| 1 | //===- Shape.cpp - MLIR Shape Operations ----------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include <utility> |
| 10 | |
| 11 | #include "mlir/Dialect/Shape/IR/Shape.h" |
| 12 | |
| 13 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 14 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
| 15 | #include "mlir/Dialect/CommonFolders.h" |
| 16 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 17 | #include "mlir/Dialect/Traits.h" |
| 18 | #include "mlir/Dialect/UB/IR/UBOps.h" |
| 19 | #include "mlir/IR/Builders.h" |
| 20 | #include "mlir/IR/BuiltinTypes.h" |
| 21 | #include "mlir/IR/DialectImplementation.h" |
| 22 | #include "mlir/IR/Matchers.h" |
| 23 | #include "mlir/IR/PatternMatch.h" |
| 24 | #include "mlir/IR/TypeUtilities.h" |
| 25 | #include "mlir/Interfaces/FunctionImplementation.h" |
| 26 | #include "mlir/Transforms/InliningUtils.h" |
| 27 | #include "llvm/ADT/SetOperations.h" |
| 28 | #include "llvm/ADT/SmallString.h" |
| 29 | #include "llvm/ADT/TypeSwitch.h" |
| 30 | #include "llvm/Support/raw_ostream.h" |
| 31 | |
| 32 | using namespace mlir; |
| 33 | using namespace mlir::shape; |
| 34 | |
| 35 | #include "mlir/Dialect/Shape/IR/ShapeOpsDialect.cpp.inc" |
| 36 | |
| 37 | namespace { |
| 38 | #include "ShapeCanonicalization.inc" |
| 39 | } // namespace |
| 40 | |
| 41 | RankedTensorType shape::getExtentTensorType(MLIRContext *ctx, int64_t rank) { |
| 42 | return RankedTensorType::get({rank}, IndexType::get(ctx)); |
| 43 | } |
| 44 | |
| 45 | bool shape::isExtentTensorType(Type type) { |
| 46 | auto ranked = llvm::dyn_cast<RankedTensorType>(type); |
| 47 | return ranked && ranked.getRank() == 1 && ranked.getElementType().isIndex(); |
| 48 | } |
| 49 | |
| 50 | LogicalResult shape::getShapeVec(Value input, |
| 51 | SmallVectorImpl<int64_t> &shapeValues) { |
| 52 | if (auto inputOp = input.getDefiningOp<ShapeOfOp>()) { |
| 53 | auto type = llvm::cast<ShapedType>(inputOp.getArg().getType()); |
| 54 | if (!type.hasRank()) |
| 55 | return failure(); |
| 56 | llvm::append_range(shapeValues, type.getShape()); |
| 57 | return success(); |
| 58 | } |
| 59 | DenseIntElementsAttr attr; |
| 60 | if (matchPattern(value: input, pattern: m_Constant(bind_value: &attr))) { |
| 61 | llvm::append_range(shapeValues, attr.getValues<int64_t>()); |
| 62 | return success(); |
| 63 | } |
| 64 | return failure(); |
| 65 | } |
| 66 | |
| 67 | static bool isErrorPropagationPossible(TypeRange operandTypes) { |
| 68 | return llvm::any_of(operandTypes, |
| 69 | llvm::IsaPred<SizeType, ShapeType, ValueShapeType>); |
| 70 | } |
| 71 | |
| 72 | static LogicalResult verifySizeOrIndexOp(Operation *op) { |
| 73 | assert(op != nullptr && op->getNumResults() == 1); |
| 74 | Type resultTy = op->getResultTypes().front(); |
| 75 | if (isErrorPropagationPossible(operandTypes: op->getOperandTypes())) { |
| 76 | if (!llvm::isa<SizeType>(resultTy)) |
| 77 | return op->emitOpError() |
| 78 | << "if at least one of the operands can hold error values then " |
| 79 | "the result must be of type `size` to propagate them" ; |
| 80 | } |
| 81 | return success(); |
| 82 | } |
| 83 | |
| 84 | static LogicalResult verifyShapeOrExtentTensorOp(Operation *op) { |
| 85 | assert(op != nullptr && op->getNumResults() == 1); |
| 86 | Type resultTy = op->getResultTypes().front(); |
| 87 | if (isErrorPropagationPossible(operandTypes: op->getOperandTypes())) { |
| 88 | if (!llvm::isa<ShapeType>(resultTy)) |
| 89 | return op->emitOpError() |
| 90 | << "if at least one of the operands can hold error values then " |
| 91 | "the result must be of type `shape` to propagate them" ; |
| 92 | } |
| 93 | return success(); |
| 94 | } |
| 95 | |
| 96 | template <typename... Ty> |
| 97 | static bool eachHasOnlyOneOfTypes(TypeRange typeRange) { |
| 98 | return typeRange.size() == 1 && llvm::isa<Ty...>(typeRange.front()); |
| 99 | } |
| 100 | |
| 101 | template <typename... Ty, typename... ranges> |
| 102 | static bool eachHasOnlyOneOfTypes(TypeRange l, ranges... rs) { |
| 103 | return eachHasOnlyOneOfTypes<Ty...>(l) && eachHasOnlyOneOfTypes<Ty...>(rs...); |
| 104 | } |
| 105 | |
| 106 | //===----------------------------------------------------------------------===// |
| 107 | // InlinerInterface |
| 108 | //===----------------------------------------------------------------------===// |
| 109 | |
| 110 | namespace { |
| 111 | /// This class defines the interface for inlining shape dialect ops. |
| 112 | struct ShapeInlinerInterface : public DialectInlinerInterface { |
| 113 | using DialectInlinerInterface::DialectInlinerInterface; |
| 114 | |
| 115 | // Returns true if the given region 'src' can be inlined into the region |
| 116 | // 'dest' that is attached to an operation registered to the current dialect. |
| 117 | bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned, |
| 118 | IRMapping &) const final { |
| 119 | return true; |
| 120 | } |
| 121 | |
| 122 | // Returns true if the given operation 'op', that is registered to this |
| 123 | // dialect, can be inlined into the region 'dest' that is attached to an |
| 124 | // operation registered to the current dialect. |
| 125 | bool isLegalToInline(Operation *op, Region *dest, bool wouldBeCloned, |
| 126 | IRMapping &) const final { |
| 127 | return true; |
| 128 | } |
| 129 | }; |
| 130 | } // namespace |
| 131 | |
| 132 | void ShapeDialect::initialize() { |
| 133 | addOperations< |
| 134 | #define GET_OP_LIST |
| 135 | #include "mlir/Dialect/Shape/IR/ShapeOps.cpp.inc" |
| 136 | >(); |
| 137 | addTypes< |
| 138 | #define GET_TYPEDEF_LIST |
| 139 | #include "mlir/Dialect/Shape/IR/ShapeOpsTypes.cpp.inc" |
| 140 | >(); |
| 141 | addInterfaces<ShapeInlinerInterface>(); |
| 142 | // Allow unknown operations during prototyping and testing. As the dialect is |
| 143 | // still evolving it makes it simple to start with an unregistered ops and |
| 144 | // try different variants before actually defining the op. |
| 145 | allowUnknownOperations(); |
| 146 | declarePromisedInterfaces<bufferization::BufferizableOpInterface, AssumingOp, |
| 147 | AssumingYieldOp>(); |
| 148 | } |
| 149 | |
| 150 | Operation *ShapeDialect::materializeConstant(OpBuilder &builder, |
| 151 | Attribute value, Type type, |
| 152 | Location loc) { |
| 153 | if (auto poison = dyn_cast<ub::PoisonAttr>(value)) |
| 154 | return builder.create<ub::PoisonOp>(loc, type, poison); |
| 155 | |
| 156 | if (llvm::isa<ShapeType>(type) || isExtentTensorType(type)) |
| 157 | return builder.create<ConstShapeOp>( |
| 158 | loc, type, llvm::cast<DenseIntElementsAttr>(value)); |
| 159 | if (llvm::isa<SizeType>(type)) |
| 160 | return builder.create<ConstSizeOp>(loc, type, |
| 161 | llvm::cast<IntegerAttr>(value)); |
| 162 | if (llvm::isa<WitnessType>(type)) |
| 163 | return builder.create<ConstWitnessOp>(loc, type, |
| 164 | llvm::cast<BoolAttr>(value)); |
| 165 | |
| 166 | return arith::ConstantOp::materialize(builder, value, type, loc); |
| 167 | } |
| 168 | |
| 169 | LogicalResult ShapeDialect::verifyOperationAttribute(Operation *op, |
| 170 | NamedAttribute attribute) { |
| 171 | // Verify shape.lib attribute. |
| 172 | if (attribute.getName() == "shape.lib" ) { |
| 173 | if (!op->hasTrait<OpTrait::SymbolTable>()) |
| 174 | return op->emitError( |
| 175 | "shape.lib attribute may only be on op implementing SymbolTable" ); |
| 176 | |
| 177 | if (auto symbolRef = llvm::dyn_cast<SymbolRefAttr>(attribute.getValue())) { |
| 178 | auto *symbol = SymbolTable::lookupSymbolIn(op, symbolRef); |
| 179 | if (!symbol) |
| 180 | return op->emitError("shape function library " ) |
| 181 | << symbolRef << " not found" ; |
| 182 | return isa<shape::FunctionLibraryOp>(symbol) |
| 183 | ? success() |
| 184 | : op->emitError() |
| 185 | << symbolRef << " required to be shape function library" ; |
| 186 | } |
| 187 | |
| 188 | if (auto arr = llvm::dyn_cast<ArrayAttr>(attribute.getValue())) { |
| 189 | // Verify all entries are function libraries and mappings in libraries |
| 190 | // refer to unique ops. |
| 191 | DenseSet<StringAttr> key; |
| 192 | for (auto it : arr) { |
| 193 | if (!llvm::isa<SymbolRefAttr>(it)) |
| 194 | return op->emitError( |
| 195 | "only SymbolRefAttr allowed in shape.lib attribute array" ); |
| 196 | |
| 197 | auto shapeFnLib = dyn_cast<shape::FunctionLibraryOp>( |
| 198 | SymbolTable::lookupSymbolIn(op, llvm::cast<SymbolRefAttr>(it))); |
| 199 | if (!shapeFnLib) |
| 200 | return op->emitError() |
| 201 | << it << " does not refer to FunctionLibraryOp" ; |
| 202 | for (auto mapping : shapeFnLib.getMapping()) { |
| 203 | if (!key.insert(mapping.getName()).second) { |
| 204 | return op->emitError("only one op to shape mapping allowed, found " |
| 205 | "multiple for `" ) |
| 206 | << mapping.getName() << "`" ; |
| 207 | } |
| 208 | } |
| 209 | } |
| 210 | return success(); |
| 211 | } |
| 212 | |
| 213 | return op->emitError("only SymbolRefAttr or array of SymbolRefAttrs " |
| 214 | "allowed as shape.lib attribute" ); |
| 215 | } |
| 216 | return success(); |
| 217 | } |
| 218 | |
| 219 | //===----------------------------------------------------------------------===// |
| 220 | // AnyOp |
| 221 | //===----------------------------------------------------------------------===// |
| 222 | |
| 223 | // TODO: Canonicalization should be implemented for shapes that can be |
| 224 | // determined through mixtures of the known dimensions of the inputs. |
| 225 | OpFoldResult AnyOp::fold(FoldAdaptor adaptor) { |
| 226 | // Only the last operand is checked because AnyOp is commutative. |
| 227 | if (adaptor.getInputs().back()) |
| 228 | return adaptor.getInputs().back(); |
| 229 | |
| 230 | return nullptr; |
| 231 | } |
| 232 | |
| 233 | //===----------------------------------------------------------------------===// |
| 234 | // AssumingOp |
| 235 | //===----------------------------------------------------------------------===// |
| 236 | |
| 237 | ParseResult AssumingOp::parse(OpAsmParser &parser, OperationState &result) { |
| 238 | result.regions.reserve(1); |
| 239 | Region *doRegion = result.addRegion(); |
| 240 | |
| 241 | auto &builder = parser.getBuilder(); |
| 242 | OpAsmParser::UnresolvedOperand cond; |
| 243 | if (parser.parseOperand(cond) || |
| 244 | parser.resolveOperand(cond, builder.getType<WitnessType>(), |
| 245 | result.operands)) |
| 246 | return failure(); |
| 247 | |
| 248 | // Parse optional results type list. |
| 249 | if (parser.parseOptionalArrowTypeList(result.types)) |
| 250 | return failure(); |
| 251 | |
| 252 | // Parse the region and add a terminator if elided. |
| 253 | if (parser.parseRegion(*doRegion, /*arguments=*/{}, /*argTypes=*/{})) |
| 254 | return failure(); |
| 255 | AssumingOp::ensureTerminator(*doRegion, parser.getBuilder(), result.location); |
| 256 | |
| 257 | // Parse the optional attribute list. |
| 258 | if (parser.parseOptionalAttrDict(result.attributes)) |
| 259 | return failure(); |
| 260 | return success(); |
| 261 | } |
| 262 | |
| 263 | void AssumingOp::print(OpAsmPrinter &p) { |
| 264 | bool yieldsResults = !getResults().empty(); |
| 265 | |
| 266 | p << " " << getWitness(); |
