1 | //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements convenience types for working with super-vectorization |
10 | // operations, in particular super-vector loads and stores. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
15 | |
16 | #include "mlir/Dialect/Affine/IR/ValueBoundsOpInterfaceImpl.h" |
17 | #include "mlir/Dialect/Arith/IR/Arith.h" |
18 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
19 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
20 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
21 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
22 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
23 | #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
24 | #include "mlir/IR/AffineExpr.h" |
25 | #include "mlir/IR/AffineMap.h" |
26 | #include "mlir/IR/Builders.h" |
27 | #include "mlir/IR/BuiltinAttributes.h" |
28 | #include "mlir/IR/BuiltinOps.h" |
29 | #include "mlir/IR/BuiltinTypes.h" |
30 | #include "mlir/IR/DialectImplementation.h" |
31 | #include "mlir/IR/IRMapping.h" |
32 | #include "mlir/IR/OpImplementation.h" |
33 | #include "mlir/IR/PatternMatch.h" |
34 | #include "mlir/IR/TypeUtilities.h" |
35 | #include "mlir/Interfaces/SubsetOpInterface.h" |
36 | #include "mlir/Interfaces/ValueBoundsOpInterface.h" |
37 | #include "mlir/Support/LLVM.h" |
38 | #include "mlir/Transforms/InliningUtils.h" |
39 | #include "llvm/ADT/ArrayRef.h" |
40 | #include "llvm/ADT/STLExtras.h" |
41 | #include "llvm/ADT/SmallVector.h" |
42 | #include "llvm/ADT/StringSet.h" |
43 | #include "llvm/ADT/TypeSwitch.h" |
44 | #include "llvm/ADT/bit.h" |
45 | |
46 | #include <cassert> |
47 | #include <cstdint> |
48 | #include <numeric> |
49 | |
50 | #include "mlir/Dialect/Vector/IR/VectorDialect.cpp.inc" |
51 | // Pull in all enum type and utility function definitions. |
52 | #include "mlir/Dialect/Vector/IR/VectorEnums.cpp.inc" |
53 | |
54 | using namespace mlir; |
55 | using namespace mlir::vector; |
56 | |
57 | /// Helper enum to classify mask value. |
58 | enum class MaskFormat { |
59 | AllTrue = 0, |
60 | AllFalse = 1, |
61 | Unknown = 2, |
62 | }; |
63 | |
64 | /// Helper method to classify a mask value. Currently, the method |
65 | /// looks "under the hood" of a constant value with dense attributes |
66 | /// and a constant mask operation (since the client may be called at |
67 | /// various stages during progressive lowering). |
68 | static MaskFormat getMaskFormat(Value mask) { |
69 | if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { |
70 | // Inspect constant dense values. We count up for bits that |
71 | // are set, count down for bits that are cleared, and bail |
72 | // when a mix is detected. |
73 | if (auto denseElts = llvm::dyn_cast<DenseIntElementsAttr>(c.getValue())) { |
74 | int64_t val = 0; |
75 | for (bool b : denseElts.getValues<bool>()) |
76 | if (b && val >= 0) |
77 | val++; |
78 | else if (!b && val <= 0) |
79 | val--; |
80 | else |
81 | return MaskFormat::Unknown; |
82 | if (val > 0) |
83 | return MaskFormat::AllTrue; |
84 | if (val < 0) |
85 | return MaskFormat::AllFalse; |
86 | } |
87 | } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { |
88 | // Inspect constant mask index. If the index exceeds the |
89 | // dimension size, all bits are set. If the index is zero |
90 | // or less, no bits are set. |
91 | ArrayAttr masks = m.getMaskDimSizes(); |
92 | auto shape = m.getType().getShape(); |
93 | bool allTrue = true; |
94 | bool allFalse = true; |
95 | for (auto [maskIdx, dimSize] : llvm::zip_equal(masks, shape)) { |
96 | int64_t i = llvm::cast<IntegerAttr>(maskIdx).getInt(); |
97 | if (i < dimSize) |
98 | allTrue = false; |
99 | if (i > 0) |
100 | allFalse = false; |
101 | } |
102 | if (allTrue) |
103 | return MaskFormat::AllTrue; |
104 | if (allFalse) |
105 | return MaskFormat::AllFalse; |
106 | } else if (auto m = mask.getDefiningOp<CreateMaskOp>()) { |
107 | // Finds all-false create_masks. An all-true create_mask requires all |
108 | // dims to be constants, so that'll be folded to a constant_mask, then |
109 | // detected in the constant_mask case. |
110 | auto maskOperands = m.getOperands(); |
111 | for (Value operand : maskOperands) { |
112 | if (auto constantOp = operand.getDefiningOp<arith::ConstantOp>()) { |
113 | int64_t dimSize = |
114 | llvm::cast<IntegerAttr>(constantOp.getValue()).getInt(); |
115 | if (dimSize <= 0) |
116 | return MaskFormat::AllFalse; |
117 | } |
118 | } |
119 | return MaskFormat::Unknown; |
120 | } |
121 | return MaskFormat::Unknown; |
122 | } |
123 | |
124 | /// Default callback to build a region with a 'vector.yield' terminator with no |
125 | /// arguments. |
126 | void mlir::vector::buildTerminatedBody(OpBuilder &builder, Location loc) { |
127 | builder.create<vector::YieldOp>(loc); |
128 | } |
129 | |
130 | // Helper for verifying combining kinds in contractions and reductions. |
131 | static bool isSupportedCombiningKind(CombiningKind combiningKind, |
132 | Type elementType) { |
133 | switch (combiningKind) { |
134 | case CombiningKind::ADD: |
135 | case CombiningKind::MUL: |
136 | return elementType.isIntOrIndexOrFloat(); |
137 | case CombiningKind::MINUI: |
138 | case CombiningKind::MINSI: |
139 | case CombiningKind::MAXUI: |
140 | case CombiningKind::MAXSI: |
141 | case CombiningKind::AND: |
142 | case CombiningKind::OR: |
143 | case CombiningKind::XOR: |
144 | return elementType.isIntOrIndex(); |
145 | case CombiningKind::MINNUMF: |
146 | case CombiningKind::MAXNUMF: |
147 | case CombiningKind::MINIMUMF: |
148 | case CombiningKind::MAXIMUMF: |
149 | return llvm::isa<FloatType>(Val: elementType); |
150 | } |
151 | return false; |
152 | } |
153 | |
154 | AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, |
155 | VectorType vectorType) { |
156 | int64_t elementVectorRank = 0; |
157 | VectorType elementVectorType = |
158 | llvm::dyn_cast<VectorType>(shapedType.getElementType()); |
159 | if (elementVectorType) |
160 | elementVectorRank += elementVectorType.getRank(); |
161 | // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. |
162 | // TODO: replace once we have 0-d vectors. |
163 | if (shapedType.getRank() == 0 && |
164 | vectorType.getShape() == ArrayRef<int64_t>{1}) |
165 | return AffineMap::get( |
166 | /*numDims=*/0, /*numSymbols=*/0, |
167 | getAffineConstantExpr(0, shapedType.getContext())); |
168 | return AffineMap::getMinorIdentityMap( |
169 | dims: shapedType.getRank(), results: vectorType.getRank() - elementVectorRank, |
170 | context: shapedType.getContext()); |
171 | } |
172 | |
173 | bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, |
174 | vector::TransferReadOp read) { |
175 | return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() && |
176 | !read.getMask() && defWrite.getIndices() == read.getIndices() && |
177 | defWrite.getVectorType() == read.getVectorType() && |
178 | defWrite.getPermutationMap() == read.getPermutationMap(); |
179 | } |
180 | |
181 | bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, |
182 | vector::TransferWriteOp priorWrite) { |
183 | return priorWrite.getIndices() == write.getIndices() && |
184 | priorWrite.getMask() == write.getMask() && |
185 | priorWrite.getVectorType() == write.getVectorType() && |
186 | priorWrite.getPermutationMap() == write.getPermutationMap(); |
187 | } |
188 | |
189 | bool mlir::vector::isDisjointTransferIndices( |
190 | VectorTransferOpInterface transferA, VectorTransferOpInterface transferB, |
191 | bool testDynamicValueUsingBounds) { |
192 | // For simplicity only look at transfer of same type. |
193 | if (transferA.getVectorType() != transferB.getVectorType()) |
194 | return false; |
195 | unsigned rankOffset = transferA.getLeadingShapedRank(); |
196 | for (unsigned i = 0, e = transferA.getIndices().size(); i < e; i++) { |
197 | Value indexA = transferA.getIndices()[i]; |
198 | Value indexB = transferB.getIndices()[i]; |
199 | std::optional<int64_t> cstIndexA = getConstantIntValue(ofr: indexA); |
200 | std::optional<int64_t> cstIndexB = getConstantIntValue(ofr: indexB); |
201 | |
202 | if (i < rankOffset) { |
203 | // For leading dimensions, if we can prove that index are different we |
204 | // know we are accessing disjoint slices. |
205 | if (cstIndexA.has_value() && cstIndexB.has_value()) { |
206 | if (*cstIndexA != *cstIndexB) |
207 | return true; |
208 | continue; |
209 | } |
210 | if (testDynamicValueUsingBounds) { |
211 | // First try to see if we can fully compose and simplify the affine |
212 | // expression as a fast track. |
213 | FailureOr<uint64_t> delta = |
214 | affine::fullyComposeAndComputeConstantDelta(value1: indexA, value2: indexB); |
215 | if (succeeded(result: delta) && *delta != 0) |
216 | return true; |
217 | |
218 | FailureOr<bool> testEqual = |
219 | ValueBoundsConstraintSet::areEqual(var1: indexA, var2: indexB); |
220 | if (succeeded(result: testEqual) && !testEqual.value()) |
221 | return true; |
222 | } |
223 | } else { |
224 | // For this dimension, we slice a part of the memref we need to make sure |
225 | // the intervals accessed don't overlap. |
226 | int64_t vectorDim = transferA.getVectorType().getDimSize(i - rankOffset); |
227 | if (cstIndexA.has_value() && cstIndexB.has_value()) { |
228 | int64_t distance = std::abs(i: *cstIndexA - *cstIndexB); |
229 | if (distance >= vectorDim) |
230 | return true; |
231 | continue; |
232 | } |
233 | if (testDynamicValueUsingBounds) { |
234 | // First try to see if we can fully compose and simplify the affine |
235 | // expression as a fast track. |
236 | FailureOr<int64_t> delta = |
237 | affine::fullyComposeAndComputeConstantDelta(value1: indexA, value2: indexB); |
238 | if (succeeded(result: delta) && std::abs(i: *delta) >= vectorDim) |
239 | return true; |
240 | |
241 | FailureOr<int64_t> computeDelta = |
242 | ValueBoundsConstraintSet::computeConstantDelta(value1: indexA, value2: indexB); |
243 | if (succeeded(result: computeDelta)) { |
244 | if (std::abs(i: computeDelta.value()) >= vectorDim) |
245 | return true; |
246 | } |
247 | } |
248 | } |
249 | } |
250 | return false; |
251 | } |
252 | |
253 | bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, |
254 | VectorTransferOpInterface transferB, |
255 | bool testDynamicValueUsingBounds) { |
256 | if (transferA.getSource() != transferB.getSource()) |
257 | return false; |
258 | return isDisjointTransferIndices(transferA, transferB, |
259 | testDynamicValueUsingBounds); |
260 | } |
261 | |
262 | // Helper to iterate over n-D vector slice elements. Calculate the next |
263 | // `position` in the n-D vector of size `shape`, applying an offset `offsets`. |
264 | // Modifies the `position` in place. Returns a failure when `position` becomes |
265 | // the end position. |
266 | static LogicalResult incSlicePosition(MutableArrayRef<int64_t> position, |
267 | ArrayRef<int64_t> shape, |
268 | ArrayRef<int64_t> offsets) { |
269 | for (auto [posInDim, dimSize, offsetInDim] : |
270 | llvm::reverse(C: llvm::zip_equal(t&: position, u&: shape, args&: offsets))) { |
271 | ++posInDim; |
272 | if (posInDim < dimSize + offsetInDim) |
273 | return success(); |
274 | |
275 | // Carry the overflow to the next loop iteration. |
276 | posInDim = offsetInDim; |
277 | } |
278 | |
279 | return failure(); |
280 | } |
281 | |
282 | /// Returns the integer numbers in `values`. `values` are expected to be |
283 | /// constant operations. |
284 | SmallVector<int64_t> vector::getAsIntegers(ArrayRef<Value> values) { |
285 | SmallVector<int64_t> ints; |
286 | llvm::transform(Range&: values, d_first: std::back_inserter(x&: ints), F: [](Value value) { |
287 | auto constOp = value.getDefiningOp<arith::ConstantIndexOp>(); |
288 | assert(constOp && "Unexpected non-constant index" ); |
289 | return constOp.value(); |
290 | }); |
291 | return ints; |
292 | } |
293 | |
294 | /// Returns the integer numbers in `foldResults`. `foldResults` are expected to |
295 | /// be constant operations. |
296 | SmallVector<int64_t> vector::getAsIntegers(ArrayRef<OpFoldResult> foldResults) { |
297 | SmallVector<int64_t> ints; |
298 | llvm::transform( |
299 | Range&: foldResults, d_first: std::back_inserter(x&: ints), F: [](OpFoldResult foldResult) { |
300 | assert(foldResult.is<Attribute>() && "Unexpected non-constant index" ); |
301 | return cast<IntegerAttr>(foldResult.get<Attribute>()).getInt(); |
302 | }); |
303 | return ints; |
304 | } |
305 | |
306 | /// Convert `foldResults` into Values. Integer attributes are converted to |
307 | /// constant op. |
308 | SmallVector<Value> vector::getAsValues(OpBuilder &builder, Location loc, |
309 | ArrayRef<OpFoldResult> foldResults) { |
310 | SmallVector<Value> values; |
311 | llvm::transform(Range&: foldResults, d_first: std::back_inserter(x&: values), |
312 | F: [&](OpFoldResult foldResult) { |
313 | if (auto attr = foldResult.dyn_cast<Attribute>()) |
314 | return builder |
315 | .create<arith::ConstantIndexOp>( |
316 | loc, cast<IntegerAttr>(attr).getInt()) |
317 | .getResult(); |
318 | |
319 | return foldResult.get<Value>(); |
320 | }); |
321 | return values; |
322 | } |
323 | |
324 | //===----------------------------------------------------------------------===// |
325 | // CombiningKindAttr |
326 | //===----------------------------------------------------------------------===// |
327 | |
328 | namespace mlir { |
329 | namespace vector { |
330 | namespace detail { |
331 | struct BitmaskEnumStorage : public AttributeStorage { |
332 | using KeyTy = uint64_t; |
333 | |
334 | BitmaskEnumStorage(KeyTy val) : value(val) {} |
335 | |
336 | bool operator==(const KeyTy &key) const { return value == key; } |
337 | |
338 | static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, |
339 | const KeyTy &key) { |
340 | return new (allocator.allocate<BitmaskEnumStorage>()) |
341 | BitmaskEnumStorage(key); |
342 | } |
343 | |
344 | KeyTy value = 0; |
345 | }; |
346 | } // namespace detail |
347 | } // namespace vector |
348 | } // namespace mlir |
349 | |
350 | //===----------------------------------------------------------------------===// |
351 | // VectorDialect |
352 | //===----------------------------------------------------------------------===// |
353 | |
354 | namespace { |
355 | /// This class defines the interface for handling inlining with vector dialect |
356 | /// operations. |
357 | struct VectorInlinerInterface : public DialectInlinerInterface { |
358 | using DialectInlinerInterface::DialectInlinerInterface; |
359 | |
360 | /// All vector dialect ops can be inlined. |
361 | bool isLegalToInline(Operation *, Region *, bool, IRMapping &) const final { |
362 | return true; |
363 | } |
364 | }; |
365 | } // namespace |
366 | |
367 | void VectorDialect::initialize() { |
368 | addAttributes< |
369 | #define GET_ATTRDEF_LIST |
370 | #include "mlir/Dialect/Vector/IR/VectorAttributes.cpp.inc" |
371 | >(); |
372 | |
373 | addOperations< |
374 | #define GET_OP_LIST |
375 | #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" |
376 | >(); |
377 | |
378 | addInterfaces<VectorInlinerInterface>(); |
379 | |
380 | declarePromisedInterfaces<bufferization::BufferizableOpInterface, |
381 | TransferReadOp, TransferWriteOp, GatherOp, MaskOp, |
382 | YieldOp>(); |
383 | declarePromisedInterfaces<SubsetOpInterface, TransferReadOp, |
384 | TransferWriteOp>(); |
385 | declarePromisedInterface<SubsetExtractionOpInterface, TransferReadOp>(); |
386 | declarePromisedInterface<SubsetInsertionOpInterface, TransferWriteOp>(); |
387 | } |
388 | |
