1 | //===- OneShotAnalysis.cpp - One-Shot (Single Pass) Analysis --------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // One-Shot Analysis analyzes function bodies. By default, function boundaries |
10 | // (FuncOp bbArgs, CallOps, ReturnOps) are treated as "unknown" ops. |
11 | // OneShotModuleBufferization.cpp is an extension of One-Shot Analysis for |
12 | // simple call graphs without loops. |
13 | // |
14 | // One-Shot Bufferize consists of three phases. |
15 | // |
16 | // 1. Analyze ops to decide which OpOperands can bufferize inplace, i.e., |
17 | // without inserting buffer copies. The analysis queries op bufferization |
18 | // semantics via `BufferizableOpInterface`. |
19 | // 2. Insert copies for OpOperands that were decided to bufferize out-of-place |
20 | // in tensor land during `TensorCopyInsertion`. |
21 | // 3. Bufferize ops by calling `BufferizableOpInterface::bufferize`. |
22 | // |
23 | // This file contains only the analysis. For convenience, this file also |
24 | // contains a helper function `runOneShotBufferize` that analyzes an op (and its |
25 | // nested ops) and then bufferizes it. |
26 | // |
27 | // Inplace bufferization decisions are passed from the analysis to the |
28 | // `TensorCopyInsertion` phase via `AnalysisState`. They can be printed for |
29 | // debugging purposes with `testAnalysisOnly`. |
30 | // |
31 | // Ops that do not implement `BufferizableOpInterface` can be analyzed but are |
32 | // treated conservatively. E.g., the analysis has to assume that their tensor |
33 | // OpOperands bufferize to memory writes. While such ops can be analyzed, they |
34 | // are not bufferized and remain in the IR. to_tensor and to_buffer ops are |
35 | // inserted at the bufferization boundary. |
36 | // |
37 | // This analysis caters to high-performance codegen where buffer reuse is deemed |
38 | // critical: the analysis should fail if the bufferized form of the function |
39 | // needs to return a buffer, unless `allowReturnAllocs` is enabled. |
40 | |
41 | #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" |
42 | |
43 | #include <optional> |
44 | #include <random> |
45 | |
46 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
47 | #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
48 | #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" |
49 | #include "mlir/Dialect/Bufferization/Transforms/Transforms.h" |
50 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
51 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
52 | #include "mlir/IR/AsmState.h" |
53 | #include "mlir/IR/Dominance.h" |
54 | #include "mlir/IR/Iterators.h" |
55 | #include "mlir/IR/Operation.h" |
56 | #include "mlir/IR/TypeUtilities.h" |
57 | #include "mlir/Interfaces/ControlFlowInterfaces.h" |
58 | #include "mlir/Interfaces/SubsetOpInterface.h" |
59 | #include "llvm/ADT/DenseSet.h" |
60 | #include "llvm/ADT/SetVector.h" |
61 | |
62 | MLIR_DEFINE_EXPLICIT_TYPE_ID(mlir::bufferization::OneShotAnalysisState) |
63 | |
64 | // Run mlir-opt with `-debug-only="one-shot-analysis"` for detailed debug |
65 | // output. |
66 | #define DEBUG_TYPE "one-shot-analysis" |
67 | |
68 | using namespace mlir; |
69 | using namespace mlir::bufferization; |
70 | |
71 | static bool isaTensor(Type t) { return isa<TensorType>(Val: t); } |
72 | |
73 | //===----------------------------------------------------------------------===// |
74 | // Bufferization-specific attribute manipulation. |
75 | // These are for testing and debugging only. Bufferization information is stored |
76 | // in OneShotBufferizationState. When run with `testAnalysisOnly`, the IR is |
77 | // annotated with the results of the analysis, so that they can be checked in |
78 | // tests. |
79 | //===----------------------------------------------------------------------===// |
80 | |
81 | /// Attribute marker to specify op operands that bufferize in-place. |
82 | constexpr StringLiteral kInPlaceOperandsAttrName = "__inplace_operands_attr__" ; |
83 | |
84 | constexpr StringLiteral kOpResultAliasSetAttrName = |
85 | "__opresult_alias_set_attr__" ; |
86 | |
87 | constexpr StringLiteral kBbArgAliasSetAttrName = "__bbarg_alias_set_attr__" ; |
88 | |
89 | /// Mark whether OpOperand will be bufferized inplace. |
90 | static void setInPlaceOpOperand(OpOperand &opOperand, bool inPlace) { |
91 | Operation *op = opOperand.getOwner(); |
92 | SmallVector<StringRef> inPlaceVector; |
93 | if (auto attr = op->getAttr(name: kInPlaceOperandsAttrName)) { |
94 | inPlaceVector = SmallVector<StringRef>(llvm::to_vector<4>( |
95 | cast<ArrayAttr>(attr).getAsValueRange<StringAttr>())); |
96 | } else { |
97 | inPlaceVector = SmallVector<StringRef>(op->getNumOperands(), "none" ); |
98 | for (OpOperand &opOperand : op->getOpOperands()) |
99 | if (isa<TensorType>(Val: opOperand.get().getType())) |
100 | inPlaceVector[opOperand.getOperandNumber()] = "false" ; |
101 | } |
102 | inPlaceVector[opOperand.getOperandNumber()] = inPlace ? "true" : "false" ; |
103 | op->setAttr(kInPlaceOperandsAttrName, |
104 | OpBuilder(op).getStrArrayAttr(inPlaceVector)); |
105 | } |
106 | |
107 | //===----------------------------------------------------------------------===// |
108 | // OneShotAnalysisState |
109 | //===----------------------------------------------------------------------===// |
110 | |
111 | OneShotAnalysisState::OneShotAnalysisState( |
112 | Operation *op, const OneShotBufferizationOptions &options) |
113 | : AnalysisState(options, TypeID::get<OneShotAnalysisState>()) { |
114 | // Set up alias sets. |
115 | op->walk(callback: [&](Operation *op) { |
116 | for (Value v : op->getResults()) |
117 | if (isa<TensorType>(Val: v.getType())) |
118 | createAliasInfoEntry(v); |
119 | for (Region &r : op->getRegions()) |
120 | for (Block &b : r.getBlocks()) |
121 | for (auto bbArg : b.getArguments()) |
122 | if (isa<TensorType>(Val: bbArg.getType())) |
123 | createAliasInfoEntry(v: bbArg); |
124 | }); |
125 | |
126 | // Mark OpOperands in-place that must bufferize in-place. |
127 | op->walk([&](BufferizableOpInterface bufferizableOp) { |
128 | if (!options.isOpAllowed(op: bufferizableOp)) |
129 | return WalkResult::skip(); |
130 | for (OpOperand &opOperand : bufferizableOp->getOpOperands()) |
131 | if (isa<TensorType>(opOperand.get().getType())) |
132 | if (bufferizableOp.mustBufferizeInPlace(opOperand, *this)) |
133 | bufferizeInPlace(opOperand); |
134 | return WalkResult::advance(); |
135 | }); |
136 | } |
137 | |
138 | void OneShotAnalysisState::applyOnEquivalenceClass( |
139 | Value v, function_ref<void(Value)> fun) const { |
140 | auto leaderIt = equivalentInfo.findLeader(V: v); |
141 | for (auto mit = leaderIt, meit = equivalentInfo.member_end(); mit != meit; |
142 | ++mit) { |
143 | fun(*mit); |
144 | } |
145 | } |
146 | |
147 | void OneShotAnalysisState::applyOnAliases(Value v, |
148 | function_ref<void(Value)> fun) const { |
149 | auto leaderIt = aliasInfo.findLeader(V: v); |
150 | for (auto mit = leaderIt, meit = aliasInfo.member_end(); mit != meit; ++mit) { |
151 | fun(*mit); |
152 | } |
153 | } |
154 | |
155 | bool OneShotAnalysisState::areEquivalentBufferizedValues(Value v1, |
156 | Value v2) const { |
157 | return equivalentInfo.isEquivalent(V1: v1, V2: v2); |
158 | } |
159 | |
160 | bool OneShotAnalysisState::areAliasingBufferizedValues(Value v1, |
161 | Value v2) const { |
162 | return aliasInfo.isEquivalent(V1: v1, V2: v2); |
163 | } |
164 | |
165 | void OneShotAnalysisState::bufferizeInPlace(OpOperand &operand) { |
166 | if (inplaceBufferized.contains(V: &operand)) |
167 | return; |
168 | inplaceBufferized.insert(V: &operand); |
169 | for (AliasingValue alias : getAliasingValues(operand)) |
170 | aliasInfo.unionSets(alias.value, operand.get()); |
