| 1 | //===- ReshapeOpsUtils.cpp - Utilities used by structured ops -------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" |
| 10 | |
| 11 | #include "mlir/IR/AffineMap.h" |
| 12 | #include "mlir/IR/Builders.h" |
| 13 | |
| 14 | #include <numeric> |
| 15 | #include <optional> |
| 16 | |
| 17 | using namespace mlir; |
| 18 | |
| 19 | std::optional<SmallVector<ReassociationIndices>> |
| 20 | mlir::getReassociationIndicesForReshape(ShapedType sourceType, |
| 21 | ShapedType targetType) { |
| 22 | if (sourceType.getRank() > targetType.getRank()) |
| 23 | return getReassociationIndicesForCollapse(sourceType.getShape(), |
| 24 | targetType.getShape()); |
| 25 | if (sourceType.getRank() < targetType.getRank()) |
| 26 | return getReassociationIndicesForCollapse(targetType.getShape(), |
| 27 | sourceType.getShape()); |
| 28 | return std::nullopt; |
| 29 | } |
| 30 | |
| 31 | std::optional<SmallVector<ReassociationIndices>> |
| 32 | mlir::getReassociationIndicesForCollapse(ArrayRef<int64_t> sourceShape, |
| 33 | ArrayRef<int64_t> targetShape) { |
| 34 | if (sourceShape.size() <= targetShape.size()) |
| 35 | return std::nullopt; |
| 36 | unsigned sourceDim = 0; |
| 37 | SmallVector<ReassociationIndices> reassociationMap; |
| 38 | reassociationMap.reserve(N: targetShape.size()); |
| 39 | |
| 40 | ReassociationIndices currIndices; |
| 41 | int64_t prodOfCollapsedDims = 1; |
| 42 | while (sourceDim < sourceShape.size()) { |
| 43 | unsigned targetDim = reassociationMap.size(); |
| 44 | // If we have mapped all the target dimensions stop and handle the remaining |
| 45 | // tail of size-1 dimensions explicitly. |
| 46 | if (targetDim == targetShape.size()) |
| 47 | break; |
| 48 | |
| 49 | int64_t currTargetShape = targetShape[targetDim]; |
| 50 | while (sourceDim < (sourceShape.size() - 1) && |
| 51 | sourceShape[sourceDim] != ShapedType::kDynamic && |
| 52 | prodOfCollapsedDims * sourceShape[sourceDim] < currTargetShape) { |
| 53 | prodOfCollapsedDims *= sourceShape[sourceDim]; |
| 54 | currIndices.push_back(Elt: sourceDim++); |
| 55 | } |
| 56 | |
| 57 | // If the current expanded dimension is dynamic, then the collapsed |
| 58 | // dimensions should also be dynamic and product of all previous unprocessed |
| 59 | // dimensions of the expanded shape should be 1. |
| 60 | if (sourceShape[sourceDim] == ShapedType::kDynamic && |
| 61 | (currTargetShape != ShapedType::kDynamic || prodOfCollapsedDims != 1)) |
| 62 | return std::nullopt; |
| 63 | |
| 64 | // If the collapsed dim is dynamic, the current expanded dim should also |
| 65 | // be dynamic. |
| 66 | if (currTargetShape == ShapedType::kDynamic && |
| 67 | sourceShape[sourceDim] != ShapedType::kDynamic) |
| 68 | return std::nullopt; |
| 69 | |
| 70 | // For static shapes, if the product of dimensions of the expanded shape |
| 71 | // should match the collapsed dimension shape. |
| 72 | if (prodOfCollapsedDims * sourceShape[sourceDim] != currTargetShape) |
| 73 | return std::nullopt; |
| 74 | |
| 75 | currIndices.push_back(Elt: sourceDim++); |
| 76 | reassociationMap.emplace_back(Args: ReassociationIndices{}); |
| 77 | std::swap(LHS&: reassociationMap.back(), RHS&: currIndices); |
