| 1 | //===- Utils.cpp ---- Misc utilities for loop transformation ----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements miscellaneous loop transformation routines. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Dialect/SCF/Utils/Utils.h" |
| 14 | #include "mlir/Analysis/SliceAnalysis.h" |
| 15 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 16 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 17 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
| 18 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 19 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 20 | #include "mlir/IR/BuiltinOps.h" |
| 21 | #include "mlir/IR/IRMapping.h" |
| 22 | #include "mlir/IR/OpDefinition.h" |
| 23 | #include "mlir/IR/PatternMatch.h" |
| 24 | #include "mlir/Interfaces/SideEffectInterfaces.h" |
| 25 | #include "mlir/Transforms/RegionUtils.h" |
| 26 | #include "llvm/ADT/STLExtras.h" |
| 27 | #include "llvm/ADT/SetVector.h" |
| 28 | #include "llvm/ADT/SmallPtrSet.h" |
| 29 | #include "llvm/ADT/SmallVector.h" |
| 30 | #include "llvm/Support/Debug.h" |
| 31 | #include "llvm/Support/MathExtras.h" |
| 32 | #include <cstdint> |
| 33 | |
| 34 | using namespace mlir; |
| 35 | |
| 36 | #define DEBUG_TYPE "scf-utils" |
| 37 | #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") |
| 38 | #define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n") |
| 39 | |
| 40 | SmallVector<scf::ForOp> mlir::replaceLoopNestWithNewYields( |
| 41 | RewriterBase &rewriter, MutableArrayRef<scf::ForOp> loopNest, |
| 42 | ValueRange newIterOperands, const NewYieldValuesFn &newYieldValuesFn, |
| 43 | bool replaceIterOperandsUsesInLoop) { |
| 44 | if (loopNest.empty()) |
| 45 | return {}; |
| 46 | // This method is recursive (to make it more readable). Adding an |
| 47 | // assertion here to limit the recursion. (See |
| 48 | // https://discourse.llvm.org/t/rfc-update-to-mlir-developer-policy-on-recursion/62235) |
| 49 | assert(loopNest.size() <= 10 && |
| 50 | "exceeded recursion limit when yielding value from loop nest" ); |
| 51 | |
| 52 | // To yield a value from a perfectly nested loop nest, the following |
| 53 | // pattern needs to be created, i.e. starting with |
| 54 | // |
| 55 | // ```mlir |
| 56 | // scf.for .. { |
| 57 | // scf.for .. { |
| 58 | // scf.for .. { |
| 59 | // %value = ... |
| 60 | // } |
| 61 | // } |
| 62 | // } |
| 63 | // ``` |
| 64 | // |
| 65 | // needs to be modified to |
| 66 | // |
| 67 | // ```mlir |
| 68 | // %0 = scf.for .. iter_args(%arg0 = %init) { |
| 69 | // %1 = scf.for .. iter_args(%arg1 = %arg0) { |
| 70 | // %2 = scf.for .. iter_args(%arg2 = %arg1) { |
| 71 | // %value = ... |
| 72 | // scf.yield %value |
| 73 | // } |
| 74 | // scf.yield %2 |
| 75 | // } |
| 76 | // scf.yield %1 |
| 77 | // } |
| 78 | // ``` |
| 79 | // |
| 80 | // The inner most loop is handled using the `replaceWithAdditionalYields` |
| 81 | // that works on a single loop. |
| 82 | if (loopNest.size() == 1) { |
| 83 | auto innerMostLoop = |
| 84 | cast<scf::ForOp>(*loopNest.back().replaceWithAdditionalYields( |
| 85 | rewriter, newIterOperands, replaceIterOperandsUsesInLoop, |
| 86 | newYieldValuesFn)); |
| 87 | return {innerMostLoop}; |
| 88 | } |
| 89 | // The outer loops are modified by calling this method recursively |
| 90 | // - The return value of the inner loop is the value yielded by this loop. |
| 91 | // - The region iter args of this loop are the init_args for the inner loop. |
| 92 | SmallVector<scf::ForOp> newLoopNest; |
| 93 | NewYieldValuesFn fn = |
| 94 | [&](OpBuilder &innerBuilder, Location loc, |
| 95 | ArrayRef<BlockArgument> innerNewBBArgs) -> SmallVector<Value> { |
| 96 | newLoopNest = replaceLoopNestWithNewYields(rewriter, loopNest.drop_front(), |
| 97 | innerNewBBArgs, newYieldValuesFn, |
| 98 | replaceIterOperandsUsesInLoop); |
| 99 | return llvm::to_vector(llvm::map_range( |
| 100 | newLoopNest.front().getResults().take_back(innerNewBBArgs.size()), |
| 101 | [](OpResult r) -> Value { return r; })); |
| 102 | }; |
| 103 | scf::ForOp outerMostLoop = |
| 104 | cast<scf::ForOp>(*loopNest.front().replaceWithAdditionalYields( |
| 105 | rewriter, newIterOperands, replaceIterOperandsUsesInLoop, fn)); |
| 106 | newLoopNest.insert(newLoopNest.begin(), outerMostLoop); |
| 107 | return newLoopNest; |
| 108 | } |
| 109 | |
| 110 | /// Outline a region with a single block into a new FuncOp. |
| 111 | /// Assumes the FuncOp result types is the type of the yielded operands of the |
| 112 | /// single block. This constraint makes it easy to determine the result. |
| 113 | /// This method also clones the `arith::ConstantIndexOp` at the start of |
| 114 | /// `outlinedFuncBody` to alloc simple canonicalizations. If `callOp` is |
| 115 | /// provided, it will be set to point to the operation that calls the outlined |
| 116 | /// function. |
| 117 | // TODO: support more than single-block regions. |
| 118 | // TODO: more flexible constant handling. |
| 119 | FailureOr<func::FuncOp> mlir::outlineSingleBlockRegion(RewriterBase &rewriter, |
| 120 | Location loc, |
| 121 | Region ®ion, |
| 122 | StringRef funcName, |
| 123 | func::CallOp *callOp) { |
| 124 | assert(!funcName.empty() && "funcName cannot be empty" ); |
| 125 | if (!region.hasOneBlock()) |
| 126 | return failure(); |
| 127 | |
| 128 | Block *originalBlock = ®ion.front(); |
| 129 | Operation *originalTerminator = originalBlock->getTerminator(); |
| 130 | |
| 131 | // Outline before current function. |
| 132 | OpBuilder::InsertionGuard g(rewriter); |
| 133 | rewriter.setInsertionPoint(region.getParentOfType<FunctionOpInterface>()); |
| 134 | |
| 135 | SetVector<Value> captures; |
| 136 | getUsedValuesDefinedAbove(regions: region, values&: captures); |
| 137 | |
| 138 | ValueRange outlinedValues(captures.getArrayRef()); |
| 139 | SmallVector<Type> outlinedFuncArgTypes; |
| 140 | SmallVector<Location> outlinedFuncArgLocs; |
| 141 | // Region's arguments are exactly the first block's arguments as per |
| 142 | // Region::getArguments(). |
| 143 | // Func's arguments are cat(regions's arguments, captures arguments). |
| 144 | for (BlockArgument arg : region.getArguments()) { |
| 145 | outlinedFuncArgTypes.push_back(Elt: arg.getType()); |
| 146 | outlinedFuncArgLocs.push_back(Elt: arg.getLoc()); |
| 147 | } |
| 148 | for (Value value : outlinedValues) { |
| 149 | outlinedFuncArgTypes.push_back(Elt: value.getType()); |
| 150 | outlinedFuncArgLocs.push_back(Elt: value.getLoc()); |
| 151 | } |
| 152 | FunctionType outlinedFuncType = |
| 153 | FunctionType::get(rewriter.getContext(), outlinedFuncArgTypes, |
| 154 | originalTerminator->getOperandTypes()); |
| 155 | auto outlinedFunc = |
| 156 | rewriter.create<func::FuncOp>(loc, funcName, outlinedFuncType); |
| 157 | Block *outlinedFuncBody = outlinedFunc.addEntryBlock(); |
| 158 | |
| 159 | // Merge blocks while replacing the original block operands. |
| 160 | // Warning: `mergeBlocks` erases the original block, reconstruct it later. |
| 161 | int64_t numOriginalBlockArguments = originalBlock->getNumArguments(); |
| 162 | auto outlinedFuncBlockArgs = outlinedFuncBody->getArguments(); |
| 163 | { |
| 164 | OpBuilder::InsertionGuard g(rewriter); |
| 165 | rewriter.setInsertionPointToEnd(outlinedFuncBody); |
| 166 | rewriter.mergeBlocks( |
| 167 | source: originalBlock, dest: outlinedFuncBody, |
| 168 | argValues: outlinedFuncBlockArgs.take_front(numOriginalBlockArguments)); |
| 169 | // Explicitly set up a new ReturnOp terminator. |
| 170 | rewriter.setInsertionPointToEnd(outlinedFuncBody); |
| 171 | rewriter.create<func::ReturnOp>(loc, originalTerminator->getResultTypes(), |
| 172 | originalTerminator->getOperands()); |
| 173 | } |
| 174 | |
| 175 | // Reconstruct the block that was deleted and add a |
| 176 | // terminator(call_results). |
| 177 | Block *newBlock = rewriter.createBlock( |
| 178 | parent: ®ion, insertPt: region.begin(), |
| 179 | argTypes: TypeRange{outlinedFuncArgTypes}.take_front(n: numOriginalBlockArguments), |
| 180 | locs: ArrayRef<Location>(outlinedFuncArgLocs) |
| 181 | .take_front(N: numOriginalBlockArguments)); |
| 182 | { |
| 183 | OpBuilder::InsertionGuard g(rewriter); |
| 184 | rewriter.setInsertionPointToEnd(newBlock); |
| 185 | SmallVector<Value> callValues; |
| 186 | llvm::append_range(C&: callValues, R: newBlock->getArguments()); |
| 187 | llvm::append_range(C&: callValues, R&: outlinedValues); |
| 188 | auto call = rewriter.create<func::CallOp>(loc, outlinedFunc, callValues); |
| 189 | if (callOp) |
| 190 | *callOp = call; |
| 191 | |
| 192 | // `originalTerminator` was moved to `outlinedFuncBody` and is still valid. |
| 193 | // Clone `originalTerminator` to take the callOp results then erase it from |
| 194 | // `outlinedFuncBody`. |
| 195 | IRMapping bvm; |
| 196 | bvm.map(originalTerminator->getOperands(), call->getResults()); |
| 197 | rewriter.clone(op&: *originalTerminator, mapper&: bvm); |
| 198 | rewriter.eraseOp(op: originalTerminator); |
| 199 | } |
| 200 | |
| 201 | // Lastly, explicit RAUW outlinedValues, only for uses within `outlinedFunc`. |