389 | /// Materialize a single constant operation from a given attribute value with |
390 | /// the desired resultant type. |
391 | Operation *VectorDialect::materializeConstant(OpBuilder &builder, |
392 | Attribute value, Type type, |
393 | Location loc) { |
394 | return arith::ConstantOp::materialize(builder, value, type, loc); |
395 | } |
396 | |
397 | IntegerType vector::getVectorSubscriptType(Builder &builder) { |
398 | return builder.getIntegerType(64); |
399 | } |
400 | |
401 | ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, |
402 | ArrayRef<int64_t> values) { |
403 | return builder.getI64ArrayAttr(values); |
404 | } |
405 | |
406 | //===----------------------------------------------------------------------===// |
407 | // MultiDimReductionOp |
408 | //===----------------------------------------------------------------------===// |
409 | |
410 | void vector::MultiDimReductionOp::build(OpBuilder &builder, |
411 | OperationState &result, Value source, |
412 | Value acc, ArrayRef<bool> reductionMask, |
413 | CombiningKind kind) { |
414 | SmallVector<int64_t> reductionDims; |
415 | for (const auto &en : llvm::enumerate(reductionMask)) |
416 | if (en.value()) |
417 | reductionDims.push_back(en.index()); |
418 | build(builder, result, kind, source, acc, |
419 | builder.getI64ArrayAttr(reductionDims)); |
420 | } |
421 | |
422 | OpFoldResult MultiDimReductionOp::fold(FoldAdaptor adaptor) { |
423 | // Single parallel dim, this is a noop. |
424 | if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) |
425 | return getSource(); |
426 | return {}; |
427 | } |
428 | |
429 | std::optional<SmallVector<int64_t, 4>> |
430 | MultiDimReductionOp::getShapeForUnroll() { |
431 | return llvm::to_vector<4>(getSourceVectorType().getShape()); |
432 | } |
433 | |
434 | LogicalResult MultiDimReductionOp::verify() { |
435 | SmallVector<int64_t> targetShape; |
436 | SmallVector<bool> scalableDims; |
437 | Type inferredReturnType; |
438 | auto sourceScalableDims = getSourceVectorType().getScalableDims(); |
439 | for (auto it : llvm::enumerate(getSourceVectorType().getShape())) |
440 | if (!llvm::any_of(getReductionDims().getValue(), [&](Attribute attr) { |
441 | return llvm::cast<IntegerAttr>(attr).getValue() == it.index(); |
442 | })) { |
443 | targetShape.push_back(it.value()); |
444 | scalableDims.push_back(sourceScalableDims[it.index()]); |
445 | } |
446 | // TODO: update to also allow 0-d vectors when available. |
447 | if (targetShape.empty()) |
448 | inferredReturnType = getSourceVectorType().getElementType(); |
449 | else |
450 | inferredReturnType = VectorType::get( |
451 | targetShape, getSourceVectorType().getElementType(), scalableDims); |
452 | if (getType() != inferredReturnType) |
453 | return emitOpError() << "destination type " << getType() |
454 | << " is incompatible with source type " |
455 | << getSourceVectorType(); |
456 | |
457 | return success(); |
458 | } |
459 | |
460 | /// Returns the mask type expected by this operation. |
461 | Type MultiDimReductionOp::getExpectedMaskType() { |
462 | auto vecType = getSourceVectorType(); |
463 | return VectorType::get(vecType.getShape(), |
464 | IntegerType::get(vecType.getContext(), /*width=*/1), |
465 | vecType.getScalableDims()); |
466 | } |
467 | |
468 | namespace { |
469 | // Only unit dimensions that are being reduced are folded. If the dimension is |
470 | // unit, but not reduced, it is not folded, thereby keeping the output type the |
471 | // same. If not all dimensions which are reduced are of unit dimension, this |
472 | // transformation does nothing. This is just a generalization of |
473 | // ElideSingleElementReduction for ReduceOp. |
474 | struct ElideUnitDimsInMultiDimReduction |
475 | : public OpRewritePattern<MultiDimReductionOp> { |
476 | using OpRewritePattern::OpRewritePattern; |
477 | |
478 | LogicalResult matchAndRewrite(MultiDimReductionOp reductionOp, |
479 | PatternRewriter &rewriter) const override { |
480 | ArrayRef<int64_t> shape = reductionOp.getSourceVectorType().getShape(); |
481 | for (const auto &dim : enumerate(shape)) { |
482 | if (reductionOp.isReducedDim(dim.index()) && dim.value() != 1) |
483 | return failure(); |
484 | } |
485 | |
486 | // Vector mask setup. |
487 | OpBuilder::InsertionGuard guard(rewriter); |
488 | Operation *rootOp; |
489 | Value mask; |
490 | if (reductionOp.isMasked()) { |
491 | rewriter.setInsertionPoint(reductionOp.getMaskingOp()); |
492 | rootOp = reductionOp.getMaskingOp(); |
493 | mask = reductionOp.getMaskingOp().getMask(); |
494 | } else { |
495 | rootOp = reductionOp; |
496 | } |
497 | |
498 | Location loc = reductionOp.getLoc(); |
499 | Value acc = reductionOp.getAcc(); |
500 | Value cast; |
501 | if (auto dstVecType = dyn_cast<VectorType>(reductionOp.getDestType())) { |
502 | if (mask) { |
503 | VectorType newMaskType = |
504 | VectorType::get(dstVecType.getShape(), rewriter.getI1Type(), |
505 | dstVecType.getScalableDims()); |
506 | mask = rewriter.create<vector::ShapeCastOp>(loc, newMaskType, mask); |
507 | } |
508 | cast = rewriter.create<vector::ShapeCastOp>( |
509 | loc, reductionOp.getDestType(), reductionOp.getSource()); |
510 | } else { |
511 | // This means we are reducing all the dimensions, and all reduction |
512 | // dimensions are of size 1. So a simple extraction would do. |
513 | SmallVector<int64_t> zeroIdx(shape.size(), 0); |
514 | if (mask) |
515 | mask = rewriter.create<vector::ExtractOp>(loc, mask, zeroIdx); |
516 | cast = rewriter.create<vector::ExtractOp>(loc, reductionOp.getSource(), |
517 | zeroIdx); |
518 | } |
519 | |
520 | Value result = |
521 | vector::makeArithReduction(rewriter, loc, reductionOp.getKind(), acc, |
522 | cast, /*fastmath=*/nullptr, mask); |
523 | rewriter.replaceOp(op: rootOp, newValues: result); |
524 | return success(); |
525 | } |
526 | }; |
527 | } // namespace |
528 | |
529 | void MultiDimReductionOp::getCanonicalizationPatterns( |
530 | RewritePatternSet &results, MLIRContext *context) { |
531 | results.add<ElideUnitDimsInMultiDimReduction>(context); |
532 | } |
533 | |
534 | //===----------------------------------------------------------------------===// |
535 | // ReductionOp |
536 | //===----------------------------------------------------------------------===// |
537 | |
538 | void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, |
539 | CombiningKind kind, Value vector, |
540 | arith::FastMathFlags fastMathFlags) { |
541 | build(builder, result, kind, vector, /*acc=*/Value(), fastMathFlags); |
542 | } |
543 | |
544 | void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, |
545 | CombiningKind kind, Value vector, Value acc, |
546 | arith::FastMathFlags fastMathFlags) { |
547 | build(builder, result, |
548 | llvm::cast<VectorType>(vector.getType()).getElementType(), kind, vector, |
549 | acc, fastMathFlags); |
550 | } |
551 | |
552 | LogicalResult ReductionOp::verify() { |
553 | // Verify for 0-D and 1-D vector. |
554 | int64_t rank = getSourceVectorType().getRank(); |
555 | if (rank > 1) |
556 | return emitOpError("unsupported reduction rank: " ) << rank; |
557 | |
558 | // Verify supported reduction kind. |
559 | Type eltType = getDest().getType(); |
560 | if (!isSupportedCombiningKind(getKind(), eltType)) |
561 | return emitOpError("unsupported reduction type '" ) |
562 | << eltType << "' for kind '" << stringifyCombiningKind(getKind()) |
563 | << "'" ; |
564 | |
565 | return success(); |
566 | } |
567 | |
568 | // MaskableOpInterface methods. |
569 | |
570 | /// Returns the mask type expected by this operation. |
571 | Type ReductionOp::getExpectedMaskType() { |
572 | auto vecType = getSourceVectorType(); |
573 | return VectorType::get(vecType.getShape(), |
574 | IntegerType::get(vecType.getContext(), /*width=*/1), |
575 | vecType.getScalableDims()); |
576 | } |
577 | |
578 | Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, |
579 | OpBuilder &builder, Location loc, |
580 | Value vector) { |
581 | switch (op) { |
582 | case arith::AtomicRMWKind::addf: |
583 | case arith::AtomicRMWKind::addi: |
584 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
585 | CombiningKind::ADD, vector); |
586 | case arith::AtomicRMWKind::mulf: |
587 | case arith::AtomicRMWKind::muli: |
588 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
589 | CombiningKind::MUL, vector); |
590 | case arith::AtomicRMWKind::minimumf: |
591 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
592 | CombiningKind::MINIMUMF, vector); |
593 | case arith::AtomicRMWKind::mins: |
594 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
595 | CombiningKind::MINSI, vector); |
596 | case arith::AtomicRMWKind::minu: |
597 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
598 | CombiningKind::MINUI, vector); |
599 | case arith::AtomicRMWKind::maximumf: |
600 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
601 | CombiningKind::MAXIMUMF, vector); |
602 | case arith::AtomicRMWKind::maxs: |
603 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
604 | CombiningKind::MAXSI, vector); |
605 | case arith::AtomicRMWKind::maxu: |
606 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
607 | CombiningKind::MAXUI, vector); |
608 | case arith::AtomicRMWKind::andi: |
609 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
610 | CombiningKind::AND, vector); |
611 | case arith::AtomicRMWKind::ori: |
612 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
613 | CombiningKind::OR, vector); |
614 | // TODO: Add remaining reduction operations. |
615 | default: |
616 | (void)emitOptionalError(loc, args: "Reduction operation type not supported" ); |
617 | break; |
618 | } |
619 | return nullptr; |
620 | } |
621 | |
622 | std::optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { |
623 | return llvm::to_vector<4>(getSourceVectorType().getShape()); |
624 | } |
625 | |
626 | namespace { |
627 | struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> { |
628 | using OpRewritePattern::OpRewritePattern; |
629 | |
630 | LogicalResult matchAndRewrite(ReductionOp reductionOp, |
631 | PatternRewriter &rewriter) const override { |
632 | // Vector mask setup. |
633 | OpBuilder::InsertionGuard guard(rewriter); |
634 | auto maskableOp = |
635 | cast<vector::MaskableOpInterface>(reductionOp.getOperation()); |
636 | Operation *rootOp; |
637 | Value mask; |
638 | if (maskableOp.isMasked()) { |
639 | rewriter.setInsertionPoint(maskableOp.getMaskingOp()); |
640 | rootOp = maskableOp.getMaskingOp(); |
641 | mask = maskableOp.getMaskingOp().getMask(); |
642 | } else { |
643 | rootOp = reductionOp; |
644 | } |
645 | |
646 | auto vectorType = reductionOp.getSourceVectorType(); |
647 | if (vectorType.getRank() != 0 && vectorType.getDimSize(0) != 1) |
648 | return failure(); |
649 | |
650 | Location loc = reductionOp.getLoc(); |
651 | Value result; |
652 | if (vectorType.getRank() == 0) { |
653 | if (mask) |
654 | mask = rewriter.create<ExtractElementOp>(loc, mask); |
655 | result = rewriter.create<ExtractElementOp>(loc, reductionOp.getVector()); |
656 | } else { |
657 | if (mask) |
658 | mask = rewriter.create<ExtractOp>(loc, mask, 0); |
659 | result = rewriter.create<ExtractOp>(loc, reductionOp.getVector(), 0); |
660 | } |
661 | |
662 | if (Value acc = reductionOp.getAcc()) |
663 | result = vector::makeArithReduction(rewriter, loc, reductionOp.getKind(), |
664 | result, acc, |
665 | reductionOp.getFastmathAttr(), mask); |
666 | |
667 | rewriter.replaceOp(op: rootOp, newValues: result); |
668 | return success(); |
669 | } |
670 | }; |
671 | } // namespace |
672 | |
673 | void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results, |
674 | MLIRContext *context) { |
675 | results.add<ElideSingleElementReduction>(context); |
676 | } |
677 | |
678 | //===----------------------------------------------------------------------===// |
679 | // ContractionOp |
680 | //===----------------------------------------------------------------------===// |
681 | |
682 | void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, |
683 | Value lhs, Value rhs, Value acc, |
684 | ArrayRef<ArrayRef<AffineExpr>> indexingExprs, |
685 | ArrayRef<IteratorType> iteratorTypes) { |
686 | result.addOperands({lhs, rhs, acc}); |
687 | result.addTypes(acc.getType()); |
688 | result.addAttribute( |
689 | getIndexingMapsAttrName(result.name), |
690 | builder.getAffineMapArrayAttr( |
691 | AffineMap::inferFromExprList(indexingExprs, builder.getContext()))); |
692 | result.addAttribute( |
693 | getIteratorTypesAttrName(result.name), |
694 | builder.getArrayAttr(llvm::to_vector(llvm::map_range( |
695 | iteratorTypes, [&](IteratorType t) -> mlir::Attribute { |
696 | return IteratorTypeAttr::get(builder.getContext(), t); |
697 | })))); |
698 | } |
699 | |
700 | void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, |
701 | Value lhs, Value rhs, Value acc, |
702 | ArrayAttr indexingMaps, |
703 | ArrayAttr iteratorTypes) { |
704 | build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, |
705 | ContractionOp::getDefaultKind()); |
706 | } |
707 | |
708 | void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, |
709 | Value lhs, Value rhs, Value acc, |
710 | ArrayAttr indexingMaps, |
711 | ArrayAttr iteratorTypes, CombiningKind kind) { |
712 | result.addOperands({lhs, rhs, acc}); |
713 | result.addTypes(acc.getType()); |
714 | result.addAttribute(getIndexingMapsAttrName(result.name), indexingMaps); |
715 | result.addAttribute(getIteratorTypesAttrName(result.name), iteratorTypes); |
716 | result.addAttribute(getKindAttrName(result.name), |
717 | CombiningKindAttr::get(builder.getContext(), kind)); |
718 | } |
719 | |
720 | ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { |
721 | OpAsmParser::UnresolvedOperand lhsInfo; |
722 | OpAsmParser::UnresolvedOperand rhsInfo; |
723 | OpAsmParser::UnresolvedOperand accInfo; |
724 | SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo; |
725 | SmallVector<Type, 2> types; |
726 | Type resultType; |
727 | auto loc = parser.getCurrentLocation(); |
728 | DictionaryAttr dictAttr; |
729 | // TODO: Unify linalg op attribute parsing. |
730 | if (parser.parseAttribute(dictAttr) || parser.parseOperand(lhsInfo) || |
731 | parser.parseComma() || parser.parseOperand(rhsInfo) || |
732 | parser.parseComma() || parser.parseOperand(accInfo) || |
733 | parser.parseTrailingOperandList(masksInfo) || |
734 | parser.parseOptionalAttrDict(result.attributes) || |
735 | parser.parseColonTypeList(types) || |
736 | parser.parseKeywordType("into" , resultType) || |
737 | parser.resolveOperand(lhsInfo, types[0], result.operands) || |
738 | parser.resolveOperand(rhsInfo, types[1], result.operands) || |
739 | parser.resolveOperand(accInfo, resultType, result.operands) || |
740 | parser.addTypeToList(resultType, result.types)) |
741 | return failure(); |
742 | result.attributes.append(dictAttr.getValue().begin(), |
743 | dictAttr.getValue().end()); |
744 | |
745 | // Convert array of string into an array of IteratyType enums. This is needed, |
746 | // because tests still use the old format when 'iterator_types' attribute is |
747 | // represented as an array of strings. |
748 | // TODO: Remove this conversion once tests are fixed. |
749 | ArrayAttr iteratorTypes = llvm::cast<ArrayAttr>( |
750 | result.attributes.get(getIteratorTypesAttrName(result.name))); |
751 | |
752 | SmallVector<Attribute> iteratorTypeAttrs; |
753 | |
754 | for (StringRef s : iteratorTypes.getAsValueRange<StringAttr>()) { |
755 | auto maybeIteratorType = symbolizeIteratorType(s); |