| 267 | if (yieldsResults) |
| 268 | p << " -> (" << getResultTypes() << ")" ; |
| 269 | p << ' '; |
| 270 | p.printRegion(getDoRegion(), |
| 271 | /*printEntryBlockArgs=*/false, |
| 272 | /*printBlockTerminators=*/yieldsResults); |
| 273 | p.printOptionalAttrDict((*this)->getAttrs()); |
| 274 | } |
| 275 | |
| 276 | namespace { |
| 277 | // Removes AssumingOp with a passing witness and inlines the region. |
| 278 | struct AssumingWithTrue : public OpRewritePattern<AssumingOp> { |
| 279 | using OpRewritePattern<AssumingOp>::OpRewritePattern; |
| 280 | |
| 281 | LogicalResult matchAndRewrite(AssumingOp op, |
| 282 | PatternRewriter &rewriter) const override { |
| 283 | auto witness = op.getWitness().getDefiningOp<ConstWitnessOp>(); |
| 284 | if (!witness || !witness.getPassingAttr()) |
| 285 | return failure(); |
| 286 | |
| 287 | AssumingOp::inlineRegionIntoParent(op, rewriter); |
| 288 | return success(); |
| 289 | } |
| 290 | }; |
| 291 | |
| 292 | struct AssumingOpRemoveUnusedResults : public OpRewritePattern<AssumingOp> { |
| 293 | using OpRewritePattern<AssumingOp>::OpRewritePattern; |
| 294 | |
| 295 | LogicalResult matchAndRewrite(AssumingOp op, |
| 296 | PatternRewriter &rewriter) const override { |
| 297 | Block *body = op.getBody(); |
| 298 | auto yieldOp = llvm::cast<AssumingYieldOp>(body->getTerminator()); |
| 299 | |
| 300 | // Find used values. |
| 301 | SmallVector<Value, 4> newYieldOperands; |
| 302 | for (auto [opResult, yieldOperand] : |
| 303 | llvm::zip(op.getResults(), yieldOp.getOperands())) { |
| 304 | if (!opResult.getUses().empty()) { |
| 305 | newYieldOperands.push_back(yieldOperand); |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | // Rewrite only if redundant results exist. |
| 310 | if (newYieldOperands.size() == yieldOp->getNumOperands()) |
| 311 | return failure(); |
| 312 | |
| 313 | // Replace yield op in the old assuming op's body and move the entire region |
| 314 | // to the new assuming op. |
| 315 | rewriter.setInsertionPointToEnd(body); |
| 316 | auto newYieldOp = |
| 317 | rewriter.replaceOpWithNewOp<AssumingYieldOp>(yieldOp, newYieldOperands); |
| 318 | rewriter.setInsertionPoint(op); |
| 319 | auto newOp = rewriter.create<AssumingOp>( |
| 320 | op.getLoc(), newYieldOp->getOperandTypes(), op.getWitness()); |
| 321 | newOp.getDoRegion().takeBody(op.getDoRegion()); |
| 322 | |
| 323 | // Use the new results to replace the previously used ones. |
| 324 | SmallVector<Value, 4> replacementValues; |
| 325 | auto src = newOp.getResults().begin(); |
| 326 | for (auto it : op.getResults()) { |
| 327 | if (it.getUses().empty()) |
| 328 | replacementValues.push_back(nullptr); |
| 329 | else |
| 330 | replacementValues.push_back(*src++); |
| 331 | } |
| 332 | rewriter.replaceOp(op, replacementValues); |
| 333 | return success(); |
| 334 | } |
| 335 | }; |
| 336 | } // namespace |
| 337 | |
| 338 | void AssumingOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 339 | MLIRContext *context) { |
| 340 | patterns.add<AssumingOpRemoveUnusedResults, AssumingWithTrue>(context); |
| 341 | } |
| 342 | |
| 343 | // See RegionBranchOpInterface in Interfaces/ControlFlowInterfaces.td |
| 344 | void AssumingOp::getSuccessorRegions( |
| 345 | RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> ®ions) { |
| 346 | // AssumingOp has unconditional control flow into the region and back to the |
| 347 | // parent, so return the correct RegionSuccessor purely based on the index |
| 348 | // being None or 0. |
| 349 | if (!point.isParent()) { |
| 350 | regions.push_back(RegionSuccessor(getResults())); |
| 351 | return; |
| 352 | } |
| 353 | |
| 354 | regions.push_back(RegionSuccessor(&getDoRegion())); |
| 355 | } |
| 356 | |
| 357 | void AssumingOp::inlineRegionIntoParent(AssumingOp &op, |
| 358 | PatternRewriter &rewriter) { |
| 359 | auto *blockBeforeAssuming = rewriter.getInsertionBlock(); |
| 360 | auto *assumingBlock = op.getBody(); |
| 361 | auto initPosition = rewriter.getInsertionPoint(); |
| 362 | auto *blockAfterAssuming = |
| 363 | rewriter.splitBlock(blockBeforeAssuming, initPosition); |
| 364 | |
| 365 | // Remove the AssumingOp and AssumingYieldOp. |
| 366 | auto &yieldOp = assumingBlock->back(); |
| 367 | rewriter.inlineRegionBefore(op.getDoRegion(), blockAfterAssuming); |
| 368 | rewriter.replaceOp(op, yieldOp.getOperands()); |
| 369 | rewriter.eraseOp(&yieldOp); |
| 370 | |
| 371 | // Merge blocks together as there was no branching behavior from the |
| 372 | // AssumingOp. |
| 373 | rewriter.mergeBlocks(assumingBlock, blockBeforeAssuming); |
| 374 | rewriter.mergeBlocks(blockAfterAssuming, blockBeforeAssuming); |
| 375 | } |
| 376 | |
| 377 | void AssumingOp::build( |
| 378 | OpBuilder &builder, OperationState &result, Value witness, |
| 379 | function_ref<SmallVector<Value, 2>(OpBuilder &, Location)> bodyBuilder) { |
| 380 | OpBuilder::InsertionGuard g(builder); |
| 381 | |
| 382 | result.addOperands(witness); |
| 383 | Region *bodyRegion = result.addRegion(); |
| 384 | builder.createBlock(bodyRegion); |
| 385 | |
| 386 | // Build body. |
| 387 | SmallVector<Value, 2> yieldValues = bodyBuilder(builder, result.location); |
| 388 | builder.create<AssumingYieldOp>(result.location, yieldValues); |
| 389 | |
| 390 | SmallVector<Type, 2> assumingTypes; |
| 391 | for (Value v : yieldValues) |
| 392 | assumingTypes.push_back(v.getType()); |
| 393 | result.addTypes(assumingTypes); |
| 394 | } |
| 395 | |
| 396 | //===----------------------------------------------------------------------===// |
| 397 | // AddOp |
| 398 | //===----------------------------------------------------------------------===// |
| 399 | |
| 400 | LogicalResult mlir::shape::AddOp::inferReturnTypes( |
| 401 | MLIRContext *context, std::optional<Location> location, |
| 402 | AddOp::Adaptor adaptor, SmallVectorImpl<Type> &inferredReturnTypes) { |
| 403 | if (llvm::isa<SizeType>(adaptor.getLhs().getType()) || |
| 404 | llvm::isa<SizeType>(adaptor.getRhs().getType())) |
| 405 | inferredReturnTypes.assign({SizeType::get(context)}); |
| 406 | else |
| 407 | inferredReturnTypes.assign({IndexType::get(context)}); |
| 408 | return success(); |
| 409 | } |
| 410 | |
| 411 | bool mlir::shape::AddOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| 412 | // SizeType is compatible with IndexType. |
| 413 | return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r); |
| 414 | } |
| 415 | |
| 416 | OpFoldResult mlir::shape::AddOp::fold(FoldAdaptor adaptor) { |
| 417 | // add(x, 0) -> x |
| 418 | if (matchPattern(getRhs(), m_Zero())) |
| 419 | return getLhs(); |
| 420 | |
| 421 | return constFoldBinaryOp<IntegerAttr>( |
| 422 | adaptor.getOperands(), |
| 423 | [](APInt a, const APInt &b) { return std::move(a) + b; }); |
| 424 | } |
| 425 | |
| 426 | LogicalResult shape::AddOp::verify() { return verifySizeOrIndexOp(*this); } |
| 427 | |
| 428 | //===----------------------------------------------------------------------===// |
| 429 | // AssumingAllOp |
| 430 | //===----------------------------------------------------------------------===// |
| 431 | |
| 432 | namespace { |
| 433 | |
| 434 | // Merge multiple `shape.assuming_all` operations together. |
| 435 | // |
| 436 | // %0 = shape.assuming_all %w0, %w1 |
| 437 | // %1 = shape.assuming_all %w2, %0 |
| 438 | // |
| 439 | // to: |
| 440 | // |
| 441 | // %0 = shape.assuming_all %w0, %w2, %w2 |
| 442 | struct MergeAssumingAllOps : public OpRewritePattern<AssumingAllOp> { |
| 443 | using OpRewritePattern<AssumingAllOp>::OpRewritePattern; |
| 444 | |
| 445 | LogicalResult matchAndRewrite(AssumingAllOp op, |
| 446 | PatternRewriter &rewriter) const override { |
| 447 | SmallVector<Value> operands; |
| 448 | |
| 449 | for (Value operand : op.getInputs()) { |
| 450 | if (auto assumeAll = operand.getDefiningOp<AssumingAllOp>()) |
| 451 | operands.append(assumeAll.operand_begin(), assumeAll->operand_end()); |
| 452 | else |
| 453 | operands.push_back(operand); |
| 454 | } |
| 455 | |
| 456 | // We didn't find any other `assuming_all` ops to merge with. |
| 457 | if (operands.size() == op.getNumOperands()) |
| 458 | return failure(); |
| 459 | |
| 460 | // Replace with a new `assuming_all` operation with merged constraints. |
| 461 | rewriter.replaceOpWithNewOp<AssumingAllOp>(op, operands); |
| 462 | return success(); |
| 463 | } |
| 464 | }; |
| 465 | |
| 466 | // Eliminate `cstr_broadcastable` operands from `assuming_all` operation that |
| 467 | // are subsumed by others. |
| 468 | // |
| 469 | // %0 = shape.cstr_broadcastable %shape0, %shape1 |
| 470 | // %1 = shape.cstr_broadcastable %shape0, %shape1, %shape2 |
| 471 | // |
| 472 | // %2 = shape.cstr_broadcastable %shape3, %shape4 |
| 473 | // %3 = shape.cstr_broadcastable %shape3, %shape4, %shape5 |
| 474 | // |
| 475 | // %4 = shape.assuming_all %0, %1, %2, %3 |
| 476 | // |
| 477 | // to: |
| 478 | // |
| 479 | // %0 = shape.cstr_broadcastable %shape0, %shape1, %shape2 |
| 480 | // %1 = shape.cstr_broadcastable %shape3, %shape4, %shape5 |
| 481 | // %2 = shape.assuming_all %0, %1 |
| 482 | // |
| 483 | // In this example if shapes [0, 1, 2] are broadcastable, then it means that |
| 484 | // shapes [0, 1] are broadcastable too, and can be removed from the list of |
| 485 | // constraints. If shapes [0, 1, 2] are not broadcastable, then it doesn't |
| 486 | // matter if shapes [0, 1] are broadcastable (same for shapes [3, 4, 5]). |
| 487 | struct AssumingAllOfCstrBroadcastable : public OpRewritePattern<AssumingAllOp> { |
| 488 | using OpRewritePattern<AssumingAllOp>::OpRewritePattern; |
| 489 | |
| 490 | LogicalResult matchAndRewrite(AssumingAllOp op, |
| 491 | PatternRewriter &rewriter) const override { |
| 492 | // Collect all `CstrBroadcastableOp` operands first. |
| 493 | SetVector<CstrBroadcastableOp> operands; |
| 494 | for (Value operand : op.getInputs()) { |
| 495 | // TODO: Apply this optimization if some of the witnesses are not |
| 496 | // produced by the `cstr_broadcastable`. |
| 497 | auto broadcastable = operand.getDefiningOp<CstrBroadcastableOp>(); |
| 498 | if (!broadcastable) |
| 499 | return failure(); |
| 500 | |
| 501 | operands.insert(broadcastable); |
| 502 | } |
| 503 | |
| 504 | // Skip trivial `assuming_all` operations. |
| 505 | if (operands.size() <= 1) |
| 506 | return failure(); |
| 507 | |
| 508 | // Collect shapes checked by `cstr_broadcastable` operands. |
| 509 | SmallVector<std::pair<CstrBroadcastableOp, DenseSet<Value>>> shapes; |
| 510 | for (auto cstr : operands) { |
| 511 | DenseSet<Value> shapesSet(cstr->operand_begin(), cstr->operand_end()); |
| 512 | shapes.emplace_back(cstr, std::move(shapesSet)); |
| 513 | } |
| 514 | |
| 515 | // Sort by the number of shape operands (larger to smaller). |
| 516 | llvm::sort(shapes, [](auto a, auto b) { |
| 517 | return a.first.getNumOperands() > b.first.getNumOperands(); |
| 518 | }); |
| 519 | |
| 520 | // We start from the `cst_broadcastable` operations with largest number of |
| 521 | // shape operands, and remove redundant `cst_broadcastable` operations. We |
