1 | //===- TransposeMatmul.cpp - Convert Linalg matmul to transposed variants -===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // This is intended to be a simple high-level (target-agnostic) matmul |
9 | // transposition transformation. |
10 | //===----------------------------------------------------------------------===// |
11 | |
12 | #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
13 | #include "mlir/IR/PatternMatch.h" |
14 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
15 | |
16 | #define DEBUG_TYPE "linalg-transpose-matmul" |
17 | |
18 | using namespace mlir; |
19 | using namespace mlir::linalg; |
20 | |
21 | /// Pattern to replace |
22 | /// |
23 | /// linalg.matmul(a, b) |
24 | /// |
25 | /// with |
26 | /// |
27 | /// linalg.matmul_transpose_a(linalg.transpose(a), b) |
28 | /// |
29 | /// By default the LHS is transposed. Set `transposeLHS=false` to |
30 | /// transpose RHS instead. |
31 | FailureOr<Operation *> mlir::linalg::transposeMatmul(RewriterBase &rewriter, |
32 | linalg::MatmulOp matmulOp, |
33 | bool transposeLHS) { |
34 | if (!bufferization::hasTensorSemantics(op: matmulOp)) |
35 | return rewriter.notifyMatchFailure( |
36 | matmulOp, "only matmul ops with tensors are supported" ); |
37 | |
38 | Location loc = matmulOp.getLoc(); |
39 | Value input = matmulOp.getInputs()[transposeLHS ? 0 : 1]; |
40 | auto type = cast<ShapedType>(input.getType()); |
41 | |
42 | SmallVector<Value> dynamicDims; |
43 | if (type.isDynamicDim(1)) |
44 | dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 1)); |
45 | if (type.isDynamicDim(0)) |
46 | dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 0)); |
47 | |
48 | ArrayRef<int64_t> shape = type.getShape(); |
49 | Value empty = rewriter.create<tensor::EmptyOp>( |
50 | loc, ArrayRef<int64_t>{shape[1], shape[0]}, type.getElementType(), |
51 | dynamicDims); |
52 | auto transposeOp = rewriter.create<linalg::TransposeOp>( |
53 | loc, input, empty, ArrayRef<int64_t>{1, 0}); |
54 | Operation *newMatmulOp; |
55 | if (transposeLHS) { |
56 | newMatmulOp = rewriter.create<linalg::MatmulTransposeAOp>( |
57 | loc, matmulOp.getResultTypes(), |
58 | ValueRange{transposeOp->getResult(0), matmulOp.getInputs()[1]}, |
59 | matmulOp.getOutputs()); |
60 | } else { |
61 | newMatmulOp = rewriter.create<linalg::MatmulTransposeBOp>( |
62 | loc, matmulOp.getResultTypes(), |
63 | ValueRange{matmulOp.getInputs()[0], transposeOp->getResult(0)}, |
64 | matmulOp.getOutputs()); |
65 | } |
66 | rewriter.replaceOp(matmulOp, newMatmulOp); |
67 | return newMatmulOp; |
68 | } |
69 | |
70 | /// Pattern to replace |
71 | /// |
72 | /// linalg.batch_matmul(a, b) |
73 | /// |
74 | /// with |
75 | /// |
76 | /// linalg.batch_matmul_transpose_a(linalg.transpose(a), b) |
77 | /// |
78 | /// Only the non-batch dimensions are transposed. By default the LHS is |
79 | /// transposed. Set `transposeLHS=false` to transpose RHS instead. |
80 | FailureOr<Operation *> |
81 | mlir::linalg::transposeBatchMatmul(RewriterBase &rewriter, |
82 | linalg::BatchMatmulOp batchMatmulOp, |
83 | bool transposeLHS) { |
84 | if (!bufferization::hasTensorSemantics(op: batchMatmulOp)) |
85 | return rewriter.notifyMatchFailure( |
86 | batchMatmulOp, "only matmul ops with tensors are supported" ); |
87 | |
88 | Location loc = batchMatmulOp.getLoc(); |
89 | Value input = batchMatmulOp.getInputs()[transposeLHS ? 0 : 1]; |
90 | auto type = cast<ShapedType>(input.getType()); |
91 | |
92 | SmallVector<Value> dynamicDims; |
93 | if (type.isDynamicDim(0)) |
94 | dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 0)); |
95 | if (type.isDynamicDim(2)) |
96 | dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 2)); |
97 | if (type.isDynamicDim(1)) |
98 | dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 1)); |
99 | |
100 | ArrayRef<int64_t> shape = type.getShape(); |
101 | Value empty = rewriter.create<tensor::EmptyOp>( |
102 | loc, ArrayRef<int64_t>{shape[0], shape[2], shape[1]}, |
103 | type.getElementType(), dynamicDims); |
104 | auto transposeOp = rewriter.create<linalg::TransposeOp>( |
105 | loc, input, empty, ArrayRef<int64_t>{0, 2, 1}); |
106 | Operation *newMatmulOp; |
107 | if (transposeLHS) { |
108 | newMatmulOp = rewriter.create<linalg::BatchMatmulTransposeAOp>( |
109 | loc, batchMatmulOp.getResultTypes(), |
110 | ValueRange{transposeOp->getResult(0), batchMatmulOp.getInputs()[1]}, |
111 | batchMatmulOp.getOutputs()); |
112 | } else { |
113 | newMatmulOp = rewriter.create<linalg::BatchMatmulTransposeBOp>( |
114 | loc, batchMatmulOp.getResultTypes(), |
115 | ValueRange{batchMatmulOp.getInputs()[0], transposeOp->getResult(0)}, |
116 | batchMatmulOp.getOutputs()); |
117 | } |
118 | rewriter.replaceOp(batchMatmulOp, newMatmulOp); |
119 | return newMatmulOp; |
120 | } |
121 | |
122 | namespace { |
123 | struct TransposeMatmul final : public OpRewritePattern<linalg::MatmulOp> { |
124 | TransposeMatmul(MLIRContext *ctx, bool transposeLHS) |
125 | : OpRewritePattern(ctx), transposeLHS(transposeLHS) {} |
126 | |
127 | LogicalResult matchAndRewrite(linalg::MatmulOp op, |
128 | PatternRewriter &rewriter) const override { |
129 | if (failed(transposeMatmul(rewriter, op, transposeLHS))) { |
130 | return failure(); |
131 | } |
132 | return success(); |
133 | } |
134 | |
135 | private: |
136 | bool transposeLHS; |
137 | }; |
138 | |
139 | struct TransposeBatchMatmul final |
140 | : public OpRewritePattern<linalg::BatchMatmulOp> { |
141 | TransposeBatchMatmul(MLIRContext *ctx, bool transposeLHS) |
142 | : OpRewritePattern(ctx), transposeLHS(transposeLHS) {} |
143 | |
144 | LogicalResult matchAndRewrite(linalg::BatchMatmulOp op, |
145 | PatternRewriter &rewriter) const override { |
146 | if (failed(transposeBatchMatmul(rewriter, op, transposeLHS))) { |
147 | return failure(); |
148 | } |
149 | return success(); |
150 | } |
151 | |
152 | private: |
153 | bool transposeLHS; |
154 | }; |
155 | } // namespace |
156 | |
157 | void mlir::linalg::populateTransposeMatmulPatterns(RewritePatternSet &patterns, |
158 | bool transposeLHS) { |
159 | patterns.add<TransposeMatmul, TransposeBatchMatmul>(arg: patterns.getContext(), |
160 | args&: transposeLHS); |
161 | } |
162 | |