756 | if (!maybeIteratorType.has_value()) |
757 | return parser.emitError(loc) << "unexpected iterator_type (" << s << ")" ; |
758 | |
759 | iteratorTypeAttrs.push_back( |
760 | IteratorTypeAttr::get(parser.getContext(), maybeIteratorType.value())); |
761 | } |
762 | result.attributes.set(getIteratorTypesAttrName(result.name), |
763 | parser.getBuilder().getArrayAttr(iteratorTypeAttrs)); |
764 | |
765 | if (!result.attributes.get(getKindAttrName(result.name))) { |
766 | result.addAttribute( |
767 | getKindAttrName(result.name), |
768 | CombiningKindAttr::get(result.getContext(), |
769 | ContractionOp::getDefaultKind())); |
770 | } |
771 | if (masksInfo.empty()) |
772 | return success(); |
773 | if (masksInfo.size() != 2) |
774 | return parser.emitError(parser.getNameLoc(), |
775 | "expected zero or exactly 2 vector mask operands" ); |
776 | auto lhsType = llvm::cast<VectorType>(types[0]); |
777 | auto rhsType = llvm::cast<VectorType>(types[1]); |
778 | auto maskElementType = parser.getBuilder().getI1Type(); |
779 | std::array<VectorType, 2> maskTypes = { |
780 | VectorType::Builder(lhsType).setElementType(maskElementType), |
781 | VectorType::Builder(rhsType).setElementType(maskElementType)}; |
782 | if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) |
783 | return failure(); |
784 | return success(); |
785 | } |
786 | |
787 | void ContractionOp::print(OpAsmPrinter &p) { |
788 | // TODO: Unify printing code with linalg ops. |
789 | auto attrNames = getTraitAttrNames(); |
790 | llvm::StringSet<> traitAttrsSet; |
791 | traitAttrsSet.insert(attrNames.begin(), attrNames.end()); |
792 | SmallVector<NamedAttribute, 8> attrs; |
793 | for (auto attr : (*this)->getAttrs()) { |
794 | if (attr.getName() == getIteratorTypesAttrName()) { |
795 | auto iteratorTypes = |
796 | llvm::cast<ArrayAttr>(attr.getValue()) |
797 | .getAsValueRange<IteratorTypeAttr, IteratorType>(); |
798 | // Convert IteratorType enums into the string representation. This is |
799 | // needed, because tests still use the old format when 'iterator_types' |
800 | // attribute is represented as an array of strings. |
801 | // TODO: Remove this conversion once tests are fixed. |
802 | SmallVector<Attribute> iteratorTypeNames = llvm::to_vector( |
803 | llvm::map_range(iteratorTypes, [&](IteratorType t) -> Attribute { |
804 | return StringAttr::get(getContext(), stringifyIteratorType(t)); |
805 | })); |
806 | |
807 | attrs.emplace_back(getIteratorTypesAttrName(), |
808 | ArrayAttr::get(getContext(), iteratorTypeNames)); |
809 | } else if (traitAttrsSet.count(attr.getName().strref()) > 0) |
810 | attrs.push_back(attr); |
811 | } |
812 | |
813 | auto dictAttr = DictionaryAttr::get(getContext(), attrs); |
814 | p << " " << dictAttr << " " << getLhs() << ", " ; |
815 | p << getRhs() << ", " << getAcc(); |
816 | |
817 | p.printOptionalAttrDict((*this)->getAttrs(), attrNames); |
818 | p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into " |
819 | << getResultType(); |
820 | } |
821 | |
822 | static bool verifyDimMap(VectorType lhsType, VectorType rhsType, |
823 | const std::vector<std::pair<int64_t, int64_t>> &map) { |
824 | for (auto &dimPair : map) { |
825 | if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || |
826 | dimPair.second < 0 || dimPair.second >= rhsType.getRank() || |
827 | lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) |
828 | return false; |
829 | } |
830 | return true; |
831 | } |
832 | |
833 | static LogicalResult verifyOutputShape( |
834 | ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, |
835 | Type resType, |
836 | const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, |
837 | const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { |
838 | DenseSet<int64_t> lhsContractingDimSet; |
839 | DenseSet<int64_t> rhsContractingDimSet; |
840 | for (auto &dimPair : contractingDimMap) { |
841 | lhsContractingDimSet.insert(V: dimPair.first); |
842 | rhsContractingDimSet.insert(V: dimPair.second); |
843 | } |
844 | DenseSet<int64_t> rhsBatchDimSet; |
845 | for (auto &dimPair : batchDimMap) |
846 | rhsBatchDimSet.insert(V: dimPair.second); |
847 | |
848 | // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. |
849 | SmallVector<int64_t, 4> expectedResultDims; |
850 | for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { |
851 | if (lhsContractingDimSet.count(V: i) > 0) |
852 | continue; |
853 | expectedResultDims.push_back(Elt: lhsType.getDimSize(i)); |
854 | } |
855 | |
856 | // Add free dimensions from 'rhsType' to 'expectedResultDims'. |
857 | for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { |
858 | if (rhsContractingDimSet.count(V: i) > 0 || rhsBatchDimSet.count(V: i) > 0) |
859 | continue; |
860 | expectedResultDims.push_back(Elt: rhsType.getDimSize(i)); |
861 | } |
862 | |
863 | // Verify 'expectedResultDims'. |
864 | if (expectedResultDims.empty()) { |
865 | // No batch or free dimension implies a scalar result. |
866 | if (llvm::isa<VectorType>(Val: resType) || llvm::isa<VectorType>(Val: accType)) |
867 | return op.emitOpError("invalid accumulator/result vector shape" ); |
868 | } else { |
869 | // At least one batch or free dimension implies a vector result. |
870 | auto resVectorType = llvm::dyn_cast<VectorType>(resType); |
871 | auto accVectorType = llvm::dyn_cast<VectorType>(accType); |
872 | if (!resVectorType || !accVectorType) |
873 | return op.emitOpError("invalid accumulator/result vector shape" ); |
874 | |
875 | // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector |
876 | // types fully define the result vector type. This assumes the affine maps |
877 | // are well-formed, which must have been verified already. |
878 | MLIRContext *ctx = op.getContext(); |
879 | AffineMap lhsMap = op.getIndexingMapsArray()[0]; |
880 | AffineMap rhsMap = op.getIndexingMapsArray()[1]; |
881 | if (getUnusedDimsBitVector(maps: {lhsMap, rhsMap}).any()) |
882 | return op.emitOpError( |
883 | "expected all dimensions to be either a LHS or a RHS dimension" ); |
884 | SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); |
885 | for (auto pair : |
886 | {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { |
887 | VectorType v = pair.first; |
888 | auto map = pair.second; |
889 | for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { |
890 | unsigned pos = map.getDimPosition(idx); |
891 | if (!extents[pos]) |
892 | extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); |
893 | } |
894 | } |
895 | if (!llvm::all_of(Range&: extents, P: [](AffineExpr e) { return e; })) |
896 | return op.emitOpError("expected all dimensions to get an extent as " |
897 | "either a LHS or a RHS dimension" ); |
898 | |
899 | AffineMap resMap = op.getIndexingMapsArray()[2]; |
900 | auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), |
901 | /*symbolCount=*/0, results: extents, context: ctx); |
902 | // Compose the resMap with the extentsMap, which is a constant map. |
903 | AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); |
904 | assert(llvm::all_of(expectedMap.getResults(), |
905 | llvm::IsaPred<AffineConstantExpr>) && |
906 | "expected constant extent along all dimensions." ); |
907 | // Extract the expected shape and build the type. |
908 | auto expectedShape = llvm::to_vector<4>( |
909 | Range: llvm::map_range(C: expectedMap.getResults(), F: [](AffineExpr e) { |
910 | return cast<AffineConstantExpr>(Val&: e).getValue(); |
911 | })); |
912 | auto expected = |
913 | VectorType::get(expectedShape, resVectorType.getElementType(), |
914 | resVectorType.getScalableDims()); |
915 | if (resVectorType != expected || accVectorType != expected) |
916 | return op.emitOpError( |
917 | "invalid accumulator/result vector shape, expected: " ) |
918 | << expected; |
919 | } |
920 | return success(); |
921 | } |
922 | |
923 | LogicalResult ContractionOp::verify() { |
924 | VectorType lhsType = getLhsType(); |
925 | VectorType rhsType = getRhsType(); |
926 | Type accType = getAccType(); |
927 | Type resType = getResultType(); |
928 | |
929 | if (llvm::isa<IntegerType>(lhsType.getElementType())) { |
930 | if (!lhsType.getElementType().isSignlessInteger()) |
931 | return emitOpError("only supports signless integer types" ); |
932 | } |
933 | |
934 | // Verify that an indexing map was specified for each vector operand. |
935 | if (getIndexingMapsArray().size() != 3) |
936 | return emitOpError("expected an indexing map for each vector operand" ); |
937 | |
938 | // Verify that each index map has 'numIterators' inputs, no symbols, and |
939 | // that the number of map outputs equals the rank of its associated |
940 | // vector operand. |
941 | unsigned numIterators = getIteratorTypes().getValue().size(); |
942 | for (const auto &it : llvm::enumerate(getIndexingMapsArray())) { |
943 | auto index = it.index(); |
944 | auto map = it.value(); |
945 | if (map.getNumSymbols() != 0) |
946 | return emitOpError("expected indexing map " ) |
947 | << index << " to have no symbols" ; |
948 | auto vectorType = llvm::dyn_cast<VectorType>(getOperand(index).getType()); |
949 | unsigned rank = vectorType ? vectorType.getShape().size() : 0; |
950 | // Verify that the map has the right number of inputs, outputs, and indices. |
951 | // This also correctly accounts for (..) -> () for rank-0 results. |
952 | if (map.getNumDims() != numIterators) |
953 | return emitOpError("expected indexing map " ) |
954 | << index << " to have " << numIterators << " number of inputs" ; |
955 | if (map.getNumResults() != rank) |
956 | return emitOpError("expected indexing map " ) |
957 | << index << " to have " << rank << " number of outputs" ; |
958 | if (!map.isProjectedPermutation()) |
959 | return emitOpError("expected indexing map " ) |
960 | << index << " to be a projected permutation of its inputs" ; |
961 | } |
962 | |
963 | auto contractingDimMap = getContractingDimMap(); |
964 | auto batchDimMap = getBatchDimMap(); |
965 | |
966 | // Verify at least one contracting dimension pair was specified. |
967 | if (contractingDimMap.empty()) |
968 | return emitOpError("expected at least one contracting dimension pair" ); |
969 | |
970 | // Verify contracting dimension map was properly constructed. |
971 | if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) |
972 | return emitOpError("invalid contracting dimension map" ); |
973 | |
974 | // Verify batch dimension map was properly constructed. |
975 | if (!verifyDimMap(lhsType, rhsType, batchDimMap)) |
976 | return emitOpError("invalid batch dimension map" ); |
977 | |
978 | // Verify 'accType' and 'resType' shape. |
979 | if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, |
980 | contractingDimMap, batchDimMap))) |
981 | return failure(); |
982 | |
983 | // Verify supported combining kind. |
984 | auto vectorType = llvm::dyn_cast<VectorType>(resType); |
985 | auto elementType = vectorType ? vectorType.getElementType() : resType; |
986 | if (!isSupportedCombiningKind(getKind(), elementType)) |
987 | return emitOpError("unsupported contraction type" ); |
988 | |
989 | return success(); |
990 | } |
991 | |
992 | // MaskableOpInterface methods. |
993 | |
994 | /// Returns the mask type expected by this operation. Mostly used for |
995 | /// verification purposes. It requires the operation to be vectorized." |
996 | Type ContractionOp::getExpectedMaskType() { |
997 | auto indexingMaps = this->getIndexingMapsArray(); |
998 | AffineMap lhsIdxMap = indexingMaps[0]; |
999 | AffineMap rhsIdxMap = indexingMaps[1]; |
1000 | VectorType lhsType = this->getLhsType(); |
1001 | VectorType rhsType = this->getRhsType(); |
1002 | |
1003 | unsigned numVecDims = lhsIdxMap.getNumDims(); |
1004 | SmallVector<int64_t> maskShape(numVecDims, ShapedType::kDynamic); |
1005 | SmallVector<bool> maskShapeScalableDims(numVecDims, false); |
1006 | |
1007 | // Using the information in the indexing maps, extract the size of each |
1008 | // dimension in the vector.contract operation from the two input operands. |
1009 | for (auto [dimIdx, dimSize] : llvm::enumerate(lhsType.getShape())) { |
1010 | maskShape[lhsIdxMap.getDimPosition(dimIdx)] = dimSize; |
1011 | maskShapeScalableDims[lhsIdxMap.getDimPosition(dimIdx)] = |
1012 | lhsType.getScalableDims()[dimIdx]; |
1013 | } |
1014 | for (auto [dimIdx, dimSize] : llvm::enumerate(rhsType.getShape())) { |
1015 | maskShape[rhsIdxMap.getDimPosition(dimIdx)] = dimSize; |
1016 | maskShapeScalableDims[rhsIdxMap.getDimPosition(dimIdx)] = |
1017 | rhsType.getScalableDims()[dimIdx]; |
1018 | } |
1019 | |
1020 | assert(!ShapedType::isDynamicShape(maskShape) && |
1021 | "Mask shape couldn't be computed" ); |
1022 | |
1023 | return VectorType::get(maskShape, |
1024 | IntegerType::get(lhsType.getContext(), /*width=*/1), |
1025 | maskShapeScalableDims); |
1026 | } |
1027 | |
1028 | SmallVector<StringRef> ContractionOp::getTraitAttrNames() { |
1029 | return SmallVector<StringRef>{getIndexingMapsAttrName(), |
1030 | getIteratorTypesAttrName(), getKindAttrName()}; |
1031 | } |
1032 | |
1033 | static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { |
1034 | for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) |
1035 | if (targetExpr == map.getResult(idx: i)) |
1036 | return i; |
1037 | return -1; |
1038 | } |
1039 | |
1040 | static std::vector<std::pair<int64_t, int64_t>> |
1041 | getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, |
1042 | IteratorType targetIteratorType, MLIRContext *context) { |
1043 | std::vector<std::pair<int64_t, int64_t>> dimMap; |
1044 | for (const auto &it : llvm::enumerate(iteratorTypes)) { |
1045 | auto iteratorType = llvm::cast<IteratorTypeAttr>(it.value()).getValue(); |
1046 | if (iteratorType != targetIteratorType) |
1047 | continue; |
1048 | // Search lhs/rhs map results for 'targetExpr'. |
1049 | auto targetExpr = getAffineDimExpr(it.index(), context); |
1050 | int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); |
1051 | int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); |
1052 | if (lhsDim >= 0 && rhsDim >= 0) |
1053 | dimMap.emplace_back(lhsDim, rhsDim); |
1054 | } |
1055 | return dimMap; |
1056 | } |
1057 | |
1058 | void ContractionOp::getIterationBounds( |
1059 | SmallVectorImpl<int64_t> &iterationBounds) { |
1060 | auto lhsShape = getLhsType().getShape(); |
1061 | auto resVectorType = llvm::dyn_cast<VectorType>(getResultType()); |
1062 | SmallVector<AffineMap, 4> indexingMaps(getIndexingMapsArray()); |
1063 | SmallVector<int64_t, 2> iterationShape; |
1064 | for (const auto &it : llvm::enumerate(getIteratorTypes())) { |
1065 | // Search lhs/rhs map results for 'targetExpr'. |
1066 | auto targetExpr = getAffineDimExpr(it.index(), getContext()); |
1067 | auto iteratorType = llvm::cast<IteratorTypeAttr>(it.value()).getValue(); |
1068 | if (iteratorType == IteratorType::reduction) { |
1069 | // Get reduction dim size from lhs shape (same size in rhsShape). |
1070 | int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); |
1071 | assert(lhsDimIndex >= 0); |
1072 | iterationBounds.push_back(lhsShape[lhsDimIndex]); |
1073 | continue; |
1074 | } |
1075 | // Get parallel dimension size from result shape. |
1076 | int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); |
1077 | assert(resDimIndex >= 0); |
1078 | assert(resVectorType != nullptr); |
1079 | iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); |
1080 | } |
1081 | } |
1082 | |
1083 | void ContractionOp::getIterationIndexMap( |
1084 | std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { |
