| 1 | //===- QuantOps.cpp - Quantization Type and Ops Implementation --*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Quant/IR/QuantTypes.h" |
| 10 | #include "TypeDetail.h" |
| 11 | #include "mlir/Dialect/Quant/IR/Quant.h" |
| 12 | |
| 13 | #include "mlir/IR/BuiltinTypes.h" |
| 14 | #include "mlir/IR/MLIRContext.h" |
| 15 | #include "llvm/ADT/StringRef.h" |
| 16 | #include "llvm/ADT/Twine.h" |
| 17 | #include "llvm/Support/MathExtras.h" |
| 18 | |
| 19 | using namespace mlir; |
| 20 | using namespace mlir::quant; |
| 21 | using namespace mlir::quant::detail; |
| 22 | |
| 23 | namespace { |
| 24 | |
| 25 | // Return the minimum scale representable in a given float type |
| 26 | double getMinScale(Type expressedType) { |
| 27 | auto floatType = cast<FloatType>(expressedType); |
| 28 | return APFloat::getSmallest(Sem: floatType.getFloatSemantics()).convertToDouble(); |
| 29 | } |
| 30 | |
| 31 | // Return the maximum scale representable in a given float type |
| 32 | double getMaxScale(Type expressedType) { |
| 33 | auto floatType = cast<FloatType>(expressedType); |
| 34 | return APFloat::getLargest(Sem: floatType.getFloatSemantics()).convertToDouble(); |
| 35 | } |
| 36 | |
| 37 | } // namespace |
| 38 | |
| 39 | unsigned QuantizedType::getFlags() const { |
| 40 | return static_cast<ImplType *>(impl)->flags; |
| 41 | } |
| 42 | |
| 43 | bool QuantizedType::classof(Type type) { |
| 44 | return llvm::isa<QuantDialect>(type.getDialect()); |
| 45 | } |
| 46 | |
| 47 | LogicalResult |
| 48 | QuantizedType::verifyInvariants(function_ref<InFlightDiagnostic()> emitError, |
| 49 | unsigned flags, Type storageType, |
| 50 | Type expressedType, int64_t storageTypeMin, |
| 51 | int64_t storageTypeMax) { |
| 52 | // Verify that the storage type is integral. |
| 53 | // This restriction may be lifted at some point in favor of using bf16 |
| 54 | // or f16 as exact representations on hardware where that is advantageous. |
| 55 | auto intStorageType = llvm::dyn_cast<IntegerType>(storageType); |
| 56 | if (!intStorageType) |
| 57 | return emitError() << "storage type must be integral" ; |
| 58 | unsigned integralWidth = intStorageType.getWidth(); |
| 59 | |
| 60 | // Verify storage width. |
| 61 | if (integralWidth == 0 || integralWidth > MaxStorageBits) |
| 62 | return emitError() << "illegal storage type size: " << integralWidth; |
| 63 | |
| 64 | // Verify storageTypeMin and storageTypeMax. |
| 65 | bool isSigned = |
| 66 | (flags & QuantizationFlags::Signed) == QuantizationFlags::Signed; |
| 67 | int64_t defaultIntegerMin = |
| 68 | getDefaultMinimumForInteger(isSigned, integralWidth); |
| 69 | int64_t defaultIntegerMax = |
| 70 | getDefaultMaximumForInteger(isSigned, integralWidth); |
| 71 | if (storageTypeMax - storageTypeMin <= 0 || |
| 72 | storageTypeMin < defaultIntegerMin || |
| 73 | storageTypeMax > defaultIntegerMax) { |
| 74 | return emitError() << "illegal storage min and storage max: (" |
| 75 | << storageTypeMin << ":" << storageTypeMax << ")" ; |
| 76 | } |
| 77 | return success(); |
| 78 | } |
| 79 | |
| 80 | Type QuantizedType::getStorageType() const { |
| 81 | return static_cast<ImplType *>(impl)->storageType; |
| 82 | } |
| 83 | |
| 84 | int64_t QuantizedType::getStorageTypeMin() const { |
| 85 | return static_cast<ImplType *>(impl)->storageTypeMin; |
| 86 | } |
| 87 | |
| 88 | int64_t QuantizedType::getStorageTypeMax() const { |
| 89 | return static_cast<ImplType *>(impl)->storageTypeMax; |
| 90 | } |
| 91 | |
| 92 | bool QuantizedType::hasStorageTypeBounds() const { |
