1 | //===- TransposeMatmul.cpp - Convert Linalg matmul to transposed variants -===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // This is intended to be a simple high-level (target-agnostic) matmul |
9 | // transposition transformation. |
10 | //===----------------------------------------------------------------------===// |
11 | |
12 | #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
13 | #include "mlir/IR/PatternMatch.h" |
14 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
15 | |
16 | #define DEBUG_TYPE "linalg-transpose-matmul" |
17 | |
18 | using namespace mlir; |
19 | using namespace mlir::linalg; |
20 | |
21 | /// Pattern to replace |
22 | /// |
23 | /// linalg.matmul(a, b) |
24 | /// |
25 | /// with |
26 | /// |
27 | /// linalg.matmul_transpose_a(linalg.transpose(a), b) |
28 | /// |
29 | /// By default the LHS is transposed. Set `transposeLHS=false` to |
30 | /// transpose RHS instead. |
31 | FailureOr<Operation *> mlir::linalg::transposeMatmul(RewriterBase &rewriter, |
32 | linalg::MatmulOp matmulOp, |
33 | bool transposeLHS) { |
34 | // Check to not let go the matmul with extended semantic, through this |
35 | // transform. |
36 | if (matmulOp.hasUserDefinedMaps()) { |
37 | return rewriter.notifyMatchFailure( |
38 | matmulOp, "only matmul ops with non-extended semantics are supported" ); |
39 | } |
40 | |
41 | if (!bufferization::hasTensorSemantics(op: matmulOp)) |
42 | return rewriter.notifyMatchFailure( |
43 | matmulOp, "only matmul ops with tensors are supported" ); |
44 | |
45 | Location loc = matmulOp.getLoc(); |
46 | Value input = matmulOp.getInputs()[transposeLHS ? 0 : 1]; |
47 | auto type = cast<ShapedType>(input.getType()); |
48 | |
49 | SmallVector<Value> dynamicDims; |
50 | if (type.isDynamicDim(1)) |
51 | dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 1)); |
52 | if (type.isDynamicDim(0)) |
53 | dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 0)); |
54 | |
55 | ArrayRef<int64_t> shape = type.getShape(); |
56 | Value empty = rewriter.create<tensor::EmptyOp>( |
57 | loc, ArrayRef<int64_t>{shape[1], shape[0]}, type.getElementType(), |
58 | dynamicDims); |
59 | auto transposeOp = rewriter.create<linalg::TransposeOp>( |
60 | loc, input, empty, ArrayRef<int64_t>{1, 0}); |
61 | Operation *newMatmulOp; |
62 | if (transposeLHS) { |
63 | newMatmulOp = rewriter.create<linalg::MatmulTransposeAOp>( |
64 | loc, matmulOp.getResultTypes(), |
65 | ValueRange{transposeOp->getResult(0), matmulOp.getInputs()[1]}, |
66 | matmulOp.getOutputs()); |
67 | } else { |
68 | newMatmulOp = rewriter.create<linalg::MatmulTransposeBOp>( |
69 | loc, matmulOp.getResultTypes(), |
70 | ValueRange{matmulOp.getInputs()[0], transposeOp->getResult(0)}, |
71 | matmulOp.getOutputs()); |
72 | } |
73 | rewriter.replaceOp(matmulOp, newMatmulOp); |
74 | return newMatmulOp; |
75 | } |
76 | |
77 | /// Pattern to replace |
78 | /// |
79 | /// linalg.batch_matmul(a, b) |
80 | /// |
81 | /// with |
82 | /// |
83 | /// linalg.batch_matmul_transpose_a(linalg.transpose(a), b) |
84 | /// |
85 | /// Only the non-batch dimensions are transposed. By default the LHS is |
86 | /// transposed. Set `transposeLHS=false` to transpose RHS instead. |
87 | FailureOr<Operation *> |
88 | mlir::linalg::transposeBatchMatmul(RewriterBase &rewriter, |
89 | linalg::BatchMatmulOp batchMatmulOp, |