171 | ++statNumTensorInPlace; |
172 | } |
173 | |
174 | void OneShotAnalysisState::bufferizeOutOfPlace(OpOperand &operand) { |
175 | assert(!inplaceBufferized.contains(&operand) && |
176 | "OpOperand was already decided to bufferize inplace" ); |
177 | ++statNumTensorOutOfPlace; |
178 | } |
179 | |
180 | void OneShotAnalysisState::createAliasInfoEntry(Value v) { |
181 | aliasInfo.insert(Data: v); |
182 | equivalentInfo.insert(Data: v); |
183 | } |
184 | |
185 | void OneShotAnalysisState::gatherUndefinedTensorUses(Operation *op) { |
186 | op->walk(callback: [&](Operation *op) { |
187 | // Skip unknown ops. |
188 | auto bufferizableOp = getOptions().dynCastBufferizableOp(op); |
189 | if (!bufferizableOp) |
190 | return WalkResult::skip(); |
191 | |
192 | // Check all tensor OpResults. |
193 | for (OpResult opResult : op->getOpResults()) { |
194 | if (!isa<TensorType>(Val: opResult.getType())) |
195 | continue; |
196 | |
197 | // If there is no preceding definition, the tensor contents are |
198 | // undefined. |
199 | if (opResult.getUses().empty()) |
200 | continue; |
201 | // It does not really matter which use to take to search about |
202 | // the value's definitions. |
203 | OpOperand *opOperand = &(*opResult.getUses().begin()); |
204 | if (findDefinitionsCached(opOperand).empty()) |
205 | for (OpOperand &use : opResult.getUses()) |
206 | undefinedTensorUses.insert(V: &use); |
207 | } |
208 | |
209 | return WalkResult::advance(); |
210 | }); |
211 | } |
212 | |
213 | bool OneShotAnalysisState::hasUndefinedContents(OpOperand *opOperand) const { |
214 | return undefinedTensorUses.contains(V: opOperand); |
215 | } |
216 | |
217 | bool OneShotAnalysisState::isInPlace(OpOperand &opOperand) const { |
218 | return inplaceBufferized.contains(V: &opOperand); |
219 | } |
220 | |
221 | bool OneShotAnalysisState::isValueWritten(Value value) const { |
222 | bool isWritten = false; |
223 | applyOnAliases(v: value, fun: [&](Value val) { |
224 | for (OpOperand &use : val.getUses()) |
225 | if (isInPlace(opOperand&: use) && bufferizesToMemoryWrite(use)) |
226 | isWritten = true; |
227 | }); |
228 | return isWritten; |
229 | } |
230 | |
231 | bool OneShotAnalysisState::isWritable(Value value) const { |
232 | // TODO: Out-of-place bufferized value could be considered writable. |
233 | // Query BufferizableOpInterface to see if the BlockArgument is writable. |
234 | if (auto bufferizableOp = |
235 | getOptions().dynCastBufferizableOp(getOwnerOfValue(value))) |
236 | return bufferizableOp.isWritable(value, *this); |
237 | |
238 | // Not a bufferizable op: The conservative answer is "not writable". |
239 | return false; |
240 | } |
241 | |
242 | void OneShotAnalysisState::unionAliasSets(Value v1, Value v2) { |
243 | aliasInfo.unionSets(V1: v1, V2: v2); |
244 | } |
245 | |
246 | void OneShotAnalysisState::unionEquivalenceClasses(Value v1, Value v2) { |
247 | equivalentInfo.unionSets(V1: v1, V2: v2); |
248 | } |
249 | |
250 | OneShotAnalysisState::Extension::~Extension() = default; |
251 | |
252 | //===----------------------------------------------------------------------===// |
253 | // Bufferization-specific alias analysis. |
254 | //===----------------------------------------------------------------------===// |
255 | |
256 | /// Return true if opOperand has been decided to bufferize in-place. |
257 | static bool isInplaceMemoryWrite(OpOperand &opOperand, |
258 | const OneShotAnalysisState &state) { |
259 | // OpOperands that do not bufferize to a memory write do not write in-place. |
260 | if (!state.bufferizesToMemoryWrite(opOperand)) |
261 | return false; |
262 | // Check current bufferization decisions. |
263 | return state.isInPlace(opOperand); |
264 | } |
265 | |
266 | /// Return true if `a` happens before `b`, i.e., `a` or one of its ancestors |
267 | /// properly dominates `b` and `b` is not inside `a`. |
268 | static bool happensBefore(Operation *a, Operation *b, |
269 | const DominanceInfo &domInfo) { |
270 | do { |
271 | // TODO: Instead of isProperAncestor + properlyDominates, we should use |
272 | // properlyDominatesImpl(a, b, /*enclosingOpOk=*/false) |
273 | if (a->isProperAncestor(other: b)) |
274 | return false; |
275 | if (domInfo.properlyDominates(a, b)) |
276 | return true; |
277 | } while ((a = a->getParentOp())); |
278 | return false; |
279 | } |
280 | |
281 | /// Return `true` if op dominance can be used to rule out a read-after-write |
282 | /// conflicts based on the ordering of ops. Returns `false` if op dominance |
283 | /// cannot be used to due region-based loops. |
284 | /// |
285 | /// Generalized op dominance can often be used to rule out potential conflicts |
286 | /// due to "read happens before write". E.g., the following IR is not a RaW |
287 | /// conflict because the read happens *before* the write. |
288 | /// |
289 | /// Example 1: |
290 | /// %0 = ... : tensor<?xf32> // DEF |
291 | /// "reading_op"(%0) : tensor<?xf32> // READ |
292 | /// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32> // WRITE |
293 | /// |
294 | /// This is no longer true inside loops (or repetitive regions). In such cases, |
295 | /// there may not be a meaningful `happensBefore` relationship because ops |
296 | /// could be executed multiple times. E.g.: |
297 | /// |
298 | /// Example 2: |
299 | /// %0 = ... : tensor<?xf32> // DEF |
300 | /// scf.for ... { |
301 | /// "reading_op"(%0) : tensor<?xf32> // READ |
302 | /// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32> // WRITE |
303 | /// ... |
304 | /// } |
305 | /// |
306 | /// In the above example, reading_op happens before writing_op according to |
307 | /// op dominance. However, both ops may happen multiple times; in |
308 | /// particular, the second execution of reading_op happens after the first |
309 | /// execution of writing_op. This is problematic because the tensor %0 they |
310 | /// operate on (i.e., the "definition") is defined outside of the loop. |
311 | /// |
312 | /// On a high-level, there is a potential RaW in a program if there exists a |
313 | /// possible program execution such that there is a sequence of DEF, followed |
314 | /// by WRITE, followed by READ. Each additional DEF resets the sequence. |
315 | /// |
316 | /// E.g.: |
317 | /// No conflict: DEF, WRITE, DEF, READ |
318 | /// Potential conflict: DEF, READ, WRITE, READ, WRITE |
319 | /// |
320 | /// Example 1 has no conflict: DEF, READ, WRITE |
321 | /// Example 2 has a potential conflict: DEF, (READ, WRITE)* |
322 | // |
323 | /// Example 3: |
324 | /// scf.for ... { |
325 | /// %0 = ... : tensor<?xf32> |
326 | /// "reading_op"(%0) : tensor<?xf32> |
327 | /// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32> |
328 | /// ... |
329 | /// } |
330 | /// This has no conflict: (DEF, READ, WRITE)* |
331 | /// |
332 | /// Example 4: |
333 | /// %0 = ... : tensor<?xf32> |
334 | /// scf.for ... { |
335 | /// scf.for ... { "reading_op"(%0) } |
336 | /// %1 = "writing_op"(%0) |
337 | /// } |
338 | /// This has a potential conflict: DEF, ((READ)*, WRITE)* |
339 | /// |
340 | /// Example 5: |
341 | /// %0 = ... : tensor<?xf32> |
342 | /// scf.for ... { %1 = "writing_op"(%0) } |
343 | /// scf.for ... { "reading_op"(%0) } |
344 | /// This has a potential conflict: DEF, WRITE*, READ* |
345 | /// |
346 | /// The following rules are used to rule out RaW conflicts via ordering of ops: |
347 | /// |
348 | /// 1. If the closest enclosing repetitive region of DEF is a proper ancestor of |
349 | /// a repetitive region that enclosing both READ and WRITE, we cannot rule |
350 | /// out RaW conflict due to the ordering of ops. |
351 | /// 2. Otherwise: There are no loops that interfere with our analysis; for |
352 | /// analysis purposes, we can assume that there are no loops/repetitive |
