| 1 | //===- MergeConsecutiveInsertExtractSlicePatterns.cpp ---------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Affine/ViewLikeInterfaceUtils.h" |
| 10 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 11 | #include "mlir/Dialect/Tensor/Transforms/Transforms.h" |
| 12 | #include "mlir/Dialect/Tensor/Utils/Utils.h" |
| 13 | #include "mlir/IR/BuiltinTypes.h" |
| 14 | #include "mlir/IR/OpDefinition.h" |
| 15 | #include "mlir/IR/PatternMatch.h" |
| 16 | |
| 17 | using namespace mlir; |
| 18 | using namespace mlir::tensor; |
| 19 | |
| 20 | namespace { |
| 21 | /// Merges consecutive tensor.extract_slice ops into one. |
| 22 | // TODO: move to FoldTensorSubsetOps and unify APIs with FoldMemRefAliasOps. |
| 23 | struct : public OpRewritePattern<ExtractSliceOp> { |
| 24 | using OpRewritePattern::OpRewritePattern; |
| 25 | |
| 26 | LogicalResult matchAndRewrite(ExtractSliceOp nextOp, |
| 27 | PatternRewriter &rewriter) const override { |
| 28 | auto prevOp = nextOp.getSource().getDefiningOp<ExtractSliceOp>(); |
| 29 | if (!prevOp) |
| 30 | return failure(); |
| 31 | |
| 32 | SmallVector<OpFoldResult> newOffsets, newSizes, newStrides; |
| 33 | if (failed(affine::mergeOffsetsSizesAndStrides( |
| 34 | rewriter, nextOp.getLoc(), prevOp, nextOp, prevOp.getDroppedDims(), |
| 35 | newOffsets, newSizes, newStrides))) |
| 36 | return failure(); |
| 37 | |
| 38 | rewriter.replaceOpWithNewOp<ExtractSliceOp>(nextOp, nextOp.getType(), |
| 39 | prevOp.getSource(), newOffsets, |
| 40 | newSizes, newStrides); |
| 41 | return success(); |
| 42 | } |
| 43 | }; |
| 44 | |
| 45 | /// Merges consecutive tensor.insert_slice ops into one. |
| 46 | // TODO: move to FoldTensorSubsetOps and unify APIs with FoldMemRefAliasOps. |
| 47 | template <typename OpTy> |
| 48 | struct MergeConsecutiveInsertSlice : public OpRewritePattern<OpTy> { |
| 49 | using OpRewritePattern<OpTy>::OpRewritePattern; |
| 50 | |
| 51 | LogicalResult matchAndRewrite(OpTy nextOp, |
| 52 | PatternRewriter &rewriter) const override { |
| 53 | auto prevOp = nextOp.getSource().template getDefiningOp<InsertSliceOp>(); |
| 54 | if (!prevOp) |
| 55 | return failure(); |
| 56 | |
| 57 | if (!prevOp.hasUnitStride() || !nextOp.hasUnitStride()) |
| 58 | return failure(); |
| 59 | |
| 60 | // The first insert_slice op should be rank reducing to make sure we cover |
| 61 | // the full source tensor to be inserted in the second insert_slice op. |
| 62 | SliceVerificationResult result = |
| 63 | isRankReducedType(prevOp.getDestType(), prevOp.getSourceType()); |
| 64 | if (result != SliceVerificationResult::Success) |
| 65 | return failure(); |
| 66 | |
| 67 | // Dynamic dimensions can pass rank reducing check in the above, e.g, |
| 68 | // inserting <?xf32> into <1x?x1xf32>. For such cases we cannot be certain |
| 69 | // the dynamic size covers the full tensor. |
| 70 | if (!prevOp.getSourceType().hasStaticShape() || |
| 71 | !prevOp.getDestType().hasStaticShape()) |
| 72 | return failure(); |
| 73 | |
| 74 | rewriter.replaceOpWithNewOp<OpTy>( |
| 75 | nextOp, prevOp.getSource(), nextOp.getDest(), nextOp.getMixedOffsets(), |
| 76 | nextOp.getMixedSizes(), nextOp.getMixedStrides()); |
| 77 | return success(); |
| 78 | } |
| 79 | }; |
| 80 | |
| 81 | /// Drop redundant rank expansion of insert_slice that are directly followed |
| 82 | /// by extract_slice. E.g.: |
| 83 | /// %0 = tensor.insert_slice ... : tensor<5x10xf32> into tensor<1x1x5x10xf32> |
| 84 | /// %1 = tensor.extract_slice %0[0, 0, 2, 3] [1, 1, 2, 2] [1, 1, 1, 1] |
| 85 | /// : tensor<1x1x5x10xf32> to tensor<2x2xf32> |
