| 1 | //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the linalg dialect Fusion pass. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 14 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 15 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| 16 | #include "mlir/Dialect/Linalg/Passes.h" |
| 17 | #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| 18 | #include "mlir/Dialect/Linalg/Utils/Utils.h" |
| 19 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 20 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 21 | #include "mlir/Dialect/Tensor/Utils/Utils.h" |
| 22 | #include "mlir/IR/AffineExpr.h" |
| 23 | #include "mlir/IR/AffineMap.h" |
| 24 | #include "mlir/IR/Dominance.h" |
| 25 | #include "mlir/Support/LLVM.h" |
| 26 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 27 | #include "mlir/Transforms/RegionUtils.h" |
| 28 | #include "llvm/ADT/MapVector.h" |
| 29 | #include "llvm/ADT/ScopeExit.h" |
| 30 | #include "llvm/ADT/SmallBitVector.h" |
| 31 | #include "llvm/Support/CommandLine.h" |
| 32 | #include "llvm/Support/Debug.h" |
| 33 | |
| 34 | #include <optional> |
| 35 | #include <set> |
| 36 | |
| 37 | #define DEBUG_TYPE "linalg-fusion" |
| 38 | |
| 39 | using namespace mlir; |
| 40 | using namespace mlir::linalg; |
| 41 | |
| 42 | /// Implements a simple high-level fusion pass on linalg structured operations. |
| 43 | /// |
| 44 | /// In each block, linalg ops are processed in reverse textual order. |
| 45 | /// Given a linalg op `O`, fusion occurs by: |
| 46 | /// 1. inspecting the linalg ops that write into the views read by `O`. There |
| 47 | /// are 2 cases: |
| 48 | /// a) buffer case: use the SSA value of the views and a simple alias |
| 49 | /// analysis on subview ops to determine producer-consumer dependences; |
| 50 | /// b) tensor case: use SSA use-def chains on extract_slice ops; |
| 51 | /// 2. greedily fuse the linalg ops that produce the subview/extract_slice. |
| 52 | /// 3. inspect the fused ops and determine whether they have other remaining |
| 53 | /// LinalgOp uses. If not, then erase the original producing linalg op. |
| 54 | /// |
| 55 | /// More advanced use cases, analyses as well as profitability heuristics are |
| 56 | /// left for future work. |
| 57 | |
| 58 | struct ShapeDimension { |
| 59 | Value shape; |
| 60 | unsigned dimension; |
| 61 | }; |
| 62 | |
| 63 | // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies |
| 64 | // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps |
| 65 | // guarantees at least one such dimension is found. If multiple candidates exist |
| 66 | // they must agree by construction (i.e. have the same size) and we just return |
| 67 | // the first one. |
| 68 | static ShapeDimension |
| 69 | getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth, |
| 70 | bool fromSubViewOpOnly = false) { |
| 71 | // Iterate over the inputs and outputs in order. |
| 72 | // Extract the subranges from the linearized ranges. |
| 73 | for (OpOperand &opOperand : op->getOpOperands()) { |
| 74 | // The method `getRangeFromOperandShape` requires using SubViewOp or |
| 75 | // ExtractSliceOps. If the value isn't defined from there continue. |
| 76 | // todo: The method should be adapted to get the values from |
| 77 | // `ViewInterface`. The interface needs a `getOrCreateRanges` method which |
| 78 | // currently returns a `linalg.range`. The fix here is to move this op to |
| 79 | // `std` dialect and add the method to `ViewInterface`. |
| 80 | if (fromSubViewOpOnly && |
| 81 | !isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>( |
| 82 | opOperand.get().getDefiningOp())) |
| 83 | continue; |
| 84 | |
| 85 | AffineMap map = op.getMatchingIndexingMap(&opOperand); |
| 86 | LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: " |
| 87 | << opOperand.getOperandNumber() << "\n" ); |
| 88 | LLVM_DEBUG(llvm::dbgs() |
| 89 | << "getShapeDefiningLoopRange map: " << map << "\n" ); |
| 90 | for (const auto &en : llvm::enumerate(map.getResults())) { |
| 91 | auto dimExpr = dyn_cast<AffineDimExpr>(en.value()); |
| 92 | if (!dimExpr) |
| 93 | continue; |
| 94 | if (loopDepth == cast<AffineDimExpr>(en.value()).getPosition()) { |
| 95 | LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: " |
| 96 | << loopDepth << "\n" ); |
| 97 | LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: " |
| 98 | << opOperand.get() << "\n" ); |
| 99 | return ShapeDimension{opOperand.get(), |
| 100 | static_cast<unsigned>(en.index())}; |
| 101 | } |
| 102 | } |
| 103 | } |
| 104 | llvm_unreachable("Expect to be able to extract a shape defining loop range" ); |
