| 1 | //===- ConvertToDestinationStyle.cpp - Convert non-DPS to DPS ops ---------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains patterns to convert non-DPS ops to DPS ops. New |
| 10 | // tensor.empty ops are inserted as a destination. Such tensor.empty can be |
| 11 | // eliminated with "empty tensor elimination", allowing them to bufferize |
| 12 | // without an allocation (assuming there are no further conflicts). |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | // |
| 16 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 17 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
| 18 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
| 19 | #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
| 20 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| 21 | #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| 22 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 23 | #include "mlir/Dialect/Utils/StaticValueUtils.h" |
| 24 | #include "mlir/IR/Matchers.h" |
| 25 | #include "mlir/IR/PatternMatch.h" |
| 26 | #include "llvm/ADT/STLExtras.h" |
| 27 | #include "llvm/Support/Debug.h" |
| 28 | |
| 29 | using namespace mlir; |
| 30 | using namespace mlir::tensor; |
| 31 | |
| 32 | // Implements backtracking to traverse indices of the output buffer while |
| 33 | // iterating over op.elements(). |
| 34 | static Value createInserts(RewriterBase &rewriter, Location loc, int dim, |
| 35 | Value destination, ArrayRef<int64_t> shape, |
| 36 | ArrayRef<Value> constants, |
| 37 | OperandRange::iterator &elementIt, |
| 38 | SmallVectorImpl<Value> &indices) { |
| 39 | if (dim == static_cast<int>(shape.size()) - 1) { |
| 40 | for (int i = 0; i < shape.back(); ++i) { |
| 41 | indices.back() = constants[i]; |
| 42 | destination = rewriter.create<tensor::InsertOp>(loc, *elementIt, |
| 43 | destination, indices); |
| 44 | ++elementIt; |
| 45 | } |
| 46 | return destination; |
| 47 | } |
| 48 | for (int i = 0; i < shape[dim]; ++i) { |
| 49 | indices[dim] = constants[i]; |
| 50 | destination = createInserts(rewriter, loc, dim: dim + 1, destination, shape, |
| 51 | constants, elementIt, indices); |
| 52 | } |
| 53 | return destination; |
| 54 | } |
| 55 | |
| 56 | /// Create a memcpy from the given source tensor to the given destination |
| 57 | /// memref. The copy op type can be specified in the `options`. |
| 58 | static void createMemcpy(OpBuilder &b, Location loc, Value tensorSource, |
| 59 | Value memrefDest, |
| 60 | const linalg::BufferizeToAllocationOptions &options) { |
| 61 | auto tensorType = dyn_cast<RankedTensorType>(tensorSource.getType()); |
| 62 | assert(tensorType && "expected ranked tensor" ); |
| 63 | assert(isa<MemRefType>(memrefDest.getType()) && "expected ranked memref" ); |
| 64 | |
| 65 | switch (options.memcpyOp) { |
| 66 | case linalg::BufferizeToAllocationOptions::MemcpyOp:: |
| 67 | MaterializeInDestination: { |
| 68 | // Note: This is the preferred way of memcpy'ing because no layout map |
| 69 | // and/or memory space must be specified for the source. |
| 70 | auto materializeOp = b.create<bufferization::MaterializeInDestinationOp>( |
| 71 | loc, tensorSource, memrefDest); |
| 72 | materializeOp.setWritable(true); |
| 73 | } break; |
| 74 | case linalg::BufferizeToAllocationOptions::MemcpyOp::MemrefCopy: { |
| 75 | // TODO: Support custom memory space on source. |
| 76 | // We do not know the layout map of the source yet, so use a fully dynamic |
| 77 | // layout for best compatibility. |
| 78 | Value toBuffer = b.create<bufferization::ToBufferOp>( |
| 79 | loc, bufferization::getMemRefTypeWithFullyDynamicLayout(tensorType), |
