1 | //===- SparsificationAndBufferizationPass.cpp - Tensor to Memref Lowering -===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" |
10 | |
11 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
12 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
13 | #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
14 | #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" |
15 | #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" |
16 | #include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h" |
17 | #include "mlir/Dialect/Bufferization/Transforms/Passes.h" |
18 | #include "mlir/Dialect/Bufferization/Transforms/Transforms.h" |
19 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
20 | #include "mlir/Dialect/GPU/IR/GPUDialect.h" |
21 | #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
22 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
23 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
24 | #include "mlir/Dialect/SCF/IR/SCF.h" |
25 | #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" |
26 | #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" |
27 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
28 | #include "mlir/Pass/PassManager.h" |
29 | #include "mlir/Transforms/Passes.h" |
30 | |
31 | using namespace mlir; |
32 | |
33 | namespace mlir { |
34 | |
35 | #define GEN_PASS_DEF_SPARSIFICATIONANDBUFFERIZATION |
36 | #include "mlir/Dialect/SparseTensor/Transforms/Passes.h.inc" |
37 | |
38 | namespace sparse_tensor { |
39 | |
40 | /// Return `true` if one of the given types is a sparse tensor type. |
41 | static bool containsSparseTensor(TypeRange types) { |
42 | for (Type t : types) |
43 | if (isa<TensorType>(t) && getSparseTensorEncoding(t)) |
44 | return true; |
45 | return false; |
46 | } |
47 | |
48 | /// A pass that lowers tensor ops to memref ops, regardless of whether they are |
49 | /// dense or sparse. |
50 | /// |
51 | /// One-Shot Analysis is used to detect RaW conflicts and to insert buffer |
52 | /// copies of the tensor level (`insertTensorCopies`). Afterwards, the lowering |
53 | /// of tensor ops to memref ops follows a different code path depending on |
54 | /// whether the op is sparse or dense: |
55 | /// |
56 | /// * Sparse tensor ops are lowered through Sparsification and follow-up pass |
57 | /// that lowers sparse_tensor dialect ops. |
58 | /// * Dense tensor ops are lowered through BufferizableOpInterface |
59 | /// implementations. |
60 | class SparsificationAndBufferizationPass |
61 | : public impl::SparsificationAndBufferizationBase< |
62 | SparsificationAndBufferizationPass> { |
63 | public: |
64 | // Private pass options only. |
65 | SparsificationAndBufferizationPass( |
66 | const bufferization::OneShotBufferizationOptions &bufferizationOptions, |
67 | const SparsificationOptions &sparsificationOptions, |
68 | bool createSparseDeallocs, bool enableRuntimeLibrary, |
69 | bool enableBufferInitialization) |
70 | : bufferizationOptions(bufferizationOptions), |
71 | sparsificationOptions(sparsificationOptions), |
72 | createSparseDeallocs(createSparseDeallocs), |
73 | enableRuntimeLibrary(enableRuntimeLibrary), |
74 | enableBufferInitialization(enableBufferInitialization) {} |
75 | // Private pass options and visible pass options. |
76 | SparsificationAndBufferizationPass( |
77 | const bufferization::OneShotBufferizationOptions &bufferizationOptions, |
78 | const SparsificationOptions &sparsificationOptions, |
79 | bool createSparseDeallocs, bool enableRuntimeLibrary, |
80 | bool enableBufferInitialization, unsigned vl, bool vla, bool index32, |
81 | bool gpu, SparseEmitStrategy emitStrategy, |
82 | SparseParallelizationStrategy parallelizationStrategy) |
83 | : bufferizationOptions(bufferizationOptions), |
84 | sparsificationOptions(sparsificationOptions), |
85 | createSparseDeallocs(createSparseDeallocs), |
86 | enableRuntimeLibrary(enableRuntimeLibrary), |
87 | enableBufferInitialization(enableBufferInitialization) { |
88 | // Set the visible pass options explicitly. |
89 | vectorLength = vl; |
90 | enableVLAVectorization = vla; |
91 | enableSIMDIndex32 = index32; |
92 | enableGPULibgen = gpu; |
93 | sparseEmitStrategy = emitStrategy; |
