| 1293 | |
| 1294 | op->walk(callback: [&](Operation *op) { |
| 1295 | // Build alias set array for every OpResult. |
| 1296 | SmallVector<Attribute> opResultAliasSets; |
| 1297 | for (OpResult opResult : op->getOpResults()) { |
| 1298 | if (llvm::isa<TensorType>(Val: opResult.getType())) { |
| 1299 | opResultAliasSets.push_back(Elt: buildAliasesArray(opResult)); |
| 1300 | } |
| 1301 | } |
| 1302 | if (!opResultAliasSets.empty()) |
| 1303 | op->setAttr(kOpResultAliasSetAttrName, b.getArrayAttr(opResultAliasSets)); |
| 1304 | |
| 1305 | // Build alias set array for every BlockArgument. |
| 1306 | SmallVector<Attribute> regionAliasSets; |
| 1307 | bool hasTensorBbArg = false; |
| 1308 | for (Region &r : op->getRegions()) { |
| 1309 | SmallVector<Attribute> blockAliasSets; |
| 1310 | for (Block &block : r.getBlocks()) { |
| 1311 | SmallVector<Attribute> bbArgAliasSets; |
| 1312 | for (BlockArgument bbArg : block.getArguments()) { |
| 1313 | if (llvm::isa<TensorType>(Val: bbArg.getType())) { |
| 1314 | bbArgAliasSets.push_back(Elt: buildAliasesArray(bbArg)); |
| 1315 | hasTensorBbArg = true; |
| 1316 | } |
| 1317 | } |
| 1318 | blockAliasSets.push_back(b.getArrayAttr(bbArgAliasSets)); |
| 1319 | } |
| 1320 | regionAliasSets.push_back(b.getArrayAttr(blockAliasSets)); |
| 1321 | } |
| 1322 | if (hasTensorBbArg) |
| 1323 | op->setAttr(kBbArgAliasSetAttrName, b.getArrayAttr(regionAliasSets)); |
| 1324 | }); |
| 1325 | } |
| 1326 | |
| 1327 | LogicalResult bufferization::analyzeOp(Operation *op, |
| 1328 | OneShotAnalysisState &state, |
| 1329 | BufferizationStatistics *statistics) { |
| 1330 | DominanceInfo domInfo(op); |
| 1331 | const OneShotBufferizationOptions &options = state.getOptions(); |
| 1332 | |
| 1333 | if (failed(Result: checkPreBufferizationAssumptions(op, domInfo, state))) |
| 1334 | return failure(); |
| 1335 | |
| 1336 | // If the analysis fails, just return. |
| 1337 | if (failed(Result: state.analyzeOp(op, domInfo))) |
| 1338 | return failure(); |
| 1339 | |
| 1340 | if (statistics) { |
| 1341 | statistics->numTensorInPlace = state.getStatNumTensorInPlace(); |
| 1342 | statistics->numTensorOutOfPlace = state.getStatNumTensorOutOfPlace(); |
| 1343 | } |
| 1344 | |
| 1345 | bool failedAnalysis = false; |
| 1346 | |
| 1347 | // Gather some extra analysis data. |
| 1348 | state.gatherUndefinedTensorUses(op); |
| 1349 | |
| 1350 | // Analysis verification: After setting up alias/equivalence sets, each op |
| 1351 | // can check for expected invariants/limitations and fail the analysis if |
| 1352 | // necessary. |
| 1353 | op->walk(callback: [&](Operation *op) { |
| 1354 | if (BufferizableOpInterface bufferizableOp = |
| 1355 | options.dynCastBufferizableOp(op)) |
| 1356 | failedAnalysis |= failed(bufferizableOp.verifyAnalysis(state)); |
| 1357 | }); |
| 1358 | |
| 1359 | // Annotate operations if we only want to report the analysis. |
| 1360 | if (options.testAnalysisOnly) |
| 1361 | annotateOpsWithBufferizationMarkers(op, state); |
| 1362 | if (options.dumpAliasSets) |
| 1363 | annotateOpsWithAliasSets(op, state); |
| 1364 | |
| 1365 | return success(IsSuccess: !failedAnalysis); |
| 1366 | } |
| 1367 | |
| 1368 | LogicalResult bufferization::runOneShotBufferize( |
| 1369 | Operation *op, const OneShotBufferizationOptions &options, |
| 1370 | BufferizationState &state, BufferizationStatistics *statistics) { |
| 1371 | // copy-before-write deactivates the analysis. It cannot be used together with |
| 1372 | // test-analysis-only. |
| 1373 | assert(!(options.copyBeforeWrite && options.testAnalysisOnly) && |
| 1374 | "invalid combination of bufferization flags" ); |
| 1375 | |
| 1376 | if (options.copyBeforeWrite) { |
| 1377 | // Copy buffer before each write. No analysis is needed. |
| 1378 | } else { |
| 1379 | // Run One-Shot Analysis and insert buffer copies (on the tensor level) |
| 1380 | // only where needed. This is the default and much more efficient than |
| 1381 | // copy-before-write. |
| 1382 | if (failed(Result: insertTensorCopies(op, options, bufferizationState: state, statistics))) |
| 1383 | return failure(); |
| 1384 | |
| 1385 | // If test-analysis-only is set, the IR was annotated with RaW conflict |
| 1386 | // markers (attributes) during One-Shot Analysis. |
| 1387 | if (options.testAnalysisOnly) |
| 1388 | return success(); |
| 1389 | } |
| 1390 | |
| 1391 | // Bufferize the op and its nested ops. If options.copyBeforeWrite is set, |
| 1392 | // a new buffer copy is allocated every time a buffer is written to. |
| 1393 | return bufferizeOp(op, options, state, statistics); |
| 1394 | } |
| 1395 | |