| 522 | // do this until we find a set of `cst_broadcastable` operations with |
| 523 | // non-overlapping constraints. |
| 524 | SmallVector<CstrBroadcastableOp> markedForErase; |
| 525 | |
| 526 | for (unsigned i = 0; i < shapes.size(); ++i) { |
| 527 | auto isSubset = [&](auto pair) { |
| 528 | return llvm::set_is_subset(pair.second, shapes[i].second); |
| 529 | }; |
| 530 | |
| 531 | // Keep redundant `cstr_broadcastable` operations to be erased. |
| 532 | auto *it = std::remove_if(shapes.begin() + i + 1, shapes.end(), isSubset); |
| 533 | for (auto *it0 = it; it0 < shapes.end(); ++it0) |
| 534 | markedForErase.push_back(it0->first); |
| 535 | shapes.erase(it, shapes.end()); |
| 536 | } |
| 537 | |
| 538 | // We didn't find any operands that could be removed. |
| 539 | if (markedForErase.empty()) |
| 540 | return failure(); |
| 541 | |
| 542 | // Collect non-overlapping `cst_broadcastable` constraints. |
| 543 | SmallVector<Value> uniqueConstraints; |
| 544 | for (auto &shape : shapes) |
| 545 | uniqueConstraints.push_back(shape.first.getResult()); |
| 546 | |
| 547 | // Replace with a new `assuming_all` operation ... |
| 548 | rewriter.replaceOpWithNewOp<AssumingAllOp>(op, uniqueConstraints); |
| 549 | |
| 550 | // ... and maybe erase `cstr_broadcastable` ops without uses. |
| 551 | for (auto &op : markedForErase) |
| 552 | if (op->use_empty()) |
| 553 | rewriter.eraseOp(op); |
| 554 | |
| 555 | return success(); |
| 556 | } |
| 557 | }; |
| 558 | |
| 559 | struct AssumingAllToCstrEqCanonicalization |
| 560 | : public OpRewritePattern<AssumingAllOp> { |
| 561 | using OpRewritePattern<AssumingAllOp>::OpRewritePattern; |
| 562 | |
| 563 | LogicalResult matchAndRewrite(AssumingAllOp op, |
| 564 | PatternRewriter &rewriter) const override { |
| 565 | SmallVector<Value, 8> shapes; |
| 566 | for (Value w : op.getInputs()) { |
| 567 | auto cstrEqOp = w.getDefiningOp<CstrEqOp>(); |
| 568 | if (!cstrEqOp) |
| 569 | return failure(); |
| 570 | bool disjointShapes = llvm::none_of(cstrEqOp.getShapes(), [&](Value s) { |
| 571 | return llvm::is_contained(shapes, s); |
| 572 | }); |
| 573 | if (!shapes.empty() && !cstrEqOp.getShapes().empty() && disjointShapes) |
| 574 | return failure(); |
| 575 | shapes.append(cstrEqOp.getShapes().begin(), cstrEqOp.getShapes().end()); |
| 576 | } |
| 577 | rewriter.replaceOpWithNewOp<CstrEqOp>(op, shapes); |
| 578 | return success(); |
| 579 | } |
| 580 | }; |
| 581 | |
| 582 | template <typename OpTy> |
| 583 | struct RemoveDuplicateOperandsPattern : public OpRewritePattern<OpTy> { |
| 584 | using OpRewritePattern<OpTy>::OpRewritePattern; |
| 585 | |
| 586 | LogicalResult matchAndRewrite(OpTy op, |
| 587 | PatternRewriter &rewriter) const override { |
| 588 | // Find unique operands. |
| 589 | SetVector<Value> unique(op.operand_begin(), op.operand_end()); |
| 590 | |
| 591 | // Reduce op to equivalent with unique operands. |
| 592 | if (unique.size() < op.getNumOperands()) { |
| 593 | rewriter.replaceOpWithNewOp<OpTy>(op, op->getResultTypes(), |
| 594 | unique.takeVector(), op->getAttrs()); |
| 595 | return success(); |
| 596 | } |
| 597 | |
| 598 | return failure(); |
| 599 | } |
| 600 | }; |
| 601 | } // namespace |
| 602 | |
| 603 | void AssumingAllOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 604 | MLIRContext *context) { |
| 605 | patterns |
| 606 | .add<MergeAssumingAllOps, AssumingAllOneOp, |
| 607 | AssumingAllOfCstrBroadcastable, AssumingAllToCstrEqCanonicalization, |
| 608 | RemoveDuplicateOperandsPattern<AssumingAllOp>>(context); |
| 609 | } |
| 610 | |
| 611 | OpFoldResult AssumingAllOp::fold(FoldAdaptor adaptor) { |
| 612 | // Iterate in reverse to first handle all constant operands. They are |
| 613 | // guaranteed to be the tail of the inputs because this is commutative. |
| 614 | for (int idx = adaptor.getInputs().size() - 1; idx >= 0; idx--) { |
| 615 | Attribute a = adaptor.getInputs()[idx]; |
| 616 | // Cannot fold if any inputs are not constant; |
| 617 | if (!a) |
| 618 | return nullptr; |
| 619 | |
| 620 | // We do not need to keep statically known values after handling them in |
| 621 | // this method. |
| 622 | getOperation()->eraseOperand(idx); |
| 623 | |
| 624 | // Always false if any input is statically known false |
| 625 | if (!llvm::cast<BoolAttr>(a).getValue()) |
| 626 | return a; |
| 627 | } |
| 628 | // If this is reached, all inputs were statically known passing. |
| 629 | return BoolAttr::get(getContext(), true); |
| 630 | } |
| 631 | |
| 632 | LogicalResult AssumingAllOp::verify() { |
| 633 | // Ensure that AssumingAllOp contains at least one operand |
| 634 | if (getNumOperands() == 0) |
| 635 | return emitOpError("no operands specified" ); |
| 636 | |
| 637 | return success(); |
| 638 | } |
| 639 | |
| 640 | //===----------------------------------------------------------------------===// |
| 641 | // BroadcastOp |
| 642 | //===----------------------------------------------------------------------===// |
| 643 | |
| 644 | OpFoldResult BroadcastOp::fold(FoldAdaptor adaptor) { |
| 645 | if (getShapes().size() == 1) { |
| 646 | // Otherwise, we need a cast which would be a canonicalization, not folding. |
| 647 | if (getShapes().front().getType() != getType()) |
| 648 | return nullptr; |
| 649 | return getShapes().front(); |
| 650 | } |
| 651 | |
| 652 | if (!adaptor.getShapes().front()) |
| 653 | return nullptr; |
| 654 | |
| 655 | SmallVector<int64_t, 6> resultShape( |
| 656 | llvm::cast<DenseIntElementsAttr>(adaptor.getShapes().front()) |
| 657 | .getValues<int64_t>()); |
| 658 | |
| 659 | for (auto next : adaptor.getShapes().drop_front()) { |
| 660 | if (!next) |
| 661 | return nullptr; |
| 662 | auto nextShape = llvm::to_vector<6>( |
| 663 | llvm::cast<DenseIntElementsAttr>(next).getValues<int64_t>()); |
| 664 | |
| 665 | SmallVector<int64_t, 6> tmpShape; |
| 666 | // If the shapes are not compatible, we can't fold it. |
| 667 | // TODO: Fold to an "error". |
| 668 | if (!OpTrait::util::getBroadcastedShape(resultShape, nextShape, tmpShape)) |
| 669 | return nullptr; |
| 670 | |
| 671 | resultShape.clear(); |
| 672 | std::copy(tmpShape.begin(), tmpShape.end(), |
| 673 | std::back_inserter(resultShape)); |
| 674 | } |
| 675 | |
| 676 | Builder builder(getContext()); |
| 677 | return builder.getIndexTensorAttr(resultShape); |
| 678 | } |
| 679 | |
| 680 | LogicalResult BroadcastOp::verify() { |
| 681 | return verifyShapeOrExtentTensorOp(*this); |
| 682 | } |
| 683 | |
| 684 | namespace { |
| 685 | template <typename OpTy> |
| 686 | struct RemoveEmptyShapeOperandsPattern : public OpRewritePattern<OpTy> { |
| 687 | using OpRewritePattern<OpTy>::OpRewritePattern; |
| 688 | |
| 689 | LogicalResult matchAndRewrite(OpTy op, |
| 690 | PatternRewriter &rewriter) const override { |
| 691 | auto isPotentiallyNonEmptyShape = [](Value shape) { |
| 692 | if (auto extentTensorTy = |
| 693 | llvm::dyn_cast<RankedTensorType>(shape.getType())) { |
| 694 | if (extentTensorTy.getDimSize(0) == 0) |
| 695 | return false; |
| 696 | } |
| 697 | if (auto constShape = shape.getDefiningOp<ConstShapeOp>()) { |
| 698 | if (constShape.getShape().empty()) |
| 699 | return false; |
| 700 | } |
| 701 | return true; |
| 702 | }; |
| 703 | auto newOperands = llvm::filter_to_vector<8>(op->getOperands(), |
| 704 | isPotentiallyNonEmptyShape); |
| 705 | |
| 706 | // Replace the op with empty shape constant if all operants are reduced to |
| 707 | // be empty. |
| 708 | if (newOperands.empty()) { |
| 709 | rewriter.replaceOpWithNewOp<ConstShapeOp>( |
| 710 | op, op->getResultTypes().front(), rewriter.getIndexTensorAttr({})); |
| 711 | return success(); |
| 712 | } |
| 713 | |
| 714 | // Reduce op to equivalent without empty shape operands. |
| 715 | if (newOperands.size() < op.getNumOperands()) { |
| 716 | rewriter.replaceOpWithNewOp<OpTy>(op, op->getResultTypes(), newOperands, |
| 717 | op->getAttrs()); |
| 718 | return success(); |
| 719 | } |
| 720 | |
| 721 | return failure(); |
| 722 | } |
| 723 | }; |
| 724 | |
| 725 | struct BroadcastForwardSingleOperandPattern |
| 726 | : public OpRewritePattern<BroadcastOp> { |
| 727 | using OpRewritePattern<BroadcastOp>::OpRewritePattern; |
| 728 | |
| 729 | LogicalResult matchAndRewrite(BroadcastOp op, |
| 730 | PatternRewriter &rewriter) const override { |
| 731 | if (op.getNumOperands() != 1) |
| 732 | return failure(); |
| 733 | Value replacement = op.getShapes().front(); |
| 734 | |
| 735 | // Insert cast if needed. |
| 736 | if (replacement.getType() != op.getType()) { |
| 737 | auto loc = op.getLoc(); |
| 738 | if (llvm::isa<ShapeType>(op.getType())) { |
| 739 | replacement = rewriter.create<FromExtentTensorOp>(loc, replacement); |
| 740 | } else { |
| 741 | assert(!llvm::isa<ShapeType>(op.getType()) && |
| 742 | !llvm::isa<ShapeType>(replacement.getType()) && |
| 743 | "expect extent tensor cast" ); |
| 744 | replacement = |
| 745 | rewriter.create<tensor::CastOp>(loc, op.getType(), replacement); |
| 746 | } |
| 747 | } |
| 748 | |
| 749 | rewriter.replaceOp(op, replacement); |
| 750 | return success(); |
| 751 | } |
| 752 | }; |
| 753 | |
| 754 | struct BroadcastFoldConstantOperandsPattern |
| 755 | : public OpRewritePattern<BroadcastOp> { |
| 756 | using OpRewritePattern<BroadcastOp>::OpRewritePattern; |
| 757 | |
| 758 | LogicalResult matchAndRewrite(BroadcastOp op, |
| 759 | PatternRewriter &rewriter) const override { |
| 760 | SmallVector<int64_t, 8> foldedConstantShape; |
| 761 | SmallVector<Value, 8> newShapeOperands; |
| 762 | for (Value shape : op.getShapes()) { |
| 763 | if (auto constShape = shape.getDefiningOp<ConstShapeOp>()) { |
| 764 | SmallVector<int64_t, 8> newFoldedConstantShape; |
| 765 | if (OpTrait::util::getBroadcastedShape( |
| 766 | foldedConstantShape, |
| 767 | llvm::to_vector<8>(constShape.getShape().getValues<int64_t>()), |
| 768 | newFoldedConstantShape)) { |
| 769 | foldedConstantShape = newFoldedConstantShape; |
| 770 | continue; |
| 771 | } |
| 772 | } |
| 773 | newShapeOperands.push_back(shape); |
| 774 | } |
| 775 | |
| 776 | // Need at least two constant operands to fold anything. |
| 777 | if (op.getNumOperands() - newShapeOperands.size() < 2) |
| 778 | return failure(); |
| 779 | |
| 780 | auto foldedConstantOperandsTy = RankedTensorType::get( |
| 781 | {static_cast<int64_t>(foldedConstantShape.size())}, |
| 782 | rewriter.getIndexType()); |
| 783 | newShapeOperands.push_back(rewriter.create<ConstShapeOp>( |
| 784 | op.getLoc(), foldedConstantOperandsTy, |
| 785 | rewriter.getIndexTensorAttr(foldedConstantShape))); |
| 786 | rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), |
| 787 | newShapeOperands); |
| 788 | return success(); |
| 789 | } |
| 790 | }; |
| 791 | |
| 792 | template <typename OpTy> |
| 793 | struct CanonicalizeCastExtentTensorOperandsPattern |
| 794 | : public OpRewritePattern<OpTy> { |
| 795 | using OpRewritePattern<OpTy>::OpRewritePattern; |
| 796 | |
| 797 | LogicalResult matchAndRewrite(OpTy op, |
| 798 | PatternRewriter &rewriter) const override { |
| 799 | // Canonicalize operands. |
| 800 | bool anyChange = false; |
| 801 | auto canonicalizeOperand = [&](Value operand) -> Value { |