94 | parallelization = parallelizationStrategy; |
95 | } |
96 | |
97 | /// Bufferize all dense ops. This assumes that no further analysis is needed |
98 | /// and that all required buffer copies were already inserted by |
99 | /// `insertTensorCopies` in the form of `bufferization.alloc_tensor` ops. |
100 | LogicalResult runDenseBufferization() { |
101 | bufferization::OneShotBufferizationOptions updatedOptions = |
102 | bufferizationOptions; |
103 | // Skip all sparse ops. |
104 | updatedOptions.opFilter.denyOperation([&](Operation *op) { |
105 | if (containsSparseTensor(types: TypeRange(op->getResults())) || |
106 | containsSparseTensor(types: TypeRange(op->getOperands()))) |
107 | return true; |
108 | if (auto funcOp = dyn_cast<func::FuncOp>(op)) { |
109 | FunctionType funcType = funcOp.getFunctionType(); |
110 | if (containsSparseTensor(funcType.getInputs()) || |
111 | containsSparseTensor(funcType.getResults())) |
112 | return true; |
113 | } |
114 | return false; |
115 | }); |
116 | |
117 | bufferization::BufferizationState bufferizationState; |
118 | |
119 | if (failed(bufferization::bufferizeModuleOp(moduleOp: cast<ModuleOp>(getOperation()), |
120 | options: updatedOptions, |
121 | state&: bufferizationState))) |
122 | return failure(); |
123 | |
124 | bufferization::removeBufferizationAttributesInModule(moduleOp: getOperation()); |
125 | return success(); |
126 | } |
127 | |
128 | void runOnOperation() override { |
129 | // Overrides the default emit strategy using user-provided value. |
130 | this->sparsificationOptions.sparseEmitStrategy = sparseEmitStrategy; |
131 | |
132 | // Overrides the default parallelization strategy using user-provided value. |
133 | this->sparsificationOptions.parallelizationStrategy = parallelization; |
134 | |
135 | // Run enabling transformations. |
136 | { |
137 | OpPassManager pm("builtin.module" ); |
138 | pm.addPass(pass: createPreSparsificationRewritePass()); |
139 | pm.addNestedPass<func::FuncOp>( |
140 | bufferization::createEmptyTensorToAllocTensorPass()); |
141 | if (failed(runPipeline(pm, getOperation()))) |
142 | return signalPassFailure(); |
143 | } |
144 | |
145 | // Insert tensor copies. This step runs One-Shot Analysis (which analyzes |
146 | // SSA use-def chains of tensor IR) and decides where buffer copies are |
147 | // needed and where buffers can be written to in-place. These decisions are |
148 | // materialized in the IR in the form of `bufferization.alloc_tensor` ops. |
149 | // |
150 | // Note: All following steps in this pass must be careful not to modify the |
151 | // structure of the IR (i.e., tensor use-def chains), as that could |
152 | // invalidate the results of the analysis. From now on, only small and |
153 | // localized rewrites are allowed, such as replacing a tensor op with its |
154 | // memref equivalent. |
155 | bufferization::BufferizationState bufferizationState; |
156 | |
157 | if (failed(bufferization::insertTensorCopies( |
158 | getOperation(), bufferizationOptions, bufferizationState))) |
159 | return signalPassFailure(); |
160 | |
161 | // Option `testAnalysisOnly` is a debug/testing flag. If set, the results of |
162 | // OneShotAnalysis are added to the IR via attributes. In that case, do not |
163 | // continue with the remaining pipeline. |
164 | if (bufferizationOptions.testAnalysisOnly) |
165 | return; |
166 | |
167 | // Bufferize all sparse ops. No further analysis is needed. All required |
168 | // buffer copies were already inserted by `insertTensorCopies` in the form |
169 | // of `bufferization.alloc_tensor` ops. |
170 | { |
171 | OpPassManager pm("builtin.module" ); |
172 | if (enableGPULibgen) |
173 | pm.addPass(createSparseGPUCodegenPass(0, enableRuntimeLibrary)); |
174 | pm.addPass(pass: createSparseReinterpretMapPass(scope: ReinterpretMapScope::kAll)); |
175 | pm.addPass(createSparsificationPass(sparsificationOptions)); |
176 | if (sparsificationOptions.sparseEmitStrategy == |
177 | SparseEmitStrategy::kSparseIterator) { |
178 | pm.addNestedPass<func::FuncOp>(createSparseSpaceCollapsePass()); |
179 | pm.addNestedPass<func::FuncOp>(createLowerSparseIterationToSCFPass()); |
180 | } |
181 | |