353 | /// regions. I.e., we can rule out a RaW conflict if READ happensBefore WRITE |
354 | /// or WRITE happensBefore DEF. (Checked in `hasReadAfterWriteInterference`.) |
355 | /// |
356 | static bool canUseOpDominanceDueToRegions(OpOperand *uRead, OpOperand *uWrite, |
357 | const SetVector<Value> &definitions, |
358 | AnalysisState &state) { |
359 | const BufferizationOptions &options = state.getOptions(); |
360 | for (Value def : definitions) { |
361 | Region *rRead = |
362 | state.getEnclosingRepetitiveRegion(op: uRead->getOwner(), options); |
363 | Region *rDef = state.getEnclosingRepetitiveRegion(value: def, options); |
364 | |
365 | // READ and DEF are in the same repetitive region. `happensBefore` can be |
366 | // used to rule out RaW conflicts due to op ordering. |
367 | if (rRead == rDef) |
368 | continue; |
369 | |
370 | // Find the enclosing repetitive region of READ that is closest to DEF but |
371 | // not the repetitive region of DEF itself. |
372 | while (true) { |
373 | Region *nextRegion = getNextEnclosingRepetitiveRegion(region: rRead, options); |
374 | if (nextRegion == rDef) |
375 | break; |
376 | assert(nextRegion && "expected to find another repetitive region" ); |
377 | rRead = nextRegion; |
378 | } |
379 | |
380 | // We cannot use op dominance if WRITE is inside the same repetitive region. |
381 | if (rRead->getParentOp()->isAncestor(other: uWrite->getOwner())) |
382 | return false; |
383 | } |
384 | |
385 | return true; |
386 | } |
387 | |
388 | /// Return `true` if op dominance can be used to rule out a read-after-write |
389 | /// conflicts based on the ordering of ops. Returns `false` if op dominance |
390 | /// cannot be used to due block-based loops within a region. |
391 | /// |
392 | /// Refer to the `canUseOpDominanceDueToRegions` documentation for details on |
393 | /// how op domiance is used during RaW conflict detection. |
394 | /// |
395 | /// On a high-level, there is a potential RaW in a program if there exists a |
396 | /// possible program execution such that there is a sequence of DEF, followed |
397 | /// by WRITE, followed by READ. Each additional DEF resets the sequence. |
398 | /// |
399 | /// Op dominance cannot be used if there is a path from block(READ) to |
400 | /// block(WRITE) and a path from block(WRITE) to block(READ). block(DEF) should |
401 | /// not appear on that path. |
402 | static bool canUseOpDominanceDueToBlocks(OpOperand *uRead, OpOperand *uWrite, |
403 | const SetVector<Value> &definitions, |
404 | AnalysisState &state) { |
405 | // Fast path: If READ and WRITE are in different regions, their block cannot |
406 | // be reachable just via unstructured control flow. (Loops due to regions are |
407 | // covered by `canUseOpDominanceDueToRegions`.) |
408 | if (uRead->getOwner()->getParentRegion() != |
409 | uWrite->getOwner()->getParentRegion()) |
410 | return true; |
411 | |
412 | Block *readBlock = uRead->getOwner()->getBlock(); |
413 | Block *writeBlock = uWrite->getOwner()->getBlock(); |
414 | for (Value def : definitions) { |
415 | Block *defBlock = def.getParentBlock(); |
416 | if (readBlock->isReachable(other: writeBlock, except: {defBlock}) && |
417 | writeBlock->isReachable(other: readBlock, except: {defBlock})) |
418 | return false; |
419 | } |
420 | |
421 | return true; |
422 | } |
423 | |
424 | static bool canUseOpDominance(OpOperand *uRead, OpOperand *uWrite, |
425 | const SetVector<Value> &definitions, |
426 | AnalysisState &state) { |
427 | return canUseOpDominanceDueToRegions(uRead, uWrite, definitions, state) && |
428 | canUseOpDominanceDueToBlocks(uRead, uWrite, definitions, state); |
429 | } |
430 | |
431 | /// Annotate IR with details about the detected RaW conflict. |
432 | static void annotateConflict(OpOperand *uRead, OpOperand *uConflictingWrite, |
433 | Value definition) { |
434 | static uint64_t counter = 0; |
435 | Operation *readingOp = uRead->getOwner(); |
436 | Operation *conflictingWritingOp = uConflictingWrite->getOwner(); |
437 | |
438 | OpBuilder b(conflictingWritingOp->getContext()); |
439 | std::string id = "C_" + std::to_string(val: counter++); |
440 | |
441 | std::string conflictingWriteAttr = |
442 | id + |
443 | "[CONFL-WRITE: " + std::to_string(val: uConflictingWrite->getOperandNumber()) + |
444 | "]" ; |
445 | conflictingWritingOp->setAttr(conflictingWriteAttr, b.getUnitAttr()); |
446 | |
447 | std::string readAttr = |
448 | id + "[READ: " + std::to_string(val: uRead->getOperandNumber()) + "]" ; |
449 | readingOp->setAttr(readAttr, b.getUnitAttr()); |
450 | |
451 | if (auto opResult = dyn_cast<OpResult>(Val&: definition)) { |
452 | std::string defAttr = |
453 | id + "[DEF: result " + std::to_string(val: opResult.getResultNumber()) + "]" ; |
454 | opResult.getDefiningOp()->setAttr(defAttr, b.getUnitAttr()); |
455 | } else { |
456 | auto bbArg = cast<BlockArgument>(Val&: definition); |
457 | std::string defAttr = |
458 | id + "[DEF: bbArg " + std::to_string(val: bbArg.getArgNumber()) + "]" ; |
459 | bbArg.getOwner()->getParentOp()->setAttr(defAttr, b.getUnitAttr()); |
460 | } |
461 | } |
462 | |
463 | /// Return 'true' if a tensor that is equivalent to `other` can be found in the |
464 | /// reverse use-def chain of `start`. Note: If an OpOperand bufferizes out of |
465 | /// place along that use-def chain, the two tensors may not materialize as |
466 | /// equivalent buffers (but separate allocations). |
467 | /// |
468 | /// Note: This function also requires that the two tensors have equivalent |
469 | /// indexing. I.e., the tensor types do not change along the use-def chain, |
470 | /// apart from static <-> dynamic dim casts. |
471 | static bool hasEquivalentValueInReverseUseDefChain(AnalysisState &state, |
472 | OpOperand *start, |
473 | Value other) { |
474 | TraversalConfig config; |
475 | config.followEquivalentOnly = true; |
476 | config.alwaysIncludeLeaves = false; |
477 | config.followSameTypeOrCastsOnly = true; |
478 | return !state |
479 | .findValueInReverseUseDefChain( |
480 | start, [&](Value v) { return v == other; }, config) |
481 | .empty(); |
482 | } |
483 | |
484 | /// Return "true" if the given operand's value is originating from a subset |
485 | /// that is equivalent to the subset that `subsetOp` inserts into. |
486 | static bool matchesInsertDestination(const AnalysisState &state, |
487 | OpOperand *opOperand, |
488 | SubsetInsertionOpInterface subsetOp) { |
489 | auto matchingSubset = [&](Value val) { |
490 | if (auto opResult = dyn_cast<OpResult>(Val&: val)) |
491 | if (subsetOp.isEquivalentSubset(opResult, [&](Value v1, Value v2) { |
492 | return state.areEquivalentBufferizedValues(v1, v2); |
493 | })) |
494 | return true; |
495 | return false; |
496 | }; |
497 | // There may be multiple leaves at which the reverse SSA use-def chain lookup |
498 | // terminates. All of them must be equivalent subsets. |
499 | SetVector<Value> backwardSlice = |
500 | state.findValueInReverseUseDefChain(opOperand, matchingSubset); |
501 | return static_cast<bool>(llvm::all_of(Range&: backwardSlice, P: matchingSubset)); |
502 | } |
503 | |
504 | /// Return "true" if the given "read" and potentially conflicting "write" are |
505 | /// not conflicting due to their subset relationship. The comments in this |
506 | /// function are expressed in terms of tensor.extract_slice/tensor.insert_slice |
507 | /// pairs, but apply to any subset ops that implement the |
508 | /// `SubsetInsertionOpInterface`. |
509 | static bool areNonConflictingSubsets(OpOperand *uRead, |
510 | OpOperand *uConflictingWrite, |
511 | const AnalysisState &state) { |
512 | Operation *readingOp = uRead->getOwner(); |
513 | Operation *conflictingWritingOp = uConflictingWrite->getOwner(); |
514 | |