| 86 | struct |
| 87 | : public OpRewritePattern<ExtractSliceOp> { |
| 88 | using OpRewritePattern::OpRewritePattern; |
| 89 | |
| 90 | LogicalResult matchAndRewrite(ExtractSliceOp , |
| 91 | PatternRewriter &rewriter) const override { |
| 92 | // Nothing to do if no dims are dropped. |
| 93 | llvm::SmallBitVector droppedDims = extractSliceOp.getDroppedDims(); |
| 94 | if (droppedDims.none()) |
| 95 | return failure(); |
| 96 | |
| 97 | // Look for tensor.insert_slice op that has an inverse rank expansion. |
| 98 | auto insertSliceOp = |
| 99 | extractSliceOp.getSource().getDefiningOp<InsertSliceOp>(); |
| 100 | if (!insertSliceOp) |
| 101 | return failure(); |
| 102 | llvm::SmallBitVector expandedDims = insertSliceOp.getDroppedDims(); |
| 103 | |
| 104 | // TODO: This could be extended to support cases where the dropped dims are |
| 105 | // a subset of the expanded dims. |
| 106 | if (expandedDims != droppedDims) |
| 107 | return failure(); |
| 108 | |
| 109 | // The tensor.insert_slice may not be redundant if it has multiple users. |
| 110 | if (!insertSliceOp->hasOneUse()) |
| 111 | return failure(); |
| 112 | |
| 113 | // Only consider tensor.insert_slice ops that are pure rank-reductions. |
| 114 | // I.e., no elements are taken from the destination. |
| 115 | if (!isCastLikeInsertSliceOp(insertSliceOp)) |
| 116 | return failure(); |
| 117 | |
| 118 | // Extract directly from the source. |
| 119 | OpBuilder::InsertionGuard g(rewriter); |
| 120 | rewriter.setInsertionPoint(extractSliceOp); |
| 121 | SmallVector<OpFoldResult> newOffsets, newSizes, newStrides; |
| 122 | for (int64_t i = 0, e = extractSliceOp.getSourceType().getRank(); i < e; |
| 123 | ++i) { |
| 124 | if (droppedDims.test(Idx: i)) |
| 125 | continue; |
| 126 | newOffsets.push_back(Elt: extractSliceOp.getMixedOffsets()[i]); |
| 127 | newSizes.push_back(Elt: extractSliceOp.getMixedSizes()[i]); |
| 128 | newStrides.push_back(Elt: extractSliceOp.getMixedStrides()[i]); |
| 129 | } |
| 130 | rewriter.replaceOpWithNewOp<ExtractSliceOp>( |
| 131 | extractSliceOp, /*source=*/insertSliceOp.getSource(), newOffsets, |
| 132 | newSizes, newStrides); |
| 133 | rewriter.eraseOp(op: insertSliceOp); |
| 134 | return success(); |
| 135 | } |
| 136 | }; |
| 137 | |
| 138 | /// Drop redundant rank expansion of insert_slice that direclty follows |
| 139 | /// extract_slice. |
| 140 | /// |
| 141 | /// This can be done when the insert_slice op purely expands ranks (adds unit |
| 142 | /// dims) and the extrace_slice drops corresponding unit dims. For example: |
| 143 | /// |
| 144 | /// %extracted_slice = tensor.extract_slice %in[0, 0] [1, 8] [1, 1] |
| 145 | /// : tensor<2x8xf32> to tensor<8xf32> |
| 146 | /// %inserted_slice = tensor.insert_slice %extracted_slice |
| 147 | /// into %dest[0, 0] [1, 8] [1, 1] |
| 148 | /// : tensor<8xf32> into tensor<1x8xf32> |
| 149 | /// |
| 150 | /// can be folded into: |
| 151 | /// |
| 152 | /// %extracted_slice = tensor.extract_slice %in[0, 0] [1, 8] [1, 1] |
| 153 | /// : tensor<2x8xf32> to tensor<1x8xf32> |
| 154 | struct final |
| 155 | : public OpRewritePattern<tensor::InsertSliceOp> { |
| 156 | using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; |
| 157 | |
| 158 | LogicalResult matchAndRewrite(tensor::InsertSliceOp insertSliceOp, |
| 159 | PatternRewriter &rewriter) const override { |
| 160 | auto = |
| 161 | insertSliceOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); |
| 162 | if (!extractSliceOp) { |
| 163 | return rewriter.notifyMatchFailure(insertSliceOp, |
