| 1 | //===- ModuleBufferization.cpp - Bufferization across Func. Boundaries ----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Module Bufferization is an extension of One-Shot Bufferize that |
| 10 | // bufferizes function boundaries. It provides `BufferizableOpInterface` |
| 11 | // implementations for FuncOp, CallOp and ReturnOp. |
| 12 | // |
| 13 | // Module Bufferization is run via `runOneShotModuleBufferize(ModuleOp, ...)`. |
| 14 | // This function analyzes the given module and determines the order of analysis |
| 15 | // and bufferization: Functions that are called are processed before their |
| 16 | // respective callers. |
| 17 | // |
| 18 | // After analyzing a FuncOp, additional information about its bbArgs is |
| 19 | // gathered and stored in `FuncAnalysisState`. |
| 20 | // |
| 21 | // * `aliasingFuncOpBBArgsAnalysis` determines the equivalent/aliasing bbArgs |
| 22 | // for |
| 23 | // each tensor return value (if any). |
| 24 | // * `funcOpBbArgReadWriteAnalysis` determines whether or not a tensor bbArg is |
| 25 | // read/written. |
| 26 | // |
| 27 | // Module Bufferization implements the following calling convention. |
| 28 | // |
| 29 | // * In the absence of conflicts within a FuncOp, the FuncOp's bbArgs may always |
| 30 | // be written to in-place. |
| 31 | // * If a tensor operand of a CallOp is read after the CallOp, the operand of |
| 32 | // the CallOp must bufferize out-of-place. |
| 33 | // |
| 34 | // Example: The tensor.insert op bufferizes in-place because it is allowed to |
| 35 | // modify the buffer of `%t1` directly. The CallOp in `caller` must bufferize |
| 36 | // out-of-place because `%t0` is modified by the callee but read by the |
| 37 | // tensor.extract op. The analysis of CallOps decides whether an OpOperand must |
| 38 | // bufferize out-of-place based on results of `funcOpBbArgReadWriteAnalysis`. |
| 39 | // ``` |
| 40 | // func @callee(%t1 : tensor<?xf32>) -> tensor<?xf32> { |
| 41 | // %f = ... : f32 |
| 42 | // %0 = tensor.insert %f into %t1[...] : tensor<?xf32> |
| 43 | // return %0 : tensor<?xf32> |
| 44 | // } |
| 45 | // |
| 46 | // func @caller() -> () { |
| 47 | // %t0 = ... : tensor<?xf32> |
| 48 | // %1 = call @callee(%t0) : (tensor<?xf32>) -> (tensor<?xf32>) |
| 49 | // %2 = tensor.extract %1[...] : tensor<?xf32> |
| 50 | // } |
| 51 | // ``` |
| 52 | // |
| 53 | // Note: If a function is external, `funcOpBbArgReadWriteAnalysis` cannot |
| 54 | // analyze the function body. In such a case, the CallOp analysis conservatively |
| 55 | // assumes that each tensor OpOperand is both read and written. |
| 56 | // |
| 57 | // TODO: Add FuncOp attributes so that bbArgs of external FuncOps can be marked |
| 58 | // as "not reading" and/or "not writing". |
| 59 | |
| 60 | #include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h" |
| 61 | |
| 62 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
| 63 | #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
| 64 | #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" |
| 65 | #include "mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h" |
| 66 | #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" |
| 67 | #include "mlir/Dialect/Bufferization/Transforms/Transforms.h" |
| 68 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 69 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 70 | #include "mlir/IR/BuiltinTypes.h" |
| 71 | #include "mlir/IR/Operation.h" |
| 72 | |
| 73 | using namespace mlir; |
| 74 | using namespace mlir::bufferization; |