| 202 | // Clone the `arith::ConstantIndexOp` at the start of `outlinedFuncBody`. |
| 203 | for (auto it : llvm::zip(outlinedValues, outlinedFuncBlockArgs.take_back( |
| 204 | outlinedValues.size()))) { |
| 205 | Value orig = std::get<0>(it); |
| 206 | Value repl = std::get<1>(it); |
| 207 | { |
| 208 | OpBuilder::InsertionGuard g(rewriter); |
| 209 | rewriter.setInsertionPointToStart(outlinedFuncBody); |
| 210 | if (Operation *cst = orig.getDefiningOp<arith::ConstantIndexOp>()) { |
| 211 | IRMapping bvm; |
| 212 | repl = rewriter.clone(*cst, bvm)->getResult(0); |
| 213 | } |
| 214 | } |
| 215 | orig.replaceUsesWithIf(repl, [&](OpOperand &opOperand) { |
| 216 | return outlinedFunc->isProperAncestor(opOperand.getOwner()); |
| 217 | }); |
| 218 | } |
| 219 | |
| 220 | return outlinedFunc; |
| 221 | } |
| 222 | |
| 223 | LogicalResult mlir::outlineIfOp(RewriterBase &b, scf::IfOp ifOp, |
| 224 | func::FuncOp *thenFn, StringRef thenFnName, |
| 225 | func::FuncOp *elseFn, StringRef elseFnName) { |
| 226 | IRRewriter rewriter(b); |
| 227 | Location loc = ifOp.getLoc(); |
| 228 | FailureOr<func::FuncOp> outlinedFuncOpOrFailure; |
| 229 | if (thenFn && !ifOp.getThenRegion().empty()) { |
| 230 | outlinedFuncOpOrFailure = outlineSingleBlockRegion( |
| 231 | rewriter, loc, ifOp.getThenRegion(), thenFnName); |
| 232 | if (failed(Result: outlinedFuncOpOrFailure)) |
| 233 | return failure(); |
| 234 | *thenFn = *outlinedFuncOpOrFailure; |
| 235 | } |
| 236 | if (elseFn && !ifOp.getElseRegion().empty()) { |
| 237 | outlinedFuncOpOrFailure = outlineSingleBlockRegion( |
| 238 | rewriter, loc, ifOp.getElseRegion(), elseFnName); |
| 239 | if (failed(Result: outlinedFuncOpOrFailure)) |
| 240 | return failure(); |
| 241 | *elseFn = *outlinedFuncOpOrFailure; |
| 242 | } |
| 243 | return success(); |
| 244 | } |
| 245 | |
| 246 | bool mlir::getInnermostParallelLoops(Operation *rootOp, |
| 247 | SmallVectorImpl<scf::ParallelOp> &result) { |
| 248 | assert(rootOp != nullptr && "Root operation must not be a nullptr." ); |
| 249 | bool rootEnclosesPloops = false; |
| 250 | for (Region ®ion : rootOp->getRegions()) { |
| 251 | for (Block &block : region.getBlocks()) { |
| 252 | for (Operation &op : block) { |
| 253 | bool enclosesPloops = getInnermostParallelLoops(&op, result); |
| 254 | rootEnclosesPloops |= enclosesPloops; |
| 255 | if (auto ploop = dyn_cast<scf::ParallelOp>(op)) { |
| 256 | rootEnclosesPloops = true; |
| 257 | |
| 258 | // Collect parallel loop if it is an innermost one. |
| 259 | if (!enclosesPloops) |
| 260 | result.push_back(ploop); |
| 261 | } |
| 262 | } |
| 263 | } |
| 264 | } |
| 265 | return rootEnclosesPloops; |
| 266 | } |
| 267 | |
| 268 | // Build the IR that performs ceil division of a positive value by a constant: |
| 269 | // ceildiv(a, B) = divis(a + (B-1), B) |
| 270 | // where divis is rounding-to-zero division. |
| 271 | static Value ceilDivPositive(OpBuilder &builder, Location loc, Value dividend, |
| 272 | int64_t divisor) { |
| 273 | assert(divisor > 0 && "expected positive divisor" ); |
| 274 | assert(dividend.getType().isIntOrIndex() && |
| 275 | "expected integer or index-typed value" ); |
| 276 | |
| 277 | Value divisorMinusOneCst = builder.create<arith::ConstantOp>( |
| 278 | loc, builder.getIntegerAttr(dividend.getType(), divisor - 1)); |
| 279 | Value divisorCst = builder.create<arith::ConstantOp>( |
| 280 | loc, builder.getIntegerAttr(dividend.getType(), divisor)); |
| 281 | Value sum = builder.create<arith::AddIOp>(loc, dividend, divisorMinusOneCst); |
| 282 | return builder.create<arith::DivUIOp>(loc, sum, divisorCst); |
| 283 | } |
| 284 | |
| 285 | // Build the IR that performs ceil division of a positive value by another |
| 286 | // positive value: |
| 287 | // ceildiv(a, b) = divis(a + (b - 1), b) |
| 288 | // where divis is rounding-to-zero division. |
| 289 | static Value ceilDivPositive(OpBuilder &builder, Location loc, Value dividend, |
| 290 | Value divisor) { |
| 291 | assert(dividend.getType().isIntOrIndex() && |
| 292 | "expected integer or index-typed value" ); |
| 293 | Value cstOne = builder.create<arith::ConstantOp>( |
| 294 | loc, builder.getOneAttr(dividend.getType())); |
| 295 | Value divisorMinusOne = builder.create<arith::SubIOp>(loc, divisor, cstOne); |
| 296 | Value sum = builder.create<arith::AddIOp>(loc, dividend, divisorMinusOne); |
| 297 | return builder.create<arith::DivUIOp>(loc, sum, divisor); |
| 298 | } |
| 299 | |
| 300 | /// Returns the trip count of `forOp` if its' low bound, high bound and step are |
| 301 | /// constants, or optional otherwise. Trip count is computed as |
| 302 | /// ceilDiv(highBound - lowBound, step). |
| 303 | static std::optional<int64_t> getConstantTripCount(scf::ForOp forOp) { |
| 304 | std::optional<int64_t> lbCstOp = getConstantIntValue(forOp.getLowerBound()); |
| 305 | std::optional<int64_t> ubCstOp = getConstantIntValue(forOp.getUpperBound()); |
| 306 | std::optional<int64_t> stepCstOp = getConstantIntValue(forOp.getStep()); |
| 307 | if (!lbCstOp.has_value() || !ubCstOp.has_value() || !stepCstOp.has_value()) |
| 308 | return {}; |
| 309 | |
| 310 | // Constant loop bounds computation. |
| 311 | int64_t lbCst = lbCstOp.value(); |
| 312 | int64_t ubCst = ubCstOp.value(); |
| 313 | int64_t stepCst = stepCstOp.value(); |
| 314 | assert(lbCst >= 0 && ubCst >= 0 && stepCst > 0 && |
| 315 | "expected positive loop bounds and step" ); |
| 316 | return llvm::divideCeilSigned(Numerator: ubCst - lbCst, Denominator: stepCst); |
| 317 | } |
| 318 | |
| 319 | /// Generates unrolled copies of scf::ForOp 'loopBodyBlock', with |
| 320 | /// associated 'forOpIV' by 'unrollFactor', calling 'ivRemapFn' to remap |
| 321 | /// 'forOpIV' for each unrolled body. If specified, annotates the Ops in each |
| 322 | /// unrolled iteration using annotateFn. |
| 323 | static void generateUnrolledLoop( |
| 324 | Block *loopBodyBlock, Value forOpIV, uint64_t unrollFactor, |
| 325 | function_ref<Value(unsigned, Value, OpBuilder)> ivRemapFn, |
| 326 | function_ref<void(unsigned, Operation *, OpBuilder)> annotateFn, |
| 327 | ValueRange iterArgs, ValueRange yieldedValues) { |
| 328 | // Builder to insert unrolled bodies just before the terminator of the body of |
| 329 | // 'forOp'. |
| 330 | auto builder = OpBuilder::atBlockTerminator(block: loopBodyBlock); |
| 331 | |
| 332 | constexpr auto defaultAnnotateFn = [](unsigned, Operation *, OpBuilder) {}; |
| 333 | if (!annotateFn) |
| 334 | annotateFn = defaultAnnotateFn; |
| 335 | |
| 336 | // Keep a pointer to the last non-terminator operation in the original block |
| 337 | // so that we know what to clone (since we are doing this in-place). |
| 338 | Block::iterator srcBlockEnd = std::prev(x: loopBodyBlock->end(), n: 2); |
| 339 | |
| 340 | // Unroll the contents of 'forOp' (append unrollFactor - 1 additional copies). |
| 341 | SmallVector<Value, 4> lastYielded(yieldedValues); |
| 342 | |
| 343 | for (unsigned i = 1; i < unrollFactor; i++) { |
| 344 | IRMapping operandMap; |
| 345 | |
| 346 | // Prepare operand map. |
| 347 | operandMap.map(from&: iterArgs, to&: lastYielded); |
| 348 | |
| 349 | // If the induction variable is used, create a remapping to the value for |
| 350 | // this unrolled instance. |
| 351 | if (!forOpIV.use_empty()) { |
| 352 | Value ivUnroll = ivRemapFn(i, forOpIV, builder); |
| 353 | operandMap.map(from: forOpIV, to: ivUnroll); |
| 354 | } |
| 355 | |
| 356 | // Clone the original body of 'forOp'. |
| 357 | for (auto it = loopBodyBlock->begin(); it != std::next(x: srcBlockEnd); it++) { |
| 358 | Operation *clonedOp = builder.clone(op&: *it, mapper&: operandMap); |
| 359 | annotateFn(i, clonedOp, builder); |
| 360 | } |
| 361 | |
| 362 | // Update yielded values. |
| 363 | for (unsigned i = 0, e = lastYielded.size(); i < e; i++) |
| 364 | lastYielded[i] = operandMap.lookupOrDefault(from: yieldedValues[i]); |
| 365 | } |
| 366 | |
| 367 | // Make sure we annotate the Ops in the original body. We do this last so that |
| 368 | // any annotations are not copied into the cloned Ops above. |
| 369 | for (auto it = loopBodyBlock->begin(); it != std::next(x: srcBlockEnd); it++) |
| 370 | annotateFn(0, &*it, builder); |
| 371 | |
| 372 | // Update operands of the yield statement. |
| 373 | loopBodyBlock->getTerminator()->setOperands(lastYielded); |
| 374 | } |
| 375 | |
| 376 | /// Unrolls 'forOp' by 'unrollFactor', returns the unrolled main loop and the |
| 377 | /// epilogue loop, if the loop is unrolled. |
| 378 | FailureOr<UnrolledLoopInfo> mlir::loopUnrollByFactor( |
| 379 | scf::ForOp forOp, uint64_t unrollFactor, |
| 380 | function_ref<void(unsigned, Operation *, OpBuilder)> annotateFn) { |
| 381 | assert(unrollFactor > 0 && "expected positive unroll factor" ); |
| 382 | |
| 383 | // Return if the loop body is empty. |
| 384 | if (llvm::hasSingleElement(forOp.getBody()->getOperations())) |
| 385 | return UnrolledLoopInfo{forOp, std::nullopt}; |
| 386 | |
| 387 | // Compute tripCount = ceilDiv((upperBound - lowerBound), step) and populate |