| 93 | unsigned int integralWidth = getStorageTypeIntegralWidth(); |
| 94 | bool isSignedInteger = isSigned(); |
| 95 | int64_t defaultIntegerMin = |
| 96 | getDefaultMinimumForInteger(isSigned: isSignedInteger, integralWidth); |
| 97 | int64_t defaultIntegerMax = |
| 98 | getDefaultMaximumForInteger(isSigned: isSignedInteger, integralWidth); |
| 99 | return defaultIntegerMin != getStorageTypeMin() || |
| 100 | defaultIntegerMax != getStorageTypeMax(); |
| 101 | } |
| 102 | |
| 103 | unsigned QuantizedType::getStorageTypeIntegralWidth() const { |
| 104 | // NOTE: If ever supporting non-integral storage types, some other scheme |
| 105 | // for determining the width will be needed. |
| 106 | return static_cast<ImplType *>(impl)->storageType.getIntOrFloatBitWidth(); |
| 107 | } |
| 108 | |
| 109 | Type QuantizedType::getExpressedType() const { |
| 110 | return static_cast<ImplType *>(impl)->expressedType; |
| 111 | } |
| 112 | |
| 113 | bool QuantizedType::isCompatibleExpressedType(Type candidateExpressedType) { |
| 114 | if (llvm::isa<ShapedType>(candidateExpressedType)) { |
| 115 | return llvm::cast<ShapedType>(candidateExpressedType).getElementType() == |
| 116 | getExpressedType(); |
| 117 | } |
| 118 | return candidateExpressedType == getExpressedType(); |
| 119 | } |
| 120 | |
| 121 | QuantizedType |
| 122 | QuantizedType::getQuantizedElementType(Type primitiveOrContainerType) { |
| 123 | if (llvm::isa<ShapedType>(primitiveOrContainerType)) { |
| 124 | Type elementType = |
| 125 | llvm::cast<ShapedType>(primitiveOrContainerType).getElementType(); |
| 126 | return llvm::dyn_cast<QuantizedType>(Val&: elementType); |
| 127 | } |
| 128 | return llvm::dyn_cast<QuantizedType>(Val&: primitiveOrContainerType); |
| 129 | } |
| 130 | |
| 131 | Type QuantizedType::castFromStorageType(Type candidateType) { |
| 132 | if (candidateType == getStorageType()) { |
| 133 | // i.e. i32 -> quant<"uniform[i8:f32]{1.0}"> |
| 134 | return *this; |
| 135 | } |
| 136 | if (llvm::isa<RankedTensorType>(Val: candidateType)) { |
| 137 | // i.e. tensor<4xi8> -> tensor<4x!quant<"uniform[i8:f32]{1.0}">> |
| 138 | return RankedTensorType::get( |
| 139 | llvm::cast<RankedTensorType>(candidateType).getShape(), |
| 140 | getStorageType()); |
| 141 | } |
| 142 | if (llvm::isa<UnrankedTensorType>(Val: candidateType)) { |
| 143 | // i.e. tensor<i8> -> tensor<!quant<"uniform[i8:f32]{1.0}">> |
| 144 | return UnrankedTensorType::get(getStorageType()); |
| 145 | } |
| 146 | if (llvm::isa<VectorType>(Val: candidateType)) { |
| 147 | // i.e. tensor<4xi8> -> tensor<4x!quant<"uniform[i8:f32]{1.0}">> |
| 148 | return VectorType::get(llvm::cast<VectorType>(candidateType).getShape(), |
| 149 | getStorageType()); |
| 150 | } |
| 151 | |
| 152 | return nullptr; |
| 153 | } |
| 154 | |
| 155 | Type QuantizedType::castToStorageType(Type quantizedType) { |
| 156 | if (llvm::isa<QuantizedType>(Val: quantizedType)) { |
| 157 | // i.e. quant<"uniform[i8:f32]{1.0}"> -> i8 |
| 158 | return llvm::cast<QuantizedType>(Val&: quantizedType).getStorageType(); |
| 159 | } |
| 160 | if (llvm::isa<ShapedType>(quantizedType)) { |
| 161 | // i.e. tensor<4xi8> -> tensor<4x!quant<"uniform[i8:f32]{1.0}">> |
| 162 | ShapedType sType = llvm::cast<ShapedType>(quantizedType); |
| 163 | if (!llvm::isa<QuantizedType>(sType.getElementType())) { |
| 164 | return nullptr; |
| 165 | } |
| 166 | Type storageType = |
| 167 | llvm::cast<QuantizedType>(sType.getElementType()).getStorageType(); |
| 168 | if (llvm::isa<RankedTensorType>(Val: quantizedType)) { |
| 169 | return RankedTensorType::get(sType.getShape(), storageType); |