| 105 | } |
| 106 | |
| 107 | static SmallVector<Value> getTiledOperands(LinalgOp producer) { |
| 108 | return producer->getOperands(); |
| 109 | } |
| 110 | |
| 111 | /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges` |
| 112 | /// provides the loop range information for the fused loops. The rest are |
| 113 | /// obtained from the producer itself, since they are not tiled + fused. |
| 114 | static LinalgOp fuse(OpBuilder &b, LinalgOp producer, |
| 115 | const DenseMap<unsigned, Range> &fusedLoopsAndRanges) { |
| 116 | SmallVector<OpFoldResult> ivs, tileSizes, sizeBounds; |
| 117 | SmallVector<Range> loopRanges; |
| 118 | Location loc = producer.getLoc(); |
| 119 | |
| 120 | for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) { |
| 121 | auto shapeDim = getShapeDefiningLoopRange(producer, i); |
| 122 | OpFoldResult dim = |
| 123 | createFoldedDimOp(b, loc, shapeDim.shape, shapeDim.dimension); |
| 124 | sizeBounds.push_back(Elt: dim); |
| 125 | auto it = fusedLoopsAndRanges.find(Val: i); |
| 126 | if (it != fusedLoopsAndRanges.end()) { |
| 127 | ivs.push_back(Elt: it->second.offset); |
| 128 | tileSizes.push_back(Elt: it->second.size); |
| 129 | loopRanges.push_back(Elt: it->second); |
| 130 | LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange " |
| 131 | << loopRanges.back() << "\n" ); |
| 132 | } else { |
| 133 | tileSizes.push_back(b.getIndexAttr(0)); |
| 134 | loopRanges.push_back(Elt: Range{b.getIndexAttr(0), .size: dim, b.getIndexAttr(1)}); |
| 135 | LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange " |
| 136 | << loopRanges.back() << "\n" ); |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | SmallVector<Value, 8> clonedShapes; |
| 141 | clonedShapes.reserve(N: producer->getNumOperands()); |
| 142 | |
| 143 | // Compute subranges for all tensor input/output operands. |
| 144 | clonedShapes.append(makeTiledShapes( |
| 145 | b, loc, producer, getTiledOperands(producer), ivs, tileSizes, sizeBounds, |
| 146 | /**omitPartialTileCheck=*/false)); |
| 147 | |
| 148 | // Take result types from the tiled init operands. |
| 149 | MutableOperandRange producerDpsInits = producer.getDpsInitsMutable(); |
| 150 | SmallVector<Type, 4> resultTypes; |
| 151 | resultTypes.reserve(N: producer->getNumResults()); |
| 152 | int64_t firstInitOperandIdx = |
| 153 | producerDpsInits.getAsOperandRange().getBeginOperandIndex(); |
| 154 | for (int64_t i = 0, e = producer->getNumResults(); i < e; ++i) { |
| 155 | resultTypes.push_back(Elt: clonedShapes[firstInitOperandIdx + i].getType()); |
| 156 | } |
| 157 | |
| 158 | // Clone the producer with new operands and result types. |
| 159 | LinalgOp clonedOp = clone(b, producer, resultTypes, clonedShapes); |
| 160 | |
| 161 | // Shift all IndexOp results by the tile offset. |
| 162 | SmallVector<OpFoldResult> allIvs = llvm::to_vector( |
| 163 | Range: llvm::map_range(C&: loopRanges, F: [&](Range range) { return range.offset; })); |
| 164 | offsetIndices(b, clonedOp, allIvs); |
| 165 | |
| 166 | return clonedOp; |
| 167 | } |
| 168 | |
| 169 | /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is |
| 170 | /// expected to be defined by a subview op or an extract_slice op. |
| 171 | static Range getRangeFromOperandShape(OpBuilder &b, Location loc, |
| 172 | Value shapedOperand, unsigned dim) { |
| 173 | Operation *shapeProducingOp = shapedOperand.getDefiningOp(); |
| 174 | if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp)) |
| 175 | return subViewOp.getOrCreateRanges(b, loc)[dim]; |
| 176 | if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp)) |
| 177 | return sliceOp.getOrCreateRanges(b, loc)[dim]; |
| 178 | llvm_unreachable("SubviewOp or ExtractSliceOp expected" ); |
| 179 | } |
| 180 | |
| 181 | /// Fuses the producer into the loop immediately enclosing the consumer. |
| 182 | /// This is achieved by "recomputing" the producer at the time it |
| 183 | /// is needed just before the consumer. |
| 184 | static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap, |
| 185 | OpOperand &consumerOpOperand) { |
| 186 | LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n" ); |
| 187 | DenseMap<unsigned, Range> fusedLoopsAndRanges; |
| 188 | Value shapedOperand = consumerOpOperand.get(); |
| 189 | for (const auto &en : llvm::enumerate(First: producerMap.getResults())) { |
| 190 | unsigned posInProducerLoop = cast<AffineDimExpr>(Val: en.value()).getPosition(); |
| 191 | fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape( |
| 192 | b, loc: consumerOpOperand.getOwner()->getLoc(), shapedOperand, dim: en.index()); |
