1 | //===- ExtractSliceFromReshapeUtils.cpp - Slice reshape rewrites ----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements rewrites that replace slices of reshape results with |
10 | // aggregated slices of the reshape source. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
14 | #include "mlir/Dialect/Arith/IR/Arith.h" |
15 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
16 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
17 | #include "mlir/Dialect/Tensor/Transforms/TransformUtils.h" |
18 | #include "mlir/Dialect/Tensor/Transforms/Transforms.h" |
19 | #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" |
20 | #include "mlir/Dialect/Utils/StaticValueUtils.h" |
21 | #include "mlir/IR/BuiltinTypes.h" |
22 | #include "mlir/IR/OpDefinition.h" |
23 | #include "llvm/ADT/STLExtras.h" |
24 | |
25 | using namespace mlir; |
26 | using namespace mlir::affine; |
27 | using namespace mlir::tensor; |
28 | |
29 | /// A tuple that represents (dimension number, dimension value). |
30 | using DimAndIndex = std::tuple<unsigned, Value>; |
31 | |
32 | /// Transform `dimAndIndex` from the output index space of a (non-rank-reducing) |
33 | /// slice described by `sliceParams` into the input index space. |
34 | static DimAndIndex invertSliceIndexing(OpBuilder &b, Location loc, |
35 | ArrayRef<Range> sliceParams, |
36 | const DimAndIndex &dimAndIndex) { |
37 | AffineExpr d0, s0, s1; |
38 | bindDims(ctx: b.getContext(), exprs&: d0); |
39 | bindSymbols(ctx: b.getContext(), exprs&: s0, exprs&: s1); |
40 | auto [dim, indexValue] = dimAndIndex; |
41 | assert(dim < sliceParams.size() && "slice should be non rank-reducing" ); |
42 | return std::make_pair( |
43 | dim, affine::makeComposedAffineApply( |
44 | b, loc, s0 + d0 * s1, |
45 | {indexValue, sliceParams[dim].offset, sliceParams[dim].stride})); |
46 | } |
47 | |
48 | /// Transform `dimAndIndex` from the result tensor index space of a |
49 | /// CollapseShapeOp to the source tensor index space. |
50 | static ValueRange invertCollapseShapeIndexing( |
51 | OpBuilder &b, Location loc, ArrayRef<ReassociationIndices> reassociation, |
52 | ArrayRef<OpFoldResult> reshapeSourceShape, const DimAndIndex &dimAndIndex) { |
53 | const auto &[dim, indexValue] = dimAndIndex; |
54 | SmallVector<OpFoldResult> basis; |
55 | for (int64_t i : reassociation[dim]) |
56 | basis.push_back(Elt: reshapeSourceShape[i]); |
57 | auto delinearized = |
58 | b.create<AffineDelinearizeIndexOp>(loc, indexValue, basis); |
59 | return delinearized->getResults(); |
60 | } |
61 | |
62 | FailureOr<ExtractSliceFromCollapseHelper> |
63 | tensor::ExtractSliceFromCollapseHelper::( |
64 | OpBuilder &b, tensor::CollapseShapeOp collapseOp, |
65 | tensor::ExtractSliceOp ) { |
66 | if (extractOp.getSource().getDefiningOp<tensor::CollapseShapeOp>() != |
67 | collapseOp) |
68 | return failure(); |
69 | SmallVector<Range> ranges; |
70 | ranges.reserve(N: extractOp.getSourceType().getRank()); |
71 | for (const auto &[o, s, st] : |
72 | llvm::zip(extractOp.getMixedOffsets(), extractOp.getMixedSizes(), |
73 | extractOp.getMixedStrides())) { |
74 | ranges.push_back({o, s, st}); |
75 | } |
76 | return ExtractSliceFromCollapseHelper::create(b, collapseOp, ranges); |
77 | } |
78 | |
79 | FailureOr<ExtractSliceFromCollapseHelper> |
80 | tensor::ExtractSliceFromCollapseHelper::(OpBuilder &b, |
81 | tensor::CollapseShapeOp op, |
82 | ArrayRef<Range> sliceParams) { |
83 | // Don't perform this pattern if the collapse op can be simplified by |
84 | // a rank-reducing extract slice. |
85 | if (succeeded(mlir::getSimplifyCollapseShapeWithRankReducingSliceInfo( |
86 | sourceType: op.getSrcType(), reassociationIndices: op.getReassociationIndices()))) |
87 | return failure(); |
88 | |
89 | // Materialize the output shape of the collapse_shape operation. This will |
90 | // create IR describing the output shape in terms of the input shape. |
91 | ReifiedRankedShapedTypeDims reifiedShapes; |
92 | if (failed(reifyResultShapes(b, op, reifiedShapes))) |
93 | return failure(); |
94 | SmallVector<OpFoldResult> &collapseShapeOutputShape = reifiedShapes[0]; |
95 | SmallVector<ReassociationIndices> reassociationIndices = |
96 | op.getReassociationIndices(); |
97 | |
98 | // Determine which of the CollapseShapeOp's result dimensions are sliced |