| 78 | prodOfCollapsedDims = 1; |
| 79 | } |
| 80 | // All the dimensions in the target must have been processed. |
| 81 | if (reassociationMap.size() != targetShape.size()) |
| 82 | return std::nullopt; |
| 83 | // Process any remaining entries in the source shape. They all need to be |
| 84 | // 1 or dynamic. |
| 85 | for (; sourceDim < sourceShape.size(); sourceDim++) { |
| 86 | if (sourceShape[sourceDim] != ShapedType::kDynamic && |
| 87 | sourceShape[sourceDim] != 1) |
| 88 | return std::nullopt; |
| 89 | // The map is empty when the target type is a scalar. |
| 90 | if (!reassociationMap.empty()) |
| 91 | reassociationMap.back().push_back(Elt: sourceDim); |
| 92 | } |
| 93 | return reassociationMap; |
| 94 | } |
| 95 | |
| 96 | std::optional<SmallVector<ReassociationIndices>> |
| 97 | mlir::composeReassociationIndices( |
| 98 | ArrayRef<ReassociationIndices> producerReassociations, |
| 99 | ArrayRef<ReassociationIndices> consumerReassociations, |
| 100 | MLIRContext *context) { |
| 101 | SmallVector<ReassociationIndices> composedIndices; |
| 102 | // Make the producer the larger sized vector. If they are of same size, the |
| 103 | // resulting reshape is not a supported reshape op. |
| 104 | if (producerReassociations.size() == consumerReassociations.size()) |
| 105 | return std::nullopt; |
| 106 | if (producerReassociations.size() < consumerReassociations.size()) |
| 107 | std::swap(a&: producerReassociations, b&: consumerReassociations); |
| 108 | |
| 109 | // Handle the corner case of the result being a rank 0 shaped type. Return an |
| 110 | // empty reassociation. |
| 111 | if (consumerReassociations.empty()) |
| 112 | return composedIndices; |
| 113 | |
| 114 | size_t consumerDims = std::accumulate( |
| 115 | first: consumerReassociations.begin(), last: consumerReassociations.end(), init: 0, |
| 116 | binary_op: [](size_t all, ReassociationIndicesRef indices) { |
| 117 | return all + indices.size(); |
| 118 | }); |
| 119 | if (producerReassociations.size() != consumerDims) |
| 120 | return std::nullopt; |
| 121 | |
| 122 | for (ReassociationIndicesRef consumerIndices : consumerReassociations) { |
| 123 | ReassociationIndices reassociations; |
| 124 | for (int64_t consumerIndex : consumerIndices) { |
| 125 | llvm::append_range(C&: reassociations, R: producerReassociations[consumerIndex]); |
| 126 | } |
| 127 | composedIndices.push_back(Elt: std::move(reassociations)); |
| 128 | } |
| 129 | return composedIndices; |
| 130 | } |
| 131 | |
| 132 | SmallVector<SmallVector<AffineExpr, 2>, 2> |
| 133 | mlir::convertReassociationIndicesToExprs( |
| 134 | MLIRContext *context, ArrayRef<ReassociationIndices> reassociationIndices) { |
| 135 | SmallVector<SmallVector<AffineExpr, 2>, 2> reassociationMaps; |
| 136 | for (const auto &indices : reassociationIndices) { |
| 137 | SmallVector<AffineExpr, 2> reassociationMap; |
| 138 | reassociationMap.reserve(N: indices.size()); |
| 139 | for (int64_t index : indices) |
| 140 | reassociationMap.push_back(Elt: mlir::getAffineDimExpr(position: index, context)); |
| 141 | reassociationMaps.push_back(Elt: std::move(reassociationMap)); |
| 142 | } |
| 143 | return reassociationMaps; |