| 388 | // 'upperBoundUnrolled' and 'stepUnrolled' for static and dynamic cases. |
| 389 | OpBuilder boundsBuilder(forOp); |
| 390 | IRRewriter rewriter(forOp.getContext()); |
| 391 | auto loc = forOp.getLoc(); |
| 392 | Value step = forOp.getStep(); |
| 393 | Value upperBoundUnrolled; |
| 394 | Value stepUnrolled; |
| 395 | bool generateEpilogueLoop = true; |
| 396 | |
| 397 | std::optional<int64_t> constTripCount = getConstantTripCount(forOp); |
| 398 | if (constTripCount) { |
| 399 | // Constant loop bounds computation. |
| 400 | int64_t lbCst = getConstantIntValue(forOp.getLowerBound()).value(); |
| 401 | int64_t ubCst = getConstantIntValue(forOp.getUpperBound()).value(); |
| 402 | int64_t stepCst = getConstantIntValue(forOp.getStep()).value(); |
| 403 | if (unrollFactor == 1) { |
| 404 | if (*constTripCount == 1 && |
| 405 | failed(forOp.promoteIfSingleIteration(rewriter))) |
| 406 | return failure(); |
| 407 | return UnrolledLoopInfo{forOp, std::nullopt}; |
| 408 | } |
| 409 | |
| 410 | int64_t tripCountEvenMultiple = |
| 411 | *constTripCount - (*constTripCount % unrollFactor); |
| 412 | int64_t upperBoundUnrolledCst = lbCst + tripCountEvenMultiple * stepCst; |
| 413 | int64_t stepUnrolledCst = stepCst * unrollFactor; |
| 414 | |
| 415 | // Create constant for 'upperBoundUnrolled' and set epilogue loop flag. |
| 416 | generateEpilogueLoop = upperBoundUnrolledCst < ubCst; |
| 417 | if (generateEpilogueLoop) |
| 418 | upperBoundUnrolled = boundsBuilder.create<arith::ConstantOp>( |
| 419 | loc, boundsBuilder.getIntegerAttr(forOp.getUpperBound().getType(), |
| 420 | upperBoundUnrolledCst)); |
| 421 | else |
| 422 | upperBoundUnrolled = forOp.getUpperBound(); |
| 423 | |
| 424 | // Create constant for 'stepUnrolled'. |
| 425 | stepUnrolled = stepCst == stepUnrolledCst |
| 426 | ? step |
| 427 | : boundsBuilder.create<arith::ConstantOp>( |
| 428 | loc, boundsBuilder.getIntegerAttr( |
| 429 | step.getType(), stepUnrolledCst)); |
| 430 | } else { |
| 431 | // Dynamic loop bounds computation. |
| 432 | // TODO: Add dynamic asserts for negative lb/ub/step, or |
| 433 | // consider using ceilDiv from AffineApplyExpander. |
| 434 | auto lowerBound = forOp.getLowerBound(); |
| 435 | auto upperBound = forOp.getUpperBound(); |
| 436 | Value diff = |
| 437 | boundsBuilder.create<arith::SubIOp>(loc, upperBound, lowerBound); |
| 438 | Value tripCount = ceilDivPositive(boundsBuilder, loc, diff, step); |
| 439 | Value unrollFactorCst = boundsBuilder.create<arith::ConstantOp>( |
| 440 | loc, boundsBuilder.getIntegerAttr(tripCount.getType(), unrollFactor)); |
| 441 | Value tripCountRem = |
| 442 | boundsBuilder.create<arith::RemSIOp>(loc, tripCount, unrollFactorCst); |
| 443 | // Compute tripCountEvenMultiple = tripCount - (tripCount % unrollFactor) |
| 444 | Value tripCountEvenMultiple = |
| 445 | boundsBuilder.create<arith::SubIOp>(loc, tripCount, tripCountRem); |
| 446 | // Compute upperBoundUnrolled = lowerBound + tripCountEvenMultiple * step |
| 447 | upperBoundUnrolled = boundsBuilder.create<arith::AddIOp>( |
| 448 | loc, lowerBound, |
| 449 | boundsBuilder.create<arith::MulIOp>(loc, tripCountEvenMultiple, step)); |
| 450 | // Scale 'step' by 'unrollFactor'. |
| 451 | stepUnrolled = |
| 452 | boundsBuilder.create<arith::MulIOp>(loc, step, unrollFactorCst); |
| 453 | } |
| 454 | |
| 455 | UnrolledLoopInfo resultLoops; |
| 456 | |
| 457 | // Create epilogue clean up loop starting at 'upperBoundUnrolled'. |
| 458 | if (generateEpilogueLoop) { |
| 459 | OpBuilder epilogueBuilder(forOp->getContext()); |
| 460 | epilogueBuilder.setInsertionPointAfter(forOp); |
| 461 | auto epilogueForOp = cast<scf::ForOp>(epilogueBuilder.clone(*forOp)); |
| 462 | epilogueForOp.setLowerBound(upperBoundUnrolled); |
| 463 | |
| 464 | // Update uses of loop results. |
| 465 | auto results = forOp.getResults(); |
| 466 | auto epilogueResults = epilogueForOp.getResults(); |
| 467 | |
| 468 | for (auto e : llvm::zip(results, epilogueResults)) { |
| 469 | std::get<0>(e).replaceAllUsesWith(std::get<1>(e)); |
| 470 | } |
| 471 | epilogueForOp->setOperands(epilogueForOp.getNumControlOperands(), |
| 472 | epilogueForOp.getInitArgs().size(), results); |
| 473 | if (epilogueForOp.promoteIfSingleIteration(rewriter).failed()) |
| 474 | resultLoops.epilogueLoopOp = epilogueForOp; |
| 475 | } |
| 476 | |
| 477 | // Create unrolled loop. |
| 478 | forOp.setUpperBound(upperBoundUnrolled); |
| 479 | forOp.setStep(stepUnrolled); |
| 480 | |
| 481 | auto iterArgs = ValueRange(forOp.getRegionIterArgs()); |
| 482 | auto yieldedValues = forOp.getBody()->getTerminator()->getOperands(); |
| 483 | |
| 484 | generateUnrolledLoop( |
| 485 | forOp.getBody(), forOp.getInductionVar(), unrollFactor, |
| 486 | [&](unsigned i, Value iv, OpBuilder b) { |
| 487 | // iv' = iv + step * i; |
| 488 | auto stride = b.create<arith::MulIOp>( |
| 489 | loc, step, |
| 490 | b.create<arith::ConstantOp>(loc, |
| 491 | b.getIntegerAttr(iv.getType(), i))); |
| 492 | return b.create<arith::AddIOp>(loc, iv, stride); |
| 493 | }, |
| 494 | annotateFn, iterArgs, yieldedValues); |
| 495 | // Promote the loop body up if this has turned into a single iteration loop. |
| 496 | if (forOp.promoteIfSingleIteration(rewriter).failed()) |
| 497 | resultLoops.mainLoopOp = forOp; |
| 498 | return resultLoops; |
| 499 | } |
| 500 | |
| 501 | /// Unrolls this loop completely. |
| 502 | LogicalResult mlir::loopUnrollFull(scf::ForOp forOp) { |
| 503 | IRRewriter rewriter(forOp.getContext()); |
| 504 | std::optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp); |
| 505 | if (!mayBeConstantTripCount.has_value()) |
| 506 | return failure(); |
| 507 | uint64_t tripCount = *mayBeConstantTripCount; |
| 508 | if (tripCount == 0) |
| 509 | return success(); |
| 510 | if (tripCount == 1) |
| 511 | return forOp.promoteIfSingleIteration(rewriter); |
| 512 | return loopUnrollByFactor(forOp, tripCount); |
| 513 | } |
| 514 | |
| 515 | /// Check if bounds of all inner loops are defined outside of `forOp` |
| 516 | /// and return false if not. |
| 517 | static bool areInnerBoundsInvariant(scf::ForOp forOp) { |
| 518 | auto walkResult = forOp.walk([&](scf::ForOp innerForOp) { |
| 519 | if (!forOp.isDefinedOutsideOfLoop(innerForOp.getLowerBound()) || |
| 520 | !forOp.isDefinedOutsideOfLoop(innerForOp.getUpperBound()) || |
| 521 | !forOp.isDefinedOutsideOfLoop(innerForOp.getStep())) |
| 522 | return WalkResult::interrupt(); |
| 523 | |
| 524 | return WalkResult::advance(); |
| 525 | }); |
| 526 | return !walkResult.wasInterrupted(); |
| 527 | } |
| 528 | |
| 529 | /// Unrolls and jams this loop by the specified factor. |
| 530 | LogicalResult mlir::loopUnrollJamByFactor(scf::ForOp forOp, |
| 531 | uint64_t unrollJamFactor) { |
| 532 | assert(unrollJamFactor > 0 && "unroll jam factor should be positive" ); |
| 533 | |
| 534 | if (unrollJamFactor == 1) |
| 535 | return success(); |
| 536 | |
| 537 | // If any control operand of any inner loop of `forOp` is defined within |
| 538 | // `forOp`, no unroll jam. |
| 539 | if (!areInnerBoundsInvariant(forOp)) { |
| 540 | LDBG("failed to unroll and jam: inner bounds are not invariant" ); |
| 541 | return failure(); |
| 542 | } |
| 543 | |
| 544 | // Currently, for operations with results are not supported. |
| 545 | if (forOp->getNumResults() > 0) { |
| 546 | LDBG("failed to unroll and jam: unsupported loop with results" ); |
| 547 | return failure(); |
| 548 | } |
| 549 | |
| 550 | // Currently, only constant trip count that divided by the unroll factor is |
| 551 | // supported. |
| 552 | std::optional<uint64_t> tripCount = getConstantTripCount(forOp); |
| 553 | if (!tripCount.has_value()) { |
| 554 | // If the trip count is dynamic, do not unroll & jam. |
| 555 | LDBG("failed to unroll and jam: trip count could not be determined" ); |
| 556 | return failure(); |
| 557 | } |
| 558 | if (unrollJamFactor > *tripCount) { |
| 559 | LDBG("unroll and jam factor is greater than trip count, set factor to trip " |
| 560 | "count" ); |
| 561 | unrollJamFactor = *tripCount; |
| 562 | } else if (*tripCount % unrollJamFactor != 0) { |
| 563 | LDBG("failed to unroll and jam: unsupported trip count that is not a " |
| 564 | "multiple of unroll jam factor" ); |
| 565 | return failure(); |
| 566 | } |
| 567 | |
| 568 | // Nothing in the loop body other than the terminator. |
| 569 | if (llvm::hasSingleElement(forOp.getBody()->getOperations())) |
| 570 | return success(); |
| 571 | |
| 572 | // Gather all sub-blocks to jam upon the loop being unrolled. |
| 573 | JamBlockGatherer<scf::ForOp> jbg; |
| 574 | jbg.walk(forOp); |
| 575 | auto &subBlocks = jbg.subBlocks; |
| 576 | |
| 577 | // Collect inner loops. |
| 578 | SmallVector<scf::ForOp> innerLoops; |
| 579 | forOp.walk([&](scf::ForOp innerForOp) { innerLoops.push_back(innerForOp); }); |
| 580 | |
| 581 | // `operandMaps[i - 1]` carries old->new operand mapping for the ith unrolled |
| 582 | // iteration. There are (`unrollJamFactor` - 1) iterations. |
| 583 | SmallVector<IRMapping> operandMaps(unrollJamFactor - 1); |
| 584 | |