| 164 | "source is not extract_slice" ); |
| 165 | } |
| 166 | |
| 167 | // Can't fold if the extract_slice op has other users. |
| 168 | if (!extractSliceOp->hasOneUse()) { |
| 169 | return rewriter.notifyMatchFailure(insertSliceOp, |
| 170 | "source has multi-uses" ); |
| 171 | } |
| 172 | |
| 173 | // Check if the insert_slice op purely expands ranks (add unit dims). |
| 174 | if (!isCastLikeInsertSliceOp(insertSliceOp)) { |
| 175 | return rewriter.notifyMatchFailure(insertSliceOp, |
| 176 | "insert_slice is not cast-like" ); |
| 177 | } |
| 178 | |
| 179 | llvm::SmallBitVector = extractSliceOp.getDroppedDims(); |
| 180 | llvm::SmallBitVector insertDroppedDims = insertSliceOp.getDroppedDims(); |
| 181 | // Can't fold if the insert_slice op expands to more dims. |
| 182 | if (extractDroppedDims.size() < insertDroppedDims.size()) { |
| 183 | return rewriter.notifyMatchFailure(insertSliceOp, |
| 184 | "insert_slice expands more dims" ); |
| 185 | } |
| 186 | |
| 187 | // Try to match the extract dropped dims to the insert dropped dims. This is |
| 188 | // done by scanning the dims of extract_slice and find the left-most one can |
| 189 | // match the dim of insert_slice. If a match is found, advance the dim of |
| 190 | // insert_slice to match the next one. |
| 191 | unsigned insertDimPos = 0; |
| 192 | for (unsigned = 0; extractDimPos < extractDroppedDims.size(); |
| 193 | ++extractDimPos) { |
| 194 | // Matched all dims. |
| 195 | if (insertDimPos == insertDroppedDims.size()) |
| 196 | break; |
| 197 | |
| 198 | bool = extractDroppedDims[extractDimPos]; |
| 199 | bool isInsertDropped = insertDroppedDims[insertDimPos]; |
| 200 | // Match if both sides drop/keep the dim. Advance and match the next dim |
| 201 | // of insert_slice. |
| 202 | if (isExtractDropped == isInsertDropped) { |
| 203 | insertDimPos += 1; |
| 204 | } else if (!isExtractDropped && isInsertDropped) { |
| 205 | // Not enough extract dropped dims to match the insert dropped dims. |
| 206 | return rewriter.notifyMatchFailure(insertSliceOp, |
| 207 | "insert_slice drops more unit dims" ); |
| 208 | } |
| 209 | // If the dim is dropped by extract_slice and not by insert_slice, look |
| 210 | // the next dim of extract_slice to see if it can match the current dim of |
| 211 | // insert_slice. |
| 212 | } |
| 213 | // Can't match some insert dims. |
| 214 | if (insertDimPos != insertDroppedDims.size()) { |
| 215 | return rewriter.notifyMatchFailure(insertSliceOp, |
| 216 | "insert_slice has unmatched dims" ); |
| 217 | } |
| 218 | |
| 219 | rewriter.replaceOpWithNewOp<tensor::ExtractSliceOp>( |
| 220 | insertSliceOp, insertSliceOp.getType(), extractSliceOp.getSource(), |
| 221 | extractSliceOp.getMixedOffsets(), extractSliceOp.getMixedSizes(), |
| 222 | extractSliceOp.getMixedStrides()); |
| 223 | rewriter.eraseOp(op: extractSliceOp); |
| 224 | |
| 225 | return success(); |
| 226 | } |
| 227 | }; |
| 228 | } // namespace |
| 229 | |
| 230 | void mlir::tensor::( |
| 231 | RewritePatternSet &patterns) { |
| 232 | patterns.add<MergeConsecutiveExtractSlice, |
| 233 | MergeConsecutiveInsertSlice<InsertSliceOp>, |
| 234 | MergeConsecutiveInsertSlice<ParallelInsertSliceOp>>( |
| 235 | patterns.getContext()); |
| 236 | } |
| 237 | |
| 238 | void mlir::tensor::populateDropRedundantInsertSliceRankExpansionPatterns( |
| 239 | RewritePatternSet &patterns) { |
| 240 | patterns.add<DropRedundantRankExpansionOnExtractSliceOfInsertSlice, |
| 241 | DropRedundantRankExpansionOnInsertSliceOfExtractSlice>( |
| 242 | arg: patterns.getContext()); |
| 243 | } |
| 244 | |