| 1 | //===- FusePadOpWithLinalgProducer.cpp ---- Fuse pad with linalg producer -===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements patterns that fuses a linalg.generic -> tensor.pad op |
| 10 | // chain into a tensor.extract_slice -> linalg.generic -> tensor.insert_slice |
| 11 | // op chain. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| 16 | |
| 17 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| 18 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 19 | |
| 20 | using namespace mlir; |
| 21 | |
| 22 | namespace { |
| 23 | |
| 24 | /// A sequence of operations |
| 25 | /// |
| 26 | /// ```mlir |
| 27 | /// %0 = linalg. ... |
| 28 | /// %1 = tensor.pad %0 ... |
| 29 | /// ``` |
| 30 | /// |
| 31 | /// can be replaced with |
| 32 | /// |
| 33 | /// ```mlir |
| 34 | /// %0 = linalg.fill |
| 35 | /// %1 = tensor.extract_slice %0 ... |
| 36 | /// %2 = linalg. .... outs(..., %1, ....) .... |
| 37 | /// %3 = tensor.insert_slice %2 into %1 ... |
| 38 | /// ``` |
| 39 | /// |
| 40 | /// if the `linalg.generic` has all parallel iterator types. |
| 41 | struct FusePadOp : OpRewritePattern<tensor::PadOp> { |
| 42 | using OpRewritePattern<tensor::PadOp>::OpRewritePattern; |
| 43 | |
| 44 | LogicalResult matchAndRewrite(tensor::PadOp padOp, |
| 45 | PatternRewriter &rewriter) const override { |
| 46 | // Only works on padding op that sets the padded value to a constant. |
| 47 | Value padValue = padOp.getConstantPaddingValue(); |
| 48 | if (!padValue) |
| 49 | return rewriter.notifyMatchFailure(padOp, "non constant padding" ); |
| 50 | |
| 51 | // This pattern could work for any Linalg op. For now restrict it to generic |
| 52 | // ops. |
| 53 | Value source = padOp.getSource(); |
| 54 | auto linalgOp = source.getDefiningOp<linalg::GenericOp>(); |
| 55 | if (!linalgOp) { |
| 56 | return rewriter.notifyMatchFailure( |
| 57 | padOp, "expected source to be linalg.generic op" ); |
| 58 | } |
| 59 | // All iterator types need to be parallel. |
| 60 | if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) { |
| 61 | return rewriter.notifyMatchFailure( |
| 62 | padOp, "only supported for ops with all parallel iterator types" ); |
| 63 | } |
| 64 | ReifiedRankedShapedTypeDims resultShape; |
| 65 | if (failed(reifyResultShapes(rewriter, padOp, resultShape)) || |
| 66 | resultShape.size() != 1) { |
| 67 | return rewriter.notifyMatchFailure( |
| 68 | padOp, "failed to get shape of pad op result" ); |
| 69 | } |
| 70 | |
| 71 | Location loc = padOp.getLoc(); |
| 72 | |
| 73 | // Create the tensor of same size as output of the pad op. |
| 74 | RankedTensorType padResultType = padOp.getResultType(); |
| 75 | auto resultSizes = resultShape[0]; |
| 76 | auto emptyTensor = rewriter.create<tensor::EmptyOp>( |
| 77 | loc, resultSizes, padResultType.getElementType()); |
| 78 | |
| 79 | // Fill the tensor with the pad value. |
| 80 | // TODO: There is an option to fill only the boundaries. For now just |
| 81 | // filling the whole tensor. |
| 82 | auto fillTensor = |
| 83 | rewriter.create<linalg::FillOp>(loc, padValue, emptyTensor.getResult()); |
| 84 | |
| 85 | // Construct a slice of the fill result that is to be replaced with the |
| 86 | // result of the generic op. The low pad values are the offsets, the size of |
| 87 | // the source is the size of the slice. |
| 88 | // TODO: This insert/extract could be potentially made a utility method. |
| 89 | unsigned resultNumber = cast<OpResult>(Val&: source).getResultNumber(); |
| 90 | SmallVector<OpFoldResult> offsets = padOp.getMixedLowPad(); |
| 91 | SmallVector<OpFoldResult> sizes; |
| 92 | sizes.reserve(N: offsets.size()); |
| 93 | for (const auto &shape : |
| 94 | llvm::enumerate(cast<RankedTensorType>(source.getType()).getShape())) { |
| 95 | if (ShapedType::isDynamic(shape.value())) { |
| 96 | sizes.push_back( |
| 97 | rewriter.create<tensor::DimOp>(loc, source, shape.index()) |
| 98 | .getResult()); |
| 99 | } else { |
| 100 | sizes.push_back(rewriter.getIndexAttr(shape.value())); |
| 101 | } |
| 102 | } |
| 103 | SmallVector<OpFoldResult> strides(offsets.size(), rewriter.getIndexAttr(1)); |
| 104 | auto slice = rewriter.create<tensor::ExtractSliceOp>( |
| 105 | loc, fillTensor.getResult(0), offsets, sizes, strides); |
| 106 | |
| 107 | // Clone the generic op. |
| 108 | auto clonedOp = |
| 109 | cast<linalg::GenericOp>(rewriter.clone(*linalgOp.getOperation())); |
| 110 | clonedOp.setDpsInitOperand(resultNumber, slice.getResult()); |
| 111 | |
| 112 | // Insert it back into the result of the fill. |
| 113 | rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>( |
| 114 | padOp, clonedOp.getResult(resultNumber), fillTensor.getResult(0), |
| 115 | offsets, sizes, strides); |
| 116 | return success(); |
| 117 | } |
| 118 | }; |
| 119 | } // namespace |
| 120 | |
| 121 | void mlir::linalg::populateFuseTensorPadWithProducerLinalgOpPatterns( |
| 122 | RewritePatternSet &patterns) { |
| 123 | patterns.add<FusePadOp>(arg: patterns.getContext()); |
| 124 | } |
| 125 | |