| 1 | //===- EmptyOpPatterns.cpp - Patterns related to tensor.empty folding ----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 10 | #include "mlir/Dialect/Tensor/Transforms/Transforms.h" |
| 11 | #include "mlir/IR/PatternMatch.h" |
| 12 | #include "llvm/Support/Debug.h" |
| 13 | |
| 14 | using namespace mlir; |
| 15 | using namespace mlir::tensor; |
| 16 | |
| 17 | namespace { |
| 18 | |
| 19 | template <typename ReshapeOp> |
| 20 | struct FoldEmptyTensorWithReshapeOp : public OpRewritePattern<ReshapeOp> { |
| 21 | FoldEmptyTensorWithReshapeOp(MLIRContext *ctx, PatternBenefit benefit = 1, |
| 22 | bool foldSingleUseOnly = false) |
| 23 | : OpRewritePattern<ReshapeOp>(ctx, benefit), |
| 24 | foldSingleUseOnly(foldSingleUseOnly) {} |
| 25 | |
| 26 | LogicalResult matchAndRewrite(ReshapeOp reshapeOp, |
| 27 | PatternRewriter &rewriter) const override { |
| 28 | // Check for tensor.empty source. |
| 29 | auto emptyOp = reshapeOp.getSrc().template getDefiningOp<EmptyOp>(); |
| 30 | if (!emptyOp) |
| 31 | return failure(); |
| 32 | |
| 33 | // Check for single use. |
| 34 | if (foldSingleUseOnly && !llvm::hasSingleElement(emptyOp->getUses())) |
| 35 | return failure(); |
| 36 | |
| 37 | // Reify result shape. |
| 38 | Location loc = reshapeOp.getLoc(); |
| 39 | ReifiedRankedShapedTypeDims resultShapes; |
| 40 | if (failed(reifyResultShapes(rewriter, reshapeOp, resultShapes)) || |
| 41 | !llvm::hasSingleElement(C&: resultShapes)) |
| 42 | return failure(); |
| 43 | |
| 44 | // Create new tensor.empty op. |
| 45 | // TODO: Do not drop tensor type encoding. |
| 46 | Value emptyTensor = rewriter.create<EmptyOp>( |
| 47 | loc, resultShapes[0], reshapeOp.getResultType().getElementType()); |
| 48 | if (emptyTensor.getType() != reshapeOp.getResultType()) { |
| 49 | rewriter.replaceOpWithNewOp<tensor::CastOp>( |
| 50 | reshapeOp, reshapeOp.getResultType(), emptyTensor); |
| 51 | } else { |
| 52 | rewriter.replaceOp(reshapeOp, emptyTensor); |
| 53 | } |
| 54 | return success(); |
| 55 | } |
| 56 | |
| 57 | private: |
| 58 | bool foldSingleUseOnly = false; |
| 59 | }; |
| 60 | |
| 61 | /// tensor.empty does not define any tensor contents, so a slice of a |
| 62 | /// tensor.empty can be folded to a smaller tensor.empty. |
| 63 | struct |
| 64 | : public OpRewritePattern<ExtractSliceOp> { |
| 65 | (MLIRContext *ctx, |
| 66 | PatternBenefit benefit = 1, |
| 67 | bool foldSingleUseOnly = false) |
| 68 | : OpRewritePattern<ExtractSliceOp>(ctx, benefit), |
| 69 | foldSingleUseOnly(foldSingleUseOnly) {} |
| 70 | |
| 71 | LogicalResult matchAndRewrite(ExtractSliceOp sliceOp, |
| 72 | PatternRewriter &rewriter) const override { |
| 73 | // Check for tensor.empty source. |
| 74 | auto emptyOp = sliceOp.getSource().template getDefiningOp<EmptyOp>(); |
| 75 | if (!emptyOp) |
| 76 | return failure(); |
| 77 | |
| 78 | // Check for single use. |
| 79 | if (foldSingleUseOnly && !llvm::hasSingleElement(emptyOp->getUses())) |
| 80 | return failure(); |
| 81 | |
| 82 | // Create new tensor.empty op. tensor.extract_slice may be rank-reducing; |
| 83 | // its dynamic sizes must be preserved as well as its result type. |
| 84 | auto tensorType = RankedTensorType::get(sliceOp.getType().getShape(), |
| 85 | sliceOp.getType().getElementType(), |
| 86 | sliceOp.getType().getEncoding()); |
| 87 | rewriter.replaceOpWithNewOp<EmptyOp>(sliceOp, tensorType, |
| 88 | sliceOp.getSizes()); |
| 89 | return success(); |
| 90 | } |
| 91 | |
| 92 | private: |
| 93 | bool = false; |
| 94 | }; |
| 95 | |
| 96 | // Fold concat operation where all the operands are empty. |
| 97 | struct FoldConcatsOfEmpty : public OpRewritePattern<ConcatOp> { |
| 98 | using OpRewritePattern<ConcatOp>::OpRewritePattern; |
| 99 | |
| 100 | LogicalResult matchAndRewrite(tensor::ConcatOp concatOp, |
| 101 | PatternRewriter &rewriter) const override { |
| 102 | auto concatOperands = concatOp.getInputs(); |
| 103 | if (concatOperands.empty()) { |
| 104 | return failure(); |
| 105 | } |
| 106 | auto firstEmptyOp = concatOperands.front().getDefiningOp<tensor::EmptyOp>(); |
| 107 | if (!firstEmptyOp) { |
| 108 | return failure(); |
| 109 | } |
| 110 | auto isDefinedByEmptyOp = [](Value v) -> bool { |
| 111 | return v.getDefiningOp<tensor::EmptyOp>(); |
| 112 | }; |
| 113 | if (!llvm::all_of(concatOperands.drop_front(), isDefinedByEmptyOp)) { |
| 114 | return rewriter.notifyMatchFailure( |
| 115 | concatOp, "not all operands are defined by an empty op" ); |
| 116 | } |
| 117 | SmallVector<SmallVector<OpFoldResult>> resultShape; |
| 118 | if (failed(concatOp.reifyResultShapes(rewriter, resultShape))) { |
| 119 | return rewriter.notifyMatchFailure(concatOp, |
| 120 | "failed to get result shape" ); |
| 121 | } |
| 122 | rewriter.replaceOpWithNewOp<tensor::EmptyOp>( |
| 123 | concatOp, resultShape[0], concatOp.getResultType().getElementType()); |
| 124 | return success(); |
| 125 | } |
| 126 | }; |
| 127 | |
| 128 | } // namespace |
| 129 | |
| 130 | void mlir::tensor::populateFoldTensorEmptyPatterns(RewritePatternSet &patterns, |
| 131 | bool foldSingleUseOnly) { |
| 132 | patterns.add<FoldEmptyTensorWithExtractSliceOp, |
| 133 | FoldEmptyTensorWithReshapeOp<tensor::ExpandShapeOp>, |
| 134 | FoldEmptyTensorWithReshapeOp<tensor::CollapseShapeOp>>( |
| 135 | patterns.getContext(), /*benefit=*/1, foldSingleUseOnly); |
| 136 | patterns.add<FoldConcatsOfEmpty>(arg: patterns.getContext(), |
| 137 | /*benefit=*/args: 1); |
| 138 | } |
| 139 | |