515 | // Special rules for matching ExtractSliceOp/InsertSliceOp pairs. If |
516 | // uRead is an InsertSliceOp... |
517 | if (auto subsetOp = dyn_cast<SubsetInsertionOpInterface>(readingOp)) { |
518 | // As an example, consider the following IR. |
519 | // |
520 | // %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace = [true] } |
521 | // %1 = linalg.fill %cst, %0 {inplace= [true] } |
522 | // %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1] |
523 | // {inplace= [true] } |
524 | |
525 | if (uRead == &subsetOp.getDestinationOperand() && |
526 | matchesInsertDestination(state, uConflictingWrite, subsetOp)) |
527 | // Case 1: The main insight is that InsertSliceOp reads only part of |
528 | // the destination tensor. The overwritten area is not read. If |
529 | // uConflictingWrite writes into exactly the memory location that is |
530 | // being read by uRead, this is not a conflict. |
531 | // |
532 | // In the above example: |
533 | // uRead = OpOperand 1 (%t) of tensor.insert_slice |
534 | // uConflictingWrite = OpOperand 1 (%0) of linalg.fill |
535 | // |
536 | // The read of %t does not conflict with the write of the FillOp |
537 | // (same aliases!) because the area that the FillOp operates on is |
538 | // exactly the one that is *not* read via %t. |
539 | return true; |
540 | |
541 | if (uRead == &subsetOp.getSourceOperand() && |
542 | uConflictingWrite == &subsetOp.getDestinationOperand() && |
543 | matchesInsertDestination(state, uRead, subsetOp)) |
544 | // Case 2: The read of the source tensor and the write to the dest |
545 | // tensor via an InsertSliceOp is not a conflict if the read is |
546 | // reading exactly that part of an equivalent tensor that the |
547 | // InsertSliceOp is writing. |
548 | // |
549 | // In the above example: |
550 | // uRead = OpOperand 0 (%1) of tensor.insert_slice |
551 | // uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice |
552 | return true; |
553 | } |
554 | |
555 | // If uConflictingWrite is an InsertSliceOp... |
556 | if (auto subsetOp = |
557 | dyn_cast<SubsetInsertionOpInterface>(conflictingWritingOp)) |
558 | // As an example, consider the following IR. |
559 | // |
560 | // %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace = [true] } |
561 | // %1 = linalg.fill %cst, %0 {inplace= [true] } |
562 | // %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1] |
563 | // {inplace= [true] } |
564 | // %3 = vector.transfer_read %1, %cst |
565 | // |
566 | // In the above example: |
567 | // uRead = OpOperand 0 (%1) of vector.transfer_read |
568 | // uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice |
569 | // definition = %1 |
570 | // |
571 | // This is not a conflict because the InsertSliceOp overwrites the |
572 | // memory segment of %1 with the exact same data. (Effectively, there |
573 | // is no memory write here.) |
574 | if (uConflictingWrite == &subsetOp.getDestinationOperand() && |
575 | state.areEquivalentBufferizedValues( |
576 | v1: uRead->get(), v2: subsetOp.getSourceOperand().get()) && |
577 | matchesInsertDestination(state, &subsetOp.getSourceOperand(), subsetOp)) |
578 | return true; |
579 | |
580 | return false; |
581 | } |
582 | |
583 | /// Given sets of uses and writes, return true if there is a RaW conflict under |
584 | /// the assumption that all given reads/writes alias the same buffer and that |
585 | /// all given writes bufferize inplace. |
586 | /// |
587 | /// A conflict is: According to SSA use-def chains, a read R is supposed to read |
588 | /// the result of a definition W1. But because of bufferization decisions, R |
589 | /// actually reads another definition W2. |
590 | static bool |
591 | hasReadAfterWriteInterference(const DenseSet<OpOperand *> &usesRead, |
592 | const DenseSet<OpOperand *> &usesWrite, |
593 | const DominanceInfo &domInfo, |
594 | OneShotAnalysisState &state) { |
595 | const BufferizationOptions &options = state.getOptions(); |
596 | |
597 | // Before going through the main RaW analysis, find cases where a buffer must |
598 | // be privatized due to parallelism. If the result of a write is never read, |
599 | // privatization is not necessary (and large parts of the IR are likely dead). |
600 | if (options.checkParallelRegions && !usesRead.empty()) { |
601 | for (OpOperand *uConflictingWrite : usesWrite) { |
602 | // Find the allocation point or last write (definition) of the buffer. |
603 | // Note: In contrast to `findDefinitions`, this also returns results of |
604 | // ops that do not bufferize to memory write when no other definition |
605 | // could be found. E.g., "bufferization.alloc_tensor" would be included, |
606 | // even though that op just bufferizes to an allocation but does define |
607 | // the contents of the buffer. |
608 | SetVector<Value> definitionsOrLeaves = |
609 | state.findValueInReverseUseDefChain(uConflictingWrite, [&](Value v) { |
610 | return state.bufferizesToMemoryWrite(v); |
611 | }); |
612 | assert(!definitionsOrLeaves.empty() && |
613 | "expected at least one definition or leaf" ); |
614 | |
615 | // The writing op must bufferize out-of-place if the definition is in a |
616 | // different parallel region than this write. |
617 | for (Value def : definitionsOrLeaves) { |
618 | if (getParallelRegion(def.getParentRegion(), options) != |
619 | getParallelRegion(uConflictingWrite->getOwner()->getParentRegion(), |
620 | options)) { |
621 | LLVM_DEBUG( |
622 | llvm::dbgs() |
623 | << "\n- bufferizes out-of-place due to parallel region:\n" ); |
624 | LLVM_DEBUG(llvm::dbgs() |
625 | << " unConflictingWrite = operand " |
626 | << uConflictingWrite->getOperandNumber() << " of " |
627 | << *uConflictingWrite->getOwner() << "\n" ); |
628 | return true; |
629 | } |
630 | } |
631 | } |
632 | } |
633 | |
634 | for (OpOperand *uRead : usesRead) { |
635 | Operation *readingOp = uRead->getOwner(); |
636 | LLVM_DEBUG(llvm::dbgs() << "\n- check conflict:\n" ); |
637 | LLVM_DEBUG(llvm::dbgs() << " uRead = operand " << uRead->getOperandNumber() |
638 | << " of " << *readingOp << "\n" ); |
639 | |
640 | // Find the definition of uRead by following the SSA use-def chain. |
641 | // E.g.: |
642 | // |
643 | // %0 = "writing_op"(%t) : tensor<?x32> -> tensor<?xf32> |
644 | // %1 = "aliasing_op"(%0) : tensor<?x32> -> tensor<?xf32> |
645 | // %2 = "reading_op"(%1) : : tensor<?x32> -> not_a_tensor_type |
646 | // |
647 | // In the above example, if uRead is the OpOperand of reading_op, the |
648 | // definition is %0. Note that operations that create an alias but do not |
649 | // bufferize to a memory write (such as ExtractSliceOp) are skipped. |
650 | const SetVector<Value> &definitions = state.findDefinitionsCached(opOperand: uRead); |
651 | if (definitions.empty()) { |
652 | // Fast path: No conflict if there are no definitions. |
653 | LLVM_DEBUG(llvm::dbgs() |
654 | << " no conflict: read value has no definitions\n" ); |
655 | continue; |
656 | } |
657 | |
658 | // Look for conflicting memory writes. Potential conflicts are writes to an |
659 | // alias that have been decided to bufferize inplace. |
660 | for (OpOperand *uConflictingWrite : usesWrite) { |
661 | LLVM_DEBUG(llvm::dbgs() << " unConflictingWrite = operand " |
662 | << uConflictingWrite->getOperandNumber() << " of " |
663 | << *uConflictingWrite->getOwner() << "\n" ); |
664 | |
665 | // Check if op dominance can be used to rule out read-after-write |
666 | // conflicts. |
667 | bool useDominance = |
668 | canUseOpDominance(uRead, uConflictingWrite, definitions, state); |
669 | LLVM_DEBUG(llvm::dbgs() << "\n- useDominance = " << useDominance << "\n" ); |
670 | |
671 | // Throughout this loop, check for multiple requirements that have to be |
672 | // met for uConflictingWrite to be an actual conflict. |