| 585 | // For any loop with iter_args, replace it with a new loop that has |
| 586 | // `unrollJamFactor` copies of its iterOperands, iter_args and yield |
| 587 | // operands. |
| 588 | SmallVector<scf::ForOp> newInnerLoops; |
| 589 | IRRewriter rewriter(forOp.getContext()); |
| 590 | for (scf::ForOp oldForOp : innerLoops) { |
| 591 | SmallVector<Value> dupIterOperands, dupYieldOperands; |
| 592 | ValueRange oldIterOperands = oldForOp.getInits(); |
| 593 | ValueRange oldIterArgs = oldForOp.getRegionIterArgs(); |
| 594 | ValueRange oldYieldOperands = |
| 595 | cast<scf::YieldOp>(oldForOp.getBody()->getTerminator()).getOperands(); |
| 596 | // Get additional iterOperands, iterArgs, and yield operands. We will |
| 597 | // fix iterOperands and yield operands after cloning of sub-blocks. |
| 598 | for (unsigned i = unrollJamFactor - 1; i >= 1; --i) { |
| 599 | dupIterOperands.append(oldIterOperands.begin(), oldIterOperands.end()); |
| 600 | dupYieldOperands.append(oldYieldOperands.begin(), oldYieldOperands.end()); |
| 601 | } |
| 602 | // Create a new loop with additional iterOperands, iter_args and yield |
| 603 | // operands. This new loop will take the loop body of the original loop. |
| 604 | bool forOpReplaced = oldForOp == forOp; |
| 605 | scf::ForOp newForOp = |
| 606 | cast<scf::ForOp>(*oldForOp.replaceWithAdditionalYields( |
| 607 | rewriter, dupIterOperands, /*replaceInitOperandUsesInLoop=*/false, |
| 608 | [&](OpBuilder &b, Location loc, ArrayRef<BlockArgument> newBbArgs) { |
| 609 | return dupYieldOperands; |
| 610 | })); |
| 611 | newInnerLoops.push_back(newForOp); |
| 612 | // `forOp` has been replaced with a new loop. |
| 613 | if (forOpReplaced) |
| 614 | forOp = newForOp; |
| 615 | // Update `operandMaps` for `newForOp` iterArgs and results. |
| 616 | ValueRange newIterArgs = newForOp.getRegionIterArgs(); |
| 617 | unsigned oldNumIterArgs = oldIterArgs.size(); |
| 618 | ValueRange newResults = newForOp.getResults(); |
| 619 | unsigned oldNumResults = newResults.size() / unrollJamFactor; |
| 620 | assert(oldNumIterArgs == oldNumResults && |
| 621 | "oldNumIterArgs must be the same as oldNumResults" ); |
| 622 | for (unsigned i = unrollJamFactor - 1; i >= 1; --i) { |
| 623 | for (unsigned j = 0; j < oldNumIterArgs; ++j) { |
| 624 | // `newForOp` has `unrollJamFactor` - 1 new sets of iterArgs and |
| 625 | // results. Update `operandMaps[i - 1]` to map old iterArgs and results |
| 626 | // to those in the `i`th new set. |
| 627 | operandMaps[i - 1].map(newIterArgs[j], |
| 628 | newIterArgs[i * oldNumIterArgs + j]); |
| 629 | operandMaps[i - 1].map(newResults[j], |
| 630 | newResults[i * oldNumResults + j]); |
| 631 | } |
| 632 | } |
| 633 | } |
| 634 | |
| 635 | // Scale the step of loop being unroll-jammed by the unroll-jam factor. |
| 636 | rewriter.setInsertionPoint(forOp); |
| 637 | int64_t step = forOp.getConstantStep()->getSExtValue(); |
| 638 | auto newStep = rewriter.createOrFold<arith::MulIOp>( |
| 639 | forOp.getLoc(), forOp.getStep(), |
| 640 | rewriter.createOrFold<arith::ConstantOp>( |
| 641 | forOp.getLoc(), rewriter.getIndexAttr(unrollJamFactor))); |
| 642 | forOp.setStep(newStep); |
| 643 | auto forOpIV = forOp.getInductionVar(); |
| 644 | |
| 645 | // Unroll and jam (appends unrollJamFactor - 1 additional copies). |
| 646 | for (unsigned i = unrollJamFactor - 1; i >= 1; --i) { |
| 647 | for (auto &subBlock : subBlocks) { |
| 648 | // Builder to insert unroll-jammed bodies. Insert right at the end of |
| 649 | // sub-block. |
| 650 | OpBuilder builder(subBlock.first->getBlock(), std::next(subBlock.second)); |
| 651 | |
| 652 | // If the induction variable is used, create a remapping to the value for |
| 653 | // this unrolled instance. |
| 654 | if (!forOpIV.use_empty()) { |
| 655 | // iv' = iv + i * step, i = 1 to unrollJamFactor-1. |
| 656 | auto ivTag = builder.createOrFold<arith::ConstantOp>( |
| 657 | forOp.getLoc(), builder.getIndexAttr(step * i)); |
| 658 | auto ivUnroll = |
| 659 | builder.createOrFold<arith::AddIOp>(forOp.getLoc(), forOpIV, ivTag); |
| 660 | operandMaps[i - 1].map(forOpIV, ivUnroll); |
| 661 | } |
| 662 | // Clone the sub-block being unroll-jammed. |
| 663 | for (auto it = subBlock.first; it != std::next(subBlock.second); ++it) |
| 664 | builder.clone(*it, operandMaps[i - 1]); |
| 665 | } |
| 666 | // Fix iterOperands and yield op operands of newly created loops. |
| 667 | for (auto newForOp : newInnerLoops) { |
| 668 | unsigned oldNumIterOperands = |
| 669 | newForOp.getNumRegionIterArgs() / unrollJamFactor; |
| 670 | unsigned numControlOperands = newForOp.getNumControlOperands(); |
| 671 | auto yieldOp = cast<scf::YieldOp>(newForOp.getBody()->getTerminator()); |
| 672 | unsigned oldNumYieldOperands = yieldOp.getNumOperands() / unrollJamFactor; |
| 673 | assert(oldNumIterOperands == oldNumYieldOperands && |
| 674 | "oldNumIterOperands must be the same as oldNumYieldOperands" ); |
| 675 | for (unsigned j = 0; j < oldNumIterOperands; ++j) { |
| 676 | // The `i`th duplication of an old iterOperand or yield op operand |
| 677 | // needs to be replaced with a mapped value from `operandMaps[i - 1]` |
| 678 | // if such mapped value exists. |
| 679 | newForOp.setOperand(numControlOperands + i * oldNumIterOperands + j, |
| 680 | operandMaps[i - 1].lookupOrDefault( |
| 681 | newForOp.getOperand(numControlOperands + j))); |
| 682 | yieldOp.setOperand( |
| 683 | i * oldNumYieldOperands + j, |
| 684 | operandMaps[i - 1].lookupOrDefault(yieldOp.getOperand(j))); |
| 685 | } |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | // Promote the loop body up if this has turned into a single iteration loop. |
| 690 | (void)forOp.promoteIfSingleIteration(rewriter); |
| 691 | return success(); |
| 692 | } |
| 693 | |
| 694 | Range emitNormalizedLoopBoundsForIndexType(RewriterBase &rewriter, Location loc, |
| 695 | OpFoldResult lb, OpFoldResult ub, |
| 696 | OpFoldResult step) { |
| 697 | Range normalizedLoopBounds; |
| 698 | normalizedLoopBounds.offset = rewriter.getIndexAttr(0); |
| 699 | normalizedLoopBounds.stride = rewriter.getIndexAttr(1); |
| 700 | AffineExpr s0, s1, s2; |
| 701 | bindSymbols(ctx: rewriter.getContext(), exprs&: s0, exprs&: s1, exprs&: s2); |
| 702 | AffineExpr e = (s1 - s0).ceilDiv(other: s2); |
| 703 | normalizedLoopBounds.size = |
| 704 | affine::makeComposedFoldedAffineApply(b&: rewriter, loc, expr: e, operands: {lb, ub, step}); |
| 705 | return normalizedLoopBounds; |
| 706 | } |
| 707 | |
| 708 | Range mlir::emitNormalizedLoopBounds(RewriterBase &rewriter, Location loc, |
| 709 | OpFoldResult lb, OpFoldResult ub, |
| 710 | OpFoldResult step) { |
| 711 | if (getType(ofr: lb).isIndex()) { |
| 712 | return emitNormalizedLoopBoundsForIndexType(rewriter, loc, lb, ub, step); |
| 713 | } |
| 714 | // For non-index types, generate `arith` instructions |
| 715 | // Check if the loop is already known to have a constant zero lower bound or |
| 716 | // a constant one step. |
| 717 | bool isZeroBased = false; |
| 718 | if (auto lbCst = getConstantIntValue(ofr: lb)) |
| 719 | isZeroBased = lbCst.value() == 0; |
| 720 | |
| 721 | bool isStepOne = false; |
| 722 | if (auto stepCst = getConstantIntValue(ofr: step)) |
| 723 | isStepOne = stepCst.value() == 1; |
| 724 | |
| 725 | Type rangeType = getType(ofr: lb); |
| 726 | assert(rangeType == getType(ub) && rangeType == getType(step) && |
| 727 | "expected matching types" ); |
| 728 | |
| 729 | // Compute the number of iterations the loop executes: ceildiv(ub - lb, step) |
| 730 | // assuming the step is strictly positive. Update the bounds and the step |
| 731 | // of the loop to go from 0 to the number of iterations, if necessary. |
| 732 | if (isZeroBased && isStepOne) |
| 733 | return {.offset: lb, .size: ub, .stride: step}; |
| 734 | |
| 735 | OpFoldResult diff = ub; |
| 736 | if (!isZeroBased) { |
| 737 | diff = rewriter.createOrFold<arith::SubIOp>( |
| 738 | loc, getValueOrCreateConstantIntOp(rewriter, loc, ub), |
| 739 | getValueOrCreateConstantIntOp(rewriter, loc, lb)); |
| 740 | } |
| 741 | OpFoldResult newUpperBound = diff; |
| 742 | if (!isStepOne) { |
| 743 | newUpperBound = rewriter.createOrFold<arith::CeilDivSIOp>( |
| 744 | loc, getValueOrCreateConstantIntOp(rewriter, loc, diff), |
| 745 | getValueOrCreateConstantIntOp(rewriter, loc, step)); |
| 746 | } |
| 747 | |
| 748 | OpFoldResult newLowerBound = rewriter.getZeroAttr(rangeType); |
| 749 | OpFoldResult newStep = rewriter.getOneAttr(rangeType); |
| 750 | |
| 751 | return {.offset: newLowerBound, .size: newUpperBound, .stride: newStep}; |
| 752 | } |
| 753 | |
| 754 | static void denormalizeInductionVariableForIndexType(RewriterBase &rewriter, |
| 755 | Location loc, |
| 756 | Value normalizedIv, |
| 757 | OpFoldResult origLb, |
| 758 | OpFoldResult origStep) { |
| 759 | AffineExpr d0, s0, s1; |
| 760 | bindSymbols(ctx: rewriter.getContext(), exprs&: s0, exprs&: s1); |
| 761 | bindDims(ctx: rewriter.getContext(), exprs&: d0); |
| 762 | AffineExpr e = d0 * s1 + s0; |
| 763 | OpFoldResult denormalizedIv = affine::makeComposedFoldedAffineApply( |