| 802 | if (auto castOp = operand.getDefiningOp<tensor::CastOp>()) { |
| 803 | // Only eliminate the cast if it holds no shape information. |
| 804 | bool isInformationLoosingCast = |
| 805 | llvm::cast<RankedTensorType>(castOp.getType()).isDynamicDim(0); |
| 806 | if (isInformationLoosingCast) { |
| 807 | anyChange = true; |
| 808 | return castOp.getSource(); |
| 809 | } |
| 810 | } |
| 811 | return operand; |
| 812 | }; |
| 813 | auto newOperands = llvm::to_vector<8>( |
| 814 | llvm::map_range(op.getOperands(), canonicalizeOperand)); |
| 815 | |
| 816 | // Rewrite op if any change required. |
| 817 | if (!anyChange) |
| 818 | return failure(); |
| 819 | rewriter.replaceOpWithNewOp<OpTy>(op, op->getResultTypes(), newOperands); |
| 820 | return success(); |
| 821 | } |
| 822 | }; |
| 823 | |
| 824 | struct BroadcastConcretizeResultTypePattern |
| 825 | : public OpRewritePattern<BroadcastOp> { |
| 826 | using OpRewritePattern<BroadcastOp>::OpRewritePattern; |
| 827 | |
| 828 | LogicalResult matchAndRewrite(BroadcastOp op, |
| 829 | PatternRewriter &rewriter) const override { |
| 830 | // Only concretize dynamic extent tensor result types. |
| 831 | auto resultTy = llvm::dyn_cast<RankedTensorType>(op.getType()); |
| 832 | if (!resultTy || !resultTy.isDynamicDim(0)) |
| 833 | return failure(); |
| 834 | |
| 835 | // Infer resulting shape rank if possible. |
| 836 | int64_t maxRank = 0; |
| 837 | for (Value shape : op.getShapes()) { |
| 838 | if (auto extentTensorTy = |
| 839 | llvm::dyn_cast<RankedTensorType>(shape.getType())) { |
| 840 | // Cannot infer resulting shape rank if any operand is dynamically |
| 841 | // ranked. |
| 842 | if (extentTensorTy.isDynamicDim(0)) |
| 843 | return failure(); |
| 844 | maxRank = std::max(maxRank, extentTensorTy.getDimSize(0)); |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | auto newOp = rewriter.create<BroadcastOp>( |
| 849 | op.getLoc(), getExtentTensorType(getContext(), maxRank), |
| 850 | op.getShapes()); |
| 851 | rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(), newOp); |
| 852 | return success(); |
| 853 | } |
| 854 | }; |
| 855 | } // namespace |
| 856 | |
| 857 | void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 858 | MLIRContext *context) { |
| 859 | patterns.add<BroadcastConcretizeResultTypePattern, |
| 860 | BroadcastFoldConstantOperandsPattern, |
| 861 | BroadcastForwardSingleOperandPattern, |
| 862 | CanonicalizeCastExtentTensorOperandsPattern<BroadcastOp>, |
| 863 | RemoveDuplicateOperandsPattern<BroadcastOp>, |
| 864 | RemoveEmptyShapeOperandsPattern<BroadcastOp>>(context); |
| 865 | } |
| 866 | |
| 867 | //===----------------------------------------------------------------------===// |
| 868 | // ConcatOp |
| 869 | //===----------------------------------------------------------------------===// |
| 870 | |
| 871 | OpFoldResult ConcatOp::fold(FoldAdaptor adaptor) { |
| 872 | if (!adaptor.getLhs() || !adaptor.getRhs()) |
| 873 | return nullptr; |
| 874 | auto lhsShape = llvm::to_vector<6>( |
| 875 | llvm::cast<DenseIntElementsAttr>(adaptor.getLhs()).getValues<int64_t>()); |
| 876 | auto rhsShape = llvm::to_vector<6>( |
| 877 | llvm::cast<DenseIntElementsAttr>(adaptor.getRhs()).getValues<int64_t>()); |
| 878 | SmallVector<int64_t, 6> resultShape; |
| 879 | resultShape.append(lhsShape.begin(), lhsShape.end()); |
| 880 | resultShape.append(rhsShape.begin(), rhsShape.end()); |
| 881 | Builder builder(getContext()); |
| 882 | return builder.getIndexTensorAttr(resultShape); |
| 883 | } |
| 884 | |
| 885 | //===----------------------------------------------------------------------===// |
| 886 | // ConstShapeOp |
| 887 | //===----------------------------------------------------------------------===// |
| 888 | |
| 889 | void ConstShapeOp::print(OpAsmPrinter &p) { |
| 890 | p << " " ; |
| 891 | p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{"shape" }); |
| 892 | p << "[" ; |
| 893 | interleaveComma(getShape().getValues<int64_t>(), p); |
| 894 | p << "] : " ; |
| 895 | p.printType(getType()); |
| 896 | } |
| 897 | |
| 898 | ParseResult ConstShapeOp::parse(OpAsmParser &parser, OperationState &result) { |
| 899 | if (parser.parseOptionalAttrDict(result.attributes)) |
| 900 | return failure(); |
| 901 | // We piggy-back on ArrayAttr parsing, though we don't internally store the |
| 902 | // shape as an ArrayAttr. |
| 903 | // TODO: Implement custom parser and maybe make syntax a bit more concise. |
| 904 | Attribute extentsRaw; |
| 905 | NamedAttrList dummy; |
| 906 | if (parser.parseAttribute(extentsRaw, "dummy" , dummy)) |
| 907 | return failure(); |
| 908 | auto extentsArray = llvm::dyn_cast<ArrayAttr>(extentsRaw); |
| 909 | if (!extentsArray) |
| 910 | return failure(); |
| 911 | SmallVector<int64_t, 6> ints; |
| 912 | for (Attribute extent : extentsArray) { |
| 913 | IntegerAttr attr = llvm::dyn_cast<IntegerAttr>(extent); |
| 914 | if (!attr) |
| 915 | return failure(); |
| 916 | ints.push_back(attr.getInt()); |
| 917 | } |
| 918 | Builder &builder = parser.getBuilder(); |
| 919 | result.addAttribute("shape" , builder.getIndexTensorAttr(ints)); |
| 920 | Type resultTy; |
| 921 | if (parser.parseColonType(resultTy)) |
| 922 | return failure(); |
| 923 | result.types.push_back(resultTy); |
| 924 | return success(); |
| 925 | } |
| 926 | |
| 927 | OpFoldResult ConstShapeOp::fold(FoldAdaptor) { return getShapeAttr(); } |
| 928 | |
| 929 | void ConstShapeOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 930 | MLIRContext *context) { |
| 931 | patterns.add<TensorCastConstShape>(context); |
| 932 | } |
| 933 | |
| 934 | LogicalResult mlir::shape::ConstShapeOp::inferReturnTypes( |
| 935 | MLIRContext *context, std::optional<Location> location, |
| 936 | ConstShapeOp::Adaptor adaptor, SmallVectorImpl<Type> &inferredReturnTypes) { |
| 937 | Builder b(context); |
| 938 | const Properties prop = adaptor.getProperties(); |
| 939 | inferredReturnTypes.assign({RankedTensorType::get( |
| 940 | {static_cast<int64_t>(prop.shape.size())}, b.getIndexType())}); |
| 941 | return success(); |
| 942 | } |
| 943 | |
| 944 | bool mlir::shape::ConstShapeOp::isCompatibleReturnTypes(TypeRange l, |
| 945 | TypeRange r) { |
| 946 | if (l.size() != 1 || r.size() != 1) |
| 947 | return false; |
| 948 | |
| 949 | Type lhs = l.front(); |
| 950 | Type rhs = r.front(); |
| 951 | |
| 952 | if (llvm::isa<ShapeType>(lhs) || llvm::isa<ShapeType>(rhs)) |
| 953 | // Shape type is compatible with all other valid return types. |
| 954 | return true; |
| 955 | return lhs == rhs; |
| 956 | } |
| 957 | |
| 958 | //===----------------------------------------------------------------------===// |
| 959 | // CstrBroadcastableOp |
| 960 | //===----------------------------------------------------------------------===// |
| 961 | |
| 962 | void CstrBroadcastableOp::getCanonicalizationPatterns( |
| 963 | RewritePatternSet &patterns, MLIRContext *context) { |
| 964 | // Canonicalization patterns have overlap with the considerations during |
| 965 | // folding in case additional shape information is inferred at some point that |
| 966 | // does not result in folding. |
| 967 | patterns.add<CanonicalizeCastExtentTensorOperandsPattern<CstrBroadcastableOp>, |
| 968 | CstrBroadcastableEqOps, |
| 969 | RemoveDuplicateOperandsPattern<CstrBroadcastableOp>, |
| 970 | RemoveEmptyShapeOperandsPattern<CstrBroadcastableOp>>(context); |
| 971 | } |
| 972 | |
| 973 | // Return true if there is exactly one attribute not representing a scalar |
| 974 | // broadcast. |
| 975 | static bool hasAtMostSingleNonScalar(ArrayRef<Attribute> attributes) { |
| 976 | bool nonScalarSeen = false; |
| 977 | for (Attribute a : attributes) { |
| 978 | if (!a || llvm::cast<DenseIntElementsAttr>(Val&: a).getNumElements() != 0) { |
| 979 | if (nonScalarSeen) |
| 980 | return false; |
| 981 | nonScalarSeen = true; |
| 982 | } |
| 983 | } |
| 984 | return true; |
| 985 | } |
| 986 | |
| 987 | OpFoldResult CstrBroadcastableOp::fold(FoldAdaptor adaptor) { |
| 988 | // No broadcasting is needed if all operands but one are scalar. |
| 989 | if (hasAtMostSingleNonScalar(adaptor.getShapes())) |
| 990 | return BoolAttr::get(getContext(), true); |
| 991 | |
| 992 | if ([&] { |
| 993 | SmallVector<SmallVector<int64_t, 6>, 6> extents; |
| 994 | for (const auto &operand : adaptor.getShapes()) { |
| 995 | if (!operand) |
| 996 | return false; |
| 997 | extents.push_back(llvm::to_vector<6>( |
| 998 | llvm::cast<DenseIntElementsAttr>(operand).getValues<int64_t>())); |
| 999 | } |
| 1000 | return OpTrait::util::staticallyKnownBroadcastable(extents); |
| 1001 | }()) |
| 1002 | return BoolAttr::get(getContext(), true); |
| 1003 | |
| 1004 | // Lastly, see if folding can be completed based on what constraints are known |
| 1005 | // on the input shapes. |
| 1006 | if ([&] { |
| 1007 | SmallVector<SmallVector<int64_t, 6>, 6> extents; |
| 1008 | for (auto shapeValue : getShapes()) { |
| 1009 | extents.emplace_back(); |
| 1010 | if (failed(getShapeVec(shapeValue, extents.back()))) |
| 1011 | return false; |
| 1012 | } |
| 1013 | return OpTrait::util::staticallyKnownBroadcastable(extents); |
| 1014 | }()) |
| 1015 | return BoolAttr::get(getContext(), true); |
| 1016 | |
| 1017 | // Because a failing witness result here represents an eventual assertion |
| 1018 | // failure, we do not replace it with a constant witness. |
| 1019 | return nullptr; |
| 1020 | } |
| 1021 | |
| 1022 | LogicalResult CstrBroadcastableOp::verify() { |
| 1023 | // Ensure that CstrBroadcastableOp contains at least two operands |
| 1024 | if (getNumOperands() < 2) |
| 1025 | return emitOpError("required at least 2 input shapes" ); |
| 1026 | return success(); |
| 1027 | } |
| 1028 | |
| 1029 | //===----------------------------------------------------------------------===// |
| 1030 | // CstrEqOp |
| 1031 | //===----------------------------------------------------------------------===// |
| 1032 | |
| 1033 | void CstrEqOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 1034 | MLIRContext *context) { |
| 1035 | // If inputs are equal, return passing witness |
| 1036 | patterns.add<CstrEqEqOps>(context); |
| 1037 | } |
| 1038 | |
| 1039 | OpFoldResult CstrEqOp::fold(FoldAdaptor adaptor) { |
| 1040 | if (llvm::all_of(adaptor.getShapes(), [&](Attribute a) { |
| 1041 | return a && a == adaptor.getShapes().front(); |
| 1042 | })) |
| 1043 | return BoolAttr::get(getContext(), true); |
| 1044 | |
| 1045 | // Because a failing witness result here represents an eventual assertion |
| 1046 | // failure, we do not try to replace it with a constant witness. Similarly, we |
| 1047 | // cannot if there are any non-const inputs. |
| 1048 | return nullptr; |
| 1049 | } |
| 1050 | |
| 1051 | //===----------------------------------------------------------------------===// |
| 1052 | // ConstSizeOp |
| 1053 | //===----------------------------------------------------------------------===// |
| 1054 | |
| 1055 | void ConstSizeOp::build(OpBuilder &builder, OperationState &result, |
| 1056 | int64_t value) { |
