| 1 | //===- LowerQuantOps.cpp - Lower 'quant' dialect ops ----------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Transforms `quant.dcast` and `quant.qcast` into lower-level ops. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 14 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 15 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| 16 | #include "mlir/Dialect/Quant/IR/Quant.h" |
| 17 | #include "mlir/Dialect/Quant/IR/QuantTypes.h" |
| 18 | #include "mlir/Dialect/Quant/Transforms/Passes.h" |
| 19 | #include "mlir/Dialect/Shape/IR/Shape.h" |
| 20 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 21 | #include "mlir/IR/Matchers.h" |
| 22 | #include "mlir/IR/PatternMatch.h" |
| 23 | #include "mlir/Transforms/DialectConversion.h" |
| 24 | |
| 25 | namespace mlir { |
| 26 | namespace quant { |
| 27 | |
| 28 | #define GEN_PASS_DEF_LOWERQUANTOPS |
| 29 | #include "mlir/Dialect/Quant/Transforms/Passes.h.inc" |
| 30 | |
| 31 | namespace { |
| 32 | |
| 33 | // If 'inputType' is a tensor, return its element type. If it is a scalar, |
| 34 | // return it as is. |
| 35 | Type getScalarType(Type inputType) { |
| 36 | if (auto tensorType = dyn_cast<TensorType>(inputType)) |
| 37 | return tensorType.getElementType(); |
| 38 | return inputType; |
| 39 | } |
| 40 | |
| 41 | // Return the shape of an input value as a list of attributes (static |
| 42 | // dimensions) and values (dynamic dimensions). If 'input' is a scalar, an empty |
| 43 | // list is returned. If 'input' is a tensor, its shape is returned. |
| 44 | SmallVector<OpFoldResult> getScalarOrTensorShape(OpBuilder &builder, |
| 45 | Location loc, Value input) { |
| 46 | if (isa<TensorType>(input.getType())) |
| 47 | return tensor::getMixedSizes(builder, loc, value: input); |
| 48 | return {}; |
| 49 | } |
| 50 | |
| 51 | // If 'referenceType' is a scalar, return 'elementType' as is. If |
| 52 | // 'referenceType' is a tensor, return another tensor with the same shape and |
| 53 | // elements of type 'elementType'. |
| 54 | Type getScalarOrTensorType(Type elementType, Type referenceType) { |
| 55 | if (auto tensorType = dyn_cast<TensorType>(referenceType)) |
| 56 | return tensorType.clone(elementType); |
| 57 | return elementType; |
| 58 | } |
| 59 | |
| 60 | // Return a constant with the given value. If 'referenceType' is a tensor, a |
| 61 | // tensor splat of shape 'referenceShape' is returned. If 'referenceType' is a |
| 62 | // scalar, 'referenceShape' is ignored and a scalar constant is returned. |
| 63 | Value getScalarOrTensorConstant(OpBuilder &builder, Location loc, Value scalar, |
| 64 | Type referenceType, |
| 65 | ArrayRef<OpFoldResult> referenceShape) { |
| 66 | // If the result type is a scalar, return the unmodified scalar constant. |
| 67 | auto tensorType = dyn_cast<TensorType>(referenceType); |
| 68 | if (!tensorType) { |
| 69 | assert(referenceShape.empty()); |
| 70 | return scalar; |
| 71 | } |
| 72 | |
| 73 | // Create tensor splat |
| 74 | auto tensorConstant = |
| 75 | builder.create<tensor::SplatOp>(loc, scalar, referenceShape); |
| 76 | return tensorConstant; |
| 77 | } |
| 78 | |
| 79 | // Reshape an unranked tensor into a 1D ranked tensor. |
| 80 | // |
| 81 | // - input |
| 82 | // Unranked tensor. |
| 83 | // |
| 84 | // Return values: |
| 85 | // |
| 86 | // - flatInput |
| 87 | // 1D ranked, dynamically shaped tensor. |
| 88 | // |
| 89 | // - inputShape |
| 90 | // 1D extent tensor containing the shape of the original unranked input. |
| 91 | // |
| 92 | std::pair<Value, Value> flattenUnrankedTensor(OpBuilder &builder, Location loc, |
| 93 | Value input) { |
| 94 | // Get unranked input shape and total size |
| 95 | auto *context = builder.getContext(); |
| 96 | auto shapeType = shape::getExtentTensorType(context); |
| 97 | auto inputShape = builder.create<shape::ShapeOfOp>(loc, shapeType, input); |
| 98 | Value inputSize = builder.create<shape::NumElementsOp>( |
| 99 | loc, builder.getIndexType(), inputShape); |
| 100 | |
| 101 | // Turn input size into 1D tensor |
| 102 | auto flatShapeType = shape::getExtentTensorType(context, 1); |
| 103 | auto flatInputShape = |
| 104 | builder.create<tensor::FromElementsOp>(loc, flatShapeType, inputSize); |
