| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 10 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 11 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
| 12 | #include "mlir/Dialect/Complex/IR/Complex.h" |
| 13 | #include "mlir/Dialect/Linalg/IR/RelayoutOpInterface.h" |
| 14 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 15 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
| 16 | #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" |
| 17 | #include "mlir/Dialect/Utils/StaticValueUtils.h" |
| 18 | #include "mlir/IR/Builders.h" |
| 19 | #include "mlir/IR/BuiltinAttributeInterfaces.h" |
| 20 | #include "mlir/IR/BuiltinTypeInterfaces.h" |
| 21 | #include "mlir/IR/BuiltinTypes.h" |
| 22 | #include "mlir/IR/IRMapping.h" |
| 23 | #include "mlir/IR/Matchers.h" |
| 24 | #include "mlir/IR/OpDefinition.h" |
| 25 | #include "mlir/IR/PatternMatch.h" |
| 26 | #include "mlir/IR/TypeUtilities.h" |
| 27 | #include "mlir/Interfaces/DestinationStyleOpInterface.h" |
| 28 | #include "mlir/Interfaces/InferIntRangeInterface.h" |
| 29 | #include "mlir/Interfaces/LoopLikeInterface.h" |
| 30 | #include "mlir/Interfaces/Utils/InferIntRangeCommon.h" |
| 31 | #include "mlir/Interfaces/ViewLikeInterface.h" |
| 32 | #include "mlir/Support/LLVM.h" |
| 33 | #include "llvm/ADT/DenseSet.h" |
| 34 | #include "llvm/ADT/STLExtras.h" |
| 35 | #include "llvm/ADT/SmallBitVector.h" |
| 36 | #include "llvm/ADT/StringRef.h" |
| 37 | #include "llvm/Support/Casting.h" |
| 38 | #include "llvm/Support/LogicalResult.h" |
| 39 | #include "llvm/Support/MathExtras.h" |
| 40 | #include <algorithm> |
| 41 | #include <optional> |
| 42 | #include <vector> |
| 43 | |
| 44 | using namespace mlir; |
| 45 | using namespace mlir::tensor; |
| 46 | |
| 47 | using llvm::divideCeilSigned; |
| 48 | using llvm::divideFloorSigned; |
| 49 | using llvm::mod; |
| 50 | |
| 51 | /// Materialize a single constant operation from a given attribute value with |
| 52 | /// the desired resultant type. |
| 53 | Operation *TensorDialect::materializeConstant(OpBuilder &builder, |
| 54 | Attribute value, Type type, |
| 55 | Location loc) { |
| 56 | if (auto op = arith::ConstantOp::materialize(builder, value, type, loc)) |
| 57 | return op; |
| 58 | if (complex::ConstantOp::isBuildableWith(value, type)) |
| 59 | return builder.create<complex::ConstantOp>(loc, type, |
| 60 | llvm::cast<ArrayAttr>(value)); |
| 61 | return nullptr; |
| 62 | } |
| 63 | |
| 64 | OpFoldResult tensor::getMixedSize(OpBuilder &builder, Location loc, Value value, |
| 65 | int64_t dim) { |
| 66 | auto tensorType = llvm::cast<RankedTensorType>(value.getType()); |
| 67 | if (tensorType.isDynamicDim(dim)) |
| 68 | return builder.createOrFold<tensor::DimOp>(loc, value, dim); |
| 69 | |
| 70 | return builder.getIndexAttr(value: tensorType.getDimSize(dim)); |
| 71 | } |
| 72 | |
| 73 | SmallVector<OpFoldResult> tensor::getMixedSizes(OpBuilder &builder, |
| 74 | Location loc, Value value) { |
| 75 | auto tensorType = llvm::cast<RankedTensorType>(value.getType()); |
| 76 | SmallVector<OpFoldResult> result; |
| 77 | for (int64_t i = 0; i < tensorType.getRank(); ++i) |
| 78 | result.push_back(Elt: getMixedSize(builder, loc, value, dim: i)); |
| 79 | return result; |
| 80 | } |
| 81 | |
| 82 | FailureOr<Value> tensor::getOrCreateDestination(OpBuilder &b, Location loc, |
| 83 | OpResult opResult) { |
| 84 | auto tensorType = llvm::dyn_cast<TensorType>(Val: opResult.getType()); |
| 85 | assert(tensorType && "expected tensor type" ); |
| 86 | |
| 87 | // If the op has a destination, it implements DestinationStyleOpInterface and |
| 88 | // we can query the destination operand from that interface. |
| 89 | auto destOp = opResult.getDefiningOp<DestinationStyleOpInterface>(); |
| 90 | if (destOp) |
| 91 | return destOp.getTiedOpOperand(opResult)->get(); |
| 92 | |
| 93 | // Otherwise, create a new destination tensor with the same shape. |
| 94 | OpBuilder::InsertionGuard g(b); |
| 95 | b.setInsertionPoint(opResult.getDefiningOp()); |
| 96 | |
| 97 | // Compute sizes. |
| 98 | SmallVector<OpFoldResult> mixedSizes; |
| 99 | if (!tensorType.hasStaticShape()) { |
| 100 | // Dynamic shape: Query ReifyRankedShapedTypeOpInterface. |
| 101 | ReifiedRankedShapedTypeDims reifiedShapes; |
| 102 | if (failed(Result: reifyResultShapes(b, op: opResult.getDefiningOp(), reifiedReturnShapes&: reifiedShapes))) |
| 103 | return failure(); |
| 104 | mixedSizes = reifiedShapes[opResult.getResultNumber()]; |
| 105 | } else { |
| 106 | // Static shape: Take static sizes directly. |
| 107 | for (int64_t sz : tensorType.getShape()) |
| 108 | mixedSizes.push_back(b.getIndexAttr(sz)); |
| 109 | } |
| 110 | |
| 111 | // Create empty tensor. |
| 112 | Value emptyTensor = |
| 113 | b.create<tensor::EmptyOp>(loc, mixedSizes, tensorType.getElementType()); |
| 114 | return emptyTensor; |
| 115 | } |
| 116 | |
| 117 | LogicalResult tensor::getOrCreateDestinations(OpBuilder &b, Location loc, |
| 118 | Operation *op, |
| 119 | SmallVector<Value> &result) { |
| 120 | for (OpResult opResult : op->getResults()) { |
| 121 | if (llvm::isa<TensorType>(Val: opResult.getType())) { |
| 122 | FailureOr<Value> destination = getOrCreateDestination(b, loc, opResult); |
| 123 | if (failed(Result: destination)) |
| 124 | return failure(); |
| 125 | result.push_back(Elt: *destination); |
| 126 | } |
| 127 | } |
| 128 | return success(); |
| 129 | } |
| 130 | |
| 131 | bool tensor::isSameTypeWithoutEncoding(Type tp1, Type tp2) { |
| 132 | if (auto rtp1 = llvm::dyn_cast<RankedTensorType>(tp1)) { |
| 133 | if (auto rtp2 = llvm::dyn_cast<RankedTensorType>(tp2)) |
| 134 | return rtp1.getShape() == rtp2.getShape() && |
| 135 | rtp1.getElementType() == rtp2.getElementType(); |
| 136 | return false; |
| 137 | } |
| 138 | return tp1 == tp2; // default implementation |
| 139 | } |
| 140 | |
| 141 | /// Compute the dropped dimensions of a rank-reducing tensor.extract_slice op or |
| 142 | /// rank-extending tensor.insert_slice op. |
| 143 | static llvm::SmallBitVector getDroppedDims(ArrayRef<int64_t> reducedShape, |
| 144 | ArrayRef<OpFoldResult> mixedSizes) { |
| 145 | llvm::SmallBitVector droppedDims(mixedSizes.size()); |
| 146 | int64_t shapePos = reducedShape.size() - 1; |
| 147 | |
| 148 | for (const auto &size : enumerate(First: llvm::reverse(C&: mixedSizes))) { |
| 149 | size_t idx = mixedSizes.size() - size.index() - 1; |
| 150 | // Rank-reduced dims must have a static unit dimension. |
| 151 | bool isStaticUnitSize = |
| 152 | isa<Attribute>(Val: size.value()) && |
| 153 | llvm::cast<IntegerAttr>(cast<Attribute>(Val: size.value())).getInt() == 1; |
| 154 | |
| 155 | if (shapePos < 0) { |
| 156 | // There are no more dims in the reduced shape. All remaining sizes must |
| 157 | // be rank-reduced dims. |
| 158 | assert(isStaticUnitSize && "expected unit dim" ); |
| 159 | droppedDims.set(idx); |
| 160 | continue; |
| 161 | } |
| 162 | |
| 163 | // Dim is preserved if the size is not a static 1. |
| 164 | if (!isStaticUnitSize) { |
| 165 | --shapePos; |
| 166 | continue; |
| 167 | } |
| 168 | |
| 169 | // Dim is preserved if the reduced shape dim is also 1. |
| 170 | if (reducedShape[shapePos] == 1) { |
| 171 | --shapePos; |
| 172 | continue; |
| 173 | } |
| 174 | |
| 175 | // Otherwise: Dim is dropped. |
| 176 | droppedDims.set(idx); |
| 177 | } |
| 178 | |
| 179 | assert(shapePos < 0 && "dimension mismatch" ); |
| 180 | return droppedDims; |
| 181 | } |
| 182 | |
| 183 | /// Given a ranked tensor type and a range of values that defines its dynamic |
| 184 | /// dimension sizes, turn all dynamic sizes that have a constant value into |
| 185 | /// static dimension sizes. |
| 186 | static RankedTensorType |
| 187 | foldDynamicToStaticDimSizes(RankedTensorType type, ValueRange dynamicSizes, |
| 188 | SmallVector<Value> &foldedDynamicSizes) { |
| 189 | SmallVector<int64_t> staticShape(type.getShape()); |
| 190 | assert(type.getNumDynamicDims() == dynamicSizes.size() && |
| 191 | "incorrect number of dynamic sizes" ); |
| 192 | |
| 193 | // Compute new static and dynamic sizes. |
| 194 | unsigned ctr = 0; |
| 195 | for (int64_t i = 0, e = type.getRank(); i < e; ++i) { |
| 196 | if (type.isDynamicDim(i)) { |
| 197 | Value dynamicSize = dynamicSizes[ctr++]; |
| 198 | std::optional<int64_t> cst = getConstantIntValue(ofr: dynamicSize); |
| 199 | if (cst.has_value()) { |
| 200 | // Dynamic size must be non-negative. |
| 201 | if (cst.value() < 0) { |
| 202 | foldedDynamicSizes.push_back(Elt: dynamicSize); |
| 203 | continue; |
| 204 | } |
| 205 | staticShape[i] = *cst; |
| 206 | } else { |
| 207 | foldedDynamicSizes.push_back(Elt: dynamicSize); |
| 208 | } |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | return RankedTensorType::get(staticShape, type.getElementType(), |
| 213 | type.getEncoding()); |
| 214 | } |
| 215 | |
| 216 | //===----------------------------------------------------------------------===// |
| 217 | // BitcastOp |
| 218 | //===----------------------------------------------------------------------===// |
| 219 | |
| 220 | bool BitcastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 221 | if (inputs.size() != 1 || outputs.size() != 1) |
| 222 | return false; |
| 223 | Type a = inputs.front(), b = outputs.front(); |
| 224 | auto aT = dyn_cast<TensorType>(a); |
| 225 | auto bT = dyn_cast<TensorType>(b); |
| 226 | if (!aT || !bT) |
| 227 | return false; |
| 228 | |
| 229 | if (aT.getElementTypeBitWidth() != bT.getElementTypeBitWidth()) |
| 230 | return false; |
| 231 | |
| 232 | return succeeded(verifyCompatibleShape(aT, bT)); |
| 233 | } |
| 234 | |
| 235 | namespace { |
| 236 | |
| 237 | /// Replaces chains of two tensor.bitcast operations by a single tensor.bitcast |
| 238 | /// operation. |
| 239 | struct ChainedTensorBitcast : public OpRewritePattern<BitcastOp> { |
| 240 | using OpRewritePattern<BitcastOp>::OpRewritePattern; |
| 241 | |
| 242 | LogicalResult matchAndRewrite(BitcastOp tensorBitcast, |
| 243 | PatternRewriter &rewriter) const final { |
| 244 | auto tensorBitcastOperand = |
| 245 | tensorBitcast.getOperand().getDefiningOp<BitcastOp>(); |
| 246 | if (!tensorBitcastOperand) |
| 247 | return failure(); |
| 248 | |
| 249 | auto resultType = cast<TensorType>(tensorBitcast.getType()); |
| 250 | rewriter.replaceOpWithNewOp<BitcastOp>(tensorBitcast, resultType, |
| 251 | tensorBitcastOperand.getOperand()); |
| 252 | return success(); |
| 253 | } |
| 254 | }; |
| 255 | |
| 256 | } // namespace |
| 257 | |
| 258 | void BitcastOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 259 | MLIRContext *context) { |
| 260 | results.add<ChainedTensorBitcast>(context); |
| 261 | } |
| 262 | |
| 263 | //===----------------------------------------------------------------------===// |
| 264 | // CastOp |
| 265 | //===----------------------------------------------------------------------===// |
| 266 | |
| 267 | void CastOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) { |
| 268 | setNameFn(getResult(), "cast" ); |
| 269 | } |
| 270 | |
| 271 | /// Returns true if `target` is a ranked tensor type that preserves static |
| 272 | /// information available in the `source` ranked tensor type. |
| 273 | bool mlir::tensor::preservesStaticInformation(Type source, Type target) { |
| 274 | auto sourceType = llvm::dyn_cast<RankedTensorType>(source); |
| 275 | auto targetType = llvm::dyn_cast<RankedTensorType>(target); |
| 276 | |
| 277 | // Requires RankedTensorType. |
| 278 | if (!sourceType || !targetType) |
| 279 | return false; |
| 280 | |
| 281 | // Requires same elemental type. |
| 282 | if (sourceType.getElementType() != targetType.getElementType()) |
| 283 | return false; |
| 284 | |
| 285 | // Requires same rank. |
| 286 | if (sourceType.getRank() != targetType.getRank()) |
| 287 | return false; |
| 288 | |
| 289 | // Requires same encoding. |
| 290 | if (sourceType.getEncoding() != targetType.getEncoding()) |
| 291 | return false; |
| 292 | |
| 293 | // If cast is towards more static sizes along any dimension, don't fold. |
| 294 | for (auto t : llvm::zip(sourceType.getShape(), targetType.getShape())) { |
| 295 | if (!ShapedType::isDynamic(std::get<0>(t)) && |
| 296 | ShapedType::isDynamic(std::get<1>(t))) |
| 297 | return false; |
| 298 | } |
| 299 | |
| 300 | return true; |
| 301 | } |
| 302 | |
| 303 | /// Determines whether tensor::CastOp casts to a more dynamic version of the |
| 304 | /// source tensor. This is useful to fold a tensor.cast into a consuming op and |
| 305 | /// implement canonicalization patterns for ops in different dialects that may |
| 306 | /// consume the results of tensor.cast operations. Such foldable tensor.cast |
| 307 | /// operations are typically inserted as `slice` ops and are canonicalized, |
| 308 | /// to preserve the type compatibility of their uses. |
| 309 | /// |
| 310 | /// Returns true when all conditions are met: |
| 311 | /// 1. source and result are ranked tensors with same element type and rank. |
| 312 | /// 2. the tensor type has more static information than the result |
| 313 | /// |
| 314 | /// Example: |
| 315 | /// ```mlir |
| 316 | /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> |
| 317 | /// %2 = consumer %1 ... : tensor<?x?xf32> ... |
| 318 | /// ``` |
| 319 | /// |
| 320 | /// folds into: |
| 321 | /// |
| 322 | /// ```mlir |
| 323 | /// %2 = consumer %0 ... : tensor<8x16xf32> ... |
| 324 | /// ``` |
| 325 | bool mlir::tensor::canFoldIntoConsumerOp(CastOp castOp) { |
| 326 | if (!castOp) |
| 327 | return false; |
| 328 | |
| 329 | // Can fold if the source of cast has at least as much static information as |
| 330 | // its results. |
| 331 | return preservesStaticInformation(castOp.getType(), |
| 332 | castOp.getSource().getType()); |
| 333 | } |
| 334 | |
| 335 | /// Determines whether the tensor::CastOp casts to a more static version of the |
| 336 | /// source tensor. This is useful to fold into a producing op and implement |
| 337 | /// canonicalization patterns with the `tensor.cast` op as the root, but |
| 338 | /// producer being from different dialects. Returns true when all conditions are |
| 339 | /// met: |
| 340 | /// 1. source and result and ranked tensors with same element type and rank. |
| 341 | /// 2. the result type has more static information than the source. |
| 342 | /// |
| 343 | /// Example: |
| 344 | /// ```mlir |
| 345 | /// %1 = producer ... : tensor<?x?xf32> |
| 346 | /// %2 = tensor.cast %1 : tensor<?x?xf32> to tensor<8x16xf32> |
| 347 | /// ``` |
| 348 | /// |
| 349 | /// can be canonicalized to : |
| 350 | /// |
| 351 | /// ```mlir |
| 352 | /// %2 = producer ... : tensor<8x16xf32> |
| 353 | /// ``` |
| 354 | /// Not all ops might be canonicalizable this way, but for those that can be, |
| 355 | /// this method provides a check that it is worth doing the canonicalization. |
| 356 | bool mlir::tensor::canFoldIntoProducerOp(CastOp castOp) { |
| 357 | if (!castOp) |
| 358 | return false; |
| 359 | return preservesStaticInformation(castOp.getSource().getType(), |
| 360 | castOp.getType()); |
| 361 | } |
| 362 | |
| 363 | bool mlir::tensor::hasFoldableTensorCastOperand(Operation *op) { |
| 364 | return llvm::any_of(Range: op->getOpOperands(), P: [&](OpOperand &opOperand) { |
| 365 | if (llvm::isa<BlockArgument>(Val: opOperand.get())) |
| 366 | return false; |
| 367 | auto castOp = opOperand.get().getDefiningOp<tensor::CastOp>(); |
| 368 | return castOp && canFoldIntoConsumerOp(castOp); |
| 369 | }); |
| 370 | } |
| 371 | |
| 372 | SmallVector<Value> mlir::tensor::getUpdatedOperandsAfterCastOpFolding( |
| 373 | DestinationStyleOpInterface op, SmallVector<Type> &newResTy) { |
| 374 | SmallVector<Value> newOperands; |
| 375 | newOperands.reserve(N: op->getNumOperands()); |
| 376 | |
| 377 | assert(hasFoldableTensorCastOperand(op) && "No foldable CastOp operands!" ); |
| 378 | |
| 379 | // Assumes that the result has dpsInits followed by nonDpsInits. |
| 380 | int64_t dpsInitIdx = 0; |
| 381 | for (OpOperand &opOperand : op->getOpOperands()) { |
| 382 | auto tensorCastOp = opOperand.get().getDefiningOp<tensor::CastOp>(); |
| 383 | bool fold = canFoldIntoConsumerOp(tensorCastOp); |
| 384 | newOperands.push_back(fold ? tensorCastOp.getOperand() : opOperand.get()); |
| 385 | if (op.isDpsInit(&opOperand) && |
| 386 | !llvm::isa<MemRefType>(newOperands.back().getType())) |
| 387 | newResTy[dpsInitIdx++] = newOperands.back().getType(); |
| 388 | } |
| 389 | return newOperands; |
| 390 | } |
| 391 | |
| 392 | /// Performs folding of any operand of `op` if it comes from a tensor::CastOp |
| 393 | /// that can be folded. |
| 394 | LogicalResult mlir::tensor::foldTensorCast(Operation *op) { |
| 395 | bool folded = false; |
| 396 | for (OpOperand &operand : op->getOpOperands()) { |
| 397 | auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); |
| 398 | if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { |
| 399 | operand.set(castOp.getOperand()); |
| 400 | folded = true; |
| 401 | } |
| 402 | } |
| 403 | return success(IsSuccess: folded); |
| 404 | } |
| 405 | |
| 406 | bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 407 | if (inputs.size() != 1 || outputs.size() != 1) |
| 408 | return false; |
| 409 | Type a = inputs.front(), b = outputs.front(); |
| 410 | auto aT = llvm::dyn_cast<TensorType>(a); |
| 411 | auto bT = llvm::dyn_cast<TensorType>(b); |
| 412 | if (!aT || !bT) |
| 413 | return false; |
| 414 | |
| 415 | if (aT.getElementType() != bT.getElementType()) |
| 416 | return false; |
| 417 | |
| 418 | return succeeded(verifyCompatibleShape(aT, bT)); |
| 419 | } |
| 420 | |
| 421 | /// Compute a TensorType that has the joined shape knowledge of the two |
| 422 | /// given TensorTypes. The element types need to match. |
| 423 | static TensorType joinShapes(TensorType one, TensorType two) { |
| 424 | assert(one.getElementType() == two.getElementType()); |
| 425 | |
| 426 | if (!one.hasRank()) |
| 427 | return two; |
| 428 | if (!two.hasRank()) |
| 429 | return one; |
| 430 | |
| 431 | int64_t rank = one.getRank(); |
| 432 | if (rank != two.getRank()) |
| 433 | return {}; |
| 434 | |
| 435 | SmallVector<int64_t, 4> join; |
| 436 | join.reserve(N: rank); |
| 437 | for (int64_t i = 0; i < rank; ++i) { |
| 438 | if (one.isDynamicDim(i)) { |
| 439 | join.push_back(Elt: two.getDimSize(i)); |
| 440 | continue; |
| 441 | } |
| 442 | if (two.isDynamicDim(i)) { |
| 443 | join.push_back(Elt: one.getDimSize(i)); |
| 444 | continue; |
| 445 | } |
| 446 | if (one.getDimSize(i) != two.getDimSize(i)) |
| 447 | return {}; |
| 448 | join.push_back(Elt: one.getDimSize(i)); |
| 449 | } |
| 450 | return RankedTensorType::get(join, one.getElementType()); |
| 451 | } |
| 452 | |
| 453 | namespace { |
| 454 | |
| 455 | /// Replaces chains of two tensor.cast operations by a single tensor.cast |
| 456 | /// operation if doing so does not remove runtime constraints. |
| 457 | struct ChainedTensorCast : public OpRewritePattern<CastOp> { |
| 458 | using OpRewritePattern<CastOp>::OpRewritePattern; |
| 459 | |
| 460 | LogicalResult matchAndRewrite(CastOp tensorCast, |
| 461 | PatternRewriter &rewriter) const final { |
| 462 | auto tensorCastOperand = tensorCast.getOperand().getDefiningOp<CastOp>(); |
| 463 | |
| 464 | if (!tensorCastOperand) |
| 465 | return failure(); |
| 466 | |
| 467 | auto sourceType = |
| 468 | llvm::cast<TensorType>(tensorCastOperand.getOperand().getType()); |
| 469 | auto intermediateType = llvm::cast<TensorType>(tensorCastOperand.getType()); |
| 470 | auto resultType = llvm::cast<TensorType>(tensorCast.getType()); |
| 471 | |
| 472 | // We can remove the intermediate cast if joining all three produces the |
| 473 | // same result as just joining the source and result shapes. |
| 474 | auto firstJoin = |
| 475 | joinShapes(joinShapes(sourceType, intermediateType), resultType); |
| 476 | |
| 477 | // The join might not exist if the cast sequence would fail at runtime. |
| 478 | if (!firstJoin) |
| 479 | return failure(); |
| 480 | |
| 481 | // The newJoin always exists if the above join exists, it might just contain |
| 482 | // less information. If so, we cannot drop the intermediate cast, as doing |
| 483 | // so would remove runtime checks. |
| 484 | auto newJoin = joinShapes(sourceType, resultType); |
| 485 | if (firstJoin != newJoin) |
| 486 | return failure(); |
| 487 | |
| 488 | rewriter.replaceOpWithNewOp<CastOp>(tensorCast, resultType, |
| 489 | tensorCastOperand.getOperand()); |
| 490 | return success(); |
| 491 | } |
| 492 | }; |
| 493 | |
| 494 | /// Fold tensor.cast into tesor.extract_slice producer. |
| 495 | /// Example: |
| 496 | /// ``` |
| 497 | /// %0 = tensor.extract_slice %arg0[%o, 0] [%s, 512] [1, 1] : |
| 498 | /// tensor<128x512xf32> to tensor<?x512xf32> |
| 499 | /// %1 = tensor.cast %0 : tensor<?x512xf32> to tensor<16x512xf32> |
| 500 | /// ``` |
| 501 | /// -> |
| 502 | /// ``` |
| 503 | /// %1 = tensor.extract_slice %arg0[%o, 0] [16, 512] [1, 1] : |
| 504 | /// tensor<128x512xf32> to tensor<16x512xf32> |
| 505 | /// ``` |
| 506 | struct : public OpRewritePattern<CastOp> { |
| 507 | using OpRewritePattern<CastOp>::OpRewritePattern; |
| 508 | |
| 509 | LogicalResult matchAndRewrite(CastOp tensorCast, |
| 510 | PatternRewriter &rewriter) const final { |
| 511 | auto extractOperand = |
| 512 | tensorCast.getOperand().getDefiningOp<ExtractSliceOp>(); |
| 513 | |
| 514 | // Cannot fold cast to unranked tensor. |
| 515 | auto rankedResultType = |
| 516 | llvm::dyn_cast<RankedTensorType>(tensorCast.getType()); |
| 517 | if (!rankedResultType) |
| 518 | return failure(); |
| 519 | |
| 520 | if (!extractOperand || !canFoldIntoProducerOp(tensorCast) || |
| 521 | rankedResultType.getShape() == |
| 522 | llvm::cast<RankedTensorType>(tensorCast.getSource().getType()) |
| 523 | .getShape()) |
| 524 | return failure(); |
| 525 | |
| 526 | SmallVector<OpFoldResult, 4> sizes = extractOperand.getMixedSizes(); |
| 527 | auto dimMask = computeRankReductionMask( |
| 528 | extractOperand.getStaticSizes(), extractOperand.getType().getShape()); |
| 529 | size_t dimIndex = 0; |
| 530 | for (size_t i = 0, e = sizes.size(); i < e; i++) { |
| 531 | if (dimMask && dimMask->count(i)) |
| 532 | continue; |
| 533 | int64_t dim = rankedResultType.getShape()[dimIndex++]; |
| 534 | if (ShapedType::isDynamic(dim)) |
| 535 | continue; |
| 536 | sizes[i] = rewriter.getIndexAttr(dim); |
| 537 | } |
| 538 | |
| 539 | rewriter.replaceOpWithNewOp<ExtractSliceOp>( |
| 540 | tensorCast, rankedResultType, extractOperand.getSource(), |
| 541 | extractOperand.getMixedOffsets(), sizes, |
| 542 | extractOperand.getMixedStrides()); |
| 543 | return success(); |
| 544 | } |
| 545 | }; |
| 546 | |
| 547 | } // namespace |
| 548 | |
| 549 | void CastOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 550 | MLIRContext *context) { |
| 551 | results.add<ChainedTensorCast, TensorCastExtractSlice>(context); |
| 552 | } |
| 553 | |
| 554 | //===----------------------------------------------------------------------===// |
| 555 | // ConcatOp |
| 556 | //===----------------------------------------------------------------------===// |
| 557 | |
| 558 | RankedTensorType ConcatOp::inferResultType(int64_t dim, TypeRange inputTypes) { |
| 559 | assert(!inputTypes.empty() && "cannot concatenate 0 tensors" ); |
| 560 | auto tensorTypes = |
| 561 | llvm::to_vector<4>(llvm::map_range(inputTypes, [](Type type) { |
| 562 | return llvm::cast<RankedTensorType>(type); |