| 80 | tensorSource, /*readOnly=*/true); |
| 81 | b.create<memref::CopyOp>(loc, toBuffer, memrefDest); |
| 82 | } break; |
| 83 | case linalg::BufferizeToAllocationOptions::MemcpyOp::LinalgCopy: { |
| 84 | // TODO: Support custom memory space on source. |
| 85 | // We do not know the layout map of the source yet, so use a fully dynamic |
| 86 | // layout for best compatibility. |
| 87 | Value toBuffer = b.create<bufferization::ToBufferOp>( |
| 88 | loc, bufferization::getMemRefTypeWithFullyDynamicLayout(tensorType), |
| 89 | tensorSource, /*readOnly=*/true); |
| 90 | b.create<linalg::CopyOp>(loc, toBuffer, memrefDest); |
| 91 | } break; |
| 92 | }; |
| 93 | } |
| 94 | |
| 95 | static Operation *movePaddingToFillOrGenericOp(RewriterBase &rewriter, |
| 96 | Location loc, PadOp padOp, |
| 97 | Value dest) { |
| 98 | OpBuilder::InsertionGuard g(rewriter); |
| 99 | RankedTensorType resultType = padOp.getResultType(); |
| 100 | |
| 101 | // Examine the yielded value to decide if a linalg.generic is neede or a |
| 102 | // linalg.fill is sufficient. |
| 103 | Value yieldedValue = |
| 104 | cast<tensor::YieldOp>(padOp.getBody()->getTerminator()).getValue(); |
| 105 | Attribute constYieldedValue; |
| 106 | // Is the yielded value a bbArg defined outside of the PadOp? |
| 107 | bool outsideBbArg = |
| 108 | isa<BlockArgument>(Val: yieldedValue) && |
| 109 | cast<BlockArgument>(Val&: yieldedValue).getOwner()->getParentOp() != |
| 110 | padOp.getOperation(); |
| 111 | // Is the yielded value an OpResult defined outside of the PadOp? |
| 112 | bool outsideOpResult = |
| 113 | isa<OpResult>(Val: yieldedValue) && |
| 114 | yieldedValue.getDefiningOp()->getParentOp() != padOp.getOperation(); |
| 115 | bool invariantYieldedValue = outsideBbArg || outsideOpResult; |
| 116 | if (matchPattern(value: yieldedValue, pattern: m_Constant(bind_value: &constYieldedValue))) { |
| 117 | // Padding with a constant: Create linalg.fill. |
| 118 | Dialect *arithDialect = |
| 119 | rewriter.getContext()->getLoadedDialect<arith::ArithDialect>(); |
| 120 | Value fillValue = |
| 121 | arithDialect |
| 122 | ->materializeConstant(builder&: rewriter, value: constYieldedValue, |
| 123 | type: yieldedValue.getType(), loc: yieldedValue.getLoc()) |
| 124 | ->getResult(idx: 0); |
| 125 | auto fillOp = rewriter.create<linalg::FillOp>(loc, ValueRange(fillValue), |
| 126 | ValueRange(dest)); |
| 127 | return fillOp; |
| 128 | } |
| 129 | |
| 130 | if (invariantYieldedValue) { |
| 131 | // Padding with an invariant value. |
| 132 | auto fillOp = rewriter.create<linalg::FillOp>(loc, ValueRange(yieldedValue), |
| 133 | ValueRange(dest)); |
| 134 | return fillOp; |
| 135 | } |
| 136 | |
| 137 | // Create linalg.generic. |
| 138 | SmallVector<utils::IteratorType> iteratorTypes(resultType.getRank(), |
| 139 | utils::IteratorType::parallel); |
| 140 | SmallVector<AffineMap> indexingMaps( |
| 141 | 1, rewriter.getMultiDimIdentityMap(rank: resultType.getRank())); |
| 142 | auto genericOp = rewriter.create<linalg::GenericOp>( |
| 143 | loc, resultType, /*inputs=*/ValueRange(), |
| 144 | /*outputs=*/ValueRange{dest}, /*indexingMaps=*/ |
| 145 | indexingMaps, iteratorTypes); |
| 146 | Block *body = rewriter.createBlock(&genericOp->getRegion(0), {}, |
| 147 | resultType.getElementType(), loc); |
| 148 | rewriter.setInsertionPointToStart(body); |
| 149 | SmallVector<Value> bbArgReplacements; |
| 150 | for (int64_t i = 0; i < resultType.getRank(); ++i) |
| 151 | bbArgReplacements.push_back(rewriter.create<linalg::IndexOp>(loc, i)); |
| 152 | rewriter.mergeBlocks(source: padOp.getBody(), dest: body, argValues: bbArgReplacements); |
