| 1 | //===- FakeQuantSupport.cpp - Support utilities for FakeQuant ops ---------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Quant/IR/QuantTypes.h" |
| 10 | #include "mlir/Dialect/Quant/Utils/FakeQuantSupport.h" |
| 11 | |
| 12 | using namespace mlir; |
| 13 | using namespace mlir::quant; |
| 14 | |
| 15 | static bool getDefaultStorageParams(unsigned numBits, bool narrowRange, |
| 16 | bool isSigned, MLIRContext *ctx, |
| 17 | Type &storageType, int64_t &qmin, |
| 18 | int64_t &qmax) { |
| 19 | // Hard-coded type mapping from TFLite. |
| 20 | if (numBits <= 8) { |
| 21 | storageType = IntegerType::get(ctx, 8); |
| 22 | if (isSigned) { |
| 23 | qmin = -128; |
| 24 | qmax = 127; |
| 25 | } else { |
| 26 | qmin = 0; |
| 27 | qmax = 255; |
| 28 | } |
| 29 | } else if (numBits <= 16) { |
| 30 | storageType = IntegerType::get(ctx, 16); |
| 31 | if (isSigned) { |
| 32 | qmin = -32768; |
| 33 | qmax = 32767; |
| 34 | } else { |
| 35 | qmin = 0; |
| 36 | qmax = 65535; |
| 37 | } |
| 38 | } else if (numBits <= 32) { |
| 39 | storageType = IntegerType::get(ctx, 32); |
| 40 | if (isSigned) { |
| 41 | qmin = std::numeric_limits<int32_t>::min(); |
| 42 | qmax = std::numeric_limits<int32_t>::max(); |
| 43 | } else { |
| 44 | qmin = std::numeric_limits<uint32_t>::min(); |
| 45 | qmax = std::numeric_limits<uint32_t>::max(); |
| 46 | } |
| 47 | } else { |
| 48 | return true; |
| 49 | } |
| 50 | |
| 51 | // Handle narrowRange. |
| 52 | if (narrowRange) { |
| 53 | qmin += 1; |
| 54 | } |
| 55 | return false; |
| 56 | } |
| 57 | |
| 58 | // This is a specific implementation of nudging: |
| 59 | // If 0.0 < rmin < rmax or rmin < rmax < 0.0, the range will be shifted |
| 60 | // to include 0.0, but the range width size (rmax-rmin) isn't changed. The zero |
| 61 | // point is derived from the shifted range, and the scale isn't changed. As |
| 62 | // a consequence some values, which are supposed in the original [rmin, rmax] |
| 63 | // range will be outside the shifted range and be clamped during quantization. |
| 64 | // TODO: we should nudge the scale as well, but that requires the |
| 65 | // fake quant op used in the training to use the nudged scale as well. |
| 66 | static void getNudgedScaleAndZeroPoint(int64_t qmin, int64_t qmax, double rmin, |
| 67 | double rmax, double &scale, |
| 68 | int64_t &nudgedZeroPoint) { |
| 69 | // Determine the scale. |
| 70 | const double qminDouble = qmin; |
| 71 | const double qmaxDouble = qmax; |
| 72 | scale = (rmax - rmin) / (qmaxDouble - qminDouble); |
| 73 | |
| 74 | // Zero point computation. |
| 75 | // In float, solve the affine equation for any known pair |
| 76 | // (real value, corresponding quantized value), of which, two such pairs |
| 77 | // are known: (rmin, qmin), (rmax, qmax). |
| 78 | // The arithmetic error on the zero point computed from either pair will be |
| 79 | // roughly machine_epsilon * (sum of absolute values of terms). |
| 80 | // Use the variant that adds the smaller error. |
| 81 | const double zeroPointFromMin = qminDouble - rmin / scale; |
| 82 | const double zeroPointFromMinError = |
| 83 | std::abs(x: qminDouble) + std::abs(x: rmin / scale); |
| 84 | const double zeroPointFromMax = qmaxDouble - rmax / scale; |
| 85 | const double zeroPointFromMaxError = |
| 86 | std::abs(x: qmaxDouble) + std::abs(x: rmax / scale); |
| 87 | |
| 88 | const double zeroPointDouble = (zeroPointFromMinError < zeroPointFromMaxError) |
| 89 | ? zeroPointFromMin |
| 90 | : zeroPointFromMax; |
| 91 | |
| 92 | // Now nudge the zero point to be an integer. |
| 93 | nudgedZeroPoint = 0; |
| 94 | if (zeroPointDouble < qminDouble) { |
| 95 | nudgedZeroPoint = qmin; |
| 96 | } else if (zeroPointDouble > qmaxDouble) { |
| 97 | nudgedZeroPoint = qmax; |
| 98 | } else { |