| 563 | })); |
| 564 | int64_t concatRank = tensorTypes[0].getRank(); |
| 565 | |
| 566 | // The concatenation dim must be in the range [0, rank). |
| 567 | assert(dim >= 0 && dim < concatRank && "Invalid concatenation dim" ); |
| 568 | |
| 569 | SmallVector<int64_t> sizes(concatRank); |
| 570 | for (int64_t i = 0, e = concatRank; i < e; ++i) { |
| 571 | if (i == dim) |
| 572 | continue; |
| 573 | SaturatedInteger size; |
| 574 | for (auto tensorType : tensorTypes) |
| 575 | size = *size.desaturate(SaturatedInteger::wrap(tensorType.getDimSize(i))); |
| 576 | sizes[i] = size.asInteger(); |
| 577 | } |
| 578 | auto concatSize = SaturatedInteger::wrap(0); |
| 579 | for (auto tensorType : tensorTypes) |
| 580 | concatSize = |
| 581 | concatSize + SaturatedInteger::wrap(tensorType.getDimSize(dim)); |
| 582 | sizes[dim] = concatSize.asInteger(); |
| 583 | return RankedTensorType::get(sizes, tensorTypes[0].getElementType()); |
| 584 | } |
| 585 | |
| 586 | void ConcatOp::build(OpBuilder &builder, OperationState &result, int64_t dim, |
| 587 | ValueRange inputs) { |
| 588 | FailureOr<RankedTensorType> resultType = |
| 589 | inferResultType(dim, inputs.getTypes()); |
| 590 | assert(succeeded(resultType) && "failed to infer concatenation result type" ); |
| 591 | build(builder, result, *resultType, dim, inputs); |
| 592 | } |
| 593 | |
| 594 | LogicalResult ConcatOp::verify() { |
| 595 | if (getInputs().size() < 1) |
| 596 | return emitOpError("requires at least one input" ); |
| 597 | |
| 598 | SmallVector<RankedTensorType> inputTypes; |
| 599 | for (auto input : getInputs()) |
| 600 | inputTypes.push_back(cast<RankedTensorType>(input.getType())); |
| 601 | |
| 602 | RankedTensorType resultType = getResultType(); |
| 603 | int64_t resultRank = getRank(); |
| 604 | if (llvm::any_of(inputTypes, [resultRank](RankedTensorType type) { |
| 605 | return type.getRank() != resultRank; |
| 606 | })) |
| 607 | return emitOpError("rank of concatenated inputs must match result rank" ); |
| 608 | |
| 609 | Type resultElementType = resultType.getElementType(); |
| 610 | if (llvm::any_of(inputTypes, [&](RankedTensorType type) { |
| 611 | return type.getElementType() != resultElementType; |
| 612 | })) |
| 613 | return emitOpError("inputs and result element type must match" ); |
| 614 | |
| 615 | int64_t dim = getDim(); |
| 616 | if (dim >= resultRank) |
| 617 | return emitOpError("concatenation dim must be less than the tensor rank" ); |
| 618 | |
| 619 | SmallVector<int64_t> sizes(resultRank); |
| 620 | for (int64_t i = 0, e = resultRank; i < e; ++i) { |
| 621 | if (i == dim) |
| 622 | continue; |
| 623 | SaturatedInteger size; |
| 624 | for (auto tensorType : inputTypes) { |
| 625 | FailureOr<SaturatedInteger> maybeSize = |
| 626 | size.desaturate(SaturatedInteger::wrap(tensorType.getDimSize(i))); |
| 627 | if (failed(maybeSize)) |
| 628 | return emitOpError("static concatenation size mismatch along " ) |
| 629 | << "non-concatenated dimension " << i; |
| 630 | size = *maybeSize; |
| 631 | } |
| 632 | sizes[i] = size.asInteger(); |
| 633 | } |
| 634 | auto concatSize = SaturatedInteger::wrap(0); |
| 635 | for (auto tensorType : inputTypes) |
| 636 | concatSize = |
| 637 | concatSize + SaturatedInteger::wrap(tensorType.getDimSize(dim)); |
| 638 | sizes[dim] = concatSize.asInteger(); |
| 639 | auto inferredResultType = |
| 640 | RankedTensorType::get(sizes, inputTypes[0].getElementType()); |
| 641 | |
| 642 | for (auto [inferredSize, actualSize] : |
| 643 | llvm::zip_equal(inferredResultType.getShape(), resultType.getShape())) { |
| 644 | bool hasDynamic = ShapedType::isDynamic(inferredSize) || |
| 645 | ShapedType::isDynamic(actualSize); |
| 646 | if (!hasDynamic && inferredSize != actualSize) |
| 647 | return emitOpError("result type " ) |
| 648 | << resultType << "does not match inferred shape " |
| 649 | << inferredResultType << " static sizes" ; |
| 650 | } |
| 651 | |
| 652 | return success(); |
| 653 | } |
| 654 | |
| 655 | FailureOr<SmallVector<Value>> ConcatOp::decomposeOperation(OpBuilder &builder) { |
| 656 | size_t numInputs = getInputs().size(); |
| 657 | uint64_t concatDim = getDim(); |
| 658 | |
| 659 | SmallVector<SmallVector<OpFoldResult>> inputShapes; |
| 660 | inputShapes.reserve(numInputs); |
| 661 | SmallVector<OpFoldResult> concatOffsets; |
| 662 | concatOffsets.reserve(numInputs); |
| 663 | SmallVector<OpFoldResult> outputShape; |
| 664 | |
| 665 | AffineExpr addExpr = |
| 666 | builder.getAffineSymbolExpr(0) + builder.getAffineSymbolExpr(1); |
| 667 | OpFoldResult zero = builder.getIndexAttr(0); |
| 668 | Location loc = getLoc(); |
| 669 | for (auto [index, input] : llvm::enumerate(getInputs())) { |
| 670 | SmallVector<OpFoldResult> inputShape = |
| 671 | tensor::getMixedSizes(builder, input.getLoc(), input); |
| 672 | if (index == 0) { |
| 673 | outputShape = inputShape; |
| 674 | concatOffsets.push_back(zero); |
| 675 | } else { |
| 676 | concatOffsets.push_back(outputShape[concatDim]); |
| 677 | outputShape[concatDim] = affine::makeComposedFoldedAffineApply( |
| 678 | builder, loc, addExpr, |
| 679 | {outputShape[concatDim], inputShape[concatDim]}); |
| 680 | } |
| 681 | inputShapes.emplace_back(std::move(inputShape)); |
| 682 | } |
| 683 | |
| 684 | Value replacement = builder.create<tensor::EmptyOp>( |
| 685 | loc, outputShape, getType().getElementType()); |
| 686 | |
| 687 | int64_t rank = getType().getRank(); |
| 688 | OpFoldResult one = builder.getIndexAttr(1); |
| 689 | SmallVector<OpFoldResult> strides(rank, one); |
| 690 | SmallVector<OpFoldResult> offsets(rank, zero); |
| 691 | for (auto [index, input] : llvm::enumerate(getInputs())) { |
| 692 | offsets[concatDim] = concatOffsets[index]; |
| 693 | auto insertSlice = builder.create<tensor::InsertSliceOp>( |
| 694 | loc, input, replacement, offsets, inputShapes[index], strides); |
| 695 | replacement = insertSlice.getResult(); |
| 696 | } |
| 697 | if (replacement.getType() != getType()) { |
| 698 | replacement = builder.create<tensor::CastOp>(loc, getType(), replacement); |
| 699 | } |
| 700 | return SmallVector<Value>{replacement}; |
| 701 | } |
| 702 | |
| 703 | LogicalResult |
| 704 | ConcatOp::reifyResultShapes(OpBuilder &builder, |
| 705 | ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
| 706 | ValueRange inputs = getInputs(); |
| 707 | int64_t dim = getDim(); |
| 708 | RankedTensorType inferredResultType = inferResultType(dim, inputs.getTypes()); |
| 709 | |
| 710 | Value init = inputs[0]; |
| 711 | int64_t rank = getType().getRank(); |
| 712 | |
| 713 | reifiedReturnShapes.resize(1, SmallVector<OpFoldResult>(rank)); |
| 714 | |
| 715 | // Pre-populate the result sizes with as much static information as possible |
| 716 | // from the given result type, as well as the inferred result type, otherwise |
| 717 | // use the dim sizes from the first input. |
| 718 | for (int64_t i = 0; i < rank; ++i) { |
| 719 | if (i == dim) |
| 720 | continue; |
| 721 | if (!getType().isDynamicDim(i)) { |
| 722 | reifiedReturnShapes[0][i] = builder.getIndexAttr(getType().getDimSize(i)); |
| 723 | } else if (!inferredResultType.isDynamicDim(i)) { |
| 724 | reifiedReturnShapes[0][i] = getValueOrCreateConstantIndexOp( |
| 725 | builder, getLoc(), |
| 726 | builder.getIndexAttr(inferredResultType.getDimSize(i))); |
| 727 | } else { |
| 728 | reifiedReturnShapes[0][i] = |
| 729 | builder.create<tensor::DimOp>(init.getLoc(), init, i).getResult(); |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | if (getType().isDynamicDim(dim)) { |
| 734 | // Take the sum of the input sizes along the concatenated dim. |
| 735 | AffineExpr sum = builder.getAffineDimExpr(0); |
| 736 | SmallVector<OpFoldResult> sizes = { |
| 737 | builder.createOrFold<tensor::DimOp>(init.getLoc(), init, dim)}; |
| 738 | for (auto [idx, input] : llvm::enumerate(inputs.drop_front())) { |
| 739 | sum = sum + builder.getAffineDimExpr(idx + 1); |
| 740 | sizes.push_back( |
| 741 | builder.createOrFold<tensor::DimOp>(input.getLoc(), input, dim)); |
| 742 | } |
| 743 | reifiedReturnShapes[0][dim] = getValueOrCreateConstantIndexOp( |
| 744 | builder, getLoc(), |
| 745 | affine::makeComposedFoldedAffineApply(builder, getLoc(), sum, sizes)); |
| 746 | } else { |
| 747 | // If the result shape is static along the concatenated dim, use the static |
| 748 | // shape. |
| 749 | reifiedReturnShapes[0][dim] = |
| 750 | builder.getIndexAttr(getType().getDimSize(dim)); |
| 751 | } |
| 752 | return success(); |
| 753 | } |
| 754 | |
| 755 | void ConcatOp::getAsmResultNames( |
| 756 | function_ref<void(Value, StringRef)> setNameFn) { |
| 757 | setNameFn(getResult(), "concat" ); |
| 758 | } |
| 759 | |
| 760 | OpFoldResult ConcatOp::fold(FoldAdaptor) { |
| 761 | ValueRange inputs = getInputs(); |
| 762 | if (inputs.size() == 1 && inputs[0].getType() == getResultType()) |
| 763 | return inputs[0]; |
| 764 | return {}; |
| 765 | } |
| 766 | |
| 767 | namespace { |
| 768 | /// Fold a concat op with a single input to a cast. |
| 769 | struct SingleInputConcatOp : public OpRewritePattern<ConcatOp> { |
| 770 | using OpRewritePattern<ConcatOp>::OpRewritePattern; |
| 771 | |
| 772 | LogicalResult matchAndRewrite(ConcatOp concatOp, |
| 773 | PatternRewriter &rewriter) const override { |
| 774 | if (concatOp.getInputs().size() != 1) |
| 775 | return failure(); |
| 776 | rewriter.replaceOpWithNewOp<CastOp>(concatOp, concatOp.getResultType(), |
| 777 | concatOp.getInputs()[0]); |
| 778 | return success(); |
| 779 | } |
| 780 | }; |
| 781 | |
| 782 | /// Propagate static shapes into the operands of a `tensor.concat`. |
| 783 | /// |
| 784 | /// `tensor.concat` requires every operand to match on all dimensions except the |
| 785 | /// concatenation dimension. If one operand is already static in those |
| 786 | /// dimensions, the other operands may safely be refined to that same static |
| 787 | /// shape. |
| 788 | /// |
| 789 | /// Example: |
| 790 | /// |
| 791 | /// ```mlir |
| 792 | /// %2 = tensor.concat dim(0) %0, %1: (tensor<?x12xi32>, tensor<?x?xi32>) -> |
| 793 | /// tensor<?x12xi32> |
| 794 | /// ``` |
| 795 | /// -> |
| 796 | /// ```mlir |
| 797 | /// %cast = tensor.cast %1 : tensor<?x?xi32> to tensor<?x12xi32> |
| 798 | /// %2 = tensor.concat dim(0) %0, %cast : |
| 799 | /// (tensor<?x12xi32>, tensor<?x12xi32>) -> tensor<?x12xi32> |
| 800 | /// ``` |
| 801 | struct InferConcatOperandTypes : public OpRewritePattern<ConcatOp> { |
| 802 | using OpRewritePattern<ConcatOp>::OpRewritePattern; |
| 803 | |
| 804 | LogicalResult matchAndRewrite(ConcatOp concatOp, |
| 805 | PatternRewriter &rewriter) const override { |
| 806 | int64_t dim = concatOp.getDim(); |
| 807 | RankedTensorType inferredResultType = |
| 808 | ConcatOp::inferResultType(dim, concatOp->getOperandTypes()); |
| 809 | |
| 810 | // Find operands for which a more static shape can be inferred. |
| 811 | LogicalResult matched = failure(); |
| 812 | // Inferred operand shapes are identical in every dimension except the |
| 813 | // concatenation dimension. |
| 814 | SmallVector<int64_t> inferredOperandShape(inferredResultType.getShape()); |
| 815 | for (auto [operandIdx, operandType] : |
| 816 | llvm::enumerate(concatOp->getOperandTypes())) { |
| 817 | // Compute inferred type for operand. |
| 818 | inferredOperandShape[dim] = |
| 819 | cast<RankedTensorType>(operandType).getDimSize(dim); |
| 820 | auto inferredOperandType = RankedTensorType::get( |
| 821 | inferredOperandShape, inferredResultType.getElementType()); |
| 822 | |
| 823 | // Check if inferred type is more static. |
| 824 | if (!preservesStaticInformation(inferredOperandType, operandType)) { |
| 825 | matched = success(); |
| 826 | |
| 827 | // Use refined operand type and create cast from original operand. |
| 828 | auto castOp = |
| 829 | rewriter.create<CastOp>(concatOp->getLoc(), inferredOperandType, |
| 830 | concatOp.getOperand(operandIdx)); |
| 831 | rewriter.modifyOpInPlace(concatOp, [=, operandIdx = operandIdx] { |
| 832 | concatOp->setOperand(operandIdx, castOp->getResult(0)); |
| 833 | }); |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | return matched; |
| 838 | } |
| 839 | }; |
| 840 | |
| 841 | // Ensure `tensor.concat`'s result type is at least as static as can be inferred |
| 842 | // from its operand types. |
| 843 | /// |
| 844 | /// Example: |
| 845 | /// ```mlir |
| 846 | /// %2 = tensor.concat dim(0) %0, %1: (tensor<?x12xi32>, tensor<?x12xi32>) -> |
| 847 | /// tensor<?x?xi32> |
| 848 | /// ``` |
| 849 | /// -> |
| 850 | /// ```mlir |
| 851 | /// %2 = tensor.concat dim(0) %0, %cast : (tensor<?x12xi32>, tensor<?x12xi32>) |
| 852 | /// -> tensor<?x12xi32> %cast = tensor.cast %2 : tensor<?x12xi32> to |
| 853 | /// tensor<?x?xi32> |
| 854 | /// ``` |
| 855 | struct InferConcatResultType : public OpRewritePattern<ConcatOp> { |
| 856 | using OpRewritePattern<ConcatOp>::OpRewritePattern; |
| 857 | |
| 858 | LogicalResult matchAndRewrite(ConcatOp concatOp, |
| 859 | PatternRewriter &rewriter) const override { |
| 860 | int64_t dim = concatOp.getDim(); |
| 861 | RankedTensorType inferredResultType = |
| 862 | ConcatOp::inferResultType(dim, concatOp->getOperandTypes()); |
| 863 | |
| 864 | // The result type should be at least as static as inferred result type. |
| 865 | if (preservesStaticInformation(inferredResultType, |
| 866 | concatOp.getResultType())) { |
| 867 | return failure(); |
| 868 | } |
| 869 | |
| 870 | auto newConcatOp = rewriter.create<ConcatOp>( |
| 871 | concatOp->getLoc(), inferredResultType, dim, concatOp->getOperands()); |
| 872 | rewriter.replaceOpWithNewOp<CastOp>(concatOp, concatOp.getResultType(), |
| 873 | newConcatOp); |
| 874 | |
| 875 | return success(); |
| 876 | } |
| 877 | }; |
| 878 | } // namespace |
| 879 | |
| 880 | void ConcatOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 881 | MLIRContext *context) { |
| 882 | results |
| 883 | .add<SingleInputConcatOp, InferConcatOperandTypes, InferConcatResultType>( |
| 884 | context); |
| 885 | } |
| 886 | |
| 887 | //===----------------------------------------------------------------------===// |
| 888 | // DimOp |
| 889 | //===----------------------------------------------------------------------===// |
| 890 | |
| 891 | void DimOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) { |
| 892 | setNameFn(getResult(), "dim" ); |
| 893 | } |
| 894 | |
| 895 | void DimOp::build(OpBuilder &builder, OperationState &result, Value source, |
| 896 | int64_t index) { |
| 897 | auto loc = result.location; |
| 898 | Value indexValue = builder.create<arith::ConstantIndexOp>(loc, index); |
| 899 | build(builder, result, source, indexValue); |
| 900 | } |
| 901 | |
| 902 | std::optional<int64_t> DimOp::getConstantIndex() { |
| 903 | return getConstantIntValue(getIndex()); |
| 904 | } |
| 905 | |
| 906 | Speculation::Speculatability DimOp::getSpeculatability() { |
| 907 | auto constantIndex = getConstantIndex(); |
| 908 | if (!constantIndex) |
| 909 | return Speculation::NotSpeculatable; |
| 910 | |
| 911 | auto rankedSourceType = dyn_cast<RankedTensorType>(getSource().getType()); |
| 912 | if (!rankedSourceType) |
| 913 | return Speculation::NotSpeculatable; |
| 914 | |
| 915 | if (rankedSourceType.getRank() <= constantIndex) |
| 916 | return Speculation::NotSpeculatable; |
| 917 | |
| 918 | return Speculation::Speculatable; |
| 919 | } |
| 920 | |
| 921 | void DimOp::inferResultRangesFromOptional(ArrayRef<IntegerValueRange> argRanges, |
| 922 | SetIntLatticeFn setResultRange) { |
| 923 | setResultRange(getResult(), |
| 924 | intrange::inferShapedDimOpInterface(*this, argRanges[1])); |
| 925 | } |
| 926 | |
| 927 | OpFoldResult DimOp::fold(FoldAdaptor adaptor) { |
| 928 | // All forms of folding require a known index. |
| 929 | auto index = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getIndex()); |
| 930 | if (!index) |
| 931 | return {}; |
| 932 | |
| 933 | // Folding for unranked types (UnrankedTensorType) is not supported. |
| 934 | auto tensorType = llvm::dyn_cast<RankedTensorType>(getSource().getType()); |
| 935 | if (!tensorType) |
| 936 | return {}; |
| 937 | |
| 938 | // Out of bound indices produce undefined behavior but are still valid IR. |
| 939 | // Don't choke on them. |
| 940 | int64_t indexVal = index.getInt(); |
| 941 | if (indexVal < 0 || indexVal >= tensorType.getRank()) |
| 942 | return {}; |
| 943 | |
| 944 | // Fold if the shape extent along the given index is known. |
| 945 | if (!tensorType.isDynamicDim(index.getInt())) { |
| 946 | Builder builder(getContext()); |
| 947 | return builder.getIndexAttr(tensorType.getShape()[index.getInt()]); |
| 948 | } |
| 949 | |
| 950 | Operation *definingOp = getSource().getDefiningOp(); |
| 951 | |
| 952 | // Fold dim to the operand of tensor.generate. |
| 953 | if (auto fromElements = dyn_cast_or_null<tensor::GenerateOp>(definingOp)) { |
| 954 | auto resultType = |
| 955 | llvm::cast<RankedTensorType>(fromElements.getResult().getType()); |
| 956 | // The case where the type encodes the size of the dimension is handled |
| 957 | // above. |
| 958 | assert(ShapedType::isDynamic(resultType.getShape()[index.getInt()])); |
| 959 | |
| 960 | // Find the operand of the fromElements that corresponds to this index. |
| 961 | auto dynExtents = fromElements.getDynamicExtents().begin(); |
| 962 | for (auto dim : resultType.getShape().take_front(index.getInt())) |
| 963 | if (ShapedType::isDynamic(dim)) |
| 964 | dynExtents++; |
| 965 | |
| 966 | return Value{*dynExtents}; |
| 967 | } |
| 968 | |
| 969 | // The size at the given index is now known to be a dynamic size. |
| 970 | unsigned unsignedIndex = index.getValue().getZExtValue(); |
| 971 | |
| 972 | if (auto sliceOp = dyn_cast_or_null<tensor::ExtractSliceOp>(definingOp)) { |
| 973 | // Fold only for non-rank reduced ops. For the rank-reduced version, rely on |
| 974 | // `resolve-shaped-type-result-dims` pass. |
| 975 | if (sliceOp.getType().getRank() == sliceOp.getSourceType().getRank() && |
| 976 | sliceOp.isDynamicSize(unsignedIndex)) { |
| 977 | return {sliceOp.getDynamicSize(unsignedIndex)}; |
| 978 | } |
| 979 | } |
| 980 | |
| 981 | // dim(cast) -> dim |
| 982 | if (succeeded(foldTensorCast(*this))) |
| 983 | return getResult(); |
| 984 | |
| 985 | return {}; |
| 986 | } |
| 987 | |
| 988 | namespace { |
| 989 | /// Fold dim of a cast into the dim of the source of the tensor cast. |
| 990 | struct DimOfCastOp : public OpRewritePattern<DimOp> { |
| 991 | using OpRewritePattern<DimOp>::OpRewritePattern; |
| 992 | |
| 993 | LogicalResult matchAndRewrite(DimOp dimOp, |
| 994 | PatternRewriter &rewriter) const override { |
| 995 | auto castOp = dimOp.getSource().getDefiningOp<CastOp>(); |
| 996 | if (!castOp) |
| 997 | return failure(); |
| 998 | Value newSource = castOp.getOperand(); |
| 999 | rewriter.replaceOpWithNewOp<DimOp>(dimOp, newSource, dimOp.getIndex()); |
| 1000 | return success(); |
| 1001 | } |
| 1002 | }; |
| 1003 | |
| 1004 | /// Fold dim of a destination passing style op into the dim of the corresponding |
| 1005 | /// init. |
| 1006 | struct DimOfDestStyleOp : public OpRewritePattern<DimOp> { |
| 1007 | using OpRewritePattern<DimOp>::OpRewritePattern; |
| 1008 | |
| 1009 | LogicalResult matchAndRewrite(DimOp dimOp, |
| 1010 | PatternRewriter &rewriter) const override { |
| 1011 | auto source = dimOp.getSource(); |
| 1012 | auto destOp = source.getDefiningOp<DestinationStyleOpInterface>(); |
| 1013 | if (!destOp) |
| 1014 | return failure(); |
| 1015 | |
| 1016 | auto resultIndex = cast<OpResult>(source).getResultNumber(); |
| 1017 | auto *initOperand = destOp.getDpsInitOperand(resultIndex); |
| 1018 | |
| 1019 | rewriter.modifyOpInPlace( |
| 1020 | dimOp, [&]() { dimOp.getSourceMutable().assign(initOperand->get()); }); |
| 1021 | return success(); |
| 1022 | } |
| 1023 | }; |
| 1024 | |
| 1025 | /// Fold dim of a tensor reshape operation to a extract into the reshape's shape |
| 1026 | /// operand. |
| 1027 | struct DimOfReshapeOp : public OpRewritePattern<DimOp> { |
| 1028 | using OpRewritePattern<DimOp>::OpRewritePattern; |
| 1029 | |
| 1030 | LogicalResult matchAndRewrite(DimOp dim, |
| 1031 | PatternRewriter &rewriter) const override { |
| 1032 | auto reshape = dim.getSource().getDefiningOp<ReshapeOp>(); |
| 1033 | |
| 1034 | if (!reshape) |
| 1035 | return failure(); |
| 1036 | |
| 1037 | // Since tensors are immutable we don't need to worry about where to place |
| 1038 | // the extract call |
| 1039 | rewriter.setInsertionPointAfter(dim); |
| 1040 | Location loc = dim.getLoc(); |
| 1041 | Value = |
| 1042 | rewriter.create<ExtractOp>(loc, reshape.getShape(), dim.getIndex()); |
| 1043 | if (extract.getType() != dim.getType()) |
| 1044 | extract = |
| 1045 | rewriter.create<arith::IndexCastOp>(loc, dim.getType(), extract); |
| 1046 | rewriter.replaceOp(dim, extract); |
| 1047 | return success(); |
| 1048 | } |
| 1049 | }; |
| 1050 | } // namespace |
| 1051 | |
| 1052 | void DimOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 1053 | MLIRContext *context) { |
| 1054 | results.add<DimOfCastOp, DimOfDestStyleOp, DimOfReshapeOp>(context); |
| 1055 | } |
| 1056 | |
| 1057 | //===----------------------------------------------------------------------===// |
| 1058 | // EmptyOp |
| 1059 | //===----------------------------------------------------------------------===// |
| 1060 | |
| 1061 | void EmptyOp::build(OpBuilder &builder, OperationState &result, |
| 1062 | ArrayRef<int64_t> staticShape, Type elementType, |
| 1063 | Attribute encoding) { |
| 1064 | assert(none_of(staticShape, ShapedType::isDynamic) && |
| 1065 | "expected only static sizes" ); |
| 1066 | build(builder, result, staticShape, elementType, ValueRange{}, encoding); |
| 1067 | } |
| 1068 | |
| 1069 | void EmptyOp::build(OpBuilder &builder, OperationState &result, |
| 1070 | ArrayRef<int64_t> staticShape, Type elementType, |
| 1071 | ValueRange dynamicSizes, Attribute encoding) { |
| 1072 | auto tensorType = RankedTensorType::get(staticShape, elementType, encoding); |
| 1073 | build(builder, result, tensorType, dynamicSizes); |
| 1074 | } |
| 1075 | |
| 1076 | void EmptyOp::build(OpBuilder &builder, OperationState &result, |
| 1077 | ArrayRef<OpFoldResult> sizes, Type elementType, |
| 1078 | Attribute encoding) { |
| 1079 | SmallVector<int64_t> staticShape; |
| 1080 | SmallVector<Value> dynamicSizes; |
| 1081 | dispatchIndexOpFoldResults(sizes, dynamicSizes, staticShape); |
| 1082 | build(builder, result, staticShape, elementType, dynamicSizes, encoding); |
| 1083 | } |
| 1084 | |
| 1085 | LogicalResult EmptyOp::verify() { |
| 1086 | if (getType().getNumDynamicDims() != getDynamicSizes().size()) |
| 1087 | return emitOpError("incorrect number of dynamic sizes, has " ) |
| 1088 | << getDynamicSizes().size() << ", expected " |
| 1089 | << getType().getNumDynamicDims(); |
| 1090 | return success(); |
| 1091 | } |
| 1092 | |
| 1093 | LogicalResult |
| 1094 | EmptyOp::reifyResultShapes(OpBuilder &builder, |
| 1095 | ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
| 1096 | reifiedReturnShapes.resize(1, SmallVector<OpFoldResult>(getType().getRank())); |
| 1097 | unsigned ctr = 0; |
| 1098 | for (int64_t i = 0; i < getType().getRank(); ++i) { |
| 1099 | if (getType().isDynamicDim(i)) { |
| 1100 | reifiedReturnShapes[0][i] = getDynamicSizes()[ctr++]; |
| 1101 | } else { |
| 1102 | reifiedReturnShapes[0][i] = builder.getIndexAttr(getType().getDimSize(i)); |
| 1103 | } |
| 1104 | } |