| 153 | |
| 154 | // Update terminator. |
| 155 | auto yieldOp = cast<tensor::YieldOp>(body->getTerminator()); |
| 156 | rewriter.replaceOpWithNewOp<linalg::YieldOp>(yieldOp, yieldOp.getValue()); |
| 157 | return genericOp; |
| 158 | } |
| 159 | |
| 160 | static SmallVector<Value> reifyOrComputeDynamicSizes(OpBuilder &b, |
| 161 | Value value) { |
| 162 | auto tensorType = cast<RankedTensorType>(value.getType()); |
| 163 | if (tensorType.hasStaticShape()) |
| 164 | return {}; |
| 165 | |
| 166 | // Try to reify dynamic sizes. |
| 167 | ReifiedRankedShapedTypeDims reifiedShape; |
| 168 | if (isa<OpResult>(Val: value) && |
| 169 | succeeded(Result: reifyResultShapes(b, op: value.getDefiningOp(), reifiedReturnShapes&: reifiedShape))) { |
| 170 | SmallVector<Value> dynSizes; |
| 171 | for (int64_t i = 0; i < tensorType.getRank(); ++i) { |
| 172 | if (tensorType.isDynamicDim(i)) |
| 173 | dynSizes.push_back(Elt: cast<Value>( |
| 174 | Val&: reifiedShape[cast<OpResult>(Val&: value).getResultNumber()][i])); |
| 175 | } |
| 176 | return dynSizes; |
| 177 | } |
| 178 | |
| 179 | // Create tensor.dim ops. |
| 180 | SmallVector<Value> dynSizes; |
| 181 | for (int64_t i = 0; i < tensorType.getRank(); ++i) { |
| 182 | if (tensorType.isDynamicDim(i)) |
| 183 | dynSizes.push_back( |
| 184 | b.create<DimOp>(value.getLoc(), value, |
| 185 | b.create<arith::ConstantIndexOp>(value.getLoc(), i))); |
| 186 | } |
| 187 | return dynSizes; |
| 188 | } |
| 189 | |
| 190 | static Value |
| 191 | createAllocationForTensor(RewriterBase &rewriter, Location loc, Value value, |
| 192 | const linalg::BufferizeToAllocationOptions &options, |
| 193 | Attribute memorySpace = {}) { |
| 194 | OpBuilder::InsertionGuard g(rewriter); |
| 195 | auto tensorType = cast<RankedTensorType>(value.getType()); |
| 196 | |
| 197 | // Create buffer allocation. |
| 198 | auto memrefType = |
| 199 | cast<MemRefType>(bufferization::getMemRefTypeWithStaticIdentityLayout( |
| 200 | tensorType: tensorType, memorySpace)); |
| 201 | SmallVector<Value> dynamicSizes = reifyOrComputeDynamicSizes(b&: rewriter, value); |
| 202 | |
| 203 | Value alloc; |
| 204 | if (options.allocOp == |
| 205 | linalg::BufferizeToAllocationOptions::AllocOp::MemrefAlloc) { |
| 206 | alloc = rewriter.create<memref::AllocOp>(loc, memrefType, dynamicSizes); |
| 207 | if (options.emitDealloc) { |
| 208 | // Place deallocation at the end of the block. |
| 209 | rewriter.setInsertionPoint(rewriter.getInsertionBlock()->getTerminator()); |
| 210 | rewriter.create<memref::DeallocOp>(loc, alloc); |
| 211 | } |
| 212 | } else if (options.allocOp == |
| 213 | linalg::BufferizeToAllocationOptions::AllocOp::MemrefAlloca) { |
| 214 | alloc = rewriter.create<memref::AllocaOp>(loc, memrefType, dynamicSizes); |
| 215 | // No dealloc is needed. |
| 216 | } |
| 217 | |
| 218 | return alloc; |
| 219 | } |
| 220 | |
| 221 | Value linalg::bufferizeToAllocation( |
| 222 | RewriterBase &rewriter, const linalg::BufferizeToAllocationOptions &options, |
| 223 | PadOp padOp, Attribute memorySpace, Operation *insertionPoint) { |
| 224 | // tensor.pad does not have a destination operand. |
| 225 | assert(!options.bufferizeDestinationOnly && "invalid options" ); |
| 226 | |
| 227 | OpBuilder::InsertionGuard g(rewriter); |
| 228 | rewriter.setInsertionPoint(insertionPoint ? insertionPoint : padOp); |
| 229 | Location loc = padOp.getLoc(); |
| 230 | |
| 231 | // Create buffer allocation. |
| 232 | Value alloc = createAllocationForTensor(rewriter, loc, padOp.getResult(), |
| 233 | options, memorySpace); |
| 234 | rewriter.setInsertionPoint(padOp); |
| 235 | |