| 764 | b&: rewriter, loc, expr: e, operands: ArrayRef<OpFoldResult>{normalizedIv, origLb, origStep}); |
| 765 | Value denormalizedIvVal = |
| 766 | getValueOrCreateConstantIndexOp(b&: rewriter, loc, ofr: denormalizedIv); |
| 767 | SmallPtrSet<Operation *, 1> preservedUses; |
| 768 | // If an `affine.apply` operation is generated for denormalization, the use |
| 769 | // of `origLb` in those ops must not be replaced. These arent not generated |
| 770 | // when `origLb == 0` and `origStep == 1`. |
| 771 | if (!isZeroInteger(v: origLb) || !isOneInteger(v: origStep)) { |
| 772 | if (Operation *preservedUse = denormalizedIvVal.getDefiningOp()) { |
| 773 | preservedUses.insert(Ptr: preservedUse); |
| 774 | } |
| 775 | } |
| 776 | rewriter.replaceAllUsesExcept(from: normalizedIv, to: denormalizedIvVal, preservedUsers: preservedUses); |
| 777 | } |
| 778 | |
| 779 | void mlir::denormalizeInductionVariable(RewriterBase &rewriter, Location loc, |
| 780 | Value normalizedIv, OpFoldResult origLb, |
| 781 | OpFoldResult origStep) { |
| 782 | if (getType(ofr: origLb).isIndex()) { |
| 783 | return denormalizeInductionVariableForIndexType(rewriter, loc, normalizedIv, |
| 784 | origLb, origStep); |
| 785 | } |
| 786 | Value denormalizedIv; |
| 787 | SmallPtrSet<Operation *, 2> preserve; |
| 788 | bool isStepOne = isOneInteger(v: origStep); |
| 789 | bool isZeroBased = isZeroInteger(v: origLb); |
| 790 | |
| 791 | Value scaled = normalizedIv; |
| 792 | if (!isStepOne) { |
| 793 | Value origStepValue = |
| 794 | getValueOrCreateConstantIntOp(b&: rewriter, loc, ofr: origStep); |
| 795 | scaled = rewriter.create<arith::MulIOp>(loc, normalizedIv, origStepValue); |
| 796 | preserve.insert(Ptr: scaled.getDefiningOp()); |
| 797 | } |
| 798 | denormalizedIv = scaled; |
| 799 | if (!isZeroBased) { |
| 800 | Value origLbValue = getValueOrCreateConstantIntOp(b&: rewriter, loc, ofr: origLb); |
| 801 | denormalizedIv = rewriter.create<arith::AddIOp>(loc, scaled, origLbValue); |
| 802 | preserve.insert(Ptr: denormalizedIv.getDefiningOp()); |
| 803 | } |
| 804 | |
| 805 | rewriter.replaceAllUsesExcept(from: normalizedIv, to: denormalizedIv, preservedUsers: preserve); |
| 806 | } |
| 807 | |
| 808 | static OpFoldResult getProductOfIndexes(RewriterBase &rewriter, Location loc, |
| 809 | ArrayRef<OpFoldResult> values) { |
| 810 | assert(!values.empty() && "unexecpted empty array" ); |
| 811 | AffineExpr s0, s1; |
| 812 | bindSymbols(ctx: rewriter.getContext(), exprs&: s0, exprs&: s1); |
| 813 | AffineExpr mul = s0 * s1; |
| 814 | OpFoldResult products = rewriter.getIndexAttr(1); |
| 815 | for (auto v : values) { |
| 816 | products = affine::makeComposedFoldedAffineApply( |
| 817 | b&: rewriter, loc, expr: mul, operands: ArrayRef<OpFoldResult>{products, v}); |
| 818 | } |
| 819 | return products; |
| 820 | } |
| 821 | |
| 822 | /// Helper function to multiply a sequence of values. |
| 823 | static Value getProductOfIntsOrIndexes(RewriterBase &rewriter, Location loc, |
| 824 | ArrayRef<Value> values) { |
| 825 | assert(!values.empty() && "unexpected empty list" ); |
| 826 | if (getType(ofr: values.front()).isIndex()) { |
| 827 | SmallVector<OpFoldResult> ofrs = getAsOpFoldResult(values); |
| 828 | OpFoldResult product = getProductOfIndexes(rewriter, loc, values: ofrs); |
| 829 | return getValueOrCreateConstantIndexOp(b&: rewriter, loc, ofr: product); |
| 830 | } |
| 831 | std::optional<Value> productOf; |
| 832 | for (auto v : values) { |
| 833 | auto vOne = getConstantIntValue(ofr: v); |
| 834 | if (vOne && vOne.value() == 1) |
| 835 | continue; |
| 836 | if (productOf) |
| 837 | productOf = |
| 838 | rewriter.create<arith::MulIOp>(loc, productOf.value(), v).getResult(); |
| 839 | else |
| 840 | productOf = v; |
| 841 | } |
| 842 | if (!productOf) { |
| 843 | productOf = rewriter |
| 844 | .create<arith::ConstantOp>( |
| 845 | loc, rewriter.getOneAttr(getType(values.front()))) |
| 846 | .getResult(); |
| 847 | } |
| 848 | return productOf.value(); |
| 849 | } |
| 850 | |
| 851 | /// For each original loop, the value of the |
| 852 | /// induction variable can be obtained by dividing the induction variable of |
| 853 | /// the linearized loop by the total number of iterations of the loops nested |
| 854 | /// in it modulo the number of iterations in this loop (remove the values |
| 855 | /// related to the outer loops): |
| 856 | /// iv_i = floordiv(iv_linear, product-of-loop-ranges-until-i) mod range_i. |
| 857 | /// Compute these iteratively from the innermost loop by creating a "running |
| 858 | /// quotient" of division by the range. |
| 859 | static std::pair<SmallVector<Value>, SmallPtrSet<Operation *, 2>> |
| 860 | delinearizeInductionVariable(RewriterBase &rewriter, Location loc, |
| 861 | Value linearizedIv, ArrayRef<Value> ubs) { |
| 862 | |
| 863 | if (linearizedIv.getType().isIndex()) { |
| 864 | Operation *delinearizedOp = |
| 865 | rewriter.create<affine::AffineDelinearizeIndexOp>(loc, linearizedIv, |
| 866 | ubs); |
| 867 | auto resultVals = llvm::map_to_vector( |
| 868 | C: delinearizedOp->getResults(), F: [](OpResult r) -> Value { return r; }); |
| 869 | return {resultVals, SmallPtrSet<Operation *, 2>{delinearizedOp}}; |
| 870 | } |
| 871 | |
| 872 | SmallVector<Value> delinearizedIvs(ubs.size()); |
| 873 | SmallPtrSet<Operation *, 2> preservedUsers; |
| 874 | |
| 875 | llvm::BitVector isUbOne(ubs.size()); |
| 876 | for (auto [index, ub] : llvm::enumerate(First&: ubs)) { |
| 877 | auto ubCst = getConstantIntValue(ofr: ub); |
| 878 | if (ubCst && ubCst.value() == 1) |
| 879 | isUbOne.set(index); |
| 880 | } |
| 881 | |
| 882 | // Prune the lead ubs that are all ones. |
| 883 | unsigned numLeadingOneUbs = 0; |
| 884 | for (auto [index, ub] : llvm::enumerate(First&: ubs)) { |
| 885 | if (!isUbOne.test(Idx: index)) { |
| 886 | break; |
| 887 | } |
| 888 | delinearizedIvs[index] = rewriter.create<arith::ConstantOp>( |
| 889 | loc, rewriter.getZeroAttr(ub.getType())); |
| 890 | numLeadingOneUbs++; |
| 891 | } |
| 892 | |
| 893 | Value previous = linearizedIv; |
| 894 | for (unsigned i = numLeadingOneUbs, e = ubs.size(); i < e; ++i) { |
| 895 | unsigned idx = ubs.size() - (i - numLeadingOneUbs) - 1; |
| 896 | if (i != numLeadingOneUbs && !isUbOne.test(Idx: idx + 1)) { |
| 897 | previous = rewriter.create<arith::DivSIOp>(loc, previous, ubs[idx + 1]); |
| 898 | preservedUsers.insert(Ptr: previous.getDefiningOp()); |
| 899 | } |
| 900 | Value iv = previous; |
| 901 | if (i != e - 1) { |
| 902 | if (!isUbOne.test(Idx: idx)) { |
| 903 | iv = rewriter.create<arith::RemSIOp>(loc, previous, ubs[idx]); |
| 904 | preservedUsers.insert(Ptr: iv.getDefiningOp()); |
| 905 | } else { |
| 906 | iv = rewriter.create<arith::ConstantOp>( |
| 907 | loc, rewriter.getZeroAttr(ubs[idx].getType())); |
| 908 | } |
| 909 | } |
| 910 | delinearizedIvs[idx] = iv; |
| 911 | } |
| 912 | return {delinearizedIvs, preservedUsers}; |
| 913 | } |
| 914 | |
| 915 | LogicalResult mlir::coalesceLoops(RewriterBase &rewriter, |
| 916 | MutableArrayRef<scf::ForOp> loops) { |
| 917 | if (loops.size() < 2) |
| 918 | return failure(); |
| 919 | |
| 920 | scf::ForOp innermost = loops.back(); |
| 921 | scf::ForOp outermost = loops.front(); |
| 922 | |
| 923 | // 1. Make sure all loops iterate from 0 to upperBound with step 1. This |
| 924 | // allows the following code to assume upperBound is the number of iterations. |
| 925 | for (auto loop : loops) { |
| 926 | OpBuilder::InsertionGuard g(rewriter); |
| 927 | rewriter.setInsertionPoint(outermost); |
| 928 | Value lb = loop.getLowerBound(); |
| 929 | Value ub = loop.getUpperBound(); |
| 930 | Value step = loop.getStep(); |
| 931 | auto newLoopRange = |
| 932 | emitNormalizedLoopBounds(rewriter, loop.getLoc(), lb, ub, step); |
| 933 | |
| 934 | rewriter.modifyOpInPlace(loop, [&]() { |
| 935 | loop.setLowerBound(getValueOrCreateConstantIntOp(rewriter, loop.getLoc(), |
| 936 | newLoopRange.offset)); |
| 937 | loop.setUpperBound(getValueOrCreateConstantIntOp(rewriter, loop.getLoc(), |
| 938 | newLoopRange.size)); |
| 939 | loop.setStep(getValueOrCreateConstantIntOp(rewriter, loop.getLoc(), |
| 940 | newLoopRange.stride)); |
| 941 | }); |
| 942 | rewriter.setInsertionPointToStart(innermost.getBody()); |
| 943 | denormalizeInductionVariable(rewriter, loop.getLoc(), |
| 944 | loop.getInductionVar(), lb, step); |
| 945 | } |
| 946 | |
| 947 | // 2. Emit code computing the upper bound of the coalesced loop as product |
| 948 | // of the number of iterations of all loops. |
| 949 | OpBuilder::InsertionGuard g(rewriter); |
| 950 | rewriter.setInsertionPoint(outermost); |
| 951 | Location loc = outermost.getLoc(); |
| 952 | SmallVector<Value> upperBounds = llvm::map_to_vector( |
| 953 | loops, [](auto loop) { return loop.getUpperBound(); }); |
| 954 | Value upperBound = getProductOfIntsOrIndexes(rewriter, loc, values: upperBounds); |
| 955 | outermost.setUpperBound(upperBound); |
| 956 | |
| 957 | rewriter.setInsertionPointToStart(innermost.getBody()); |
| 958 | auto [delinearizeIvs, preservedUsers] = delinearizeInductionVariable( |