| 99 | nudgedZeroPoint = round(x: zeroPointDouble); |
| 100 | } |
| 101 | |
| 102 | // By construction, the nudged zero point should always be in range. |
| 103 | assert(nudgedZeroPoint >= qmin); |
| 104 | assert(nudgedZeroPoint <= qmax); |
| 105 | } |
| 106 | |
| 107 | UniformQuantizedType |
| 108 | mlir::quant::fakeQuantAttrsToType(Location loc, unsigned numBits, double rmin, |
| 109 | double rmax, bool narrowRange, |
| 110 | Type expressedType, bool isSigned) { |
| 111 | MLIRContext *ctx = expressedType.getContext(); |
| 112 | unsigned flags = isSigned ? QuantizationFlags::Signed : 0; |
| 113 | Type storageType; |
| 114 | int64_t qmin; |
| 115 | int64_t qmax; |
| 116 | if (getDefaultStorageParams(numBits, narrowRange, isSigned, ctx, storageType, |
| 117 | qmin, qmax)) { |
| 118 | return (emitError(loc, message: "unsupported FakeQuant number of bits: " ) << numBits, |
| 119 | nullptr); |
| 120 | } |
| 121 | |
| 122 | // Special case where min/max is close enough. The tensor contents are all |
| 123 | // 0.0s, so the scale is set to 1.0 and the tensor can be quantized to zero |
| 124 | // points and dequantized to 0.0. |
| 125 | if (std::fabs(x: rmax - rmin) < std::numeric_limits<double>::epsilon()) { |
| 126 | return UniformQuantizedType::getChecked( |
| 127 | loc, args&: flags, args&: storageType, args&: expressedType, args: 1.0, args&: qmin, args&: qmin, args&: qmax); |
| 128 | } |
| 129 | |
| 130 | double scale; |
| 131 | int64_t nudgedZeroPoint; |
| 132 | getNudgedScaleAndZeroPoint(qmin, qmax, rmin, rmax, scale, nudgedZeroPoint); |
| 133 | |
| 134 | return UniformQuantizedType::getChecked(loc, args&: flags, args&: storageType, |
| 135 | args&: expressedType, args&: scale, args&: nudgedZeroPoint, |
| 136 | args&: qmin, args&: qmax); |
| 137 | } |
| 138 | |
| 139 | UniformQuantizedPerAxisType mlir::quant::fakeQuantAttrsToType( |
| 140 | Location loc, unsigned numBits, int32_t quantizedDimension, |
| 141 | ArrayRef<double> rmins, ArrayRef<double> rmaxs, bool narrowRange, |
| 142 | Type expressedType, bool isSigned) { |
| 143 | size_t axisSize = rmins.size(); |
| 144 | if (axisSize != rmaxs.size()) { |
| 145 | return (emitError(loc, message: "mismatched per-axis min and max size: " ) |
| 146 | << axisSize << " vs. " << rmaxs.size(), |
| 147 | nullptr); |
| 148 | } |
| 149 | |
| 150 | MLIRContext *ctx = expressedType.getContext(); |
| 151 | Type storageType; |
| 152 | int64_t qmin; |
| 153 | int64_t qmax; |
| 154 | if (getDefaultStorageParams(numBits, narrowRange, isSigned, ctx, storageType, |
| 155 | qmin, qmax)) { |
| 156 | return (emitError(loc, message: "unsupported FakeQuant number of bits: " ) << numBits, |
| 157 | nullptr); |
| 158 | } |
| 159 | |
| 160 | SmallVector<double, 4> scales; |
| 161 | SmallVector<int64_t, 4> zeroPoints; |
| 162 | scales.reserve(N: axisSize); |
| 163 | zeroPoints.reserve(N: axisSize); |
| 164 | for (size_t axis = 0; axis != axisSize; ++axis) { |
| 165 | double rmin = rmins[axis]; |
| 166 | double rmax = rmaxs[axis]; |
| 167 | if (std::fabs(x: rmax - rmin) < std::numeric_limits<double>::epsilon()) { |
| 168 | scales.push_back(Elt: 1.0); |
| 169 | zeroPoints.push_back(Elt: qmin); |
| 170 | continue; |
| 171 | } |
| 172 | |
| 173 | double scale; |
| 174 | int64_t nudgedZeroPoint; |
| 175 | getNudgedScaleAndZeroPoint(qmin, qmax, rmin, rmax, scale, nudgedZeroPoint); |
| 176 | scales.push_back(Elt: scale); |
| 177 | zeroPoints.push_back(Elt: nudgedZeroPoint); |
| 178 | } |
| 179 | |
| 180 | unsigned flags = isSigned ? QuantizationFlags::Signed : 0; |
| 181 | return UniformQuantizedPerAxisType::getChecked( |
| 182 | loc, args&: flags, args&: storageType, args&: expressedType, args&: scales, args&: zeroPoints, |
| 183 | args&: quantizedDimension, args&: qmin, args&: qmax); |
| 184 | } |
| 185 | |