1085 | unsigned numMaps = getIndexingMapsArray().size(); |
1086 | iterationIndexMap.resize(numMaps); |
1087 | for (const auto &it : llvm::enumerate(getIndexingMapsArray())) { |
1088 | auto index = it.index(); |
1089 | auto map = it.value(); |
1090 | for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { |
1091 | auto dim = cast<AffineDimExpr>(map.getResult(i)); |
1092 | iterationIndexMap[index][dim.getPosition()] = i; |
1093 | } |
1094 | } |
1095 | } |
1096 | |
1097 | std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { |
1098 | SmallVector<AffineMap, 4> indexingMaps(getIndexingMapsArray()); |
1099 | return getDimMap(indexingMaps, getIteratorTypes(), IteratorType::reduction, |
1100 | getContext()); |
1101 | } |
1102 | |
1103 | std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { |
1104 | SmallVector<AffineMap, 4> indexingMaps(getIndexingMapsArray()); |
1105 | return getDimMap(indexingMaps, getIteratorTypes(), IteratorType::parallel, |
1106 | getContext()); |
1107 | } |
1108 | |
1109 | std::optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { |
1110 | SmallVector<int64_t, 4> shape; |
1111 | getIterationBounds(shape); |
1112 | return shape; |
1113 | } |
1114 | |
1115 | /// Return a fused vector::ContractionOp which represents a patterns such as: |
1116 | /// |
1117 | /// ```mlir |
1118 | /// %c0 = vector.constant 0: ... |
1119 | /// %c = vector.contract %a, %b, %c0: ... |
1120 | /// %e = add %c, %d: ... |
1121 | /// ``` |
1122 | /// |
1123 | /// by: |
1124 | /// |
1125 | /// ```mlir |
1126 | /// %e = vector.contract %a, %b, %d: ... |
1127 | /// ``` |
1128 | /// |
1129 | /// Return null if the canonicalization does not apply. |
1130 | // TODO: This should be a folding of Add into Contract in core but while they |
1131 | // live in different dialects, it is not possible without unnatural |
1132 | // dependencies. |
1133 | template <typename AddOpType> |
1134 | struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { |
1135 | using OpRewritePattern<AddOpType>::OpRewritePattern; |
1136 | |
1137 | LogicalResult matchAndRewrite(AddOpType addOp, |
1138 | PatternRewriter &rewriter) const override { |
1139 | auto canonicalize = [&](Value maybeContraction, |
1140 | Value otherOperand) -> vector::ContractionOp { |
1141 | vector::ContractionOp contractionOp = |
1142 | dyn_cast_or_null<vector::ContractionOp>( |
1143 | maybeContraction.getDefiningOp()); |
1144 | if (!contractionOp) |
1145 | return vector::ContractionOp(); |
1146 | if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( |
1147 | contractionOp.getAcc().getDefiningOp())) { |
1148 | if (maybeZero.getValue() == |
1149 | rewriter.getZeroAttr(type: contractionOp.getAcc().getType())) { |
1150 | IRMapping bvm; |
1151 | bvm.map(contractionOp.getAcc(), otherOperand); |
1152 | auto newContraction = |
1153 | cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); |
1154 | rewriter.replaceOp(addOp, newContraction.getResult()); |
1155 | return newContraction; |
1156 | } |
1157 | } |
1158 | return vector::ContractionOp(); |
1159 | }; |
1160 | |
1161 | Value a = addOp->getOperand(0), b = addOp->getOperand(1); |
1162 | vector::ContractionOp contract = canonicalize(a, b); |
1163 | contract = contract ? contract : canonicalize(b, a); |
1164 | return contract ? success() : failure(); |
1165 | } |
1166 | }; |
1167 | |
1168 | void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, |
1169 | MLIRContext *context) { |
1170 | results.add<CanonicalizeContractAdd<arith::AddIOp>, |
1171 | CanonicalizeContractAdd<arith::AddFOp>>(context); |
1172 | } |
1173 | |
1174 | //===----------------------------------------------------------------------===// |
1175 | // ExtractElementOp |
1176 | //===----------------------------------------------------------------------===// |
1177 | |
1178 | void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, |
1179 | Value source) { |
1180 | result.addOperands({source}); |
1181 | result.addTypes(llvm::cast<VectorType>(source.getType()).getElementType()); |
1182 | } |
1183 | |
1184 | LogicalResult vector::ExtractElementOp::verify() { |
1185 | VectorType vectorType = getSourceVectorType(); |
1186 | if (vectorType.getRank() == 0) { |
1187 | if (getPosition()) |
1188 | return emitOpError("expected position to be empty with 0-D vector" ); |
1189 | return success(); |
1190 | } |
1191 | if (vectorType.getRank() != 1) |
1192 | return emitOpError("unexpected >1 vector rank" ); |
1193 | if (!getPosition()) |
1194 | return emitOpError("expected position for 1-D vector" ); |
1195 | return success(); |
1196 | } |
1197 | |
1198 | OpFoldResult vector::ExtractElementOp::fold(FoldAdaptor adaptor) { |
1199 | // Skip the 0-D vector here now. |
1200 | if (!adaptor.getPosition()) |
1201 | return {}; |
1202 | |
1203 | // Fold extractelement (splat X) -> X. |
1204 | if (auto splat = getVector().getDefiningOp<vector::SplatOp>()) |
1205 | return splat.getInput(); |
1206 | |
1207 | // Fold extractelement(broadcast(X)) -> X. |
1208 | if (auto broadcast = getVector().getDefiningOp<vector::BroadcastOp>()) |
1209 | if (!llvm::isa<VectorType>(broadcast.getSource().getType())) |
1210 | return broadcast.getSource(); |
1211 | |
1212 | auto src = dyn_cast_or_null<DenseElementsAttr>(adaptor.getVector()); |
1213 | auto pos = dyn_cast_or_null<IntegerAttr>(adaptor.getPosition()); |
1214 | if (!pos || !src) |
1215 | return {}; |
1216 | |
1217 | auto srcElements = src.getValues<Attribute>(); |
1218 | |
1219 | uint64_t posIdx = pos.getInt(); |
1220 | if (posIdx >= srcElements.size()) |
1221 | return {}; |
1222 | |
1223 | return srcElements[posIdx]; |
1224 | } |
1225 | |
1226 | //===----------------------------------------------------------------------===// |
1227 | // ExtractOp |
1228 | //===----------------------------------------------------------------------===// |
1229 | |
1230 | void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, |
1231 | Value source, int64_t position) { |
1232 | build(builder, result, source, ArrayRef<int64_t>{position}); |
1233 | } |
1234 | |
1235 | void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, |
1236 | Value source, OpFoldResult position) { |
1237 | build(builder, result, source, ArrayRef<OpFoldResult>{position}); |
1238 | } |
1239 | |
1240 | void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, |
1241 | Value source, ArrayRef<int64_t> position) { |
1242 | build(builder, result, source, /*dynamic_position=*/ArrayRef<Value>(), |
1243 | builder.getDenseI64ArrayAttr(position)); |
1244 | } |
1245 | |
1246 | void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, |
1247 | Value source, ArrayRef<OpFoldResult> position) { |
1248 | SmallVector<int64_t> staticPos; |
1249 | SmallVector<Value> dynamicPos; |
1250 | dispatchIndexOpFoldResults(position, dynamicPos, staticPos); |
1251 | build(builder, result, source, dynamicPos, |
1252 | builder.getDenseI64ArrayAttr(staticPos)); |
1253 | } |
1254 | |
1255 | LogicalResult |
1256 | ExtractOp::inferReturnTypes(MLIRContext *, std::optional<Location>, |
1257 | ExtractOp::Adaptor adaptor, |
1258 | SmallVectorImpl<Type> &inferredReturnTypes) { |
1259 | auto vectorType = llvm::cast<VectorType>(adaptor.getVector().getType()); |
1260 | if (static_cast<int64_t>(adaptor.getStaticPosition().size()) == |
1261 | vectorType.getRank()) { |
1262 | inferredReturnTypes.push_back(vectorType.getElementType()); |
1263 | } else { |
1264 | auto n = std::min<size_t>(adaptor.getStaticPosition().size(), |
1265 | vectorType.getRank()); |
1266 | inferredReturnTypes.push_back(VectorType::get( |
1267 | vectorType.getShape().drop_front(n), vectorType.getElementType(), |
1268 | vectorType.getScalableDims().drop_front(n))); |
1269 | } |
1270 | return success(); |
1271 | } |
1272 | |
1273 | bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
1274 | // Allow extracting 1-element vectors instead of scalars. |
1275 | auto isCompatible = [](TypeRange l, TypeRange r) { |
1276 | auto vectorType = llvm::dyn_cast<VectorType>(l.front()); |
1277 | return vectorType && vectorType.getShape().equals({1}) && |
1278 | vectorType.getElementType() == r.front(); |
1279 | }; |
1280 | if (l.size() == 1 && r.size() == 1 && |
1281 | (isCompatible(l, r) || isCompatible(r, l))) |
1282 | return true; |
1283 | return l == r; |
1284 | } |
1285 | |
1286 | LogicalResult vector::ExtractOp::verify() { |
1287 | // Note: This check must come before getMixedPosition() to prevent a crash. |
1288 | auto dynamicMarkersCount = |
1289 | llvm::count_if(getStaticPosition(), ShapedType::isDynamic); |
1290 | if (static_cast<size_t>(dynamicMarkersCount) != getDynamicPosition().size()) |
1291 | return emitOpError( |
1292 | "mismatch between dynamic and static positions (kDynamic marker but no " |
1293 | "corresponding dynamic position) -- this can only happen due to an " |
1294 | "incorrect fold/rewrite" ); |
1295 | auto position = getMixedPosition(); |
1296 | if (position.size() > static_cast<unsigned>(getSourceVectorType().getRank())) |
1297 | return emitOpError( |
1298 | "expected position attribute of rank no greater than vector rank" ); |
1299 | for (auto [idx, pos] : llvm::enumerate(position)) { |
1300 | if (pos.is<Attribute>()) { |
1301 | int64_t constIdx = cast<IntegerAttr>(pos.get<Attribute>()).getInt(); |
1302 | if (constIdx < 0 || constIdx >= getSourceVectorType().getDimSize(idx)) { |
1303 | return emitOpError("expected position attribute #" ) |
1304 | << (idx + 1) |
1305 | << " to be a non-negative integer smaller than the " |
1306 | "corresponding vector dimension" ; |
1307 | } |
1308 | } |
1309 | } |
1310 | return success(); |
1311 | } |
1312 | |
1313 | template <typename IntType> |
1314 | static SmallVector<IntType> (ArrayAttr arrayAttr) { |
1315 | return llvm::to_vector<4>(llvm::map_range( |
1316 | arrayAttr.getAsRange<IntegerAttr>(), |
1317 | [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); |
1318 | } |
1319 | |
1320 | /// Fold the result of chains of ExtractOp in place by simply concatenating the |
1321 | /// positions. |
1322 | static LogicalResult (ExtractOp ) { |
1323 | if (!extractOp.getVector().getDefiningOp<ExtractOp>()) |
1324 | return failure(); |
1325 | |
1326 | // TODO: Canonicalization for dynamic position not implemented yet. |
1327 | if (extractOp.hasDynamicPosition()) |
1328 | return failure(); |
1329 | |
1330 | SmallVector<int64_t> globalPosition; |
1331 | ExtractOp currentOp = extractOp; |
1332 | ArrayRef<int64_t> extrPos = currentOp.getStaticPosition(); |
1333 | globalPosition.append(in_start: extrPos.rbegin(), in_end: extrPos.rend()); |
1334 | while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) { |
1335 | currentOp = nextOp; |
1336 | // TODO: Canonicalization for dynamic position not implemented yet. |
1337 | if (currentOp.hasDynamicPosition()) |
1338 | return failure(); |
1339 | ArrayRef<int64_t> extrPos = currentOp.getStaticPosition(); |
1340 | globalPosition.append(in_start: extrPos.rbegin(), in_end: extrPos.rend()); |
1341 | } |
1342 | extractOp.setOperand(0, currentOp.getVector()); |
1343 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
1344 | OpBuilder b(extractOp.getContext()); |
1345 | std::reverse(first: globalPosition.begin(), last: globalPosition.end()); |
1346 | extractOp.setStaticPosition(globalPosition); |
1347 | return success(); |
1348 | } |
1349 | |
1350 | namespace { |
1351 | /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. |
1352 | /// Walk back a chain of InsertOp/TransposeOp until we hit a match. |
1353 | /// Compose TransposeOp permutations as we walk back. |
1354 | /// This helper class keeps an updated extraction position `extractPosition` |
1355 | /// with extra trailing sentinels. |
1356 | /// The sentinels encode the internal transposition status of the result vector. |
1357 | /// As we iterate, extractPosition is permuted and updated. |
1358 | class { |
1359 | public: |
1360 | (ExtractOp e); |
1361 | |
1362 | /// Iterate over producing insert and transpose ops until we find a fold. |
1363 | Value fold(); |
1364 | |
1365 | private: |
1366 | /// Return true if the vector at position `a` is contained within the vector |
1367 | /// at position `b`. Under insert/extract semantics, this is the same as `a` |
1368 | /// is a prefix of `b`. |
1369 | template <typename ContainerA, typename ContainerB> |
1370 | bool (const ContainerA &a, const ContainerB &b) { |
1371 | return a.size() <= b.size() && |
1372 | std::equal(a.begin(), a.begin() + a.size(), b.begin()); |
1373 | } |
1374 | |
1375 | /// Return true if the vector at position `a` intersects the vector at |
1376 | /// position `b`. Under insert/extract semantics, this is the same as equality |
1377 | /// of all entries of `a` that are >=0 with the corresponding entries of b. |
1378 | /// Comparison is on the common prefix (i.e. zip). |
1379 | template <typename ContainerA, typename ContainerB> |
1380 | bool (const ContainerA &a, const ContainerB &b) { |
1381 | for (auto [elemA, elemB] : llvm::zip(a, b)) { |
1382 | if (elemA < 0 || elemB < 0) |
1383 | continue; |
1384 | if (elemA != elemB) |
1385 | return false; |
1386 | } |
1387 | return true; |
1388 | } |
1389 | |
1390 | /// Folding is only possible in the absence of an internal permutation in the |
1391 | /// result vector. |
1392 | bool () { |
1393 | return (sentinels == ArrayRef(extractPosition).drop_front(N: extractedRank)); |
1394 | } |
1395 | |
1396 | // Helper to get the next defining op of interest. |
1397 | void (Value v) { |
1398 | nextInsertOp = v.getDefiningOp<vector::InsertOp>(); |
1399 | nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); |
1400 | }; |
1401 | |
1402 | // Case 1. If we hit a transpose, just compose the map and iterate. |
1403 | // Invariant: insert + transpose do not change rank, we can always compose. |
1404 | LogicalResult handleTransposeOp(); |
1405 | |
1406 | // Case 2: the insert position matches extractPosition exactly, early return. |
1407 | LogicalResult handleInsertOpWithMatchingPos(Value &res); |
1408 | |
1409 | /// Case 3: if the insert position is a prefix of extractPosition, extract a |
1410 | /// portion of the source of the insert. |
1411 | /// Example: |
1412 | /// ``` |
1413 | /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> |
1414 | /// // extractPosition == [1, 2, 3] |
1415 | /// %ext = vector.extract %ins[1, 0]: vector<5> from vector<3x4x5> |
1416 | /// // can fold to vector.extract %source[0, 3] |
1417 | /// %ext = vector.extract %source[3]: vector<6> from vector<5x6> |
1418 | /// ``` |
1419 | /// To traverse through %source, we need to set the leading dims to 0 and |
1420 | /// drop the extra leading dims. |
1421 | /// This method updates the internal state. |
1422 | LogicalResult handleInsertOpWithPrefixPos(Value &res); |
1423 | |
1424 | /// Try to fold in place to extract(source, extractPosition) and return the |
1425 | /// folded result. Return null if folding is not possible (e.g. due to an |
1426 | /// internal tranposition in the result). |
1427 | Value tryToFoldExtractOpInPlace(Value source); |
1428 | |
1429 | ExtractOp ; |
1430 | int64_t ; |
1431 | int64_t ; |
1432 | |
1433 | InsertOp ; |
1434 | TransposeOp ; |
1435 | |
1436 | /// Sentinel values that encode the internal permutation status of the result. |
1437 | /// They are set to (-1, ... , -k) at the beginning and appended to |
1438 | /// `extractPosition`. |
1439 | /// In the end, the tail of `extractPosition` must be exactly `sentinels` to |
1440 | /// ensure that there is no internal transposition. |