| 1057 | build(builder, result, builder.getIndexAttr(value)); |
| 1058 | } |
| 1059 | |
| 1060 | OpFoldResult ConstSizeOp::fold(FoldAdaptor) { return getValueAttr(); } |
| 1061 | |
| 1062 | void ConstSizeOp::getAsmResultNames( |
| 1063 | llvm::function_ref<void(Value, StringRef)> setNameFn) { |
| 1064 | SmallString<4> buffer; |
| 1065 | llvm::raw_svector_ostream os(buffer); |
| 1066 | os << "c" << getValue(); |
| 1067 | setNameFn(getResult(), os.str()); |
| 1068 | } |
| 1069 | |
| 1070 | //===----------------------------------------------------------------------===// |
| 1071 | // ConstWitnessOp |
| 1072 | //===----------------------------------------------------------------------===// |
| 1073 | |
| 1074 | OpFoldResult ConstWitnessOp::fold(FoldAdaptor) { return getPassingAttr(); } |
| 1075 | |
| 1076 | //===----------------------------------------------------------------------===// |
| 1077 | // CstrRequireOp |
| 1078 | //===----------------------------------------------------------------------===// |
| 1079 | |
| 1080 | OpFoldResult CstrRequireOp::fold(FoldAdaptor adaptor) { |
| 1081 | return adaptor.getPred(); |
| 1082 | } |
| 1083 | |
| 1084 | //===----------------------------------------------------------------------===// |
| 1085 | // DimOp |
| 1086 | //===----------------------------------------------------------------------===// |
| 1087 | |
| 1088 | std::optional<int64_t> DimOp::getConstantIndex() { |
| 1089 | if (auto constSizeOp = getIndex().getDefiningOp<ConstSizeOp>()) |
| 1090 | return constSizeOp.getValue().getLimitedValue(); |
| 1091 | if (auto constantOp = getIndex().getDefiningOp<arith::ConstantOp>()) |
| 1092 | return llvm::cast<IntegerAttr>(constantOp.getValue()).getInt(); |
| 1093 | return std::nullopt; |
| 1094 | } |
| 1095 | |
| 1096 | OpFoldResult DimOp::fold(FoldAdaptor adaptor) { |
| 1097 | Type valType = getValue().getType(); |
| 1098 | auto valShapedType = llvm::dyn_cast<ShapedType>(valType); |
| 1099 | if (!valShapedType || !valShapedType.hasRank()) |
| 1100 | return nullptr; |
| 1101 | std::optional<int64_t> index = getConstantIndex(); |
| 1102 | if (!index.has_value()) |
| 1103 | return nullptr; |
| 1104 | if (index.value() < 0 || index.value() >= valShapedType.getRank()) |
| 1105 | return nullptr; |
| 1106 | auto extent = valShapedType.getDimSize(*index); |
| 1107 | if (ShapedType::isDynamic(extent)) |
| 1108 | return nullptr; |
| 1109 | return IntegerAttr::get(IndexType::get(getContext()), extent); |
| 1110 | } |
| 1111 | |
| 1112 | LogicalResult mlir::shape::DimOp::inferReturnTypes( |
| 1113 | MLIRContext *context, std::optional<Location> location, |
| 1114 | DimOp::Adaptor adaptor, SmallVectorImpl<Type> &inferredReturnTypes) { |
| 1115 | inferredReturnTypes.assign({adaptor.getIndex().getType()}); |
| 1116 | return success(); |
| 1117 | } |
| 1118 | |
| 1119 | bool mlir::shape::DimOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| 1120 | return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r); |
| 1121 | } |
| 1122 | |
| 1123 | //===----------------------------------------------------------------------===// |
| 1124 | // DivOp |
| 1125 | //===----------------------------------------------------------------------===// |
| 1126 | |
| 1127 | OpFoldResult DivOp::fold(FoldAdaptor adaptor) { |
| 1128 | auto lhs = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getLhs()); |
| 1129 | if (!lhs) |
| 1130 | return nullptr; |
| 1131 | auto rhs = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getRhs()); |
| 1132 | if (!rhs || rhs.getValue().isZero()) |
| 1133 | return nullptr; |
| 1134 | |
| 1135 | // Division in APInt does not follow floor(lhs, rhs) when the result is |
| 1136 | // negative. Rather, APInt rounds toward zero. |
| 1137 | APInt quotient, remainder; |
| 1138 | APInt::sdivrem(lhs.getValue(), rhs.getValue(), quotient, remainder); |
| 1139 | if (quotient.isNegative() && !remainder.isZero()) { |
| 1140 | quotient -= 1; |
| 1141 | } |
| 1142 | |
| 1143 | Type indexTy = IndexType::get(getContext()); |
| 1144 | return IntegerAttr::get(indexTy, quotient); |
| 1145 | } |
| 1146 | |
| 1147 | LogicalResult mlir::shape::DivOp::inferReturnTypes( |
| 1148 | MLIRContext *context, std::optional<Location> location, |
| 1149 | DivOp::Adaptor adaptor, SmallVectorImpl<Type> &inferredReturnTypes) { |
| 1150 | if (llvm::isa<SizeType>(adaptor.getLhs().getType()) || |
| 1151 | llvm::isa<SizeType>(adaptor.getRhs().getType())) |
| 1152 | inferredReturnTypes.assign({SizeType::get(context)}); |
| 1153 | else |
| 1154 | inferredReturnTypes.assign({IndexType::get(context)}); |
| 1155 | return success(); |
| 1156 | } |
| 1157 | |
| 1158 | bool mlir::shape::DivOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| 1159 | // SizeType is compatible with IndexType. |
| 1160 | return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r); |
| 1161 | } |
| 1162 | |
| 1163 | LogicalResult DivOp::verify() { return verifySizeOrIndexOp(*this); } |
| 1164 | |
| 1165 | //===----------------------------------------------------------------------===// |
| 1166 | // ShapeEqOp |
| 1167 | //===----------------------------------------------------------------------===// |
| 1168 | |
| 1169 | OpFoldResult ShapeEqOp::fold(FoldAdaptor adaptor) { |
| 1170 | bool allSame = true; |
| 1171 | if (!adaptor.getShapes().empty() && !adaptor.getShapes().front()) |
| 1172 | return {}; |
| 1173 | for (Attribute operand : adaptor.getShapes().drop_front()) { |
| 1174 | if (!operand) |
| 1175 | return {}; |
| 1176 | allSame = allSame && operand == adaptor.getShapes().front(); |
| 1177 | } |
| 1178 | return BoolAttr::get(getContext(), allSame); |
| 1179 | } |
| 1180 | |
| 1181 | //===----------------------------------------------------------------------===// |
| 1182 | // IndexToSizeOp |
| 1183 | //===----------------------------------------------------------------------===// |
| 1184 | |
| 1185 | OpFoldResult IndexToSizeOp::fold(FoldAdaptor adaptor) { |
| 1186 | // Constant values of both types, `shape.size` and `index`, are represented as |
| 1187 | // `IntegerAttr`s which makes constant folding simple. |
| 1188 | if (Attribute arg = adaptor.getArg()) |
| 1189 | return arg; |
| 1190 | return {}; |
| 1191 | } |
| 1192 | |
| 1193 | void IndexToSizeOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 1194 | MLIRContext *context) { |
| 1195 | patterns.add<SizeToIndexToSizeCanonicalization>(context); |
| 1196 | } |
| 1197 | |
| 1198 | //===----------------------------------------------------------------------===// |
| 1199 | // FromExtentsOp |
| 1200 | //===----------------------------------------------------------------------===// |
| 1201 | |
| 1202 | OpFoldResult FromExtentsOp::fold(FoldAdaptor adaptor) { |
| 1203 | if (llvm::any_of(adaptor.getExtents(), [](Attribute a) { return !a; })) |
| 1204 | return nullptr; |
| 1205 | SmallVector<int64_t, 6> extents; |
| 1206 | for (auto attr : adaptor.getExtents()) |
| 1207 | extents.push_back(llvm::cast<IntegerAttr>(attr).getInt()); |
| 1208 | Builder builder(getContext()); |
| 1209 | return builder.getIndexTensorAttr(extents); |
| 1210 | } |
| 1211 | |
| 1212 | //===----------------------------------------------------------------------===// |
| 1213 | // FunctionLibraryOp |
| 1214 | //===----------------------------------------------------------------------===// |
| 1215 | |
| 1216 | void FunctionLibraryOp::build(OpBuilder &builder, OperationState &result, |
| 1217 | StringRef name) { |
| 1218 | result.attributes.push_back(builder.getNamedAttr( |
| 1219 | ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name))); |
| 1220 | } |
| 1221 | |
| 1222 | FuncOp FunctionLibraryOp::getShapeFunction(Operation *op) { |
| 1223 | auto attr = llvm::dyn_cast_or_null<FlatSymbolRefAttr>( |
| 1224 | getMapping().get(op->getName().getIdentifier())); |
| 1225 | if (!attr) |
| 1226 | return nullptr; |
| 1227 | return lookupSymbol<FuncOp>(attr); |
| 1228 | } |
| 1229 | |
| 1230 | ParseResult FunctionLibraryOp::parse(OpAsmParser &parser, |
| 1231 | OperationState &result) { |
| 1232 | // Parse the op name. |
| 1233 | StringAttr nameAttr; |
| 1234 | if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), |
| 1235 | result.attributes)) |
| 1236 | return failure(); |
| 1237 | |
| 1238 | if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) |
| 1239 | return failure(); |
| 1240 | |
| 1241 | auto *bodyRegion = result.addRegion(); |
| 1242 | if (parser.parseRegion(*bodyRegion)) |
| 1243 | return failure(); |
| 1244 | |
| 1245 | if (parser.parseKeyword("mapping" )) |
| 1246 | return failure(); |
| 1247 | |
| 1248 | DictionaryAttr mappingAttr; |
| 1249 | if (parser.parseAttribute(mappingAttr, |
| 1250 | parser.getBuilder().getType<NoneType>(), "mapping" , |
| 1251 | result.attributes)) |
| 1252 | return failure(); |
| 1253 | return success(); |
| 1254 | } |
| 1255 | |
| 1256 | void FunctionLibraryOp::print(OpAsmPrinter &p) { |
| 1257 | p << ' '; |
| 1258 | p.printSymbolName(getName()); |
| 1259 | p.printOptionalAttrDictWithKeyword( |
| 1260 | (*this)->getAttrs(), {mlir::SymbolTable::getSymbolAttrName(), "mapping" }); |
| 1261 | p << ' '; |
| 1262 | p.printRegion(getRegion(), /*printEntryBlockArgs=*/false, |
| 1263 | /*printBlockTerminators=*/false); |
| 1264 | p << " mapping " ; |
| 1265 | p.printAttributeWithoutType(getMappingAttr()); |
| 1266 | } |
| 1267 | |
| 1268 | //===----------------------------------------------------------------------===// |
| 1269 | // FuncOp |
| 1270 | //===----------------------------------------------------------------------===// |
| 1271 | |
| 1272 | FuncOp FuncOp::create(Location location, StringRef name, FunctionType type, |
| 1273 | ArrayRef<NamedAttribute> attrs) { |
| 1274 | OpBuilder builder(location->getContext()); |
| 1275 | OperationState state(location, getOperationName()); |
| 1276 | FuncOp::build(builder, state, name, type, attrs); |
| 1277 | return cast<FuncOp>(Operation::create(state)); |
| 1278 | } |
| 1279 | FuncOp FuncOp::create(Location location, StringRef name, FunctionType type, |
| 1280 | Operation::dialect_attr_range attrs) { |
| 1281 | SmallVector<NamedAttribute, 8> attrRef(attrs); |
| 1282 | return create(location, name, type, llvm::ArrayRef(attrRef)); |
| 1283 | } |
| 1284 | FuncOp FuncOp::create(Location location, StringRef name, FunctionType type, |
| 1285 | ArrayRef<NamedAttribute> attrs, |
| 1286 | ArrayRef<DictionaryAttr> argAttrs) { |
| 1287 | FuncOp func = create(location, name, type, attrs); |
| 1288 | func.setAllArgAttrs(argAttrs); |
| 1289 | return func; |
| 1290 | } |
| 1291 | |
| 1292 | void FuncOp::build(OpBuilder &builder, OperationState &state, StringRef name, |
| 1293 | FunctionType type, ArrayRef<NamedAttribute> attrs, |
| 1294 | ArrayRef<DictionaryAttr> argAttrs) { |
| 1295 | state.addAttribute(FuncOp::getSymNameAttrName(state.name), |
| 1296 | builder.getStringAttr(name)); |
| 1297 | state.addAttribute(FuncOp::getFunctionTypeAttrName(state.name), |
| 1298 | TypeAttr::get(type)); |
| 1299 | state.attributes.append(attrs.begin(), attrs.end()); |
| 1300 | state.addRegion(); |
| 1301 | |
| 1302 | if (argAttrs.empty()) |