| 105 | |
| 106 | // Reshape input tensor into 1D |
| 107 | auto inputType = cast<UnrankedTensorType>(input.getType()); |
| 108 | auto elementType = inputType.getElementType(); |
| 109 | auto flatInputType = |
| 110 | RankedTensorType::get({ShapedType::kDynamic}, elementType); |
| 111 | auto flatInput = builder.create<tensor::ReshapeOp>(loc, flatInputType, input, |
| 112 | flatInputShape); |
| 113 | return std::make_pair(flatInput, inputShape); |
| 114 | } |
| 115 | |
| 116 | // Reshape an unranked tensor into a 3D ranked tensor where the central |
| 117 | // dimension of the result tensor corresponds to dimension 'axis' of the input |
| 118 | // tensor. |
| 119 | // |
| 120 | // - input |
| 121 | // Unranked tensor. |
| 122 | // |
| 123 | // - axis |
| 124 | // Index of the input dimension around which other input dimiensions will be |
| 125 | // collapsed. |
| 126 | // |
| 127 | // - axisSize |
| 128 | // Size of input dimension 'axis'. |
| 129 | // |
| 130 | // Return values: |
| 131 | // |
| 132 | // - flatInput |
| 133 | // 3D ranked tensor of shape [?, axisSize, ?]. |
| 134 | // |
| 135 | // - inputShape |
| 136 | // 1D extent tensor containing the shape of the original unranked input. |
| 137 | // |
| 138 | std::pair<Value, Value> |
| 139 | flattenUnrankedTensorAroundAxis(OpBuilder &builder, Location loc, Value input, |
| 140 | int64_t axis, int64_t axisSize) { |
| 141 | // Get full tensor shape |
| 142 | auto *context = builder.getContext(); |
| 143 | auto indexType = builder.getIndexType(); |
| 144 | auto shapeType = shape::getExtentTensorType(context); |
| 145 | auto inputShape = builder.create<shape::ShapeOfOp>(loc, shapeType, input); |
| 146 | |
| 147 | // Get shape and sizes on left and right of axis |
| 148 | auto axisValue = builder.create<arith::ConstantIndexOp>(loc, axis); |
| 149 | auto axisNextValue = builder.create<arith::ConstantIndexOp>(loc, axis + 1); |
| 150 | auto shapeLeft = |
| 151 | builder |
| 152 | .create<shape::SplitAtOp>(loc, TypeRange{shapeType, shapeType}, |
| 153 | inputShape, axisValue) |
| 154 | .getResult(0); |
| 155 | auto sizeLeft = |
| 156 | builder.create<shape::NumElementsOp>(loc, indexType, shapeLeft); |
| 157 | auto shapeRight = |
| 158 | builder |
| 159 | .create<shape::SplitAtOp>(loc, TypeRange{shapeType, shapeType}, |
| 160 | inputShape, axisNextValue) |
| 161 | .getResult(1); |
| 162 | auto sizeRight = |
| 163 | builder.create<shape::NumElementsOp>(loc, indexType, shapeRight); |
| 164 | |
| 165 | // Compute flat input shape as a 3-element 1D tensor |
| 166 | auto axisSizeValue = builder.create<arith::ConstantIndexOp>(loc, axisSize); |
| 167 | auto flatShapeType = shape::getExtentTensorType(context, 3); |
| 168 | auto flatInputShape = builder.create<tensor::FromElementsOp>( |
| 169 | loc, flatShapeType, ValueRange{sizeLeft, axisSizeValue, sizeRight}); |
| 170 | |
| 171 | // Reshape input to 3D tensor |
| 172 | auto inputType = cast<UnrankedTensorType>(input.getType()); |
| 173 | auto elementType = inputType.getElementType(); |
| 174 | auto flatInputType = RankedTensorType::get( |
| 175 | {ShapedType::kDynamic, axisSize, ShapedType::kDynamic}, elementType); |
| 176 | auto flatInput = builder.create<tensor::ReshapeOp>(loc, flatInputType, input, |
| 177 | flatInputShape); |
| 178 | |
| 179 | return std::make_pair(flatInput, inputShape); |
| 180 | } |
| 181 | |
| 182 | // Reshape an input tensor into its original unranked shape. |
| 183 | // |
| 184 | // - input |
| 185 | // Ranked tensor. |
| 186 | // |
| 187 | // - inputShape |
| 188 | // 1D extent tensor. |
| 189 | // |
| 190 | Value restoreUnrankedTensorShape(OpBuilder &builder, Location loc, Value input, |
| 191 | Value inputShape) { |
| 192 | auto inputType = cast<RankedTensorType>(input.getType()); |
| 193 | auto elementType = inputType.getElementType(); |
| 194 | auto unrankedType = UnrankedTensorType::get(elementType); |
| 195 | return builder.create<tensor::ReshapeOp>(loc, unrankedType, input, |
| 196 | inputShape); |
| 197 | } |
| 198 | |
| 199 | // Create a tensor constant containing all scales in a per-channel quantized |
| 200 | // type. Example: |
| 201 | // |
| 202 | // !quant.uniform<i8:f32:1, {2.0:10, 3.0:20}> |