| 75 | using namespace mlir::bufferization::func_ext; |
| 76 | |
| 77 | /// A mapping of FuncOps to their callers. |
| 78 | using FuncCallerMap = DenseMap<func::FuncOp, DenseSet<Operation *>>; |
| 79 | |
| 80 | /// Get or create FuncAnalysisState. |
| 81 | static FuncAnalysisState & |
| 82 | getOrCreateFuncAnalysisState(OneShotAnalysisState &state) { |
| 83 | auto *result = state.getExtension<FuncAnalysisState>(); |
| 84 | if (result) |
| 85 | return *result; |
| 86 | return state.addExtension<FuncAnalysisState>(); |
| 87 | } |
| 88 | |
| 89 | namespace { |
| 90 | |
| 91 | /// Annotate IR with the results of the analysis. For testing purposes only. |
| 92 | static void annotateEquivalentReturnBbArg(OpOperand &returnVal, |
| 93 | BlockArgument bbArg) { |
| 94 | const char *kEquivalentArgsAttr = "__equivalent_func_args__" ; |
| 95 | Operation *op = returnVal.getOwner(); |
| 96 | |
| 97 | SmallVector<int64_t> equivBbArgs; |
| 98 | if (op->hasAttr(name: kEquivalentArgsAttr)) { |
| 99 | auto attr = cast<ArrayAttr>(op->getAttr(name: kEquivalentArgsAttr)); |
| 100 | equivBbArgs = llvm::to_vector<4>(llvm::map_range(attr, [](Attribute a) { |
| 101 | return cast<IntegerAttr>(a).getValue().getSExtValue(); |
| 102 | })); |
| 103 | } else { |
| 104 | equivBbArgs.append(NumInputs: op->getNumOperands(), Elt: -1); |
| 105 | } |
| 106 | equivBbArgs[returnVal.getOperandNumber()] = bbArg.getArgNumber(); |
| 107 | |
| 108 | OpBuilder b(op->getContext()); |
| 109 | op->setAttr(kEquivalentArgsAttr, b.getI64ArrayAttr(equivBbArgs)); |
| 110 | } |
| 111 | |
| 112 | /// Store function BlockArguments that are equivalent to/aliasing a returned |
| 113 | /// value in FuncAnalysisState. |
| 114 | static LogicalResult |
| 115 | aliasingFuncOpBBArgsAnalysis(FuncOp funcOp, OneShotAnalysisState &state, |
| 116 | FuncAnalysisState &funcState) { |
| 117 | if (funcOp.getBody().empty()) { |
| 118 | // No function body available. Conservatively assume that every tensor |
| 119 | // return value may alias with any tensor bbArg. |
| 120 | FunctionType type = funcOp.getFunctionType(); |
| 121 | for (const auto &inputIt : llvm::enumerate(type.getInputs())) { |
| 122 | if (!isa<TensorType>(inputIt.value())) |
| 123 | continue; |
| 124 | for (const auto &resultIt : llvm::enumerate(type.getResults())) { |
| 125 | if (!isa<TensorType>(resultIt.value())) |
| 126 | continue; |
| 127 | int64_t returnIdx = resultIt.index(); |
| 128 | int64_t bbArgIdx = inputIt.index(); |
| 129 | funcState.aliasingReturnVals[funcOp][bbArgIdx].push_back(returnIdx); |
| 130 | } |
| 131 | } |
| 132 | return success(); |
| 133 | } |
| 134 | |
| 135 | // Find all func.return ops. |
| 136 | SmallVector<func::ReturnOp> returnOps = getReturnOps(funcOp); |
| 137 | assert(!returnOps.empty() && "expected at least one ReturnOp" ); |
| 138 | |
| 139 | // Build alias sets. Merge all aliases from all func.return ops. |
| 140 | for (BlockArgument bbArg : funcOp.getArguments()) { |
| 141 | if (isa<RankedTensorType>(bbArg.getType())) { |
| 142 | int64_t bbArgIdx = bbArg.getArgNumber(); |
| 143 | // Store aliases in a set, so that we don't add the same alias twice. |
| 144 | SetVector<int64_t> aliases; |
| 145 | for (func::ReturnOp returnOp : returnOps) { |
| 146 | for (OpOperand &returnVal : returnOp->getOpOperands()) { |
| 147 | if (isa<RankedTensorType>(returnVal.get().getType())) { |
| 148 | int64_t returnIdx = returnVal.getOperandNumber(); |
| 149 | if (state.areAliasingBufferizedValues(returnVal.get(), bbArg)) |
