1 | //===- StdExpandDivs.cpp - Code to prepare Std for lowering Divs to LLVM -===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file Std transformations to expand Divs operation to help for the |
10 | // lowering to LLVM. Currently implemented transformations are Ceil and Floor |
11 | // for Signed Integers. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "mlir/Dialect/MemRef/Transforms/Passes.h" |
16 | |
17 | #include "mlir/Dialect/Arith/IR/Arith.h" |
18 | #include "mlir/Dialect/Arith/Transforms/Passes.h" |
19 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
20 | #include "mlir/Dialect/MemRef/Transforms/Transforms.h" |
21 | #include "mlir/IR/TypeUtilities.h" |
22 | #include "mlir/Transforms/DialectConversion.h" |
23 | #include "llvm/ADT/STLExtras.h" |
24 | |
25 | namespace mlir { |
26 | namespace memref { |
27 | #define GEN_PASS_DEF_EXPANDOPS |
28 | #include "mlir/Dialect/MemRef/Transforms/Passes.h.inc" |
29 | } // namespace memref |
30 | } // namespace mlir |
31 | |
32 | using namespace mlir; |
33 | |
34 | namespace { |
35 | |
36 | /// Converts `atomic_rmw` that cannot be lowered to a simple atomic op with |
37 | /// AtomicRMWOpLowering pattern, such as minimum and maximum operations for |
38 | /// floating-point numbers, to `memref.generic_atomic_rmw` with the expanded |
39 | /// code. |
40 | /// |
41 | /// %x = atomic_rmw maximumf %fval, %F[%i] : (f32, memref<10xf32>) -> f32 |
42 | /// |
43 | /// will be lowered to |
44 | /// |
45 | /// %x = memref.generic_atomic_rmw %F[%i] : memref<10xf32> { |
46 | /// ^bb0(%current: f32): |
47 | /// %1 = arith.maximumf %current, %fval : f32 |
48 | /// memref.atomic_yield %1 : f32 |
49 | /// } |
50 | struct AtomicRMWOpConverter : public OpRewritePattern<memref::AtomicRMWOp> { |
51 | public: |
52 | using OpRewritePattern::OpRewritePattern; |
53 | |
54 | LogicalResult matchAndRewrite(memref::AtomicRMWOp op, |
55 | PatternRewriter &rewriter) const final { |
56 | auto loc = op.getLoc(); |
57 | auto genericOp = rewriter.create<memref::GenericAtomicRMWOp>( |
58 | loc, op.getMemref(), op.getIndices()); |
59 | OpBuilder bodyBuilder = |
60 | OpBuilder::atBlockEnd(block: genericOp.getBody(), listener: rewriter.getListener()); |
61 | |
62 | Value lhs = genericOp.getCurrentValue(); |
63 | Value rhs = op.getValue(); |
64 | |
65 | Value arithOp = |
66 | mlir::arith::getReductionOp(op.getKind(), bodyBuilder, loc, lhs, rhs); |
67 | bodyBuilder.create<memref::AtomicYieldOp>(loc, arithOp); |
68 | |
69 | rewriter.replaceOp(op, genericOp.getResult()); |
70 | return success(); |
71 | } |
72 | }; |
73 | |
74 | /// Converts `memref.reshape` that has a target shape of a statically-known |
75 | /// size to `memref.reinterpret_cast`. |
76 | struct MemRefReshapeOpConverter : public OpRewritePattern<memref::ReshapeOp> { |
77 | public: |
78 | using OpRewritePattern::OpRewritePattern; |
79 | |
80 | LogicalResult matchAndRewrite(memref::ReshapeOp op, |
81 | PatternRewriter &rewriter) const final { |
82 | auto shapeType = cast<MemRefType>(op.getShape().getType()); |
83 | if (!shapeType.hasStaticShape()) |
84 | return failure(); |
85 | |
86 | int64_t rank = cast<MemRefType>(shapeType).getDimSize(0); |
87 | SmallVector<OpFoldResult, 4> sizes, strides; |
88 | sizes.resize(rank); |
89 | strides.resize(rank); |
90 | |
91 | Location loc = op.getLoc(); |
92 | Value stride = rewriter.create<arith::ConstantIndexOp>(loc, 1); |
93 | for (int i = rank - 1; i >= 0; --i) { |
94 | Value size; |
95 | // Load dynamic sizes from the shape input, use constants for static dims. |
96 | if (op.getType().isDynamicDim(i)) { |
97 | Value index = rewriter.create<arith::ConstantIndexOp>(loc, i); |
98 | size = rewriter.create<memref::LoadOp>(loc, op.getShape(), index); |
99 | if (!isa<IndexType>(size.getType())) |
100 | size = rewriter.create<arith::IndexCastOp>( |
101 | loc, rewriter.getIndexType(), size); |
102 | sizes[i] = size; |
103 | } else { |
104 | auto sizeAttr = rewriter.getIndexAttr(value: op.getType().getDimSize(i)); |
105 | size = rewriter.create<arith::ConstantOp>(loc, sizeAttr); |
106 | sizes[i] = sizeAttr; |
107 | } |
108 | strides[i] = stride; |
109 | if (i > 0) |
110 | stride = rewriter.create<arith::MulIOp>(loc, stride, size); |
111 | } |
112 | rewriter.replaceOpWithNewOp<memref::ReinterpretCastOp>( |
113 | op, op.getType(), op.getSource(), /*offset=*/rewriter.getIndexAttr(0), |
114 | sizes, strides); |
115 | return success(); |
116 | } |
117 | }; |
118 | |
119 | struct ExpandOpsPass : public memref::impl::ExpandOpsBase<ExpandOpsPass> { |
120 | void runOnOperation() override { |
121 | MLIRContext &ctx = getContext(); |
122 | |
123 | RewritePatternSet patterns(&ctx); |
124 | memref::populateExpandOpsPatterns(patterns); |
125 | ConversionTarget target(ctx); |
126 | |
127 | target.addLegalDialect<arith::ArithDialect, memref::MemRefDialect>(); |
128 | target.addDynamicallyLegalOp<memref::AtomicRMWOp>( |
129 | [](memref::AtomicRMWOp op) { |
130 | constexpr std::array shouldBeExpandedKinds = { |
131 | arith::AtomicRMWKind::maximumf, arith::AtomicRMWKind::minimumf, |
132 | arith::AtomicRMWKind::minnumf, arith::AtomicRMWKind::maxnumf}; |
133 | return !llvm::is_contained(shouldBeExpandedKinds, op.getKind()); |
134 | }); |
135 | target.addDynamicallyLegalOp<memref::ReshapeOp>([](memref::ReshapeOp op) { |
136 | return !cast<MemRefType>(op.getShape().getType()).hasStaticShape(); |
137 | }); |
138 | if (failed(applyPartialConversion(getOperation(), target, |
139 | std::move(patterns)))) |
140 | signalPassFailure(); |
141 | } |
142 | }; |
143 | |
144 | } // namespace |
145 | |
146 | void mlir::memref::populateExpandOpsPatterns(RewritePatternSet &patterns) { |
147 | patterns.add<AtomicRMWOpConverter, MemRefReshapeOpConverter>( |
148 | arg: patterns.getContext()); |
149 | } |
150 | |
151 | std::unique_ptr<Pass> mlir::memref::createExpandOpsPass() { |
152 | return std::make_unique<ExpandOpsPass>(); |
153 | } |
154 | |