| 1105 | return success(); |
| 1106 | } |
| 1107 | |
| 1108 | Value EmptyOp::getDynamicSize(unsigned idx) { |
| 1109 | assert(getType().isDynamicDim(idx) && "expected dynamic dim" ); |
| 1110 | unsigned ctr = 0; |
| 1111 | for (int64_t i = 0; i < static_cast<int64_t>(idx); ++i) |
| 1112 | if (getType().isDynamicDim(i)) |
| 1113 | ++ctr; |
| 1114 | return getDynamicSizes()[ctr]; |
| 1115 | } |
| 1116 | |
| 1117 | SmallVector<OpFoldResult> EmptyOp::getMixedSizes() { |
| 1118 | SmallVector<OpFoldResult> result; |
| 1119 | unsigned ctr = 0; |
| 1120 | OpBuilder b(getContext()); |
| 1121 | for (int64_t i = 0; i < getType().getRank(); ++i) { |
| 1122 | if (getType().isDynamicDim(i)) { |
| 1123 | result.push_back(getDynamicSizes()[ctr++]); |
| 1124 | } else { |
| 1125 | result.push_back(b.getIndexAttr(getType().getShape()[i])); |
| 1126 | } |
| 1127 | } |
| 1128 | return result; |
| 1129 | } |
| 1130 | |
| 1131 | namespace { |
| 1132 | /// Change the type of the result of a `tensor.empty` by making the result |
| 1133 | /// type statically sized along dimensions that in the original operation were |
| 1134 | /// defined as dynamic, but the size was defined using a `constant` op. For |
| 1135 | /// example |
| 1136 | /// |
| 1137 | /// %c5 = arith.constant 5: index |
| 1138 | /// %0 = tensor.empty(%arg0, %c5) : tensor<?x?xf32> |
| 1139 | /// |
| 1140 | /// to |
| 1141 | /// |
| 1142 | /// %0 = tensor.empty(%arg0) : tensor<?x5xf32> |
| 1143 | struct ReplaceEmptyTensorStaticShapeDims : OpRewritePattern<EmptyOp> { |
| 1144 | using OpRewritePattern<EmptyOp>::OpRewritePattern; |
| 1145 | |
| 1146 | LogicalResult matchAndRewrite(EmptyOp op, |
| 1147 | PatternRewriter &rewriter) const override { |
| 1148 | SmallVector<Value> foldedDynamicSizes; |
| 1149 | RankedTensorType foldedTensorType = foldDynamicToStaticDimSizes( |
| 1150 | op.getType(), op.getDynamicSizes(), foldedDynamicSizes); |
| 1151 | |
| 1152 | // Stop here if no dynamic size was promoted to static. |
| 1153 | if (foldedTensorType == op.getType()) |
| 1154 | return failure(); |
| 1155 | |
| 1156 | auto newOp = rewriter.create<EmptyOp>(op.getLoc(), foldedTensorType, |
| 1157 | foldedDynamicSizes); |
| 1158 | rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(), newOp); |
| 1159 | return success(); |
| 1160 | } |
| 1161 | }; |
| 1162 | |
| 1163 | struct FoldEmptyTensorWithDimOp : public OpRewritePattern<DimOp> { |
| 1164 | using OpRewritePattern<DimOp>::OpRewritePattern; |
| 1165 | |
| 1166 | LogicalResult matchAndRewrite(tensor::DimOp dimOp, |
| 1167 | PatternRewriter &rewriter) const override { |
| 1168 | std::optional<int64_t> maybeConstantIndex = dimOp.getConstantIndex(); |
| 1169 | auto emptyTensorOp = dimOp.getSource().getDefiningOp<EmptyOp>(); |
| 1170 | if (!emptyTensorOp || !maybeConstantIndex) |
| 1171 | return failure(); |
| 1172 | auto emptyTensorType = emptyTensorOp.getType(); |
| 1173 | if (*maybeConstantIndex < 0 || |
| 1174 | *maybeConstantIndex >= emptyTensorType.getRank() || |
| 1175 | !emptyTensorType.isDynamicDim(*maybeConstantIndex)) |
| 1176 | return failure(); |
| 1177 | rewriter.replaceOp(dimOp, |
| 1178 | emptyTensorOp.getDynamicSize(*maybeConstantIndex)); |
| 1179 | return success(); |
| 1180 | } |
| 1181 | }; |
| 1182 | |
| 1183 | /// Canonicalize |
| 1184 | /// |
| 1185 | /// ```mlir |
| 1186 | /// %0 = tensor.empty(%d0, %d1) : tensor<?x?xf32> |
| 1187 | /// %1 = tensor.cast %0 : tensor<?x?xf32> to tensor<4x?xf32> |
| 1188 | /// ``` |
| 1189 | /// |
| 1190 | /// into |
| 1191 | /// |
| 1192 | /// ```mlir |
| 1193 | /// %0 = tensor.empty(%d1) : tensor<4x?xf32> |
| 1194 | /// ``` |
| 1195 | /// |
| 1196 | /// This assumes the input program is correct in terms of its shape. So it is |
| 1197 | /// safe to assume that `%d0` is in fact 4. |
| 1198 | struct FoldEmptyTensorWithCastOp : public OpRewritePattern<CastOp> { |
| 1199 | using OpRewritePattern<CastOp>::OpRewritePattern; |
| 1200 | |
| 1201 | LogicalResult matchAndRewrite(CastOp castOp, |
| 1202 | PatternRewriter &rewriter) const override { |
| 1203 | if (!canFoldIntoProducerOp(castOp)) |
| 1204 | return failure(); |
| 1205 | auto producer = castOp.getSource().getDefiningOp<EmptyOp>(); |
| 1206 | if (!producer) |
| 1207 | return failure(); |
| 1208 | |
| 1209 | auto resultType = |
| 1210 | llvm::cast<RankedTensorType>(castOp->getResult(0).getType()); |
| 1211 | ArrayRef<int64_t> resultShape = resultType.getShape(); |
| 1212 | SmallVector<OpFoldResult> currMixedSizes = producer.getMixedSizes(); |
| 1213 | SmallVector<OpFoldResult> newMixedSizes; |
| 1214 | newMixedSizes.reserve(N: currMixedSizes.size()); |
| 1215 | assert(resultShape.size() == currMixedSizes.size() && |
| 1216 | "mismatch in result shape and sizes of empty op" ); |
| 1217 | for (auto it : llvm::zip(resultShape, currMixedSizes)) { |
| 1218 | int64_t newDim = std::get<0>(it); |
| 1219 | OpFoldResult currDim = std::get<1>(it); |
| 1220 | // Case 1: The empty tensor dim is static. Check that the tensor cast |
| 1221 | // result dim matches. |
| 1222 | if (auto attr = llvm::dyn_cast_if_present<Attribute>(currDim)) { |
| 1223 | if (ShapedType::isDynamic(newDim) || |
| 1224 | newDim != llvm::cast<IntegerAttr>(attr).getInt()) { |
| 1225 | // Something is off, the cast result shape cannot be more dynamic |
| 1226 | // than the empty tensor result shape (enforced by |
| 1227 | // `canFoldIntoProducer`). Abort for now. |
| 1228 | return rewriter.notifyMatchFailure( |
| 1229 | producer, "mismatch in static value of shape of empty tensor " |
| 1230 | "result and cast result" ); |
| 1231 | } |
| 1232 | newMixedSizes.push_back(attr); |
| 1233 | continue; |
| 1234 | } |
| 1235 | |
| 1236 | // Case 2 : The tensor cast shape is static, but empty tensor result |
| 1237 | // shape is dynamic. |
| 1238 | if (!ShapedType::isDynamic(newDim)) { |
| 1239 | newMixedSizes.push_back(rewriter.getIndexAttr(newDim)); |
| 1240 | continue; |
| 1241 | } |
| 1242 | |
| 1243 | // Case 3 : The tensor cast shape is dynamic and empty tensor result |
| 1244 | // shape is dynamic. Use the dynamic value from the empty tensor op. |
| 1245 | newMixedSizes.push_back(currDim); |
| 1246 | } |
| 1247 | |
| 1248 | // TODO: Do not drop tensor encoding. |
| 1249 | rewriter.replaceOpWithNewOp<EmptyOp>(castOp, newMixedSizes, |
| 1250 | resultType.getElementType()); |
| 1251 | return success(); |
| 1252 | } |
| 1253 | }; |
| 1254 | |
| 1255 | } // namespace |
| 1256 | |
| 1257 | void EmptyOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 1258 | MLIRContext *context) { |
| 1259 | results.add<FoldEmptyTensorWithCastOp, FoldEmptyTensorWithDimOp, |
| 1260 | ReplaceEmptyTensorStaticShapeDims>(context); |
| 1261 | } |
| 1262 | |
| 1263 | //===----------------------------------------------------------------------===// |
| 1264 | // ExtractOp |
| 1265 | //===----------------------------------------------------------------------===// |
| 1266 | |
| 1267 | namespace { |
| 1268 | |
| 1269 | /// Canonicalizes the pattern of the form |
| 1270 | /// |
| 1271 | /// %val = tensor.cast %source : : tensor<?xi32> to tensor<2xi32> |
| 1272 | /// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32> |
| 1273 | /// |
| 1274 | /// to |
| 1275 | /// |
| 1276 | /// %extracted_element = tensor.extract %source[%c0] : tensor<?xi32> |
| 1277 | struct : public OpRewritePattern<tensor::ExtractOp> { |
| 1278 | using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; |
| 1279 | |
| 1280 | LogicalResult matchAndRewrite(tensor::ExtractOp , |
| 1281 | PatternRewriter &rewriter) const final { |
| 1282 | auto tensorCast = extract.getTensor().getDefiningOp<tensor::CastOp>(); |
| 1283 | if (!tensorCast) |
| 1284 | return failure(); |
| 1285 | if (!llvm::isa<RankedTensorType>(tensorCast.getSource().getType())) |
| 1286 | return failure(); |
| 1287 | rewriter.replaceOpWithNewOp<tensor::ExtractOp>( |
| 1288 | extract, tensorCast.getSource(), extract.getIndices()); |
| 1289 | return success(); |
| 1290 | } |
| 1291 | }; |
| 1292 | |
| 1293 | /// Canonicalizes the pattern of the form |
| 1294 | /// |
| 1295 | /// %val = tensor.collapse_shape %src[[0, 1]] : tensor<3x4xf64> into |
| 1296 | /// tensor<12xf64> |
| 1297 | /// %extracted_element = tensor.extract %val[%c10] : |
| 1298 | /// tensor<12xf64> |
| 1299 | /// |
| 1300 | /// to |
| 1301 | /// |
| 1302 | /// %extracted_element = tensor.extract %src[%c2, %c2] : tensor<3x4xf64> |
| 1303 | struct : public OpRewritePattern<tensor::ExtractOp> { |
| 1304 | using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; |
| 1305 | |
| 1306 | LogicalResult matchAndRewrite(tensor::ExtractOp , |
| 1307 | PatternRewriter &rewriter) const final { |
| 1308 | auto collapseOp = |
| 1309 | extractOp.getTensor().getDefiningOp<tensor::CollapseShapeOp>(); |
| 1310 | if (!collapseOp) |
| 1311 | return failure(); |
| 1312 | if (!collapseOp.getSrcType().hasStaticShape()) |
| 1313 | return failure(); |
| 1314 | |
| 1315 | auto sourceSizes = collapseOp.getSrcType().getShape(); |
| 1316 | |
| 1317 | SmallVector<Value> indices(extractOp.getIndices().begin(), |
| 1318 | extractOp.getIndices().end()); |
| 1319 | SmallVector<Value> sourceIndices; |
| 1320 | for (auto [index, group] : |
| 1321 | llvm::zip(indices, collapseOp.getReassociationIndices())) { |
| 1322 | assert(!group.empty() && "association indices groups cannot be empty" ); |
| 1323 | auto groupSize = group.size(); |
| 1324 | |
| 1325 | if (groupSize == 1) { |
| 1326 | sourceIndices.push_back(index); |
| 1327 | continue; |
| 1328 | } |
| 1329 | |
| 1330 | SmallVector<int64_t> basis = |
| 1331 | llvm::map_to_vector(group, [&](int64_t d) { return sourceSizes[d]; }); |
| 1332 | auto delinearize = rewriter.create<affine::AffineDelinearizeIndexOp>( |
| 1333 | extractOp.getLoc(), index, basis, /*hasOuterBound=*/true); |
| 1334 | llvm::append_range(sourceIndices, delinearize.getResults()); |
| 1335 | } |
| 1336 | if (collapseOp.getReassociationIndices().empty()) { |
| 1337 | auto zeroAffineMap = rewriter.getConstantAffineMap(val: 0); |
| 1338 | int64_t srcRank = |
| 1339 | cast<RankedTensorType>(collapseOp.getSrcType()).getRank(); |
| 1340 | OpFoldResult ofr = affine::makeComposedFoldedAffineApply( |
| 1341 | rewriter, extractOp.getLoc(), zeroAffineMap, |
| 1342 | ArrayRef<OpFoldResult>{}); |
| 1343 | for (int64_t i = 0; i < srcRank; i++) { |
| 1344 | sourceIndices.push_back( |
| 1345 | Elt: getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), ofr)); |
| 1346 | } |
| 1347 | } |
| 1348 | |
| 1349 | rewriter.replaceOpWithNewOp<tensor::ExtractOp>( |
| 1350 | extractOp, collapseOp.getSrc(), sourceIndices); |
| 1351 | return success(); |
| 1352 | } |
| 1353 | }; |
| 1354 | |
| 1355 | } // namespace |
| 1356 | |
| 1357 | void ExtractOp::getAsmResultNames( |
| 1358 | function_ref<void(Value, StringRef)> setNameFn) { |
| 1359 | setNameFn(getResult(), "extracted" ); |
| 1360 | } |
| 1361 | |
| 1362 | LogicalResult ExtractOp::verify() { |
| 1363 | // Verify the # indices match if we have a ranked type. |
| 1364 | auto tensorType = llvm::cast<RankedTensorType>(getTensor().getType()); |
| 1365 | if (tensorType.getRank() != static_cast<int64_t>(getIndices().size())) |
| 1366 | return emitOpError("incorrect number of indices for extract_element" ); |
| 1367 | return success(); |
| 1368 | } |
| 1369 | |
| 1370 | /// If we have an ExtractOp consuming an InsertOp with the same |
| 1371 | /// indices, we can return the InsertOp's scalar directly. |
| 1372 | // TODO: This only checks the immediate producer; extend to go up the |
| 1373 | // insert/extract chain if the slices are disjoint. |
| 1374 | static Value (ExtractOp ) { |
| 1375 | auto insertOp = extractOp.getTensor().getDefiningOp<InsertOp>(); |
| 1376 | |
| 1377 | auto isSame = [](Value a, Value b) { |
| 1378 | return getAsOpFoldResult(val: a) == getAsOpFoldResult(val: b); |
| 1379 | }; |
| 1380 | if (insertOp && insertOp.getScalar().getType() == extractOp.getType() && |
| 1381 | llvm::equal(insertOp.getIndices(), extractOp.getIndices(), isSame)) |
| 1382 | return insertOp.getScalar(); |
| 1383 | |
| 1384 | return {}; |
| 1385 | } |
| 1386 | |
| 1387 | OpFoldResult ExtractOp::fold(FoldAdaptor adaptor) { |
| 1388 | if (Attribute tensor = adaptor.getTensor()) { |
| 1389 | // If this is a splat elements attribute, simply return the value. |
| 1390 | // All of the elements of a splat attribute are the same. |
| 1391 | if (auto splatTensor = llvm::dyn_cast<SplatElementsAttr>(tensor)) |
| 1392 | return splatTensor.getSplatValue<Attribute>(); |
| 1393 | |
| 1394 | // If this is a dense resource elements attribute, return. |
| 1395 | if (isa<DenseResourceElementsAttr>(tensor)) |
| 1396 | return {}; |
| 1397 | } |
| 1398 | |
| 1399 | // Collect the constant indices into the tensor. |
| 1400 | SmallVector<uint64_t, 8> indices; |
| 1401 | for (Attribute indice : adaptor.getIndices()) { |
| 1402 | if (!indice || !llvm::isa<IntegerAttr>(indice)) |
| 1403 | return {}; |
| 1404 | indices.push_back(llvm::cast<IntegerAttr>(indice).getInt()); |
| 1405 | } |
| 1406 | |
| 1407 | // Fold extract(from_elements(...)). |
| 1408 | if (auto fromElementsOp = getTensor().getDefiningOp<FromElementsOp>()) { |
| 1409 | auto tensorType = llvm::cast<RankedTensorType>(fromElementsOp.getType()); |
| 1410 | auto rank = tensorType.getRank(); |
| 1411 | assert(static_cast<int64_t>(indices.size()) == tensorType.getRank() && |
| 1412 | "rank mismatch" ); |
| 1413 | int flatIndex = 0; |
| 1414 | int stride = 1; |
| 1415 | for (int i = rank - 1; i >= 0; --i) { |
| 1416 | flatIndex += indices[i] * stride; |
| 1417 | stride *= tensorType.getDimSize(i); |
| 1418 | } |
| 1419 | // Prevent out of bounds accesses. This can happen in invalid code that |
| 1420 | // will never execute. |
| 1421 | if (static_cast<int>(fromElementsOp.getElements().size()) <= flatIndex || |
| 1422 | flatIndex < 0) |
| 1423 | return {}; |
| 1424 | return fromElementsOp.getElements()[flatIndex]; |
| 1425 | } |
| 1426 | |
| 1427 | // If this is an elements attribute, query the value at the given indices. |
| 1428 | if (Attribute tensor = adaptor.getTensor()) { |
| 1429 | auto elementsAttr = llvm::dyn_cast<ElementsAttr>(tensor); |
| 1430 | if (elementsAttr && elementsAttr.isValidIndex(indices)) |
| 1431 | return elementsAttr.getValues<Attribute>()[indices]; |
| 1432 | } |
| 1433 | |
| 1434 | if (Value result = foldExtractAfterInsert(*this)) |
| 1435 | return result; |
| 1436 | |
| 1437 | return {}; |
| 1438 | } |
| 1439 | |
| 1440 | void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 1441 | MLIRContext *context) { |
| 1442 | results.add<ExtractFromTensorCast>(context); |
| 1443 | } |
| 1444 | |
| 1445 | void mlir::tensor::( |
| 1446 | RewritePatternSet &patterns) { |
| 1447 | patterns.add<ExtractFromCollapseShape>(arg: patterns.getContext()); |
| 1448 | } |
| 1449 | |
| 1450 | //===----------------------------------------------------------------------===// |
| 1451 | // FromElementsOp |
| 1452 | //===----------------------------------------------------------------------===// |
| 1453 | |
| 1454 | void FromElementsOp::getAsmResultNames( |
| 1455 | function_ref<void(Value, StringRef)> setNameFn) { |
| 1456 | setNameFn(getResult(), "from_elements" ); |
| 1457 | } |
| 1458 | |
| 1459 | void FromElementsOp::build(OpBuilder &builder, OperationState &result, |
| 1460 | ValueRange elements) { |
| 1461 | assert(!elements.empty() && "expected at least one element" ); |
| 1462 | Type resultType = RankedTensorType::get( |
| 1463 | {static_cast<int64_t>(elements.size())}, elements.front().getType()); |
| 1464 | build(builder, result, resultType, elements); |
| 1465 | } |
| 1466 | |
| 1467 | OpFoldResult FromElementsOp::fold(FoldAdaptor adaptor) { |
| 1468 | if (!llvm::is_contained(adaptor.getElements(), nullptr)) |
| 1469 | return DenseElementsAttr::get(getType(), adaptor.getElements()); |
| 1470 | return {}; |
| 1471 | } |
| 1472 | |
| 1473 | namespace { |
| 1474 | |
| 1475 | // Pushes the index_casts that occur before extractions to after the extract. |
| 1476 | // This minimizes type conversion in some cases and enables the extract |
| 1477 | // canonicalizer. This changes: |
| 1478 | // |
| 1479 | // %cast = arith.index_cast %tensor : tensor<1xi32> to tensor<1xindex> |
| 1480 | // %extract = tensor.extract %cast[%index] : tensor<1xindex> |
| 1481 | // |
| 1482 | // to the following: |
| 1483 | // |
| 1484 | // %extract = tensor.extract %tensor[%index] : tensor<1xindex> |
| 1485 | // %cast = arith.index_cast %extract : i32 to index |
| 1486 | // |
| 1487 | // to just %element. |
| 1488 | // |
| 1489 | // Consider expanding this to a template and handle all tensor cast |
| 1490 | // operations. |
| 1491 | struct |
| 1492 | : public OpRewritePattern<tensor::ExtractOp> { |
| 1493 | using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; |
| 1494 | |
| 1495 | LogicalResult matchAndRewrite(tensor::ExtractOp , |
| 1496 | PatternRewriter &rewriter) const final { |
| 1497 | Location loc = extract.getLoc(); |
| 1498 | auto indexCast = extract.getTensor().getDefiningOp<arith::IndexCastOp>(); |
| 1499 | if (!indexCast) |
| 1500 | return failure(); |
| 1501 | |
| 1502 | Type elementTy = getElementTypeOrSelf(indexCast.getIn()); |
| 1503 | |
| 1504 | auto = rewriter.create<tensor::ExtractOp>( |
| 1505 | loc, elementTy, indexCast.getIn(), extract.getIndices()); |
| 1506 | |
| 1507 | rewriter.replaceOpWithNewOp<arith::IndexCastOp>(extract, extract.getType(), |
| 1508 | newExtract); |
| 1509 | |
| 1510 | return success(); |
| 1511 | } |
| 1512 | }; |
| 1513 | |
| 1514 | } // namespace |
| 1515 | |
| 1516 | void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 1517 | MLIRContext *context) { |
| 1518 | results.add<ExtractElementFromIndexCast>(context); |
| 1519 | } |
| 1520 | |
| 1521 | //===----------------------------------------------------------------------===// |
| 1522 | // GatherOp |
| 1523 | //===----------------------------------------------------------------------===// |
| 1524 | |
| 1525 | void GatherOp::getAsmResultNames( |
| 1526 | function_ref<void(Value, StringRef)> setNameFn) { |
| 1527 | setNameFn(getResult(), "gather" ); |
| 1528 | } |
| 1529 | |
| 1530 | /// Return the inferred result type for a gatherOp where: |
| 1531 | /// - sourceType is the type of the source tensor gathered from |
| 1532 | /// - indicesType is the type of the indices used to gather |
| 1533 | /// - gatherDims are the dims along which the gather occurs. |
| 1534 | /// Return a full rank or ranked-reduced variant of the type depending on |
| 1535 | /// the value of rankReduced. |
| 1536 | /// |
| 1537 | /// The leading dimensions of the index tensor give the result tensor its |
| 1538 | /// leading dimensions. |
| 1539 | /// The trailing dimensions of the result tensor are obtained from the source |
| 1540 | /// tensor by setting the dimensions specified in gather_dims to `1` (if |
| 1541 | /// rankedReduced is false), or skipping them (otherwise). |
| 1542 | RankedTensorType GatherOp::inferResultType(RankedTensorType sourceType, |
| 1543 | RankedTensorType indicesType, |
| 1544 | ArrayRef<int64_t> gatherDims, |
| 1545 | bool rankReduced) { |
| 1546 | SmallVector<int64_t> resultShape(indicesType.getShape().drop_back()); |
| 1547 | resultShape.reserve(resultShape.size() + sourceType.getRank()); |
| 1548 | for (int64_t idx : llvm::seq<int64_t>(0, sourceType.getRank())) { |
| 1549 | if (llvm::binary_search(gatherDims, idx)) { |
| 1550 | if (!rankReduced) |
| 1551 | resultShape.push_back(1); |
| 1552 | continue; |
| 1553 | } |
| 1554 | resultShape.push_back(sourceType.getDimSize(idx)); |
| 1555 | } |
| 1556 | return RankedTensorType::Builder(sourceType).setShape(resultShape); |
| 1557 | } |
| 1558 | |
| 1559 | static LogicalResult |
| 1560 | verifyGatherOrScatterDims(Operation *op, ArrayRef<int64_t> dims, |
| 1561 | ArrayRef<int64_t> indices, int64_t rank, |
| 1562 | StringRef gatherOrScatter, StringRef sourceOrDest) { |
| 1563 | if (dims.empty()) |
| 1564 | return op->emitOpError(message: gatherOrScatter) << "_dims must be non-empty" ; |
| 1565 | |
| 1566 | int64_t numGatherDims = dims.size(); |
| 1567 | if (numGatherDims > rank) |
| 1568 | return op->emitOpError(message: gatherOrScatter) |
| 1569 | << "_dims overflow " << sourceOrDest << " rank" ; |
| 1570 | if (indices.empty() || indices.back() != numGatherDims) |
| 1571 | return op->emitOpError(message: gatherOrScatter) |
| 1572 | << "_dims length must match the size of last dimension of indices" ; |
| 1573 | for (int64_t val : dims) { |
| 1574 | if (val < 0) |
| 1575 | return op->emitOpError(message: gatherOrScatter) |
| 1576 | << "_dims value must be non-negative" ; |
| 1577 | if (val >= rank) |
| 1578 | return op->emitOpError(message: gatherOrScatter) |
| 1579 | << "_dims value must be smaller than " << sourceOrDest << " rank" ; |
| 1580 | } |
| 1581 | for (int64_t i = 1; i < numGatherDims; ++i) { |
| 1582 | if (dims[i - 1] >= dims[i]) |
| 1583 | return op->emitOpError(message: gatherOrScatter) |
| 1584 | << "_dims values must be strictly increasing" ; |
| 1585 | } |
| 1586 | return success(); |
| 1587 | } |
| 1588 | |
| 1589 | LogicalResult GatherOp::verify() { |
| 1590 | int64_t sourceRank = getSourceType().getRank(); |
| 1591 | ArrayRef<int64_t> gatherDims = getGatherDims(); |
| 1592 | if (failed(verifyGatherOrScatterDims(getOperation(), gatherDims, |
| 1593 | getIndicesType().getShape(), sourceRank, |
| 1594 | "gather" , "source" ))) |
| 1595 | return failure(); |
| 1596 | |
| 1597 | RankedTensorType expectedResultType = GatherOp::inferResultType( |
| 1598 | getSourceType(), getIndicesType(), gatherDims, /*rankReduced=*/false); |
| 1599 | RankedTensorType expectedRankReducedResultType = GatherOp::inferResultType( |
| 1600 | getSourceType(), getIndicesType(), gatherDims, /*rankReduced=*/true); |
| 1601 | if (getResultType() != expectedResultType && |
| 1602 | getResultType() != expectedRankReducedResultType) { |
| 1603 | return emitOpError("result type " |
| 1604 | "mismatch: " |
| 1605 | "expected " ) |
| 1606 | << expectedResultType << " or its rank-reduced variant " |
| 1607 | << expectedRankReducedResultType << " (got: " << getResultType() |
| 1608 | << ")" ; |
| 1609 | } |
| 1610 | |
| 1611 | return success(); |
| 1612 | } |
| 1613 | |
| 1614 | OpFoldResult GatherOp::fold(FoldAdaptor adaptor) { |
| 1615 | if (OpFoldResult reshapedSource = reshapeConstantSource( |
| 1616 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getSource()), |
| 1617 | getResult().getType())) |
| 1618 | return reshapedSource; |
| 1619 | return {}; |
| 1620 | } |
| 1621 | |
| 1622 | //===----------------------------------------------------------------------===// |
| 1623 | // InsertOp |
| 1624 | //===----------------------------------------------------------------------===// |
| 1625 | |
| 1626 | void InsertOp::getAsmResultNames( |
| 1627 | function_ref<void(Value, StringRef)> setNameFn) { |
| 1628 | setNameFn(getResult(), "inserted" ); |
| 1629 | } |
| 1630 | |
| 1631 | LogicalResult InsertOp::verify() { |
| 1632 | // Verify the # indices match if we have a ranked type. |
| 1633 | auto destType = llvm::cast<RankedTensorType>(getDest().getType()); |
| 1634 | if (destType.getRank() != static_cast<int64_t>(getIndices().size())) |
| 1635 | return emitOpError("incorrect number of indices" ); |
| 1636 | return success(); |
| 1637 | } |
| 1638 | |
| 1639 | OpFoldResult InsertOp::fold(FoldAdaptor adaptor) { |
| 1640 | Attribute scalar = adaptor.getScalar(); |