| 170 | } |
| 171 | if (llvm::isa<UnrankedTensorType>(Val: quantizedType)) { |
| 172 | return UnrankedTensorType::get(storageType); |
| 173 | } |
| 174 | if (llvm::isa<VectorType>(Val: quantizedType)) { |
| 175 | return VectorType::get(sType.getShape(), storageType); |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | return nullptr; |
| 180 | } |
| 181 | |
| 182 | Type QuantizedType::castFromExpressedType(Type candidateType) { |
| 183 | if (candidateType == getExpressedType()) { |
| 184 | // i.e. f32 -> quant<"uniform[i8:f32]{1.0}"> |
| 185 | return *this; |
| 186 | } |
| 187 | if (llvm::isa<ShapedType>(candidateType)) { |
| 188 | ShapedType candidateShapedType = llvm::cast<ShapedType>(candidateType); |
| 189 | if (candidateShapedType.getElementType() != getExpressedType()) { |
| 190 | return nullptr; |
| 191 | } |
| 192 | |
| 193 | if (llvm::isa<RankedTensorType>(Val: candidateType)) { |
| 194 | // i.e. tensor<4xf32> -> tensor<4x!quant<"uniform[i8:f32]{1.0}">> |
| 195 | return RankedTensorType::get(candidateShapedType.getShape(), *this); |
| 196 | } |
| 197 | if (llvm::isa<UnrankedTensorType>(Val: candidateType)) { |
| 198 | // i.e. tensor<xf32> -> tensor<x!quant<"uniform[i8:f32]{1.0}">> |
| 199 | return UnrankedTensorType::get(*this); |
| 200 | } |
| 201 | if (llvm::isa<VectorType>(Val: candidateType)) { |
| 202 | // i.e. tensor<4xf32> -> tensor<4x!quant<"uniform[i8:f32]{1.0}">> |
| 203 | return VectorType::get(candidateShapedType.getShape(), *this); |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | return nullptr; |
| 208 | } |
| 209 | |
| 210 | Type QuantizedType::castToExpressedType(Type quantizedType) { |
| 211 | if (llvm::isa<QuantizedType>(Val: quantizedType)) { |
| 212 | // i.e. quant<"uniform[i8:f32]{1.0}"> -> f32 |
| 213 | return llvm::cast<QuantizedType>(Val&: quantizedType).getExpressedType(); |
| 214 | } |
| 215 | if (llvm::isa<ShapedType>(quantizedType)) { |
| 216 | // i.e. tensor<4xi8> -> tensor<4x!quant<"uniform[i8:f32]{1.0}">> |
| 217 | ShapedType sType = llvm::cast<ShapedType>(quantizedType); |
| 218 | if (!llvm::isa<QuantizedType>(sType.getElementType())) { |
| 219 | return nullptr; |
| 220 | } |
| 221 | Type expressedType = |
| 222 | llvm::cast<QuantizedType>(sType.getElementType()).getExpressedType(); |
| 223 | if (llvm::isa<RankedTensorType>(Val: quantizedType)) { |
| 224 | return RankedTensorType::get(sType.getShape(), expressedType); |
| 225 | } |
| 226 | if (llvm::isa<UnrankedTensorType>(Val: quantizedType)) { |
| 227 | return UnrankedTensorType::get(expressedType); |
| 228 | } |
| 229 | if (llvm::isa<VectorType>(Val: quantizedType)) { |
| 230 | return VectorType::get(sType.getShape(), expressedType); |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | return nullptr; |
| 235 | } |
| 236 | |
| 237 | Type QuantizedType::castExpressedToStorageType(Type candidateType) { |
| 238 | Type expressedQuantizedType = castFromExpressedType(candidateType); |
| 239 | if (!expressedQuantizedType) { |
| 240 | return nullptr; |
| 241 | } |
| 242 | return QuantizedType::castToStorageType(quantizedType: expressedQuantizedType); |
| 243 | } |
| 244 | |
| 245 | AnyQuantizedType AnyQuantizedType::get(unsigned flags, Type storageType, |
| 246 | Type expressedType, |
| 247 | int64_t storageTypeMin, |
| 248 | int64_t storageTypeMax) { |
| 249 | return Base::get(ctx: storageType.getContext(), args&: flags, args&: storageType, args&: expressedType, |
| 250 | args&: storageTypeMin, args&: storageTypeMax); |
| 251 | } |
| 252 | |
| 253 | AnyQuantizedType |
| 254 | AnyQuantizedType::getChecked(function_ref<InFlightDiagnostic()> emitError, |