| 203 | // |
| 204 | // produces |
| 205 | // |
| 206 | // %cst = arith.constant dense<[2.0, 3.0]> : tensor<2xf32> |
| 207 | // |
| 208 | Value materializePerChannelScales(OpBuilder &builder, Location loc, |
| 209 | UniformQuantizedPerAxisType quantizedType) { |
| 210 | auto scales = quantizedType.getScales(); |
| 211 | auto expressedType = quantizedType.getExpressedType(); |
| 212 | auto scaleAttrs = llvm::map_to_vector(scales, [&](double scale) -> Attribute { |
| 213 | return builder.getFloatAttr(expressedType, scale); |
| 214 | }); |
| 215 | auto tensorType = |
| 216 | RankedTensorType::get({(int64_t)scales.size()}, expressedType); |
| 217 | auto scalesAttr = DenseElementsAttr::get(tensorType, scaleAttrs); |
| 218 | return builder.create<arith::ConstantOp>(loc, tensorType, scalesAttr); |
| 219 | } |
| 220 | |
| 221 | // Create a tensor constant containing all zero points in a per-channel |
| 222 | // quantized type. Example: |
| 223 | // |
| 224 | // !quant.uniform<i8:f32:1, {2.0:10, 3.0:20}> |
| 225 | // |
| 226 | // produces |
| 227 | // |
| 228 | // %cst = arith.constant dense<[10, 20]> : tensor<2xi8> |
| 229 | // |
| 230 | Value materializePerChannelZeroPoints( |
| 231 | OpBuilder &builder, Location loc, |
| 232 | UniformQuantizedPerAxisType quantizedType) { |
| 233 | auto zeroPoints = quantizedType.getZeroPoints(); |
| 234 | auto storageType = quantizedType.getStorageType(); |
| 235 | auto zeroPointAttrs = |
| 236 | llvm::map_to_vector(zeroPoints, [&](int64_t zeroPoint) -> Attribute { |
| 237 | return builder.getIntegerAttr(storageType, zeroPoint); |
| 238 | }); |
| 239 | auto tensorType = |
| 240 | RankedTensorType::get({(int64_t)zeroPoints.size()}, storageType); |
| 241 | auto zeroPointsAttr = DenseElementsAttr::get(tensorType, zeroPointAttrs); |
| 242 | return builder.create<arith::ConstantOp>(loc, tensorType, zeroPointsAttr); |
| 243 | } |
| 244 | |
| 245 | // Create a tensor constant containing all scales in a sub-channel quantized |
| 246 | // type. Example: |
| 247 | // |
| 248 | // !quant.uniform<i8:f32:{0:1,1:2}, {{2.0:10, 3.0:20}, {4.0:30, 5.0:40}}> |
| 249 | // |
| 250 | // produces |
| 251 | // |
| 252 | // %cst = arith.constant dense<[[2.0, 3.0], [4.0, 5.0]]> : tensor<2x2xf32> |
| 253 | // |
| 254 | Value materializeSubChannelScales( |
| 255 | OpBuilder &builder, Location loc, |
| 256 | UniformQuantizedSubChannelType quantizedType) { |
| 257 | auto scales = quantizedType.getScales(); |
| 258 | auto expressedType = quantizedType.getExpressedType(); |
| 259 | auto scaleAttrs = llvm::map_to_vector( |
| 260 | scales.getValues<APFloat>(), [&](APFloat scale) -> Attribute { |
| 261 | return builder.getFloatAttr(expressedType, scale); |
| 262 | }); |
| 263 | auto tensorType = |
| 264 | RankedTensorType::get(scales.getType().getShape(), expressedType); |
| 265 | auto scalesAttr = DenseElementsAttr::get(tensorType, scaleAttrs); |
| 266 | return builder.create<arith::ConstantOp>(loc, tensorType, scalesAttr); |
| 267 | } |
| 268 | |
| 269 | // Create a tensor constant containing all zero points in a sub-channel |
| 270 | // quantized type. Example: |
| 271 | // |
| 272 | // !quant.uniform<i8:f32:{0:1,1:2}, {{2.0:10, 3.0:20}, {4.0:30, 5.0:40}}> |
| 273 | // |
| 274 | // produces |
| 275 | // |
| 276 | // %cst = arith.constant dense<[[10, 20], [30, 40]]> : tensor<2x2xi8> |
| 277 | // |
| 278 | Value materializeSubChannelZeroPoints( |
| 279 | OpBuilder &builder, Location loc, |
| 280 | UniformQuantizedSubChannelType quantizedType) { |
| 281 | auto zeroPoints = quantizedType.getZeroPoints(); |
| 282 | auto storageType = quantizedType.getStorageType(); |
| 283 | auto zeroPointAttrs = llvm::map_to_vector( |
| 284 | zeroPoints.getValues<APInt>(), [&](APInt zeroPoint) -> Attribute { |
| 285 | return builder.getIntegerAttr(storageType, zeroPoint); |
| 286 | }); |
| 287 | auto tensorType = |
| 288 | RankedTensorType::get(zeroPoints.getType().getShape(), storageType); |
| 289 | auto zeroPointsAttr = DenseElementsAttr::get(tensorType, zeroPointAttrs); |
| 290 | return builder.create<arith::ConstantOp>(loc, tensorType, zeroPointsAttr); |
| 291 | } |
| 292 | |
| 293 | // Clamp the given scalar or tensor input using the storage bounds encoded in |