673 | Operation *conflictingWritingOp = uConflictingWrite->getOwner(); |
674 | |
675 | // Inside of repetitive regions, ops may be executed multiple times and op |
676 | // dominance cannot be used to rule out conflicts. |
677 | if (useDominance) { |
678 | // No conflict if the readingOp dominates conflictingWritingOp, i.e., |
679 | // the write is not visible when reading. |
680 | // |
681 | // Note: If ops are executed multiple times (e.g., because they are |
682 | // inside a loop), there may be no meaningful `happensBefore` |
683 | // relationship. |
684 | if (happensBefore(a: readingOp, b: conflictingWritingOp, domInfo)) { |
685 | LLVM_DEBUG(llvm::dbgs() |
686 | << " no conflict: read happens before write\n" ); |
687 | continue; |
688 | } |
689 | |
690 | // No conflict if the reading use equals the use of the conflicting |
691 | // write. A use cannot conflict with itself. |
692 | // |
693 | // Note: Just being the same op is not enough. It has to be the same |
694 | // use. |
695 | // Note: If the op is executed multiple times (e.g., because it is |
696 | // inside a loop), it may be conflicting with itself. |
697 | if (uConflictingWrite == uRead) { |
698 | LLVM_DEBUG(llvm::dbgs() |
699 | << " no conflict: read and write are same use\n" ); |
700 | continue; |
701 | } |
702 | |
703 | // Ops are not conflicting if they are in mutually exclusive regions. |
704 | // |
705 | // Note: If ops are executed multiple times (e.g., because they are |
706 | // inside a loop), mutually exclusive regions may be executed |
707 | // multiple times. |
708 | if (state.insideMutuallyExclusiveRegions(readingOp, |
709 | conflictingWritingOp)) { |
710 | LLVM_DEBUG(llvm::dbgs() << " no conflict: read and write are in " |
711 | "mutually exclusive regions\n" ); |
712 | continue; |
713 | } |
714 | |
715 | // Two equivalent operands of the same op are not conflicting if the op |
716 | // bufferizes to element-wise access. I.e., all loads at a position |
717 | // happen before all stores to the same position. |
718 | if (conflictingWritingOp == readingOp) { |
719 | if (auto bufferizableOp = options.dynCastBufferizableOp(readingOp)) { |
720 | if (bufferizableOp.bufferizesToElementwiseAccess( |
721 | state, {uRead, uConflictingWrite})) { |
722 | if (hasEquivalentValueInReverseUseDefChain( |
723 | state, uRead, uConflictingWrite->get()) || |
724 | hasEquivalentValueInReverseUseDefChain( |
725 | state, uConflictingWrite, uRead->get())) { |
726 | LLVM_DEBUG( |
727 | llvm::dbgs() |
728 | << " no conflict: op bufferizes to element-wise access\n" ); |
729 | continue; |
730 | } |
731 | } |
732 | } |
733 | } |
734 | } |
735 | |
736 | // No conflict if the operands are non-conflicting subsets. |
737 | if (areNonConflictingSubsets(uRead, uConflictingWrite, state)) { |
738 | LLVM_DEBUG(llvm::dbgs() << " no conflict: non-conflicting subsets\n" ); |
739 | continue; |
740 | } |
741 | |
742 | // No conflict if the op interface says so. |
743 | if (auto bufferizableOp = options.dynCastBufferizableOp(readingOp)) { |
744 | if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state)) { |
745 | LLVM_DEBUG(llvm::dbgs() |
746 | << " no conflict: op interace of reading op says 'no'\n" ); |
747 | continue; |
748 | } |
749 | } |
750 | |
751 | if (conflictingWritingOp != readingOp) { |
752 | if (auto bufferizableOp = |
753 | options.dynCastBufferizableOp(conflictingWritingOp)) { |
754 | if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, |
755 | state)) { |
756 | LLVM_DEBUG( |
757 | llvm::dbgs() |
758 | << " no conflict: op interace of writing op says 'no'\n" ); |
759 | continue; |
760 | } |
761 | } |
762 | } |
763 | |
764 | // Check all possible definitions. |
765 | for (Value definition : definitions) { |
766 | LLVM_DEBUG(llvm::dbgs() << " * definition = " << definition << "\n" ); |
767 | |
768 | // No conflict if the conflicting write happens before the definition. |
769 | if (Operation *defOp = definition.getDefiningOp()) { |
770 | if (happensBefore(a: conflictingWritingOp, b: defOp, domInfo)) { |
771 | // conflictingWritingOp happens before defOp. No conflict. |
772 | LLVM_DEBUG(llvm::dbgs() |
773 | << " no conflict: write happens before definition\n" ); |
774 | continue; |
775 | } |
776 | // No conflict if conflictingWritingOp is contained in defOp. |
777 | if (defOp->isProperAncestor(other: conflictingWritingOp)) { |
778 | LLVM_DEBUG( |
779 | llvm::dbgs() |
780 | << " no conflict: write is contained in definition\n" ); |
781 | continue; |
782 | } |
783 | } else { |
784 | auto bbArg = cast<BlockArgument>(Val&: definition); |
785 | Block *block = bbArg.getOwner(); |
786 | if (!block->findAncestorOpInBlock(op&: *conflictingWritingOp)) { |
787 | LLVM_DEBUG(llvm::dbgs() << " no conflict: definition is bbArg " |
788 | "and write happens outside of block\n" ); |
789 | // conflictingWritingOp happens outside of the block. No |
790 | // conflict. |
791 | continue; |
792 | } |
793 | } |
794 | |
795 | // No conflict if the conflicting write and the definition are the same |
796 | // use. |
797 | AliasingValueList aliases = state.getAliasingValues(*uConflictingWrite); |
798 | if (aliases.getNumAliases() == 1 && |
799 | aliases.getAliases()[0].value == definition) { |
800 | LLVM_DEBUG(llvm::dbgs() |
801 | << " no conflict: definition and write are same\n" ); |
802 | continue; |
803 | } |
804 | |
805 | // All requirements are met. Conflict found! |
806 | |
807 | if (options.printConflicts) |
808 | annotateConflict(uRead, uConflictingWrite, definition); |
809 | LLVM_DEBUG(llvm::dbgs() << " => RaW CONFLICT FOUND\n" ); |
810 | return true; |
811 | } |
812 | } |
813 | } |
814 | |
815 | return false; |
816 | } |
817 | |
818 | // Helper function to iterate on aliases of `root` and capture the writes. |
819 | static void getAliasingInplaceWrites(DenseSet<OpOperand *> &res, Value root, |
820 | const OneShotAnalysisState &state) { |
821 | state.applyOnAliases(v: root, fun: [&](Value alias) { |
822 | for (auto &use : alias.getUses()) |
823 | // Inplace write to a value that aliases root. |
824 | if (isInplaceMemoryWrite(opOperand&: use, state)) |
825 | res.insert(V: &use); |
826 | }); |
827 | } |
828 | |
829 | // Helper function to iterate on aliases of `root` and capture the reads. |
830 | static void getAliasingReads(DenseSet<OpOperand *> &res, Value root, |
831 | const OneShotAnalysisState &state) { |
832 | state.applyOnAliases(v: root, fun: [&](Value alias) { |
833 | for (auto &use : alias.getUses()) { |
834 | // Read of a value that aliases root. |
835 | if (state.bufferizesToMemoryRead(use)) { |
836 | res.insert(V: &use); |
837 | continue; |
838 | } |
839 | |
840 | // Read of a dependent value in the SSA use-def chain. E.g.: |
841 | // |
842 | // %0 = ... |
843 | // %1 = tensor.extract_slice %0 {not_analyzed_yet} |
844 | // "read"(%1) |
845 | // |
846 | // In the above example, getAliasingReads(%0) includes the first OpOperand |
847 | // of the tensor.extract_slice op. The extract_slice itself does not read |
848 | // but its aliasing result is eventually fed into an op that does. |
849 | // |
850 | // Note: This is considered a "read" only if the use does not bufferize to |
851 | // a memory write. (We already ruled out memory reads. In case of a memory |
852 | // write, the buffer would be entirely overwritten; in the above example |
853 | // there would then be no flow of data from the extract_slice operand to |
854 | // its result's uses.) |
855 | if (!state.bufferizesToMemoryWrite(use)) { |
856 | AliasingValueList aliases = state.getAliasingValues(use); |
857 | if (llvm::any_of(Range&: aliases, P: [&](AliasingValue a) { |
858 | return state.isValueRead(a.value); |
859 | })) |
860 | res.insert(V: &use); |
861 | } |
862 | } |
863 | }); |
864 | } |
865 | |