| 255 | unsigned flags, Type storageType, |
| 256 | Type expressedType, int64_t storageTypeMin, |
| 257 | int64_t storageTypeMax) { |
| 258 | return Base::getChecked(emitErrorFn: emitError, ctx: storageType.getContext(), args: flags, |
| 259 | args: storageType, args: expressedType, args: storageTypeMin, |
| 260 | args: storageTypeMax); |
| 261 | } |
| 262 | |
| 263 | LogicalResult |
| 264 | AnyQuantizedType::verifyInvariants(function_ref<InFlightDiagnostic()> emitError, |
| 265 | unsigned flags, Type storageType, |
| 266 | Type expressedType, int64_t storageTypeMin, |
| 267 | int64_t storageTypeMax) { |
| 268 | if (failed(Result: QuantizedType::verifyInvariants(emitError, flags, storageType, |
| 269 | expressedType, storageTypeMin, |
| 270 | storageTypeMax))) { |
| 271 | return failure(); |
| 272 | } |
| 273 | |
| 274 | // Verify that the expressed type is floating point. |
| 275 | // If this restriction is ever eliminated, the parser/printer must be |
| 276 | // extended. |
| 277 | if (expressedType && !llvm::isa<FloatType>(Val: expressedType)) |
| 278 | return emitError() << "expressed type must be floating point" ; |
| 279 | |
| 280 | return success(); |
| 281 | } |
| 282 | |
| 283 | UniformQuantizedType UniformQuantizedType::get(unsigned flags, Type storageType, |
| 284 | Type expressedType, double scale, |
| 285 | int64_t zeroPoint, |
| 286 | int64_t storageTypeMin, |
| 287 | int64_t storageTypeMax) { |
| 288 | return Base::get(ctx: storageType.getContext(), args&: flags, args&: storageType, args&: expressedType, |
| 289 | args&: scale, args&: zeroPoint, args&: storageTypeMin, args&: storageTypeMax); |
| 290 | } |
| 291 | |
| 292 | UniformQuantizedType UniformQuantizedType::getChecked( |
| 293 | function_ref<InFlightDiagnostic()> emitError, unsigned flags, |
| 294 | Type storageType, Type expressedType, double scale, int64_t zeroPoint, |
| 295 | int64_t storageTypeMin, int64_t storageTypeMax) { |
| 296 | return Base::getChecked(emitErrorFn: emitError, ctx: storageType.getContext(), args: flags, |
| 297 | args: storageType, args: expressedType, args: scale, args: zeroPoint, |
| 298 | args: storageTypeMin, args: storageTypeMax); |
| 299 | } |
| 300 | |
| 301 | LogicalResult UniformQuantizedType::verifyInvariants( |
| 302 | function_ref<InFlightDiagnostic()> emitError, unsigned flags, |
| 303 | Type storageType, Type expressedType, double scale, int64_t zeroPoint, |
| 304 | int64_t storageTypeMin, int64_t storageTypeMax) { |
| 305 | if (failed(Result: QuantizedType::verifyInvariants(emitError, flags, storageType, |
| 306 | expressedType, storageTypeMin, |
| 307 | storageTypeMax))) { |
| 308 | return failure(); |
| 309 | } |
| 310 | |
| 311 | // Uniform quantization requires fully expressed parameters, including |
| 312 | // expressed type. |
| 313 | if (!expressedType) |
| 314 | return emitError() << "uniform quantization requires expressed type" ; |
| 315 | |
| 316 | // Verify that the expressed type is floating point. |
| 317 | // If this restriction is ever eliminated, the parser/printer must be |
| 318 | // extended. |
| 319 | if (!llvm::isa<FloatType>(Val: expressedType)) |
| 320 | return emitError() << "expressed type must be floating point" ; |
| 321 | |
| 322 | // Verify scale. |
| 323 | double minScale = getMinScale(expressedType); |
| 324 | double maxScale = getMaxScale(expressedType); |
| 325 | if (scale < minScale || scale > maxScale) |
| 326 | return emitError() << "scale out of expressed type range [" << minScale |
| 327 | << ", " << maxScale << "]" ; |