| 294 | // the given quantized type, if present. |
| 295 | // |
| 296 | // - input |
| 297 | // Scalar or ranked tensor input. The element type must match the storage type |
| 298 | // of 'quantizedType'. |
| 299 | // |
| 300 | // - inputShape |
| 301 | // If 'input' is a tensor, combination of attributes/values representing its |
| 302 | // static/dynamic dimensions. If 'input' is a scalar, empty list. |
| 303 | // |
| 304 | // - quantizedType |
| 305 | // Per-axis or per-channel quantized type. |
| 306 | Value clampScalarOrTensor(OpBuilder &builder, Location loc, Value input, |
| 307 | ArrayRef<OpFoldResult> inputShape, |
| 308 | QuantizedType quantizedType) { |
| 309 | // If quantized type does not narrow down the storage type range, there is |
| 310 | // nothing to do. |
| 311 | if (!quantizedType.hasStorageTypeBounds()) |
| 312 | return input; |
| 313 | |
| 314 | // Materialize bounds |
| 315 | auto inputType = input.getType(); |
| 316 | auto storageType = quantizedType.getStorageType(); |
| 317 | auto storageMinScalar = builder.create<arith::ConstantIntOp>( |
| 318 | loc, quantizedType.getStorageTypeMin(), storageType); |
| 319 | auto storageMaxScalar = builder.create<arith::ConstantIntOp>( |
| 320 | loc, quantizedType.getStorageTypeMax(), storageType); |
| 321 | auto storageMin = getScalarOrTensorConstant(builder, loc, storageMinScalar, |
| 322 | inputType, inputShape); |
| 323 | auto storageMax = getScalarOrTensorConstant(builder, loc, storageMaxScalar, |
| 324 | inputType, inputShape); |
| 325 | |
| 326 | // Clamp |
| 327 | if (quantizedType.isSigned()) { |
| 328 | input = builder.create<arith::MaxSIOp>(loc, input, storageMin); |
| 329 | input = builder.create<arith::MinSIOp>(loc, input, storageMax); |
| 330 | } else { |
| 331 | input = builder.create<arith::MaxUIOp>(loc, input, storageMin); |
| 332 | input = builder.create<arith::MinUIOp>(loc, input, storageMax); |
| 333 | } |
| 334 | return input; |
| 335 | } |
| 336 | |
| 337 | // Emit op 'arith.fptosi' or 'arith.fptoui'. |
| 338 | Value convertFloatToInteger(OpBuilder &builder, Location loc, Value input, |
| 339 | Type resultType, bool isSigned) { |
| 340 | if (isSigned) |
| 341 | return builder.create<arith::FPToSIOp>(loc, resultType, input); |
| 342 | return builder.create<arith::FPToUIOp>(loc, resultType, input); |
| 343 | } |
| 344 | |
| 345 | // Emit op 'arith.sitofp' or 'arith.uitofp'. |
| 346 | Value convertIntegerToFloat(OpBuilder &builder, Location loc, Value input, |
| 347 | Type resultType, bool isSigned) { |
| 348 | if (isSigned) |
| 349 | return builder.create<arith::SIToFPOp>(loc, resultType, input); |
| 350 | return builder.create<arith::UIToFPOp>(loc, resultType, input); |
| 351 | } |
| 352 | |
| 353 | // Quantize a scalar or ranked tensor value. The stored value is clamped using |
| 354 | // the storage bounds encoded in the given quantized type. |
| 355 | // |
| 356 | // See function 'convertRanked()' below for a description of the arguments. |
| 357 | Value quantizeValue(OpBuilder &builder, Location loc, Value input, |
| 358 | ArrayRef<OpFoldResult> inputShape, Value scale, |
| 359 | Value zeroPoint, QuantizedType quantizedType) { |
| 360 | // Convert scale to tensor if necessary |
| 361 | auto inputType = input.getType(); |
| 362 | scale = getScalarOrTensorConstant(builder, loc, scale, inputType, inputShape); |
| 363 | |
| 364 | // Scale input |
| 365 | auto scaledValue = builder.create<arith::DivFOp>(loc, input, scale); |
| 366 | |
| 367 | // Skip unnecessary computations if no zero point is given |
| 368 | Value storedValueFloat = scaledValue; |
| 369 | if (!matchPattern(zeroPoint, m_Zero())) { |
| 370 | // Convert zero point to tensor if necessary |
| 371 | zeroPoint = getScalarOrTensorConstant(builder, loc, zeroPoint, inputType, |
| 372 | inputShape); |
| 373 | |
| 374 | // Convert zero point from storage to expressed type |
| 375 | zeroPoint = convertIntegerToFloat(builder, loc, input: zeroPoint, resultType: scale.getType(), |
| 376 | isSigned: quantizedType.isSigned()); |
| 377 | |
| 378 | // Add zero point to stored value |
| 379 | storedValueFloat = |
| 380 | builder.create<arith::AddFOp>(loc, scaledValue, zeroPoint); |
| 381 | } |
| 382 | |