1441 | /// Internal transposition cannot be accounted for with a folding pattern. |
1442 | // TODO: We could relax the internal transposition with an extra transposition |
1443 | // operation in a future canonicalizer. |
1444 | SmallVector<int64_t> ; |
1445 | SmallVector<int64_t> ; |
1446 | }; |
1447 | } // namespace |
1448 | |
1449 | ExtractFromInsertTransposeChainState::( |
1450 | ExtractOp e) |
1451 | : extractOp(e), vectorRank(extractOp.getSourceVectorType().getRank()), |
1452 | extractedRank(extractOp.getNumIndices()) { |
1453 | assert(vectorRank >= extractedRank && "Extracted position overflow" ); |
1454 | sentinels.reserve(N: vectorRank - extractedRank); |
1455 | for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) |
1456 | sentinels.push_back(Elt: -(i + 1)); |
1457 | extractPosition.assign(extractOp.getStaticPosition().begin(), |
1458 | extractOp.getStaticPosition().end()); |
1459 | llvm::append_range(C&: extractPosition, R&: sentinels); |
1460 | } |
1461 | |
1462 | // Case 1. If we hit a transpose, just compose the map and iterate. |
1463 | // Invariant: insert + transpose do not change rank, we can always compose. |
1464 | LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { |
1465 | // TODO: Canonicalization for dynamic position not implemented yet. |
1466 | if (extractOp.hasDynamicPosition()) |
1467 | return failure(); |
1468 | |
1469 | if (!nextTransposeOp) |
1470 | return failure(); |
1471 | AffineMap m = inversePermutation(AffineMap::getPermutationMap( |
1472 | nextTransposeOp.getPermutation(), extractOp.getContext())); |
1473 | extractPosition = applyPermutationMap(map: m, source: ArrayRef(extractPosition)); |
1474 | return success(); |
1475 | } |
1476 | |
1477 | // Case 2: the insert position matches extractPosition exactly, early return. |
1478 | LogicalResult |
1479 | ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( |
1480 | Value &res) { |
1481 | // TODO: Canonicalization for dynamic position not implemented yet. |
1482 | if (extractOp.hasDynamicPosition() || nextInsertOp.hasDynamicPosition()) |
1483 | return failure(); |
1484 | |
1485 | ArrayRef<int64_t> insertedPos = nextInsertOp.getStaticPosition(); |
1486 | if (insertedPos != llvm::ArrayRef(extractPosition).take_front(N: extractedRank)) |
1487 | return failure(); |
1488 | // Case 2.a. early-exit fold. |
1489 | res = nextInsertOp.getSource(); |
1490 | // Case 2.b. if internal transposition is present, canFold will be false. |
1491 | return success(isSuccess: canFold()); |
1492 | } |
1493 | |
1494 | /// Case 3: if inserted position is a prefix of extractPosition, |
1495 | /// extract a portion of the source of the insertion. |
1496 | /// This method updates the internal state. |
1497 | LogicalResult |
1498 | ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { |
1499 | // TODO: Canonicalization for dynamic position not implemented yet. |
1500 | if (extractOp.hasDynamicPosition() || nextInsertOp.hasDynamicPosition()) |
1501 | return failure(); |
1502 | |
1503 | ArrayRef<int64_t> insertedPos = nextInsertOp.getStaticPosition(); |
1504 | if (!isContainedWithin(a: insertedPos, b: extractPosition)) |
1505 | return failure(); |
1506 | // Set leading dims to zero. |
1507 | std::fill_n(first: extractPosition.begin(), n: insertedPos.size(), value: 0); |
1508 | // Drop extra leading dims. |
1509 | extractPosition.erase(CS: extractPosition.begin(), |
1510 | CE: extractPosition.begin() + insertedPos.size()); |
1511 | extractedRank = extractPosition.size() - sentinels.size(); |
1512 | // Case 3.a. early-exit fold (break and delegate to post-while path). |
1513 | res = nextInsertOp.getSource(); |
1514 | // Case 3.b. if internal transposition is present, canFold will be false. |
1515 | return success(); |
1516 | } |
1517 | |
1518 | /// Try to fold in place to extract(source, extractPosition) and return the |
1519 | /// folded result. Return null if folding is not possible (e.g. due to an |
1520 | /// internal tranposition in the result). |
1521 | Value ExtractFromInsertTransposeChainState::( |
1522 | Value source) { |
1523 | // TODO: Canonicalization for dynamic position not implemented yet. |
1524 | if (extractOp.hasDynamicPosition()) |
1525 | return Value(); |
1526 | |
1527 | // If we can't fold (either internal transposition, or nothing to fold), bail. |
1528 | bool nothingToFold = (source == extractOp.getVector()); |
1529 | if (nothingToFold || !canFold()) |
1530 | return Value(); |
1531 | |
1532 | // Otherwise, fold by updating the op inplace and return its result. |
1533 | OpBuilder b(extractOp.getContext()); |
1534 | extractOp.setStaticPosition( |
1535 | ArrayRef(extractPosition).take_front(extractedRank)); |
1536 | extractOp.getVectorMutable().assign(source); |
1537 | return extractOp.getResult(); |
1538 | } |
1539 | |
1540 | /// Iterate over producing insert and transpose ops until we find a fold. |
1541 | Value ExtractFromInsertTransposeChainState::() { |
1542 | // TODO: Canonicalization for dynamic position not implemented yet. |
1543 | if (extractOp.hasDynamicPosition()) |
1544 | return Value(); |
1545 | |
1546 | Value = extractOp.getVector(); |
1547 | updateStateForNextIteration(v: valueToExtractFrom); |
1548 | while (nextInsertOp || nextTransposeOp) { |
1549 | // Case 1. If we hit a transpose, just compose the map and iterate. |
1550 | // Invariant: insert + transpose do not change rank, we can always compose. |
1551 | if (succeeded(result: handleTransposeOp())) { |
1552 | valueToExtractFrom = nextTransposeOp.getVector(); |
1553 | updateStateForNextIteration(v: valueToExtractFrom); |
1554 | continue; |
1555 | } |
1556 | |
1557 | Value result; |
1558 | // Case 2: the position match exactly. |
1559 | if (succeeded(result: handleInsertOpWithMatchingPos(res&: result))) |
1560 | return result; |
1561 | |
1562 | // Case 3: if the inserted position is a prefix of extractPosition, we can |
1563 | // just extract a portion of the source of the insert. |
1564 | if (succeeded(result: handleInsertOpWithPrefixPos(res&: result))) |
1565 | return tryToFoldExtractOpInPlace(source: result); |
1566 | |
1567 | // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel |
1568 | // values. This is a more difficult case and we bail. |
1569 | ArrayRef<int64_t> insertedPos = nextInsertOp.getStaticPosition(); |
1570 | if (isContainedWithin(a: extractPosition, b: insertedPos) || |
1571 | intersectsWhereNonNegative(a: extractPosition, b: insertedPos)) |
1572 | return Value(); |
1573 | |
1574 | // Case 5: No intersection, we forward the extract to insertOp.dest(). |
1575 | valueToExtractFrom = nextInsertOp.getDest(); |
1576 | updateStateForNextIteration(v: valueToExtractFrom); |
1577 | } |
1578 | // If after all this we can fold, go for it. |
1579 | return tryToFoldExtractOpInPlace(source: valueToExtractFrom); |
1580 | } |
1581 | |
1582 | /// Returns true if the operation has a 0-D vector type operand or result. |
1583 | static bool hasZeroDimVectors(Operation *op) { |
1584 | auto hasZeroDimVectorType = [](Type type) -> bool { |
1585 | auto vecType = dyn_cast<VectorType>(type); |
1586 | return vecType && vecType.getRank() == 0; |
1587 | }; |
1588 | |
1589 | return llvm::any_of(Range: op->getOperandTypes(), P: hasZeroDimVectorType) || |
1590 | llvm::any_of(Range: op->getResultTypes(), P: hasZeroDimVectorType); |
1591 | } |
1592 | |
1593 | /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. |
1594 | static Value (ExtractOp ) { |
1595 | // TODO: Canonicalization for dynamic position not implemented yet. |
1596 | if (extractOp.hasDynamicPosition()) |
1597 | return Value(); |
1598 | |
1599 | Operation *defOp = extractOp.getVector().getDefiningOp(); |
1600 | if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) |
1601 | return Value(); |
1602 | |
1603 | // 0-D vectors not supported. |
1604 | assert(!hasZeroDimVectors(extractOp) && "0-D vectors not supported" ); |
1605 | if (hasZeroDimVectors(op: defOp)) |
1606 | return Value(); |
1607 | |
1608 | Value source = defOp->getOperand(idx: 0); |
1609 | if (extractOp.getType() == source.getType()) |
1610 | return source; |
1611 | auto getRank = [](Type type) { |
1612 | return llvm::isa<VectorType>(type) ? llvm::cast<VectorType>(type).getRank() |
1613 | : 0; |
1614 | }; |
1615 | |
1616 | // If splat or broadcast from a scalar, just return the source scalar. |
1617 | unsigned broadcastSrcRank = getRank(source.getType()); |
1618 | if (broadcastSrcRank == 0 && source.getType() == extractOp.getType()) |
1619 | return source; |
1620 | |
1621 | unsigned = getRank(extractOp.getType()); |
1622 | if (extractResultRank >= broadcastSrcRank) |
1623 | return Value(); |
1624 | // Check that the dimension of the result haven't been broadcasted. |
1625 | auto = llvm::dyn_cast<VectorType>(extractOp.getType()); |
1626 | auto broadcastVecType = llvm::dyn_cast<VectorType>(source.getType()); |
1627 | if (extractVecType && broadcastVecType && |
1628 | extractVecType.getShape() != |
1629 | broadcastVecType.getShape().take_back(extractResultRank)) |
1630 | return Value(); |
1631 | |
1632 | auto broadcastOp = cast<vector::BroadcastOp>(defOp); |
1633 | int64_t broadcastDstRank = broadcastOp.getResultVectorType().getRank(); |
1634 | |
1635 | // Detect all the positions that come from "dim-1" broadcasting. |
1636 | // These dimensions correspond to "dim-1" broadcasted dims; set the mathching |
1637 | // extract position to `0` when extracting from the source operand. |
1638 | llvm::SetVector<int64_t> broadcastedUnitDims = |
1639 | broadcastOp.computeBroadcastedUnitDims(); |
1640 | SmallVector<int64_t> (extractOp.getStaticPosition()); |
1641 | int64_t broadcastRankDiff = broadcastDstRank - broadcastSrcRank; |
1642 | for (int64_t i = broadcastRankDiff, e = extractPos.size(); i < e; ++i) |
1643 | if (broadcastedUnitDims.contains(key: i)) |
1644 | extractPos[i] = 0; |
1645 | // `rankDiff` leading dimensions correspond to new broadcasted dims, drop the |
1646 | // matching extract position when extracting from the source operand. |
1647 | int64_t rankDiff = broadcastSrcRank - extractResultRank; |
1648 | extractPos.erase(CS: extractPos.begin(), |
1649 | CE: std::next(x: extractPos.begin(), n: extractPos.size() - rankDiff)); |
1650 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
1651 | OpBuilder b(extractOp.getContext()); |
1652 | extractOp.setOperand(0, source); |
1653 | extractOp.setStaticPosition(extractPos); |
1654 | return extractOp.getResult(); |
1655 | } |
1656 | |
1657 | // Fold extractOp with source coming from ShapeCast op. |
1658 | static Value (ExtractOp ) { |
1659 | // TODO: Canonicalization for dynamic position not implemented yet. |
1660 | if (extractOp.hasDynamicPosition()) |
1661 | return Value(); |
1662 | |
1663 | auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>(); |
1664 | if (!shapeCastOp) |
1665 | return Value(); |
1666 | |
1667 | // 0-D vectors not supported. |
1668 | assert(!hasZeroDimVectors(extractOp) && "0-D vectors not supported" ); |
1669 | if (hasZeroDimVectors(shapeCastOp)) |
1670 | return Value(); |
1671 | |
1672 | // Get the nth dimension size starting from lowest dimension. |
1673 | auto getDimReverse = [](VectorType type, int64_t n) { |
1674 | return type.getShape().take_back(n + 1).front(); |
1675 | }; |
1676 | int64_t destinationRank = |
1677 | llvm::isa<VectorType>(extractOp.getType()) |
1678 | ? llvm::cast<VectorType>(extractOp.getType()).getRank() |
1679 | : 0; |
1680 | if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) |
1681 | return Value(); |
1682 | if (destinationRank > 0) { |
1683 | auto destinationType = |
1684 | llvm::cast<VectorType>(extractOp.getResult().getType()); |
1685 | for (int64_t i = 0; i < destinationRank; i++) { |
1686 | // The lowest dimension of the destination must match the lowest |
1687 | // dimension of the shapecast op source. |
1688 | // TODO: This case could be support in a canonicalization pattern. |
1689 | if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != |
1690 | getDimReverse(destinationType, i)) |
1691 | return Value(); |
1692 | } |
1693 | } |
1694 | // Extract the strides associated with the extract op vector source. Then use |
1695 | // this to calculate a linearized position for the extract. |
1696 | SmallVector<int64_t> (extractOp.getStaticPosition()); |
1697 | std::reverse(first: extractedPos.begin(), last: extractedPos.end()); |
1698 | SmallVector<int64_t, 4> strides; |
1699 | int64_t stride = 1; |
1700 | for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { |
1701 | strides.push_back(Elt: stride); |
1702 | stride *= |
1703 | getDimReverse(extractOp.getSourceVectorType(), i + destinationRank); |
1704 | } |
1705 | |
1706 | int64_t position = linearize(offsets: extractedPos, basis: strides); |
1707 | // Then extract the strides associated to the shapeCast op vector source and |
1708 | // delinearize the position using those strides. |
1709 | SmallVector<int64_t, 4> newStrides; |
1710 | int64_t numDimension = |
1711 | shapeCastOp.getSourceVectorType().getRank() - destinationRank; |
1712 | stride = 1; |
1713 | for (int64_t i = 0; i < numDimension; i++) { |
1714 | newStrides.push_back(Elt: stride); |
1715 | stride *= |
1716 | getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); |
1717 | } |
1718 | std::reverse(first: newStrides.begin(), last: newStrides.end()); |
1719 | SmallVector<int64_t, 4> newPosition = delinearize(linearIndex: position, strides: newStrides); |
1720 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
1721 | OpBuilder b(extractOp.getContext()); |
1722 | extractOp.setStaticPosition(newPosition); |
1723 | extractOp.setOperand(0, shapeCastOp.getSource()); |
1724 | return extractOp.getResult(); |
1725 | } |
1726 | |
1727 | /// Fold an ExtractOp from ExtractStridedSliceOp. |
1728 | static Value (ExtractOp ) { |
1729 | // TODO: Canonicalization for dynamic position not implemented yet. |
1730 | if (extractOp.hasDynamicPosition()) |
1731 | return Value(); |
1732 | |
1733 | auto = |
1734 | extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>(); |
1735 | if (!extractStridedSliceOp) |
1736 | return Value(); |
1737 | |
1738 | // 0-D vectors not supported. |
1739 | assert(!hasZeroDimVectors(extractOp) && "0-D vectors not supported" ); |
1740 | if (hasZeroDimVectors(extractStridedSliceOp)) |
1741 | return Value(); |
1742 | |
1743 | // Return if 'extractStridedSliceOp' has non-unit strides. |
1744 | if (extractStridedSliceOp.hasNonUnitStrides()) |
1745 | return Value(); |
1746 | |
1747 | // Trim offsets for dimensions fully extracted. |
1748 | auto sliceOffsets = |
1749 | extractVector<int64_t>(extractStridedSliceOp.getOffsets()); |
1750 | while (!sliceOffsets.empty()) { |
1751 | size_t lastOffset = sliceOffsets.size() - 1; |
1752 | if (sliceOffsets.back() != 0 || |
1753 | extractStridedSliceOp.getType().getDimSize(lastOffset) != |
1754 | extractStridedSliceOp.getSourceVectorType().getDimSize(lastOffset)) |
1755 | break; |
1756 | sliceOffsets.pop_back(); |
1757 | } |
1758 | unsigned destinationRank = 0; |
1759 | if (auto vecType = llvm::dyn_cast<VectorType>(extractOp.getType())) |
1760 | destinationRank = vecType.getRank(); |
1761 | // The dimensions of the result need to be untouched by the |
1762 | // extractStridedSlice op. |
1763 | if (destinationRank > extractStridedSliceOp.getSourceVectorType().getRank() - |
1764 | sliceOffsets.size()) |
1765 | return Value(); |
1766 | |
1767 | SmallVector<int64_t> (extractOp.getStaticPosition()); |