866 | /// Return true if bufferizing `operand` inplace would create a conflict. A read |
867 | /// R and a write W of the same alias set is a conflict if inplace bufferization |
868 | /// of W changes the value read by R to a value different from the one that |
869 | /// would be expected by tracing back R's origin through SSA use-def chains. |
870 | /// A conflict can only be introduced by a new alias and/or an inplace |
871 | /// bufferization decision. |
872 | /// |
873 | /// Example: |
874 | /// %0 = tensor.extract_slice %t[...][...][1, 1] {inplace?} |
875 | /// %1 = vector.transfer_write %v1, %t {inplace} : vector<5xf32>, tensor<?xf32> |
876 | /// %e = tensor.extract_slice %1 |
877 | /// %2 = vector.transfer_write %v2, %0 {inplace} : vector<6xf32>, tensor<?xf32> |
878 | /// %3 = vector.transfer_read %e, %cst : tensor<?xf32>, vector<7xf32> |
879 | /// |
880 | /// In the above example, the two TransferWriteOps have already been decided to |
881 | /// bufferize inplace. Bufferizing the ExtractSliceOp inplace would create a |
882 | /// conflict because: |
883 | /// * According to SSA use-def chains, we expect to read the result of %1. |
884 | /// * However, adding an alias {%0, %t} would mean that the second |
885 | /// TransferWriteOp overwrites the result of the first one. Therefore, the |
886 | /// TransferReadOp would no longer be reading the result of %1. |
887 | /// |
888 | /// If `checkConsistencyOnly` is true, this function checks if there is a |
889 | /// read-after-write conflict without bufferizing `operand` inplace. This would |
890 | /// indicate a problem with the current inplace bufferization decisions. |
891 | /// |
892 | /// Note: If `checkConsistencyOnly`, this function may be called with a null |
893 | /// OpResult. In that case, only the consistency of bufferization decisions |
894 | /// involving aliases of the given OpOperand are checked. |
895 | static bool wouldCreateReadAfterWriteInterference( |
896 | OpOperand &operand, const DominanceInfo &domInfo, |
897 | OneShotAnalysisState &state, bool checkConsistencyOnly = false) { |
898 | // Collect reads and writes of all aliases of OpOperand and OpResult. |
899 | DenseSet<OpOperand *> usesRead, usesWrite; |
900 | getAliasingReads(res&: usesRead, root: operand.get(), state); |
901 | getAliasingInplaceWrites(res&: usesWrite, root: operand.get(), state); |
902 | for (AliasingValue alias : state.getAliasingValues(operand)) { |
903 | getAliasingReads(usesRead, alias.value, state); |
904 | getAliasingInplaceWrites(usesWrite, alias.value, state); |
905 | } |
906 | if (!checkConsistencyOnly && state.bufferizesToMemoryWrite(operand)) |
907 | usesWrite.insert(V: &operand); |
908 | |
909 | return hasReadAfterWriteInterference(usesRead, usesWrite, domInfo, state); |
910 | } |
911 | |
912 | /// Annotate IR with details about the detected non-writability conflict. |
913 | static void annotateNonWritableTensor(Value value) { |
914 | static int64_t counter = 0; |
915 | OpBuilder b(value.getContext()); |
916 | std::string id = "W_" + std::to_string(val: counter++); |
917 | if (auto opResult = dyn_cast<OpResult>(Val&: value)) { |
918 | std::string attr = id + "[NOT-WRITABLE: result " + |
919 | std::to_string(val: opResult.getResultNumber()) + "]" ; |
920 | opResult.getDefiningOp()->setAttr(attr, b.getUnitAttr()); |
921 | } else { |
922 | auto bbArg = cast<BlockArgument>(Val&: value); |
923 | std::string attr = id + "[NOT-WRITABLE: bbArg " + |
924 | std::to_string(val: bbArg.getArgNumber()) + "]" ; |
925 | bbArg.getOwner()->getParentOp()->setAttr(attr, b.getUnitAttr()); |
926 | } |
927 | } |
928 | |
929 | /// Return true if bufferizing `operand` inplace would create a write to a |
930 | /// non-writable buffer. |
931 | static bool |
932 | wouldCreateWriteToNonWritableBuffer(OpOperand &operand, |
933 | OneShotAnalysisState &state, |
934 | bool checkConsistencyOnly = false) { |
935 | bool foundWrite = |
936 | !checkConsistencyOnly && state.bufferizesToMemoryWrite(operand); |
937 | |
938 | if (!foundWrite) { |
939 | // Collect writes of all aliases of OpOperand and OpResult. |
940 | DenseSet<OpOperand *> usesWrite; |
941 | getAliasingInplaceWrites(res&: usesWrite, root: operand.get(), state); |
942 | for (AliasingValue alias : state.getAliasingValues(operand)) |
943 | getAliasingInplaceWrites(usesWrite, alias.value, state); |
944 | foundWrite = !usesWrite.empty(); |
945 | } |
946 | |
947 | if (!foundWrite) |
948 | return false; |
949 | |
950 | // Look for a read-only tensor among all aliases. |
951 | bool foundReadOnly = false; |
952 | auto checkReadOnly = [&](Value v) { |
953 | if (!state.isWritable(value: v)) { |
954 | foundReadOnly = true; |
955 | if (state.getOptions().printConflicts) |
956 | annotateNonWritableTensor(value: v); |
957 | } |
958 | }; |
959 | state.applyOnAliases(v: operand.get(), fun: checkReadOnly); |
960 | for (AliasingValue alias : state.getAliasingValues(operand)) |
961 | state.applyOnAliases(alias.value, checkReadOnly); |
962 | if (foundReadOnly) { |
963 | LLVM_DEBUG(llvm::dbgs() << "=> NOT WRITABLE\n" ); |
964 | return true; |
965 | } |
966 | |
967 | return false; |
968 | } |
969 | |
970 | //===----------------------------------------------------------------------===// |
971 | // Bufferization analyses. |
972 | //===----------------------------------------------------------------------===// |
973 | |
974 | // Find the values that define the contents of the given operand's value. |
975 | const llvm::SetVector<Value> & |
976 | OneShotAnalysisState::findDefinitionsCached(OpOperand *opOperand) { |
977 | Value value = opOperand->get(); |
978 | if (!cachedDefinitions.count(value)) |
979 | cachedDefinitions[value] = findDefinitions(opOperand); |
980 | return cachedDefinitions[value]; |
981 | } |
982 | |
983 | void OneShotAnalysisState::resetCache() { |
984 | AnalysisState::resetCache(); |
985 | cachedDefinitions.clear(); |
986 | } |
987 | |
988 | /// Determine if `operand` can be bufferized in-place. |
989 | static LogicalResult |
990 | bufferizableInPlaceAnalysisImpl(OpOperand &operand, OneShotAnalysisState &state, |
991 | const DominanceInfo &domInfo) { |
992 | LLVM_DEBUG( |
993 | llvm::dbgs() << "//===-------------------------------------------===//\n" |
994 | << "Analyzing operand #" << operand.getOperandNumber() |
995 | << " of " << *operand.getOwner() << "\n" ); |
996 | |
997 | bool foundInterference = |
998 | wouldCreateWriteToNonWritableBuffer(operand, state) || |
999 | wouldCreateReadAfterWriteInterference(operand, domInfo, state); |
1000 | |
1001 | if (foundInterference) |
1002 | state.bufferizeOutOfPlace(operand); |
1003 | else |
1004 | state.bufferizeInPlace(operand); |
1005 | |
1006 | LLVM_DEBUG(llvm::dbgs() |
1007 | << "//===-------------------------------------------===//\n" ); |
1008 | return success(); |
1009 | } |
1010 | |
1011 | LogicalResult |
1012 | OneShotAnalysisState::analyzeSingleOp(Operation *op, |
1013 | const DominanceInfo &domInfo) { |
1014 | for (OpOperand &opOperand : op->getOpOperands()) |
1015 | if (isa<TensorType>(Val: opOperand.get().getType())) |
1016 | if (failed(Result: bufferizableInPlaceAnalysisImpl(operand&: opOperand, state&: *this, domInfo))) |
1017 | return failure(); |
1018 | return success(); |
1019 | } |
1020 | |
1021 | /// Analyze equivalence of tied OpResult/OpOperand pairs of the given ops. |
1022 | static void equivalenceAnalysis(SmallVector<Operation *> &ops, |
1023 | OneShotAnalysisState &state) { |
1024 | for (Operation *op : ops) { |
1025 | if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op)) { |
1026 | for (OpResult opResult : op->getOpResults()) { |
1027 | if (!isa<TensorType>(Val: opResult.getType())) |
1028 | continue; |
1029 | AliasingOpOperandList aliases = state.getAliasingOpOperands(opResult); |