| 959 | rewriter, loc, outermost.getInductionVar(), upperBounds); |
| 960 | rewriter.replaceAllUsesExcept(outermost.getInductionVar(), delinearizeIvs[0], |
| 961 | preservedUsers); |
| 962 | |
| 963 | for (int i = loops.size() - 1; i > 0; --i) { |
| 964 | auto outerLoop = loops[i - 1]; |
| 965 | auto innerLoop = loops[i]; |
| 966 | |
| 967 | Operation *innerTerminator = innerLoop.getBody()->getTerminator(); |
| 968 | auto yieldedVals = llvm::to_vector(Range: innerTerminator->getOperands()); |
| 969 | assert(llvm::equal(outerLoop.getRegionIterArgs(), innerLoop.getInitArgs())); |
| 970 | for (Value &yieldedVal : yieldedVals) { |
| 971 | // The yielded value may be an iteration argument of the inner loop |
| 972 | // which is about to be inlined. |
| 973 | auto iter = llvm::find(innerLoop.getRegionIterArgs(), yieldedVal); |
| 974 | if (iter != innerLoop.getRegionIterArgs().end()) { |
| 975 | unsigned iterArgIndex = iter - innerLoop.getRegionIterArgs().begin(); |
| 976 | // `outerLoop` iter args identical to the `innerLoop` init args. |
| 977 | assert(iterArgIndex < innerLoop.getInitArgs().size()); |
| 978 | yieldedVal = innerLoop.getInitArgs()[iterArgIndex]; |
| 979 | } |
| 980 | } |
| 981 | rewriter.eraseOp(op: innerTerminator); |
| 982 | |
| 983 | SmallVector<Value> innerBlockArgs; |
| 984 | innerBlockArgs.push_back(Elt: delinearizeIvs[i]); |
| 985 | llvm::append_range(innerBlockArgs, outerLoop.getRegionIterArgs()); |
| 986 | rewriter.inlineBlockBefore(innerLoop.getBody(), outerLoop.getBody(), |
| 987 | Block::iterator(innerLoop), innerBlockArgs); |
| 988 | rewriter.replaceOp(innerLoop, yieldedVals); |
| 989 | } |
| 990 | return success(); |
| 991 | } |
| 992 | |
| 993 | LogicalResult mlir::coalesceLoops(MutableArrayRef<scf::ForOp> loops) { |
| 994 | if (loops.empty()) { |
| 995 | return failure(); |
| 996 | } |
| 997 | IRRewriter rewriter(loops.front().getContext()); |
| 998 | return coalesceLoops(rewriter, loops); |
| 999 | } |
| 1000 | |
| 1001 | LogicalResult mlir::coalescePerfectlyNestedSCFForLoops(scf::ForOp op) { |
| 1002 | LogicalResult result(failure()); |
| 1003 | SmallVector<scf::ForOp> loops; |
| 1004 | getPerfectlyNestedLoops(loops, op); |
| 1005 | |
| 1006 | // Look for a band of loops that can be coalesced, i.e. perfectly nested |
| 1007 | // loops with bounds defined above some loop. |
| 1008 | |
| 1009 | // 1. For each loop, find above which parent loop its bounds operands are |
| 1010 | // defined. |
| 1011 | SmallVector<unsigned> operandsDefinedAbove(loops.size()); |
| 1012 | for (unsigned i = 0, e = loops.size(); i < e; ++i) { |
| 1013 | operandsDefinedAbove[i] = i; |
| 1014 | for (unsigned j = 0; j < i; ++j) { |
| 1015 | SmallVector<Value> boundsOperands = {loops[i].getLowerBound(), |
| 1016 | loops[i].getUpperBound(), |
| 1017 | loops[i].getStep()}; |
| 1018 | if (areValuesDefinedAbove(boundsOperands, loops[j].getRegion())) { |
| 1019 | operandsDefinedAbove[i] = j; |
| 1020 | break; |
| 1021 | } |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | // 2. For each inner loop check that the iter_args for the immediately outer |
| 1026 | // loop are the init for the immediately inner loop and that the yields of the |
| 1027 | // return of the inner loop is the yield for the immediately outer loop. Keep |
| 1028 | // track of where the chain starts from for each loop. |
| 1029 | SmallVector<unsigned> iterArgChainStart(loops.size()); |
| 1030 | iterArgChainStart[0] = 0; |
| 1031 | for (unsigned i = 1, e = loops.size(); i < e; ++i) { |
| 1032 | // By default set the start of the chain to itself. |
| 1033 | iterArgChainStart[i] = i; |
| 1034 | auto outerloop = loops[i - 1]; |
| 1035 | auto innerLoop = loops[i]; |
| 1036 | if (outerloop.getNumRegionIterArgs() != innerLoop.getNumRegionIterArgs()) { |
| 1037 | continue; |
| 1038 | } |
| 1039 | if (!llvm::equal(outerloop.getRegionIterArgs(), innerLoop.getInitArgs())) { |
| 1040 | continue; |
| 1041 | } |
| 1042 | auto outerloopTerminator = outerloop.getBody()->getTerminator(); |
| 1043 | if (!llvm::equal(outerloopTerminator->getOperands(), |
| 1044 | innerLoop.getResults())) { |
| 1045 | continue; |
| 1046 | } |
| 1047 | iterArgChainStart[i] = iterArgChainStart[i - 1]; |
| 1048 | } |
| 1049 | |
| 1050 | // 3. Identify bands of loops such that the operands of all of them are |
| 1051 | // defined above the first loop in the band. Traverse the nest bottom-up |
| 1052 | // so that modifications don't invalidate the inner loops. |
| 1053 | for (unsigned end = loops.size(); end > 0; --end) { |
| 1054 | unsigned start = 0; |
| 1055 | for (; start < end - 1; ++start) { |
| 1056 | auto maxPos = |
| 1057 | *std::max_element(first: std::next(x: operandsDefinedAbove.begin(), n: start), |
| 1058 | last: std::next(x: operandsDefinedAbove.begin(), n: end)); |
| 1059 | if (maxPos > start) |
| 1060 | continue; |
| 1061 | if (iterArgChainStart[end - 1] > start) |
| 1062 | continue; |
| 1063 | auto band = llvm::MutableArrayRef(loops.data() + start, end - start); |
| 1064 | if (succeeded(coalesceLoops(band))) |
| 1065 | result = success(); |
| 1066 | break; |
| 1067 | } |
| 1068 | // If a band was found and transformed, keep looking at the loops above |
| 1069 | // the outermost transformed loop. |
| 1070 | if (start != end - 1) |
| 1071 | end = start + 1; |
| 1072 | } |
| 1073 | return result; |
| 1074 | } |
| 1075 | |
| 1076 | void mlir::collapseParallelLoops( |
| 1077 | RewriterBase &rewriter, scf::ParallelOp loops, |
| 1078 | ArrayRef<std::vector<unsigned>> combinedDimensions) { |
| 1079 | OpBuilder::InsertionGuard g(rewriter); |
| 1080 | rewriter.setInsertionPoint(loops); |
| 1081 | Location loc = loops.getLoc(); |
| 1082 | |
| 1083 | // Presort combined dimensions. |
| 1084 | auto sortedDimensions = llvm::to_vector<3>(Range&: combinedDimensions); |
| 1085 | for (auto &dims : sortedDimensions) |
| 1086 | llvm::sort(C&: dims); |
| 1087 | |
| 1088 | // Normalize ParallelOp's iteration pattern. |
| 1089 | SmallVector<Value, 3> normalizedUpperBounds; |
| 1090 | for (unsigned i = 0, e = loops.getNumLoops(); i < e; ++i) { |
| 1091 | OpBuilder::InsertionGuard g2(rewriter); |
| 1092 | rewriter.setInsertionPoint(loops); |
| 1093 | Value lb = loops.getLowerBound()[i]; |
| 1094 | Value ub = loops.getUpperBound()[i]; |
| 1095 | Value step = loops.getStep()[i]; |
| 1096 | auto newLoopRange = emitNormalizedLoopBounds(rewriter, loc, lb, ub, step); |
| 1097 | normalizedUpperBounds.push_back(Elt: getValueOrCreateConstantIntOp( |
| 1098 | rewriter, loops.getLoc(), newLoopRange.size)); |
| 1099 | |
| 1100 | rewriter.setInsertionPointToStart(loops.getBody()); |
| 1101 | denormalizeInductionVariable(rewriter, loc, loops.getInductionVars()[i], lb, |
| 1102 | step); |
| 1103 | } |
| 1104 | |
| 1105 | // Combine iteration spaces. |
| 1106 | SmallVector<Value, 3> lowerBounds, upperBounds, steps; |
| 1107 | auto cst0 = rewriter.create<arith::ConstantIndexOp>(location: loc, args: 0); |
| 1108 | auto cst1 = rewriter.create<arith::ConstantIndexOp>(location: loc, args: 1); |
| 1109 | for (auto &sortedDimension : sortedDimensions) { |
| 1110 | Value newUpperBound = rewriter.create<arith::ConstantIndexOp>(location: loc, args: 1); |
| 1111 | for (auto idx : sortedDimension) { |
| 1112 | newUpperBound = rewriter.create<arith::MulIOp>( |
| 1113 | loc, newUpperBound, normalizedUpperBounds[idx]); |
| 1114 | } |
| 1115 | lowerBounds.push_back(Elt: cst0); |
| 1116 | steps.push_back(Elt: cst1); |
| 1117 | upperBounds.push_back(Elt: newUpperBound); |
| 1118 | } |
| 1119 | |
| 1120 | // Create new ParallelLoop with conversions to the original induction values. |
| 1121 | // The loop below uses divisions to get the relevant range of values in the |
| 1122 | // new induction value that represent each range of the original induction |
| 1123 | // value. The remainders then determine based on that range, which iteration |
| 1124 | // of the original induction value this represents. This is a normalized value |
| 1125 | // that is un-normalized already by the previous logic. |
| 1126 | auto newPloop = rewriter.create<scf::ParallelOp>( |
| 1127 | loc, lowerBounds, upperBounds, steps, |
| 1128 | [&](OpBuilder &insideBuilder, Location, ValueRange ploopIVs) { |
| 1129 | for (unsigned i = 0, e = combinedDimensions.size(); i < e; ++i) { |
| 1130 | Value previous = ploopIVs[i]; |
| 1131 | unsigned numberCombinedDimensions = combinedDimensions[i].size(); |
| 1132 | // Iterate over all except the last induction value. |
| 1133 | for (unsigned j = numberCombinedDimensions - 1; j > 0; --j) { |
| 1134 | unsigned idx = combinedDimensions[i][j]; |
| 1135 | |
| 1136 | // Determine the current induction value's current loop iteration |
| 1137 | Value iv = insideBuilder.create<arith::RemSIOp>( |
| 1138 | loc, previous, normalizedUpperBounds[idx]); |
| 1139 | replaceAllUsesInRegionWith(loops.getBody()->getArgument(idx), iv, |
| 1140 | loops.getRegion()); |
| 1141 | |
| 1142 | // Remove the effect of the current induction value to prepare for |
| 1143 | // the next value. |