| 236 | if (!padOp.hasZeroLowPad() || !padOp.hasZeroHighPad()) { |
| 237 | // Create linalg.fill or linalg.generic. Not needed if there is no padding. |
| 238 | Operation *fillOp = |
| 239 | movePaddingToFillOrGenericOp(rewriter, loc, padOp, alloc); |
| 240 | rewriter.setInsertionPointAfter(fillOp); |
| 241 | } |
| 242 | |
| 243 | // Create memcpy. |
| 244 | SmallVector<OpFoldResult> sizes = |
| 245 | getMixedSizes(rewriter, loc, padOp.getSource()); |
| 246 | SmallVector<OpFoldResult> strides(padOp.getResultType().getRank(), |
| 247 | rewriter.getIndexAttr(1)); |
| 248 | Value subview = rewriter.create<memref::SubViewOp>( |
| 249 | loc, alloc, /*offsets=*/padOp.getMixedLowPad(), sizes, strides); |
| 250 | createMemcpy(rewriter, loc, padOp.getSource(), subview, options); |
| 251 | |
| 252 | // Create bufferization.to_tensor with "restrict" and "writable". The returned |
| 253 | // tensor is a new buffer allocation, so it does not alias with any buffer. |
| 254 | Value toTensorOp = rewriter.create<bufferization::ToTensorOp>( |
| 255 | loc, alloc, /*restrict=*/true, /*writable=*/true); |
| 256 | rewriter.replaceOp(padOp, toTensorOp); |
| 257 | return alloc; |
| 258 | } |
| 259 | |
| 260 | Value linalg::bufferizeToAllocation( |
| 261 | RewriterBase &rewriter, const linalg::BufferizeToAllocationOptions &options, |
| 262 | vector::MaskOp maskOp, Attribute memorySpace, Operation *insertionPoint) { |
| 263 | assert(llvm::range_size(maskOp.getMaskBlock()->without_terminator()) == 1 && |
| 264 | "expected single masked op" ); |
| 265 | OpBuilder::InsertionGuard g(rewriter); |
| 266 | |
| 267 | // Should the bufferization options and state be function arguments? |
| 268 | bufferization::BufferizationOptions bufferizationOptions; |
| 269 | bufferization::BufferizationState bufferizationState; |
| 270 | |
| 271 | Operation *yieldOp = maskOp.getMaskRegion().front().getTerminator(); |
| 272 | assert(isa<vector::YieldOp>(yieldOp) && "expected yield op terminator" ); |
| 273 | |
| 274 | // Bufferize maskable op. By default, place the buffer allocation right before |
| 275 | // the mask op. |
| 276 | Value alloc = bufferizeToAllocation( |
| 277 | rewriter, options, maskOp.getMaskableOp(), memorySpace, |
| 278 | /*insertionPoint=*/insertionPoint ? insertionPoint : maskOp); |
| 279 | |
| 280 | if (options.bufferizeDestinationOnly) |
| 281 | return alloc; |
| 282 | |
| 283 | // Bufferize terminator. |
| 284 | rewriter.setInsertionPoint(yieldOp); |
| 285 | if (failed(cast<bufferization::BufferizableOpInterface>(yieldOp).bufferize( |
| 286 | rewriter, bufferizationOptions, bufferizationState))) |
| 287 | return nullptr; |
| 288 | |
| 289 | // Erase dead to_tensor ops inside of the mask op. This is necessary because |
| 290 | // there only be one op (apart from the terminator) inside the mask op. |
| 291 | // TODO: Remove dead to_tensor ops more aggressively during bufferization. |
| 292 | SmallVector<Operation *> toTensorOps; |
| 293 | maskOp.walk([&](bufferization::ToTensorOp toTensorOp) { |
| 294 | if (toTensorOp->getUses().empty()) |
| 295 | toTensorOps.push_back(Elt: toTensorOp.getOperation()); |
| 296 | }); |
| 297 | for (Operation *op : toTensorOps) |
| 298 | rewriter.eraseOp(op); |
| 299 | |
| 300 | // Bufferize mask op. |
| 301 | SmallVector<OpOperand *> resultUses; |
| 302 | for (Value result : maskOp.getResults()) |
| 303 | if (isa<TensorType>(result.getType())) |
| 304 | for (OpOperand &use : result.getUses()) |
| 305 | resultUses.push_back(&use); |
| 306 | rewriter.setInsertionPoint(maskOp); |
| 307 | if (failed( |
| 308 | cast<bufferization::BufferizableOpInterface>(maskOp.getOperation()) |
