1 | //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the linalg dialect Fusion pass. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
14 | #include "mlir/Dialect/Arith/IR/Arith.h" |
15 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
16 | #include "mlir/Dialect/Linalg/Passes.h" |
17 | #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
18 | #include "mlir/Dialect/Linalg/Utils/Utils.h" |
19 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
20 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
21 | #include "mlir/IR/AffineExpr.h" |
22 | #include "mlir/IR/AffineMap.h" |
23 | #include "mlir/IR/Dominance.h" |
24 | #include "mlir/Support/LLVM.h" |
25 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
26 | #include "mlir/Transforms/RegionUtils.h" |
27 | #include "llvm/ADT/MapVector.h" |
28 | #include "llvm/ADT/ScopeExit.h" |
29 | #include "llvm/Support/CommandLine.h" |
30 | #include "llvm/Support/Debug.h" |
31 | |
32 | #include <optional> |
33 | #include <set> |
34 | |
35 | #define DEBUG_TYPE "linalg-fusion" |
36 | |
37 | using namespace mlir; |
38 | using namespace mlir::linalg; |
39 | |
40 | /// Implements a simple high-level fusion pass on linalg structured operations. |
41 | /// |
42 | /// In each block, linalg ops are processed in reverse textual order. |
43 | /// Given a linalg op `O`, fusion occurs by: |
44 | /// 1. inspecting the linalg ops that write into the views read by `O`. There |
45 | /// are 2 cases: |
46 | /// a) buffer case: use the SSA value of the views and a simple alias |
47 | /// analysis on subview ops to determine producer-consumer dependences; |
48 | /// b) tensor case: use SSA use-def chains on extract_slice ops; |
49 | /// 2. greedily fuse the linalg ops that produce the subview/extract_slice. |
50 | /// 3. inspect the fused ops and determine whether they have other remaining |
51 | /// LinalgOp uses. If not, then erase the original producing linalg op. |
52 | /// |
53 | /// More advanced use cases, analyses as well as profitability heuristics are |
54 | /// left for future work. |
55 | |
56 | struct ShapeDimension { |
57 | Value shape; |
58 | unsigned dimension; |
59 | }; |
60 | |
61 | // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies |
62 | // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps |
63 | // guarantees at least one such dimension is found. If multiple candidates exist |
64 | // they must agree by construction (i.e. have the same size) and we just return |
65 | // the first one. |
66 | static ShapeDimension |
67 | getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth, |
68 | bool fromSubViewOpOnly = false) { |
69 | // Iterate over the inputs and outputs in order. |
70 | // Extract the subranges from the linearized ranges. |
71 | for (OpOperand &opOperand : op->getOpOperands()) { |
72 | // The method `getRangeFromOperandShape` requires using SubViewOp or |
73 | // ExtractSliceOps. If the value isn't defined from there continue. |
74 | // todo: The method should be adapted to get the values from |
75 | // `ViewInterface`. The interface needs a `getOrCreateRanges` method which |
76 | // currently returns a `linalg.range`. The fix here is to move this op to |
77 | // `std` dialect and add the method to `ViewInterface`. |
78 | if (fromSubViewOpOnly && |
79 | !isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>( |
80 | opOperand.get().getDefiningOp())) |
81 | continue; |
82 | |
83 | AffineMap map = op.getMatchingIndexingMap(&opOperand); |
84 | LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: " |
85 | << opOperand.getOperandNumber() << "\n" ); |
86 | LLVM_DEBUG(llvm::dbgs() |
87 | << "getShapeDefiningLoopRange map: " << map << "\n" ); |
88 | SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr); |
89 | for (const auto &en : llvm::enumerate(map.getResults())) { |
90 | auto dimExpr = dyn_cast<AffineDimExpr>(en.value()); |
91 | if (!dimExpr) |
92 | continue; |
93 | if (loopDepth == cast<AffineDimExpr>(en.value()).getPosition()) { |
94 | LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: " |
95 | << loopDepth << "\n" ); |
96 | LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: " |
97 | << opOperand.get() << "\n" ); |
98 | return ShapeDimension{opOperand.get(), |