| 144 | } |
| 145 | |
| 146 | template <typename AffineExprTy> |
| 147 | unsigned getMaxPosOfType(ArrayRef<ReassociationExprs> exprArrays) { |
| 148 | unsigned pos = 0; |
| 149 | for (const auto &exprs : exprArrays) { |
| 150 | for (auto expr : exprs) { |
| 151 | expr.walk([&pos](AffineExpr e) { |
| 152 | if (auto d = dyn_cast<AffineExprTy>(e)) |
| 153 | pos = std::max(pos, d.getPosition()); |
| 154 | }); |
| 155 | } |
| 156 | } |
| 157 | return pos; |
| 158 | } |
| 159 | |
| 160 | ArrayAttr mlir::getReassociationIndicesAttribute( |
| 161 | Builder &b, ArrayRef<ReassociationIndices> reassociation) { |
| 162 | SmallVector<Attribute, 4> reassociationAttr = |
| 163 | llvm::to_vector<4>(Range: llvm::map_range( |
| 164 | C&: reassociation, F: [&](const ReassociationIndices &indices) -> Attribute { |
| 165 | return cast<Attribute>(Val: b.getI64ArrayAttr(indices)); |
| 166 | })); |
| 167 | return b.getArrayAttr(reassociationAttr); |
| 168 | } |
| 169 | |
| 170 | SmallVector<ReassociationIndices, 2> mlir::convertReassociationMapsToIndices( |
| 171 | ArrayRef<ReassociationExprs> reassociationExprs) { |
| 172 | SmallVector<ReassociationIndices, 2> reassociationIndices; |
| 173 | for (const auto &exprs : reassociationExprs) { |
| 174 | ReassociationIndices indices; |
| 175 | indices.reserve(N: exprs.size()); |
| 176 | for (const auto &expr : exprs) |
| 177 | indices.push_back(Elt: cast<AffineDimExpr>(Val: expr).getPosition()); |
| 178 | reassociationIndices.push_back(Elt: indices); |
| 179 | } |
| 180 | return reassociationIndices; |
| 181 | } |
| 182 | |
| 183 | SmallVector<AffineMap, 4> |
| 184 | mlir::getSymbolLessAffineMaps(ArrayRef<ReassociationExprs> reassociation) { |
| 185 | unsigned maxDim = getMaxPosOfType<AffineDimExpr>(exprArrays: reassociation); |
| 186 | assert(getMaxPosOfType<AffineSymbolExpr>(reassociation) == 0 && |
| 187 | "Expected symbol-less expressions" ); |
| 188 | SmallVector<AffineMap, 4> maps; |
| 189 | maps.reserve(N: reassociation.size()); |
| 190 | for (const auto &exprs : reassociation) { |
| 191 | assert(!exprs.empty()); |
| 192 | maps.push_back(Elt: AffineMap::get(dimCount: maxDim + 1, symbolCount: 0, results: exprs, context: exprs[0].getContext())); |
| 193 | } |
| 194 | return maps; |
| 195 | } |
| 196 | |
| 197 | bool mlir::isReassociationValid(ArrayRef<AffineMap> reassociation, |
| 198 | int *invalidIndex) { |
| 199 | if (reassociation.empty()) |
| 200 | return true; |
| 201 | unsigned nDims = reassociation[0].getNumDims(); |
| 202 | unsigned nextExpectedDim = 0; |
| 203 | for (const auto &it : llvm::enumerate(First&: reassociation)) { |
| 204 | auto m = it.value(); |
| 205 | if (m.getNumDims() != nDims || m.getNumSymbols() != 0) { |
| 206 | if (invalidIndex) |
| 207 | *invalidIndex = it.index(); |
| 208 | return false; |
| 209 | } |
| 210 | for (auto e : m.getResults()) { |
| 211 | auto d = dyn_cast<AffineDimExpr>(Val&: e); |
| 212 | if (!d || d.getPosition() != nextExpectedDim++) { |
| 213 | if (invalidIndex) |
| 214 | *invalidIndex = it.index(); |
| 215 | return false; |
| 216 | } |
| 217 | } |
| 218 | } |
| 219 | if (nextExpectedDim != nDims) { |
| 220 | if (invalidIndex) |