| 309 | .bufferize(rewriter, bufferizationOptions, bufferizationState))) |
| 310 | return nullptr; |
| 311 | |
| 312 | // Set "restrict" attribute, indicating that no other tensor aliases with |
| 313 | // this tensor. That is because we just allocated a new buffer for the tensor. |
| 314 | for (OpOperand *resultUse : resultUses) { |
| 315 | auto toTensorOp = |
| 316 | resultUse->get().getDefiningOp<bufferization::ToTensorOp>(); |
| 317 | assert(toTensorOp && "expected to_tensor op" ); |
| 318 | rewriter.modifyOpInPlace(toTensorOp, [&]() { |
| 319 | toTensorOp.setRestrict(true); |
| 320 | toTensorOp.setWritable(true); |
| 321 | }); |
| 322 | } |
| 323 | |
| 324 | return alloc; |
| 325 | } |
| 326 | |
| 327 | Value linalg::bufferizeToAllocation( |
| 328 | RewriterBase &rewriter, const linalg::BufferizeToAllocationOptions &options, |
| 329 | bufferization::AllocTensorOp allocTensorOp, Attribute memorySpace, |
| 330 | Operation *insertionPoint) { |
| 331 | Location loc = allocTensorOp.getLoc(); |
| 332 | OpBuilder::InsertionGuard g(rewriter); |
| 333 | rewriter.setInsertionPoint(insertionPoint ? insertionPoint : allocTensorOp); |
| 334 | bufferization::BufferizationOptions bufferizationOptions; |
| 335 | |
| 336 | // Create buffer allocation. |
| 337 | Value alloc = createAllocationForTensor( |
| 338 | rewriter, loc, allocTensorOp.getResult(), options, memorySpace); |
| 339 | |
| 340 | // Create bufferization.to_tensor with "restrict" and "writable". The returned |
| 341 | // tensor is a new buffer allocation, so it does not alias with any buffer. |
| 342 | Value toTensorOp = rewriter.create<bufferization::ToTensorOp>( |
| 343 | loc, alloc, /*restrict=*/true, /*writable=*/true); |
| 344 | rewriter.replaceOp(allocTensorOp, toTensorOp); |
| 345 | return alloc; |
| 346 | } |
| 347 | |
| 348 | /// Lower tensor.from_elements to a sequence of chained tensor.insert. |
| 349 | FailureOr<Operation *> mlir::linalg::rewriteInDestinationPassingStyle( |
| 350 | RewriterBase &rewriter, tensor::FromElementsOp fromElementsOp) { |
| 351 | Location loc = fromElementsOp.getLoc(); |
| 352 | RankedTensorType tensorType = |
| 353 | cast<RankedTensorType>(fromElementsOp.getType()); |
| 354 | auto shape = tensorType.getShape(); |
| 355 | |
| 356 | // Create tensor.empty. |
| 357 | auto emptyOp = rewriter.create<EmptyOp>(loc, tensorType, ValueRange()); |
| 358 | |
| 359 | // Case: tensor<elem_type>. |
| 360 | if (shape.empty()) { |
| 361 | Operation *res = rewriter.replaceOpWithNewOp<tensor::InsertOp>( |
| 362 | fromElementsOp, fromElementsOp.getElements().front(), |
| 363 | emptyOp.getResult(), ValueRange()); |
| 364 | return res; |
| 365 | } |
| 366 | |
| 367 | // Create constants for the range of possible indices [0, max{shape_i}). |
| 368 | auto maxDim = *llvm::max_element(shape); |
| 369 | SmallVector<Value, 2> constants; |
| 370 | constants.reserve(N: maxDim); |
| 371 | for (int i = 0; i < maxDim; ++i) |
| 372 | constants.push_back(rewriter.create<arith::ConstantIndexOp>(location: loc, args&: i)); |
| 373 | |
| 374 | // Traverse all elements and create tensor.insert ops. |
| 375 | auto elementIt = fromElementsOp.getElements().begin(); |
| 376 | SmallVector<Value, 2> indices(tensorType.getRank(), constants[0]); |
| 377 | Value result = createInserts(rewriter, loc, /*dim=*/0, emptyOp.getResult(), |
| 378 | shape, constants, elementIt, indices); |
| 379 | |
| 380 | // Replace tensor.from_elements. |
| 381 | rewriter.replaceOp(fromElementsOp, result); |
| 382 | return result.getDefiningOp(); |
| 383 | } |
| 384 | |
| 385 | /// Lower tensor.generate to linalg.generic. |
| 386 | FailureOr<Operation *> |