| 328 | |
| 329 | return success(); |
| 330 | } |
| 331 | |
| 332 | double UniformQuantizedType::getScale() const { return getImpl()->scale; } |
| 333 | |
| 334 | int64_t UniformQuantizedType::getZeroPoint() const { |
| 335 | return getImpl()->zeroPoint; |
| 336 | } |
| 337 | |
| 338 | UniformQuantizedPerAxisType UniformQuantizedPerAxisType::get( |
| 339 | unsigned flags, Type storageType, Type expressedType, |
| 340 | ArrayRef<double> scales, ArrayRef<int64_t> zeroPoints, |
| 341 | int32_t quantizedDimension, int64_t storageTypeMin, |
| 342 | int64_t storageTypeMax) { |
| 343 | return Base::get(ctx: storageType.getContext(), args&: flags, args&: storageType, args&: expressedType, |
| 344 | args&: scales, args&: zeroPoints, args&: quantizedDimension, args&: storageTypeMin, |
| 345 | args&: storageTypeMax); |
| 346 | } |
| 347 | |
| 348 | UniformQuantizedPerAxisType UniformQuantizedPerAxisType::getChecked( |
| 349 | function_ref<InFlightDiagnostic()> emitError, unsigned flags, |
| 350 | Type storageType, Type expressedType, ArrayRef<double> scales, |
| 351 | ArrayRef<int64_t> zeroPoints, int32_t quantizedDimension, |
| 352 | int64_t storageTypeMin, int64_t storageTypeMax) { |
| 353 | return Base::getChecked(emitErrorFn: emitError, ctx: storageType.getContext(), args: flags, |
| 354 | args: storageType, args: expressedType, args: scales, args: zeroPoints, |
| 355 | args: quantizedDimension, args: storageTypeMin, args: storageTypeMax); |
| 356 | } |
| 357 | |
| 358 | LogicalResult UniformQuantizedPerAxisType::verifyInvariants( |
| 359 | function_ref<InFlightDiagnostic()> emitError, unsigned flags, |
| 360 | Type storageType, Type expressedType, ArrayRef<double> scales, |
| 361 | ArrayRef<int64_t> zeroPoints, int32_t quantizedDimension, |
| 362 | int64_t storageTypeMin, int64_t storageTypeMax) { |
| 363 | if (failed(Result: QuantizedType::verifyInvariants(emitError, flags, storageType, |
| 364 | expressedType, storageTypeMin, |
| 365 | storageTypeMax))) { |
| 366 | return failure(); |
| 367 | } |
| 368 | |
| 369 | // Uniform quantization requires fully expressed parameters, including |
| 370 | // expressed type. |
| 371 | if (!expressedType) |
| 372 | return emitError() << "uniform quantization requires expressed type" ; |
| 373 | |
| 374 | // Verify that the expressed type is floating point. |
| 375 | // If this restriction is ever eliminated, the parser/printer must be |
| 376 | // extended. |
| 377 | if (!llvm::isa<FloatType>(Val: expressedType)) |
| 378 | return emitError() << "expressed type must be floating point" ; |
| 379 | |
| 380 | // Ensure that the number of scales and zeroPoints match. |
| 381 | if (scales.size() != zeroPoints.size()) |
| 382 | return emitError() << "illegal number of scales and zeroPoints: " |
| 383 | << scales.size() << ", " << zeroPoints.size(); |
| 384 | |
| 385 | // Verify scale. |
| 386 | double minScale = getMinScale(expressedType); |
| 387 | double maxScale = getMaxScale(expressedType); |
| 388 | for (double scale : scales) { |
| 389 | if (scale < minScale || scale > maxScale) |
| 390 | return emitError() << "scale out of expressed type range [" << minScale |
| 391 | << ", " << maxScale << "]" ; |
| 392 | } |
| 393 | |
| 394 | // Verify quantized dimension. |
| 395 | if (quantizedDimension < 0) |
| 396 | return emitError() << "illegal quantized dimension: " << quantizedDimension; |
| 397 | |
| 398 | return success(); |
| 399 | } |
| 400 | |
| 401 | ArrayRef<double> UniformQuantizedPerAxisType::getScales() const { |
| 402 | return getImpl()->getScales(); |
| 403 | } |
| 404 | |
