| 1 | //===- BubbleUpExtractSlice.cpp - bubble up tensor.extract_slice ----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements patterns that transforms linalg.<op> + |
| 10 | // tensor.extract_slice into tensor.extract_slice + linalg.<op> to reduce |
| 11 | // the computation for the linalg op. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 16 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
| 17 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| 18 | #include "mlir/Dialect/Linalg/Passes.h" |
| 19 | #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| 20 | #include "mlir/Dialect/Linalg/Utils/Utils.h" |
| 21 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 22 | |
| 23 | using namespace mlir; |
| 24 | using namespace mlir::linalg; |
| 25 | |
| 26 | namespace { |
| 27 | /// Bubble up extract_slice above Linalg operation. |
| 28 | /// |
| 29 | /// A sequence of operations |
| 30 | /// |
| 31 | /// ```mlir |
| 32 | /// %0 = linalg.<op> ... arg0, arg1, ... |
| 33 | /// %1 = tensor.extract_slice %0 ... |
| 34 | /// ``` |
| 35 | /// |
| 36 | /// can be replaced with |
| 37 | /// |
| 38 | /// ```mlir |
| 39 | /// %0 = tensor.extract_slice %arg0 |
| 40 | /// %1 = tensor.extract_slice %arg1 |
| 41 | /// %2 = linalg.<op> ... %0, %1, ... |
| 42 | /// ``` |
| 43 | /// |
| 44 | /// This results in the reduce computation of the linalg operation. |
| 45 | /// |
| 46 | struct |
| 47 | : OpRewritePattern<tensor::ExtractSliceOp> { |
| 48 | using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern; |
| 49 | |
| 50 | LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp, |
| 51 | PatternRewriter &rewriter) const final { |
| 52 | Value source = sliceOp.getSource(); |
| 53 | auto linalgOp = source.getDefiningOp<LinalgOp>(); |
| 54 | if (!linalgOp) { |
| 55 | return rewriter.notifyMatchFailure(sliceOp, |
| 56 | "expected source to be linalg op" ); |
| 57 | } |
| 58 | |
| 59 | // TODO: we might relax this if we want heuristics to detect that all uses |
| 60 | // are small portion of the output. |
| 61 | if (!linalgOp->hasOneUse()) { |
| 62 | return rewriter.notifyMatchFailure(sliceOp, |
| 63 | "expected single use of linalg op" ); |
| 64 | } |
| 65 | |
| 66 | if (linalgOp.getNumDpsInits() != 1) { |
| 67 | return rewriter.notifyMatchFailure(sliceOp, |
| 68 | "expected single output of linalg op" ); |
| 69 | } |
| 70 | |
| 71 | if (!linalgOp.hasPureTensorSemantics()) { |
| 72 | return rewriter.notifyMatchFailure(sliceOp, |
| 73 | "expected tensor of linalg op" ); |
| 74 | } |
| 75 | |
| 76 | if (!sliceOp.hasUnitStride()) |
| 77 | return rewriter.notifyMatchFailure(sliceOp, "expected unit stride" ); |
| 78 | |
| 79 | if (sliceOp.getType().getRank() != sliceOp.getSourceType().getRank()) { |
| 80 | return rewriter.notifyMatchFailure(sliceOp, "expected no rank reduction" ); |
| 81 | } |
| 82 | |
| 83 | OpOperand *outOperand = linalgOp.getDpsInitOperand(0); |
| 84 | AffineMap indexingMap = linalgOp.getMatchingIndexingMap(outOperand); |
| 85 | if (!indexingMap.isProjectedPermutation()) { |
| 86 | return rewriter.notifyMatchFailure( |
| 87 | sliceOp, "expected a projected permutation for output" ); |
| 88 | } |
| 89 | |
| 90 | auto linalgLoc = linalgOp.getLoc(); |
| 91 | SmallVector<OpFoldResult> allShapeSizes = |
| 92 | linalgOp.createFlatListOfOperandDims(rewriter, linalgLoc); |
| 93 | AffineMap shapeSizesToLoopsMap = linalgOp.getShapesToLoopsMap(); |
| 94 | if (!shapeSizesToLoopsMap) { |
| 95 | return rewriter.notifyMatchFailure( |
| 96 | linalgOp, "failed to get loops map from shape sizes" ); |
| 97 | } |
| 98 | SmallVector<OpFoldResult> sizeBounds = |
| 99 | affine::makeComposedFoldedMultiResultAffineApply( |
| 100 | rewriter, linalgLoc, shapeSizesToLoopsMap, allShapeSizes); |
| 101 | |
| 102 | // The offsets and sizes from the slice operation only give you the tile |
| 103 | // size of the output. Use that compute the tile sizes and offsets of the |
| 104 | // loops. For loops not used to access the output, set the tile sizes to |
| 105 | // loop bounds and set the offset to 0. |
| 106 | SmallVector<OpFoldResult> tileOffsets(sizeBounds.size(), |
| 107 | rewriter.getIndexAttr(0)); |
| 108 | SmallVector<OpFoldResult> tileSizes = sizeBounds; |
| 109 | for (auto const &result : enumerate(indexingMap.getResults())) { |
| 110 | unsigned position = cast<AffineDimExpr>(result.value()).getPosition(); |
| 111 | tileOffsets[position] = sliceOp.getMixedOffsets()[result.index()]; |
| 112 | tileSizes[position] = sliceOp.getMixedSizes()[result.index()]; |
| 113 | } |
| 114 | |
| 115 | SmallVector<Value> valuesToTile = linalgOp->getOperands(); |
| 116 | SmallVector<Value> tiledOperands = |
| 117 | makeTiledShapes(rewriter, linalgLoc, linalgOp, valuesToTile, |
| 118 | tileOffsets, tileSizes, sizeBounds, |
| 119 | /*omitPartialTileCheck=*/true); |
| 120 | |
| 121 | SmallVector<Type, 4> resultTensorTypes; |
| 122 | for (OpOperand &opOperand : linalgOp.getDpsInitsMutable()) |
| 123 | resultTensorTypes.push_back( |
| 124 | tiledOperands[opOperand.getOperandNumber()].getType()); |
| 125 | |
| 126 | Operation *newOp = |
| 127 | clone(rewriter, linalgOp, resultTensorTypes, tiledOperands); |
| 128 | rewriter.replaceOp(sliceOp, newOp->getResults()); |
| 129 | return success(); |
| 130 | } |
| 131 | }; |
| 132 | } // namespace |
| 133 | |
| 134 | void mlir::linalg::( |
| 135 | RewritePatternSet &patterns) { |
| 136 | auto *context = patterns.getContext(); |
| 137 | patterns.add<BubbleUpExtractSliceOpPattern>(arg&: context); |
| 138 | } |
| 139 | |