| 1144 | previous = insideBuilder.create<arith::DivSIOp>( |
| 1145 | loc, previous, normalizedUpperBounds[idx]); |
| 1146 | } |
| 1147 | |
| 1148 | // The final induction value is just the remaining value. |
| 1149 | unsigned idx = combinedDimensions[i][0]; |
| 1150 | replaceAllUsesInRegionWith(loops.getBody()->getArgument(idx), |
| 1151 | previous, loops.getRegion()); |
| 1152 | } |
| 1153 | }); |
| 1154 | |
| 1155 | // Replace the old loop with the new loop. |
| 1156 | loops.getBody()->back().erase(); |
| 1157 | newPloop.getBody()->getOperations().splice( |
| 1158 | Block::iterator(newPloop.getBody()->back()), |
| 1159 | loops.getBody()->getOperations()); |
| 1160 | loops.erase(); |
| 1161 | } |
| 1162 | |
| 1163 | // Hoist the ops within `outer` that appear before `inner`. |
| 1164 | // Such ops include the ops that have been introduced by parametric tiling. |
| 1165 | // Ops that come from triangular loops (i.e. that belong to the program slice |
| 1166 | // rooted at `outer`) and ops that have side effects cannot be hoisted. |
| 1167 | // Return failure when any op fails to hoist. |
| 1168 | static LogicalResult hoistOpsBetween(scf::ForOp outer, scf::ForOp inner) { |
| 1169 | SetVector<Operation *> forwardSlice; |
| 1170 | ForwardSliceOptions options; |
| 1171 | options.filter = [&inner](Operation *op) { |
| 1172 | return op != inner.getOperation(); |
| 1173 | }; |
| 1174 | getForwardSlice(outer.getInductionVar(), &forwardSlice, options); |
| 1175 | LogicalResult status = success(); |
| 1176 | SmallVector<Operation *, 8> toHoist; |
| 1177 | for (auto &op : outer.getBody()->without_terminator()) { |
| 1178 | // Stop when encountering the inner loop. |
| 1179 | if (&op == inner.getOperation()) |
| 1180 | break; |
| 1181 | // Skip over non-hoistable ops. |
| 1182 | if (forwardSlice.count(&op) > 0) { |
| 1183 | status = failure(); |
| 1184 | continue; |
| 1185 | } |
| 1186 | // Skip intermediate scf::ForOp, these are not considered a failure. |
| 1187 | if (isa<scf::ForOp>(op)) |
| 1188 | continue; |
| 1189 | // Skip other ops with regions. |
| 1190 | if (op.getNumRegions() > 0) { |
| 1191 | status = failure(); |
| 1192 | continue; |
| 1193 | } |
| 1194 | // Skip if op has side effects. |
| 1195 | // TODO: loads to immutable memory regions are ok. |
| 1196 | if (!isMemoryEffectFree(&op)) { |
| 1197 | status = failure(); |
| 1198 | continue; |
| 1199 | } |
| 1200 | toHoist.push_back(&op); |
| 1201 | } |
| 1202 | auto *outerForOp = outer.getOperation(); |
| 1203 | for (auto *op : toHoist) |
| 1204 | op->moveBefore(outerForOp); |
| 1205 | return status; |
| 1206 | } |
| 1207 | |
| 1208 | // Traverse the interTile and intraTile loops and try to hoist ops such that |
| 1209 | // bands of perfectly nested loops are isolated. |
| 1210 | // Return failure if either perfect interTile or perfect intraTile bands cannot |
| 1211 | // be formed. |
| 1212 | static LogicalResult tryIsolateBands(const TileLoops &tileLoops) { |
| 1213 | LogicalResult status = success(); |
| 1214 | const Loops &interTile = tileLoops.first; |
| 1215 | const Loops &intraTile = tileLoops.second; |
| 1216 | auto size = interTile.size(); |
| 1217 | assert(size == intraTile.size()); |
| 1218 | if (size <= 1) |
| 1219 | return success(); |
| 1220 | for (unsigned s = 1; s < size; ++s) |
| 1221 | status = succeeded(status) ? hoistOpsBetween(intraTile[0], intraTile[s]) |
| 1222 | : failure(); |
| 1223 | for (unsigned s = 1; s < size; ++s) |
| 1224 | status = succeeded(status) ? hoistOpsBetween(interTile[0], interTile[s]) |
| 1225 | : failure(); |
| 1226 | return status; |
| 1227 | } |
| 1228 | |
| 1229 | /// Collect perfectly nested loops starting from `rootForOps`. Loops are |
| 1230 | /// perfectly nested if each loop is the first and only non-terminator operation |
| 1231 | /// in the parent loop. Collect at most `maxLoops` loops and append them to |
| 1232 | /// `forOps`. |
| 1233 | template <typename T> |
| 1234 | static void getPerfectlyNestedLoopsImpl( |
| 1235 | SmallVectorImpl<T> &forOps, T rootForOp, |
| 1236 | unsigned maxLoops = std::numeric_limits<unsigned>::max()) { |
| 1237 | for (unsigned i = 0; i < maxLoops; ++i) { |
| 1238 | forOps.push_back(rootForOp); |
| 1239 | Block &body = rootForOp.getRegion().front(); |
| 1240 | if (body.begin() != std::prev(x: body.end(), n: 2)) |
| 1241 | return; |
| 1242 | |
| 1243 | rootForOp = dyn_cast<T>(&body.front()); |
| 1244 | if (!rootForOp) |
| 1245 | return; |
| 1246 | } |
| 1247 | } |
| 1248 | |
| 1249 | static Loops stripmineSink(scf::ForOp forOp, Value factor, |
| 1250 | ArrayRef<scf::ForOp> targets) { |
| 1251 | auto originalStep = forOp.getStep(); |
| 1252 | auto iv = forOp.getInductionVar(); |
| 1253 | |
| 1254 | OpBuilder b(forOp); |
| 1255 | forOp.setStep(b.create<arith::MulIOp>(forOp.getLoc(), originalStep, factor)); |
| 1256 | |
| 1257 | Loops innerLoops; |
| 1258 | for (auto t : targets) { |
| 1259 | // Save information for splicing ops out of t when done |
| 1260 | auto begin = t.getBody()->begin(); |
| 1261 | auto nOps = t.getBody()->getOperations().size(); |
| 1262 | |
| 1263 | // Insert newForOp before the terminator of `t`. |
| 1264 | auto b = OpBuilder::atBlockTerminator((t.getBody())); |
| 1265 | Value stepped = b.create<arith::AddIOp>(t.getLoc(), iv, forOp.getStep()); |
| 1266 | Value ub = |
| 1267 | b.create<arith::MinSIOp>(t.getLoc(), forOp.getUpperBound(), stepped); |
| 1268 | |
| 1269 | // Splice [begin, begin + nOps - 1) into `newForOp` and replace uses. |
| 1270 | auto newForOp = b.create<scf::ForOp>(t.getLoc(), iv, ub, originalStep); |
| 1271 | newForOp.getBody()->getOperations().splice( |
| 1272 | newForOp.getBody()->getOperations().begin(), |
| 1273 | t.getBody()->getOperations(), begin, std::next(begin, nOps - 1)); |
| 1274 | replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(), |
| 1275 | newForOp.getRegion()); |
| 1276 | |
| 1277 | innerLoops.push_back(newForOp); |
| 1278 | } |
| 1279 | |
| 1280 | return innerLoops; |
| 1281 | } |
| 1282 | |
| 1283 | // Stripmines a `forOp` by `factor` and sinks it under a single `target`. |
| 1284 | // Returns the new for operation, nested immediately under `target`. |
| 1285 | template <typename SizeType> |
| 1286 | static scf::ForOp stripmineSink(scf::ForOp forOp, SizeType factor, |
| 1287 | scf::ForOp target) { |
| 1288 | // TODO: Use cheap structural assertions that targets are nested under |
| 1289 | // forOp and that targets are not nested under each other when DominanceInfo |
| 1290 | // exposes the capability. It seems overkill to construct a whole function |
| 1291 | // dominance tree at this point. |
| 1292 | auto res = stripmineSink(forOp, factor, ArrayRef<scf::ForOp>(target)); |
| 1293 | assert(res.size() == 1 && "Expected 1 inner forOp" ); |
| 1294 | return res[0]; |
| 1295 | } |
| 1296 | |
| 1297 | SmallVector<Loops, 8> mlir::tile(ArrayRef<scf::ForOp> forOps, |
| 1298 | ArrayRef<Value> sizes, |
| 1299 | ArrayRef<scf::ForOp> targets) { |
| 1300 | SmallVector<SmallVector<scf::ForOp, 8>, 8> res; |
| 1301 | SmallVector<scf::ForOp, 8> currentTargets(targets); |
| 1302 | for (auto it : llvm::zip(forOps, sizes)) { |
| 1303 | auto step = stripmineSink(std::get<0>(it), std::get<1>(it), currentTargets); |
| 1304 | res.push_back(step); |
| 1305 | currentTargets = step; |
| 1306 | } |
| 1307 | return res; |
| 1308 | } |
| 1309 | |
| 1310 | Loops mlir::tile(ArrayRef<scf::ForOp> forOps, ArrayRef<Value> sizes, |
| 1311 | scf::ForOp target) { |
| 1312 | SmallVector<scf::ForOp, 8> res; |
| 1313 | for (auto loops : tile(forOps, sizes, ArrayRef<scf::ForOp>(target))) |
| 1314 | res.push_back(llvm::getSingleElement(loops)); |
| 1315 | return res; |
| 1316 | } |
| 1317 | |
| 1318 | Loops mlir::tilePerfectlyNested(scf::ForOp rootForOp, ArrayRef<Value> sizes) { |
| 1319 | // Collect perfectly nested loops. If more size values provided than nested |
| 1320 | // loops available, truncate `sizes`. |
| 1321 | SmallVector<scf::ForOp, 4> forOps; |
| 1322 | forOps.reserve(sizes.size()); |
| 1323 | getPerfectlyNestedLoopsImpl(forOps, rootForOp, sizes.size()); |
| 1324 | if (forOps.size() < sizes.size()) |
| 1325 | sizes = sizes.take_front(N: forOps.size()); |
| 1326 | |
| 1327 | return ::tile(forOps, sizes, forOps.back()); |
| 1328 | } |
| 1329 | |
| 1330 | void mlir::getPerfectlyNestedLoops(SmallVectorImpl<scf::ForOp> &nestedLoops, |
| 1331 | scf::ForOp root) { |
| 1332 | getPerfectlyNestedLoopsImpl(nestedLoops, root); |
| 1333 | } |
| 1334 | |
| 1335 | TileLoops mlir::(scf::ForOp rootForOp, |
| 1336 | ArrayRef<int64_t> sizes) { |
| 1337 | // Collect perfectly nested loops. If more size values provided than nested |
| 1338 | // loops available, truncate `sizes`. |
| 1339 | SmallVector<scf::ForOp, 4> forOps; |
| 1340 | forOps.reserve(sizes.size()); |
| 1341 | getPerfectlyNestedLoopsImpl(forOps, rootForOp, sizes.size()); |
| 1342 | if (forOps.size() < sizes.size()) |
| 1343 | sizes = sizes.take_front(N: forOps.size()); |
| 1344 | |
| 1345 | // Compute the tile sizes such that i-th outer loop executes size[i] |
| 1346 | // iterations. Given that the loop current executes |