99 | static_cast<unsigned>(en.index())}; |
100 | } |
101 | } |
102 | } |
103 | llvm_unreachable("Expect to be able to extract a shape defining loop range" ); |
104 | } |
105 | |
106 | static SmallVector<Value> getTiledOperands(LinalgOp producer) { |
107 | return producer->getOperands(); |
108 | } |
109 | |
110 | /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges` |
111 | /// provides the loop range information for the fused loops. The rest are |
112 | /// obtained from the producer itself, since they are not tiled + fused. |
113 | static LinalgOp fuse(OpBuilder &b, LinalgOp producer, |
114 | const DenseMap<unsigned, Range> &fusedLoopsAndRanges) { |
115 | SmallVector<OpFoldResult> ivs, tileSizes, sizeBounds; |
116 | SmallVector<Range> loopRanges; |
117 | Location loc = producer.getLoc(); |
118 | |
119 | for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) { |
120 | auto shapeDim = getShapeDefiningLoopRange(producer, i); |
121 | OpFoldResult dim = |
122 | createFoldedDimOp(b, loc, shapeDim.shape, shapeDim.dimension); |
123 | sizeBounds.push_back(Elt: dim); |
124 | auto it = fusedLoopsAndRanges.find(Val: i); |
125 | if (it != fusedLoopsAndRanges.end()) { |
126 | ivs.push_back(Elt: it->second.offset); |
127 | tileSizes.push_back(Elt: it->second.size); |
128 | loopRanges.push_back(Elt: it->second); |
129 | LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange " |
130 | << loopRanges.back() << "\n" ); |
131 | } else { |
132 | tileSizes.push_back(b.getIndexAttr(0)); |
133 | loopRanges.push_back(Elt: Range{b.getIndexAttr(0), .size: dim, b.getIndexAttr(1)}); |
134 | LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange " |
135 | << loopRanges.back() << "\n" ); |
136 | } |
137 | } |
138 | |
139 | SmallVector<Value, 8> clonedShapes; |
140 | clonedShapes.reserve(N: producer->getNumOperands()); |
141 | |
142 | // Compute subranges for all tensor input/output operands. |
143 | clonedShapes.append(makeTiledShapes( |
144 | b, loc, producer, getTiledOperands(producer), ivs, tileSizes, sizeBounds, |
145 | /**omitPartialTileCheck=*/false)); |
146 | |
147 | // Take result types from the tiled init operands. |
148 | MutableOperandRange producerDpsInits = producer.getDpsInitsMutable(); |
149 | SmallVector<Type, 4> resultTypes; |
150 | resultTypes.reserve(N: producer->getNumResults()); |
151 | int64_t firstInitOperandIdx = |
152 | producerDpsInits.getAsOperandRange().getBeginOperandIndex(); |
153 | for (int64_t i = 0, e = producer->getNumResults(); i < e; ++i) { |
154 | resultTypes.push_back(Elt: clonedShapes[firstInitOperandIdx + i].getType()); |
155 | } |
156 | |
157 | // Clone the producer with new operands and result types. |
158 | LinalgOp clonedOp = clone(b, producer, resultTypes, clonedShapes); |
159 | |
160 | // Shift all IndexOp results by the tile offset. |
161 | SmallVector<OpFoldResult> allIvs = llvm::to_vector( |
162 | Range: llvm::map_range(C&: loopRanges, F: [&](Range range) { return range.offset; })); |
163 | offsetIndices(b, clonedOp, allIvs); |
164 | |
165 | return clonedOp; |
166 | } |
167 | |
168 | /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is |
169 | /// expected to be defined by a subview op or an extract_slice op. |
170 | static Range getRangeFromOperandShape(OpBuilder &b, Location loc, |
171 | Value shapedOperand, unsigned dim) { |
172 | Operation *shapeProducingOp = shapedOperand.getDefiningOp(); |
173 | if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp)) |
174 | return subViewOp.getOrCreateRanges(b, loc)[dim]; |
175 | if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp)) |
176 | return sliceOp.getOrCreateRanges(b, loc)[dim]; |
177 | llvm_unreachable("SubviewOp or ExtractSliceOp expected" ); |
178 | } |
179 | |
180 | /// Fuses the producer into the loop immediately enclosing the consumer. |
181 | /// This is achieved by "recomputing" the producer at the time it |
182 | /// is needed just before the consumer. |
183 | static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap, |
184 | OpOperand &consumerOpOperand) { |
185 | LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n" ); |
186 | DenseMap<unsigned, Range> fusedLoopsAndRanges; |
187 | Value shapedOperand = consumerOpOperand.get(); |