| 150 | aliases.insert(returnIdx); |
| 151 | } |
| 152 | } |
| 153 | } |
| 154 | for (int64_t alias : aliases) |
| 155 | funcState.aliasingReturnVals[funcOp][bbArgIdx].push_back(alias); |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | // Build equivalence sets. |
| 160 | // Helper function that finds an equivalent block argument index for the |
| 161 | // given OpOperand. Return std::nullopt if no equivalent block argument could |
| 162 | // be found. |
| 163 | auto findEquivalentBlockArgIdx = |
| 164 | [&](OpOperand &opOperand) -> std::optional<int64_t> { |
| 165 | Value v = opOperand.get(); |
| 166 | if (!isa<TensorType>(Val: v.getType())) |
| 167 | return std::nullopt; |
| 168 | for (BlockArgument bbArg : funcOp.getArguments()) { |
| 169 | if (isa<RankedTensorType>(bbArg.getType())) { |
| 170 | if (state.areEquivalentBufferizedValues(v, bbArg)) { |
| 171 | if (state.getOptions().testAnalysisOnly) |
| 172 | annotateEquivalentReturnBbArg(opOperand, bbArg); |
| 173 | return bbArg.getArgNumber(); |
| 174 | } |
| 175 | } |
| 176 | } |
| 177 | return std::nullopt; |
| 178 | }; |
| 179 | |
| 180 | int64_t numResults = returnOps.front()->getNumOperands(); |
| 181 | for (int64_t i = 0; i < numResults; ++i) { |
| 182 | // Find the equivalent block argument index for the i-th operand of the |
| 183 | // first func.return op. |
| 184 | std::optional<int64_t> maybeEquiv = |
| 185 | findEquivalentBlockArgIdx(returnOps.front()->getOpOperand(i)); |
| 186 | if (!maybeEquiv.has_value()) |
| 187 | continue; |
| 188 | int64_t bbArgIdx = *maybeEquiv; |
| 189 | bool allEquiv = true; |
| 190 | |
| 191 | // Check if all other func.return ops have the same equivalent block |
| 192 | // argument for the i-th operand. In contrast to aliasing information, |
| 193 | // which is just "merged", equivalence information must match across all |
| 194 | // func.return ops. |
| 195 | for (func::ReturnOp returnOp : ArrayRef(returnOps).drop_front()) { |
| 196 | std::optional<int64_t> maybeEquiv = |
| 197 | findEquivalentBlockArgIdx(returnOp->getOpOperand(i)); |
| 198 | if (maybeEquiv != bbArgIdx) { |
| 199 | allEquiv = false; |
| 200 | break; |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | // All func.return ops have the same equivalent block argument for the i-th |
| 205 | // operand. |
| 206 | if (allEquiv) |
| 207 | funcState.equivalentFuncArgs[funcOp][i] = bbArgIdx; |
| 208 | } |
| 209 | |
| 210 | return success(); |
| 211 | } |
| 212 | |
| 213 | static void annotateFuncArgAccess(func::FuncOp funcOp, int64_t idx, bool isRead, |
| 214 | bool isWritten) { |
| 215 | OpBuilder b(funcOp.getContext()); |
| 216 | Attribute accessType; |
| 217 | if (isRead && isWritten) { |
| 218 | accessType = b.getStringAttr("read-write" ); |
| 219 | } else if (isRead) { |
| 220 | accessType = b.getStringAttr("read" ); |
| 221 | } else if (isWritten) { |
| 222 | accessType = b.getStringAttr("write" ); |
| 223 | } else { |
| 224 | accessType = b.getStringAttr("none" ); |
| 225 | } |
| 226 | funcOp.setArgAttr(idx, BufferizationDialect::kBufferAccessAttrName, |
| 227 | accessType); |
| 228 | } |
| 229 | |
| 230 | /// Determine which FuncOp bbArgs are read and which are written. When run on a |
| 231 | /// function with unknown ops, we conservatively assume that such ops bufferize |
| 232 | /// to a read + write. |
| 233 | static LogicalResult |
| 234 | funcOpBbArgReadWriteAnalysis(FuncOp funcOp, OneShotAnalysisState &state, |
| 235 | FuncAnalysisState &funcState) { |