| 405 | ArrayRef<int64_t> UniformQuantizedPerAxisType::getZeroPoints() const { |
| 406 | return getImpl()->getZeroPoints(); |
| 407 | } |
| 408 | |
| 409 | int32_t UniformQuantizedPerAxisType::getQuantizedDimension() const { |
| 410 | return getImpl()->quantizedDimension; |
| 411 | } |
| 412 | |
| 413 | UniformQuantizedSubChannelType UniformQuantizedSubChannelType::get( |
| 414 | unsigned flags, Type storageType, Type expressedType, |
| 415 | DenseElementsAttr scales, DenseElementsAttr zeroPoints, |
| 416 | ArrayRef<int32_t> quantizedDimensions, ArrayRef<int64_t> blockSizes, |
| 417 | int64_t storageTypeMin, int64_t storageTypeMax) { |
| 418 | return Base::get(ctx: storageType.getContext(), args&: flags, args&: storageType, args&: expressedType, |
| 419 | args&: scales, args&: zeroPoints, args&: quantizedDimensions, args&: blockSizes, |
| 420 | args&: storageTypeMin, args&: storageTypeMax); |
| 421 | } |
| 422 | |
| 423 | UniformQuantizedSubChannelType UniformQuantizedSubChannelType::getChecked( |
| 424 | function_ref<InFlightDiagnostic()> emitError, unsigned flags, |
| 425 | Type storageType, Type expressedType, DenseElementsAttr scales, |
| 426 | DenseElementsAttr zeroPoints, ArrayRef<int32_t> quantizedDimensions, |
| 427 | ArrayRef<int64_t> blockSizes, int64_t storageTypeMin, |
| 428 | int64_t storageTypeMax) { |
| 429 | return Base::getChecked(emitErrorFn: emitError, ctx: storageType.getContext(), args: flags, |
| 430 | args: storageType, args: expressedType, args: scales, args: zeroPoints, |
| 431 | args: quantizedDimensions, args: blockSizes, args: storageTypeMin, |
| 432 | args: storageTypeMax); |
| 433 | } |
| 434 | |
| 435 | LogicalResult UniformQuantizedSubChannelType::verifyInvariants( |
| 436 | function_ref<InFlightDiagnostic()> emitError, unsigned flags, |
| 437 | Type storageType, Type expressedType, DenseElementsAttr scales, |
| 438 | DenseElementsAttr zeroPoints, ArrayRef<int32_t> quantizedDimensions, |
| 439 | ArrayRef<int64_t> blockSizes, int64_t storageTypeMin, |
| 440 | int64_t storageTypeMax) { |
| 441 | if (failed(Result: QuantizedType::verifyInvariants(emitError, flags, storageType, |
| 442 | expressedType, storageTypeMin, |
| 443 | storageTypeMax))) { |
| 444 | return failure(); |
| 445 | } |
| 446 | |
| 447 | // Uniform quantization requires fully expressed parameters, including |
| 448 | // expressed type. |
| 449 | if (!expressedType) |
| 450 | return emitError() << "uniform quantization requires expressed type" ; |
| 451 | |
| 452 | // Verify that the expressed type is floating point. |
| 453 | // If this restriction is ever eliminated, the parser/printer must be |
| 454 | // extended. |
| 455 | if (!llvm::isa<FloatType>(Val: expressedType)) |
| 456 | return emitError() << "expressed type must be floating point" ; |
| 457 | |
| 458 | // Verify scale type to match expressedType. |
| 459 | if (scales.getType().getElementType() != expressedType) { |
| 460 | return emitError() << "type of scale values " |
| 461 | << scales.getType().getElementType() |
| 462 | << " must match the expressed type " << expressedType; |
| 463 | } |
| 464 | |
| 465 | // Verify zero-point type to match storageType. |
| 466 | if (zeroPoints.getType().getElementType() != storageType) { |
| 467 | return emitError() << "type of zero point values " |
| 468 | << zeroPoints.getType().getElementType() |
| 469 | << " must match the storage type " << storageType; |
| 470 | } |
| 471 | |
| 472 | // Ensure that the shape of scales and zeroPoints match. |
| 473 | if (scales.getType().getShape() != zeroPoints.getType().getShape()) |