| 1303 | return; |
| 1304 | assert(type.getNumInputs() == argAttrs.size()); |
| 1305 | call_interface_impl::addArgAndResultAttrs( |
| 1306 | builder, state, argAttrs, /*resultAttrs=*/std::nullopt, |
| 1307 | getArgAttrsAttrName(state.name), getResAttrsAttrName(state.name)); |
| 1308 | } |
| 1309 | |
| 1310 | ParseResult FuncOp::parse(OpAsmParser &parser, OperationState &result) { |
| 1311 | auto buildFuncType = |
| 1312 | [](Builder &builder, ArrayRef<Type> argTypes, ArrayRef<Type> results, |
| 1313 | function_interface_impl::VariadicFlag, |
| 1314 | std::string &) { return builder.getFunctionType(argTypes, results); }; |
| 1315 | |
| 1316 | return function_interface_impl::parseFunctionOp( |
| 1317 | parser, result, /*allowVariadic=*/false, |
| 1318 | getFunctionTypeAttrName(result.name), buildFuncType, |
| 1319 | getArgAttrsAttrName(result.name), getResAttrsAttrName(result.name)); |
| 1320 | } |
| 1321 | |
| 1322 | void FuncOp::print(OpAsmPrinter &p) { |
| 1323 | function_interface_impl::printFunctionOp( |
| 1324 | p, *this, /*isVariadic=*/false, getFunctionTypeAttrName(), |
| 1325 | getArgAttrsAttrName(), getResAttrsAttrName()); |
| 1326 | } |
| 1327 | |
| 1328 | //===----------------------------------------------------------------------===// |
| 1329 | // GetExtentOp |
| 1330 | //===----------------------------------------------------------------------===// |
| 1331 | |
| 1332 | std::optional<int64_t> GetExtentOp::getConstantDim() { |
| 1333 | if (auto constSizeOp = getDim().getDefiningOp<ConstSizeOp>()) |
| 1334 | return constSizeOp.getValue().getLimitedValue(); |
| 1335 | if (auto constantOp = getDim().getDefiningOp<arith::ConstantOp>()) |
| 1336 | return llvm::cast<IntegerAttr>(constantOp.getValue()).getInt(); |
| 1337 | return std::nullopt; |
| 1338 | } |
| 1339 | |
| 1340 | OpFoldResult GetExtentOp::fold(FoldAdaptor adaptor) { |
| 1341 | auto elements = llvm::dyn_cast_if_present<DenseIntElementsAttr>(adaptor.getShape()); |
| 1342 | if (!elements) |
| 1343 | return nullptr; |
| 1344 | std::optional<int64_t> dim = getConstantDim(); |
| 1345 | if (!dim.has_value()) |
| 1346 | return nullptr; |
| 1347 | if (dim.value() >= elements.getNumElements()) |
| 1348 | return nullptr; |
| 1349 | return elements.getValues<Attribute>()[(uint64_t)dim.value()]; |
| 1350 | } |
| 1351 | |
| 1352 | void GetExtentOp::build(OpBuilder &builder, OperationState &result, Value shape, |
| 1353 | int64_t dim) { |
| 1354 | auto loc = result.location; |
| 1355 | auto dimAttr = builder.getIndexAttr(dim); |
| 1356 | if (llvm::isa<ShapeType>(shape.getType())) { |
| 1357 | Value dim = builder.create<ConstSizeOp>(loc, dimAttr); |
| 1358 | build(builder, result, builder.getType<SizeType>(), shape, dim); |
| 1359 | } else { |
| 1360 | Value dim = |
| 1361 | builder.create<arith::ConstantOp>(loc, builder.getIndexType(), dimAttr); |
| 1362 | build(builder, result, builder.getIndexType(), shape, dim); |
| 1363 | } |
| 1364 | } |
| 1365 | |
| 1366 | LogicalResult mlir::shape::GetExtentOp::inferReturnTypes( |
| 1367 | MLIRContext *context, std::optional<Location> location, |
| 1368 | GetExtentOp::Adaptor adaptor, SmallVectorImpl<Type> &inferredReturnTypes) { |
| 1369 | inferredReturnTypes.assign({IndexType::get(context)}); |
| 1370 | return success(); |
| 1371 | } |
| 1372 | |
| 1373 | bool mlir::shape::GetExtentOp::isCompatibleReturnTypes(TypeRange l, |
| 1374 | TypeRange r) { |
| 1375 | // SizeType is compatible with IndexType. |
| 1376 | return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r); |
| 1377 | } |
| 1378 | |
| 1379 | LogicalResult GetExtentOp::verify() { return verifySizeOrIndexOp(*this); } |
| 1380 | |
| 1381 | //===----------------------------------------------------------------------===// |
| 1382 | // IsBroadcastableOp |
| 1383 | //===----------------------------------------------------------------------===// |
| 1384 | |
| 1385 | void IsBroadcastableOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 1386 | MLIRContext *context) { |
| 1387 | patterns.add<RemoveDuplicateOperandsPattern<IsBroadcastableOp>>(context); |
| 1388 | } |
| 1389 | |
| 1390 | OpFoldResult IsBroadcastableOp::fold(FoldAdaptor adaptor) { |
| 1391 | // Can always broadcast fewer than two shapes. |
| 1392 | if (adaptor.getShapes().size() < 2) { |
| 1393 | return BoolAttr::get(getContext(), true); |
| 1394 | } |
| 1395 | |
| 1396 | return nullptr; |
| 1397 | } |
| 1398 | |
| 1399 | //===----------------------------------------------------------------------===// |
| 1400 | // MeetOp |
| 1401 | //===----------------------------------------------------------------------===// |
| 1402 | |
| 1403 | LogicalResult mlir::shape::MeetOp::inferReturnTypes( |
| 1404 | MLIRContext *context, std::optional<Location> location, |
| 1405 | MeetOp::Adaptor adaptor, SmallVectorImpl<Type> &inferredReturnTypes) { |
| 1406 | if (adaptor.getOperands().empty()) |
| 1407 | return failure(); |
| 1408 | |
| 1409 | auto isShapeType = [](Type arg) { |
| 1410 | if (llvm::isa<ShapeType>(arg)) |
| 1411 | return true; |
| 1412 | return isExtentTensorType(arg); |
| 1413 | }; |
| 1414 | |
| 1415 | ValueRange::type_range types = adaptor.getOperands().getTypes(); |
| 1416 | Type acc = types.front(); |
| 1417 | for (auto t : drop_begin(types)) { |
| 1418 | Type l = acc, r = t; |
| 1419 | if (!llvm::isa<ShapeType, SizeType>(l)) |
| 1420 | std::swap(l, r); |
| 1421 | |
| 1422 | // Handle sizes, propagate error type if present. |
| 1423 | if (llvm::isa<SizeType>(l)) { |
| 1424 | if (llvm::isa<SizeType, IndexType>(r)) |
| 1425 | acc = l; |
| 1426 | else |
| 1427 | return emitOptionalError(location, "requires all sizes or shapes" ); |
| 1428 | } else if (llvm::isa<IndexType>(l)) { |
| 1429 | if (llvm::isa<IndexType>(r)) |
| 1430 | acc = r; |
| 1431 | else |
| 1432 | return emitOptionalError(location, "requires all sizes or shapes" ); |
| 1433 | } else if (llvm::isa<ShapeType>(l)) { |
| 1434 | // Handle shapes, propagate error type if present. |
| 1435 | if (isShapeType(r)) |
| 1436 | acc = l; |
| 1437 | else |
| 1438 | return emitOptionalError(location, "requires all sizes or shapes" ); |
| 1439 | } else if (isExtentTensorType(l)) { |
| 1440 | auto rank1 = llvm::cast<RankedTensorType>(l).getShape()[0]; |
| 1441 | auto rank2 = llvm::cast<RankedTensorType>(r).getShape()[0]; |
| 1442 | if (ShapedType::isDynamic(rank1)) |
| 1443 | acc = l; |
| 1444 | else if (ShapedType::isDynamic(rank2)) |
| 1445 | acc = r; |
| 1446 | else if (rank1 != rank2) |
| 1447 | return emitOptionalError(location, "unequal shape cardinality" ); |
| 1448 | else |
| 1449 | acc = l; |
| 1450 | } |
| 1451 | } |
| 1452 | inferredReturnTypes.assign({acc}); |
| 1453 | return success(); |
| 1454 | } |
| 1455 | |
| 1456 | bool mlir::shape::MeetOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| 1457 | if (l.size() != 1 || r.size() != 1) |
| 1458 | return false; |
| 1459 | if (l == r) |
| 1460 | return true; |
| 1461 | |
| 1462 | Type lhs = l.front(); |
| 1463 | Type rhs = r.front(); |
| 1464 | |
| 1465 | if (!llvm::isa<ShapeType, SizeType>(lhs)) |
| 1466 | std::swap(lhs, rhs); |
| 1467 | |
| 1468 | if (llvm::isa<SizeType>(lhs)) |
| 1469 | return llvm::isa<SizeType, IndexType>(rhs); |
| 1470 | if (llvm::isa<ShapeType>(lhs)) |
| 1471 | return llvm::isa<ShapeType, TensorType>(rhs); |
| 1472 | |
| 1473 | if (succeeded(verifyCompatibleShapes({lhs, rhs}))) |
| 1474 | return true; |
| 1475 | return false; |
| 1476 | } |
| 1477 | |
| 1478 | //===----------------------------------------------------------------------===// |
| 1479 | // RankOp |
| 1480 | //===----------------------------------------------------------------------===// |
| 1481 | |
| 1482 | OpFoldResult shape::RankOp::fold(FoldAdaptor adaptor) { |
| 1483 | auto shape = llvm::dyn_cast_if_present<DenseIntElementsAttr>(adaptor.getShape()); |
| 1484 | if (!shape) |
| 1485 | return {}; |
| 1486 | int64_t rank = shape.getNumElements(); |
| 1487 | Builder builder(getContext()); |
| 1488 | return builder.getIndexAttr(rank); |
| 1489 | } |
| 1490 | |
| 1491 | /// Evaluate the `rank` operation for shapes of ranked tensors at compile time. |
| 1492 | /// Constant folding fails in cases where only the rank is constant, not the |
| 1493 | /// shape itself. |
| 1494 | /// This canonicalization matches `shape.rank(shape.shape_of(%ranked_tensor))`. |
| 1495 | /// |
| 1496 | /// Example: |
| 1497 | /// |
| 1498 | /// %shape = shape.shape_of %ranked_tensor : tensor<1x2x?xf32> |
| 1499 | /// %rank = shape.rank %shape |
| 1500 | /// |
| 1501 | /// becomes |
| 1502 | /// |
| 1503 | /// %rank = shape.const_size 3 |
| 1504 | |
| 1505 | namespace { |
| 1506 | struct RankShapeOfCanonicalizationPattern |
| 1507 | : public OpRewritePattern<shape::RankOp> { |
| 1508 | using OpRewritePattern<shape::RankOp>::OpRewritePattern; |
| 1509 | |
| 1510 | LogicalResult matchAndRewrite(shape::RankOp op, |
| 1511 | PatternRewriter &rewriter) const override { |
| 1512 | auto shapeOfOp = op.getShape().getDefiningOp<ShapeOfOp>(); |
| 1513 | if (!shapeOfOp) |
| 1514 | return failure(); |
| 1515 | auto rankedTensorType = |
| 1516 | llvm::dyn_cast<RankedTensorType>(shapeOfOp.getArg().getType()); |
| 1517 | if (!rankedTensorType) |
| 1518 | return failure(); |
| 1519 | int64_t rank = rankedTensorType.getRank(); |
| 1520 | if (llvm::isa<IndexType>(op.getType())) { |
| 1521 | rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(op.getOperation(), |
| 1522 | rank); |
| 1523 | } else if (llvm::isa<shape::SizeType>(op.getType())) { |
| 1524 | rewriter.replaceOpWithNewOp<shape::ConstSizeOp>(op.getOperation(), rank); |
| 1525 | } else { |
| 1526 | return failure(); |
| 1527 | } |
| 1528 | return success(); |
| 1529 | } |
| 1530 | }; |
| 1531 | } // namespace |
| 1532 | |
| 1533 | void shape::RankOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 1534 | MLIRContext *context) { |
| 1535 | patterns.add<RankShapeOfCanonicalizationPattern>(context); |
| 1536 | } |
| 1537 | |
| 1538 | LogicalResult mlir::shape::RankOp::inferReturnTypes( |
| 1539 | MLIRContext *context, std::optional<Location> location, |
| 1540 | RankOp::Adaptor adaptor, SmallVectorImpl<Type> &inferredReturnTypes) { |
| 1541 | if (llvm::isa<ShapeType>(adaptor.getShape().getType())) |
| 1542 | inferredReturnTypes.assign({SizeType::get(context)}); |
| 1543 | else |
| 1544 | inferredReturnTypes.assign({IndexType::get(context)}); |
| 1545 | return success(); |
| 1546 | } |
| 1547 | |
| 1548 | bool mlir::shape::RankOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| 1549 | // SizeType is compatible with IndexType. |
| 1550 | return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r); |
| 1551 | } |
| 1552 | |
| 1553 | LogicalResult shape::RankOp::verify() { return verifySizeOrIndexOp(*this); } |
| 1554 | |
| 1555 | //===----------------------------------------------------------------------===// |
| 1556 | // NumElementsOp |
| 1557 | //===----------------------------------------------------------------------===// |
| 1558 | |
| 1559 | OpFoldResult NumElementsOp::fold(FoldAdaptor adaptor) { |
| 1560 | |