| 1641 | Attribute dest = adaptor.getDest(); |
| 1642 | if (scalar && dest) |
| 1643 | if (auto splatDest = llvm::dyn_cast<SplatElementsAttr>(dest)) |
| 1644 | if (scalar == splatDest.getSplatValue<Attribute>()) |
| 1645 | return dest; |
| 1646 | return {}; |
| 1647 | } |
| 1648 | |
| 1649 | //===----------------------------------------------------------------------===// |
| 1650 | // GenerateOp |
| 1651 | //===----------------------------------------------------------------------===// |
| 1652 | |
| 1653 | void GenerateOp::getAsmResultNames( |
| 1654 | function_ref<void(Value, StringRef)> setNameFn) { |
| 1655 | setNameFn(getResult(), "generated" ); |
| 1656 | } |
| 1657 | |
| 1658 | LogicalResult GenerateOp::reifyResultShapes( |
| 1659 | OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
| 1660 | reifiedReturnShapes.resize(1, SmallVector<OpFoldResult>(getType().getRank())); |
| 1661 | int idx = 0; |
| 1662 | for (auto dim : llvm::seq<int64_t>(0, getType().getRank())) { |
| 1663 | if (getType().isDynamicDim(dim)) { |
| 1664 | reifiedReturnShapes[0][dim] = getOperand(idx++); |
| 1665 | } else { |
| 1666 | reifiedReturnShapes[0][dim] = |
| 1667 | builder.getIndexAttr(getType().getDimSize(dim)); |
| 1668 | } |
| 1669 | } |
| 1670 | return success(); |
| 1671 | } |
| 1672 | |
| 1673 | LogicalResult GenerateOp::verify() { |
| 1674 | // Ensure that the tensor type has as many dynamic dimensions as are |
| 1675 | // specified by the operands. |
| 1676 | RankedTensorType resultType = llvm::cast<RankedTensorType>(getType()); |
| 1677 | if (getNumOperands() != resultType.getNumDynamicDims()) |
| 1678 | return emitError("must have as many index operands as dynamic extents " |
| 1679 | "in the result type" ); |
| 1680 | return success(); |
| 1681 | } |
| 1682 | |
| 1683 | LogicalResult GenerateOp::verifyRegions() { |
| 1684 | RankedTensorType resultTy = llvm::cast<RankedTensorType>(getType()); |
| 1685 | // Ensure that region arguments span the index space. |
| 1686 | if (!llvm::all_of(getBody().getArgumentTypes(), |
| 1687 | [](Type ty) { return ty.isIndex(); })) |
| 1688 | return emitError("all body arguments must be index" ); |
| 1689 | if (getBody().getNumArguments() != resultTy.getRank()) |
| 1690 | return emitError("must have one body argument per input dimension" ); |
| 1691 | |
| 1692 | // Ensure that the region yields an element of the right type. |
| 1693 | auto yieldOp = cast<YieldOp>(getBody().getBlocks().front().getTerminator()); |
| 1694 | |
| 1695 | if (yieldOp.getValue().getType() != resultTy.getElementType()) |
| 1696 | return emitOpError( |
| 1697 | "body must be terminated with a `yield` operation of the tensor " |
| 1698 | "element type" ); |
| 1699 | |
| 1700 | return success(); |
| 1701 | } |
| 1702 | |
| 1703 | void GenerateOp::build( |
| 1704 | OpBuilder &b, OperationState &result, Type resultTy, |
| 1705 | ValueRange dynamicExtents, |
| 1706 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) { |
| 1707 | build(b, result, resultTy, dynamicExtents); |
| 1708 | |
| 1709 | // Build and populate body. |
| 1710 | OpBuilder::InsertionGuard guard(b); |
| 1711 | Region *bodyRegion = result.regions.front().get(); |
| 1712 | auto rank = llvm::cast<RankedTensorType>(resultTy).getRank(); |
| 1713 | SmallVector<Type, 2> argumentTypes(rank, b.getIndexType()); |
| 1714 | SmallVector<Location, 2> argumentLocs(rank, result.location); |
| 1715 | Block *bodyBlock = |
| 1716 | b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes, argumentLocs); |
| 1717 | bodyBuilder(b, result.location, bodyBlock->getArguments()); |
| 1718 | } |
| 1719 | |
| 1720 | namespace { |
| 1721 | |
| 1722 | /// Canonicalizes tensor.generate operations with a constant |
| 1723 | /// operand into the equivalent operation with the operand expressed in the |
| 1724 | /// result type, instead. We also insert a type cast to make sure that the |
| 1725 | /// resulting IR is still well-typed. |
| 1726 | struct StaticTensorGenerate : public OpRewritePattern<GenerateOp> { |
| 1727 | using OpRewritePattern<GenerateOp>::OpRewritePattern; |
| 1728 | |
| 1729 | LogicalResult matchAndRewrite(GenerateOp generateOp, |
| 1730 | PatternRewriter &rewriter) const final { |
| 1731 | SmallVector<Value> foldedDynamicSizes; |
| 1732 | RankedTensorType foldedTensorType = foldDynamicToStaticDimSizes( |
| 1733 | generateOp.getType(), generateOp.getDynamicExtents(), |
| 1734 | foldedDynamicSizes); |
| 1735 | |
| 1736 | // Stop here if no dynamic size was promoted to static. |
| 1737 | if (foldedTensorType == generateOp.getType()) |
| 1738 | return failure(); |
| 1739 | |
| 1740 | auto loc = generateOp.getLoc(); |
| 1741 | auto newOp = |
| 1742 | rewriter.create<GenerateOp>(loc, foldedTensorType, foldedDynamicSizes); |
| 1743 | rewriter.inlineRegionBefore(generateOp.getBody(), newOp.getBody(), |
| 1744 | newOp.getBody().begin()); |
| 1745 | rewriter.replaceOpWithNewOp<tensor::CastOp>(generateOp, |
| 1746 | generateOp.getType(), newOp); |
| 1747 | return success(); |
| 1748 | } |
| 1749 | }; |
| 1750 | |
| 1751 | /// Canonicalizes the pattern of the form |
| 1752 | /// |
| 1753 | /// %tensor = tensor.generate %x { |
| 1754 | /// ^bb0(%arg0: index): |
| 1755 | /// <computation> |
| 1756 | /// yield %1 : index |
| 1757 | /// } : tensor<?xindex> |
| 1758 | /// %extracted_element = tensor.extract %tensor[%c0] : tensor<?xi32> |
| 1759 | /// |
| 1760 | /// to just <computation> with %arg0 replaced by %c0. We only do this if the |
| 1761 | /// tensor.generate operation has no side-effects. |
| 1762 | struct : public OpRewritePattern<tensor::ExtractOp> { |
| 1763 | using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; |
| 1764 | |
| 1765 | LogicalResult matchAndRewrite(tensor::ExtractOp , |
| 1766 | PatternRewriter &rewriter) const final { |
| 1767 | auto tensorFromElements = extract.getTensor().getDefiningOp<GenerateOp>(); |
| 1768 | if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements)) |
| 1769 | return failure(); |
| 1770 | |
| 1771 | IRMapping mapping; |
| 1772 | Block *body = &tensorFromElements.getBody().front(); |
| 1773 | mapping.map(body->getArguments(), extract.getIndices()); |
| 1774 | for (auto &op : body->without_terminator()) |
| 1775 | rewriter.clone(op, mapping); |
| 1776 | |
| 1777 | auto yield = cast<YieldOp>(body->getTerminator()); |
| 1778 | |
| 1779 | rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.getValue())); |
| 1780 | return success(); |
| 1781 | } |
| 1782 | }; |
| 1783 | |
| 1784 | } // namespace |
| 1785 | |
| 1786 | void GenerateOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 1787 | MLIRContext *context) { |
| 1788 | // TODO: Move extract pattern to tensor::ExtractOp. |
| 1789 | results.add<ExtractFromTensorGenerate, StaticTensorGenerate>(context); |
| 1790 | } |
| 1791 | |
| 1792 | //===----------------------------------------------------------------------===// |
| 1793 | // RankOp |
| 1794 | //===----------------------------------------------------------------------===// |
| 1795 | |
| 1796 | void RankOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) { |
| 1797 | setNameFn(getResult(), "rank" ); |
| 1798 | } |
| 1799 | |
| 1800 | OpFoldResult RankOp::fold(FoldAdaptor adaptor) { |
| 1801 | // Constant fold rank when the rank of the operand is known. |
| 1802 | auto type = getOperand().getType(); |
| 1803 | auto shapedType = llvm::dyn_cast<ShapedType>(type); |
| 1804 | if (shapedType && shapedType.hasRank()) |
| 1805 | return IntegerAttr::get(IndexType::get(getContext()), shapedType.getRank()); |
| 1806 | return IntegerAttr(); |
| 1807 | } |
| 1808 | |
| 1809 | //===----------------------------------------------------------------------===// |
| 1810 | // ReshapeOp |
| 1811 | //===----------------------------------------------------------------------===// |
| 1812 | |
| 1813 | void ReshapeOp::getAsmResultNames( |
| 1814 | function_ref<void(Value, StringRef)> setNameFn) { |
| 1815 | setNameFn(getResult(), "reshape" ); |
| 1816 | } |
| 1817 | |
| 1818 | static int64_t getNumElements(ShapedType type) { |
| 1819 | int64_t numElements = 1; |
| 1820 | for (auto dim : type.getShape()) |
| 1821 | numElements *= dim; |
| 1822 | return numElements; |
| 1823 | } |
| 1824 | |
| 1825 | LogicalResult ReshapeOp::verify() { |
| 1826 | TensorType operandType = llvm::cast<TensorType>(getSource().getType()); |
| 1827 | TensorType resultType = llvm::cast<TensorType>(getResult().getType()); |
| 1828 | |
| 1829 | if (operandType.getElementType() != resultType.getElementType()) |
| 1830 | return emitOpError("element types of source and destination tensor " |
| 1831 | "types should be the same" ); |
| 1832 | |
| 1833 | int64_t shapeSize = |
| 1834 | llvm::cast<RankedTensorType>(getShape().getType()).getDimSize(0); |
| 1835 | auto resultRankedType = llvm::dyn_cast<RankedTensorType>(resultType); |
| 1836 | auto operandRankedType = llvm::dyn_cast<RankedTensorType>(operandType); |
| 1837 | |
| 1838 | if (resultRankedType) { |
| 1839 | if (operandRankedType && resultRankedType.hasStaticShape() && |
| 1840 | operandRankedType.hasStaticShape()) { |
| 1841 | if (getNumElements(operandRankedType) != getNumElements(resultRankedType)) |
| 1842 | return emitOpError("source and destination tensor should have the " |
| 1843 | "same number of elements" ); |
| 1844 | } |
| 1845 | if (ShapedType::isDynamic(shapeSize)) |
| 1846 | return emitOpError("cannot use shape operand with dynamic length to " |
| 1847 | "reshape to statically-ranked tensor type" ); |
| 1848 | if (shapeSize != resultRankedType.getRank()) |
| 1849 | return emitOpError( |
| 1850 | "length of shape operand differs from the result's tensor rank" ); |
| 1851 | } |
| 1852 | return success(); |
| 1853 | } |
| 1854 | |
| 1855 | OpFoldResult ReshapeOp::fold(FoldAdaptor adaptor) { |
| 1856 | if (OpFoldResult reshapedSource = reshapeConstantSource( |
| 1857 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getSource()), |
| 1858 | getResult().getType())) |
| 1859 | return reshapedSource; |
| 1860 | |
| 1861 | // If the producer of operand 'source' is another 'tensor.reshape' op, use the |
| 1862 | // producer's input instead as the original tensor to reshape. This could |
| 1863 | // render such producer dead code. |
| 1864 | if (auto reshapeOpProducer = getSource().getDefiningOp<ReshapeOp>()) { |
| 1865 | getSourceMutable().assign(reshapeOpProducer.getSource()); |
| 1866 | return getResult(); |
| 1867 | } |
| 1868 | |
| 1869 | auto source = getSource(); |
| 1870 | auto sourceTy = dyn_cast<RankedTensorType>(source.getType()); |
| 1871 | auto resultTy = dyn_cast<RankedTensorType>(getType()); |
| 1872 | if (!sourceTy || !resultTy || sourceTy != resultTy) |
| 1873 | return {}; |
| 1874 | |
| 1875 | // If the source and result are both 1D tensors and have the same type, the |
| 1876 | // reshape has no effect, even if the tensor is dynamically shaped. |
| 1877 | if (sourceTy.getRank() == 1) |
| 1878 | return source; |
| 1879 | |
| 1880 | if (auto fromElements = getShape().getDefiningOp<tensor::FromElementsOp>()) { |
| 1881 | auto elements = fromElements.getElements(); |
| 1882 | bool dynamicNoop = |
| 1883 | sourceTy.getRank() == static_cast<int64_t>(elements.size()); |
| 1884 | for (int id = 0, s = elements.size(); id < s && dynamicNoop; ++id) { |
| 1885 | auto element = elements[id]; |
| 1886 | |
| 1887 | if (auto cst = getConstantIntValue(element)) { |
| 1888 | dynamicNoop &= cst.value() == sourceTy.getDimSize(id); |
| 1889 | continue; |
| 1890 | } |
| 1891 | |
| 1892 | if (auto dimOp = element.getDefiningOp<tensor::DimOp>()) { |
| 1893 | dynamicNoop &= dimOp.getSource() == source; |
| 1894 | |
| 1895 | auto cst = getConstantIntValue(dimOp.getIndex()); |
| 1896 | dynamicNoop &= |
| 1897 | cst.has_value() && cst.value() == static_cast<int64_t>(id); |
| 1898 | continue; |
| 1899 | } |
| 1900 | |
| 1901 | dynamicNoop = false; |
| 1902 | break; |
| 1903 | } |
| 1904 | |
| 1905 | if (dynamicNoop) |
| 1906 | return source; |
| 1907 | } |
| 1908 | |
| 1909 | return {}; |
| 1910 | } |
| 1911 | |
| 1912 | //===----------------------------------------------------------------------===// |
| 1913 | // Reassociative reshape ops |
| 1914 | //===----------------------------------------------------------------------===// |
| 1915 | |
| 1916 | void CollapseShapeOp::getAsmResultNames( |
| 1917 | function_ref<void(Value, StringRef)> setNameFn) { |
| 1918 | setNameFn(getResult(), "collapsed" ); |
| 1919 | } |
| 1920 | |
| 1921 | void ExpandShapeOp::getAsmResultNames( |
| 1922 | function_ref<void(Value, StringRef)> setNameFn) { |
| 1923 | setNameFn(getResult(), "expanded" ); |
| 1924 | } |
| 1925 | |
| 1926 | int64_t ExpandShapeOp::getCorrespondingSourceDim(int64_t resultDim) { |
| 1927 | assert(resultDim >= 0 && resultDim < getResultType().getRank() && |
| 1928 | "invalid resultDim" ); |
| 1929 | for (const auto &it : llvm::enumerate(getReassociationIndices())) |
| 1930 | if (llvm::is_contained(it.value(), resultDim)) |
| 1931 | return it.index(); |
| 1932 | llvm_unreachable("could not find reassociation group" ); |
| 1933 | } |
| 1934 | |
| 1935 | FailureOr<SmallVector<OpFoldResult>> |
| 1936 | ExpandShapeOp::inferOutputShape(OpBuilder &b, Location loc, |
| 1937 | RankedTensorType expandedType, |
| 1938 | ArrayRef<ReassociationIndices> reassociation, |
| 1939 | ArrayRef<OpFoldResult> inputShape) { |
| 1940 | std::optional<SmallVector<OpFoldResult>> outputShape = |
| 1941 | inferExpandShapeOutputShape(b, loc, expandedType, reassociation, |
| 1942 | inputShape); |
| 1943 | if (!outputShape) |
| 1944 | return failure(); |
| 1945 | return *outputShape; |
| 1946 | } |
| 1947 | |
| 1948 | SmallVector<OpFoldResult> ExpandShapeOp::getMixedOutputShape() { |
| 1949 | return getMixedValues(getStaticOutputShape(), getOutputShape(), getContext()); |
| 1950 | } |
| 1951 | |
| 1952 | void ExpandShapeOp::build(OpBuilder &builder, OperationState &result, |
| 1953 | Type resultType, Value src, |
| 1954 | ArrayRef<ReassociationIndices> reassociation, |
| 1955 | ArrayRef<OpFoldResult> outputShape) { |
| 1956 | auto [staticOutputShape, dynamicOutputShape] = |
| 1957 | decomposeMixedValues(SmallVector<OpFoldResult>(outputShape)); |
| 1958 | build(builder, result, cast<RankedTensorType>(resultType), src, |
| 1959 | getReassociationIndicesAttribute(builder, reassociation), |
| 1960 | dynamicOutputShape, staticOutputShape); |
| 1961 | } |
| 1962 | |
| 1963 | void ExpandShapeOp::build(OpBuilder &builder, OperationState &result, |
| 1964 | Type resultType, Value src, |
| 1965 | ArrayRef<ReassociationIndices> reassociation) { |
| 1966 | SmallVector<OpFoldResult> inputShape = |
| 1967 | getMixedSizes(builder, result.location, src); |
| 1968 | auto tensorResultTy = cast<RankedTensorType>(resultType); |
| 1969 | FailureOr<SmallVector<OpFoldResult>> outputShape = inferOutputShape( |
| 1970 | builder, result.location, tensorResultTy, reassociation, inputShape); |
| 1971 | SmallVector<OpFoldResult> outputShapeOrEmpty; |
| 1972 | if (succeeded(outputShape)) { |
| 1973 | outputShapeOrEmpty = *outputShape; |
| 1974 | } |
| 1975 | build(builder, result, tensorResultTy, src, reassociation, |
| 1976 | outputShapeOrEmpty); |
| 1977 | } |
| 1978 | |
| 1979 | SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() { |
| 1980 | return getSymbolLessAffineMaps(getReassociationExprs()); |
| 1981 | } |
| 1982 | SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() { |
| 1983 | return convertReassociationIndicesToExprs(getContext(), |
| 1984 | getReassociationIndices()); |
| 1985 | } |
| 1986 | |
| 1987 | SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() { |
| 1988 | return getSymbolLessAffineMaps(getReassociationExprs()); |
| 1989 | } |
| 1990 | SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() { |
| 1991 | return convertReassociationIndicesToExprs(getContext(), |
| 1992 | getReassociationIndices()); |
| 1993 | } |
| 1994 | |
| 1995 | RankedTensorType CollapseShapeOp::inferCollapsedType( |
| 1996 | RankedTensorType type, SmallVector<ReassociationIndices> reassociation) { |
| 1997 | return inferCollapsedType( |
| 1998 | type, getSymbolLessAffineMaps(convertReassociationIndicesToExprs( |
| 1999 | type.getContext(), reassociation))); |
| 2000 | } |
| 2001 | |
| 2002 | /// Compute the RankedTensorType obtained by applying `reassociation` to |
| 2003 | /// `type`. |
| 2004 | RankedTensorType |
| 2005 | CollapseShapeOp::inferCollapsedType(RankedTensorType type, |
| 2006 | ArrayRef<AffineMap> reassociation) { |
| 2007 | auto shape = type.getShape(); |
| 2008 | SmallVector<int64_t, 4> newShape; |
| 2009 | newShape.reserve(reassociation.size()); |
| 2010 | |
| 2011 | // Use the fact that reassociation is valid to simplify the logic: only use |
| 2012 | // each map's rank. |
| 2013 | assert(isReassociationValid(reassociation) && "invalid reassociation" ); |
| 2014 | unsigned currentDim = 0; |
| 2015 | for (AffineMap m : reassociation) { |
| 2016 | unsigned dim = m.getNumResults(); |
| 2017 | auto band = shape.slice(currentDim, dim); |
| 2018 | int64_t size = 1; |
| 2019 | if (llvm::is_contained(band, ShapedType::kDynamic)) |
| 2020 | size = ShapedType::kDynamic; |
| 2021 | else |
| 2022 | for (unsigned d = 0; d < dim; ++d) |
| 2023 | size *= shape[currentDim + d]; |
| 2024 | newShape.push_back(size); |
| 2025 | currentDim += dim; |
| 2026 | } |
| 2027 | |
| 2028 | return RankedTensorType::get(newShape, type.getElementType()); |
| 2029 | } |
| 2030 | |
| 2031 | void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src, |
| 2032 | ArrayRef<ReassociationIndices> reassociation, |
| 2033 | ArrayRef<NamedAttribute> attrs) { |
| 2034 | auto resultType = inferCollapsedType( |
| 2035 | llvm::cast<RankedTensorType>(src.getType()), |
| 2036 | getSymbolLessAffineMaps( |
| 2037 | convertReassociationIndicesToExprs(b.getContext(), reassociation))); |
| 2038 | result.addAttribute(getReassociationAttrStrName(), |
| 2039 | getReassociationIndicesAttribute(b, reassociation)); |
| 2040 | build(b, result, resultType, src, attrs); |
| 2041 | } |
| 2042 | |
| 2043 | template <typename TensorReshapeOp, bool isExpansion = std::is_same< |
| 2044 | TensorReshapeOp, ExpandShapeOp>::value> |
| 2045 | static LogicalResult verifyTensorReshapeOp(TensorReshapeOp op, |
| 2046 | RankedTensorType expandedType, |
| 2047 | RankedTensorType collapsedType) { |
| 2048 | if (failed( |
| 2049 | verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion))) |
| 2050 | return failure(); |
| 2051 | |
| 2052 | auto maps = op.getReassociationMaps(); |
| 2053 | RankedTensorType expectedType = |
| 2054 | CollapseShapeOp::inferCollapsedType(expandedType, maps); |
| 2055 | if (!isSameTypeWithoutEncoding(collapsedType, expectedType)) |
| 2056 | return op.emitOpError("expected collapsed type to be " ) |
| 2057 | << expectedType << ", but got " << collapsedType; |
| 2058 | return success(); |
| 2059 | } |
| 2060 | |
| 2061 | LogicalResult ExpandShapeOp::verify() { |
| 2062 | auto srcType = getSrcType(); |
| 2063 | auto resultType = getResultType(); |
| 2064 | |
| 2065 | if ((int64_t)getStaticOutputShape().size() != resultType.getRank()) |
| 2066 | return emitOpError("expected number of static shape dims to be equal to " |
| 2067 | "the output rank (" ) |
| 2068 | << resultType.getRank() << ") but found " |
| 2069 | << getStaticOutputShape().size() << " inputs instead" ; |
| 2070 | |
| 2071 | if ((int64_t)getOutputShape().size() != |
| 2072 | llvm::count(getStaticOutputShape(), ShapedType::kDynamic)) |
| 2073 | return emitOpError("mismatch in dynamic dims in output_shape and " |
| 2074 | "static_output_shape: static_output_shape has " ) |
| 2075 | << llvm::count(getStaticOutputShape(), ShapedType::kDynamic) |
| 2076 | << " dynamic dims while output_shape has " << getOutputShape().size() |
| 2077 | << " values" ; |
| 2078 | |
| 2079 | return verifyTensorReshapeOp(*this, resultType, srcType); |
| 2080 | } |
| 2081 | |
| 2082 | LogicalResult CollapseShapeOp::verify() { |
| 2083 | return verifyTensorReshapeOp(*this, getSrcType(), getResultType()); |
| 2084 | } |
| 2085 | |
| 2086 | namespace { |
| 2087 | /// Reshape of a splat constant can be replaced with a constant of the result |
| 2088 | /// type. |
| 2089 | template <typename TensorReshapeOp> |
| 2090 | struct FoldReshapeWithConstant : OpRewritePattern<TensorReshapeOp> { |
| 2091 | using OpRewritePattern<TensorReshapeOp>::OpRewritePattern; |
| 2092 | LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, |
| 2093 | PatternRewriter &rewriter) const override { |
| 2094 | DenseElementsAttr attr; |
| 2095 | if (!matchPattern(reshapeOp.getSrc(), m_Constant(bind_value: &attr))) |
| 2096 | return failure(); |
| 2097 | if (!attr || !attr.isSplat()) |
| 2098 | return failure(); |
| 2099 | DenseElementsAttr newAttr = DenseElementsAttr::getFromRawBuffer( |
| 2100 | reshapeOp.getResultType(), attr.getRawData()); |
| 2101 | rewriter.replaceOpWithNewOp<arith::ConstantOp>(reshapeOp, newAttr); |
| 2102 | return success(); |
| 2103 | } |
| 2104 | }; |
| 2105 | |
| 2106 | // Folds TensorReshapeOp(splat x : src_type) : res_type into splat x : res_type. |
| 2107 | template <typename TensorReshapeOp> |
| 2108 | class FoldReshapeWithSplat : public OpRewritePattern<TensorReshapeOp> { |
| 2109 | public: |
| 2110 | using OpRewritePattern<TensorReshapeOp>::OpRewritePattern; |
| 2111 | |
| 2112 | LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, |
| 2113 | PatternRewriter &rewriter) const override { |
| 2114 | auto splatOp = reshapeOp.getSrc().template getDefiningOp<tensor::SplatOp>(); |
| 2115 | if (!splatOp || !splatOp.getAggregate().getType().hasStaticShape()) |
| 2116 | return failure(); |
| 2117 | |
| 2118 | rewriter.replaceOpWithNewOp<tensor::SplatOp>( |
| 2119 | reshapeOp, reshapeOp.getResultType(), splatOp.getInput()); |
| 2120 | return success(); |
| 2121 | } |
| 2122 | }; |
| 2123 | |
| 2124 | /// Reshape of a FromElements can be replaced with a FromElements of the |
| 2125 | /// result type |
| 2126 | template <typename TensorReshapeOp> |
| 2127 | struct FoldReshapeWithFromElements : OpRewritePattern<TensorReshapeOp> { |
| 2128 | using OpRewritePattern<TensorReshapeOp>::OpRewritePattern; |
| 2129 | LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, |
| 2130 | PatternRewriter &rewriter) const override { |
| 2131 | auto fromElements = |
| 2132 | reshapeOp.getSrc().template getDefiningOp<FromElementsOp>(); |
| 2133 | if (!fromElements) |
| 2134 | return failure(); |
| 2135 | |
| 2136 | auto shapedTy = llvm::cast<ShapedType>(reshapeOp.getType()); |
| 2137 | |
| 2138 | if (!shapedTy.hasStaticShape()) |
| 2139 | return failure(); |
| 2140 | |
| 2141 | rewriter.replaceOpWithNewOp<FromElementsOp>(reshapeOp, reshapeOp.getType(), |
| 2142 | fromElements.getElements()); |
| 2143 | return success(); |
| 2144 | } |
| 2145 | }; |
| 2146 | |
| 2147 | // Fold CastOp into CollapseShapeOp when adding static information. |
| 2148 | struct FoldCollapseOfCastOp : public OpRewritePattern<CollapseShapeOp> { |
| 2149 | using OpRewritePattern<CollapseShapeOp>::OpRewritePattern; |
| 2150 | |
| 2151 | LogicalResult matchAndRewrite(CollapseShapeOp collapseShapeOp, |
| 2152 | PatternRewriter &rewriter) const override { |
| 2153 | auto castOp = collapseShapeOp.getSrc().getDefiningOp<tensor::CastOp>(); |
| 2154 | if (!tensor::canFoldIntoConsumerOp(castOp)) |
| 2155 | return failure(); |
| 2156 | |
| 2157 | RankedTensorType srcType = |