| 236 | for (int64_t idx = 0, e = funcOp.getFunctionType().getNumInputs(); idx < e; |
| 237 | ++idx) { |
| 238 | // Skip non-tensor arguments. |
| 239 | if (!isa<TensorType>(funcOp.getFunctionType().getInput(idx))) |
| 240 | continue; |
| 241 | bool isRead; |
| 242 | bool isWritten; |
| 243 | if (auto accessAttr = funcOp.getArgAttrOfType<StringAttr>( |
| 244 | idx, BufferizationDialect::kBufferAccessAttrName)) { |
| 245 | // Buffer access behavior is specified on the function. Skip the analysis. |
| 246 | StringRef str = accessAttr.getValue(); |
| 247 | isRead = str == "read" || str == "read-write" ; |
| 248 | isWritten = str == "write" || str == "read-write" ; |
| 249 | } else if (funcOp.getBody().empty()) { |
| 250 | // If the function has no body, conservatively assume that all args are |
| 251 | // read + written. |
| 252 | isRead = true; |
| 253 | isWritten = true; |
| 254 | } else { |
| 255 | // Analyze the body of the function. |
| 256 | BlockArgument bbArg = funcOp.getArgument(idx); |
| 257 | isRead = state.isValueRead(bbArg); |
| 258 | isWritten = state.isValueWritten(value: bbArg); |
| 259 | } |
| 260 | |
| 261 | if (state.getOptions().testAnalysisOnly) |
| 262 | annotateFuncArgAccess(funcOp, idx, isRead, isWritten); |
| 263 | if (isRead) |
| 264 | funcState.readBbArgs[funcOp].insert(idx); |
| 265 | if (isWritten) |
| 266 | funcState.writtenBbArgs[funcOp].insert(idx); |
| 267 | } |
| 268 | |
| 269 | return success(); |
| 270 | } |
| 271 | } // namespace |
| 272 | |
| 273 | /// Remove bufferization attributes on FuncOp arguments. |
| 274 | static void removeBufferizationAttributes(BlockArgument bbArg) { |
| 275 | auto funcOp = cast<func::FuncOp>(bbArg.getOwner()->getParentOp()); |
| 276 | funcOp.removeArgAttr(bbArg.getArgNumber(), |
| 277 | BufferizationDialect::kBufferLayoutAttrName); |
| 278 | funcOp.removeArgAttr(bbArg.getArgNumber(), |
| 279 | BufferizationDialect::kWritableAttrName); |
| 280 | } |
| 281 | |
| 282 | /// Return the func::FuncOp called by `callOp`. |
| 283 | static func::FuncOp |
| 284 | getCalledFunction(func::CallOp callOp, |
| 285 | mlir::SymbolTableCollection &symbolTable) { |
| 286 | SymbolRefAttr sym = |
| 287 | llvm::dyn_cast_if_present<SymbolRefAttr>(callOp.getCallableForCallee()); |
| 288 | if (!sym) |
| 289 | return nullptr; |
| 290 | return dyn_cast_or_null<func::FuncOp>( |
| 291 | symbolTable.lookupNearestSymbolFrom(callOp, sym)); |
| 292 | } |
| 293 | |
| 294 | /// Return "true" if the given function signature has tensor semantics. |
| 295 | static bool hasTensorSignature(func::FuncOp funcOp) { |
| 296 | return llvm::any_of(funcOp.getFunctionType().getInputs(), |
| 297 | llvm::IsaPred<TensorType>) || |
| 298 | llvm::any_of(funcOp.getFunctionType().getResults(), |
| 299 | llvm::IsaPred<TensorType>); |
| 300 | } |
| 301 | |
| 302 | /// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by |
| 303 | /// callee-caller order (i.e., callees without callers first). Store all |
| 304 | /// remaining functions (i.e., the ones that call each other recursively) in |
| 305 | /// `remainingFuncOps`. Does not traverse nested symbol tables. |
| 306 | /// |
| 307 | /// Store the map of FuncOp to all its callers in `callerMap`. |
| 308 | /// |
| 309 | /// Return `failure()` if we are unable to retrieve the called FuncOp from |
| 310 | /// any func::CallOp. |
| 311 | static LogicalResult getFuncOpsOrderedByCalls( |
| 312 | ModuleOp moduleOp, SmallVectorImpl<func::FuncOp> &orderedFuncOps, |
| 313 | SmallVectorImpl<func::FuncOp> &remainingFuncOps, FuncCallerMap &callerMap, |