| 383 | // Convert stored value to storage type |
| 384 | auto storageScalarOrTensorType = |
| 385 | getScalarOrTensorType(elementType: quantizedType.getStorageType(), referenceType: inputType); |
| 386 | auto storedValueInt = convertFloatToInteger(builder, loc, input: storedValueFloat, |
| 387 | resultType: storageScalarOrTensorType, |
| 388 | isSigned: quantizedType.isSigned()); |
| 389 | |
| 390 | // Clamp stored value it if the storage type is bound |
| 391 | auto storedValueClamped = clampScalarOrTensor(builder, loc, storedValueInt, |
| 392 | inputShape, quantizedType); |
| 393 | return storedValueClamped; |
| 394 | } |
| 395 | |
| 396 | // Dequantize a scalar or ranked tensor input. |
| 397 | // |
| 398 | // See function 'convertRanked()' below for a description of the arguments. |
| 399 | Value dequantizeValue(OpBuilder &builder, Location loc, Value input, |
| 400 | ArrayRef<OpFoldResult> inputShape, Value scale, |
| 401 | Value zeroPoint, QuantizedType quantizedType) { |
| 402 | // Convert scale to tensor if necessary |
| 403 | auto inputType = input.getType(); |
| 404 | scale = getScalarOrTensorConstant(builder, loc, scale, inputType, inputShape); |
| 405 | |
| 406 | // Convert stored value to float |
| 407 | auto result = convertIntegerToFloat(builder, loc, input, resultType: scale.getType(), |
| 408 | isSigned: quantizedType.isSigned()); |
| 409 | |
| 410 | // Skip unnecessary computations if no zero point is given |
| 411 | if (!matchPattern(zeroPoint, m_Zero())) { |
| 412 | // Convert zero point to tensor if necessary |
| 413 | zeroPoint = getScalarOrTensorConstant(builder, loc, zeroPoint, inputType, |
| 414 | inputShape); |
| 415 | |
| 416 | // Convert zero point from storage to expressed type |
| 417 | zeroPoint = convertIntegerToFloat(builder, loc, input: zeroPoint, resultType: scale.getType(), |
| 418 | isSigned: quantizedType.isSigned()); |
| 419 | |
| 420 | // Subtract zero point to stored value |
| 421 | result = builder.create<arith::SubFOp>(loc, result, zeroPoint); |
| 422 | } |
| 423 | |
| 424 | // Multiply by scale |
| 425 | result = builder.create<arith::MulFOp>(loc, result, scale); |
| 426 | return result; |
| 427 | } |
| 428 | |
| 429 | // Convert a scalar or ranked tensor input with the given scale and zero point |
| 430 | // values. |
| 431 | // |
| 432 | // - input |
| 433 | // Scalar or ranked tensor value. |
| 434 | // |
| 435 | // - inputShape |
| 436 | // If 'input' is a tensor, combination or attributes/values representing its |
| 437 | // static/dynamic dimensions. If 'input' is a scalar, empty list. |
| 438 | // |
| 439 | // - scale |
| 440 | // Scale as a floating-point scalar value. |
| 441 | // |
| 442 | // - zeroPoint |
| 443 | // Zero point as an integer scalar value. |
| 444 | // |
| 445 | // - quantizedType |
| 446 | // Scalar quantized type of the result ('quant.qcast') or of the input |
| 447 | // ('quant.dcast'). |
| 448 | // |
| 449 | Value convertRanked(OpBuilder &builder, Location loc, Operation *op, |
| 450 | Value input, ArrayRef<OpFoldResult> inputShape, Value scale, |
| 451 | Value zeroPoint, QuantizedType quantizedType) { |
| 452 | if (isa<QuantizeCastOp>(op)) |
| 453 | return quantizeValue(builder, loc, input, inputShape, scale, zeroPoint, |
| 454 | quantizedType); |
| 455 | if (isa<DequantizeCastOp>(op)) |
| 456 | return dequantizeValue(builder, loc, input, inputShape, scale, zeroPoint, |
| 457 | quantizedType); |
| 458 | llvm_unreachable("unexpected quant op" ); |
| 459 | } |
| 460 | |
| 461 | // Convert an operation using per-layer quantization with a scalar or ranked |
| 462 | // tensor input. |
| 463 | // |
| 464 | // - op |
| 465 | // 'quant.dcast' or 'quant.qcast' op. |
| 466 | // |
| 467 | // - input |
| 468 | // Scalar or ranked tensor. |
| 469 | // |
| 470 | // - quantizedType |
| 471 | // Per-layer quantized type. |
| 472 | // |
| 473 | Value convertPerLayerRanked(OpBuilder &builder, Location loc, Operation *op, |
| 474 | Value input, UniformQuantizedType quantizedType) { |
| 475 | // Create scale and zero point constants |
| 476 | auto expressedType = quantizedType.getExpressedType(); |
| 477 | auto storageType = quantizedType.getStorageType(); |
| 478 | auto scaleAttr = |