1768 | assert(extractedPos.size() >= sliceOffsets.size()); |
1769 | for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) |
1770 | extractedPos[i] = extractedPos[i] + sliceOffsets[i]; |
1771 | extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); |
1772 | |
1773 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
1774 | OpBuilder b(extractOp.getContext()); |
1775 | extractOp.setStaticPosition(extractedPos); |
1776 | return extractOp.getResult(); |
1777 | } |
1778 | |
1779 | /// Fold extract_op fed from a chain of insertStridedSlice ops. |
1780 | static Value (ExtractOp ) { |
1781 | // TODO: Canonicalization for dynamic position not implemented yet. |
1782 | if (extractOp.hasDynamicPosition()) |
1783 | return Value(); |
1784 | |
1785 | int64_t destinationRank = |
1786 | llvm::isa<VectorType>(extractOp.getType()) |
1787 | ? llvm::cast<VectorType>(extractOp.getType()).getRank() |
1788 | : 0; |
1789 | auto insertOp = extractOp.getVector().getDefiningOp<InsertStridedSliceOp>(); |
1790 | if (!insertOp) |
1791 | return Value(); |
1792 | |
1793 | // 0-D vectors not supported. |
1794 | assert(!hasZeroDimVectors(extractOp) && "0-D vectors not supported" ); |
1795 | if (hasZeroDimVectors(insertOp)) |
1796 | return Value(); |
1797 | |
1798 | while (insertOp) { |
1799 | int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - |
1800 | insertOp.getSourceVectorType().getRank(); |
1801 | if (destinationRank > insertOp.getSourceVectorType().getRank()) |
1802 | return Value(); |
1803 | auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets()); |
1804 | ArrayRef<int64_t> = extractOp.getStaticPosition(); |
1805 | |
1806 | if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { |
1807 | return llvm::cast<IntegerAttr>(attr).getInt() != 1; |
1808 | })) |
1809 | return Value(); |
1810 | bool disjoint = false; |
1811 | SmallVector<int64_t, 4> offsetDiffs; |
1812 | for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { |
1813 | int64_t start = insertOffsets[dim]; |
1814 | int64_t size = |
1815 | (dim < insertRankDiff) |
1816 | ? 1 |
1817 | : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); |
1818 | int64_t end = start + size; |
1819 | int64_t offset = extractOffsets[dim]; |
1820 | // Check if the start of the extract offset is in the interval inserted. |
1821 | if (start <= offset && offset < end) { |
1822 | if (dim >= insertRankDiff) |
1823 | offsetDiffs.push_back(Elt: offset - start); |
1824 | continue; |
1825 | } |
1826 | disjoint = true; |
1827 | break; |
1828 | } |
1829 | // The extract element chunk overlap with the vector inserted. |
1830 | if (!disjoint) { |
1831 | // If any of the inner dimensions are only partially inserted we have a |
1832 | // partial overlap. |
1833 | int64_t srcRankDiff = |
1834 | insertOp.getSourceVectorType().getRank() - destinationRank; |
1835 | for (int64_t i = 0; i < destinationRank; i++) { |
1836 | if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != |
1837 | insertOp.getDestVectorType().getDimSize(i + srcRankDiff + |
1838 | insertRankDiff)) |
1839 | return Value(); |
1840 | } |
1841 | extractOp.getVectorMutable().assign(insertOp.getSource()); |
1842 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
1843 | OpBuilder b(extractOp.getContext()); |
1844 | extractOp.setStaticPosition(offsetDiffs); |
1845 | return extractOp.getResult(); |
1846 | } |
1847 | // If the chunk extracted is disjoint from the chunk inserted, keep |
1848 | // looking in the insert chain. |
1849 | insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); |
1850 | } |
1851 | return Value(); |
1852 | } |
1853 | |
1854 | OpFoldResult ExtractOp::fold(FoldAdaptor) { |
1855 | if (getNumIndices() == 0) |
1856 | return getVector(); |
1857 | if (succeeded(foldExtractOpFromExtractChain(*this))) |
1858 | return getResult(); |
1859 | if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) |
1860 | return res; |
1861 | if (auto res = foldExtractFromBroadcast(*this)) |
1862 | return res; |
1863 | if (auto res = foldExtractFromShapeCast(*this)) |
1864 | return res; |
1865 | if (auto val = foldExtractFromExtractStrided(*this)) |
1866 | return val; |
1867 | if (auto val = foldExtractStridedOpFromInsertChain(*this)) |
1868 | return val; |
1869 | return OpFoldResult(); |
1870 | } |
1871 | |
1872 | namespace { |
1873 | |
1874 | // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. |
1875 | class final : public OpRewritePattern<ExtractOp> { |
1876 | public: |
1877 | using OpRewritePattern::OpRewritePattern; |
1878 | |
1879 | LogicalResult matchAndRewrite(ExtractOp , |
1880 | PatternRewriter &rewriter) const override { |
1881 | Operation *defOp = extractOp.getVector().getDefiningOp(); |
1882 | if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) |
1883 | return failure(); |
1884 | |
1885 | Value source = defOp->getOperand(idx: 0); |
1886 | if (extractOp.getType() == source.getType()) |
1887 | return failure(); |
1888 | auto getRank = [](Type type) { |
1889 | return llvm::isa<VectorType>(type) |
1890 | ? llvm::cast<VectorType>(type).getRank() |
1891 | : 0; |
1892 | }; |
1893 | unsigned broadcastSrcRank = getRank(source.getType()); |
1894 | unsigned = getRank(extractOp.getType()); |
1895 | // We only consider the case where the rank of the source is less than or |
1896 | // equal to the rank of the extract dst. The other cases are handled in the |
1897 | // folding patterns. |
1898 | if (extractResultRank < broadcastSrcRank) |
1899 | return failure(); |
1900 | |
1901 | // Special case if broadcast src is a 0D vector. |
1902 | if (extractResultRank == 0) { |
1903 | assert(broadcastSrcRank == 0 && llvm::isa<VectorType>(source.getType())); |
1904 | rewriter.replaceOpWithNewOp<vector::ExtractElementOp>(extractOp, source); |
1905 | return success(); |
1906 | } |
1907 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>( |
1908 | extractOp, extractOp.getType(), source); |
1909 | return success(); |
1910 | } |
1911 | }; |
1912 | |
1913 | // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. |
1914 | class final : public OpRewritePattern<ExtractOp> { |
1915 | public: |
1916 | using OpRewritePattern::OpRewritePattern; |
1917 | |
1918 | LogicalResult matchAndRewrite(ExtractOp , |
1919 | PatternRewriter &rewriter) const override { |
1920 | // Return if 'ExtractOp' operand is not defined by a splat vector |
1921 | // ConstantOp. |
1922 | Value sourceVector = extractOp.getVector(); |
1923 | Attribute vectorCst; |
1924 | if (!matchPattern(value: sourceVector, pattern: m_Constant(bind_value: &vectorCst))) |
1925 | return failure(); |
1926 | auto splat = llvm::dyn_cast<SplatElementsAttr>(Val&: vectorCst); |
1927 | if (!splat) |
1928 | return failure(); |
1929 | TypedAttr newAttr = splat.getSplatValue<TypedAttr>(); |
1930 | if (auto vecDstType = llvm::dyn_cast<VectorType>(extractOp.getType())) |
1931 | newAttr = DenseElementsAttr::get(vecDstType, newAttr); |
1932 | rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); |
1933 | return success(); |
1934 | } |
1935 | }; |
1936 | |
1937 | // Pattern to rewrite a ExtractOp(non-splat ConstantOp)[...] -> ConstantOp. |
1938 | class final |
1939 | : public OpRewritePattern<ExtractOp> { |
1940 | public: |
1941 | using OpRewritePattern::OpRewritePattern; |
1942 | |
1943 | LogicalResult matchAndRewrite(ExtractOp , |
1944 | PatternRewriter &rewriter) const override { |
1945 | // TODO: Canonicalization for dynamic position not implemented yet. |
1946 | if (extractOp.hasDynamicPosition()) |
1947 | return failure(); |
1948 | |
1949 | // Return if 'ExtractOp' operand is not defined by a compatible vector |
1950 | // ConstantOp. |
1951 | Value sourceVector = extractOp.getVector(); |
1952 | Attribute vectorCst; |
1953 | if (!matchPattern(value: sourceVector, pattern: m_Constant(bind_value: &vectorCst))) |
1954 | return failure(); |
1955 | |
1956 | auto vecTy = llvm::cast<VectorType>(sourceVector.getType()); |
1957 | if (vecTy.isScalable()) |
1958 | return failure(); |
1959 | |
1960 | // The splat case is handled by `ExtractOpSplatConstantFolder`. |
1961 | auto dense = llvm::dyn_cast<DenseElementsAttr>(Val&: vectorCst); |
1962 | if (!dense || dense.isSplat()) |
1963 | return failure(); |
1964 | |
1965 | // Calculate the linearized position of the continuous chunk of elements to |
1966 | // extract. |
1967 | llvm::SmallVector<int64_t> completePositions(vecTy.getRank(), 0); |
1968 | copy(extractOp.getStaticPosition(), completePositions.begin()); |
1969 | int64_t elemBeginPosition = |
1970 | linearize(completePositions, computeStrides(vecTy.getShape())); |
1971 | auto denseValuesBegin = dense.value_begin<TypedAttr>() + elemBeginPosition; |
1972 | |
1973 | TypedAttr newAttr; |
1974 | if (auto resVecTy = llvm::dyn_cast<VectorType>(extractOp.getType())) { |
1975 | SmallVector<Attribute> elementValues( |
1976 | denseValuesBegin, denseValuesBegin + resVecTy.getNumElements()); |
1977 | newAttr = DenseElementsAttr::get(resVecTy, elementValues); |
1978 | } else { |
1979 | newAttr = *denseValuesBegin; |
1980 | } |
1981 | |
1982 | rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); |
1983 | return success(); |
1984 | } |
1985 | }; |
1986 | |
1987 | // Pattern to rewrite a ExtractOp(CreateMask) -> CreateMask. |
1988 | class final : public OpRewritePattern<ExtractOp> { |
1989 | public: |
1990 | using OpRewritePattern::OpRewritePattern; |
1991 | |
1992 | LogicalResult matchAndRewrite(ExtractOp , |
1993 | PatternRewriter &rewriter) const override { |
1994 | auto createMaskOp = |
1995 | extractOp.getVector().getDefiningOp<vector::CreateMaskOp>(); |
1996 | if (!createMaskOp) |
1997 | return failure(); |
1998 | |
1999 | VectorType = |
2000 | llvm::dyn_cast<VectorType>(extractOp.getResult().getType()); |
2001 | |
2002 | if (!extractedMaskType) |
2003 | return failure(); |
2004 | |
2005 | auto maskOperands = createMaskOp.getOperands(); |
2006 | ArrayRef<int64_t> = extractOp.getStaticPosition(); |
2007 | VectorType maskType = createMaskOp.getVectorType(); |
2008 | |
2009 | bool containsUnknownDims = false; |
2010 | bool allFalse = getMaskFormat(createMaskOp) == MaskFormat::AllFalse; |
2011 | |
2012 | for (size_t dimIdx = 0; !allFalse && dimIdx < extractOpPos.size(); |
2013 | dimIdx++) { |
2014 | int64_t pos = extractOpPos[dimIdx]; |
2015 | Value operand = maskOperands[dimIdx]; |
2016 | auto constantOp = operand.getDefiningOp<arith::ConstantOp>(); |
2017 | if (!constantOp) { |
2018 | // Bounds of this dim unknown. |
2019 | containsUnknownDims = true; |
2020 | continue; |
2021 | } |
2022 | |
2023 | int64_t createMaskBound = |
2024 | llvm::cast<IntegerAttr>(constantOp.getValue()).getInt(); |
2025 | |
2026 | if (pos != ShapedType::kDynamic) { |
2027 | // If any position is outside the range from the `create_mask`, then the |
2028 | // extracted mask will be all-false. |
2029 | allFalse |= pos >= createMaskBound; |
2030 | } else if (createMaskBound < maskType.getDimSize(dimIdx)) { |
2031 | // This dim is not all-true and since this is a dynamic index we don't |
2032 | // know if the extraction is within the true or false region. |
2033 | // Note: Zero dims have already handled via getMaskFormat(). |
2034 | containsUnknownDims = true; |
2035 | } |
2036 | } |
2037 | |
2038 | if (allFalse) { |
2039 | rewriter.replaceOpWithNewOp<arith::ConstantOp>( |
2040 | extractOp, DenseElementsAttr::get(extractedMaskType, false)); |
2041 | } else if (!containsUnknownDims) { |
2042 | rewriter.replaceOpWithNewOp<vector::CreateMaskOp>( |
2043 | extractOp, extractedMaskType, |
2044 | maskOperands.drop_front(extractOpPos.size())); |
2045 | } else { |
2046 | return failure(); |
2047 | } |
2048 | return success(); |
2049 | } |
2050 | }; |
2051 | |
2052 | // Folds extract(shape_cast(..)) into shape_cast when the total element count |
2053 | // does not change. |
2054 | LogicalResult (ExtractOp , |
2055 | PatternRewriter &rewriter) { |
2056 | auto castOp = extractOp.getVector().getDefiningOp<ShapeCastOp>(); |
2057 | if (!castOp) |
2058 | return failure(); |
2059 | |
2060 | VectorType sourceType = castOp.getSourceVectorType(); |
2061 | auto targetType = dyn_cast<VectorType>(extractOp.getResult().getType()); |
2062 | if (!targetType) |
2063 | return failure(); |
2064 | |
2065 | if (sourceType.getNumElements() != targetType.getNumElements()) |
2066 | return failure(); |
2067 | |
2068 | rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(extractOp, targetType, |
2069 | castOp.getSource()); |
2070 | return success(); |
2071 | } |
2072 | |
2073 | } // namespace |
2074 | |
2075 | void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, |
2076 | MLIRContext *context) { |
2077 | results.add<ExtractOpSplatConstantFolder, ExtractOpNonSplatConstantFolder, |
2078 | ExtractOpFromBroadcast, ExtractOpFromCreateMask>(context); |
2079 | results.add(foldExtractFromShapeCastToShapeCast); |
2080 | } |
2081 | |
2082 | static void populateFromInt64AttrArray(ArrayAttr arrayAttr, |
2083 | SmallVectorImpl<int64_t> &results) { |
2084 | for (auto attr : arrayAttr) |
2085 | results.push_back(llvm::cast<IntegerAttr>(attr).getInt()); |
2086 | } |
2087 | |
2088 | //===----------------------------------------------------------------------===// |
2089 | // FmaOp |
2090 | //===----------------------------------------------------------------------===// |
2091 | |
2092 | std::optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { |
2093 | return llvm::to_vector<4>(getVectorType().getShape()); |
2094 | } |
2095 | |
2096 | //===----------------------------------------------------------------------===// |
2097 | // BroadcastOp |
2098 | //===----------------------------------------------------------------------===// |
2099 | |
2100 | /// Return the dimensions of the result vector that were formerly ones in the |
2101 | /// source tensor and thus correspond to "dim-1" broadcasting. |
2102 | static llvm::SetVector<int64_t> |
2103 | computeBroadcastedUnitDims(ArrayRef<int64_t> srcShape, |
2104 | ArrayRef<int64_t> dstShape) { |
2105 | int64_t rankDiff = dstShape.size() - srcShape.size(); |
2106 | int64_t dstDim = rankDiff; |
2107 | llvm::SetVector<int64_t> res; |
2108 | for (auto [s1, s2] : |
2109 | llvm::zip_equal(t&: srcShape, u: dstShape.drop_front(N: rankDiff))) { |
2110 | if (s1 != s2) { |
2111 | assert(s1 == 1 && "expected dim-1 broadcasting" ); |
2112 | res.insert(X: dstDim); |
2113 | } |
2114 | ++dstDim; |
2115 | } |
2116 | return res; |
2117 | } |
2118 | |
2119 | llvm::SetVector<int64_t> BroadcastOp::computeBroadcastedUnitDims() { |
2120 | // Scalar broadcast is without any unit dim broadcast. |
2121 | auto srcVectorType = llvm::dyn_cast<VectorType>(getSourceType()); |
2122 | if (!srcVectorType) |
2123 | return {}; |
2124 | return ::computeBroadcastedUnitDims(srcVectorType.getShape(), |
2125 | getResultVectorType().getShape()); |
2126 | } |
2127 | |
2128 | /// Broadcast `value` to a vector of `dstShape`, knowing that exactly the |
2129 | /// `broadcastedDims` dimensions in the dstShape are broadcasted. |
2130 | /// This requires (and asserts) that the broadcast is free of dim-1 |
2131 | /// broadcasting. |
2132 | /// Since vector.broadcast only allows expanding leading dimensions, an extra |
2133 | /// vector.transpose may be inserted to make the broadcast possible. |
2134 | /// `value`, `dstShape` and `broadcastedDims` must be properly specified or |
2135 | /// the helper will assert. This means: |
2136 | /// 1. `dstShape` must not be empty. |
2137 | /// 2. `broadcastedDims` must be confined to [0 .. rank(value.getVectorType)] |