| 2158 | llvm::cast<RankedTensorType>(castOp.getSource().getType()); |
| 2159 | RankedTensorType newResultType = CollapseShapeOp::inferCollapsedType( |
| 2160 | srcType, collapseShapeOp.getReassociationMaps()); |
| 2161 | |
| 2162 | if (newResultType == collapseShapeOp.getResultType()) { |
| 2163 | rewriter.modifyOpInPlace(collapseShapeOp, [&]() { |
| 2164 | collapseShapeOp.getSrcMutable().assign(castOp.getSource()); |
| 2165 | }); |
| 2166 | } else { |
| 2167 | auto newOp = rewriter.create<CollapseShapeOp>( |
| 2168 | collapseShapeOp.getLoc(), newResultType, castOp.getSource(), |
| 2169 | collapseShapeOp.getReassociation()); |
| 2170 | rewriter.replaceOpWithNewOp<tensor::CastOp>( |
| 2171 | collapseShapeOp, collapseShapeOp.getResultType(), newOp); |
| 2172 | } |
| 2173 | return success(); |
| 2174 | } |
| 2175 | }; |
| 2176 | |
| 2177 | /// Fold/sink a producer `tensor.cast` with a consumer `tensor.expand_shape` by |
| 2178 | /// matching constant output_shape operands of the expand. This makes the |
| 2179 | /// `tensor.expand_shape` more static and creates a consumer cast that can be |
| 2180 | /// propagated further. |
| 2181 | struct ConvertToStaticExpandShape : public OpRewritePattern<ExpandShapeOp> { |
| 2182 | using OpRewritePattern<ExpandShapeOp>::OpRewritePattern; |
| 2183 | |
| 2184 | LogicalResult matchAndRewrite(ExpandShapeOp expandOp, |
| 2185 | PatternRewriter &rewriter) const override { |
| 2186 | auto castOp = expandOp.getSrc().getDefiningOp<CastOp>(); |
| 2187 | if (!canFoldIntoConsumerOp(castOp)) |
| 2188 | return failure(); |
| 2189 | |
| 2190 | ArrayRef<int64_t> castSrcShape = castOp.getSource().getType().getShape(); |
| 2191 | SmallVector<ReassociationIndices, 4> reassoc = |
| 2192 | expandOp.getReassociationIndices(); |
| 2193 | |
| 2194 | SmallVector<int64_t> newOutputShape(expandOp.getResultType().getShape()); |
| 2195 | SmallVector<Value> dynamicOutputShape; |
| 2196 | auto outputIt = expandOp.getOutputShape().begin(); |
| 2197 | |
| 2198 | for (const auto &[inputDim, innerReassoc] : llvm::enumerate(reassoc)) { |
| 2199 | for (uint64_t outDim : innerReassoc) { |
| 2200 | if (!ShapedType::isDynamic(newOutputShape[outDim])) |
| 2201 | continue; |
| 2202 | |
| 2203 | // If the cast's src type is dynamic, don't infer any of the |
| 2204 | // corresponding expanded dimensions. `tensor.expand_shape` requires at |
| 2205 | // least one of the expanded dimensions to be dynamic if the input is |
| 2206 | // dynamic. |
| 2207 | Value val = *outputIt; |
| 2208 | ++outputIt; |
| 2209 | if (ShapedType::isDynamic(castSrcShape[inputDim])) { |
| 2210 | dynamicOutputShape.push_back(val); |
| 2211 | continue; |
| 2212 | } |
| 2213 | |
| 2214 | APInt cst; |
| 2215 | if (matchPattern(val, m_ConstantInt(&cst))) { |
| 2216 | newOutputShape[outDim] = cst.getSExtValue(); |
| 2217 | } else { |
| 2218 | dynamicOutputShape.push_back(val); |
| 2219 | } |
| 2220 | } |
| 2221 | } |
| 2222 | |
| 2223 | // Couldn't match any values, nothing to change |
| 2224 | if (expandOp.getOutputShape().size() == dynamicOutputShape.size()) |
| 2225 | return failure(); |
| 2226 | |
| 2227 | // Calculate the input shape from the output |
| 2228 | SmallVector<int64_t> newInputShape(expandOp.getSrcType().getRank(), 1l); |
| 2229 | for (auto inDim : llvm::seq<int>(0, newInputShape.size())) { |
| 2230 | for (auto outDim : reassoc[inDim]) { |
| 2231 | auto ofr = newOutputShape[outDim]; |
| 2232 | if (ShapedType::isDynamic(ofr)) { |
| 2233 | newInputShape[inDim] = ShapedType::kDynamic; |
| 2234 | break; |
| 2235 | } |
| 2236 | newInputShape[inDim] *= ofr; |
| 2237 | } |
| 2238 | } |
| 2239 | |
| 2240 | SmallVector<OpFoldResult> outputOfr = |
| 2241 | getMixedValues(staticValues: newOutputShape, dynamicValues: dynamicOutputShape, b&: rewriter); |
| 2242 | auto inputType = RankedTensorType::get( |
| 2243 | newInputShape, expandOp.getSrcType().getElementType()); |
| 2244 | auto outputType = RankedTensorType::get( |
| 2245 | newOutputShape, expandOp.getSrcType().getElementType()); |
| 2246 | auto inputCast = rewriter.create<CastOp>(expandOp.getLoc(), inputType, |
| 2247 | expandOp.getSrc()); |
| 2248 | auto newExpand = rewriter.create<ExpandShapeOp>( |
| 2249 | expandOp.getLoc(), outputType, inputCast.getResult(), |
| 2250 | expandOp.getReassociationIndices(), outputOfr); |
| 2251 | rewriter.replaceOpWithNewOp<CastOp>(expandOp, expandOp.getType(), |
| 2252 | newExpand.getResult()); |
| 2253 | return success(); |
| 2254 | } |
| 2255 | }; |
| 2256 | } // namespace |
| 2257 | |
| 2258 | void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 2259 | MLIRContext *context) { |
| 2260 | results.add< |
| 2261 | ComposeReassociativeReshapeOps<ExpandShapeOp, ReshapeOpKind::kExpand>, |
| 2262 | ComposeExpandOfCollapseOp<ExpandShapeOp, CollapseShapeOp>, |
| 2263 | ConvertToStaticExpandShape, FoldReshapeWithConstant<ExpandShapeOp>, |
| 2264 | FoldReshapeWithSplat<ExpandShapeOp>, |
| 2265 | FoldReshapeWithFromElements<ExpandShapeOp>>(context); |
| 2266 | } |
| 2267 | |
| 2268 | void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 2269 | MLIRContext *context) { |
| 2270 | results.add< |
| 2271 | ComposeReassociativeReshapeOps<CollapseShapeOp, ReshapeOpKind::kCollapse>, |
| 2272 | ComposeCollapseOfExpandOp<CollapseShapeOp, ExpandShapeOp, CastOp, |
| 2273 | tensor::DimOp, RankedTensorType>, |
| 2274 | FoldReshapeWithConstant<CollapseShapeOp>, |
| 2275 | FoldReshapeWithSplat<CollapseShapeOp>, |
| 2276 | FoldReshapeWithFromElements<CollapseShapeOp>, FoldCollapseOfCastOp>( |
| 2277 | context); |
| 2278 | } |
| 2279 | |
| 2280 | OpFoldResult ExpandShapeOp::fold(FoldAdaptor adaptor) { |
| 2281 | return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this, |
| 2282 | adaptor.getOperands()); |
| 2283 | } |
| 2284 | |
| 2285 | OpFoldResult CollapseShapeOp::fold(FoldAdaptor adaptor) { |
| 2286 | return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this, |
| 2287 | adaptor.getOperands()); |
| 2288 | } |
| 2289 | |
| 2290 | //===----------------------------------------------------------------------===// |
| 2291 | // ExtractSliceOp |
| 2292 | //===----------------------------------------------------------------------===// |
| 2293 | |
| 2294 | void ExtractSliceOp::getAsmResultNames( |
| 2295 | function_ref<void(Value, StringRef)> setNameFn) { |
| 2296 | setNameFn(getResult(), "extracted_slice" ); |
| 2297 | } |
| 2298 | |
| 2299 | /// An extract_slice result type can be inferred, when it is not |
| 2300 | /// rank-reduced, from the source type and the static representation of |
| 2301 | /// offsets, sizes and strides. Special sentinels encode the dynamic case. |
| 2302 | RankedTensorType ExtractSliceOp::inferResultType( |
| 2303 | RankedTensorType sourceTensorType, ArrayRef<int64_t> staticOffsets, |
| 2304 | ArrayRef<int64_t> staticSizes, ArrayRef<int64_t> staticStrides) { |
| 2305 | // An extract_slice op may specify only a leading subset of offset/sizes/ |
| 2306 | // strides in which case we complete with offset=0, sizes from memref type |
| 2307 | // and strides=1. |
| 2308 | assert(static_cast<int64_t>(staticSizes.size()) == |
| 2309 | sourceTensorType.getRank() && |
| 2310 | "unexpected staticSizes not equal to rank of source" ); |
| 2311 | return RankedTensorType::get(staticSizes, sourceTensorType.getElementType(), |
| 2312 | sourceTensorType.getEncoding()); |
| 2313 | } |
| 2314 | |
| 2315 | RankedTensorType ExtractSliceOp::inferResultType( |
| 2316 | RankedTensorType sourceTensorType, ArrayRef<OpFoldResult> offsets, |
| 2317 | ArrayRef<OpFoldResult> sizes, ArrayRef<OpFoldResult> strides) { |
| 2318 | SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| 2319 | SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| 2320 | dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets); |
| 2321 | dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes); |
| 2322 | dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides); |
| 2323 | return ExtractSliceOp::inferResultType(sourceTensorType, staticOffsets, |
| 2324 | staticSizes, staticStrides); |
| 2325 | } |
| 2326 | |
| 2327 | /// If the rank is reduced (i.e. the desiredResultRank is smaller than the |
| 2328 | /// number of sizes), drop as many size 1 as needed to produce an inferred |
| 2329 | /// type with the desired rank. |
| 2330 | /// |
| 2331 | /// Note that there may be multiple ways to compute this rank-reduced type: |
| 2332 | /// e.g. 1x6x1 can rank-reduce to either 1x6 or 6x1 2-D tensors. |
| 2333 | /// |
| 2334 | /// To disambiguate, this function always drops the first 1 sizes occurrences. |
| 2335 | RankedTensorType ExtractSliceOp::inferCanonicalRankReducedResultType( |
| 2336 | unsigned desiredResultRank, RankedTensorType sourceRankedTensorType, |
| 2337 | ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, |
| 2338 | ArrayRef<int64_t> strides) { |
| 2339 | // Type inferred in the absence of rank-reducing behavior. |
| 2340 | auto inferredType = llvm::cast<RankedTensorType>( |
| 2341 | inferResultType(sourceRankedTensorType, offsets, sizes, strides)); |
| 2342 | int rankDiff = inferredType.getRank() - desiredResultRank; |
| 2343 | if (rankDiff > 0) { |
| 2344 | auto shape = inferredType.getShape(); |
| 2345 | llvm::SmallBitVector dimsToProject = |
| 2346 | getPositionsOfShapeOne(rankDiff, shape); |
| 2347 | SmallVector<int64_t> projectedShape; |
| 2348 | // Best effort rank-reducing: drop 1s in order. |
| 2349 | for (unsigned pos = 0, e = shape.size(); pos < e; ++pos) |
| 2350 | if (!dimsToProject.test(pos)) |
| 2351 | projectedShape.push_back(shape[pos]); |
| 2352 | inferredType = |
| 2353 | RankedTensorType::get(projectedShape, inferredType.getElementType()); |
| 2354 | } |
| 2355 | return inferredType; |
| 2356 | } |
| 2357 | |
| 2358 | RankedTensorType ExtractSliceOp::inferCanonicalRankReducedResultType( |
| 2359 | unsigned desiredResultRank, RankedTensorType sourceRankedTensorType, |
| 2360 | ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes, |
| 2361 | ArrayRef<OpFoldResult> strides) { |
| 2362 | SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| 2363 | SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| 2364 | dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets); |
| 2365 | dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes); |
| 2366 | dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides); |
| 2367 | return ExtractSliceOp::inferCanonicalRankReducedResultType( |
| 2368 | desiredResultRank, sourceRankedTensorType, staticOffsets, staticSizes, |
| 2369 | staticStrides); |
| 2370 | } |
| 2371 | |
| 2372 | /// Build an ExtractSliceOp with mixed static and dynamic entries and custom |
| 2373 | /// result type. If the type passed is nullptr, it is inferred. |
| 2374 | void ExtractSliceOp::build(OpBuilder &b, OperationState &result, |
| 2375 | RankedTensorType resultType, Value source, |
| 2376 | ArrayRef<OpFoldResult> offsets, |
| 2377 | ArrayRef<OpFoldResult> sizes, |
| 2378 | ArrayRef<OpFoldResult> strides, |
| 2379 | ArrayRef<NamedAttribute> attrs) { |
| 2380 | SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| 2381 | SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| 2382 | dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets); |
| 2383 | dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes); |
| 2384 | dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides); |
| 2385 | auto sourceRankedTensorType = llvm::cast<RankedTensorType>(source.getType()); |
| 2386 | // Structuring implementation this way avoids duplication between builders. |
| 2387 | if (!resultType) { |
| 2388 | resultType = llvm::cast<RankedTensorType>(ExtractSliceOp::inferResultType( |
| 2389 | sourceRankedTensorType, staticOffsets, staticSizes, staticStrides)); |
| 2390 | } |
| 2391 | result.addAttributes(attrs); |
| 2392 | build(b, result, resultType, source, dynamicOffsets, dynamicSizes, |
| 2393 | dynamicStrides, b.getDenseI64ArrayAttr(staticOffsets), |
| 2394 | b.getDenseI64ArrayAttr(staticSizes), |
| 2395 | b.getDenseI64ArrayAttr(staticStrides)); |
| 2396 | } |
| 2397 | |
| 2398 | /// Build an ExtractSliceOp with mixed static and dynamic entries and inferred |
| 2399 | /// result type. |
| 2400 | void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, |
| 2401 | ArrayRef<OpFoldResult> offsets, |
| 2402 | ArrayRef<OpFoldResult> sizes, |
| 2403 | ArrayRef<OpFoldResult> strides, |
| 2404 | ArrayRef<NamedAttribute> attrs) { |
| 2405 | build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); |
| 2406 | } |
| 2407 | |
| 2408 | /// Build an ExtractSliceOp with mixed static and dynamic entries packed into |
| 2409 | /// a Range vector. |
| 2410 | void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, |
| 2411 | ArrayRef<Range> ranges, |
| 2412 | ArrayRef<NamedAttribute> attrs) { |
| 2413 | auto [offsets, sizes, strides] = getOffsetsSizesAndStrides(ranges); |
| 2414 | build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); |
| 2415 | } |
| 2416 | |
| 2417 | /// Build an ExtractSliceOp with dynamic entries and custom result type. If |
| 2418 | /// the type passed is nullptr, it is inferred. |
| 2419 | void ExtractSliceOp::build(OpBuilder &b, OperationState &result, |
| 2420 | RankedTensorType resultType, Value source, |
| 2421 | ValueRange offsets, ValueRange sizes, |
| 2422 | ValueRange strides, ArrayRef<NamedAttribute> attrs) { |
| 2423 | SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( |
| 2424 | llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); |
| 2425 | SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( |
| 2426 | llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); |
| 2427 | SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| 2428 | llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); |
| 2429 | build(b, result, resultType, source, offsetValues, sizeValues, strideValues); |
| 2430 | } |
| 2431 | |
| 2432 | /// Build an ExtractSliceOp with dynamic entries and inferred result type. |
| 2433 | void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, |
| 2434 | ValueRange offsets, ValueRange sizes, |
| 2435 | ValueRange strides, ArrayRef<NamedAttribute> attrs) { |
| 2436 | build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); |
| 2437 | } |
| 2438 | |
| 2439 | static LogicalResult produceSliceErrorMsg(SliceVerificationResult result, |
| 2440 | Operation *op, |
| 2441 | RankedTensorType expectedType) { |
| 2442 | switch (result) { |
| 2443 | case SliceVerificationResult::Success: |
| 2444 | return success(); |
| 2445 | case SliceVerificationResult::RankTooLarge: |
| 2446 | return op->emitError(message: "expected rank to be smaller or equal to " ) |
| 2447 | << "the other rank. " ; |
| 2448 | case SliceVerificationResult::SizeMismatch: |
| 2449 | return op->emitError(message: "expected type to be " ) |
| 2450 | << expectedType << " or a rank-reduced version. (size mismatch) " ; |
| 2451 | case SliceVerificationResult::ElemTypeMismatch: |
| 2452 | return op->emitError(message: "expected element type to be " ) |
| 2453 | << expectedType.getElementType(); |
| 2454 | default: |
| 2455 | llvm_unreachable("unexpected extract_slice op verification result" ); |
| 2456 | } |
| 2457 | } |
| 2458 | |
| 2459 | /// Verifier for ExtractSliceOp. |
| 2460 | LogicalResult ExtractSliceOp::verify() { |
| 2461 | RankedTensorType sourceType = getSourceType(); |
| 2462 | |
| 2463 | // Verify result type against inferred type. |
| 2464 | RankedTensorType expectedType = ExtractSliceOp::inferResultType( |
| 2465 | sourceType, getMixedOffsets(), getMixedSizes(), getMixedStrides()); |
| 2466 | SliceVerificationResult result = isRankReducedType(expectedType, getType()); |
| 2467 | if (result != SliceVerificationResult::Success) |
| 2468 | return produceSliceErrorMsg(result, *this, expectedType); |
| 2469 | |
| 2470 | // Verify that offsets, sizes, strides do not run out-of-bounds with respect |
| 2471 | // to the source tensor. |
| 2472 | SliceBoundsVerificationResult boundsResult = verifyInBoundsSlice( |
| 2473 | sourceType.getShape(), getStaticOffsets(), getStaticSizes(), |
| 2474 | getStaticStrides(), /*generateErrorMessage=*/true); |
| 2475 | if (!boundsResult.isValid) |
| 2476 | return getOperation()->emitError(boundsResult.errorMessage); |
| 2477 | |
| 2478 | return success(); |
| 2479 | } |
| 2480 | |
| 2481 | llvm::SmallBitVector ExtractSliceOp::getDroppedDims() { |
| 2482 | return ::getDroppedDims(getType().getShape(), getMixedSizes()); |
| 2483 | } |
| 2484 | |
| 2485 | FailureOr<Value> |
| 2486 | ExtractSliceOp::rankReduceIfNeeded(OpBuilder &b, Location loc, Value value, |
| 2487 | ArrayRef<int64_t> desiredShape) { |
| 2488 | auto sourceTensorType = llvm::dyn_cast<RankedTensorType>(value.getType()); |
| 2489 | assert(sourceTensorType && "not a ranked tensor type" ); |
| 2490 | auto sourceShape = sourceTensorType.getShape(); |
| 2491 | if (sourceShape.equals(desiredShape)) |
| 2492 | return value; |
| 2493 | auto maybeRankReductionMask = |
| 2494 | mlir::computeRankReductionMask(sourceShape, desiredShape); |
| 2495 | if (!maybeRankReductionMask) |
| 2496 | return failure(); |
| 2497 | return createCanonicalRankReducingExtractSliceOp( |
| 2498 | b, loc, value, |
| 2499 | RankedTensorType::Builder(sourceTensorType).setShape(desiredShape)); |
| 2500 | } |
| 2501 | |
| 2502 | LogicalResult ExtractSliceOp::reifyResultShapes( |
| 2503 | OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
| 2504 | reifiedReturnShapes.resize(1); |
| 2505 | reifiedReturnShapes[0].reserve(getType().getRank()); |
| 2506 | SmallVector<OpFoldResult> mixedSizes = getMixedSizes(); |
| 2507 | llvm::SmallBitVector droppedDims = getDroppedDims(); |
| 2508 | for (const auto &size : enumerate(mixedSizes)) { |
| 2509 | if (droppedDims.test(size.index())) |
| 2510 | continue; |
| 2511 | reifiedReturnShapes[0].push_back(size.value()); |
| 2512 | } |
| 2513 | return success(); |
| 2514 | } |
| 2515 | |
| 2516 | namespace { |
| 2517 | /// Pattern to rewrite an extract_slice op with tensor::Cast arguments. |
| 2518 | /// This essentially pushes memref_cast past its consuming slice when |
| 2519 | /// `canFoldIntoConsumerOp` is true. |
| 2520 | /// |
| 2521 | /// Example: |
| 2522 | /// ``` |
| 2523 | /// %0 = tensor.cast %V : tensor<16x16xf32> to tensor<?x?xf32> |
| 2524 | /// %1 = tensor.extract_slice %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to |
| 2525 | /// tensor<3x4xf32> |
| 2526 | /// ``` |
| 2527 | /// is rewritten into: |
| 2528 | /// ``` |
| 2529 | /// %0 = tensor.extract_slice %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to |
| 2530 | /// tensor<3x4xf32> %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32> |
| 2531 | /// ``` |
| 2532 | class final : public OpRewritePattern<ExtractSliceOp> { |
| 2533 | public: |
| 2534 | using OpRewritePattern<ExtractSliceOp>::OpRewritePattern; |
| 2535 | |
| 2536 | LogicalResult matchAndRewrite(ExtractSliceOp sliceOp, |
| 2537 | PatternRewriter &rewriter) const override { |
| 2538 | // Any constant operand, just return to let the constant folder kick in. |
| 2539 | if (llvm::any_of(sliceOp.getOperands(), [](Value operand) { |
| 2540 | return matchPattern(value: operand, pattern: matchConstantIndex()); |
| 2541 | })) |
| 2542 | return failure(); |
| 2543 | |
| 2544 | auto castOp = sliceOp.getSource().getDefiningOp<CastOp>(); |
| 2545 | if (!castOp) |
| 2546 | return failure(); |
| 2547 | |
| 2548 | if (!canFoldIntoConsumerOp(castOp)) |
| 2549 | return failure(); |
| 2550 | |
| 2551 | // Pattern does not apply if the produced op would not verify. |
| 2552 | SliceBoundsVerificationResult sliceResult = verifyInBoundsSlice( |
| 2553 | cast<RankedTensorType>(castOp.getSource().getType()).getShape(), |
| 2554 | sliceOp.getStaticOffsets(), sliceOp.getStaticSizes(), |
| 2555 | sliceOp.getStaticStrides()); |
| 2556 | if (!sliceResult.isValid) |
| 2557 | return failure(); |
| 2558 | |
| 2559 | // Create folded extract. |
| 2560 | Location loc = sliceOp.getLoc(); |
| 2561 | Value newResult = rewriter.create<ExtractSliceOp>( |
| 2562 | loc, sliceOp.getType(), castOp.getSource(), sliceOp.getOffsets(), |
| 2563 | sliceOp.getSizes(), sliceOp.getStrides(), sliceOp.getStaticOffsets(), |
| 2564 | sliceOp.getStaticSizes(), sliceOp.getStaticStrides()); |
| 2565 | rewriter.replaceOp(sliceOp, newResult); |
| 2566 | return success(); |
| 2567 | } |
| 2568 | }; |
| 2569 | |
| 2570 | /// Slice elements from `values` into `outValues`. `counts` represents the |
| 2571 | /// numbers of elements to stride in the original values for each dimension. |
| 2572 | /// The output values can be used to construct a DenseElementsAttr. |
| 2573 | template <typename IterTy, typename ElemTy> |
| 2574 | static void sliceElements(IterTy values, ArrayRef<int64_t> counts, |
| 2575 | ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, |
| 2576 | ArrayRef<int64_t> strides, |
| 2577 | llvm::SmallVectorImpl<ElemTy> *outValues) { |
| 2578 | assert(offsets.size() == sizes.size()); |
| 2579 | assert(offsets.size() == strides.size()); |
| 2580 | if (offsets.empty()) |
| 2581 | return; |
| 2582 | |
| 2583 | int64_t offset = offsets.front(); |
| 2584 | int64_t size = sizes.front(); |
| 2585 | int64_t stride = strides.front(); |
| 2586 | if (offsets.size() == 1) { |
| 2587 | for (int64_t i = 0; i < size; ++i, offset += stride) |
| 2588 | outValues->push_back(*(values + offset)); |
| 2589 | |
| 2590 | return; |
| 2591 | } |
| 2592 | |
| 2593 | for (int64_t i = 0; i < size; ++i, offset += stride) { |
| 2594 | auto begin = values + offset * counts.front(); |
| 2595 | sliceElements<IterTy, ElemTy>(begin, counts.drop_front(), |
| 2596 | offsets.drop_front(), sizes.drop_front(), |
| 2597 | strides.drop_front(), outValues); |
| 2598 | } |
| 2599 | } |
| 2600 | |
| 2601 | /// Fold arith.constant and tensor.extract_slice into arith.constant. The |
| 2602 | /// folded operation might introduce more constant data; Users can control |
| 2603 | /// their heuristics by the control function. |
| 2604 | class final |
| 2605 | : public OpRewritePattern<ExtractSliceOp> { |
| 2606 | public: |
| 2607 | using OpRewritePattern<ExtractSliceOp>::OpRewritePattern; |
| 2608 | |
| 2609 | (MLIRContext *context, |
| 2610 | ControlConstantExtractSliceFusionFn controlFn) |
| 2611 | : OpRewritePattern<ExtractSliceOp>(context), |
| 2612 | controlFn(std::move(controlFn)) {} |
| 2613 | |
| 2614 | LogicalResult matchAndRewrite(ExtractSliceOp op, |
| 2615 | PatternRewriter &rewriter) const override { |
| 2616 | DenseElementsAttr attr; |
| 2617 | if (!matchPattern(op.getSource(), m_Constant(bind_value: &attr))) |
| 2618 | return failure(); |
| 2619 | |
| 2620 | // A constant splat is handled by fold(). |
| 2621 | if (attr.isSplat()) |
| 2622 | return failure(); |
| 2623 | |
| 2624 | // Dynamic result shape is not supported. |
| 2625 | auto sourceType = llvm::cast<ShapedType>(op.getSource().getType()); |
| 2626 | auto resultType = llvm::cast<ShapedType>(op.getResult().getType()); |
| 2627 | if (!sourceType.hasStaticShape() || !resultType.hasStaticShape()) |
| 2628 | return failure(); |
| 2629 | |
| 2630 | // Customized control over the folding. |
| 2631 | if (!controlFn(op)) |
| 2632 | return failure(); |
| 2633 | |
| 2634 | int64_t count = sourceType.getNumElements(); |
| 2635 | if (count == 0) |
| 2636 | return failure(); |
| 2637 | |
| 2638 | // Check if there are any dynamic parts, which are not supported. |
| 2639 | auto offsets = op.getStaticOffsets(); |