| 479 | builder.getFloatAttr(expressedType, quantizedType.getScale()); |
| 480 | auto scale = builder.create<arith::ConstantOp>(loc, expressedType, scaleAttr); |
| 481 | auto zeroPointAttr = |
| 482 | builder.getIntegerAttr(storageType, quantizedType.getZeroPoint()); |
| 483 | auto zeroPoint = |
| 484 | builder.create<arith::ConstantOp>(loc, storageType, zeroPointAttr); |
| 485 | |
| 486 | auto inputShape = getScalarOrTensorShape(builder, loc, input); |
| 487 | return convertRanked(builder, loc, op, input, inputShape, scale, zeroPoint, |
| 488 | quantizedType); |
| 489 | } |
| 490 | |
| 491 | // Convert an operation using per-layer quantization. |
| 492 | // |
| 493 | // - op |
| 494 | // 'quant.dcast' or 'quant.qcast' op. |
| 495 | // |
| 496 | // - input |
| 497 | // Scalar, ranked tensor, or unranked tensor. |
| 498 | // |
| 499 | // - quantizedType |
| 500 | // Per-layer quantized type. |
| 501 | // |
| 502 | Value convertPerLayer(OpBuilder &builder, Location loc, Operation *op, |
| 503 | Value input, UniformQuantizedType quantizedType) { |
| 504 | // Flatten input if unranked |
| 505 | bool isUnranked = isa<UnrankedTensorType>(input.getType()); |
| 506 | Value inputShape; |
| 507 | if (isUnranked) |
| 508 | std::tie(input, inputShape) = flattenUnrankedTensor(builder, loc, input); |
| 509 | |
| 510 | // Process ranked tensor |
| 511 | auto result = convertPerLayerRanked(builder, loc, op, input, quantizedType); |
| 512 | |
| 513 | // Restore original shape if unranked |
| 514 | if (isUnranked) |
| 515 | result = restoreUnrankedTensorShape(builder, loc, input: result, inputShape); |
| 516 | |
| 517 | return result; |
| 518 | } |
| 519 | |
| 520 | // Convert an operation using per-channel quantization and a scalar or ranked |
| 521 | // tensor as an input. |
| 522 | // |
| 523 | // - op |
| 524 | // 'quant.dcast' or 'quant.qcast' op. |
| 525 | // |
| 526 | // - input |
| 527 | // Scalar or ranked tensor. |
| 528 | // |
| 529 | // - quantizedType |
| 530 | // Per-channel quantized type. |
| 531 | // |
| 532 | Value convertPerChannelRanked(OpBuilder &builder, Location loc, Operation *op, |
| 533 | Value input, |
| 534 | UniformQuantizedPerAxisType quantizedType, |
| 535 | int64_t channelAxis) { |
| 536 | auto *context = builder.getContext(); |
| 537 | |
| 538 | auto inputType = cast<RankedTensorType>(input.getType()); |
| 539 | auto inputRank = inputType.getRank(); |
| 540 | |
| 541 | auto scales = materializePerChannelScales(builder, loc, quantizedType); |
| 542 | auto zeroPoints = |
| 543 | materializePerChannelZeroPoints(builder, loc, quantizedType); |
| 544 | |
| 545 | auto elementType = isa<FloatType>(inputType.getElementType()) |
| 546 | ? quantizedType.getStorageType() |
| 547 | : quantizedType.getExpressedType(); |
| 548 | auto initShape = tensor::getMixedSizes(builder, loc, value: input); |
| 549 | Value init = builder.create<tensor::EmptyOp>(loc, initShape, elementType); |
| 550 | |
| 551 | SmallVector<utils::IteratorType> iteratorTypes(inputRank, |
| 552 | utils::IteratorType::parallel); |
| 553 | auto channelAxisAffineMap = AffineMap::get( |
| 554 | inputRank, 0, builder.getAffineDimExpr(position: channelAxis), context); |
| 555 | SmallVector<AffineMap> indexingMaps{ |
| 556 | builder.getMultiDimIdentityMap(inputRank), channelAxisAffineMap, |
| 557 | channelAxisAffineMap, builder.getMultiDimIdentityMap(inputRank)}; |
| 558 | auto result = builder |
| 559 | .create<linalg::GenericOp>( |
| 560 | loc, |
| 561 | init.getType(), // resultType |
| 562 | ValueRange{input, scales, zeroPoints}, // inputs |
| 563 | ValueRange{init}, // outputs |
| 564 | indexingMaps, iteratorTypes, |
| 565 | [&](OpBuilder &builder, Location loc, ValueRange args) { |
| 566 | assert(args.size() == 4); |
| 567 | auto input = args[0]; |
| 568 | auto scale = args[1]; |
| 569 | auto zeroPoint = args[2]; |
| 570 | |
| 571 | auto result = |
| 572 | convertRanked(builder, loc, op, input, {}, scale, |
| 573 | zeroPoint, quantizedType); |
| 574 | |
| 575 | builder.create<linalg::YieldOp>(loc, result); |
| 576 | }) |
| 577 | .getResult(0); |
| 578 | |
| 579 | return result; |
| 580 | } |
| 581 | |
| 582 | // Convert an operation using per-channel quantization. |