2138 | /// 2. `dstShape` trimmed of the dimensions specified in `broadcastedDims` |
2139 | // must match the `value` shape. |
2140 | Value BroadcastOp::createOrFoldBroadcastOp( |
2141 | OpBuilder &b, Value value, ArrayRef<int64_t> dstShape, |
2142 | const llvm::SetVector<int64_t> &broadcastedDims) { |
2143 | assert(!dstShape.empty() && "unexpected empty dst shape" ); |
2144 | |
2145 | // Well-formedness check. |
2146 | SmallVector<int64_t> checkShape; |
2147 | for (int i = 0, e = dstShape.size(); i < e; ++i) { |
2148 | if (broadcastedDims.contains(i)) |
2149 | continue; |
2150 | checkShape.push_back(dstShape[i]); |
2151 | } |
2152 | assert(broadcastedDims.size() == dstShape.size() - checkShape.size() && |
2153 | "ill-formed broadcastedDims contains values not confined to " |
2154 | "destVectorShape" ); |
2155 | |
2156 | Location loc = value.getLoc(); |
2157 | Type elementType = getElementTypeOrSelf(value.getType()); |
2158 | VectorType srcVectorType = llvm::dyn_cast<VectorType>(value.getType()); |
2159 | VectorType dstVectorType = VectorType::get(dstShape, elementType); |
2160 | |
2161 | // Step 2. If scalar -> dstShape broadcast, just do it. |
2162 | if (!srcVectorType) { |
2163 | assert(checkShape.empty() && |
2164 | "ill-formed createOrFoldBroadcastOp arguments" ); |
2165 | return b.createOrFold<vector::BroadcastOp>(loc, dstVectorType, value); |
2166 | } |
2167 | |
2168 | assert(srcVectorType.getShape().equals(checkShape) && |
2169 | "ill-formed createOrFoldBroadcastOp arguments" ); |
2170 | |
2171 | // Step 3. Since vector.broadcast only allows creating leading dims, |
2172 | // vector -> dstShape broadcast may require a transpose. |
2173 | // Traverse the dims in order and construct: |
2174 | // 1. The leading entries of the broadcastShape that is guaranteed to be |
2175 | // achievable by a simple broadcast. |
2176 | // 2. The induced permutation for the subsequent vector.transpose that will |
2177 | // bring us from `broadcastShape` back to he desired `dstShape`. |
2178 | // If the induced permutation is not the identity, create a vector.transpose. |
2179 | SmallVector<int64_t> broadcastShape, permutation(dstShape.size(), -1); |
2180 | broadcastShape.reserve(dstShape.size()); |
2181 | // Consider the example: |
2182 | // srcShape = 2x4 |
2183 | // dstShape = 1x2x3x4x5 |
2184 | // broadcastedDims = [0, 2, 4] |
2185 | // |
2186 | // We want to build: |
2187 | // broadcastShape = 1x3x5x2x4 |
2188 | // permutation = [0, 2, 4, 1, 3] |
2189 | // ---V--- -----V----- |
2190 | // leading broadcast part src shape part |
2191 | // |
2192 | // Note that the trailing dims of broadcastShape are exactly the srcShape |
2193 | // by construction. |
2194 | // nextSrcShapeDim is used to keep track of where in the permutation the |
2195 | // "src shape part" occurs. |
2196 | int64_t nextSrcShapeDim = broadcastedDims.size(); |
2197 | for (int64_t i = 0, e = dstShape.size(); i < e; ++i) { |
2198 | if (broadcastedDims.contains(i)) { |
2199 | // 3.a. For each dim in the dst shape, if it is a broadcasted dim, |
2200 | // bring it to the head of the broadcastShape. |
2201 | // It will need to be permuted back from `broadcastShape.size() - 1` into |
2202 | // position `i`. |
2203 | broadcastShape.push_back(dstShape[i]); |
2204 | permutation[i] = broadcastShape.size() - 1; |
2205 | } else { |
2206 | // 3.b. Otherwise, the dim is not broadcasted, it comes from the src |
2207 | // shape and needs to be permuted into position `i`. |
2208 | // Don't touch `broadcastShape` here, the whole srcShape will be |
2209 | // appended after. |
2210 | permutation[i] = nextSrcShapeDim++; |
2211 | } |
2212 | } |
2213 | // 3.c. Append the srcShape. |
2214 | llvm::append_range(broadcastShape, srcVectorType.getShape()); |
2215 | |
2216 | // Ensure there are no dim-1 broadcasts. |
2217 | assert(::computeBroadcastedUnitDims(srcVectorType.getShape(), broadcastShape) |
2218 | .empty() && |
2219 | "unexpected dim-1 broadcast" ); |
2220 | |
2221 | VectorType broadcastType = VectorType::get(broadcastShape, elementType); |
2222 | assert(vector::isBroadcastableTo(value.getType(), broadcastType) == |
2223 | vector::BroadcastableToResult::Success && |
2224 | "must be broadcastable" ); |
2225 | Value res = b.createOrFold<vector::BroadcastOp>(loc, broadcastType, value); |
2226 | // Step 4. If we find any dimension that indeed needs to be permuted, |
2227 | // immediately return a new vector.transpose. |
2228 | for (int64_t i = 0, e = permutation.size(); i < e; ++i) |
2229 | if (permutation[i] != i) |
2230 | return b.createOrFold<vector::TransposeOp>(loc, res, permutation); |
2231 | // Otherwise return res. |
2232 | return res; |
2233 | } |
2234 | |
2235 | BroadcastableToResult |
2236 | mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, |
2237 | std::pair<int, int> *mismatchingDims) { |
2238 | // Broadcast scalar to vector of the same element type. |
2239 | if (srcType.isIntOrIndexOrFloat() && dstVectorType && |
2240 | getElementTypeOrSelf(type: srcType) == getElementTypeOrSelf(dstVectorType)) |
2241 | return BroadcastableToResult::Success; |
2242 | // From now on, only vectors broadcast. |
2243 | VectorType srcVectorType = llvm::dyn_cast<VectorType>(srcType); |
2244 | if (!srcVectorType) |
2245 | return BroadcastableToResult::SourceTypeNotAVector; |
2246 | |
2247 | int64_t srcRank = srcVectorType.getRank(); |
2248 | int64_t dstRank = dstVectorType.getRank(); |
2249 | if (srcRank > dstRank) |
2250 | return BroadcastableToResult::SourceRankHigher; |
2251 | // Source has an exact match or singleton value for all trailing dimensions |
2252 | // (all leading dimensions are simply duplicated). |
2253 | int64_t lead = dstRank - srcRank; |
2254 | for (int64_t r = 0; r < srcRank; ++r) { |
2255 | int64_t srcDim = srcVectorType.getDimSize(r); |
2256 | int64_t dstDim = dstVectorType.getDimSize(lead + r); |
2257 | if (srcDim != 1 && srcDim != dstDim) { |
2258 | if (mismatchingDims) { |
2259 | mismatchingDims->first = srcDim; |
2260 | mismatchingDims->second = dstDim; |
2261 | } |
2262 | return BroadcastableToResult::DimensionMismatch; |
2263 | } |
2264 | } |
2265 | |
2266 | return BroadcastableToResult::Success; |
2267 | } |
2268 | |
2269 | LogicalResult BroadcastOp::verify() { |
2270 | std::pair<int, int> mismatchingDims; |
2271 | BroadcastableToResult res = isBroadcastableTo( |
2272 | getSourceType(), getResultVectorType(), &mismatchingDims); |
2273 | if (res == BroadcastableToResult::Success) |
2274 | return success(); |
2275 | if (res == BroadcastableToResult::SourceRankHigher) |
2276 | return emitOpError("source rank higher than destination rank" ); |
2277 | if (res == BroadcastableToResult::DimensionMismatch) |
2278 | return emitOpError("dimension mismatch (" ) |
2279 | << mismatchingDims.first << " vs. " << mismatchingDims.second << ")" ; |
2280 | if (res == BroadcastableToResult::SourceTypeNotAVector) |
2281 | return emitOpError("source type is not a vector" ); |
2282 | llvm_unreachable("unexpected vector.broadcast op error" ); |
2283 | } |
2284 | |
2285 | OpFoldResult BroadcastOp::fold(FoldAdaptor adaptor) { |
2286 | if (getSourceType() == getResultVectorType()) |
2287 | return getSource(); |
2288 | if (!adaptor.getSource()) |
2289 | return {}; |
2290 | auto vectorType = getResultVectorType(); |
2291 | if (llvm::isa<IntegerAttr, FloatAttr>(adaptor.getSource())) |
2292 | return DenseElementsAttr::get(vectorType, adaptor.getSource()); |
2293 | if (auto attr = llvm::dyn_cast<SplatElementsAttr>(adaptor.getSource())) |
2294 | return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); |
2295 | return {}; |
2296 | } |
2297 | |
2298 | namespace { |
2299 | |
2300 | // Fold broadcast1(broadcast2(x)) into broadcast1(x). |
2301 | struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { |
2302 | using OpRewritePattern::OpRewritePattern; |
2303 | |
2304 | LogicalResult matchAndRewrite(BroadcastOp broadcastOp, |
2305 | PatternRewriter &rewriter) const override { |
2306 | auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>(); |
2307 | if (!srcBroadcast) |
2308 | return failure(); |
2309 | rewriter.replaceOpWithNewOp<BroadcastOp>(broadcastOp, |
2310 | broadcastOp.getResultVectorType(), |
2311 | srcBroadcast.getSource()); |
2312 | return success(); |
2313 | } |
2314 | }; |
2315 | } // namespace |
2316 | |
2317 | void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, |
2318 | MLIRContext *context) { |
2319 | // BroadcastToShapeCast is not a default canonicalization, it is opt-in by |
2320 | // calling `populateCastAwayVectorLeadingOneDimPatterns` |
2321 | results.add<BroadcastFolder>(context); |
2322 | } |
2323 | |
2324 | //===----------------------------------------------------------------------===// |
2325 | // ShuffleOp |
2326 | //===----------------------------------------------------------------------===// |
2327 | |
2328 | void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, |
2329 | Value v2, ArrayRef<int64_t> mask) { |
2330 | build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask)); |
2331 | } |
2332 | |
2333 | LogicalResult ShuffleOp::verify() { |
2334 | VectorType resultType = getResultVectorType(); |
2335 | VectorType v1Type = getV1VectorType(); |
2336 | VectorType v2Type = getV2VectorType(); |
2337 | // Verify ranks. |
2338 | int64_t resRank = resultType.getRank(); |
2339 | int64_t v1Rank = v1Type.getRank(); |
2340 | int64_t v2Rank = v2Type.getRank(); |
2341 | bool wellFormed0DCase = v1Rank == 0 && v2Rank == 0 && resRank == 1; |
2342 | bool wellFormedNDCase = v1Rank == resRank && v2Rank == resRank; |
2343 | if (!wellFormed0DCase && !wellFormedNDCase) |
2344 | return emitOpError("rank mismatch" ); |
2345 | |
2346 | // Verify all but leading dimension sizes. |
2347 | for (int64_t r = 1; r < v1Rank; ++r) { |
2348 | int64_t resDim = resultType.getDimSize(r); |
2349 | int64_t v1Dim = v1Type.getDimSize(r); |
2350 | int64_t v2Dim = v2Type.getDimSize(r); |
2351 | if (resDim != v1Dim || v1Dim != v2Dim) |
2352 | return emitOpError("dimension mismatch" ); |
2353 | } |
2354 | // Verify mask length. |
2355 | auto maskAttr = getMask().getValue(); |
2356 | int64_t maskLength = maskAttr.size(); |
2357 | if (maskLength <= 0) |
2358 | return emitOpError("invalid mask length" ); |
2359 | if (maskLength != resultType.getDimSize(0)) |
2360 | return emitOpError("mask length mismatch" ); |
2361 | // Verify all indices. |
2362 | int64_t indexSize = (v1Type.getRank() == 0 ? 1 : v1Type.getDimSize(0)) + |
2363 | (v2Type.getRank() == 0 ? 1 : v2Type.getDimSize(0)); |
2364 | for (const auto &en : llvm::enumerate(maskAttr)) { |
2365 | auto attr = llvm::dyn_cast<IntegerAttr>(en.value()); |
2366 | if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) |
2367 | return emitOpError("mask index #" ) << (en.index() + 1) << " out of range" ; |
2368 | } |
2369 | return success(); |
2370 | } |
2371 | |
2372 | LogicalResult |
2373 | ShuffleOp::inferReturnTypes(MLIRContext *, std::optional<Location>, |
2374 | ShuffleOp::Adaptor adaptor, |
2375 | SmallVectorImpl<Type> &inferredReturnTypes) { |
2376 | auto v1Type = llvm::cast<VectorType>(adaptor.getV1().getType()); |
2377 | auto v1Rank = v1Type.getRank(); |
2378 | // Construct resulting type: leading dimension matches mask |
2379 | // length, all trailing dimensions match the operands. |
2380 | SmallVector<int64_t, 4> shape; |
2381 | shape.reserve(v1Rank); |
2382 | shape.push_back(std::max<size_t>(1, adaptor.getMask().size())); |
2383 | // In the 0-D case there is no trailing shape to append. |
2384 | if (v1Rank > 0) |
2385 | llvm::append_range(shape, v1Type.getShape().drop_front()); |
2386 | inferredReturnTypes.push_back( |
2387 | VectorType::get(shape, v1Type.getElementType())); |
2388 | return success(); |
2389 | } |
2390 | |
2391 | static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) { |
2392 | uint64_t expected = begin; |
2393 | return idxArr.size() == width && |
2394 | llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(), |
2395 | [&expected](auto attr) { |
2396 | return attr.getZExtValue() == expected++; |
2397 | }); |
2398 | } |
2399 | |
2400 | OpFoldResult vector::ShuffleOp::fold(FoldAdaptor adaptor) { |
2401 | VectorType v1Type = getV1VectorType(); |
2402 | // For consistency: 0-D shuffle return type is 1-D, this cannot be a folding |
2403 | // but must be a canonicalization into a vector.broadcast. |
2404 | if (v1Type.getRank() == 0) |
2405 | return {}; |
2406 | |
2407 | // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1 |
2408 | if (!v1Type.isScalable() && |
2409 | isStepIndexArray(getMask(), 0, v1Type.getDimSize(0))) |
2410 | return getV1(); |
2411 | // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2 |
2412 | if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() && |
2413 | isStepIndexArray(getMask(), getV1VectorType().getDimSize(0), |
2414 | getV2VectorType().getDimSize(0))) |
2415 | return getV2(); |
2416 | |
2417 | Attribute lhs = adaptor.getV1(), rhs = adaptor.getV2(); |
2418 | if (!lhs || !rhs) |
2419 | return {}; |
2420 | |
2421 | auto lhsType = |
2422 | llvm::cast<VectorType>(llvm::cast<DenseElementsAttr>(lhs).getType()); |
2423 | // Only support 1-D for now to avoid complicated n-D DenseElementsAttr |
2424 | // manipulation. |
2425 | if (lhsType.getRank() != 1) |
2426 | return {}; |
2427 | int64_t lhsSize = lhsType.getDimSize(0); |
2428 | |
2429 | SmallVector<Attribute> results; |
2430 | auto lhsElements = llvm::cast<DenseElementsAttr>(lhs).getValues<Attribute>(); |
2431 | auto rhsElements = llvm::cast<DenseElementsAttr>(rhs).getValues<Attribute>(); |
2432 | for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) { |
2433 | int64_t i = index.getZExtValue(); |
2434 | if (i >= lhsSize) { |
2435 | results.push_back(rhsElements[i - lhsSize]); |
2436 | } else { |
2437 | results.push_back(lhsElements[i]); |
2438 | } |
2439 | } |
2440 | |
2441 | return DenseElementsAttr::get(getResultVectorType(), results); |
2442 | } |
2443 | |
2444 | namespace { |
2445 | |
2446 | // Pattern to rewrite a 0-D shuffle with [0] or [1] mask returning a 1-D vector |
2447 | // to a broadcast. |
2448 | struct Canonicalize0DShuffleOp : public OpRewritePattern<ShuffleOp> { |
2449 | using OpRewritePattern::OpRewritePattern; |
2450 | |
2451 | LogicalResult matchAndRewrite(ShuffleOp shuffleOp, |
2452 | PatternRewriter &rewriter) const override { |
2453 | VectorType v1VectorType = shuffleOp.getV1VectorType(); |
2454 | ArrayAttr mask = shuffleOp.getMask(); |
2455 | if (v1VectorType.getRank() > 0) |
2456 | return failure(); |
2457 | if (mask.size() != 1) |
2458 | return failure(); |
2459 | VectorType resType = VectorType::Builder(v1VectorType).setShape({1}); |
2460 | if (llvm::cast<IntegerAttr>(mask[0]).getInt() == 0) |
2461 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>(shuffleOp, resType, |
2462 | shuffleOp.getV1()); |
2463 | else |
2464 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>(shuffleOp, resType, |
2465 | shuffleOp.getV2()); |
2466 | return success(); |
2467 | } |
2468 | }; |
2469 | |
2470 | /// Pattern to rewrite a ShuffleOp(SplatOp, SplatOp) to SplatOp. |
2471 | class ShuffleSplat final : public OpRewritePattern<ShuffleOp> { |
2472 | public: |
2473 | using OpRewritePattern::OpRewritePattern; |
2474 | |
2475 | LogicalResult matchAndRewrite(ShuffleOp op, |
2476 | PatternRewriter &rewriter) const override { |
2477 | auto v1Splat = op.getV1().getDefiningOp<SplatOp>(); |
2478 | auto v2Splat = op.getV2().getDefiningOp<SplatOp>(); |