| 474 | return emitError() << "shape of scales and zeroPoints (" |
| 475 | << scales.getType().getShape() << " vs " |
| 476 | << zeroPoints.getType().getShape() << ") does not match" ; |
| 477 | |
| 478 | // Ensure that the number of quantized-dimensions and block-sizes match. |
| 479 | if (quantizedDimensions.size() != blockSizes.size()) |
| 480 | return emitError() << "number of quantized dimensions and block sizes (" |
| 481 | << scales.size() << " vs " << zeroPoints.size() |
| 482 | << ") does not match" ; |
| 483 | |
| 484 | // Verify quantized dimension. |
| 485 | for (auto quantizedDimension : quantizedDimensions) { |
| 486 | if (quantizedDimension < 0) |
| 487 | return emitError() << "illegal quantized dimension: " |
| 488 | << quantizedDimension; |
| 489 | } |
| 490 | |
| 491 | // Verify block sizes. |
| 492 | for (auto blockSize : blockSizes) { |
| 493 | if (blockSize <= 0) |
| 494 | return emitError() << "illegal block size: " << blockSize; |
| 495 | } |
| 496 | |
| 497 | return success(); |
| 498 | } |
| 499 | |
| 500 | DenseElementsAttr UniformQuantizedSubChannelType::getScales() const { |
| 501 | return getImpl()->getScales(); |
| 502 | } |
| 503 | |
| 504 | DenseElementsAttr UniformQuantizedSubChannelType::getZeroPoints() const { |
| 505 | return getImpl()->getZeroPoints(); |
| 506 | } |
| 507 | |
| 508 | ArrayRef<int32_t> |
| 509 | UniformQuantizedSubChannelType::getQuantizedDimensions() const { |
| 510 | return getImpl()->getQuantizedDimensions(); |
| 511 | } |
| 512 | |
| 513 | ArrayRef<int64_t> UniformQuantizedSubChannelType::getBlockSizes() const { |
| 514 | return getImpl()->getBlockSizes(); |
| 515 | } |
| 516 | |
| 517 | const SmallVector<std::pair<int32_t, int64_t>> |
| 518 | UniformQuantizedSubChannelType::getBlockSizeInfo() const { |
| 519 | SmallVector<std::pair<int32_t, int64_t>> result; |
| 520 | result.reserve(N: getQuantizedDimensions().size()); |
| 521 | |
| 522 | for (auto [dim, size] : |
| 523 | llvm::zip(t: getQuantizedDimensions(), u: getBlockSizes())) { |
| 524 | result.push_back(Elt: {dim, size}); |
| 525 | } |
| 526 | |
| 527 | return result; |
| 528 | } |
| 529 | |
| 530 | CalibratedQuantizedType CalibratedQuantizedType::get(Type expressedType, |
| 531 | double min, double max) { |
| 532 | return Base::get(ctx: expressedType.getContext(), args&: expressedType, args&: min, args&: max); |
| 533 | } |
| 534 | |
| 535 | CalibratedQuantizedType CalibratedQuantizedType::getChecked( |
| 536 | function_ref<InFlightDiagnostic()> emitError, Type expressedType, |
| 537 | double min, double max) { |
| 538 | return Base::getChecked(emitErrorFn: emitError, ctx: expressedType.getContext(), args: expressedType, |
| 539 | args: min, args: max); |
| 540 | } |
| 541 | |
| 542 | LogicalResult CalibratedQuantizedType::verifyInvariants( |
| 543 | function_ref<InFlightDiagnostic()> emitError, Type expressedType, |
| 544 | double min, double max) { |
| 545 | // Verify that the expressed type is floating point. |
| 546 | // If this restriction is ever eliminated, the parser/printer must be |
| 547 | // extended. |
| 548 | if (!llvm::isa<FloatType>(Val: expressedType)) |
| 549 | return emitError() << "expressed type must be floating point" ; |
| 550 | if (max <= min) |
| 551 | return emitError() << "illegal min and max: (" << min << ":" << max << ")" ; |
| 552 | |
| 553 | return success(); |
| 554 | } |
| 555 | |
| 556 | double CalibratedQuantizedType::getMin() const { return getImpl()->min; } |
| 557 | |
| 558 | double CalibratedQuantizedType::getMax() const { return getImpl()->max; } |
| 559 | |