| 314 | SymbolTableCollection &symbolTables) { |
| 315 | // For each FuncOp, the set of functions called by it (i.e. the union of |
| 316 | // symbols of all nested func::CallOp). |
| 317 | DenseMap<func::FuncOp, DenseSet<func::FuncOp>> calledBy; |
| 318 | // For each FuncOp, the number of func::CallOp it contains. |
| 319 | DenseMap<func::FuncOp, unsigned> numberCallOpsContainedInFuncOp; |
| 320 | |
| 321 | for (func::FuncOp funcOp : moduleOp.getOps<func::FuncOp>()) { |
| 322 | // Collect function calls and populate the caller map. |
| 323 | numberCallOpsContainedInFuncOp[funcOp] = 0; |
| 324 | WalkResult res = funcOp.walk([&](func::CallOp callOp) -> WalkResult { |
| 325 | func::FuncOp calledFunction = getCalledFunction(callOp, symbolTables); |
| 326 | assert(calledFunction && "could not retrieved called func::FuncOp" ); |
| 327 | // If the called function does not have any tensors in its signature, then |
| 328 | // it is not necessary to bufferize the callee before the caller. |
| 329 | if (!hasTensorSignature(calledFunction)) |
| 330 | return WalkResult::skip(); |
| 331 | |
| 332 | callerMap[calledFunction].insert(callOp); |
| 333 | if (calledBy[calledFunction].insert(funcOp).second) { |
| 334 | numberCallOpsContainedInFuncOp[funcOp]++; |
| 335 | } |
| 336 | return WalkResult::advance(); |
| 337 | }); |
| 338 | if (res.wasInterrupted()) |
| 339 | return failure(); |
| 340 | } |
| 341 | |
| 342 | // Iteratively remove function operations that do not call any of the |
| 343 | // functions remaining in the callCounter map and add them to ordered list. |
| 344 | SmallVector<func::FuncOp> worklist; |
| 345 | |
| 346 | for (const auto &entry : numberCallOpsContainedInFuncOp) { |
| 347 | if (entry.second == 0) |
| 348 | worklist.push_back(entry.first); |
| 349 | } |
| 350 | |
| 351 | while (!worklist.empty()) { |
| 352 | func::FuncOp func = worklist.pop_back_val(); |
| 353 | orderedFuncOps.push_back(func); |
| 354 | |
| 355 | for (func::FuncOp caller : calledBy[func]) { |
| 356 | auto &count = numberCallOpsContainedInFuncOp[caller]; |
| 357 | |
| 358 | if (--count == 0) |
| 359 | worklist.push_back(caller); |
| 360 | } |
| 361 | |
| 362 | numberCallOpsContainedInFuncOp.erase(func); |
| 363 | } |
| 364 | |
| 365 | // Put all other functions in the list of remaining functions. These are |
| 366 | // functions that call each other circularly. |
| 367 | for (auto it : numberCallOpsContainedInFuncOp) |
| 368 | remainingFuncOps.push_back(it.first); |
| 369 | |
| 370 | return success(); |
| 371 | } |
| 372 | |
| 373 | /// Helper function that extracts the source from a memref.cast. If the given |
| 374 | /// value is not a memref.cast result, simply returns the given value. |
| 375 | static Value unpackCast(Value v) { |
| 376 | auto castOp = v.getDefiningOp<memref::CastOp>(); |
| 377 | if (!castOp) |
| 378 | return v; |
| 379 | return castOp.getSource(); |
| 380 | } |
| 381 | |
| 382 | /// Helper function that returns the return types (skipping casts) of the given |
| 383 | /// func.return ops. This function returns as many types as the return ops have |
| 384 | /// operands. If the i-th operand is not the same for all func.return ops, then |
| 385 | /// the i-th returned type is an "empty" type. |
| 386 | static SmallVector<Type> getReturnTypes(SmallVector<func::ReturnOp> returnOps) { |
| 387 | assert(!returnOps.empty() && "expected at least one ReturnOp" ); |
| 388 | int numOperands = returnOps.front()->getNumOperands(); |