| 221 | *invalidIndex = reassociation.size() - 1; |
| 222 | return false; |
| 223 | } |
| 224 | return true; |
| 225 | } |
| 226 | |
| 227 | LogicalResult mlir::reshapeLikeShapesAreCompatible( |
| 228 | function_ref<LogicalResult(const Twine &)> emitError, |
| 229 | ArrayRef<int64_t> collapsedShape, ArrayRef<int64_t> expandedShape, |
| 230 | ArrayRef<ReassociationIndices> reassociationMaps, bool isExpandingReshape) { |
| 231 | unsigned expandedDimStart = 0; |
| 232 | for (const auto &map : llvm::enumerate(First&: reassociationMaps)) { |
| 233 | bool foundDynamicShape = false; |
| 234 | int64_t linearizedStaticShape = 1; |
| 235 | |
| 236 | for (const auto &dim : llvm::enumerate( |
| 237 | First: expandedShape.slice(N: expandedDimStart, M: map.value().size()))) { |
| 238 | if (ShapedType::isDynamic(dim.value())) |
| 239 | foundDynamicShape = true; |
| 240 | else |
| 241 | linearizedStaticShape *= dim.value(); |
| 242 | } |
| 243 | if (foundDynamicShape) { |
| 244 | if (!ShapedType::isDynamic(collapsedShape[map.index()])) { |
| 245 | return emitError( |
| 246 | "expected dimension " + Twine(map.index()) + |
| 247 | " of collapsed type to be dynamic since one or more of the " |
| 248 | "corresponding dimensions in the expanded type is dynamic" ); |
| 249 | } |
| 250 | } else { |
| 251 | if (collapsedShape[map.index()] != linearizedStaticShape) { |
| 252 | return emitError("expected dimension " + Twine(map.index()) + |
| 253 | " of collapsed type to be static value of " + |
| 254 | Twine(linearizedStaticShape)); |
| 255 | } |
| 256 | } |
| 257 | expandedDimStart += map.value().size(); |
| 258 | } |
| 259 | return success(); |
| 260 | } |
| 261 | |
| 262 | bool mlir::hasNonIdentityLayout(Type type) { |
| 263 | if (auto memrefType = dyn_cast<MemRefType>(type)) |
| 264 | return !memrefType.getLayout().isIdentity(); |
| 265 | return false; |
| 266 | } |
| 267 | |
| 268 | llvm::SmallBitVector |
| 269 | mlir::getSlicedDimensions(ArrayRef<OpFoldResult> sliceInputShape, |
| 270 | ArrayRef<Range> sliceParams) { |
| 271 | assert(sliceParams.size() == sliceInputShape.size() && |
| 272 | "only supports non rank-reducing case" ); |
| 273 | llvm::SmallBitVector mask(sliceInputShape.size()); |
| 274 | unsigned idx = 0; |
| 275 | for (const auto &[offset, size, stride] : sliceParams) { |
| 276 | std::optional<int64_t> offsetConst = getConstantIntValue(ofr: offset); |
| 277 | std::optional<int64_t> strideConst = getConstantIntValue(ofr: stride); |
| 278 | mask[idx] = !isEqualConstantIntOrValue(ofr1: size, ofr2: sliceInputShape[idx]) || |
| 279 | (!strideConst || *strideConst != 1) || |
| 280 | (!offsetConst || *offsetConst != 0); |
| 281 | idx++; |
| 282 | } |
| 283 | return mask; |
| 284 | } |
| 285 | |
| 286 | llvm::SmallBitVector mlir::getLinearizedDimensions( |
| 287 | ArrayRef<ReassociationIndices> reassociationIndices) { |
| 288 | llvm::SmallBitVector result(reassociationIndices.size()); |
| 289 | for (const auto &it : llvm::enumerate(First&: reassociationIndices)) |
| 290 | result[it.index()] = it.value().size() > 1; |
| 291 | return result; |
| 292 | } |
| 293 | |
| 294 | SmallVector<Range> SliceFromCollapseHelper::( |