| 2640 | if (llvm::is_contained(offsets, ShapedType::kDynamic)) |
| 2641 | return failure(); |
| 2642 | auto sizes = op.getStaticSizes(); |
| 2643 | if (llvm::is_contained(sizes, ShapedType::kDynamic)) |
| 2644 | return failure(); |
| 2645 | auto strides = op.getStaticStrides(); |
| 2646 | if (llvm::is_contained(strides, ShapedType::kDynamic)) |
| 2647 | return failure(); |
| 2648 | |
| 2649 | // Compute the stride for each dimension. |
| 2650 | SmallVector<int64_t> counts; |
| 2651 | ArrayRef<int64_t> shape = sourceType.getShape(); |
| 2652 | counts.reserve(N: shape.size()); |
| 2653 | for (int64_t v : shape) { |
| 2654 | count = count / v; |
| 2655 | counts.push_back(count); |
| 2656 | } |
| 2657 | |
| 2658 | // New attribute constructed by the sliced values. |
| 2659 | DenseElementsAttr newAttr; |
| 2660 | |
| 2661 | if (auto elems = llvm::dyn_cast<DenseIntElementsAttr>(attr)) { |
| 2662 | SmallVector<APInt> outValues; |
| 2663 | outValues.reserve(N: sourceType.getNumElements()); |
| 2664 | sliceElements<DenseElementsAttr::IntElementIterator, APInt>( |
| 2665 | elems.begin(), counts, offsets, sizes, strides, &outValues); |
| 2666 | newAttr = DenseElementsAttr::get(resultType, outValues); |
| 2667 | } else if (auto elems = llvm::dyn_cast<DenseFPElementsAttr>(attr)) { |
| 2668 | SmallVector<APFloat> outValues; |
| 2669 | outValues.reserve(N: sourceType.getNumElements()); |
| 2670 | sliceElements<DenseElementsAttr::FloatElementIterator, APFloat>( |
| 2671 | elems.begin(), counts, offsets, sizes, strides, &outValues); |
| 2672 | newAttr = DenseElementsAttr::get(resultType, outValues); |
| 2673 | } |
| 2674 | |
| 2675 | if (newAttr) { |
| 2676 | rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, resultType, newAttr); |
| 2677 | return success(); |
| 2678 | } |
| 2679 | |
| 2680 | return failure(); |
| 2681 | } |
| 2682 | |
| 2683 | private: |
| 2684 | /// This additionally controls whether the fold happens or not. Users can |
| 2685 | /// impose their heuristics in the function. |
| 2686 | ControlConstantExtractSliceFusionFn ; |
| 2687 | }; |
| 2688 | |
| 2689 | } // namespace |
| 2690 | |
| 2691 | void mlir::tensor::( |
| 2692 | RewritePatternSet &patterns, |
| 2693 | const ControlConstantExtractSliceFusionFn &controlFn) { |
| 2694 | patterns.add<ConstantOpExtractSliceFolder>(patterns.getContext(), controlFn); |
| 2695 | } |
| 2696 | |
| 2697 | /// Return the canonical type of the result of an extract_slice op. |
| 2698 | struct SliceReturnTypeCanonicalizer { |
| 2699 | RankedTensorType operator()(ExtractSliceOp op, |
| 2700 | ArrayRef<OpFoldResult> mixedOffsets, |
| 2701 | ArrayRef<OpFoldResult> mixedSizes, |
| 2702 | ArrayRef<OpFoldResult> mixedStrides) { |
| 2703 | return ExtractSliceOp::inferCanonicalRankReducedResultType( |
| 2704 | op.getType().getRank(), op.getSourceType(), mixedOffsets, mixedSizes, |
| 2705 | mixedStrides); |
| 2706 | } |
| 2707 | }; |
| 2708 | |
| 2709 | /// A canonicalizer wrapper to replace ExtractSliceOps. |
| 2710 | struct SliceCanonicalizer { |
| 2711 | void operator()(PatternRewriter &rewriter, ExtractSliceOp op, |
| 2712 | ExtractSliceOp newOp) { |
| 2713 | Value replacement = newOp.getResult(); |
| 2714 | if (replacement.getType() != op.getType()) |
| 2715 | replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(), |
| 2716 | replacement); |
| 2717 | rewriter.replaceOp(op, replacement); |
| 2718 | } |
| 2719 | }; |
| 2720 | |
| 2721 | void ExtractSliceOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 2722 | MLIRContext *context) { |
| 2723 | results.add< |
| 2724 | OpWithOffsetSizesAndStridesConstantArgumentFolder< |
| 2725 | ExtractSliceOp, SliceReturnTypeCanonicalizer, SliceCanonicalizer>, |
| 2726 | ExtractSliceOpCastFolder>(context); |
| 2727 | } |
| 2728 | |
| 2729 | // |
| 2730 | static LogicalResult |
| 2731 | foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op, |
| 2732 | ShapedType shapedType) { |
| 2733 | OpBuilder b(op.getContext()); |
| 2734 | for (OpFoldResult ofr : op.getMixedOffsets()) |
| 2735 | if (getConstantIntValue(ofr) != static_cast<int64_t>(0)) |
| 2736 | return failure(); |
| 2737 | // Rank-reducing noops only need to inspect the leading dimensions: |
| 2738 | // llvm::zip is appropriate. |
| 2739 | auto shape = shapedType.getShape(); |
| 2740 | for (auto it : llvm::zip(op.getMixedSizes(), shape)) |
| 2741 | if (getConstantIntValue(std::get<0>(it)) != std::get<1>(it)) |
| 2742 | return failure(); |
| 2743 | for (OpFoldResult ofr : op.getMixedStrides()) |
| 2744 | if (getConstantIntValue(ofr) != static_cast<int64_t>(1)) |
| 2745 | return failure(); |
| 2746 | return success(); |
| 2747 | } |
| 2748 | |
| 2749 | /// If we have an ExtractSliceOp consuming an InsertSliceOp with the same |
| 2750 | /// slice, we can return the InsertSliceOp's source directly. |
| 2751 | // TODO: This only checks the immediate producer; extend to go up the |
| 2752 | // insert/extract chain if the slices are disjoint. |
| 2753 | static Value (ExtractSliceOp ) { |
| 2754 | auto insertOp = extractOp.getSource().getDefiningOp<InsertSliceOp>(); |
| 2755 | |
| 2756 | auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; }; |
| 2757 | if (insertOp && insertOp.getSource().getType() == extractOp.getType() && |
| 2758 | insertOp.isSameAs(extractOp, isSame)) |
| 2759 | return insertOp.getSource(); |
| 2760 | |
| 2761 | return {}; |
| 2762 | } |
| 2763 | |
| 2764 | OpFoldResult ExtractSliceOp::fold(FoldAdaptor adaptor) { |
| 2765 | if (OpFoldResult reshapedSource = reshapeConstantSource( |
| 2766 | llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getSource()), |
| 2767 | getResult().getType())) |
| 2768 | return reshapedSource; |
| 2769 | if (getSourceType() == getType() && |
| 2770 | succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType()))) |
| 2771 | return this->getSource(); |
| 2772 | if (Value slice = foldExtractAfterInsertSlice(*this)) |
| 2773 | return slice; |
| 2774 | |
| 2775 | return OpFoldResult(); |
| 2776 | } |
| 2777 | |
| 2778 | Value mlir::tensor::( |
| 2779 | OpBuilder &b, Location loc, Value tensor, RankedTensorType targetType) { |
| 2780 | auto rankedTensorType = llvm::cast<RankedTensorType>(tensor.getType()); |
| 2781 | unsigned rank = rankedTensorType.getRank(); |
| 2782 | SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); |
| 2783 | SmallVector<OpFoldResult> sizes = getMixedSizes(builder&: b, loc, value: tensor); |
| 2784 | SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); |
| 2785 | return b.createOrFold<tensor::ExtractSliceOp>(loc, targetType, tensor, |
| 2786 | offsets, sizes, strides); |
| 2787 | } |
| 2788 | |
| 2789 | //===----------------------------------------------------------------------===// |
| 2790 | // InsertSliceOp |
| 2791 | //===----------------------------------------------------------------------===// |
| 2792 | |
| 2793 | void InsertSliceOp::getAsmResultNames( |
| 2794 | function_ref<void(Value, StringRef)> setNameFn) { |
| 2795 | setNameFn(getResult(), "inserted_slice" ); |
| 2796 | } |
| 2797 | |
| 2798 | // Build a InsertSliceOp with mixed static and dynamic entries. |
| 2799 | void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, |
| 2800 | Value dest, ArrayRef<OpFoldResult> offsets, |
| 2801 | ArrayRef<OpFoldResult> sizes, |
| 2802 | ArrayRef<OpFoldResult> strides, |
| 2803 | ArrayRef<NamedAttribute> attrs) { |
| 2804 | SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| 2805 | SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| 2806 | dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets); |
| 2807 | dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes); |
| 2808 | dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides); |
| 2809 | result.addAttributes(attrs); |
| 2810 | build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes, |
| 2811 | dynamicStrides, b.getDenseI64ArrayAttr(staticOffsets), |
| 2812 | b.getDenseI64ArrayAttr(staticSizes), |
| 2813 | b.getDenseI64ArrayAttr(staticStrides)); |
| 2814 | } |
| 2815 | |
| 2816 | /// Build an InsertSliceOp with mixed static and dynamic entries packed into a |
| 2817 | /// Range vector. |
| 2818 | void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, |
| 2819 | Value dest, ArrayRef<Range> ranges, |
| 2820 | ArrayRef<NamedAttribute> attrs) { |
| 2821 | auto [offsets, sizes, strides] = getOffsetsSizesAndStrides(ranges); |
| 2822 | build(b, result, source, dest, offsets, sizes, strides, attrs); |
| 2823 | } |
| 2824 | |
| 2825 | // Build a InsertSliceOp with dynamic entries. |
| 2826 | void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, |
| 2827 | Value dest, ValueRange offsets, ValueRange sizes, |
| 2828 | ValueRange strides, ArrayRef<NamedAttribute> attrs) { |
| 2829 | SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( |
| 2830 | llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); |
| 2831 | SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( |
| 2832 | llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); |
| 2833 | SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| 2834 | llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); |
| 2835 | build(b, result, source, dest, offsetValues, sizeValues, strideValues); |
| 2836 | } |
| 2837 | |
| 2838 | /// Rank-reducing type verification for both InsertSliceOp and |
| 2839 | /// ParallelInsertSliceOp. |
| 2840 | static SliceVerificationResult verifyInsertSliceOp( |
| 2841 | RankedTensorType srcType, RankedTensorType dstType, |
| 2842 | ArrayRef<int64_t> staticOffsets, ArrayRef<int64_t> staticSizes, |
| 2843 | ArrayRef<int64_t> staticStrides, RankedTensorType *expectedType = nullptr) { |
| 2844 | // insert_slice is the inverse of extract_slice, use the same type |
| 2845 | // inference. |
| 2846 | RankedTensorType expected = ExtractSliceOp::inferResultType( |
| 2847 | dstType, staticOffsets, staticSizes, staticStrides); |
| 2848 | if (expectedType) |
| 2849 | *expectedType = expected; |
| 2850 | return isRankReducedType(expected, srcType); |
| 2851 | } |
| 2852 | |
| 2853 | /// Verifier for InsertSliceOp. |
| 2854 | LogicalResult InsertSliceOp::verify() { |
| 2855 | // Verify result type against inferred type. |
| 2856 | RankedTensorType expectedType; |
| 2857 | SliceVerificationResult result = |
| 2858 | verifyInsertSliceOp(getSourceType(), getType(), getStaticOffsets(), |
| 2859 | getStaticSizes(), getStaticStrides(), &expectedType); |
| 2860 | if (result != SliceVerificationResult::Success) |
| 2861 | return produceSliceErrorMsg(result, *this, expectedType); |
| 2862 | |
| 2863 | // Verify that offsets, sizes, strides do not run out-of-bounds with respect |
| 2864 | // to the destination tensor. |
| 2865 | SliceBoundsVerificationResult boundsResult = verifyInBoundsSlice( |
| 2866 | getDestType().getShape(), getStaticOffsets(), getStaticSizes(), |
| 2867 | getStaticStrides(), /*generateErrorMessage=*/true); |
| 2868 | if (!boundsResult.isValid) |
| 2869 | return getOperation()->emitError(boundsResult.errorMessage); |
| 2870 | |
| 2871 | return success(); |
| 2872 | } |
| 2873 | |
| 2874 | /// If we have two consecutive InsertSliceOp writing to the same slice, we |
| 2875 | /// can mutate the second InsertSliceOp's destination to the first one's. |
| 2876 | /// |
| 2877 | /// Example: |
| 2878 | /// |
| 2879 | /// ```mlir |
| 2880 | /// %0 = tensor.insert_slice %slice0 into %input[0, 0] [64, 64] [1, 1] |
| 2881 | /// %1 = tensor.insert_slice %slice1 into %0[0, 0] [64, 64] [1, 1] |
| 2882 | /// ``` |
| 2883 | /// |
| 2884 | /// folds into: |
| 2885 | /// |
| 2886 | /// ```mlir |
| 2887 | /// %1 = tensor.insert_slice %slice1 into %input[0, 0] [64, 64] [1, 1] |
| 2888 | /// ``` |
| 2889 | /// |
| 2890 | /// This pattern works with both InsertSliceOp and ParallelInsertSliceOp. |
| 2891 | static LogicalResult foldInsertAfterInsertSlice(InsertSliceOp insertOp) { |
| 2892 | auto prevInsertOp = insertOp.getDest().getDefiningOp<InsertSliceOp>(); |
| 2893 | |
| 2894 | auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; }; |
| 2895 | if (!prevInsertOp || |
| 2896 | prevInsertOp.getSource().getType() != insertOp.getSource().getType() || |
| 2897 | !prevInsertOp.isSameAs(insertOp, isSame)) |
| 2898 | return failure(); |
| 2899 | |
| 2900 | insertOp.getDestMutable().assign(prevInsertOp.getDest()); |
| 2901 | return success(); |
| 2902 | } |
| 2903 | |
| 2904 | /// Folds round-trip extract/insert slice op pairs. |
| 2905 | /// Example: |
| 2906 | /// ```mlir |
| 2907 | /// %0 = tensor.extract_slice %val[0, 0, 0, 0] [1, 1, 2, 4] [1, 1, 1, 1] |
| 2908 | /// %1 = tensor.insert_slice %0 into %val[0, 0, 0, 0] [1, 1, 2, 4] [1, 1, 1, 1] |
| 2909 | /// ``` |
| 2910 | /// can be folded into %val. |
| 2911 | static Value (InsertSliceOp insertOp) { |
| 2912 | auto = insertOp.getSource().getDefiningOp<ExtractSliceOp>(); |
| 2913 | |
| 2914 | auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; }; |
| 2915 | if (!extractOp || extractOp.getSource() != insertOp.getDest() || |
| 2916 | !extractOp.isSameAs(insertOp, isSame)) |
| 2917 | return nullptr; |
| 2918 | |
| 2919 | return extractOp.getSource(); |
| 2920 | } |
| 2921 | |
| 2922 | OpFoldResult InsertSliceOp::fold(FoldAdaptor) { |
| 2923 | if (getSourceType().hasStaticShape() && getType().hasStaticShape() && |
| 2924 | getSourceType() == getType() && |
| 2925 | succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType()))) |
| 2926 | return this->getSource(); |
| 2927 | if (succeeded(foldInsertAfterInsertSlice(*this))) |
| 2928 | return getResult(); |
| 2929 | if (auto result = foldInsertAfterExtractSlice(*this)) |
| 2930 | return result; |
| 2931 | if (llvm::any_of(getMixedSizes(), isZeroInteger)) |
| 2932 | return getDest(); |
| 2933 | return OpFoldResult(); |
| 2934 | } |
| 2935 | |
| 2936 | LogicalResult InsertSliceOp::reifyResultShapes( |
| 2937 | OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
| 2938 | reifiedReturnShapes.resize(1, SmallVector<OpFoldResult>(getType().getRank())); |
| 2939 | reifiedReturnShapes[0] = tensor::getMixedSizes(builder, getLoc(), getDest()); |
| 2940 | return success(); |
| 2941 | } |
| 2942 | |
| 2943 | namespace { |
| 2944 | /// Pattern to rewrite a insert_slice op with constant arguments. |
| 2945 | /// |
| 2946 | /// This pattern works with both InsertSliceOp and ParallelInsertSliceOp. |
| 2947 | template <typename InsertOpTy> |
| 2948 | class InsertSliceOpConstantArgumentFolder final |
| 2949 | : public OpRewritePattern<InsertOpTy> { |
| 2950 | public: |
| 2951 | using OpRewritePattern<InsertOpTy>::OpRewritePattern; |
| 2952 | |
| 2953 | LogicalResult matchAndRewrite(InsertOpTy insertSliceOp, |
| 2954 | PatternRewriter &rewriter) const override { |
| 2955 | SmallVector<OpFoldResult> mixedOffsets(insertSliceOp.getMixedOffsets()); |
| 2956 | SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes()); |
| 2957 | SmallVector<OpFoldResult> mixedStrides(insertSliceOp.getMixedStrides()); |
| 2958 | |
| 2959 | // No constant operands were folded, just return; |
| 2960 | if (failed(Result: foldDynamicOffsetSizeList(offsetsOrSizes&: mixedOffsets)) && |
| 2961 | failed(Result: foldDynamicOffsetSizeList(offsetsOrSizes&: mixedSizes)) && |
| 2962 | failed(Result: foldDynamicStrideList(strides&: mixedStrides))) |
| 2963 | return failure(); |
| 2964 | |
| 2965 | // Pattern does not apply if the produced op would not verify. |
| 2966 | SliceBoundsVerificationResult sliceResult = |
| 2967 | verifyInBoundsSlice(insertSliceOp.getDest().getType().getShape(), |
| 2968 | mixedOffsets, mixedSizes, mixedStrides); |
| 2969 | if (!sliceResult.isValid) |
| 2970 | return failure(); |
| 2971 | |
| 2972 | // Create the new op in canonical form. |
| 2973 | auto sourceType = ExtractSliceOp::inferCanonicalRankReducedResultType( |
| 2974 | insertSliceOp.getSourceType().getRank(), insertSliceOp.getDestType(), |
| 2975 | mixedOffsets, mixedSizes, mixedStrides); |
| 2976 | Value toInsert = insertSliceOp.getSource(); |
| 2977 | if (sourceType != insertSliceOp.getSourceType()) { |
| 2978 | OpBuilder::InsertionGuard g(rewriter); |
| 2979 | // The only difference between InsertSliceOp and ParallelInsertSliceOp |
| 2980 | // is that the insertion point is just before the ParallelCombiningOp in |
| 2981 | // the parallel case. |
| 2982 | if (std::is_same<InsertOpTy, ParallelInsertSliceOp>::value) |
| 2983 | rewriter.setInsertionPoint(insertSliceOp->getParentOp()); |
| 2984 | toInsert = rewriter.create<tensor::CastOp>(insertSliceOp.getLoc(), |
| 2985 | sourceType, toInsert); |
| 2986 | } |
| 2987 | rewriter.replaceOpWithNewOp<InsertOpTy>( |
| 2988 | insertSliceOp, toInsert, insertSliceOp.getDest(), mixedOffsets, |
| 2989 | mixedSizes, mixedStrides); |
| 2990 | return success(); |
| 2991 | } |
| 2992 | }; |
| 2993 | |
| 2994 | /// Fold tensor_casts with insert_slice operations. If the source or |
| 2995 | /// destination tensor is a tensor_cast that removes static type information, |
| 2996 | /// the cast is folded into the insert_slice operation. E.g.: |
| 2997 | /// |
| 2998 | /// ```mlir |
| 2999 | /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> |
| 3000 | /// %2 = tensor.insert_slice %1 into ... : tensor<?x?xf32> into ... |
| 3001 | /// ``` |
| 3002 | /// |
| 3003 | /// folds into: |
| 3004 | /// |
| 3005 | /// ```mlir |
| 3006 | /// %2 = tensor.insert_slice %0 into ... : tensor<8x16xf32> into ... |
| 3007 | /// ``` |
| 3008 | /// |
| 3009 | /// Note: When folding a cast on the destination tensor, the result of the |
| 3010 | /// insert_slice operation is casted to ensure that the type of the result did |
| 3011 | /// not change. |
| 3012 | /// |
| 3013 | /// This pattern works with both InsertSliceOp and ParallelInsertSliceOp. |
| 3014 | template <typename InsertOpTy> |
| 3015 | struct InsertSliceOpCastFolder final : public OpRewritePattern<InsertOpTy> { |
| 3016 | using OpRewritePattern<InsertOpTy>::OpRewritePattern; |
| 3017 | |
| 3018 | LogicalResult matchAndRewrite(InsertOpTy insertSliceOp, |
| 3019 | PatternRewriter &rewriter) const override { |
| 3020 | if (llvm::any_of(insertSliceOp.getOperands(), [](Value operand) { |
| 3021 | return matchPattern(value: operand, pattern: matchConstantIndex()); |
| 3022 | })) |
| 3023 | return failure(); |
| 3024 | |
| 3025 | auto getSourceOfCastOp = [](Value v) -> std::optional<Value> { |
| 3026 | auto castOp = v.getDefiningOp<tensor::CastOp>(); |
| 3027 | if (!castOp || !canFoldIntoConsumerOp(castOp)) |
| 3028 | return std::nullopt; |
| 3029 | return castOp.getSource(); |
| 3030 | }; |
| 3031 | std::optional<Value> sourceCastSource = |
| 3032 | getSourceOfCastOp(insertSliceOp.getSource()); |
| 3033 | std::optional<Value> destCastSource = |
| 3034 | getSourceOfCastOp(insertSliceOp.getDest()); |
| 3035 | if (!sourceCastSource && !destCastSource) |
| 3036 | return failure(); |
| 3037 | |
| 3038 | auto src = |
| 3039 | (sourceCastSource ? *sourceCastSource : insertSliceOp.getSource()); |
| 3040 | auto dst = (destCastSource ? *destCastSource : insertSliceOp.getDest()); |
| 3041 | auto srcType = llvm::dyn_cast<RankedTensorType>(src.getType()); |
| 3042 | auto dstType = llvm::dyn_cast<RankedTensorType>(dst.getType()); |
| 3043 | if (!srcType || !dstType) |
| 3044 | return failure(); |
| 3045 | |
| 3046 | // The tensor.cast source could have additional static information not seen |
| 3047 | // in the insert slice op static sizes, so we ignore dynamic dims when |
| 3048 | // computing the rank reduction mask. |
| 3049 | SmallVector<int64_t> staticSizes(insertSliceOp.getStaticSizes()); |
| 3050 | auto rankReductionMask = computeRankReductionMask( |
| 3051 | staticSizes, srcType.getShape(), /*matchDynamic=*/true); |
| 3052 | if (!rankReductionMask.has_value()) |
| 3053 | return failure(); |
| 3054 | // Replace dimensions in the insert slice op with corresponding static dims |
| 3055 | // from the cast source type. If the insert slice sizes have static dims |
| 3056 | // that are not static in the tensor.cast source (i.e., when the cast op |
| 3057 | // casts a dynamic dim to static), the dim should not be replaced, and the |
| 3058 | // pattern will fail later in `verifyInsertSliceOp`. |
| 3059 | SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes()); |
| 3060 | int64_t rankReducedIdx = 0; |
| 3061 | for (auto [idx, size] : enumerate(First&: staticSizes)) { |
| 3062 | if (!rankReductionMask.value().contains(idx) && |
| 3063 | !srcType.isDynamicDim(rankReducedIdx)) { |
| 3064 | mixedSizes[idx] = getAsIndexOpFoldResult( |
| 3065 | rewriter.getContext(), srcType.getDimSize(rankReducedIdx)); |
| 3066 | size = srcType.getDimSize(rankReducedIdx++); |
| 3067 | } |
| 3068 | } |
| 3069 | |
| 3070 | // Pattern does not apply if the produced op would not verify. |
| 3071 | if (verifyInsertSliceOp(srcType, dstType, insertSliceOp.getStaticOffsets(), |
| 3072 | staticSizes, insertSliceOp.getStaticStrides()) != |
| 3073 | SliceVerificationResult::Success) |
| 3074 | return failure(); |
| 3075 | SliceBoundsVerificationResult sliceResult = |
| 3076 | verifyInBoundsSlice(dstType.getShape(), insertSliceOp.getMixedOffsets(), |
| 3077 | mixedSizes, insertSliceOp.getMixedStrides()); |
| 3078 | if (!sliceResult.isValid) |
| 3079 | return failure(); |
| 3080 | |
| 3081 | Operation *replacement = rewriter.create<InsertOpTy>( |
| 3082 | insertSliceOp.getLoc(), src, dst, insertSliceOp.getMixedOffsets(), |
| 3083 | mixedSizes, insertSliceOp.getMixedStrides()); |
| 3084 | |
| 3085 | // In the parallel case there is no result and so nothing to cast. |
| 3086 | bool isParallelInsert = |
| 3087 | std::is_same<InsertOpTy, ParallelInsertSliceOp>::value; |
| 3088 | if (!isParallelInsert && dst.getType() != insertSliceOp.getDestType()) { |
| 3089 | replacement = rewriter.create<tensor::CastOp>(insertSliceOp.getLoc(), |
| 3090 | insertSliceOp.getDestType(), |
| 3091 | replacement->getResult(0)); |
| 3092 | } |
| 3093 | rewriter.replaceOp(insertSliceOp, replacement->getResults()); |
| 3094 | return success(); |
| 3095 | } |
| 3096 | }; |
| 3097 | |
| 3098 | /// If additional static type information can be deduced from a insert_slice's |
| 3099 | /// size operands, insert an explicit cast of the op's source operand. This |
| 3100 | /// enables other canonicalization patterns that are matching for tensor_cast |
| 3101 | /// ops such as `ForOpTensorCastFolder` in SCF. |
| 3102 | /// |
| 3103 | /// Example: |
| 3104 | /// |
| 3105 | /// ```mlir |
| 3106 | /// %r = tensor.insert_slice %0 into %1[...] [64, 64] [1, 1] |
| 3107 | /// : tensor<?x?xf32> into ... |
| 3108 | /// ``` |
| 3109 | /// |
| 3110 | /// folds into: |
| 3111 | /// |
| 3112 | /// ```mlir |
| 3113 | /// %tmp = tensor.cast %0 : tensor<?x?xf32> to tensor<64x64xf32> |
| 3114 | /// %r = tensor.insert_slice %tmp into %1[...] [64, 64] [1, 1] |
| 3115 | /// : tensor<64x64xf32> into ... |
| 3116 | /// ``` |
| 3117 | /// |
| 3118 | /// This patterns works with both InsertSliceOp and ParallelInsertSliceOp. |
| 3119 | template <typename InsertOpTy> |
| 3120 | struct InsertSliceOpSourceCastInserter final |
| 3121 | : public OpRewritePattern<InsertOpTy> { |
| 3122 | using OpRewritePattern<InsertOpTy>::OpRewritePattern; |
| 3123 | |
| 3124 | LogicalResult matchAndRewrite(InsertOpTy insertSliceOp, |
| 3125 | PatternRewriter &rewriter) const override { |
| 3126 | RankedTensorType srcType = insertSliceOp.getSourceType(); |
| 3127 | if (srcType.getRank() != insertSliceOp.getDestType().getRank()) |