188 | for (const auto &en : llvm::enumerate(First: producerMap.getResults())) { |
189 | unsigned posInProducerLoop = cast<AffineDimExpr>(Val: en.value()).getPosition(); |
190 | fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape( |
191 | b, loc: consumerOpOperand.getOwner()->getLoc(), shapedOperand, dim: en.index()); |
192 | } |
193 | return fuse(b, producerOp, fusedLoopsAndRanges); |
194 | } |
195 | |
196 | /// Walk back use-def chain through scf::For yields. |
197 | /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp |
198 | |
199 | // TODO(ravishankarm, ntv): This can be moved into the dependence graphs |
200 | // dependence tracking since the dependence tracking is similar to what is done |
201 | // w.r.t to buffers. |
202 | static void getProducerOfTensor(Value tensor, OpResult &opResult) { |
203 | if (!isa<RankedTensorType>(Val: tensor.getType())) |
204 | return; |
205 | |
206 | while (true) { |
207 | LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor); |
208 | if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) { |
209 | opResult = cast<OpResult>(Val&: tensor); |
210 | return; |
211 | } |
212 | if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) { |
213 | tensor = sliceOp.getSource(); |
214 | continue; |
215 | } |
216 | if (auto blockArg = dyn_cast<BlockArgument>(Val&: tensor)) { |
217 | if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) { |
218 | tensor = forOp.getInitArgs()[blockArg.getArgNumber()]; |
219 | continue; |
220 | } |
221 | } |
222 | return; |
223 | } |
224 | } |
225 | |
226 | FailureOr<FusionInfo> |
227 | mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) { |
228 | Value inputTensor = consumerOpOperand.get(); |
229 | OpResult producerOpResult; |
230 | getProducerOfTensor(tensor: inputTensor, opResult&: producerOpResult); |
231 | if (!producerOpResult) { |
232 | LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer" ); |
233 | return failure(); |
234 | } |
235 | return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand); |
236 | } |
237 | |
238 | FailureOr<FusionInfo> |
239 | mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult, |
240 | OpOperand &consumerOpOperand) { |
241 | auto producerOp = dyn_cast<LinalgOp>(producerOpResult.getOwner()); |
242 | if (!producerOp) |
243 | return failure(); |
244 | |
245 | LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner()); |
246 | if (!consumerOp) |
247 | return failure(); |
248 | |
249 | Value inputTensor = consumerOpOperand.get(); |
250 | |
251 | // Must be an extract_slice op to guarantee there are loops we can fuse into. |
252 | auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>(); |
253 | if (!sliceOp) { |
254 | LLVM_DEBUG(llvm::dbgs() |
255 | << "\nNot fusable, not an extract_slice op: " << inputTensor); |
256 | return failure(); |
257 | } |
258 | |
259 | // If producer is already in the same block as consumer, we are done. |
260 | if (consumerOpOperand.get().getParentBlock() == |
261 | producerOpResult.getParentBlock()) |
262 | return failure(); |
263 | |
264 | // Insert fused `producer` just before `consumer`. |
265 | OpBuilder::InsertionGuard g(b); |
266 | b.setInsertionPoint(consumerOp); |
267 | LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n" ); |
268 | OpOperand *opOperand = |
269 | producerOp.getDpsInitOperand(producerOpResult.getResultNumber()); |
270 | LinalgOp fusedProducer = |
271 | fuse(b, producerOp, producerOp.getMatchingIndexingMap(opOperand), |
272 | consumerOpOperand); |
273 | |
274 | // Replace use. |
275 | // Canonicalizations are not guaranteed to have happened before constructing |
276 | // `fusedProducer`. In the tensor case this can result in temporary type |
277 | // mismatches. Insert a `tensor.cast` op to propagate the transformation |
278 | // invariant that types are compatible. |
279 | Value def = fusedProducer->getResult(producerOpResult.getResultNumber()); |
280 | Type consumerType = consumerOpOperand.get().getType(); |
281 | if (consumerType != def.getType()) |
282 | def = b.create<tensor::CastOp>(fusedProducer.getLoc(), consumerType, def); |
283 | consumerOpOperand.set(def); |
284 | return FusionInfo{cast<LinalgOp>(producerOpResult.getOwner()), fusedProducer}; |
285 | } |
286 | |