1030 | if (aliases.getNumAliases() == 0) |
1031 | // Nothing to do if there are no aliasing OpOperands. |
1032 | continue; |
1033 | |
1034 | Value firstOperand = aliases.begin()->opOperand->get(); |
1035 | bool allEquivalent = true; |
1036 | for (AliasingOpOperand alias : aliases) { |
1037 | bool isEquiv = alias.relation == BufferRelation::Equivalent; |
1038 | bool isInPlace = state.isInPlace(*alias.opOperand); |
1039 | Value operand = alias.opOperand->get(); |
1040 | if (isEquiv && isInPlace && alias.isDefinite) { |
1041 | // Found a definite, equivalent alias. Merge equivalence sets. |
1042 | // There can only be one definite alias, so we can stop here. |
1043 | state.unionEquivalenceClasses(opResult, operand); |
1044 | allEquivalent = false; |
1045 | break; |
1046 | } |
1047 | if (!isEquiv || !isInPlace) |
1048 | allEquivalent = false; |
1049 | if (!state.areEquivalentBufferizedValues(operand, firstOperand)) |
1050 | allEquivalent = false; |
1051 | } |
1052 | |
1053 | // If all "maybe" aliases are equivalent and the OpResult is not a new |
1054 | // allocation, it is a definite, equivalent alias. E.g.: |
1055 | // |
1056 | // aliasingOpOperands(%r) = {(%t0, EQUIV, MAYBE), (%t1, EQUIV, MAYBE)} |
1057 | // aliasingValues(%t0) = {(%r, EQUIV, MAYBE)} |
1058 | // aliasingValues(%t1) = {(%r, EQUIV, MAYBE)} |
1059 | // %r = arith.select %c, %t0, %t1 : tensor<?xf32> |
1060 | // |
1061 | // If %t0 and %t1 are equivalent, it is safe to union the equivalence |
1062 | // classes of %r, %t0 and %t1. |
1063 | if (allEquivalent && !bufferizableOp.bufferizesToAllocation(opResult)) |
1064 | state.unionEquivalenceClasses(v1: opResult, v2: firstOperand); |
1065 | } |
1066 | } |
1067 | } |
1068 | } |
1069 | |
1070 | /// Analyze equivalence of tied OpResult/OpOperand pairs of all ops contained |
1071 | /// in `op`. |
1072 | static void equivalenceAnalysis(Operation *op, OneShotAnalysisState &state) { |
1073 | // Traverse ops in PostOrder: Nested ops first, then enclosing ops. |
1074 | SmallVector<Operation *> ops; |
1075 | op->walk<WalkOrder::PostOrder>(callback: [&](Operation *op) { |
1076 | // No tensors => no buffers. |
1077 | if (none_of(Range: op->getResultTypes(), P: isaTensor)) |
1078 | return; |
1079 | ops.push_back(Elt: op); |
1080 | }); |
1081 | |
1082 | equivalenceAnalysis(ops, state); |
1083 | } |
1084 | |
1085 | /// "Bottom-up from terminators" heuristic. |
1086 | static SmallVector<Operation *> |
1087 | bottomUpFromTerminatorsHeuristic(Operation *op, |
1088 | const OneShotAnalysisState &state) { |
1089 | SetVector<Operation *> traversedOps; |
1090 | |
1091 | // Find region terminators. |
1092 | op->walk<WalkOrder::PostOrder>(callback: [&](RegionBranchTerminatorOpInterface term) { |
1093 | if (!traversedOps.insert(term)) |
1094 | return; |
1095 | // Follow the reverse SSA use-def chain from each yielded value as long as |
1096 | // we stay within the same region. |
1097 | SmallVector<OpResult> worklist; |
1098 | for (Value v : term->getOperands()) { |
1099 | if (!isa<TensorType>(v.getType())) |
1100 | continue; |
1101 | auto opResult = dyn_cast<OpResult>(v); |
1102 | if (!opResult) |
1103 | continue; |
1104 | worklist.push_back(opResult); |
1105 | } |
1106 | while (!worklist.empty()) { |
1107 | OpResult opResult = worklist.pop_back_val(); |
1108 | Operation *defOp = opResult.getDefiningOp(); |
1109 | if (!traversedOps.insert(X: defOp)) |
1110 | continue; |
1111 | if (!term->getParentRegion()->findAncestorOpInRegion(*defOp)) |
1112 | continue; |
1113 | AliasingOpOperandList aliases = state.getAliasingOpOperands(opResult); |
1114 | for (auto alias : aliases) { |
1115 | Value v = alias.opOperand->get(); |
1116 | if (!isa<TensorType>(v.getType())) |
1117 | continue; |
1118 | auto opResult = dyn_cast<OpResult>(v); |
1119 | if (!opResult) |
1120 | continue; |
1121 | worklist.push_back(opResult); |
1122 | } |
1123 | } |
1124 | }); |
1125 | |
1126 | // Analyze traversed ops, then all remaining ops. |
1127 | SmallVector<Operation *> result(traversedOps.begin(), traversedOps.end()); |
1128 | op->walk<WalkOrder::PostOrder, ReverseIterator>(callback: [&](Operation *op) { |
1129 | if (!traversedOps.contains(key: op) && hasTensorSemantics(op)) |
1130 | result.push_back(Elt: op); |
1131 | }); |
1132 | return result; |
1133 | } |
1134 | |
1135 | LogicalResult OneShotAnalysisState::analyzeOp(Operation *op, |
1136 | const DominanceInfo &domInfo) { |
1137 | OneShotBufferizationOptions::AnalysisHeuristic heuristic = |
1138 | getOptions().analysisHeuristic; |
1139 | |
1140 | SmallVector<Operation *> orderedOps; |
1141 | if (heuristic == |
1142 | OneShotBufferizationOptions::AnalysisHeuristic::BottomUpFromTerminators) { |
1143 | orderedOps = bottomUpFromTerminatorsHeuristic(op, state: *this); |
1144 | } else { |
1145 | op->walk(callback: [&](Operation *op) { |
1146 | // No tensors => no buffers. |
1147 | if (!hasTensorSemantics(op)) |
1148 | return; |
1149 | orderedOps.push_back(Elt: op); |
1150 | }); |
1151 | switch (heuristic) { |
1152 | case OneShotBufferizationOptions::AnalysisHeuristic::BottomUp: { |
1153 | // Default: Walk ops in reverse for better interference analysis. |
1154 | std::reverse(first: orderedOps.begin(), last: orderedOps.end()); |
1155 | break; |
1156 | } |
1157 | case OneShotBufferizationOptions::AnalysisHeuristic::TopDown: { |
1158 | // Ops are already sorted top-down in `orderedOps`. |
1159 | break; |
1160 | } |
1161 | case OneShotBufferizationOptions::AnalysisHeuristic::Fuzzer: { |
1162 | assert(getOptions().analysisFuzzerSeed && |
1163 | "expected that fuzzer seed it set" ); |
1164 | // This is a fuzzer. For testing purposes only. Randomize the order in |
1165 | // which operations are analyzed. The bufferization quality is likely |
1166 | // worse, but we want to make sure that no assertions are triggered |
1167 | // anywhere. |
1168 | std::mt19937 g(getOptions().analysisFuzzerSeed); |
1169 | llvm::shuffle(first: orderedOps.begin(), last: orderedOps.end(), g); |
1170 | break; |
1171 | } |
1172 | default: { |
1173 | llvm_unreachable("unsupported heuristic" ); |
1174 | } |
1175 | } |
1176 | } |
1177 | |
1178 | // Analyze ops in the computed order. |
1179 | for (Operation *op : orderedOps) |
1180 | if (failed(Result: analyzeSingleOp(op, domInfo))) |
1181 | return failure(); |
1182 | |
1183 | equivalenceAnalysis(op, state&: *this); |
1184 | return success(); |
1185 | } |
1186 | |
1187 | /// Perform various checks on the input IR to see if it contains IR constructs |
1188 | /// that are unsupported by One-Shot Bufferize. |
1189 | static LogicalResult |
1190 | checkPreBufferizationAssumptions(Operation *op, const DominanceInfo &domInfo, |
1191 | OneShotAnalysisState &state) { |
1192 | const BufferizationOptions &options = state.getOptions(); |
1193 | |
1194 | // Note: This walk cannot be combined with the one below because interface |
1195 | // methods of invalid/unsupported ops may be called during the second walk. |
1196 | // (On ops different from `op`.) |
1197 | WalkResult walkResult = op->walk([&](BufferizableOpInterface op) { |
1198 | // Skip ops that are not in the filter. |
1199 | if (!options.isOpAllowed(op: op.getOperation())) |
1200 | return WalkResult::advance(); |
1201 | |
1202 | // Check for unsupported unstructured control flow. |
1203 | if (!op.supportsUnstructuredControlFlow()) { |
1204 | for (Region &r : op->getRegions()) { |
1205 | if (r.getBlocks().size() > 1) { |
1206 | op->emitOpError("op or BufferizableOpInterface implementation does " |
1207 | "not support unstructured control flow, but at least " |
1208 | "one region has multiple blocks" ); |
1209 | return WalkResult::interrupt(); |
1210 | } |
1211 | } |
1212 | } |
1213 | |
1214 | return WalkResult::advance(); |
1215 | }); |