| 583 | // |
| 584 | // - op |
| 585 | // 'quant.dcast' or 'quant.qcast' op. |
| 586 | // |
| 587 | // - input |
| 588 | // Scalar, ranked tensor, or unranked tensor. |
| 589 | // |
| 590 | // - quantizedType |
| 591 | // Per-channel quantized type. |
| 592 | // |
| 593 | Value convertPerChannel(OpBuilder &builder, Location loc, Operation *op, |
| 594 | Value input, |
| 595 | UniformQuantizedPerAxisType quantizedType) { |
| 596 | // Flatten unranked tensor into a 3D ranked tensor if necessary |
| 597 | bool isUnranked = isa<UnrankedTensorType>(input.getType()); |
| 598 | int64_t channelAxis = quantizedType.getQuantizedDimension(); |
| 599 | int64_t channelAxisSize = (int64_t)quantizedType.getScales().size(); |
| 600 | Value inputShape; |
| 601 | if (isUnranked) { |
| 602 | std::tie(input, inputShape) = flattenUnrankedTensorAroundAxis( |
| 603 | builder, loc, input, channelAxis, channelAxisSize); |
| 604 | channelAxis = 1; |
| 605 | } |
| 606 | |
| 607 | // Work on a ranked tensor |
| 608 | auto result = convertPerChannelRanked(builder, loc, op, input, quantizedType, |
| 609 | channelAxis); |
| 610 | |
| 611 | // Restore original tensor shape if unranked |
| 612 | if (isUnranked) |
| 613 | result = restoreUnrankedTensorShape(builder, loc, input: result, inputShape); |
| 614 | |
| 615 | return result; |
| 616 | } |
| 617 | |
| 618 | // Convert an operation using sub-channel quantization. |
| 619 | // |
| 620 | // - op |
| 621 | // 'quant.dcast' or 'quant.qcast' op. |
| 622 | // |
| 623 | // - input |
| 624 | // Scalar, ranked tensor. |
| 625 | // |
| 626 | // - quantizedType |
| 627 | // Sub-channel quantized type. |
| 628 | // |
| 629 | Value convertSubChannel(OpBuilder &builder, Location loc, Operation *op, |
| 630 | Value input, |
| 631 | UniformQuantizedSubChannelType quantizedType) { |
| 632 | auto *context = builder.getContext(); |
| 633 | |
| 634 | auto inputType = cast<RankedTensorType>(input.getType()); |
| 635 | auto inputRank = inputType.getRank(); |
| 636 | |
| 637 | auto scales = materializeSubChannelScales(builder, loc, quantizedType); |
| 638 | auto zeroPoints = |
| 639 | materializeSubChannelZeroPoints(builder, loc, quantizedType); |
| 640 | |
| 641 | auto elementType = isa<FloatType>(inputType.getElementType()) |
| 642 | ? quantizedType.getStorageType() |
| 643 | : quantizedType.getExpressedType(); |
| 644 | auto initShape = tensor::getMixedSizes(builder, loc, value: input); |
| 645 | Value init = builder.create<tensor::EmptyOp>(loc, initShape, elementType); |
| 646 | |
| 647 | SmallVector<utils::IteratorType> iteratorTypes(inputRank, |
| 648 | utils::IteratorType::parallel); |
| 649 | const SmallVector<std::pair<int32_t, int64_t>> &blockSizeInfo = |
| 650 | quantizedType.getBlockSizeInfo(); |
| 651 | SmallVector<AffineExpr> affineExprs(inputRank, |
| 652 | builder.getAffineConstantExpr(0)); |
| 653 | for (auto [quantizedDimension, blockSize] : blockSizeInfo) { |
| 654 | affineExprs[quantizedDimension] = |
| 655 | builder.getAffineDimExpr(quantizedDimension).floorDiv(blockSize); |
| 656 | } |
| 657 | auto affineMap = AffineMap::get(inputRank, 0, affineExprs, context); |
| 658 | SmallVector<AffineMap> indexingMaps{ |
| 659 | builder.getMultiDimIdentityMap(inputRank), affineMap, affineMap, |
| 660 | builder.getMultiDimIdentityMap(inputRank)}; |
| 661 | auto result = builder |
| 662 | .create<linalg::GenericOp>( |
| 663 | loc, |
| 664 | init.getType(), // resultType |
| 665 | ValueRange{input, scales, zeroPoints}, // inputs |
| 666 | ValueRange{init}, // outputs |
| 667 | indexingMaps, iteratorTypes, |
| 668 | [&](OpBuilder &builder, Location loc, ValueRange args) { |
| 669 | assert(args.size() == 4); |
| 670 | auto input = args[0]; |
| 671 | auto scale = args[1]; |
| 672 | auto zeroPoint = args[2]; |
| 673 | |
| 674 | auto result = |
| 675 | convertRanked(builder, loc, op, input, {}, scale, |
| 676 | zeroPoint, quantizedType); |
| 677 | |
| 678 | builder.create<linalg::YieldOp>(loc, result); |
| 679 | }) |
| 680 | .getResult(0); |
| 681 | |
| 682 | return result; |
| 683 | } |
| 684 | |
| 685 | // Convert a quantization operation. |
| 686 | // |
| 687 | // - op |
| 688 | // 'quant.dcast' or 'quant.qcast' op. |