99 | // and/or linearized. |
100 | llvm::SmallBitVector linearizedDimensions = |
101 | getLinearizedDimensions(reassociationIndices); |
102 | llvm::SmallBitVector slicedDimensions = |
103 | getSlicedDimensions(sliceInputShape: collapseShapeOutputShape, sliceParams); |
104 | |
105 | auto collapseShapeInputShape = |
106 | tensor::getMixedSizes(builder&: b, loc: op.getLoc(), value: op.getSrc()); |
107 | |
108 | SmallVector<Value> tileSizes; |
109 | for (unsigned i = 0; i < sliceParams.size(); i++) { |
110 | if (slicedDimensions[i] && linearizedDimensions[i]) |
111 | tileSizes.push_back( |
112 | Elt: getValueOrCreateConstantIndexOp(b, op.getLoc(), sliceParams[i].size)); |
113 | } |
114 | |
115 | return ExtractSliceFromCollapseHelper( |
116 | op, collapseShapeInputShape, collapseShapeOutputShape, sliceParams, |
117 | linearizedDimensions, slicedDimensions, tileSizes); |
118 | } |
119 | |
120 | std::pair<Value, SmallVector<Range>> |
121 | tensor::ExtractSliceFromCollapseHelper::emitLoopNestBody( |
122 | OpBuilder &builder, Location loc, ValueRange tileInductionVars) { |
123 | // Create the helper class for forming the slice parameters. |
124 | const SmallVector<ReassociationIndices> reassociationIndices = |
125 | collapseShapeOp.getReassociationIndices(); |
126 | SliceFromCollapseHelper helper(reassociationIndices, collapseShapeInputShape, |
127 | collapseShapeOutputShape, sliceParams); |
128 | |
129 | // Get the indices of the tiled dims (linearized by the collapse_shape |
130 | // and sliced by the extract_slice) invert the index spaces |
131 | // transformations. |
132 | SmallVector<ValueRange> multiIndices; |
133 | unsigned loopIdx = 0; |
134 | for (unsigned i = 0, e = linearizedDimensions.size(); i < e; i++) { |
135 | if (linearizedDimensions[i] && slicedDimensions[i]) { |
136 | DimAndIndex tb = |
137 | invertSliceIndexing(b&: builder, loc, sliceParams, |
138 | dimAndIndex: std::make_tuple(args&: i, args: tileInductionVars[loopIdx++])); |
139 | multiIndices.push_back(Elt: invertCollapseShapeIndexing( |
140 | b&: builder, loc, reassociation: reassociationIndices, reshapeSourceShape: collapseShapeInputShape, dimAndIndex: tb)); |
141 | } |
142 | } |
143 | |
144 | SmallVector<Range> = |
145 | helper.getExtractSliceParams(ctx: builder.getContext(), multiIndices); |
146 | |
147 | Value subTileResult = builder.create<tensor::ExtractSliceOp>( |
148 | loc, collapseShapeOp.getSrc(), extractParams); |
149 | |
150 | SmallVector<Range> insertParams = |
151 | helper.getInsertSliceParams(ctx: builder.getContext(), tileIndices: tileInductionVars); |
152 | |
153 | // Collapse the dimensions of the source slice back down. |
154 | Value collapsedResult = builder.create<tensor::CollapseShapeOp>( |
155 | loc, subTileResult, reassociationIndices); |
156 | return std::make_pair(x&: collapsedResult, y&: insertParams); |
157 | } |
158 | |
159 | FailureOr<Operation *> |
160 | tensor::( |
161 | tensor::CollapseShapeOp op, RewriterBase &rewriter) { |
162 | SmallVector<ReassociationIndices> reassociationIndices = |
163 | op.getReassociationIndices(); |
164 | RankedTensorType sourceType = op.getSrcType(); |
165 | FailureOr<CollapseShapeRankReducingSliceSimplificationInfo> info = |
166 | getSimplifyCollapseShapeWithRankReducingSliceInfo(sourceType, |
167 | reassociationIndices); |
168 | if (failed(info)) |
169 | return failure(); |
170 | |
171 | // Create the rank-reducing extract slice op. |
172 | auto zero = rewriter.getIndexAttr(0); |
173 | auto one = rewriter.getIndexAttr(1); |
174 | SmallVector<OpFoldResult> offsets(sourceType.getRank(), zero); |
175 | SmallVector<OpFoldResult> sizes = |
176 | tensor::getMixedSizes(builder&: rewriter, loc: op.getLoc(), value: op.getSrc()); |
177 | SmallVector<OpFoldResult> strides(sourceType.getRank(), one); |
178 | auto sliceOp = rewriter.create<tensor::ExtractSliceOp>( |
179 | op.getLoc(), info->sliceResultType, op.getSrc(), offsets, sizes, strides); |
180 | |
181 | if (!info->newReassociationIndices.has_value()) { |
182 | rewriter.replaceOp(op, sliceOp.getResult()); |
183 | return sliceOp.getOperation(); |
184 | } |
185 | |
186 | return rewriter |
187 | .replaceOpWithNewOp<tensor::CollapseShapeOp>( |
188 | op, sliceOp.getResult(), *info->newReassociationIndices) |
189 | .getOperation(); |
190 | } |
191 | |