| 387 | mlir::linalg::rewriteInDestinationPassingStyle(RewriterBase &rewriter, |
| 388 | tensor::GenerateOp generateOp) { |
| 389 | // Only ops with exactly one block are supported. |
| 390 | if (!generateOp.getBody().hasOneBlock()) |
| 391 | return failure(); |
| 392 | |
| 393 | Location loc = generateOp.getLoc(); |
| 394 | RankedTensorType tensorType = cast<RankedTensorType>(generateOp.getType()); |
| 395 | |
| 396 | // Create tensor.empty. |
| 397 | auto emptyOp = |
| 398 | rewriter.create<EmptyOp>(loc, tensorType, generateOp.getDynamicExtents()); |
| 399 | |
| 400 | // Create linalg.generic. |
| 401 | SmallVector<utils::IteratorType> iteratorTypes(tensorType.getRank(), |
| 402 | utils::IteratorType::parallel); |
| 403 | SmallVector<AffineMap> indexingMaps( |
| 404 | 1, rewriter.getMultiDimIdentityMap(rank: tensorType.getRank())); |
| 405 | auto genericOp = rewriter.create<linalg::GenericOp>( |
| 406 | loc, tensorType, /*inputs=*/ValueRange(), |
| 407 | /*outputs=*/ValueRange{emptyOp.getResult()}, /*indexingMaps=*/ |
| 408 | indexingMaps, iteratorTypes); |
| 409 | Block *body = rewriter.createBlock(&genericOp->getRegion(0), {}, |
| 410 | tensorType.getElementType(), loc); |
| 411 | rewriter.setInsertionPointToStart(body); |
| 412 | SmallVector<Value> bbArgReplacements; |
| 413 | for (int64_t i = 0; i < tensorType.getRank(); ++i) |
| 414 | bbArgReplacements.push_back(rewriter.create<linalg::IndexOp>(loc, i)); |
| 415 | rewriter.mergeBlocks(source: &generateOp.getBody().front(), dest: body, argValues: bbArgReplacements); |
| 416 | |
| 417 | // Update terminator. |
| 418 | auto yieldOp = cast<tensor::YieldOp>(body->getTerminator()); |
| 419 | rewriter.replaceOpWithNewOp<linalg::YieldOp>(yieldOp, yieldOp.getValue()); |
| 420 | |
| 421 | // Replace tensor.generate. |
| 422 | rewriter.replaceOp(generateOp, genericOp->getResult(0)); |
| 423 | return genericOp.getOperation(); |
| 424 | } |
| 425 | |
| 426 | /// Lower tensor.pad to linalg.generic + tensor.insert_slice. |
| 427 | FailureOr<Operation *> |
| 428 | mlir::linalg::rewriteInDestinationPassingStyle(RewriterBase &rewriter, |
| 429 | tensor::PadOp padOp) { |
| 430 | // Only ops with exactly one block are supported. |
| 431 | if (!padOp.getBodyRegion().hasOneBlock()) |
| 432 | return failure(); |
| 433 | |
| 434 | // Create tensor.empty. |
| 435 | Location loc = padOp.getLoc(); |
| 436 | RankedTensorType resultType = padOp.getResultType(); |
| 437 | ReifiedRankedShapedTypeDims reifiedShape; |
| 438 | if (failed(reifyResultShapes(rewriter, padOp, reifiedShape))) |
| 439 | return rewriter.notifyMatchFailure( |
| 440 | padOp, "failed to reify tensor.pad op result shape" ); |
| 441 | SmallVector<Value> dynamicSizes; |
| 442 | for (int64_t i = 0; i < resultType.getRank(); ++i) |
| 443 | if (resultType.isDynamicDim(i)) |
| 444 | dynamicSizes.push_back(Elt: cast<Value>(Val&: reifiedShape[0][i])); |
| 445 | |
| 446 | // If the `padOp` has a nofold attribute and all paddings are known to be 0, |
| 447 | // explicitly insert a `linalg.copy`. |
| 448 | if (padOp.getNofoldAttr() && |
| 449 | llvm::all_of(padOp.getMixedLowPad(), isZeroInteger) && |
| 450 | llvm::all_of(padOp.getMixedHighPad(), isZeroInteger)) { |
| 451 | using bufferization::AllocTensorOp; |
| 452 | Value allocated = |
| 453 | rewriter.create<AllocTensorOp>(loc, resultType, dynamicSizes); |
| 454 | auto copyOp = rewriter.replaceOpWithNewOp<linalg::CopyOp>( |
| 455 | padOp, padOp.getSource(), allocated); |
| 456 | return copyOp.getOperation(); |
| 457 | } |
| 458 | |
| 459 | Value empty = rewriter.create<EmptyOp>(loc, resultType, dynamicSizes); |