| 1347 | // numIterations = ceildiv((upperBound - lowerBound), step) |
| 1348 | // iterations, we need to tile with size ceildiv(numIterations, size[i]). |
| 1349 | SmallVector<Value, 4> tileSizes; |
| 1350 | tileSizes.reserve(N: sizes.size()); |
| 1351 | for (unsigned i = 0, e = sizes.size(); i < e; ++i) { |
| 1352 | assert(sizes[i] > 0 && "expected strictly positive size for strip-mining" ); |
| 1353 | |
| 1354 | auto forOp = forOps[i]; |
| 1355 | OpBuilder builder(forOp); |
| 1356 | auto loc = forOp.getLoc(); |
| 1357 | Value diff = builder.create<arith::SubIOp>(loc, forOp.getUpperBound(), |
| 1358 | forOp.getLowerBound()); |
| 1359 | Value numIterations = ceilDivPositive(builder, loc, diff, forOp.getStep()); |
| 1360 | Value iterationsPerBlock = |
| 1361 | ceilDivPositive(builder, loc, numIterations, sizes[i]); |
| 1362 | tileSizes.push_back(Elt: iterationsPerBlock); |
| 1363 | } |
| 1364 | |
| 1365 | // Call parametric tiling with the given sizes. |
| 1366 | auto intraTile = tile(forOps, tileSizes, forOps.back()); |
| 1367 | TileLoops tileLoops = std::make_pair(forOps, intraTile); |
| 1368 | |
| 1369 | // TODO: for now we just ignore the result of band isolation. |
| 1370 | // In the future, mapping decisions may be impacted by the ability to |
| 1371 | // isolate perfectly nested bands. |
| 1372 | (void)tryIsolateBands(tileLoops); |
| 1373 | |
| 1374 | return tileLoops; |
| 1375 | } |
| 1376 | |
| 1377 | scf::ForallOp mlir::fuseIndependentSiblingForallLoops(scf::ForallOp target, |
| 1378 | scf::ForallOp source, |
| 1379 | RewriterBase &rewriter) { |
| 1380 | unsigned numTargetOuts = target.getNumResults(); |
| 1381 | unsigned numSourceOuts = source.getNumResults(); |
| 1382 | |
| 1383 | // Create fused shared_outs. |
| 1384 | SmallVector<Value> fusedOuts; |
| 1385 | llvm::append_range(fusedOuts, target.getOutputs()); |
| 1386 | llvm::append_range(fusedOuts, source.getOutputs()); |
| 1387 | |
| 1388 | // Create a new scf.forall op after the source loop. |
| 1389 | rewriter.setInsertionPointAfter(source); |
| 1390 | scf::ForallOp fusedLoop = rewriter.create<scf::ForallOp>( |
| 1391 | source.getLoc(), source.getMixedLowerBound(), source.getMixedUpperBound(), |
| 1392 | source.getMixedStep(), fusedOuts, source.getMapping()); |
| 1393 | |
| 1394 | // Map control operands. |
| 1395 | IRMapping mapping; |
| 1396 | mapping.map(target.getInductionVars(), fusedLoop.getInductionVars()); |
| 1397 | mapping.map(source.getInductionVars(), fusedLoop.getInductionVars()); |
| 1398 | |
| 1399 | // Map shared outs. |
| 1400 | mapping.map(target.getRegionIterArgs(), |
| 1401 | fusedLoop.getRegionIterArgs().take_front(numTargetOuts)); |
| 1402 | mapping.map(source.getRegionIterArgs(), |
| 1403 | fusedLoop.getRegionIterArgs().take_back(numSourceOuts)); |
| 1404 | |
| 1405 | // Append everything except the terminator into the fused operation. |
| 1406 | rewriter.setInsertionPointToStart(fusedLoop.getBody()); |
| 1407 | for (Operation &op : target.getBody()->without_terminator()) |
| 1408 | rewriter.clone(op, mapping); |
| 1409 | for (Operation &op : source.getBody()->without_terminator()) |
| 1410 | rewriter.clone(op, mapping); |
| 1411 | |
| 1412 | // Fuse the old terminator in_parallel ops into the new one. |
| 1413 | scf::InParallelOp targetTerm = target.getTerminator(); |
| 1414 | scf::InParallelOp sourceTerm = source.getTerminator(); |
| 1415 | scf::InParallelOp fusedTerm = fusedLoop.getTerminator(); |
| 1416 | rewriter.setInsertionPointToStart(fusedTerm.getBody()); |
| 1417 | for (Operation &op : targetTerm.getYieldingOps()) |
| 1418 | rewriter.clone(op, mapping); |
| 1419 | for (Operation &op : sourceTerm.getYieldingOps()) |
| 1420 | rewriter.clone(op, mapping); |
| 1421 | |
| 1422 | // Replace old loops by substituting their uses by results of the fused loop. |
| 1423 | rewriter.replaceOp(target, fusedLoop.getResults().take_front(numTargetOuts)); |
| 1424 | rewriter.replaceOp(source, fusedLoop.getResults().take_back(numSourceOuts)); |
| 1425 | |
| 1426 | return fusedLoop; |
| 1427 | } |
| 1428 | |
| 1429 | scf::ForOp mlir::fuseIndependentSiblingForLoops(scf::ForOp target, |
| 1430 | scf::ForOp source, |
| 1431 | RewriterBase &rewriter) { |
| 1432 | unsigned numTargetOuts = target.getNumResults(); |
| 1433 | unsigned numSourceOuts = source.getNumResults(); |
| 1434 | |
| 1435 | // Create fused init_args, with target's init_args before source's init_args. |
| 1436 | SmallVector<Value> fusedInitArgs; |
| 1437 | llvm::append_range(fusedInitArgs, target.getInitArgs()); |
| 1438 | llvm::append_range(fusedInitArgs, source.getInitArgs()); |
| 1439 | |
| 1440 | // Create a new scf.for op after the source loop (with scf.yield terminator |
| 1441 | // (without arguments) only in case its init_args is empty). |
| 1442 | rewriter.setInsertionPointAfter(source); |
| 1443 | scf::ForOp fusedLoop = rewriter.create<scf::ForOp>( |
| 1444 | source.getLoc(), source.getLowerBound(), source.getUpperBound(), |
| 1445 | source.getStep(), fusedInitArgs); |
| 1446 | |
| 1447 | // Map original induction variables and operands to those of the fused loop. |
| 1448 | IRMapping mapping; |
| 1449 | mapping.map(target.getInductionVar(), fusedLoop.getInductionVar()); |
| 1450 | mapping.map(target.getRegionIterArgs(), |
| 1451 | fusedLoop.getRegionIterArgs().take_front(numTargetOuts)); |
| 1452 | mapping.map(source.getInductionVar(), fusedLoop.getInductionVar()); |
| 1453 | mapping.map(source.getRegionIterArgs(), |
| 1454 | fusedLoop.getRegionIterArgs().take_back(numSourceOuts)); |
| 1455 | |
| 1456 | // Merge target's body into the new (fused) for loop and then source's body. |
| 1457 | rewriter.setInsertionPointToStart(fusedLoop.getBody()); |
| 1458 | for (Operation &op : target.getBody()->without_terminator()) |
| 1459 | rewriter.clone(op, mapping); |
| 1460 | for (Operation &op : source.getBody()->without_terminator()) |
| 1461 | rewriter.clone(op, mapping); |
| 1462 | |
| 1463 | // Build fused yield results by appropriately mapping original yield operands. |
| 1464 | SmallVector<Value> yieldResults; |
| 1465 | for (Value operand : target.getBody()->getTerminator()->getOperands()) |
| 1466 | yieldResults.push_back(mapping.lookupOrDefault(operand)); |
| 1467 | for (Value operand : source.getBody()->getTerminator()->getOperands()) |
| 1468 | yieldResults.push_back(mapping.lookupOrDefault(operand)); |
| 1469 | if (!yieldResults.empty()) |
| 1470 | rewriter.create<scf::YieldOp>(source.getLoc(), yieldResults); |
| 1471 | |
| 1472 | // Replace old loops by substituting their uses by results of the fused loop. |
| 1473 | rewriter.replaceOp(target, fusedLoop.getResults().take_front(numTargetOuts)); |
| 1474 | rewriter.replaceOp(source, fusedLoop.getResults().take_back(numSourceOuts)); |
| 1475 | |
| 1476 | return fusedLoop; |
| 1477 | } |
| 1478 | |
| 1479 | FailureOr<scf::ForallOp> mlir::normalizeForallOp(RewriterBase &rewriter, |
| 1480 | scf::ForallOp forallOp) { |
| 1481 | SmallVector<OpFoldResult> lbs = forallOp.getMixedLowerBound(); |
| 1482 | SmallVector<OpFoldResult> ubs = forallOp.getMixedUpperBound(); |
| 1483 | SmallVector<OpFoldResult> steps = forallOp.getMixedStep(); |
| 1484 | |
| 1485 | if (forallOp.isNormalized()) |
| 1486 | return forallOp; |
| 1487 | |
| 1488 | OpBuilder::InsertionGuard g(rewriter); |
| 1489 | auto loc = forallOp.getLoc(); |
| 1490 | rewriter.setInsertionPoint(forallOp); |
| 1491 | SmallVector<OpFoldResult> newUbs; |
| 1492 | for (auto [lb, ub, step] : llvm::zip_equal(lbs, ubs, steps)) { |
| 1493 | Range normalizedLoopParams = |
| 1494 | emitNormalizedLoopBounds(rewriter, loc, lb, ub, step); |
| 1495 | newUbs.push_back(normalizedLoopParams.size); |
| 1496 | } |
| 1497 | (void)foldDynamicIndexList(ofrs&: newUbs); |
| 1498 | |
| 1499 | // Use the normalized builder since the lower bounds are always 0 and the |
| 1500 | // steps are always 1. |
| 1501 | auto normalizedForallOp = rewriter.create<scf::ForallOp>( |
| 1502 | loc, newUbs, forallOp.getOutputs(), forallOp.getMapping(), |
| 1503 | [](OpBuilder &, Location, ValueRange) {}); |
| 1504 | |
| 1505 | rewriter.inlineRegionBefore(forallOp.getBodyRegion(), |
| 1506 | normalizedForallOp.getBodyRegion(), |
| 1507 | normalizedForallOp.getBodyRegion().begin()); |
| 1508 | // Remove the original empty block in the new loop. |
| 1509 | rewriter.eraseBlock(block: &normalizedForallOp.getBodyRegion().back()); |
| 1510 | |
| 1511 | rewriter.setInsertionPointToStart(normalizedForallOp.getBody()); |
| 1512 | // Update the users of the original loop variables. |
| 1513 | for (auto [idx, iv] : |
| 1514 | llvm::enumerate(normalizedForallOp.getInductionVars())) { |
| 1515 | auto origLb = getValueOrCreateConstantIndexOp(rewriter, loc, lbs[idx]); |
| 1516 | auto origStep = getValueOrCreateConstantIndexOp(rewriter, loc, steps[idx]); |
| 1517 | denormalizeInductionVariable(rewriter, loc, iv, origLb, origStep); |
| 1518 | } |
| 1519 | |
| 1520 | rewriter.replaceOp(forallOp, normalizedForallOp); |
| 1521 | return normalizedForallOp; |
| 1522 | } |
| 1523 | |