| 389 | |
| 390 | // Helper function that unpacks memref.cast ops and returns the type. |
| 391 | auto getSourceType = [&](Value v) { return unpackCast(v).getType(); }; |
| 392 | |
| 393 | SmallVector<Type> result; |
| 394 | for (int i = 0; i < numOperands; ++i) { |
| 395 | // Get the type of the i-th operand of the first func.return ops. |
| 396 | Type t = getSourceType(returnOps.front()->getOperand(i)); |
| 397 | |
| 398 | // Check if all other func.return ops have a matching operand type. |
| 399 | for (int j = 1; j < static_cast<int>(returnOps.size()); ++j) |
| 400 | if (getSourceType(returnOps[j]->getOperand(i)) != t) |
| 401 | t = Type(); |
| 402 | |
| 403 | result.push_back(Elt: t); |
| 404 | } |
| 405 | |
| 406 | return result; |
| 407 | } |
| 408 | |
| 409 | /// Fold return values that are memref casts and update function return types. |
| 410 | /// |
| 411 | /// During FuncOp bufferization, the exact type of the returned memrefs (if any) |
| 412 | /// is not known yet. Therefore, the bufferization uses memref types with the |
| 413 | /// most generic layout map as function return types. After bufferizing the |
| 414 | /// entire function body, a more concise memref type can potentially be used for |
| 415 | /// the return type of the function. |
| 416 | static void foldMemRefCasts(func::FuncOp funcOp) { |
| 417 | // There is nothing to do for bodiless ops. |
| 418 | if (funcOp.getBody().empty()) |
| 419 | return; |
| 420 | |
| 421 | // Compute the common result types of all return ops. |
| 422 | SmallVector<func::ReturnOp> returnOps = getReturnOps(funcOp); |
| 423 | SmallVector<Type> resultTypes = getReturnTypes(returnOps); |
| 424 | |
| 425 | // Remove direct casts. |
| 426 | for (func::ReturnOp returnOp : returnOps) { |
| 427 | for (OpOperand &operand : returnOp->getOpOperands()) { |
| 428 | // Bail if no common result type was found. |
| 429 | if (resultTypes[operand.getOperandNumber()]) { |
| 430 | operand.set(unpackCast(operand.get())); |
| 431 | } |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | // Fill in the missing result types that were not the same among all |
| 436 | // func.return ops. |
| 437 | for (int i = 0; i < static_cast<int>(resultTypes.size()); ++i) { |
| 438 | if (resultTypes[i]) |
| 439 | continue; |
| 440 | resultTypes[i] = funcOp.getFunctionType().getResult(i); |
| 441 | } |
| 442 | |
| 443 | // Update the function type. |
| 444 | auto newFuncType = FunctionType::get( |
| 445 | funcOp.getContext(), funcOp.getFunctionType().getInputs(), resultTypes); |
| 446 | funcOp.setType(newFuncType); |
| 447 | } |
| 448 | |
| 449 | LogicalResult |
| 450 | mlir::bufferization::analyzeModuleOp(ModuleOp moduleOp, |
| 451 | OneShotAnalysisState &state, |
| 452 | BufferizationStatistics *statistics) { |
| 453 | assert(state.getOptions().bufferizeFunctionBoundaries && |
| 454 | "expected that function boundary bufferization is activated" ); |
| 455 | FuncAnalysisState &funcState = getOrCreateFuncAnalysisState(state); |
| 456 | |
| 457 | // A list of non-circular functions in the order in which they are analyzed |
| 458 | // and bufferized. |
| 459 | SmallVector<func::FuncOp> orderedFuncOps; |
| 460 | // A list of all other functions. I.e., functions that call each other |
| 461 | // recursively. For these, we analyze the function body but not the function |
| 462 | // boundary. |
| 463 | SmallVector<func::FuncOp> remainingFuncOps; |
| 464 | |
| 465 | // A mapping of FuncOps to their callers. |
| 466 | FuncCallerMap callerMap; |