| 3128 | return failure(); |
| 3129 | SmallVector<int64_t> newSrcShape(srcType.getShape()); |
| 3130 | for (int64_t i = 0; i < srcType.getRank(); ++i) { |
| 3131 | if (std::optional<int64_t> constInt = |
| 3132 | getConstantIntValue(insertSliceOp.getMixedSizes()[i])) { |
| 3133 | // Bail on invalid IR. |
| 3134 | if (*constInt < 0) |
| 3135 | return failure(); |
| 3136 | newSrcShape[i] = *constInt; |
| 3137 | } |
| 3138 | } |
| 3139 | if (!hasValidSizesOffsets(sizesOrOffsets: newSrcShape)) |
| 3140 | return failure(); |
| 3141 | |
| 3142 | RankedTensorType newSrcType = RankedTensorType::get( |
| 3143 | newSrcShape, srcType.getElementType(), srcType.getEncoding()); |
| 3144 | if (srcType == newSrcType || |
| 3145 | !preservesStaticInformation(srcType, newSrcType) || |
| 3146 | !tensor::CastOp::areCastCompatible(srcType, newSrcType)) |
| 3147 | return failure(); |
| 3148 | |
| 3149 | // newSrcType is: |
| 3150 | // 1) Different from srcType. |
| 3151 | // 2) "More static" than srcType. |
| 3152 | // 3) Cast-compatible with srcType. |
| 3153 | // Insert the cast. |
| 3154 | OpBuilder::InsertionGuard g(rewriter); |
| 3155 | // The only difference between InsertSliceOp and ParallelInsertSliceOp is |
| 3156 | // that the insertion point is just before the ParallelCombiningOp in the |
| 3157 | // parallel case. |
| 3158 | if (std::is_same<InsertOpTy, ParallelInsertSliceOp>::value) |
| 3159 | rewriter.setInsertionPoint(insertSliceOp->getParentOp()); |
| 3160 | Value cast = rewriter.create<tensor::CastOp>( |
| 3161 | insertSliceOp.getLoc(), newSrcType, insertSliceOp.getSource()); |
| 3162 | rewriter.replaceOpWithNewOp<InsertOpTy>( |
| 3163 | insertSliceOp, cast, insertSliceOp.getDest(), |
| 3164 | insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(), |
| 3165 | insertSliceOp.getMixedStrides()); |
| 3166 | return success(); |
| 3167 | } |
| 3168 | }; |
| 3169 | } // namespace |
| 3170 | |
| 3171 | llvm::SmallBitVector InsertSliceOp::getDroppedDims() { |
| 3172 | return ::getDroppedDims(getSourceType().getShape(), getMixedSizes()); |
| 3173 | } |
| 3174 | |
| 3175 | void InsertSliceOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 3176 | MLIRContext *context) { |
| 3177 | results.add<InsertSliceOpConstantArgumentFolder<InsertSliceOp>, |
| 3178 | InsertSliceOpCastFolder<InsertSliceOp>, |
| 3179 | InsertSliceOpSourceCastInserter<InsertSliceOp>>(context); |
| 3180 | } |
| 3181 | |
| 3182 | Value mlir::tensor::createCanonicalRankReducingInsertSliceOp(OpBuilder &b, |
| 3183 | Location loc, |
| 3184 | Value tensor, |
| 3185 | Value dest) { |
| 3186 | auto rankedTensorType = llvm::cast<RankedTensorType>(dest.getType()); |
| 3187 | unsigned rank = rankedTensorType.getRank(); |
| 3188 | SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); |
| 3189 | SmallVector<OpFoldResult> sizes = getMixedSizes(builder&: b, loc, value: dest); |
| 3190 | SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); |
| 3191 | return b.createOrFold<tensor::InsertSliceOp>(loc, tensor, dest, offsets, |
| 3192 | sizes, strides); |
| 3193 | } |
| 3194 | |
| 3195 | //===----------------------------------------------------------------------===// |
| 3196 | // PadOp |
| 3197 | //===----------------------------------------------------------------------===// |
| 3198 | |
| 3199 | void PadOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) { |
| 3200 | setNameFn(getResult(), "padded" ); |
| 3201 | } |
| 3202 | |
| 3203 | // TODO: Replace custom<InferType> directive with AllTypesMatch as soon as it |
| 3204 | // supports optional types. |
| 3205 | void printInferType(OpAsmPrinter &printer, Operation *op, Value optOperand, |
| 3206 | Type typeToInfer, Type typeToInferFrom) {} |
| 3207 | |
| 3208 | ParseResult |
| 3209 | parseInferType(OpAsmParser &parser, |
| 3210 | std::optional<OpAsmParser::UnresolvedOperand> optOperand, |
| 3211 | Type &typeToInfer, Type typeToInferFrom) { |
| 3212 | if (optOperand) |
| 3213 | typeToInfer = typeToInferFrom; |
| 3214 | return success(); |
| 3215 | } |
| 3216 | |
| 3217 | LogicalResult PadOp::verify() { |
| 3218 | auto sourceType = llvm::cast<RankedTensorType>(getSource().getType()); |
| 3219 | auto resultType = llvm::cast<RankedTensorType>(getResult().getType()); |
| 3220 | auto expectedType = |
| 3221 | PadOp::inferResultType(sourceType, getStaticLow(), getStaticHigh()); |
| 3222 | if (!expectedType) { |
| 3223 | return emitError("failed to infer expectedType from sourceType " ) |
| 3224 | << sourceType << ", specified resultType is " << resultType; |
| 3225 | } |
| 3226 | if (resultType.getRank() != expectedType.getRank()) { |
| 3227 | return emitError("specified type " ) |
| 3228 | << resultType << " does not match the inferred type " |
| 3229 | << expectedType; |
| 3230 | } |
| 3231 | for (int i = 0, e = sourceType.getRank(); i < e; ++i) { |
| 3232 | if (resultType.getDimSize(i) == expectedType.getDimSize(i)) |
| 3233 | continue; |
| 3234 | if (expectedType.isDynamicDim(i)) |
| 3235 | continue; |
| 3236 | return emitError("specified type " ) |
| 3237 | << resultType << " does not match the inferred type " |
| 3238 | << expectedType; |
| 3239 | } |
| 3240 | |
| 3241 | return success(); |
| 3242 | } |
| 3243 | |
| 3244 | LogicalResult PadOp::verifyRegions() { |
| 3245 | auto ®ion = getRegion(); |
| 3246 | unsigned rank = llvm::cast<RankedTensorType>(getResult().getType()).getRank(); |
| 3247 | Block &block = region.front(); |
| 3248 | if (block.getNumArguments() != rank) |
| 3249 | return emitError("expected the block to have " ) << rank << " arguments" ; |
| 3250 | |
| 3251 | // Note: the number and type of yield values are checked in the YieldOp. |
| 3252 | for (const auto &en : llvm::enumerate(block.getArgumentTypes())) { |
| 3253 | if (!en.value().isIndex()) |
| 3254 | return emitOpError("expected block argument " ) |
| 3255 | << (en.index() + 1) << " to be an index" ; |
| 3256 | } |
| 3257 | |
| 3258 | // Ensure that the region yields an element of the right type. |
| 3259 | auto yieldOp = llvm::cast<YieldOp>(block.getTerminator()); |
| 3260 | if (yieldOp.getValue().getType() != |
| 3261 | llvm::cast<ShapedType>(getType()).getElementType()) |
| 3262 | return emitOpError("expected yield type to match shape element type" ); |
| 3263 | |
| 3264 | return success(); |
| 3265 | } |
| 3266 | |
| 3267 | RankedTensorType PadOp::inferResultType(RankedTensorType sourceType, |
| 3268 | ArrayRef<int64_t> staticLow, |
| 3269 | ArrayRef<int64_t> staticHigh, |
| 3270 | ArrayRef<int64_t> resultShape) { |
| 3271 | unsigned rank = sourceType.getRank(); |
| 3272 | if (staticLow.size() != rank) |
| 3273 | return RankedTensorType(); |
| 3274 | if (staticHigh.size() != rank) |
| 3275 | return RankedTensorType(); |
| 3276 | if (!resultShape.empty() && resultShape.size() != rank) |
| 3277 | return RankedTensorType(); |
| 3278 | |
| 3279 | SmallVector<int64_t, 4> inferredShape; |
| 3280 | for (auto i : llvm::seq<unsigned>(0, rank)) { |
| 3281 | if (sourceType.isDynamicDim(i) || staticLow[i] == ShapedType::kDynamic || |
| 3282 | staticHigh[i] == ShapedType::kDynamic) { |
| 3283 | inferredShape.push_back(resultShape.empty() ? ShapedType::kDynamic |
| 3284 | : resultShape[i]); |
| 3285 | } else { |
| 3286 | int64_t size = sourceType.getDimSize(i) + staticLow[i] + staticHigh[i]; |
| 3287 | assert((resultShape.empty() || size == resultShape[i] || |
| 3288 | resultShape[i] == ShapedType::kDynamic) && |
| 3289 | "mismatch between inferred shape and result shape" ); |
| 3290 | inferredShape.push_back(size); |
| 3291 | } |
| 3292 | } |
| 3293 | |
| 3294 | return RankedTensorType::get(inferredShape, sourceType.getElementType()); |
| 3295 | } |
| 3296 | |
| 3297 | void PadOp::build(OpBuilder &b, OperationState &result, Type resultType, |
| 3298 | Value source, ArrayRef<int64_t> staticLow, |
| 3299 | ArrayRef<int64_t> staticHigh, ValueRange low, ValueRange high, |
| 3300 | bool nofold, ArrayRef<NamedAttribute> attrs) { |
| 3301 | auto sourceType = llvm::cast<RankedTensorType>(source.getType()); |
| 3302 | if (!resultType) |
| 3303 | resultType = inferResultType(sourceType, staticLow, staticHigh); |
| 3304 | result.addAttributes(attrs); |
| 3305 | build(b, result, resultType, source, low, high, |
| 3306 | b.getDenseI64ArrayAttr(staticLow), b.getDenseI64ArrayAttr(staticHigh), |
| 3307 | nofold ? b.getUnitAttr() : UnitAttr()); |
| 3308 | } |
| 3309 | |
| 3310 | void PadOp::build(OpBuilder &b, OperationState &result, Type resultType, |
| 3311 | Value source, ValueRange low, ValueRange high, bool nofold, |
| 3312 | ArrayRef<NamedAttribute> attrs) { |
| 3313 | auto sourceType = llvm::cast<RankedTensorType>(source.getType()); |
| 3314 | unsigned rank = sourceType.getRank(); |
| 3315 | SmallVector<int64_t, 4> staticVector(rank, ShapedType::kDynamic); |
| 3316 | build(b, result, resultType, source, staticVector, staticVector, low, high, |
| 3317 | nofold, attrs); |
| 3318 | } |
| 3319 | |
| 3320 | void PadOp::build(OpBuilder &b, OperationState &result, Type resultType, |
| 3321 | Value source, ArrayRef<OpFoldResult> low, |
| 3322 | ArrayRef<OpFoldResult> high, bool nofold, |
| 3323 | ArrayRef<NamedAttribute> attrs) { |
| 3324 | auto sourceType = llvm::cast<RankedTensorType>(source.getType()); |
| 3325 | SmallVector<Value, 4> dynamicLow, dynamicHigh; |
| 3326 | SmallVector<int64_t, 4> staticLow, staticHigh; |
| 3327 | // staticLow and staticHigh have full information of the padding config. |
| 3328 | // This will grow staticLow and staticHigh with 1 value. If the config is |
| 3329 | // dynamic (ie not a constant), dynamicLow and dynamicHigh will grow with 1 |
| 3330 | // value as well. |
| 3331 | dispatchIndexOpFoldResults(low, dynamicLow, staticLow); |
| 3332 | dispatchIndexOpFoldResults(high, dynamicHigh, staticHigh); |
| 3333 | if (!resultType) { |
| 3334 | resultType = PadOp::inferResultType(sourceType, staticLow, staticHigh); |
| 3335 | } |
| 3336 | assert(llvm::isa<RankedTensorType>(resultType)); |
| 3337 | result.addAttributes(attrs); |
| 3338 | build(b, result, resultType, source, dynamicLow, dynamicHigh, |
| 3339 | b.getDenseI64ArrayAttr(staticLow), b.getDenseI64ArrayAttr(staticHigh), |
| 3340 | nofold ? b.getUnitAttr() : UnitAttr()); |
| 3341 | } |
| 3342 | |
| 3343 | void PadOp::build(OpBuilder &b, OperationState &result, Type resultType, |
| 3344 | Value source, ArrayRef<OpFoldResult> low, |
| 3345 | ArrayRef<OpFoldResult> high, Value constantPadValue, |
| 3346 | bool nofold, ArrayRef<NamedAttribute> attrs) { |
| 3347 | build(b, result, resultType, source, low, high, nofold, attrs); |
| 3348 | |
| 3349 | // Add a region and a block to yield the pad value. |
| 3350 | Region *region = result.regions[0].get(); |
| 3351 | int sourceRank = llvm::cast<RankedTensorType>(source.getType()).getRank(); |
| 3352 | SmallVector<Type> blockArgTypes(sourceRank, b.getIndexType()); |
| 3353 | SmallVector<Location> blockArgLocs(sourceRank, result.location); |
| 3354 | |
| 3355 | // `builder.createBlock` changes the insertion point within the block. Create |
| 3356 | // a guard to reset the insertion point of the builder after it is destroyed. |
| 3357 | OpBuilder::InsertionGuard guard(b); |
| 3358 | b.createBlock(region, region->end(), blockArgTypes, blockArgLocs); |
| 3359 | b.create<tensor::YieldOp>(result.location, constantPadValue); |
| 3360 | } |
| 3361 | |
| 3362 | llvm::SmallBitVector PadOp::getPaddedDims() { |
| 3363 | llvm::SmallBitVector paddedDims(getSourceType().getRank()); |
| 3364 | auto extractPaddedDims = [&](ArrayRef<OpFoldResult> paddingWidths) { |
| 3365 | for (const auto &en : enumerate(paddingWidths)) |
| 3366 | if (getConstantIntValue(en.value()) != static_cast<int64_t>(0)) |
| 3367 | paddedDims.set(en.index()); |
| 3368 | }; |
| 3369 | extractPaddedDims(getMixedLowPad()); |
| 3370 | extractPaddedDims(getMixedHighPad()); |
| 3371 | return paddedDims; |
| 3372 | } |
| 3373 | |
| 3374 | namespace { |
| 3375 | // Folds tensor.pad when padding is static zeros and the attribute |
| 3376 | // doesn't request otherwise. |
| 3377 | struct FoldStaticZeroPadding : public OpRewritePattern<PadOp> { |
| 3378 | using OpRewritePattern<PadOp>::OpRewritePattern; |
| 3379 | |
| 3380 | LogicalResult matchAndRewrite(PadOp padTensorOp, |
| 3381 | PatternRewriter &rewriter) const override { |
| 3382 | if (!padTensorOp.hasZeroLowPad() || !padTensorOp.hasZeroHighPad()) |
| 3383 | return failure(); |
| 3384 | if (padTensorOp.getNofold()) |
| 3385 | return failure(); |
| 3386 | rewriter.replaceOpWithNewOp<tensor::CastOp>( |
| 3387 | padTensorOp, padTensorOp.getResult().getType(), |
| 3388 | padTensorOp.getSource()); |
| 3389 | return success(); |
| 3390 | } |
| 3391 | }; |
| 3392 | |
| 3393 | // Fold CastOp into PadOp when adding static information. |
| 3394 | struct FoldSourceTensorCast : public OpRewritePattern<PadOp> { |
| 3395 | using OpRewritePattern<PadOp>::OpRewritePattern; |
| 3396 | |
| 3397 | LogicalResult matchAndRewrite(PadOp padTensorOp, |
| 3398 | PatternRewriter &rewriter) const override { |
| 3399 | auto castOp = padTensorOp.getSource().getDefiningOp<tensor::CastOp>(); |
| 3400 | if (!tensor::canFoldIntoConsumerOp(castOp)) |
| 3401 | return failure(); |
| 3402 | |
| 3403 | auto newResultType = PadOp::inferResultType( |
| 3404 | llvm::cast<RankedTensorType>(castOp.getSource().getType()), |
| 3405 | padTensorOp.getStaticLow(), padTensorOp.getStaticHigh(), |
| 3406 | padTensorOp.getResultType().getShape()); |
| 3407 | |
| 3408 | if (newResultType == padTensorOp.getResultType()) { |
| 3409 | rewriter.modifyOpInPlace(padTensorOp, [&]() { |
| 3410 | padTensorOp.getSourceMutable().assign(castOp.getSource()); |
| 3411 | }); |
| 3412 | } else { |
| 3413 | auto newOp = rewriter.create<PadOp>( |
| 3414 | padTensorOp->getLoc(), newResultType, padTensorOp.getSource(), |
| 3415 | padTensorOp.getStaticLow(), padTensorOp.getStaticHigh(), |
| 3416 | padTensorOp.getLow(), padTensorOp.getHigh(), padTensorOp.getNofold(), |
| 3417 | getPrunedAttributeList(padTensorOp, PadOp::getAttributeNames())); |
| 3418 | IRMapping mapper; |
| 3419 | padTensorOp.getRegion().cloneInto(&newOp.getRegion(), mapper); |
| 3420 | |
| 3421 | rewriter.replaceOpWithNewOp<tensor::CastOp>( |
| 3422 | padTensorOp, padTensorOp.getResultType(), newOp); |
| 3423 | } |
| 3424 | return success(); |
| 3425 | } |
| 3426 | }; |
| 3427 | |
| 3428 | // Fold CastOp using the result of PadOp back into the latter if it adds |
| 3429 | // static information. |
| 3430 | struct FoldTargetTensorCast : public OpRewritePattern<PadOp> { |
| 3431 | using OpRewritePattern<PadOp>::OpRewritePattern; |
| 3432 | |
| 3433 | LogicalResult matchAndRewrite(PadOp padTensorOp, |
| 3434 | PatternRewriter &rewriter) const override { |
| 3435 | if (!padTensorOp.getResult().hasOneUse()) |
| 3436 | return failure(); |
| 3437 | auto tensorCastOp = |
| 3438 | dyn_cast<tensor::CastOp>(*padTensorOp->getUsers().begin()); |
| 3439 | if (!tensorCastOp) |
| 3440 | return failure(); |
| 3441 | if (!tensor::preservesStaticInformation(source: padTensorOp.getResult().getType(), |
| 3442 | target: tensorCastOp.getDest().getType())) |
| 3443 | return failure(); |
| 3444 | |
| 3445 | auto replacementOp = rewriter.create<PadOp>( |
| 3446 | padTensorOp.getLoc(), tensorCastOp.getDest().getType(), |
| 3447 | padTensorOp.getSource(), padTensorOp.getStaticLow(), |
| 3448 | padTensorOp.getStaticHigh(), padTensorOp.getLow(), |
| 3449 | padTensorOp.getHigh(), padTensorOp.getNofold(), |
| 3450 | getPrunedAttributeList(padTensorOp, PadOp::getAttributeNames())); |
| 3451 | replacementOp.getRegion().takeBody(padTensorOp.getRegion()); |
| 3452 | |
| 3453 | rewriter.replaceOp(padTensorOp, replacementOp.getResult()); |
| 3454 | rewriter.replaceOp(tensorCastOp, replacementOp.getResult()); |
| 3455 | return success(); |
| 3456 | } |
| 3457 | }; |
| 3458 | |
| 3459 | /// Fold chains of tensor::ExtractSliceOp, tensor::PadOp pairs that pad |
| 3460 | /// different dimensions. The pattern applies if the following preconditions |
| 3461 | /// hold: |
| 3462 | /// 1) the tensor::ExtractSliceOps are not rank-reducing, |
| 3463 | /// 2) the tensor::ExtractSliceOps have only unit-strides, |
| 3464 | /// 3) the tensor::PadOps perform only high-padding, |
| 3465 | /// 4) the tensor::PadOps have the same constant padding value, |
| 3466 | /// 5) the tensor::PadOps do not have common padding dimensions, |
| 3467 | /// 6) one tensor::ExtractSliceOp, tensor::PadOp pair has zero-padding and |
| 3468 | /// zero-offset for every dimension. |
| 3469 | /// 7) the tensor::ExtractSliceOp sizes match the source tensor sizes for |
| 3470 | /// the |
| 3471 | /// padded source dimensions. |
| 3472 | /// |
| 3473 | /// Example: |
| 3474 | /// |
| 3475 | /// ```mlir |
| 3476 | /// %0 = tensor.extract_slice %input[16, 0] [%sz0, 64] [1, 1] |
| 3477 | /// : tensor<64x64xf32> to tensor<?x64xf32> |
| 3478 | /// %1 = tensor.pad %0 low[0, 0] high[%pw0, 0] { ... |
| 3479 | /// } : tensor<?x64xf32> to tensor<8x64xf32> |
| 3480 | /// %2 = tensor.extract_slice %1[0, 4] [8, %sz1] [1, 1] |
| 3481 | /// : tensor<8x64xf32> to tensor<8x?xf32> |
| 3482 | /// %res = tensor.pad %2 nofold low[0, 0] high[0, %pw1] { ... |
| 3483 | /// } : tensor<8x?xf32> to tensor<8x4xf32> |
| 3484 | /// ``` |
| 3485 | /// |
| 3486 | /// folds into: |
| 3487 | /// |
| 3488 | /// ```mlir |
| 3489 | /// %0 = tensor.extract_slice %input[16, 4] [%sz0, %sz1] [1, 1] |
| 3490 | /// : tensor<64x64xf32> to tensor<?x?xf32> |
| 3491 | /// %res = tensor.pad %0 nofold low[0, 0] high[%pw0, %pw1] { ... |
| 3492 | /// } : tensor<?x?xf32> to tensor<8x4xf32> |
| 3493 | /// ``` |
| 3494 | struct FoldOrthogonalPaddings : public OpRewritePattern<PadOp> { |
| 3495 | using OpRewritePattern<PadOp>::OpRewritePattern; |
| 3496 | |
| 3497 | LogicalResult matchAndRewrite(PadOp padOp, |
| 3498 | PatternRewriter &rewriter) const override { |
| 3499 | auto innerSliceOp = padOp.getSource().getDefiningOp<ExtractSliceOp>(); |
| 3500 | if (!innerSliceOp) |
| 3501 | return failure(); |
| 3502 | auto outerPadOp = innerSliceOp.getSource().getDefiningOp<PadOp>(); |
| 3503 | if (!outerPadOp || outerPadOp.getNofold()) |
| 3504 | return failure(); |
| 3505 | auto outerSliceOp = outerPadOp.getSource().getDefiningOp<ExtractSliceOp>(); |
| 3506 | if (!outerSliceOp) |
| 3507 | return failure(); |
| 3508 | |
| 3509 | // 1) Fail if the chain is rank-reducing. |
| 3510 | int64_t rank = padOp.getSourceType().getRank(); |
| 3511 | if (outerSliceOp.getSourceType().getRank() != rank) { |
| 3512 | return rewriter.notifyMatchFailure(padOp, |
| 3513 | "cannot fold rank-reducing chain" ); |
| 3514 | } |
| 3515 | |
| 3516 | // 2) Fail if the tensor::ExtractSliceOps have non-unit strides. |
| 3517 | if (!innerSliceOp.hasUnitStride() || !outerSliceOp.hasUnitStride()) { |
| 3518 | return rewriter.notifyMatchFailure( |
| 3519 | padOp, "cannot fold non-unit stride ExtractSliceOps" ); |
| 3520 | } |
| 3521 | |
| 3522 | // 3) Fail if the tensor::PadOps have non-zero low padding. |
| 3523 | if (!padOp.hasZeroLowPad() || !outerPadOp.hasZeroLowPad()) { |
| 3524 | return rewriter.notifyMatchFailure(padOp, |
| 3525 | "cannot fold PadOps with low padding" ); |
| 3526 | } |
| 3527 | |
| 3528 | // 4) Fail if the tensor::PadOps padding values do not match. |
| 3529 | Attribute innerAttr, outerAttr; |
| 3530 | Value innerValue = padOp.getConstantPaddingValue(); |
| 3531 | Value outerValue = outerPadOp.getConstantPaddingValue(); |
| 3532 | if (!innerValue || !outerValue || |
| 3533 | !matchPattern(value: innerValue, pattern: m_Constant(bind_value: &innerAttr)) || |
| 3534 | !matchPattern(value: outerValue, pattern: m_Constant(bind_value: &outerAttr)) || |
| 3535 | innerAttr != outerAttr) { |
| 3536 | return rewriter.notifyMatchFailure( |
| 3537 | padOp, "cannot fold PadOps with different padding values" ); |
| 3538 | } |
| 3539 | |
| 3540 | // 5) Fail if a dimension is padded by both tensor::PadOps. |
| 3541 | llvm::SmallBitVector innerDims = padOp.getPaddedDims(); |
| 3542 | llvm::SmallBitVector outerDims = outerPadOp.getPaddedDims(); |
| 3543 | if (innerDims.anyCommon(RHS: outerDims)) { |
| 3544 | return rewriter.notifyMatchFailure( |
| 3545 | padOp, "cannot fold PadOps with common padding dimensions" ); |
| 3546 | } |
| 3547 | |
| 3548 | // 6) Combine the offsets of the two tensor::ExtractSliceOps. Find the |
| 3549 | // zero-offset and zero-padding tensor::ExtractSliceOp, tensor::PadOp pair |
| 3550 | // for every dimension, and use the offset the other pair. Fail if no |
| 3551 | // zero-offset and zero-padding tensor::ExtractSliceOp, tensor::PadOp pair |
| 3552 | // exists. |
| 3553 | SmallVector<OpFoldResult> newOffsets(rank, rewriter.getIndexAttr(0)); |
| 3554 | for (auto en : enumerate(newOffsets)) { |
| 3555 | OpFoldResult innerOffset = innerSliceOp.getMixedOffsets()[en.index()]; |
| 3556 | OpFoldResult outerOffset = outerSliceOp.getMixedOffsets()[en.index()]; |
| 3557 | if (!innerDims.test(en.index()) && |
| 3558 | (getConstantIntValue(innerOffset) == static_cast<int64_t>(0))) { |
| 3559 | en.value() = outerOffset; |
| 3560 | continue; |
| 3561 | } |
| 3562 | if (!outerDims.test(en.index()) && |
| 3563 | (getConstantIntValue(outerOffset) == static_cast<int64_t>(0))) { |
| 3564 | en.value() = innerOffset; |
| 3565 | continue; |
| 3566 | } |
| 3567 | return rewriter.notifyMatchFailure( |
| 3568 | padOp, "cannot find zero-offset and zero-padding pair" ); |
| 3569 | } |
| 3570 | |
| 3571 | // 7) Combine the sizes of the two tensor::ExtractSliceOps. Take the size |
| 3572 | // of the outer tensor::ExtractSliceOp for the dimensions padded by the |
| 3573 | // outer tensor::PadOp and fail if the size of the inner |
| 3574 | // tensor::ExtractSliceOp does not match the size of the padded dimension. |
| 3575 | // Otherwise, take the size of the inner tensor::ExtractSliceOp. |
| 3576 | SmallVector<OpFoldResult> newSizes = innerSliceOp.getMixedSizes(); |
| 3577 | for (auto en : enumerate(newSizes)) { |
| 3578 | if (!outerDims.test(en.index())) |
| 3579 | continue; |
| 3580 | OpFoldResult sliceSize = innerSliceOp.getMixedSizes()[en.index()]; |
| 3581 | int64_t sourceSize = innerSliceOp.getSourceType().getShape()[en.index()]; |
| 3582 | assert(!ShapedType::isDynamic(sourceSize) && |
| 3583 | "expected padded dimension to have a static size" ); |
| 3584 | if (getConstantIntValue(sliceSize) != sourceSize) { |
| 3585 | return rewriter.notifyMatchFailure( |
| 3586 | padOp, "cannot fold since the inner ExtractSliceOp size does not " |
| 3587 | "match the size of the outer padding" ); |
| 3588 | } |
| 3589 | en.value() = outerSliceOp.getMixedSizes()[en.index()]; |
| 3590 | } |
| 3591 | |
| 3592 | // Combine the high paddings of the two tensor::PadOps. |
| 3593 | SmallVector<OpFoldResult> newHighPad(rank, rewriter.getIndexAttr(0)); |
| 3594 | for (auto en : enumerate(newHighPad)) { |
| 3595 | if (innerDims.test(en.index())) |
| 3596 | newHighPad[en.index()] = padOp.getMixedHighPad()[en.index()]; |
| 3597 | if (outerDims.test(en.index())) |
| 3598 | newHighPad[en.index()] = outerPadOp.getMixedHighPad()[en.index()]; |
| 3599 | } |
| 3600 | |
| 3601 | // Create a new tensor::ExtractSliceOp, tensor::PadOp pair that performs |
| 3602 | // the two paddings in one step. |
| 3603 | auto newSliceOp = rewriter.create<ExtractSliceOp>( |
| 3604 | padOp.getLoc(), outerSliceOp.getSource(), newOffsets, newSizes, |
| 3605 | innerSliceOp.getMixedStrides()); |
| 3606 | auto newPadOp = rewriter.create<PadOp>( |