| 689 | // |
| 690 | // - input |
| 691 | // Scalar, ranked tensor, or unranked tensor. The element type matches |
| 692 | // the storage type (quant.dcast) or expressed type (quant.qcast) of |
| 693 | // 'quantizedType'. |
| 694 | // |
| 695 | // - quantizedType |
| 696 | // Per-layer or per-channel quantized type. |
| 697 | // |
| 698 | Value convertQuantized(OpBuilder &builder, Location loc, Operation *op, |
| 699 | Value input, Type quantizedType) { |
| 700 | if (auto uniformQuantizedType = dyn_cast<UniformQuantizedType>(quantizedType)) |
| 701 | return convertPerLayer(builder, loc, op, input, uniformQuantizedType); |
| 702 | |
| 703 | if (auto uniformQuantizedPerAxisType = |
| 704 | dyn_cast<UniformQuantizedPerAxisType>(quantizedType)) |
| 705 | return convertPerChannel(builder, loc, op, input, |
| 706 | uniformQuantizedPerAxisType); |
| 707 | |
| 708 | if (auto uniformQuantizedSubChannelType = |
| 709 | dyn_cast<UniformQuantizedSubChannelType>(quantizedType)) |
| 710 | return convertSubChannel(builder, loc, op, input, |
| 711 | uniformQuantizedSubChannelType); |
| 712 | |
| 713 | llvm_unreachable("unexpected quantized type" ); |
| 714 | } |
| 715 | |
| 716 | // Lowering pattern for 'quant.dcast' |
| 717 | struct DequantizeCastOpConversion |
| 718 | : public OpConversionPattern<quant::DequantizeCastOp> { |
| 719 | using OpConversionPattern<quant::DequantizeCastOp>::OpConversionPattern; |
| 720 | |
| 721 | LogicalResult |
| 722 | matchAndRewrite(quant::DequantizeCastOp op, OpAdaptor adaptor, |
| 723 | ConversionPatternRewriter &rewriter) const override { |
| 724 | auto loc = op.getLoc(); |
| 725 | auto input = op.getInput(); |
| 726 | auto quantizedType = |
| 727 | cast<QuantizedType>(getScalarType(op.getInput().getType())); |
| 728 | |
| 729 | // Convert quantized input to storage type |
| 730 | auto storageScalarOrTensorType = |
| 731 | getScalarOrTensorType(quantizedType.getStorageType(), input.getType()); |
| 732 | input = rewriter.create<quant::StorageCastOp>( |
| 733 | loc, storageScalarOrTensorType, input); |
| 734 | |
| 735 | auto result = convertQuantized(rewriter, loc, op, input, quantizedType); |
| 736 | |
| 737 | rewriter.replaceOp(op, result); |
| 738 | return success(); |
| 739 | } |
| 740 | }; |
| 741 | |
| 742 | // Lowering pattern for 'quant.qcast' |
| 743 | struct QuantizeCastOpConversion |
| 744 | : public OpConversionPattern<quant::QuantizeCastOp> { |
| 745 | using OpConversionPattern<quant::QuantizeCastOp>::OpConversionPattern; |
| 746 | |
| 747 | LogicalResult |
| 748 | matchAndRewrite(quant::QuantizeCastOp op, OpAdaptor adaptor, |
| 749 | ConversionPatternRewriter &rewriter) const override { |
| 750 | auto loc = op.getLoc(); |
| 751 | auto input = op.getInput(); |
| 752 | auto quantizedType = getScalarType(op.getResult().getType()); |
| 753 | |
| 754 | // Flatten unranked tensor input |
| 755 | auto result = convertQuantized(rewriter, loc, op, input, quantizedType); |
| 756 | |
| 757 | // Cast stored value to result quantized value |
| 758 | rewriter.replaceOpWithNewOp<quant::StorageCastOp>( |
| 759 | op, op.getResult().getType(), result); |
| 760 | return success(); |
| 761 | } |
| 762 | }; |
| 763 | |
| 764 | struct LowerQuantOps : public impl::LowerQuantOpsBase<LowerQuantOps> { |
| 765 | void runOnOperation() override { |
| 766 | RewritePatternSet patterns(&getContext()); |
| 767 | populateLowerQuantOpsPatterns(patterns); |
| 768 | |
| 769 | ConversionTarget target(getContext()); |
| 770 | target.addLegalOp<quant::StorageCastOp>(); |
| 771 | target.addIllegalDialect<quant::QuantDialect>(); |
| 772 | target.addLegalDialect<arith::ArithDialect, linalg::LinalgDialect, |
| 773 | shape::ShapeDialect, tensor::TensorDialect>(); |
| 774 | |
| 775 | if (failed(applyPartialConversion(getOperation(), target, |
| 776 | std::move(patterns)))) |
| 777 | signalPassFailure(); |
| 778 | } |
| 779 | }; |
| 780 | |
| 781 | } // namespace |
| 782 | |
| 783 | void populateLowerQuantOpsPatterns(RewritePatternSet &patterns) { |
| 784 | patterns.add<DequantizeCastOpConversion, QuantizeCastOpConversion>( |
| 785 | patterns.getContext()); |
| 786 | } |
| 787 | |
| 788 | } // namespace quant |
| 789 | } // namespace mlir |
| 790 | |