| 467 | |
| 468 | if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, |
| 469 | remainingFuncOps, callerMap, |
| 470 | funcState.symbolTables))) |
| 471 | return failure(); |
| 472 | |
| 473 | // Analyze functions in order. Starting with functions that are not calling |
| 474 | // any other functions. |
| 475 | for (func::FuncOp funcOp : orderedFuncOps) { |
| 476 | if (!state.getOptions().isOpAllowed(funcOp)) |
| 477 | continue; |
| 478 | |
| 479 | // Now analyzing function. |
| 480 | funcState.startFunctionAnalysis(funcOp); |
| 481 | |
| 482 | // Analyze funcOp. |
| 483 | if (failed(analyzeOp(funcOp, state, statistics))) |
| 484 | return failure(); |
| 485 | |
| 486 | // Run some extra function analyses. |
| 487 | if (failed(aliasingFuncOpBBArgsAnalysis(funcOp, state, funcState)) || |
| 488 | failed(funcOpBbArgReadWriteAnalysis(funcOp, state, funcState))) |
| 489 | return failure(); |
| 490 | |
| 491 | // Mark op as fully analyzed. |
| 492 | funcState.analyzedFuncOps[funcOp] = FuncOpAnalysisState::Analyzed; |
| 493 | } |
| 494 | |
| 495 | // Analyze all other functions. All function boundary analyses are skipped. |
| 496 | for (func::FuncOp funcOp : remainingFuncOps) { |
| 497 | if (!state.getOptions().isOpAllowed(funcOp)) |
| 498 | continue; |
| 499 | |
| 500 | // Analyze funcOp. |
| 501 | if (failed(analyzeOp(funcOp, state, statistics))) |
| 502 | return failure(); |
| 503 | |
| 504 | // TODO: We currently skip all function argument analyses for functions |
| 505 | // that call each other circularly. These analyses do not support recursive |
| 506 | // calls yet. The `BufferizableOpInterface` implementations of `func` |
| 507 | // dialect ops return conservative results in the absence of analysis |
| 508 | // information. |
| 509 | } |
| 510 | |
| 511 | return success(); |
| 512 | } |
| 513 | |
| 514 | void mlir::bufferization::removeBufferizationAttributesInModule( |
| 515 | ModuleOp moduleOp) { |
| 516 | for (auto op : moduleOp.getOps<func::FuncOp>()) { |
| 517 | for (BlockArgument bbArg : op.getArguments()) |
| 518 | removeBufferizationAttributes(bbArg); |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | LogicalResult mlir::bufferization::bufferizeModuleOp( |
| 523 | ModuleOp moduleOp, const OneShotBufferizationOptions &options, |
| 524 | BufferizationState &state, BufferizationStatistics *statistics) { |
| 525 | assert(options.bufferizeFunctionBoundaries && |
| 526 | "expected that function boundary bufferization is activated" ); |
| 527 | IRRewriter rewriter(moduleOp.getContext()); |
| 528 | |
| 529 | // A list of non-circular functions in the order in which they are analyzed |
| 530 | // and bufferized. |
| 531 | SmallVector<func::FuncOp> orderedFuncOps; |
| 532 | // A list of all other functions. I.e., functions that call each other |
| 533 | // recursively. For these, we analyze the function body but not the function |
| 534 | // boundary. |
| 535 | SmallVector<func::FuncOp> remainingFuncOps; |
| 536 | |
| 537 | // A mapping of FuncOps to their callers. |
| 538 | FuncCallerMap callerMap; |
| 539 | |
| 540 | // Try to bufferize functions in calling order. I.e., first bufferize |
| 541 | // functions that do not call other functions. This allows us to infer |
| 542 | // accurate buffer types for function return values. Functions that call |
| 543 | // each other recursively are bufferized in an unspecified order at the end. |
| 544 | // We may use unnecessarily "complex" (in terms of layout map) buffer types. |