| 3607 | padOp.getLoc(), padOp.getResultType(), newSliceOp.getResult(), |
| 3608 | padOp.getMixedLowPad(), newHighPad, padOp.getNofold(), |
| 3609 | getPrunedAttributeList(padOp, PadOp::getAttributeNames())); |
| 3610 | rewriter.inlineRegionBefore(padOp.getRegion(), newPadOp.getRegion(), |
| 3611 | newPadOp.getRegion().begin()); |
| 3612 | rewriter.replaceOp(padOp, newPadOp.getResult()); |
| 3613 | return success(); |
| 3614 | } |
| 3615 | }; |
| 3616 | |
| 3617 | struct FoldStaticPadding : public OpRewritePattern<PadOp> { |
| 3618 | using OpRewritePattern<PadOp>::OpRewritePattern; |
| 3619 | |
| 3620 | LogicalResult matchAndRewrite(PadOp padTensorOp, |
| 3621 | PatternRewriter &rewriter) const override { |
| 3622 | Value input = padTensorOp.getSource(); |
| 3623 | if (!llvm::isa<RankedTensorType>(Val: input.getType())) |
| 3624 | return failure(); |
| 3625 | auto inputDims = llvm::cast<RankedTensorType>(input.getType()).getShape(); |
| 3626 | auto inputRank = inputDims.size(); |
| 3627 | |
| 3628 | auto oldResultType = |
| 3629 | dyn_cast<RankedTensorType>(padTensorOp.getResult().getType()); |
| 3630 | if (!oldResultType) |
| 3631 | return failure(); |
| 3632 | |
| 3633 | auto outputDims = oldResultType.getShape(); |
| 3634 | |
| 3635 | // Extract the static info from the high and low operands. |
| 3636 | SmallVector<int64_t> constOperandsLow; |
| 3637 | SmallVector<Value> newLows; |
| 3638 | for (auto operand : padTensorOp.getLow()) { |
| 3639 | APSInt intOp; |
| 3640 | if (!matchPattern(operand, m_ConstantInt(&intOp))) { |
| 3641 | constOperandsLow.push_back(ShapedType::kDynamic); |
| 3642 | newLows.push_back(operand); |
| 3643 | continue; |
| 3644 | } |
| 3645 | constOperandsLow.push_back(intOp.getExtValue()); |
| 3646 | } |
| 3647 | SmallVector<int64_t> constOperandsHigh; |
| 3648 | SmallVector<Value> newHighs; |
| 3649 | for (auto operand : padTensorOp.getHigh()) { |
| 3650 | APSInt intOp; |
| 3651 | if (!matchPattern(operand, m_ConstantInt(&intOp))) { |
| 3652 | constOperandsHigh.push_back(ShapedType::kDynamic); |
| 3653 | newHighs.push_back(operand); |
| 3654 | continue; |
| 3655 | } |
| 3656 | constOperandsHigh.push_back(intOp.getExtValue()); |
| 3657 | } |
| 3658 | |
| 3659 | SmallVector<int64_t> constLow(padTensorOp.getStaticLow()); |
| 3660 | SmallVector<int64_t> constHigh(padTensorOp.getStaticHigh()); |
| 3661 | |
| 3662 | // Verify the op is well-formed. |
| 3663 | if (inputDims.size() != outputDims.size() || |
| 3664 | inputDims.size() != constLow.size() || |
| 3665 | inputDims.size() != constHigh.size()) |
| 3666 | return failure(); |
| 3667 | |
| 3668 | auto lowCount = 0; |
| 3669 | auto highCount = 0; |
| 3670 | for (size_t i = 0; i < inputRank; i++) { |
| 3671 | if (constLow[i] == ShapedType::kDynamic) |
| 3672 | constLow[i] = constOperandsLow[lowCount++]; |
| 3673 | if (constHigh[i] == ShapedType::kDynamic) |
| 3674 | constHigh[i] = constOperandsHigh[highCount++]; |
| 3675 | } |
| 3676 | |
| 3677 | auto staticLow = ArrayRef<int64_t>(constLow); |
| 3678 | auto staticHigh = ArrayRef<int64_t>(constHigh); |
| 3679 | |
| 3680 | // Calculate the output sizes with the static information. |
| 3681 | SmallVector<int64_t> newOutDims; |
| 3682 | for (size_t i = 0; i < inputRank; i++) { |
| 3683 | if (outputDims[i] == ShapedType::kDynamic) { |
| 3684 | newOutDims.push_back( |
| 3685 | (staticLow[i] == ShapedType::kDynamic || |
| 3686 | staticHigh[i] == ShapedType::kDynamic || |
| 3687 | inputDims[i] == ShapedType::kDynamic |
| 3688 | ? ShapedType::kDynamic |
| 3689 | : inputDims[i] + staticLow[i] + staticHigh[i])); |
| 3690 | } else { |
| 3691 | newOutDims.push_back(Elt: outputDims[i]); |
| 3692 | } |
| 3693 | } |
| 3694 | |
| 3695 | if (SmallVector<int64_t>(outputDims) == newOutDims || |
| 3696 | llvm::all_of(Range&: newOutDims, |
| 3697 | P: [&](int64_t x) { return x == ShapedType::kDynamic; })) |
| 3698 | return failure(); |
| 3699 | |
| 3700 | // Rewrite the op using the new static type. |
| 3701 | auto newResultType = RankedTensorType::get( |
| 3702 | newOutDims, padTensorOp.getType().getElementType()); |
| 3703 | auto newOp = rewriter.create<PadOp>( |
| 3704 | padTensorOp->getLoc(), newResultType, input, staticLow, staticHigh, |
| 3705 | newLows, newHighs, padTensorOp.getNofold(), |
| 3706 | getPrunedAttributeList(padTensorOp, PadOp::getAttributeNames())); |
| 3707 | |
| 3708 | IRMapping mapper; |
| 3709 | padTensorOp.getRegion().cloneInto(&newOp.getRegion(), mapper); |
| 3710 | rewriter.replaceOpWithNewOp<tensor::CastOp>(padTensorOp, oldResultType, |
| 3711 | newOp); |
| 3712 | |
| 3713 | return success(); |
| 3714 | } |
| 3715 | }; |
| 3716 | |
| 3717 | /// Folds a chain of `tensor.pad` ops with the same constant padding value. |
| 3718 | /// |
| 3719 | /// Example: |
| 3720 | /// |
| 3721 | /// ```mlir |
| 3722 | /// %1 = tensor.pad %0 low[0, 1] high[0, 2] { |
| 3723 | /// tensor.yield %val |
| 3724 | /// } : tensor<1x2xf32> to tensor<2x5xf32> |
| 3725 | /// %res = tensor.pad %1 low[0, 2] high[3, 0] { |
| 3726 | /// tensor.yield %val |
| 3727 | /// } : tensor<1x5xf32> to tensor<5x7xf32> |
| 3728 | /// ``` |
| 3729 | /// |
| 3730 | /// folds into: |
| 3731 | /// |
| 3732 | /// ```mlir |
| 3733 | /// %res = tensor.pad %0 low[0, 3] high[3, 2] { |
| 3734 | /// tensor.yield %val |
| 3735 | /// } : tensor<1x2xf32> to tensor<5x7xf32> |
| 3736 | /// ``` |
| 3737 | struct FoldConsecutiveConstantPadding : public OpRewritePattern<tensor::PadOp> { |
| 3738 | using OpRewritePattern<tensor::PadOp>::OpRewritePattern; |
| 3739 | |
| 3740 | LogicalResult matchAndRewrite(tensor::PadOp padOp, |
| 3741 | PatternRewriter &rewriter) const override { |
| 3742 | if (padOp.getNofold()) { |
| 3743 | return rewriter.notifyMatchFailure(padOp, "skipping unfoldable pad" ); |
| 3744 | } |
| 3745 | |
| 3746 | auto producerPad = padOp.getSource().getDefiningOp<tensor::PadOp>(); |
| 3747 | if (!producerPad || producerPad.getNofold()) { |
| 3748 | return rewriter.notifyMatchFailure( |
| 3749 | padOp, "producer is not a foldable tensor.pad op" ); |
| 3750 | } |
| 3751 | |
| 3752 | // Fail if the tensor::PadOps padding values do not match. |
| 3753 | Value consumerPadValue = padOp.getConstantPaddingValue(); |
| 3754 | Value producerPadValue = producerPad.getConstantPaddingValue(); |
| 3755 | if (!consumerPadValue || !producerPadValue || |
| 3756 | consumerPadValue != producerPadValue) { |
| 3757 | return rewriter.notifyMatchFailure( |
| 3758 | padOp, |
| 3759 | "cannot fold PadOps with different or non-constant padding values" ); |
| 3760 | } |
| 3761 | |
| 3762 | Location loc = padOp.getLoc(); |
| 3763 | AffineExpr d0, d1; |
| 3764 | bindDims(ctx: rewriter.getContext(), exprs&: d0, exprs&: d1); |
| 3765 | |
| 3766 | // Combine the low/high paddings of the two tensor::PadOps. |
| 3767 | auto addPaddings = [&](ArrayRef<OpFoldResult> consumerPaddings, |
| 3768 | ArrayRef<OpFoldResult> producerPaddings) { |
| 3769 | SmallVector<OpFoldResult> sumPaddings; |
| 3770 | for (auto [consumerIndex, producerIndex] : |
| 3771 | llvm::zip_equal(t&: consumerPaddings, u&: producerPaddings)) { |
| 3772 | sumPaddings.push_back(Elt: affine::makeComposedFoldedAffineApply( |
| 3773 | b&: rewriter, loc, expr: d0 + d1, operands: {consumerIndex, producerIndex})); |
| 3774 | } |
| 3775 | return sumPaddings; |
| 3776 | }; |
| 3777 | |
| 3778 | SmallVector<OpFoldResult> newHighPad = |
| 3779 | addPaddings(padOp.getMixedHighPad(), producerPad.getMixedHighPad()); |
| 3780 | SmallVector<OpFoldResult> newLowPad = |
| 3781 | addPaddings(padOp.getMixedLowPad(), producerPad.getMixedLowPad()); |
| 3782 | |
| 3783 | auto newPadOp = rewriter.create<tensor::PadOp>( |
| 3784 | padOp.getLoc(), padOp.getResultType(), producerPad.getSource(), |
| 3785 | newLowPad, newHighPad, padOp.getNofold(), |
| 3786 | getPrunedAttributeList(padOp, tensor::PadOp::getAttributeNames())); |
| 3787 | rewriter.inlineRegionBefore(padOp.getRegion(), newPadOp.getRegion(), |
| 3788 | newPadOp.getRegion().begin()); |
| 3789 | rewriter.replaceOp(padOp, newPadOp.getResult()); |
| 3790 | return success(); |
| 3791 | } |
| 3792 | }; |
| 3793 | |
| 3794 | } // namespace |
| 3795 | |
| 3796 | void PadOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 3797 | MLIRContext *context) { |
| 3798 | results.add<FoldStaticZeroPadding, FoldSourceTensorCast, FoldTargetTensorCast, |
| 3799 | FoldOrthogonalPaddings, FoldStaticPadding, |
| 3800 | FoldConsecutiveConstantPadding>(context); |
| 3801 | } |
| 3802 | |
| 3803 | /// Return the padding value of the PadOp if it constant. In this context, |
| 3804 | /// "constant" means an actual constant or "defined outside of the block". |
| 3805 | /// |
| 3806 | /// Values are considered constant in three cases: |
| 3807 | /// - A ConstantLike value. |
| 3808 | /// - A basic block argument from a different block. |
| 3809 | /// - A value defined outside of the block. |
| 3810 | /// |
| 3811 | /// If the padding value is not constant, an empty Value is returned. |
| 3812 | Value PadOp::getConstantPaddingValue() { |
| 3813 | auto yieldOp = dyn_cast<YieldOp>(getRegion().front().getTerminator()); |
| 3814 | if (!yieldOp) |
| 3815 | return {}; |
| 3816 | Value padValue = yieldOp.getValue(); |
| 3817 | // Check if yield value is a constant. |
| 3818 | if (matchPattern(padValue, m_Constant())) |
| 3819 | return padValue; |
| 3820 | // Check if yield value is defined inside the PadOp block. |
| 3821 | if (padValue.getParentBlock() == &getRegion().front()) |
| 3822 | return {}; |
| 3823 | // Else: Yield value defined outside of the PadOp block. |
| 3824 | return padValue; |
| 3825 | } |
| 3826 | |
| 3827 | OpFoldResult PadOp::fold(FoldAdaptor) { |
| 3828 | if (getResultType().hasStaticShape() && getResultType() == getSourceType() && |
| 3829 | !getNofold()) |
| 3830 | return getSource(); |
| 3831 | return {}; |
| 3832 | } |
| 3833 | |
| 3834 | //===----------------------------------------------------------------------===// |
| 3835 | // ParallelInsertSliceOp |
| 3836 | //===----------------------------------------------------------------------===// |
| 3837 | |
| 3838 | OpResult ParallelInsertSliceOp::getTiedOpResult() { |
| 3839 | ParallelCombiningOpInterface parallelCombiningParent = |
| 3840 | getParallelCombiningParent(); |
| 3841 | for (const auto &it : |
| 3842 | llvm::enumerate(parallelCombiningParent.getYieldingOps())) { |
| 3843 | Operation &nextOp = it.value(); |
| 3844 | if (&nextOp == getOperation()) |
| 3845 | return parallelCombiningParent.getParentResult(it.index()); |
| 3846 | } |
| 3847 | llvm_unreachable("ParallelInsertSliceOp no tied OpResult found" ); |
| 3848 | } |
| 3849 | |
| 3850 | // Build a ParallelInsertSliceOp with mixed static and dynamic entries. |
| 3851 | void ParallelInsertSliceOp::build(OpBuilder &b, OperationState &result, |
| 3852 | Value source, Value dest, |
| 3853 | ArrayRef<OpFoldResult> offsets, |
| 3854 | ArrayRef<OpFoldResult> sizes, |
| 3855 | ArrayRef<OpFoldResult> strides, |
| 3856 | ArrayRef<NamedAttribute> attrs) { |
| 3857 | SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| 3858 | SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| 3859 | dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets); |
| 3860 | dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes); |
| 3861 | dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides); |
| 3862 | result.addAttributes(attrs); |
| 3863 | build(b, result, {}, source, dest, dynamicOffsets, dynamicSizes, |
| 3864 | dynamicStrides, b.getDenseI64ArrayAttr(staticOffsets), |
| 3865 | b.getDenseI64ArrayAttr(staticSizes), |
| 3866 | b.getDenseI64ArrayAttr(staticStrides)); |
| 3867 | } |
| 3868 | |
| 3869 | /// Build an ParallelInsertSliceOp with mixed static and dynamic entries |
| 3870 | /// packed into a Range vector. |
| 3871 | void ParallelInsertSliceOp::build(OpBuilder &b, OperationState &result, |
| 3872 | Value source, Value dest, |
| 3873 | ArrayRef<Range> ranges, |
| 3874 | ArrayRef<NamedAttribute> attrs) { |
| 3875 | auto [offsets, sizes, strides] = getOffsetsSizesAndStrides(ranges); |
| 3876 | build(b, result, source, dest, offsets, sizes, strides, attrs); |
| 3877 | } |
| 3878 | |
| 3879 | // Build a ParallelInsertSliceOp with dynamic entries. |
| 3880 | void ParallelInsertSliceOp::build(OpBuilder &b, OperationState &result, |
| 3881 | Value source, Value dest, ValueRange offsets, |
| 3882 | ValueRange sizes, ValueRange strides, |
| 3883 | ArrayRef<NamedAttribute> attrs) { |
| 3884 | SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( |
| 3885 | llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); |
| 3886 | SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( |
| 3887 | llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); |
| 3888 | SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| 3889 | llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); |
| 3890 | build(b, result, source, dest, offsetValues, sizeValues, strideValues); |
| 3891 | } |
| 3892 | |
| 3893 | LogicalResult ParallelInsertSliceOp::verify() { |
| 3894 | if (!isa<ParallelCombiningOpInterface>(getOperation()->getParentOp())) |
| 3895 | return this->emitError("expected ParallelCombiningOpInterface parent, got:" ) |
| 3896 | << *(getOperation()->getParentOp()); |
| 3897 | |
| 3898 | // Verify result type against inferred type. |
| 3899 | RankedTensorType expectedType; |
| 3900 | SliceVerificationResult result = |
| 3901 | verifyInsertSliceOp(getSourceType(), getDestType(), getStaticOffsets(), |
| 3902 | getStaticSizes(), getStaticStrides(), &expectedType); |
| 3903 | if (result != SliceVerificationResult::Success) |
| 3904 | return produceSliceErrorMsg(result, *this, expectedType); |
| 3905 | |
| 3906 | // Verify that offsets, sizes, strides do not run out-of-bounds with respect |
| 3907 | // to the destination tensor. |
| 3908 | SliceBoundsVerificationResult boundsResult = verifyInBoundsSlice( |
| 3909 | getDestType().getShape(), getStaticOffsets(), getStaticSizes(), |
| 3910 | getStaticStrides(), /*generateErrorMessage=*/true); |
| 3911 | if (!boundsResult.isValid) |
| 3912 | return getOperation()->emitError(boundsResult.errorMessage); |
| 3913 | |
| 3914 | return success(); |
| 3915 | } |
| 3916 | |
| 3917 | void ParallelInsertSliceOp::getCanonicalizationPatterns( |
| 3918 | RewritePatternSet &results, MLIRContext *context) { |
| 3919 | results.add<InsertSliceOpConstantArgumentFolder<ParallelInsertSliceOp>, |
| 3920 | InsertSliceOpCastFolder<ParallelInsertSliceOp>, |
| 3921 | InsertSliceOpSourceCastInserter<ParallelInsertSliceOp>>(context); |
| 3922 | } |
| 3923 | |
| 3924 | llvm::SmallBitVector ParallelInsertSliceOp::getDroppedDims() { |
| 3925 | return ::getDroppedDims(getSourceType().getShape(), getMixedSizes()); |
| 3926 | } |
| 3927 | |
| 3928 | //===----------------------------------------------------------------------===// |
| 3929 | // ScatterOp |
| 3930 | //===----------------------------------------------------------------------===// |
| 3931 | |
| 3932 | void ScatterOp::getAsmResultNames( |
| 3933 | function_ref<void(Value, StringRef)> setNameFn) { |
| 3934 | setNameFn(getResult(), "scatter" ); |
| 3935 | } |
| 3936 | |
| 3937 | LogicalResult ScatterOp::verify() { |
| 3938 | int64_t destRank = getDestType().getRank(); |
| 3939 | ArrayRef<int64_t> scatterDims = getScatterDims(); |
| 3940 | if (failed(verifyGatherOrScatterDims(getOperation(), scatterDims, |
| 3941 | getIndicesType().getShape(), destRank, |
| 3942 | "scatter" , "dest" ))) |
| 3943 | return failure(); |
| 3944 | |
| 3945 | if (!getUnique()) |
| 3946 | return emitOpError("requires 'unique' attribute to be set" ); |
| 3947 | // TODO: we could also check statically that there are fewer leading index |
| 3948 | // tensor dims than the dest dims. If this is not the case, the unique |
| 3949 | // attribute cannot be true. |
| 3950 | |
| 3951 | // Use the GatherOp::inferResultType on the `dest` type and verify the |
| 3952 | // expected type matches the source type. |
| 3953 | RankedTensorType expectedSourceType = GatherOp::inferResultType( |
| 3954 | getDestType(), getIndicesType(), scatterDims, /*rankReduced=*/false); |
| 3955 | RankedTensorType expectedRankReducedSourceType = GatherOp::inferResultType( |
| 3956 | getDestType(), getIndicesType(), scatterDims, /*rankReduced=*/true); |
| 3957 | if (getSourceType() != expectedSourceType && |
| 3958 | getSourceType() != expectedRankReducedSourceType) { |
| 3959 | return emitOpError("source type " |
| 3960 | "mismatch: " |
| 3961 | "expected " ) |
| 3962 | << expectedSourceType << " or its rank-reduced variant " |
| 3963 | << expectedRankReducedSourceType << " (got: " << getSourceType() |
| 3964 | << ")" ; |
| 3965 | } |
| 3966 | |
| 3967 | return success(); |
| 3968 | } |
| 3969 | |
| 3970 | //===----------------------------------------------------------------------===// |
| 3971 | // SplatOp |
| 3972 | //===----------------------------------------------------------------------===// |
| 3973 | |
| 3974 | void SplatOp::build(OpBuilder &builder, OperationState &result, Value element, |
| 3975 | Type aggregateType, ValueRange dynamicSizes) { |
| 3976 | build(builder, result, aggregateType, element, dynamicSizes); |
| 3977 | } |
| 3978 | |
| 3979 | void SplatOp::build(OpBuilder &builder, OperationState &result, Value element, |
| 3980 | ArrayRef<int64_t> staticShape, ValueRange dynamicSizes) { |
| 3981 | auto aggregateType = RankedTensorType::get(staticShape, element.getType()); |
| 3982 | build(builder, result, aggregateType, element, dynamicSizes); |
| 3983 | } |
| 3984 | |
| 3985 | void SplatOp::build(OpBuilder &builder, OperationState &result, Value element, |
| 3986 | ArrayRef<OpFoldResult> sizes) { |
| 3987 | SmallVector<int64_t> staticShape; |
| 3988 | SmallVector<Value> dynamicSizes; |
| 3989 | dispatchIndexOpFoldResults(sizes, dynamicSizes, staticShape); |
| 3990 | build(builder, result, element, staticShape, dynamicSizes); |
| 3991 | } |
| 3992 | |
| 3993 | void SplatOp::getAsmResultNames( |
| 3994 | function_ref<void(Value, StringRef)> setNameFn) { |
| 3995 | setNameFn(getResult(), "splat" ); |
| 3996 | } |
| 3997 | |
| 3998 | LogicalResult SplatOp::verify() { |
| 3999 | if (getType().getNumDynamicDims() != getDynamicSizes().size()) |
| 4000 | return emitOpError("incorrect number of dynamic sizes, has " ) |
| 4001 | << getDynamicSizes().size() << ", expected " |
| 4002 | << getType().getNumDynamicDims(); |
| 4003 | return success(); |
| 4004 | } |
| 4005 | |
| 4006 | LogicalResult |
| 4007 | SplatOp::reifyResultShapes(OpBuilder &builder, |
| 4008 | ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
| 4009 | reifiedReturnShapes.resize(1, SmallVector<OpFoldResult>(getType().getRank())); |
| 4010 | unsigned ctr = 0; |
| 4011 | for (int64_t i = 0; i < getType().getRank(); ++i) { |
| 4012 | if (getType().isDynamicDim(i)) { |
| 4013 | reifiedReturnShapes[0][i] = getDynamicSizes()[ctr++]; |
| 4014 | } else { |
| 4015 | reifiedReturnShapes[0][i] = builder.getIndexAttr(getType().getDimSize(i)); |
| 4016 | } |
| 4017 | } |
| 4018 | return success(); |
| 4019 | } |
| 4020 | |
| 4021 | OpFoldResult SplatOp::fold(FoldAdaptor adaptor) { |
| 4022 | auto constOperand = adaptor.getInput(); |
| 4023 | if (!isa_and_nonnull<IntegerAttr, FloatAttr>(constOperand)) |
| 4024 | return {}; |
| 4025 | |
| 4026 | // Do not fold if the splat is not statically shaped |
| 4027 | if (!getType().hasStaticShape()) |
| 4028 | return {}; |
| 4029 | |
| 4030 | // SplatElementsAttr::get treats single value for second arg as being a |
| 4031 | // splat. |
| 4032 | return SplatElementsAttr::get(getType(), {constOperand}); |
| 4033 | } |
| 4034 | |
| 4035 | //===----------------------------------------------------------------------===// |
| 4036 | // Common Canonicalizers and Folders. |
| 4037 | //===----------------------------------------------------------------------===// |
| 4038 | bool foldTensorCastPrecondition(DestinationStyleOpInterface op) { |
| 4039 | // 1. InsertSliceOp has its own logic about folding tensor.cast ops. |
| 4040 | // 2. Exclude DPS ops that are also LoopLike from this interface as they |
| 4041 | // might need special handling of attached regions. |
| 4042 | if (isa<InsertSliceOp>(op.getOperation()) || |
| 4043 | isa<LoopLikeOpInterface>(op.getOperation())) |
| 4044 | return false; |
| 4045 | |
| 4046 | return hasFoldableTensorCastOperand(op); |
| 4047 | } |
| 4048 | |
| 4049 | /// Folds a tensor.cast op into a consuming DestinationStyleOpInterface op if |
| 4050 | /// the `tensor.cast` has source that is more static than the consuming op. |
| 4051 | /// |
| 4052 | /// Example: |
| 4053 | /// ```mlir |
| 4054 | /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> |
| 4055 | /// %2 = consumer %1 ... : tensor<?x?xf32> ... |
| 4056 | /// ``` |
| 4057 | /// |
| 4058 | /// folds into: |
| 4059 | /// |
| 4060 | /// ```mlir |
| 4061 | /// %2 = consumer %0 ... : tensor<8x16xf32> ... |
| 4062 | /// ``` |
| 4063 | /// TODO: Move the pattern to a proper place, so all other DestinationStyleOp |
| 4064 | /// can add the pattern to their canonicalizers. |
| 4065 | struct FoldTensorCastProducerOp |
| 4066 | : public OpInterfaceRewritePattern<DestinationStyleOpInterface> { |
| 4067 | using OpInterfaceRewritePattern< |
| 4068 | DestinationStyleOpInterface>::OpInterfaceRewritePattern; |
| 4069 | |
| 4070 | LogicalResult matchAndRewrite(DestinationStyleOpInterface op, |
| 4071 | PatternRewriter &rewriter) const override { |
| 4072 | |
| 4073 | // Reject PackOp/UnpackOp (i.e. RelayoutOps) - there are dedicated patterns |
| 4074 | // for that instead. |
| 4075 | if (!foldTensorCastPrecondition(op) || |
| 4076 | isa<linalg::RelayoutOpInterface>(*op)) |
| 4077 | return failure(); |
| 4078 | |
| 4079 | SmallVector<Type> newResultTypes(op->getResultTypes()); |
| 4080 | SmallVector<Value> newOperands = |
| 4081 | getUpdatedOperandsAfterCastOpFolding(op, newResultTypes); |
| 4082 | |
| 4083 | // Clone op |
| 4084 | auto newOp = clone(rewriter, op, newResultTypes, newOperands); |
| 4085 | |
| 4086 | SmallVector<Value, 4> replacements; |
| 4087 | replacements.reserve(N: newOp->getNumResults()); |
| 4088 | for (auto [oldResult, newResult] : |
| 4089 | llvm::zip(op->getResults(), newOp->getResults())) { |
| 4090 | if (newResult.getType() != oldResult.getType()) { |
| 4091 | replacements.push_back(rewriter.create<tensor::CastOp>( |
| 4092 | op->getLoc(), oldResult.getType(), newResult)); |
| 4093 | } else { |
| 4094 | replacements.push_back(newResult); |
| 4095 | } |
| 4096 | } |
| 4097 | rewriter.replaceOp(op, replacements); |
| 4098 | |
| 4099 | return success(); |
| 4100 | } |
| 4101 | }; |
| 4102 | |
| 4103 | //===----------------------------------------------------------------------===// |
| 4104 | // TensorDialect |
| 4105 | //===----------------------------------------------------------------------===// |
| 4106 | |
| 4107 | void TensorDialect::getCanonicalizationPatterns( |
| 4108 | RewritePatternSet &results) const { |
| 4109 | results.add<FoldTensorCastProducerOp>(getContext()); |
| 4110 | } |
| 4111 | |
| 4112 | //===----------------------------------------------------------------------===// |
| 4113 | // TableGen'd op method definitions |
| 4114 | //===----------------------------------------------------------------------===// |
| 4115 | |
| 4116 | #define GET_OP_CLASSES |
| 4117 | #include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc" |
| 4118 | |