90 | bool transposeLHS) { |
91 | if (batchMatmulOp.hasUserDefinedMaps()) { |
92 | return rewriter.notifyMatchFailure( |
93 | batchMatmulOp, "ops with user-defined maps are not supported" ); |
94 | } |
95 | |
96 | if (!bufferization::hasTensorSemantics(op: batchMatmulOp)) |
97 | return rewriter.notifyMatchFailure( |
98 | batchMatmulOp, "only matmul ops with tensors are supported" ); |
99 | |
100 | Location loc = batchMatmulOp.getLoc(); |
101 | Value input = batchMatmulOp.getInputs()[transposeLHS ? 0 : 1]; |
102 | auto type = cast<ShapedType>(input.getType()); |
103 | |
104 | SmallVector<Value> dynamicDims; |
105 | if (type.isDynamicDim(0)) |
106 | dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 0)); |
107 | if (type.isDynamicDim(2)) |
108 | dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 2)); |
109 | if (type.isDynamicDim(1)) |
110 | dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 1)); |
111 | |
112 | ArrayRef<int64_t> shape = type.getShape(); |
113 | Value empty = rewriter.create<tensor::EmptyOp>( |
114 | loc, ArrayRef<int64_t>{shape[0], shape[2], shape[1]}, |
115 | type.getElementType(), dynamicDims); |
116 | auto transposeOp = rewriter.create<linalg::TransposeOp>( |
117 | loc, input, empty, ArrayRef<int64_t>{0, 2, 1}); |
118 | Operation *newMatmulOp; |
119 | if (transposeLHS) { |
120 | newMatmulOp = rewriter.create<linalg::BatchMatmulTransposeAOp>( |
121 | loc, batchMatmulOp.getResultTypes(), |
122 | ValueRange{transposeOp->getResult(0), batchMatmulOp.getInputs()[1]}, |
123 | batchMatmulOp.getOutputs()); |
124 | } else { |
125 | newMatmulOp = rewriter.create<linalg::BatchMatmulTransposeBOp>( |
126 | loc, batchMatmulOp.getResultTypes(), |
127 | ValueRange{batchMatmulOp.getInputs()[0], transposeOp->getResult(0)}, |
128 | batchMatmulOp.getOutputs()); |
129 | } |
130 | rewriter.replaceOp(batchMatmulOp, newMatmulOp); |
131 | return newMatmulOp; |
132 | } |
133 | |
134 | namespace { |
135 | struct TransposeMatmul final : public OpRewritePattern<linalg::MatmulOp> { |
136 | TransposeMatmul(MLIRContext *ctx, bool transposeLHS) |
137 | : OpRewritePattern(ctx), transposeLHS(transposeLHS) {} |
138 | |
139 | LogicalResult matchAndRewrite(linalg::MatmulOp op, |
140 | PatternRewriter &rewriter) const override { |
141 | if (failed(transposeMatmul(rewriter, op, transposeLHS))) { |
142 | return failure(); |
143 | } |
144 | return success(); |
145 | } |
146 | |
147 | private: |
148 | bool transposeLHS; |
149 | }; |
150 | |
151 | struct TransposeBatchMatmul final |
152 | : public OpRewritePattern<linalg::BatchMatmulOp> { |
153 | TransposeBatchMatmul(MLIRContext *ctx, bool transposeLHS) |
154 | : OpRewritePattern(ctx), transposeLHS(transposeLHS) {} |
155 | |
156 | LogicalResult matchAndRewrite(linalg::BatchMatmulOp op, |
157 | PatternRewriter &rewriter) const override { |
158 | if (failed(transposeBatchMatmul(rewriter, op, transposeLHS))) { |
159 | return failure(); |
160 | } |
161 | return success(); |
162 | } |
163 | |
164 | private: |
165 | bool transposeLHS; |
166 | }; |
167 | } // namespace |
168 | |
169 | void mlir::linalg::populateTransposeMatmulPatterns(RewritePatternSet &patterns, |
170 | bool transposeLHS) { |
171 | patterns.add<TransposeMatmul, TransposeBatchMatmul>(arg: patterns.getContext(), |
172 | args&: transposeLHS); |
173 | } |
174 | |