| 1561 | // Fold only when argument constant. |
| 1562 | Attribute shape = adaptor.getShape(); |
| 1563 | if (!shape) |
| 1564 | return {}; |
| 1565 | |
| 1566 | APInt product(64, 1); |
| 1567 | for (auto value : llvm::cast<DenseIntElementsAttr>(shape)) |
| 1568 | product *= value; |
| 1569 | Builder builder(getContext()); |
| 1570 | return builder.getIndexAttr(product.getLimitedValue()); |
| 1571 | } |
| 1572 | |
| 1573 | LogicalResult mlir::shape::NumElementsOp::inferReturnTypes( |
| 1574 | MLIRContext *context, std::optional<Location> location, |
| 1575 | NumElementsOp::Adaptor adaptor, |
| 1576 | SmallVectorImpl<Type> &inferredReturnTypes) { |
| 1577 | if (llvm::isa<ShapeType>(adaptor.getShape().getType())) |
| 1578 | inferredReturnTypes.assign({SizeType::get(context)}); |
| 1579 | else |
| 1580 | inferredReturnTypes.assign({IndexType::get(context)}); |
| 1581 | return success(); |
| 1582 | } |
| 1583 | |
| 1584 | bool mlir::shape::NumElementsOp::isCompatibleReturnTypes(TypeRange l, |
| 1585 | TypeRange r) { |
| 1586 | // SizeType is compatible with IndexType. |
| 1587 | return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r); |
| 1588 | } |
| 1589 | |
| 1590 | LogicalResult shape::NumElementsOp::verify() { |
| 1591 | return verifySizeOrIndexOp(*this); |
| 1592 | } |
| 1593 | |
| 1594 | //===----------------------------------------------------------------------===// |
| 1595 | // MaxOp |
| 1596 | //===----------------------------------------------------------------------===// |
| 1597 | |
| 1598 | OpFoldResult MaxOp::fold(FoldAdaptor adaptor) { |
| 1599 | // If operands are equal, just propagate one. |
| 1600 | if (getLhs() == getRhs()) |
| 1601 | return getLhs(); |
| 1602 | return nullptr; |
| 1603 | } |
| 1604 | |
| 1605 | LogicalResult mlir::shape::MaxOp::inferReturnTypes( |
| 1606 | MLIRContext *context, std::optional<Location> location, |
| 1607 | MaxOp::Adaptor adaptor, SmallVectorImpl<Type> &inferredReturnTypes) { |
| 1608 | if (adaptor.getLhs().getType() == adaptor.getRhs().getType()) |
| 1609 | inferredReturnTypes.assign({adaptor.getLhs().getType()}); |
| 1610 | else |
| 1611 | inferredReturnTypes.assign({SizeType::get(context)}); |
| 1612 | return success(); |
| 1613 | } |
| 1614 | |
| 1615 | bool mlir::shape::MaxOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| 1616 | if (l.size() != 1 || r.size() != 1) |
| 1617 | return false; |
| 1618 | if (llvm::isa<ShapeType>(l.front()) && llvm::isa<ShapeType>(r.front())) |
| 1619 | return true; |
| 1620 | if (llvm::isa<SizeType>(l.front()) && llvm::isa<SizeType>(r.front())) |
| 1621 | return true; |
| 1622 | return false; |
| 1623 | } |
| 1624 | |
| 1625 | //===----------------------------------------------------------------------===// |
| 1626 | // MinOp |
| 1627 | //===----------------------------------------------------------------------===// |
| 1628 | |
| 1629 | OpFoldResult MinOp::fold(FoldAdaptor adaptor) { |
| 1630 | // If operands are equal, just propagate one. |
| 1631 | if (getLhs() == getRhs()) |
| 1632 | return getLhs(); |
| 1633 | return nullptr; |
| 1634 | } |
| 1635 | |
| 1636 | LogicalResult mlir::shape::MinOp::inferReturnTypes( |
| 1637 | MLIRContext *context, std::optional<Location> location, |
| 1638 | MinOp::Adaptor adaptor, SmallVectorImpl<Type> &inferredReturnTypes) { |
| 1639 | if (adaptor.getLhs().getType() == adaptor.getRhs().getType()) |
| 1640 | inferredReturnTypes.assign({adaptor.getLhs().getType()}); |
| 1641 | else |
| 1642 | inferredReturnTypes.assign({SizeType::get(context)}); |
| 1643 | return success(); |
| 1644 | } |
| 1645 | |
| 1646 | bool mlir::shape::MinOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| 1647 | if (l.size() != 1 || r.size() != 1) |
| 1648 | return false; |
| 1649 | if (llvm::isa<ShapeType>(l.front()) && llvm::isa<ShapeType>(r.front())) |
| 1650 | return true; |
| 1651 | if (llvm::isa<SizeType>(l.front()) && llvm::isa<SizeType>(r.front())) |
| 1652 | return true; |
| 1653 | return false; |
| 1654 | } |
| 1655 | |
| 1656 | //===----------------------------------------------------------------------===// |
| 1657 | // MulOp |
| 1658 | //===----------------------------------------------------------------------===// |
| 1659 | |
| 1660 | OpFoldResult MulOp::fold(FoldAdaptor adaptor) { |
| 1661 | auto lhs = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getLhs()); |
| 1662 | if (!lhs) |
| 1663 | return nullptr; |
| 1664 | auto rhs = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getRhs()); |
| 1665 | if (!rhs) |
| 1666 | return nullptr; |
| 1667 | APInt folded = lhs.getValue() * rhs.getValue(); |
| 1668 | Type indexTy = IndexType::get(getContext()); |
| 1669 | return IntegerAttr::get(indexTy, folded); |
| 1670 | } |
| 1671 | |
| 1672 | LogicalResult mlir::shape::MulOp::inferReturnTypes( |
| 1673 | MLIRContext *context, std::optional<Location> location, |
| 1674 | MulOp::Adaptor adaptor, SmallVectorImpl<Type> &inferredReturnTypes) { |
| 1675 | if (llvm::isa<SizeType>(adaptor.getLhs().getType()) || |
| 1676 | llvm::isa<SizeType>(adaptor.getRhs().getType())) |
| 1677 | inferredReturnTypes.assign({SizeType::get(context)}); |
| 1678 | else |
| 1679 | inferredReturnTypes.assign({IndexType::get(context)}); |
| 1680 | return success(); |
| 1681 | } |
| 1682 | |
| 1683 | bool mlir::shape::MulOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| 1684 | // SizeType is compatible with IndexType. |
| 1685 | return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r); |
| 1686 | } |
| 1687 | |
| 1688 | LogicalResult shape::MulOp::verify() { return verifySizeOrIndexOp(*this); } |
| 1689 | |
| 1690 | //===----------------------------------------------------------------------===// |
| 1691 | // ShapeOfOp |
| 1692 | //===----------------------------------------------------------------------===// |
| 1693 | |
| 1694 | namespace { |
| 1695 | /// Replace shape_of(x) where x has a constant shape with a const_shape op. |
| 1696 | struct ShapeOfOpToConstShapeOp : public OpRewritePattern<shape::ShapeOfOp> { |
| 1697 | using OpRewritePattern<shape::ShapeOfOp>::OpRewritePattern; |
| 1698 | |
| 1699 | LogicalResult matchAndRewrite(shape::ShapeOfOp op, |
| 1700 | PatternRewriter &rewriter) const override { |
| 1701 | auto type = llvm::dyn_cast<ShapedType>(op.getArg().getType()); |
| 1702 | if (!type || !type.hasStaticShape()) |
| 1703 | return failure(); |
| 1704 | Location loc = op.getLoc(); |
| 1705 | Value constShape = |
| 1706 | rewriter |
| 1707 | .create<ConstShapeOp>(loc, |
| 1708 | rewriter.getIndexTensorAttr(type.getShape())) |
| 1709 | .getResult(); |
| 1710 | if (constShape.getType() != op.getResult().getType()) |
| 1711 | constShape = rewriter.create<tensor::CastOp>( |
| 1712 | loc, op.getResult().getType(), constShape); |
| 1713 | rewriter.replaceOp(op, constShape); |
| 1714 | return success(); |
| 1715 | } |
| 1716 | }; |
| 1717 | |
| 1718 | // Canonicalize |
| 1719 | // |
| 1720 | // %0 = tensor.reshape %input(%shape) : (tensor<*xf32>, tensor<?xindex>) -> tensor<*xf32> |
| 1721 | // %1 = shape.shape_of %0 : tensor<*xf32> -> tensor<?xindex> |
| 1722 | // |
| 1723 | // to |
| 1724 | // |
| 1725 | // %0 = tensor.reshape %input(%shape) : (tensor<*xf32>, tensor<?xindex>) -> tensor<*xf32> |
| 1726 | // %1 = %shape |
| 1727 | // |
| 1728 | struct ShapeOfFromReshape : public OpRewritePattern<shape::ShapeOfOp> { |
| 1729 | using OpRewritePattern<shape::ShapeOfOp>::OpRewritePattern; |
| 1730 | |
| 1731 | LogicalResult matchAndRewrite(shape::ShapeOfOp op, |
| 1732 | PatternRewriter &rewriter) const override { |
| 1733 | auto tensorReshapeOp = op.getArg().getDefiningOp<tensor::ReshapeOp>(); |
| 1734 | if (!tensorReshapeOp) |
| 1735 | return rewriter.notifyMatchFailure(op, "producer is not tensor.reshape" ); |
| 1736 | if (!isa<TensorType>(op.getType())) |
| 1737 | return rewriter.notifyMatchFailure(op, "result is not a tensor" ); |
| 1738 | |
| 1739 | // Operand 'shape' of 'tensor.reshape' may now be used as the result of |
| 1740 | // 'shape.shape_of'. While its type is guaranteed to be compatible in well- |
| 1741 | // formed IR, it may not be identical (dynamically vs statically shaped), |
| 1742 | // in which case it needs to be cast first using 'tensor.cast'. |
| 1743 | // Additionally, it may not have identical element type (i32 vs index) |
| 1744 | // while it has identical shaped type (dynamic vs static), in which case it |
| 1745 | // needs to be cast first using 'arith.index_cast'. Note: 'shape.shape_of' |
| 1746 | // op result must be shape or extent tensor. |
| 1747 | Value shape = tensorReshapeOp.getShape(); |
| 1748 | |
| 1749 | auto opTensorTy = cast<RankedTensorType>(op.getType()); |
| 1750 | auto shapeTensorTy = cast<RankedTensorType>(shape.getType()); |
| 1751 | |
| 1752 | if (opTensorTy != shapeTensorTy) { |
| 1753 | if (opTensorTy.getElementType() == shapeTensorTy.getElementType()) |
| 1754 | shape = rewriter.create<tensor::CastOp>(op.getLoc(), opTensorTy, shape); |
| 1755 | else if (!isExtentTensorType(shapeTensorTy)) |
| 1756 | shape = |
| 1757 | rewriter.create<arith::IndexCastOp>(op.getLoc(), opTensorTy, shape); |
| 1758 | } |
| 1759 | |
| 1760 | rewriter.replaceOp(op, shape); |
| 1761 | return success(); |
| 1762 | } |
| 1763 | }; |
| 1764 | |
| 1765 | // Canonicalize |
| 1766 | // ``` |
| 1767 | // %0 = shape.shape_of %arg : tensor<?x?x?xf32> -> tensor<3xindex> |
| 1768 | // %1 = tensor.cast %0 : tensor<3xindex> to tensor<?xindex> |
| 1769 | // ``` |
| 1770 | // to |
| 1771 | // ``` |
| 1772 | // %1 = shape.shape_of %arg : tensor<?x?x?xf32> -> tensor<?xindex> |
| 1773 | // ``` |
| 1774 | struct ShapeOfCastExtentTensor : public OpRewritePattern<tensor::CastOp> { |
| 1775 | using OpRewritePattern<tensor::CastOp>::OpRewritePattern; |
| 1776 | |
| 1777 | LogicalResult matchAndRewrite(tensor::CastOp op, |
| 1778 | PatternRewriter &rewriter) const override { |
| 1779 | auto ty = llvm::dyn_cast<RankedTensorType>(op.getType()); |
| 1780 | if (!ty || ty.getRank() != 1) |
| 1781 | return failure(); |
| 1782 | |
| 1783 | auto shapeOfOp = op.getSource().getDefiningOp<ShapeOfOp>(); |
| 1784 | if (!shapeOfOp) |
| 1785 | return failure(); |
| 1786 | |
| 1787 | // Argument type must be ranked and must not conflict. |
| 1788 | auto argTy = llvm::dyn_cast<RankedTensorType>(shapeOfOp.getArg().getType()); |
| 1789 | if (!argTy || (!ty.isDynamicDim(0) && ty.getDimSize(0) != argTy.getRank())) |
| 1790 | return failure(); |
| 1791 | |
| 1792 | rewriter.replaceOpWithNewOp<ShapeOfOp>(op, ty, shapeOfOp.getArg()); |
| 1793 | return success(); |
| 1794 | } |
| 1795 | }; |
| 1796 | } // namespace |
| 1797 | |
| 1798 | void ShapeOfOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 1799 | MLIRContext *context) { |
| 1800 | patterns.add<ShapeOfCastExtentTensor, ShapeOfFromReshape, |
| 1801 | ExtractFromShapeOfExtentTensor, ShapeOfOpToConstShapeOp>( |
| 1802 | context); |
| 1803 | } |
| 1804 | |
| 1805 | LogicalResult mlir::shape::ShapeOfOp::inferReturnTypes( |
| 1806 | MLIRContext *context, std::optional<Location> location, |
| 1807 | ShapeOfOp::Adaptor adaptor, SmallVectorImpl<Type> &inferredReturnTypes) { |