| 295 | MLIRContext *ctx, ArrayRef<ValueRange> multiIndices) { |
| 296 | unsigned loopIdx = 0; |
| 297 | auto oneAttr = IntegerAttr::get(IndexType::get(ctx), 1); |
| 298 | auto zeroAttr = IntegerAttr::get(IndexType::get(ctx), 0); |
| 299 | SmallVector<Range> offsetsSizesAndStrides; |
| 300 | offsetsSizesAndStrides.reserve(N: collapseShapeInputShape.size()); |
| 301 | for (const auto &it : llvm::enumerate(First&: reassociationIndices)) { |
| 302 | // Case 1: Linearized dimensions that have also been sliced. These |
| 303 | // are size of 1 because we are iterating over these dimensions. The |
| 304 | // offsets are exactly the de-linearized multi-indices. |
| 305 | if (slicedDimensions[it.index()] && linearizedDimensions[it.index()]) { |
| 306 | llvm::append_range( |
| 307 | C&: offsetsSizesAndStrides, |
| 308 | R: llvm::map_range(C: multiIndices[loopIdx++], F: [&](Value v) -> Range { |
| 309 | return Range{getAsOpFoldResult(val: v), oneAttr, oneAttr}; |
| 310 | })); |
| 311 | continue; |
| 312 | } |
| 313 | |
| 314 | // Case 2: One or possibly multiple combined input dimensions, but we |
| 315 | // have proven that these are not sliced. In this case we just take |
| 316 | // the full extent of each dimension in the reassociation list. |
| 317 | if (linearizedDimensions[it.index()]) { |
| 318 | llvm::append_range(C&: offsetsSizesAndStrides, |
| 319 | R: llvm::map_range(C&: it.value(), F: [&](int64_t idx) -> Range { |
| 320 | return {zeroAttr, collapseShapeInputShape[idx], |
| 321 | oneAttr}; |
| 322 | })); |
| 323 | continue; |
| 324 | } |
| 325 | |
| 326 | // Case 3: A single index, but it may be sliced. |
| 327 | offsetsSizesAndStrides.push_back(Elt: sliceParams[it.index()]); |
| 328 | } |
| 329 | return offsetsSizesAndStrides; |
| 330 | } |
| 331 | |
| 332 | SmallVector<Range> |
| 333 | SliceFromCollapseHelper::getInsertSliceParams(MLIRContext *ctx, |
| 334 | ValueRange tileIndices) { |
| 335 | auto one = IntegerAttr::get(IndexType::get(ctx), 1); |
| 336 | auto zero = IntegerAttr::get(IndexType::get(ctx), 0); |
| 337 | SmallVector<Range> insertParams; |
| 338 | insertParams.reserve(N: linearizedDimensions.size()); |
| 339 | unsigned loopIdx = 0; |
| 340 | for (unsigned i = 0; i < linearizedDimensions.size(); i++) { |
| 341 | if (linearizedDimensions[i] && slicedDimensions[i]) { |
| 342 | insertParams.push_back(Elt: Range{tileIndices[loopIdx++], one, one}); |
| 343 | continue; |
| 344 | } |
| 345 | insertParams.push_back(Elt: Range{zero, sliceParams[i].size, one}); |
| 346 | } |
| 347 | return insertParams; |
| 348 | } |
| 349 | |
| 350 | /// Returns the index of the only non-unit dimension among `indices` of `shape`, |
| 351 | /// if such a dimension exists and `indices` has more than one element. |
| 352 | /// Otherwise, return std::nullopt. |
| 353 | static std::optional<int64_t> getUniqueNonUnitDim(ArrayRef<int64_t> indices, |
| 354 | ArrayRef<int64_t> shape) { |
| 355 | // Return false if more than one of the dimensions in this group are not 1. |
| 356 | std::optional<int64_t> dimIndex; |
| 357 | if (indices.size() < 2) |
| 358 | return std::nullopt; |
| 359 | for (int64_t idx : indices) { |
| 360 | if (shape[idx] != 1) { |