| 460 | // Create linalg.fill or linalg.generic. |
| 461 | Operation *fillOp = movePaddingToFillOrGenericOp(rewriter, loc, padOp, empty); |
| 462 | rewriter.setInsertionPointAfter(fillOp); |
| 463 | |
| 464 | // Create tensor::InsertSliceOp. |
| 465 | SmallVector<OpFoldResult> sliceSizes = |
| 466 | getMixedSizes(rewriter, loc, padOp.getSource()); |
| 467 | SmallVector<OpFoldResult> sliceStrides(resultType.getRank(), |
| 468 | rewriter.getIndexAttr(1)); |
| 469 | auto insertSliceOp = rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>( |
| 470 | padOp, padOp.getSource(), fillOp->getResult(0), |
| 471 | /*offsets=*/padOp.getMixedLowPad(), sliceSizes, sliceStrides); |
| 472 | return insertSliceOp.getOperation(); |
| 473 | } |
| 474 | |
| 475 | Value linalg::bufferizeToAllocation( |
| 476 | RewriterBase &rewriter, const linalg::BufferizeToAllocationOptions &options, |
| 477 | Operation *op, Attribute memorySpace, Operation *insertionPoint) { |
| 478 | using namespace bufferization; |
| 479 | |
| 480 | // Call specialized overload for certain ops. |
| 481 | if (auto padOp = dyn_cast<tensor::PadOp>(op)) |
| 482 | return bufferizeToAllocation(rewriter, options, padOp, memorySpace); |
| 483 | if (auto maskOp = dyn_cast<vector::MaskOp>(op)) |
| 484 | return bufferizeToAllocation(rewriter, options, maskOp, memorySpace); |
| 485 | if (auto allocTensorOp = dyn_cast<bufferization::AllocTensorOp>(op)) |
| 486 | return bufferizeToAllocation(rewriter, options, allocTensorOp, memorySpace); |
| 487 | |
| 488 | // Only bufferizable ops are supported. |
| 489 | auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op); |
| 490 | if (!bufferizableOp) |
| 491 | return nullptr; |
| 492 | |
| 493 | // Should the bufferization options and states be function arguments? |
| 494 | BufferizationOptions bufferizationOptions; |
| 495 | AnalysisState analysisState(bufferizationOptions); |
| 496 | BufferizationState bufferizationState; |
| 497 | |
| 498 | #ifndef NDEBUG |
| 499 | if (!options.bufferizeDestinationOnly) { |
| 500 | // Ops with nested tensor ops are not supported yet. At the moment, this |
| 501 | // function just bufferizes the given op itself, but not its body. |
| 502 | op->walk(callback: [&](Operation *nestedOp) { |
| 503 | if (op == nestedOp) |
| 504 | return; |
| 505 | if (llvm::any_of(Range: nestedOp->getOperands(), |
| 506 | P: [](Value v) { return isa<TensorType>(Val: v.getType()); })) |
| 507 | llvm_unreachable("ops with nested tensor ops are not supported yet" ); |
| 508 | if (llvm::any_of(Range: nestedOp->getResults(), |
| 509 | P: [](Value v) { return isa<TensorType>(Val: v.getType()); })) |
| 510 | llvm_unreachable("ops with nested tensor ops are not supported yet" ); |
| 511 | }); |
| 512 | } |
| 513 | #endif // NDEBUG |
| 514 | |
| 515 | // Gather tensor results. |
| 516 | SmallVector<OpResult> tensorResults; |
| 517 | for (OpResult result : op->getResults()) { |
| 518 | if (!isa<TensorType>(Val: result.getType())) |
| 519 | continue; |
| 520 | // Unranked tensors are not supported |
| 521 | if (!isa<RankedTensorType>(Val: result.getType())) |
| 522 | return nullptr; |
| 523 | // Ops that bufferize to an allocation are not supported. |
| 524 | if (bufferizableOp.bufferizesToAllocation(result)) |
| 525 | return nullptr; |
| 526 | tensorResults.push_back(Elt: result); |
| 527 | } |
| 528 | |
| 529 | // Gather all operands that should bufferize to a new allocation. I.e., |
| 530 | // bufferize out-of-place. |
| 531 | SmallVector<OpOperand *> outOfPlaceOperands, resultUses; |
| 532 | auto addOutOfPlaceOperand = [&](OpOperand *operand) { |
| 533 | if (!llvm::is_contained(Range&: outOfPlaceOperands, Element: operand)) |