| 1808 | if (llvm::isa<ValueShapeType>(adaptor.getArg().getType())) |
| 1809 | inferredReturnTypes.assign({ShapeType::get(context)}); |
| 1810 | else { |
| 1811 | auto shapedTy = llvm::cast<ShapedType>(adaptor.getArg().getType()); |
| 1812 | int64_t rank = |
| 1813 | shapedTy.hasRank() ? shapedTy.getRank() : ShapedType::kDynamic; |
| 1814 | Type indexTy = IndexType::get(context); |
| 1815 | Type extentTensorTy = RankedTensorType::get({rank}, indexTy); |
| 1816 | inferredReturnTypes.assign({extentTensorTy}); |
| 1817 | } |
| 1818 | return success(); |
| 1819 | } |
| 1820 | |
| 1821 | bool mlir::shape::ShapeOfOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| 1822 | if (l.size() != 1 || r.size() != 1) |
| 1823 | return false; |
| 1824 | if (l == r) |
| 1825 | return true; |
| 1826 | |
| 1827 | Type lhs = l.front(); |
| 1828 | Type rhs = r.front(); |
| 1829 | |
| 1830 | if (!llvm::isa<ShapeType, ShapedType>(lhs) || |
| 1831 | !llvm::isa<ShapeType, ShapedType>(rhs)) |
| 1832 | return false; |
| 1833 | |
| 1834 | if (llvm::isa<ShapeType>(lhs) || llvm::isa<ShapeType>(rhs)) |
| 1835 | // Shape type is compatible with all other valid return types. |
| 1836 | return true; |
| 1837 | |
| 1838 | if (succeeded(verifyCompatibleShapes({lhs, rhs}))) |
| 1839 | return true; |
| 1840 | return false; |
| 1841 | } |
| 1842 | |
| 1843 | LogicalResult shape::ShapeOfOp::verify() { |
| 1844 | return verifyShapeOrExtentTensorOp(*this); |
| 1845 | } |
| 1846 | |
| 1847 | //===----------------------------------------------------------------------===// |
| 1848 | // SizeToIndexOp |
| 1849 | //===----------------------------------------------------------------------===// |
| 1850 | |
| 1851 | OpFoldResult SizeToIndexOp::fold(FoldAdaptor adaptor) { |
| 1852 | // Constant values of both types, `shape.size` and `index`, are represented as |
| 1853 | // `IntegerAttr`s which makes constant folding simple. |
| 1854 | if (Attribute arg = adaptor.getArg()) |
| 1855 | return arg; |
| 1856 | return OpFoldResult(); |
| 1857 | } |
| 1858 | |
| 1859 | void SizeToIndexOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 1860 | MLIRContext *context) { |
| 1861 | patterns.add<IndexToSizeToIndexCanonicalization>(context); |
| 1862 | } |
| 1863 | |
| 1864 | bool SizeToIndexOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 1865 | if (inputs.size() != 1 || outputs.size() != 1) |
| 1866 | return false; |
| 1867 | return llvm::isa<IndexType, SizeType>(inputs[0]) && |
| 1868 | llvm::isa<IndexType>(outputs[0]); |
| 1869 | } |
| 1870 | |
| 1871 | //===----------------------------------------------------------------------===// |
| 1872 | // YieldOp |
| 1873 | //===----------------------------------------------------------------------===// |
| 1874 | |
| 1875 | LogicalResult shape::YieldOp::verify() { |
| 1876 | auto *parentOp = (*this)->getParentOp(); |
| 1877 | auto results = parentOp->getResults(); |
| 1878 | auto operands = getOperands(); |
| 1879 | |
| 1880 | if (parentOp->getNumResults() != getNumOperands()) |
| 1881 | return emitOpError() << "number of operands does not match number of " |
| 1882 | "results of its parent" ; |
| 1883 | for (auto e : llvm::zip(results, operands)) |
| 1884 | if (std::get<0>(e).getType() != std::get<1>(e).getType()) |
| 1885 | return emitOpError() << "types mismatch between yield op and its parent" ; |
| 1886 | |
| 1887 | return success(); |
| 1888 | } |
| 1889 | |
| 1890 | //===----------------------------------------------------------------------===// |
| 1891 | // SplitAtOp |
| 1892 | //===----------------------------------------------------------------------===// |
| 1893 | |
| 1894 | LogicalResult SplitAtOp::fold(FoldAdaptor adaptor, |
| 1895 | SmallVectorImpl<OpFoldResult> &results) { |
| 1896 | if (!adaptor.getOperand() || !adaptor.getIndex()) |
| 1897 | return failure(); |
| 1898 | auto shapeVec = llvm::to_vector<6>( |
| 1899 | llvm::cast<DenseIntElementsAttr>(adaptor.getOperand()).getValues<int64_t>()); |
| 1900 | auto shape = llvm::ArrayRef(shapeVec); |
| 1901 | auto splitPoint = llvm::cast<IntegerAttr>(adaptor.getIndex()).getInt(); |
| 1902 | // Verify that the split point is in the correct range. |
| 1903 | // TODO: Constant fold to an "error". |
| 1904 | int64_t rank = shape.size(); |
| 1905 | if (-rank > splitPoint || splitPoint > rank) |
| 1906 | return failure(); |
| 1907 | if (splitPoint < 0) |
| 1908 | splitPoint += shape.size(); |
| 1909 | Builder builder(adaptor.getOperand().getContext()); |
| 1910 | results.push_back(builder.getIndexTensorAttr(shape.take_front(splitPoint))); |
| 1911 | results.push_back(builder.getIndexTensorAttr(shape.drop_front(splitPoint))); |
| 1912 | return success(); |
| 1913 | } |
| 1914 | |
| 1915 | //===----------------------------------------------------------------------===// |
| 1916 | // ToExtentTensorOp |
| 1917 | //===----------------------------------------------------------------------===// |
| 1918 | |
| 1919 | OpFoldResult ToExtentTensorOp::fold(FoldAdaptor adaptor) { |
| 1920 | if (!adaptor.getInput()) |
| 1921 | return OpFoldResult(); |
| 1922 | Builder builder(getContext()); |
| 1923 | auto shape = llvm::to_vector<6>( |
| 1924 | llvm::cast<DenseIntElementsAttr>(adaptor.getInput()).getValues<int64_t>()); |
| 1925 | auto type = RankedTensorType::get({static_cast<int64_t>(shape.size())}, |
| 1926 | builder.getIndexType()); |
| 1927 | return DenseIntElementsAttr::get(type, shape); |
| 1928 | } |
| 1929 | |
| 1930 | bool ToExtentTensorOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 1931 | if (inputs.size() != 1 || outputs.size() != 1) |
| 1932 | return false; |
| 1933 | if (auto inputTensor = llvm::dyn_cast<RankedTensorType>(inputs[0])) { |
| 1934 | if (!llvm::isa<IndexType>(inputTensor.getElementType()) || |
| 1935 | inputTensor.getRank() != 1) |
| 1936 | return false; |
| 1937 | } else if (!llvm::isa<ShapeType>(inputs[0])) { |
| 1938 | return false; |
| 1939 | } |
| 1940 | |
| 1941 | TensorType outputTensor = llvm::dyn_cast<TensorType>(outputs[0]); |
| 1942 | return outputTensor && llvm::isa<IndexType>(outputTensor.getElementType()); |
| 1943 | } |
| 1944 | |
| 1945 | //===----------------------------------------------------------------------===// |
| 1946 | // ReduceOp |
| 1947 | //===----------------------------------------------------------------------===// |
| 1948 | |
| 1949 | void ReduceOp::build(OpBuilder &builder, OperationState &result, Value shape, |
| 1950 | ValueRange initVals) { |
| 1951 | OpBuilder::InsertionGuard g(builder); |
| 1952 | result.addOperands(shape); |
| 1953 | result.addOperands(initVals); |
| 1954 | |
| 1955 | Region *bodyRegion = result.addRegion(); |
| 1956 | Block *bodyBlock = builder.createBlock( |
| 1957 | bodyRegion, /*insertPt=*/{}, builder.getIndexType(), result.location); |
| 1958 | |
| 1959 | Type elementType; |
| 1960 | if (auto tensorType = llvm::dyn_cast<TensorType>(shape.getType())) |
| 1961 | elementType = tensorType.getElementType(); |
| 1962 | else |
| 1963 | elementType = SizeType::get(builder.getContext()); |
| 1964 | bodyBlock->addArgument(elementType, shape.getLoc()); |
| 1965 | |
| 1966 | for (Value initVal : initVals) { |
| 1967 | bodyBlock->addArgument(initVal.getType(), initVal.getLoc()); |
| 1968 | result.addTypes(initVal.getType()); |
| 1969 | } |
| 1970 | } |
| 1971 | |
| 1972 | LogicalResult ReduceOp::verify() { |
| 1973 | // Verify block arg types. |
| 1974 | Block &block = getRegion().front(); |
| 1975 | |
| 1976 | // The block takes index, extent, and aggregated values as arguments. |
| 1977 | auto blockArgsCount = getInitVals().size() + 2; |
| 1978 | if (block.getNumArguments() != blockArgsCount) |
| 1979 | return emitOpError() << "ReduceOp body is expected to have " |
| 1980 | << blockArgsCount << " arguments" ; |
| 1981 | |
| 1982 | // The first block argument is the index and must always be of type `index`. |
| 1983 | if (!llvm::isa<IndexType>(block.getArgument(0).getType())) |
| 1984 | return emitOpError( |
| 1985 | "argument 0 of ReduceOp body is expected to be of IndexType" ); |
| 1986 | |
| 1987 | // The second block argument is the extent and must be of type `size` or |
| 1988 | // `index`, depending on whether the reduce operation is applied to a shape or |
| 1989 | // to an extent tensor. |
| 1990 | Type extentTy = block.getArgument(1).getType(); |
| 1991 | if (llvm::isa<ShapeType>(getShape().getType())) { |
| 1992 | if (!llvm::isa<SizeType>(extentTy)) |
| 1993 | return emitOpError("argument 1 of ReduceOp body is expected to be of " |
| 1994 | "SizeType if the ReduceOp operates on a ShapeType" ); |
| 1995 | } else { |
| 1996 | if (!llvm::isa<IndexType>(extentTy)) |
| 1997 | return emitOpError( |
| 1998 | "argument 1 of ReduceOp body is expected to be of IndexType if the " |
| 1999 | "ReduceOp operates on an extent tensor" ); |
| 2000 | } |
| 2001 | |
| 2002 | for (const auto &type : llvm::enumerate(getInitVals())) |
| 2003 | if (block.getArgument(type.index() + 2).getType() != type.value().getType()) |
| 2004 | return emitOpError() << "type mismatch between argument " |
| 2005 | << type.index() + 2 |
| 2006 | << " of ReduceOp body and initial value " |
| 2007 | << type.index(); |
| 2008 | return success(); |
| 2009 | } |
| 2010 | |
| 2011 | ParseResult ReduceOp::parse(OpAsmParser &parser, OperationState &result) { |
| 2012 | // Parse operands. |
| 2013 | SmallVector<OpAsmParser::UnresolvedOperand, 3> operands; |
| 2014 | Type shapeOrExtentTensorType; |
| 2015 | if (parser.parseOperandList(operands, /*requiredOperandCount=*/-1, |
| 2016 | OpAsmParser::Delimiter::Paren) || |
| 2017 | parser.parseColonType(shapeOrExtentTensorType) || |
| 2018 | parser.parseOptionalArrowTypeList(result.types)) |
| 2019 | return failure(); |
| 2020 | |
| 2021 | // Resolve operands. |
| 2022 | auto initVals = llvm::ArrayRef(operands).drop_front(); |
| 2023 | if (parser.resolveOperand(operands.front(), shapeOrExtentTensorType, |
| 2024 | result.operands) || |
| 2025 | parser.resolveOperands(initVals, result.types, parser.getNameLoc(), |
| 2026 | result.operands)) |
| 2027 | return failure(); |
| 2028 | |
| 2029 | // Parse the body. |
| 2030 | Region *body = result.addRegion(); |
| 2031 | if (parser.parseRegion(*body, /*args=*/{}, /*argTypes=*/{})) |
| 2032 | return failure(); |
| 2033 | |
| 2034 | // Parse attributes. |
| 2035 | if (parser.parseOptionalAttrDict(result.attributes)) |
| 2036 | return failure(); |
| 2037 | |
| 2038 | return success(); |
| 2039 | } |
| 2040 | |
| 2041 | void ReduceOp::print(OpAsmPrinter &p) { |
| 2042 | p << '(' << getShape() << ", " << getInitVals() |
| 2043 | << ") : " << getShape().getType(); |
| 2044 | p.printOptionalArrowTypeList(getResultTypes()); |
| 2045 | p << ' '; |
| 2046 | p.printRegion(getRegion()); |
| 2047 | p.printOptionalAttrDict((*this)->getAttrs()); |
| 2048 | } |
| 2049 | |
| 2050 | #define GET_OP_CLASSES |
| 2051 | #include "mlir/Dialect/Shape/IR/ShapeOps.cpp.inc" |
| 2052 | |
| 2053 | #define GET_TYPEDEF_CLASSES |
| 2054 | #include "mlir/Dialect/Shape/IR/ShapeOpsTypes.cpp.inc" |
| 2055 | |