| 361 | if (dimIndex != std::nullopt) |
| 362 | return std::nullopt; |
| 363 | dimIndex = idx; |
| 364 | } |
| 365 | } |
| 366 | return dimIndex; |
| 367 | } |
| 368 | |
| 369 | // For each segment in the reassociation indices, check whether we can |
| 370 | // simplify that segment with a rank-reducing extract slice. We can do this if |
| 371 | // all but (exactly) one of the corresponding source dims is 1. |
| 372 | static SmallVector<std::optional<int64_t>> getCollapseShapeTrivialSegments( |
| 373 | RankedTensorType sourceType, |
| 374 | ArrayRef<ReassociationIndices> reassociationIndices) { |
| 375 | SmallVector<std::optional<int64_t>> trivialSegments; |
| 376 | for (const auto &indices : reassociationIndices) |
| 377 | trivialSegments.push_back( |
| 378 | Elt: getUniqueNonUnitDim(indices, sourceType.getShape())); |
| 379 | return trivialSegments; |
| 380 | } |
| 381 | |
| 382 | /// Returns true if any of the segments of the reassociation indices for a |
| 383 | /// collapsing reshape can be simplified using a rank-reducing slice. |
| 384 | static FailureOr<SmallVector<std::optional<int64_t>>> |
| 385 | canCollapseShapeBeSimplifiedByRankReducingSlice( |
| 386 | RankedTensorType sourceType, |
| 387 | ArrayRef<ReassociationIndices> reassociationIndices) { |
| 388 | SmallVector<std::optional<int64_t>> trivialSegments = |
| 389 | getCollapseShapeTrivialSegments(sourceType, reassociationIndices); |
| 390 | if (!llvm::any_of(Range&: trivialSegments, P: [](const std::optional<int64_t> &idx) { |
| 391 | return idx.has_value(); |
| 392 | })) |
| 393 | return failure(); |
| 394 | return trivialSegments; |
| 395 | } |
| 396 | |
| 397 | FailureOr<CollapseShapeRankReducingSliceSimplificationInfo> |
| 398 | mlir::getSimplifyCollapseShapeWithRankReducingSliceInfo( |
| 399 | RankedTensorType sourceType, |
| 400 | ArrayRef<ReassociationIndices> reassociationIndices) { |
| 401 | FailureOr<SmallVector<std::optional<int64_t>>> trivialSegments = |
| 402 | canCollapseShapeBeSimplifiedByRankReducingSlice(sourceType, |
| 403 | reassociationIndices); |
| 404 | if (failed(Result: trivialSegments)) |
| 405 | return failure(); |
| 406 | |
| 407 | // Create the expected result shape of the rank-reducing slice. |
| 408 | SmallVector<int64_t> sliceShape; |
| 409 | for (const auto &[nonUnitDim, indices] : |
| 410 | llvm::zip(*trivialSegments, reassociationIndices)) { |
| 411 | if (nonUnitDim) { |
| 412 | sliceShape.push_back(sourceType.getDimSize(*nonUnitDim)); |
| 413 | continue; |
| 414 | } |
| 415 | llvm::append_range(sliceShape, llvm::map_range(indices, [&](int64_t idx) { |
| 416 | return sourceType.getDimSize(idx); |
| 417 | })); |
| 418 | } |
| 419 | auto sliceType = |
| 420 | RankedTensorType::get(sliceShape, sourceType.getElementType()); |
| 421 | |
| 422 | // If the rank-reducing slice simplified every segment, then we are done. |
| 423 | if (sliceShape.size() == reassociationIndices.size()) |
| 424 | return CollapseShapeRankReducingSliceSimplificationInfo{sliceType, |
| 425 | std::nullopt}; |
| 426 | |
| 427 | // Otherwise, we need to create a new collapse_shape op for the segments that |
| 428 | // weren't covered by the slice. By design, the new reassociation indices has |