182 | pm.addNestedPass<func::FuncOp>(createStageSparseOperationsPass()); |
183 | pm.addPass(createLowerSparseOpsToForeachPass(enableRuntimeLibrary, |
184 | /*enableConvert=*/true)); |
185 | pm.addPass( |
186 | pass: createSparseReinterpretMapPass(scope: ReinterpretMapScope::kExceptGeneric)); |
187 | pm.addNestedPass<func::FuncOp>(createLowerForeachToSCFPass()); |
188 | pm.addPass(mlir::pass: createLoopInvariantCodeMotionPass()); |
189 | if (vectorLength > 0) { |
190 | pm.addPass(createSparseVectorizationPass( |
191 | vectorLength, enableVLAVectorization, enableSIMDIndex32)); |
192 | } |
193 | if (enableRuntimeLibrary) { |
194 | pm.addPass(createSparseTensorConversionPass()); |
195 | } else { |
196 | pm.addPass(createSparseTensorCodegenPass(createSparseDeallocs, |
197 | enableBufferInitialization)); |
198 | pm.addPass(createSparseBufferRewritePass(enableBufferInitialization)); |
199 | } |
200 | if (failed(runPipeline(pm, getOperation()))) |
201 | return signalPassFailure(); |
202 | } |
203 | |
204 | // Bufferize all dense ops. |
205 | if (failed(Result: runDenseBufferization())) |
206 | signalPassFailure(); |
207 | } |
208 | |
209 | private: |
210 | bufferization::OneShotBufferizationOptions bufferizationOptions; |
211 | SparsificationOptions sparsificationOptions; |
212 | bool createSparseDeallocs; |
213 | bool enableRuntimeLibrary; |
214 | bool enableBufferInitialization; |
215 | }; |
216 | |
217 | } // namespace sparse_tensor |
218 | } // namespace mlir |
219 | |
220 | mlir::bufferization::OneShotBufferizationOptions |
221 | mlir::getBufferizationOptionsForSparsification(bool analysisOnly) { |
222 | using namespace mlir::bufferization; |
223 | OneShotBufferizationOptions options; |
224 | options.bufferizeFunctionBoundaries = true; |
225 | options.setFunctionBoundaryTypeConversion(LayoutMapOption::IdentityLayoutMap); |
226 | options.unknownTypeConverterFn = [](Value value, Attribute memorySpace, |
227 | const BufferizationOptions &options) { |
228 | return getMemRefTypeWithStaticIdentityLayout( |
229 | tensorType: cast<TensorType>(Val: value.getType()), memorySpace); |
230 | }; |
231 | if (analysisOnly) { |
232 | options.testAnalysisOnly = true; |
233 | options.printConflicts = true; |
234 | } |
235 | // Since this mini-pipeline may be used in alternative pipelines (viz. |
236 | // different from the default "sparsifier" pipeline) where unknown ops |
237 | // are handled by alternative bufferization methods that are downstream |
238 | // of this mini-pipeline, we allow unknown ops by default (failure to |
239 | // bufferize is eventually apparent by failing to convert to LLVM IR). |
240 | options.allowUnknownOps = true; |
241 | return options; |
242 | } |
243 | |
244 | std::unique_ptr<mlir::Pass> mlir::createSparsificationAndBufferizationPass() { |
245 | SparsificationOptions sparseOptions; |
246 | return std::make_unique< |
247 | mlir::sparse_tensor::SparsificationAndBufferizationPass>( |
248 | args: getBufferizationOptionsForSparsification(/*analysisOnly=*/false), |
249 | args&: sparseOptions, |
250 | /*createSparseDeallocs=*/args: false, |
251 | /*enableRuntimeLibrary=*/args: false, |
252 | /*enableBufferInitialization=*/args: false); |
253 | } |
254 | |
255 | std::unique_ptr<mlir::Pass> mlir::createSparsificationAndBufferizationPass( |
256 | const bufferization::OneShotBufferizationOptions &bufferizationOptions, |
257 | const SparsificationOptions &sparsificationOptions, |
258 | bool createSparseDeallocs, bool enableRuntimeLibrary, |
259 | bool enableBufferInitialization, unsigned vectorLength, |
260 | bool enableVLAVectorization, bool enableSIMDIndex32, bool enableGPULibgen, |
261 | SparseEmitStrategy emitStrategy, |
262 | SparseParallelizationStrategy parallelizationStrategy) { |
263 | return std::make_unique< |
264 | mlir::sparse_tensor::SparsificationAndBufferizationPass>( |
265 | args: bufferizationOptions, args: sparsificationOptions, args&: createSparseDeallocs, |
266 | args&: enableRuntimeLibrary, args&: enableBufferInitialization, args&: vectorLength, |
267 | args&: enableVLAVectorization, args&: enableSIMDIndex32, args&: enableGPULibgen, args&: emitStrategy, |
268 | args&: parallelizationStrategy); |
269 | } |
270 | |