1216 | if (walkResult.wasInterrupted()) |
1217 | return failure(); |
1218 | |
1219 | walkResult = op->walk([&](BufferizableOpInterface op) { |
1220 | // Skip ops that are not in the filter. |
1221 | if (!options.isOpAllowed(op: op.getOperation())) |
1222 | return WalkResult::advance(); |
1223 | |
1224 | // Input IR may not contain any ToTensorOps without the "restrict" |
1225 | // attribute. Such tensors may alias any other tensor, which is currently |
1226 | // not handled in the analysis. |
1227 | if (auto toTensorOp = dyn_cast<ToTensorOp>(op.getOperation())) { |
1228 | if (!toTensorOp.getRestrict() && !toTensorOp->getUses().empty()) { |
1229 | op->emitOpError("to_tensor ops without `restrict` are not supported by " |
1230 | "One-Shot Analysis" ); |
1231 | return WalkResult::interrupt(); |
1232 | } |
1233 | } |
1234 | |
1235 | for (OpOperand &opOperand : op->getOpOperands()) { |
1236 | if (isa<TensorType>(opOperand.get().getType())) { |
1237 | if (wouldCreateReadAfterWriteInterference( |
1238 | opOperand, domInfo, state, |
1239 | /*checkConsistencyOnly=*/true)) { |
1240 | // This error can happen if certain "mustBufferizeInPlace" interface |
1241 | // methods are implemented incorrectly, such that the IR already has |
1242 | // a RaW conflict before making any bufferization decisions. It can |
1243 | // also happen if the bufferization.materialize_in_destination is used |
1244 | // in such a way that a RaW conflict is not avoidable. |
1245 | op->emitOpError("not bufferizable under the given constraints: " |
1246 | "cannot avoid RaW conflict" ); |
1247 | return WalkResult::interrupt(); |
1248 | } |
1249 | |
1250 | if (state.isInPlace(opOperand) && |
1251 | wouldCreateWriteToNonWritableBuffer( |
1252 | opOperand, state, /*checkConsistencyOnly=*/true)) { |
1253 | op->emitOpError("not bufferizable under the given constraints: would " |
1254 | "write to read-only buffer" ); |
1255 | return WalkResult::interrupt(); |
1256 | } |
1257 | } |
1258 | } |
1259 | |
1260 | return WalkResult::advance(); |
1261 | }); |
1262 | |
1263 | return success(IsSuccess: !walkResult.wasInterrupted()); |
1264 | } |
1265 | |
1266 | /// Annotate the IR with the result of the analysis. For testing/debugging only. |
1267 | static void |
1268 | annotateOpsWithBufferizationMarkers(Operation *op, |
1269 | const OneShotAnalysisState &state) { |
1270 | // Add __inplace_operands_attr__. |
1271 | op->walk(callback: [&](Operation *op) { |
1272 | for (OpOperand &opOperand : op->getOpOperands()) |
1273 | if (isa<TensorType>(Val: opOperand.get().getType())) |
1274 | setInPlaceOpOperand(opOperand, inPlace: state.isInPlace(opOperand)); |
1275 | }); |
1276 | } |
1277 | |
1278 | static void annotateOpsWithAliasSets(Operation *op, |
1279 | const OneShotAnalysisState &state) { |
1280 | AsmState asmState(op); |
1281 | Builder b(op->getContext()); |
1282 | // Helper function to build an array attribute of aliasing SSA value strings. |
1283 | auto buildAliasesArray = [&](Value v) { |
1284 | SmallVector<Attribute> aliases; |
1285 | state.applyOnAliases(v, fun: [&](Value alias) { |
1286 | std::string buffer; |
1287 | llvm::raw_string_ostream stream(buffer); |
1288 | alias.printAsOperand(os&: stream, state&: asmState); |
1289 | aliases.push_back(b.getStringAttr(buffer)); |
1290 | }); |
1291 | return b.getArrayAttr(aliases); |
1292 | }; |
1293 | |
1294 | op->walk(callback: [&](Operation *op) { |
1295 | // Build alias set array for every OpResult. |
1296 | SmallVector<Attribute> opResultAliasSets; |
1297 | for (OpResult opResult : op->getOpResults()) { |
1298 | if (llvm::isa<TensorType>(Val: opResult.getType())) { |
1299 | opResultAliasSets.push_back(Elt: buildAliasesArray(opResult)); |
1300 | } |
1301 | } |
1302 | if (!opResultAliasSets.empty()) |
1303 | op->setAttr(kOpResultAliasSetAttrName, b.getArrayAttr(opResultAliasSets)); |
1304 | |
1305 | // Build alias set array for every BlockArgument. |
1306 | SmallVector<Attribute> regionAliasSets; |
1307 | bool hasTensorBbArg = false; |
1308 | for (Region &r : op->getRegions()) { |
1309 | SmallVector<Attribute> blockAliasSets; |
1310 | for (Block &block : r.getBlocks()) { |
1311 | SmallVector<Attribute> bbArgAliasSets; |
1312 | for (BlockArgument bbArg : block.getArguments()) { |
1313 | if (llvm::isa<TensorType>(Val: bbArg.getType())) { |
1314 | bbArgAliasSets.push_back(Elt: buildAliasesArray(bbArg)); |
1315 | hasTensorBbArg = true; |
1316 | } |
1317 | } |
1318 | blockAliasSets.push_back(b.getArrayAttr(bbArgAliasSets)); |
1319 | } |
1320 | regionAliasSets.push_back(b.getArrayAttr(blockAliasSets)); |
1321 | } |
1322 | if (hasTensorBbArg) |
1323 | op->setAttr(kBbArgAliasSetAttrName, b.getArrayAttr(regionAliasSets)); |
1324 | }); |
1325 | } |
1326 | |
1327 | LogicalResult bufferization::analyzeOp(Operation *op, |
1328 | OneShotAnalysisState &state, |
1329 | BufferizationStatistics *statistics) { |
1330 | DominanceInfo domInfo(op); |
1331 | const OneShotBufferizationOptions &options = state.getOptions(); |
1332 | |
1333 | if (failed(Result: checkPreBufferizationAssumptions(op, domInfo, state))) |
1334 | return failure(); |
1335 | |
1336 | // If the analysis fails, just return. |
1337 | if (failed(Result: state.analyzeOp(op, domInfo))) |
1338 | return failure(); |
1339 | |
1340 | if (statistics) { |
1341 | statistics->numTensorInPlace = state.getStatNumTensorInPlace(); |
1342 | statistics->numTensorOutOfPlace = state.getStatNumTensorOutOfPlace(); |
1343 | } |
1344 | |
1345 | bool failedAnalysis = false; |
1346 | |
1347 | // Gather some extra analysis data. |
1348 | state.gatherUndefinedTensorUses(op); |
1349 | |
1350 | // Analysis verification: After setting up alias/equivalence sets, each op |
1351 | // can check for expected invariants/limitations and fail the analysis if |
1352 | // necessary. |
1353 | op->walk(callback: [&](Operation *op) { |
1354 | if (BufferizableOpInterface bufferizableOp = |
1355 | options.dynCastBufferizableOp(op)) |
1356 | failedAnalysis |= failed(bufferizableOp.verifyAnalysis(state)); |
1357 | }); |
1358 | |
1359 | // Annotate operations if we only want to report the analysis. |
1360 | if (options.testAnalysisOnly) |
1361 | annotateOpsWithBufferizationMarkers(op, state); |
1362 | if (options.dumpAliasSets) |
1363 | annotateOpsWithAliasSets(op, state); |
1364 | |
1365 | return success(IsSuccess: !failedAnalysis); |
1366 | } |
1367 | |
1368 | LogicalResult bufferization::runOneShotBufferize( |
1369 | Operation *op, const OneShotBufferizationOptions &options, |
1370 | BufferizationState &state, BufferizationStatistics *statistics) { |
1371 | // copy-before-write deactivates the analysis. It cannot be used together with |
1372 | // test-analysis-only. |
1373 | assert(!(options.copyBeforeWrite && options.testAnalysisOnly) && |
1374 | "invalid combination of bufferization flags" ); |
1375 | |
1376 | if (options.copyBeforeWrite) { |
1377 | // Copy buffer before each write. No analysis is needed. |
1378 | } else { |
1379 | // Run One-Shot Analysis and insert buffer copies (on the tensor level) |
1380 | // only where needed. This is the default and much more efficient than |
1381 | // copy-before-write. |
1382 | if (failed(Result: insertTensorCopies(op, options, bufferizationState: state, statistics))) |
1383 | return failure(); |
1384 | |
1385 | // If test-analysis-only is set, the IR was annotated with RaW conflict |
1386 | // markers (attributes) during One-Shot Analysis. |
1387 | if (options.testAnalysisOnly) |
1388 | return success(); |
1389 | } |
1390 | |
1391 | // Bufferize the op and its nested ops. If options.copyBeforeWrite is set, |
1392 | // a new buffer copy is allocated every time a buffer is written to. |
1393 | return bufferizeOp(op, options, state, statistics); |
1394 | } |
1395 | |