| 534 | outOfPlaceOperands.push_back(Elt: operand); |
| 535 | }; |
| 536 | for (OpResult result : tensorResults) { |
| 537 | AliasingOpOperandList aliasingOperands = |
| 538 | analysisState.getAliasingOpOperands(result); |
| 539 | for (const AliasingOpOperand &operand : aliasingOperands) { |
| 540 | addOutOfPlaceOperand(operand.opOperand); |
| 541 | for (OpOperand &resultUse : result.getUses()) |
| 542 | resultUses.push_back(&resultUse); |
| 543 | } |
| 544 | } |
| 545 | for (OpOperand &operand : op->getOpOperands()) { |
| 546 | if (!analysisState.bufferizesToMemoryWrite(opOperand&: operand)) |
| 547 | continue; |
| 548 | if (!isa<RankedTensorType>(Val: operand.get().getType())) |
| 549 | continue; |
| 550 | addOutOfPlaceOperand(&operand); |
| 551 | } |
| 552 | // TODO: Support multiple buffers. |
| 553 | if (outOfPlaceOperands.size() != 1) |
| 554 | return nullptr; |
| 555 | |
| 556 | // Allocate buffers. |
| 557 | OpBuilder::InsertionGuard g(rewriter); |
| 558 | rewriter.setInsertionPoint(insertionPoint ? insertionPoint : op); |
| 559 | SmallVector<Value> allocs; |
| 560 | for (OpOperand *operand : outOfPlaceOperands) { |
| 561 | Value alloc = createAllocationForTensor( |
| 562 | rewriter, loc: op->getLoc(), value: operand->get(), options, memorySpace); |
| 563 | allocs.push_back(Elt: alloc); |
| 564 | if (!analysisState.findDefinitions(operand).empty()) { |
| 565 | // Initialize buffer with a copy of the operand data. Not needed if the |
| 566 | // tensor is uninitialized. |
| 567 | createMemcpy(b&: rewriter, loc: op->getLoc(), tensorSource: operand->get(), memrefDest: alloc, options); |
| 568 | } |
| 569 | rewriter.modifyOpInPlace(root: op, callable: [&]() { |
| 570 | auto toTensorOp = rewriter.create<ToTensorOp>(op->getLoc(), alloc); |
| 571 | operand->set(toTensorOp); |
| 572 | if (options.bufferizeDestinationOnly) { |
| 573 | rewriter.modifyOpInPlace(toTensorOp, [&]() { |
| 574 | toTensorOp.setRestrict(true); |
| 575 | toTensorOp.setWritable(true); |
| 576 | }); |
| 577 | } |
| 578 | }); |
| 579 | } |
| 580 | |
| 581 | if (options.bufferizeDestinationOnly) |
| 582 | return allocs.front(); |
| 583 | |
| 584 | // Bufferize the op. |
| 585 | rewriter.setInsertionPoint(op); |
| 586 | if (failed(bufferizableOp.bufferize(rewriter, bufferizationOptions, |
| 587 | bufferizationState))) |
| 588 | return nullptr; |
| 589 | |
| 590 | // Set "restrict" attribute, indicating that no other tensor aliases with |
| 591 | // this tensor. That is because we just allocated a new buffer for the tensor. |
| 592 | for (OpOperand *resultUse : resultUses) { |
| 593 | auto toTensorOp = resultUse->get().getDefiningOp<ToTensorOp>(); |
| 594 | assert(toTensorOp && "expected to_tensor op" ); |
| 595 | rewriter.modifyOpInPlace(toTensorOp, [&]() { |
| 596 | toTensorOp.setRestrict(true); |
| 597 | toTensorOp.setWritable(true); |
| 598 | }); |
| 599 | } |
| 600 | return allocs.front(); |
| 601 | } |
| 602 | |
| 603 | namespace { |
| 604 | |
| 605 | template <typename OpTy> |
| 606 | LogicalResult rewriteOpInDestinationPassingStyle(OpTy op, |
| 607 | PatternRewriter &rewriter) { |
| 608 | return linalg::rewriteInDestinationPassingStyle(rewriter, op); |
| 609 | } |
| 610 | |
| 611 | } // namespace |
| 612 | |
| 613 | void linalg::populateConvertToDestinationStylePatterns( |
| 614 | RewritePatternSet &patterns) { |
| 615 | patterns.add(rewriteOpInDestinationPassingStyle<tensor::FromElementsOp>); |
| 616 | patterns.add(rewriteOpInDestinationPassingStyle<tensor::GenerateOp>); |
| 617 | patterns.add(rewriteOpInDestinationPassingStyle<tensor::PadOp>); |
| 618 | } |
| 619 | |