| 545 | if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, |
| 546 | remainingFuncOps, callerMap, |
| 547 | state.getSymbolTables()))) |
| 548 | return failure(); |
| 549 | llvm::append_range(orderedFuncOps, remainingFuncOps); |
| 550 | |
| 551 | // Bufferize functions. |
| 552 | for (func::FuncOp funcOp : orderedFuncOps) { |
| 553 | // Note: It would be good to apply cleanups here but we cannot as aliasInfo |
| 554 | // would be invalidated. |
| 555 | |
| 556 | if (llvm::is_contained(options.noAnalysisFuncFilter, funcOp.getSymName())) { |
| 557 | // This function was not analyzed and RaW conflicts were not resolved. |
| 558 | // Buffer copies must be inserted before every write. |
| 559 | OneShotBufferizationOptions updatedOptions = options; |
| 560 | updatedOptions.copyBeforeWrite = true; |
| 561 | if (failed(bufferizeOp(funcOp, updatedOptions, state, statistics))) |
| 562 | return failure(); |
| 563 | } else { |
| 564 | if (failed(bufferizeOp(funcOp, options, state, statistics))) |
| 565 | return failure(); |
| 566 | } |
| 567 | |
| 568 | // Change buffer return types to more precise layout maps. |
| 569 | if (options.inferFunctionResultLayout) |
| 570 | foldMemRefCasts(funcOp); |
| 571 | } |
| 572 | |
| 573 | // Bufferize all other ops. |
| 574 | for (Operation &op : llvm::make_early_inc_range(moduleOp.getOps())) { |
| 575 | // Functions were already bufferized. |
| 576 | if (isa<func::FuncOp>(&op) || op.hasTrait<OpTrait::SymbolTable>()) |
| 577 | continue; |
| 578 | if (failed(bufferizeOp(&op, options, state, statistics))) |
| 579 | return failure(); |
| 580 | } |
| 581 | |
| 582 | // Post-pass cleanup of function argument attributes. |
| 583 | removeBufferizationAttributesInModule(moduleOp); |
| 584 | |
| 585 | return success(); |
| 586 | } |
| 587 | |
| 588 | LogicalResult mlir::bufferization::runOneShotModuleBufferize( |
| 589 | ModuleOp moduleOp, const OneShotBufferizationOptions &options, |
| 590 | BufferizationState &state, BufferizationStatistics *statistics) { |
| 591 | assert(options.bufferizeFunctionBoundaries && |
| 592 | "expected that function boundary bufferization is activated" ); |
| 593 | assert(!(options.copyBeforeWrite && options.testAnalysisOnly) && |
| 594 | "invalid combination of bufferization flags" ); |
| 595 | if (!options.copyBeforeWrite) { |
| 596 | if (options.noAnalysisFuncFilter.empty()) { |
| 597 | if (failed(insertTensorCopies(moduleOp, options, state, statistics))) |
| 598 | return failure(); |
| 599 | } else { |
| 600 | // FuncOps whose names are specified in options.noAnalysisFuncFilter will |
| 601 | // not be analyzed. Ops in these FuncOps will not be analyzed as well. |
| 602 | OpFilter::Entry::FilterFn analysisFilterFn = [=](Operation *op) { |
| 603 | auto func = dyn_cast<func::FuncOp>(op); |
| 604 | if (!func) |
| 605 | func = op->getParentOfType<func::FuncOp>(); |
| 606 | if (func) |
| 607 | return llvm::is_contained(options.noAnalysisFuncFilter, |
| 608 | func.getSymName()); |
| 609 | return false; |
| 610 | }; |
| 611 | OneShotBufferizationOptions updatedOptions(options); |
| 612 | updatedOptions.opFilter.denyOperation(analysisFilterFn); |
| 613 | if (failed( |
| 614 | insertTensorCopies(moduleOp, updatedOptions, state, statistics))) |
| 615 | return failure(); |
| 616 | } |
| 617 | } |
| 618 | if (options.testAnalysisOnly) |
| 619 | return success(); |
| 620 | if (failed(bufferizeModuleOp(moduleOp, options, state, statistics))) |
| 621 | return failure(); |
| 622 | return success(); |
| 623 | } |
| 624 | |