| 429 | // the same number of groups as the old reassociation indices. |
| 430 | SmallVector<ReassociationIndices> newReassociationIndices; |
| 431 | SmallVector<int64_t, 2> reassociation; |
| 432 | int64_t groupIdx = 0; |
| 433 | for (int64_t dimIdx = 0; dimIdx < sliceType.getRank(); dimIdx++) { |
| 434 | reassociation.push_back(Elt: dimIdx); |
| 435 | if ((*trivialSegments)[groupIdx] || |
| 436 | reassociation.size() == reassociationIndices[groupIdx].size()) { |
| 437 | newReassociationIndices.push_back(Elt: reassociation); |
| 438 | reassociation.clear(); |
| 439 | groupIdx++; |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | return CollapseShapeRankReducingSliceSimplificationInfo{ |
| 444 | sliceType, newReassociationIndices}; |
| 445 | } |
| 446 | |
| 447 | PackingMetadata mlir::computePackingMetadata(int64_t packedRank, |
| 448 | ArrayRef<int64_t> innerDimPos) { |
| 449 | PackingMetadata res; |
| 450 | res.insertPositions.reserve(N: innerDimPos.size()); |
| 451 | // The pack insert position is the position + the number of previously |
| 452 | // inserted positions + offset. |
| 453 | // The offset controls whether the packing dimension is the first or last. |
| 454 | // |
| 455 | // Example |
| 456 | // ======= |
| 457 | // Consider packing from a hypothetical ABCD layout to ABCDba whose |
| 458 | // pack.inner_dims is [1, 0]. The first step consists in undoing the |
| 459 | // permutation and producing AaBbCD. This is achieved purely by computing the |
| 460 | // insert positions of `b` and `a` into `ABCD`, starting from [1, 0]. One |
| 461 | // possibility, is to produce insert positions [2, 0], this would result in an |
| 462 | // aAbBCD layout (i.e. offset 0). The other possibility, is to produce insert |
| 463 | // positions [3, 1], this would result in an AaBbCD layout (i.e. offset 1). |
| 464 | // The latter is what we expect from packing. |
| 465 | int64_t offset = 1; |
| 466 | for (int64_t pos : innerDimPos) { |
| 467 | int64_t numInsertedBefore = llvm::count_if( |
| 468 | Range&: innerDimPos, P: [&pos](int64_t pos2) { return pos > pos2; }); |
| 469 | res.insertPositions.push_back(Elt: pos + numInsertedBefore + offset); |
| 470 | } |
| 471 | |
| 472 | DenseSet<int64_t> posSet(res.insertPositions.begin(), |
| 473 | res.insertPositions.end()); |
| 474 | res.reassociations.reserve(N: packedRank); |
| 475 | for (int64_t i = 1; i <= packedRank; ++i) { |
| 476 | res.outerPositions.push_back(Elt: i - 1); |
| 477 | if (!posSet.contains(V: i)) { |
| 478 | res.reassociations.push_back(Elt: ReassociationIndices{i - 1}); |
| 479 | continue; |
| 480 | } |
| 481 | res.reassociations.push_back(Elt: ReassociationIndices{i - 1, i}); |
| 482 | ++i; |
| 483 | } |
| 484 | return res; |
| 485 | } |
| 486 | |
| 487 | OpFoldResult mlir::reshapeConstantSource(DenseElementsAttr source, |
| 488 | TensorType result, |
| 489 | std::optional<Attribute> cst) { |
| 490 | if (source && source.isSplat() && result.hasStaticShape() && |
| 491 | (!cst.has_value() || source.getSplatValue<Attribute>() == cst.value())) |
| 492 | return source.resizeSplat(result); |
| 493 | |
| 494 | return {}; |
| 495 | } |
| 496 | |