| 193 | } |
| 194 | return fuse(b, producerOp, fusedLoopsAndRanges); |
| 195 | } |
| 196 | |
| 197 | /// Walk back use-def chain through scf::For yields. |
| 198 | /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp |
| 199 | |
| 200 | // TODO(ravishankarm, ntv): This can be moved into the dependence graphs |
| 201 | // dependence tracking since the dependence tracking is similar to what is done |
| 202 | // w.r.t to buffers. |
| 203 | static void getProducerOfTensor(Value tensor, OpResult &opResult) { |
| 204 | if (!isa<RankedTensorType>(Val: tensor.getType())) |
| 205 | return; |
| 206 | |
| 207 | while (true) { |
| 208 | LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor); |
| 209 | if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) { |
| 210 | opResult = cast<OpResult>(Val&: tensor); |
| 211 | return; |
| 212 | } |
| 213 | if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) { |
| 214 | tensor = sliceOp.getSource(); |
| 215 | continue; |
| 216 | } |
| 217 | if (auto blockArg = dyn_cast<BlockArgument>(Val&: tensor)) { |
| 218 | if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) { |
| 219 | tensor = forOp.getInitArgs()[blockArg.getArgNumber()]; |
| 220 | continue; |
| 221 | } |
| 222 | } |
| 223 | return; |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | FailureOr<FusionInfo> |
| 228 | mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) { |
| 229 | Value inputTensor = consumerOpOperand.get(); |
| 230 | OpResult producerOpResult; |
| 231 | getProducerOfTensor(tensor: inputTensor, opResult&: producerOpResult); |
| 232 | if (!producerOpResult) { |
| 233 | LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer" ); |
| 234 | return failure(); |
| 235 | } |
| 236 | return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand); |
| 237 | } |
| 238 | |
| 239 | FailureOr<FusionInfo> |
| 240 | mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult, |
| 241 | OpOperand &consumerOpOperand) { |
| 242 | auto producerOp = dyn_cast<LinalgOp>(producerOpResult.getOwner()); |
| 243 | if (!producerOp) |
| 244 | return failure(); |
| 245 | |
| 246 | LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner()); |
| 247 | if (!consumerOp) |
| 248 | return failure(); |
| 249 | |
| 250 | Value inputTensor = consumerOpOperand.get(); |
| 251 | |
| 252 | // Must be an extract_slice op to guarantee there are loops we can fuse into. |
| 253 | auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>(); |
| 254 | if (!sliceOp) { |
| 255 | LLVM_DEBUG(llvm::dbgs() |
| 256 | << "\nNot fusable, not an extract_slice op: " << inputTensor); |
| 257 | return failure(); |
| 258 | } |
| 259 | |
| 260 | // If producer is already in the same block as consumer, we are done. |
| 261 | if (consumerOpOperand.get().getParentBlock() == |
| 262 | producerOpResult.getParentBlock()) |
| 263 | return failure(); |
| 264 | |
| 265 | // Insert fused `producer` just before `consumer`. |
| 266 | OpBuilder::InsertionGuard g(b); |
| 267 | b.setInsertionPoint(consumerOp); |
| 268 | LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n" ); |
| 269 | OpOperand *opOperand = |
| 270 | producerOp.getDpsInitOperand(producerOpResult.getResultNumber()); |
| 271 | LinalgOp fusedProducer = |
| 272 | fuse(b, producerOp, producerOp.getMatchingIndexingMap(opOperand), |
| 273 | consumerOpOperand); |
| 274 | |
| 275 | // Replace use. |
| 276 | Value def = fusedProducer->getResult(producerOpResult.getResultNumber()); |
| 277 | Type consumerType = consumerOpOperand.get().getType(); |
| 278 | // Check if rank-reduction occurred as part of the extract_slice. If yes, |
| 279 | // collapse the dropped dimensions. |
| 280 | if (cast<ShapedType>(consumerType).getRank() != |
| 281 | cast<ShapedType>(def.getType()).getRank()) { |
| 282 | llvm::SmallBitVector droppedDims = sliceOp.getDroppedDims(); |
| 283 | def = |
| 284 | tensor::dropGivenUnitDims(b, fusedProducer.getLoc(), def, droppedDims); |
| 285 | } |
| 286 | // Canonicalizations are not guaranteed to have happened before constructing |
| 287 | // `fusedProducer`. In the tensor case this can result in temporary type |
| 288 | // mismatches. Insert a `tensor.cast` op to propagate the transformation |
| 289 | // invariant that types are compatible. |
| 290 | if (consumerType != def.getType()) |
| 291 | def = b.create<tensor::CastOp>(fusedProducer.getLoc(), consumerType, def); |
| 292 | consumerOpOperand.set(def); |
| 293 | return FusionInfo{cast<LinalgOp>(producerOpResult.getOwner()), fusedProducer}; |
| 294 | } |
| 295 | |