2479 | |
2480 | if (!v1Splat || !v2Splat) |
2481 | return failure(); |
2482 | |
2483 | if (v1Splat.getInput() != v2Splat.getInput()) |
2484 | return failure(); |
2485 | |
2486 | rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), v1Splat.getInput()); |
2487 | return success(); |
2488 | } |
2489 | }; |
2490 | |
2491 | /// Pattern to rewrite a fixed-size interleave via vector.shuffle to |
2492 | /// vector.interleave. |
2493 | class ShuffleInterleave : public OpRewritePattern<ShuffleOp> { |
2494 | public: |
2495 | using OpRewritePattern::OpRewritePattern; |
2496 | |
2497 | LogicalResult matchAndRewrite(ShuffleOp op, |
2498 | PatternRewriter &rewriter) const override { |
2499 | VectorType resultType = op.getResultVectorType(); |
2500 | if (resultType.isScalable()) |
2501 | return rewriter.notifyMatchFailure( |
2502 | op, "ShuffleOp can't represent a scalable interleave" ); |
2503 | |
2504 | if (resultType.getRank() != 1) |
2505 | return rewriter.notifyMatchFailure( |
2506 | op, "ShuffleOp can't represent an n-D interleave" ); |
2507 | |
2508 | VectorType sourceType = op.getV1VectorType(); |
2509 | if (sourceType != op.getV2VectorType() || |
2510 | sourceType.getNumElements() * 2 != resultType.getNumElements()) { |
2511 | return rewriter.notifyMatchFailure( |
2512 | op, "ShuffleOp types don't match an interleave" ); |
2513 | } |
2514 | |
2515 | ArrayAttr shuffleMask = op.getMask(); |
2516 | int64_t resultVectorSize = resultType.getNumElements(); |
2517 | for (int i = 0, e = resultVectorSize / 2; i < e; ++i) { |
2518 | int64_t maskValueA = cast<IntegerAttr>(shuffleMask[i * 2]).getInt(); |
2519 | int64_t maskValueB = cast<IntegerAttr>(shuffleMask[(i * 2) + 1]).getInt(); |
2520 | if (maskValueA != i || maskValueB != (resultVectorSize / 2) + i) |
2521 | return rewriter.notifyMatchFailure(op, |
2522 | "ShuffleOp mask not interleaving" ); |
2523 | } |
2524 | |
2525 | rewriter.replaceOpWithNewOp<InterleaveOp>(op, op.getV1(), op.getV2()); |
2526 | return success(); |
2527 | } |
2528 | }; |
2529 | |
2530 | } // namespace |
2531 | |
2532 | void ShuffleOp::getCanonicalizationPatterns(RewritePatternSet &results, |
2533 | MLIRContext *context) { |
2534 | results.add<ShuffleSplat, ShuffleInterleave, Canonicalize0DShuffleOp>( |
2535 | context); |
2536 | } |
2537 | |
2538 | //===----------------------------------------------------------------------===// |
2539 | // InsertElementOp |
2540 | //===----------------------------------------------------------------------===// |
2541 | |
2542 | void InsertElementOp::build(OpBuilder &builder, OperationState &result, |
2543 | Value source, Value dest) { |
2544 | build(builder, result, source, dest, {}); |
2545 | } |
2546 | |
2547 | LogicalResult InsertElementOp::verify() { |
2548 | auto dstVectorType = getDestVectorType(); |
2549 | if (dstVectorType.getRank() == 0) { |
2550 | if (getPosition()) |
2551 | return emitOpError("expected position to be empty with 0-D vector" ); |
2552 | return success(); |
2553 | } |
2554 | if (dstVectorType.getRank() != 1) |
2555 | return emitOpError("unexpected >1 vector rank" ); |
2556 | if (!getPosition()) |
2557 | return emitOpError("expected position for 1-D vector" ); |
2558 | return success(); |
2559 | } |
2560 | |
2561 | OpFoldResult vector::InsertElementOp::fold(FoldAdaptor adaptor) { |
2562 | // Skip the 0-D vector here. |
2563 | if (!adaptor.getPosition()) |
2564 | return {}; |
2565 | |
2566 | auto src = dyn_cast_or_null<TypedAttr>(adaptor.getSource()); |
2567 | auto dst = dyn_cast_or_null<DenseElementsAttr>(adaptor.getDest()); |
2568 | auto pos = dyn_cast_or_null<IntegerAttr>(adaptor.getPosition()); |
2569 | if (!src || !dst || !pos) |
2570 | return {}; |
2571 | |
2572 | if (src.getType() != getDestVectorType().getElementType()) |
2573 | return {}; |
2574 | |
2575 | auto dstElements = dst.getValues<Attribute>(); |
2576 | |
2577 | SmallVector<Attribute> results(dstElements); |
2578 | |
2579 | uint64_t posIdx = pos.getInt(); |
2580 | if (posIdx >= results.size()) |
2581 | return {}; |
2582 | results[posIdx] = src; |
2583 | |
2584 | return DenseElementsAttr::get(getDestVectorType(), results); |
2585 | } |
2586 | |
2587 | //===----------------------------------------------------------------------===// |
2588 | // InsertOp |
2589 | //===----------------------------------------------------------------------===// |
2590 | |
2591 | void vector::InsertOp::build(OpBuilder &builder, OperationState &result, |
2592 | Value source, Value dest, int64_t position) { |
2593 | build(builder, result, source, dest, ArrayRef<int64_t>{position}); |
2594 | } |
2595 | |
2596 | void vector::InsertOp::build(OpBuilder &builder, OperationState &result, |
2597 | Value source, Value dest, OpFoldResult position) { |
2598 | build(builder, result, source, dest, ArrayRef<OpFoldResult>{position}); |
2599 | } |
2600 | |
2601 | void vector::InsertOp::build(OpBuilder &builder, OperationState &result, |
2602 | Value source, Value dest, |
2603 | ArrayRef<int64_t> position) { |
2604 | SmallVector<OpFoldResult> posVals; |
2605 | posVals.reserve(position.size()); |
2606 | llvm::transform(position, std::back_inserter(posVals), |
2607 | [&](int64_t pos) { return builder.getI64IntegerAttr(pos); }); |
2608 | build(builder, result, source, dest, posVals); |
2609 | } |
2610 | |
2611 | void vector::InsertOp::build(OpBuilder &builder, OperationState &result, |
2612 | Value source, Value dest, |
2613 | ArrayRef<OpFoldResult> position) { |
2614 | SmallVector<int64_t> staticPos; |
2615 | SmallVector<Value> dynamicPos; |
2616 | dispatchIndexOpFoldResults(position, dynamicPos, staticPos); |
2617 | build(builder, result, source, dest, dynamicPos, |
2618 | builder.getDenseI64ArrayAttr(staticPos)); |
2619 | } |
2620 | |
2621 | LogicalResult InsertOp::verify() { |
2622 | SmallVector<OpFoldResult> position = getMixedPosition(); |
2623 | auto destVectorType = getDestVectorType(); |
2624 | if (position.size() > static_cast<unsigned>(destVectorType.getRank())) |
2625 | return emitOpError( |
2626 | "expected position attribute of rank no greater than dest vector rank" ); |
2627 | auto srcVectorType = llvm::dyn_cast<VectorType>(getSourceType()); |
2628 | if (srcVectorType && |
2629 | (static_cast<unsigned>(srcVectorType.getRank()) + position.size() != |
2630 | static_cast<unsigned>(destVectorType.getRank()))) |
2631 | return emitOpError("expected position attribute rank + source rank to " |
2632 | "match dest vector rank" ); |
2633 | if (!srcVectorType && |
2634 | (position.size() != static_cast<unsigned>(destVectorType.getRank()))) |
2635 | return emitOpError( |
2636 | "expected position attribute rank to match the dest vector rank" ); |
2637 | for (auto [idx, pos] : llvm::enumerate(position)) { |
2638 | if (auto attr = pos.dyn_cast<Attribute>()) { |
2639 | int64_t constIdx = cast<IntegerAttr>(attr).getInt(); |
2640 | if (constIdx < 0 || constIdx >= destVectorType.getDimSize(idx)) { |
2641 | return emitOpError("expected position attribute #" ) |
2642 | << (idx + 1) |
2643 | << " to be a non-negative integer smaller than the " |
2644 | "corresponding " |
2645 | "dest vector dimension" ; |
2646 | } |
2647 | } |
2648 | } |
2649 | return success(); |
2650 | } |
2651 | |
2652 | namespace { |
2653 | |
2654 | // If insertOp is only inserting unit dimensions it can be transformed to a |
2655 | // broadcast. |
2656 | class InsertToBroadcast final : public OpRewritePattern<InsertOp> { |
2657 | public: |
2658 | using OpRewritePattern::OpRewritePattern; |
2659 | |
2660 | LogicalResult matchAndRewrite(InsertOp insertOp, |
2661 | PatternRewriter &rewriter) const override { |
2662 | auto srcVecType = llvm::dyn_cast<VectorType>(insertOp.getSourceType()); |
2663 | if (!srcVecType || insertOp.getDestVectorType().getNumElements() != |
2664 | srcVecType.getNumElements()) |
2665 | return failure(); |
2666 | rewriter.replaceOpWithNewOp<BroadcastOp>( |
2667 | insertOp, insertOp.getDestVectorType(), insertOp.getSource()); |
2668 | return success(); |
2669 | } |
2670 | }; |
2671 | |
2672 | /// Pattern to rewrite a InsertOp(SplatOp, SplatOp) to SplatOp. |
2673 | class InsertSplatToSplat final : public OpRewritePattern<InsertOp> { |
2674 | public: |
2675 | using OpRewritePattern::OpRewritePattern; |
2676 | |
2677 | LogicalResult matchAndRewrite(InsertOp op, |
2678 | PatternRewriter &rewriter) const override { |
2679 | auto srcSplat = op.getSource().getDefiningOp<SplatOp>(); |
2680 | auto dstSplat = op.getDest().getDefiningOp<SplatOp>(); |
2681 | |
2682 | if (!srcSplat || !dstSplat) |
2683 | return failure(); |
2684 | |
2685 | if (srcSplat.getInput() != dstSplat.getInput()) |
2686 | return failure(); |
2687 | |
2688 | rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), srcSplat.getInput()); |
2689 | return success(); |
2690 | } |
2691 | }; |
2692 | |
2693 | // Pattern to rewrite a InsertOp(ConstantOp into ConstantOp) -> ConstantOp. |
2694 | class InsertOpConstantFolder final : public OpRewritePattern<InsertOp> { |
2695 | public: |
2696 | using OpRewritePattern::OpRewritePattern; |
2697 | |
2698 | // Do not create constants with more than `vectorSizeFoldThreashold` elements, |
2699 | // unless the source vector constant has a single use. |
2700 | static constexpr int64_t vectorSizeFoldThreshold = 256; |
2701 | |
2702 | LogicalResult matchAndRewrite(InsertOp op, |
2703 | PatternRewriter &rewriter) const override { |
2704 | // TODO: Canonicalization for dynamic position not implemented yet. |
2705 | if (op.hasDynamicPosition()) |
2706 | return failure(); |
2707 | |
2708 | // Return if 'InsertOp' operand is not defined by a compatible vector |
2709 | // ConstantOp. |
2710 | TypedValue<VectorType> destVector = op.getDest(); |
2711 | Attribute vectorDestCst; |
2712 | if (!matchPattern(value: destVector, pattern: m_Constant(bind_value: &vectorDestCst))) |
2713 | return failure(); |
2714 | |
2715 | VectorType destTy = destVector.getType(); |
2716 | if (destTy.isScalable()) |
2717 | return failure(); |
2718 | |
2719 | // Make sure we do not create too many large constants. |
2720 | if (destTy.getNumElements() > vectorSizeFoldThreshold && |
2721 | !destVector.hasOneUse()) |
2722 | return failure(); |
2723 | |
2724 | auto denseDest = llvm::cast<DenseElementsAttr>(Val&: vectorDestCst); |
2725 | |
2726 | Value sourceValue = op.getSource(); |
2727 | Attribute sourceCst; |
2728 | if (!matchPattern(value: sourceValue, pattern: m_Constant(bind_value: &sourceCst))) |
2729 | return failure(); |
2730 | |
2731 | // Calculate the linearized position of the continuous chunk of elements to |
2732 | // insert. |
2733 | llvm::SmallVector<int64_t> completePositions(destTy.getRank(), 0); |
2734 | copy(op.getStaticPosition(), completePositions.begin()); |
2735 | int64_t insertBeginPosition = |
2736 | linearize(completePositions, computeStrides(destTy.getShape())); |
2737 | |
2738 | SmallVector<Attribute> insertedValues; |
2739 | if (auto denseSource = llvm::dyn_cast<DenseElementsAttr>(Val&: sourceCst)) |
2740 | llvm::append_range(insertedValues, denseSource.getValues<Attribute>()); |
2741 | else |
2742 | insertedValues.push_back(Elt: sourceCst); |
2743 | |
2744 | auto allValues = llvm::to_vector(denseDest.getValues<Attribute>()); |
2745 | copy(insertedValues, allValues.begin() + insertBeginPosition); |
2746 | auto newAttr = DenseElementsAttr::get(destTy, allValues); |
2747 | |
2748 | rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, newAttr); |
2749 | return success(); |
2750 | } |
2751 | }; |
2752 | |
2753 | } // namespace |
2754 | |
2755 | void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, |
2756 | MLIRContext *context) { |
2757 | results.add<InsertToBroadcast, BroadcastFolder, InsertSplatToSplat, |
2758 | InsertOpConstantFolder>(context); |
2759 | } |
2760 | |
2761 | // Eliminates insert operations that produce values identical to their source |
2762 | // value. This happens when the source and destination vectors have identical |
2763 | // sizes. |
2764 | OpFoldResult vector::InsertOp::fold(FoldAdaptor adaptor) { |
2765 | if (getNumIndices() == 0) |
2766 | return getSource(); |
2767 | return {}; |
2768 | } |
2769 | |
2770 | //===----------------------------------------------------------------------===// |
2771 | // InsertStridedSliceOp |
2772 | //===----------------------------------------------------------------------===// |
2773 | |
2774 | void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, |
2775 | Value source, Value dest, |
2776 | ArrayRef<int64_t> offsets, |
2777 | ArrayRef<int64_t> strides) { |
2778 | result.addOperands({source, dest}); |
2779 | auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); |
2780 | auto stridesAttr = getVectorSubscriptAttr(builder, strides); |
2781 | result.addTypes(dest.getType()); |
2782 | result.addAttribute(InsertStridedSliceOp::getOffsetsAttrName(result.name), |
2783 | offsetsAttr); |
2784 | result.addAttribute(InsertStridedSliceOp::getStridesAttrName(result.name), |
2785 | stridesAttr); |
2786 | } |
2787 | |
2788 | // TODO: Should be moved to Tablegen ConfinedAttr attributes. |
2789 | template <typename OpType> |
2790 | static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, |
2791 | ArrayAttr arrayAttr, |
2792 | ArrayRef<int64_t> shape, |
2793 | StringRef attrName) { |
2794 | if (arrayAttr.size() > shape.size()) |
2795 | return op.emitOpError("expected " ) |
2796 | << attrName << " attribute of rank no greater than vector rank" ; |
2797 | return success(); |
2798 | } |
2799 | |
2800 | // Returns true if all integers in `arrayAttr` are in the half-open [min, max} |
2801 | // interval. If `halfOpen` is true then the admissible interval is [min, max). |
2802 | // Otherwise, the admissible interval is [min, max]. |
2803 | template <typename OpType> |
2804 | static LogicalResult |
2805 | isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, |
2806 | int64_t max, StringRef attrName, |
2807 | bool halfOpen = true) { |
2808 | for (auto attr : arrayAttr) { |
2809 | auto val = llvm::cast<IntegerAttr>(attr).getInt(); |
2810 | auto upper = max; |
2811 | if (!halfOpen) |
2812 | upper += 1; |
2813 | if (val < min || val >= upper) |
2814 | return op.emitOpError("expected " ) << attrName << " to be confined to [" |
2815 | << min << ", " << upper << ")" ; |
2816 | } |
2817 | return success(); |
2818 | } |
2819 | |
2820 | // Returns true if all integers in `arrayAttr` are in the half-open [min, max} |
2821 | // interval. If `halfOpen` is true then the admissible interval is [min, max). |
2822 | // Otherwise, the admissible interval is [min, max]. |
2823 | template <typename OpType> |
2824 | static LogicalResult |
2825 | isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, |
2826 | ArrayRef<int64_t> shape, StringRef attrName, |
2827 | bool halfOpen = true, int64_t min = 0) { |
2828 | for (auto [index, attrDimPair] : |
2829 | llvm::enumerate(llvm::zip_first(arrayAttr, shape))) { |
2830 | int64_t val = llvm::cast<IntegerAttr>(std::get<0>(attrDimPair)).getInt(); |
2831 | int64_t max = std::get<1>(attrDimPair); |
2832 | if (!halfOpen) |
2833 | max += 1; |
2834 | if (val < min || val >= max) |
2835 | return op.emitOpError("expected " ) |
2836 | << attrName << " dimension " << index << " to be confined to [" |
2837 | << min << ", " << max << ")" ; |
2838 | } |
2839 | return success(); |
2840 | } |
2841 | |
2842 | // Returns true if, for all indices i = 0..shape.size()-1, val is in the |
2843 | // [min, max} interval: |
2844 | // val = `arrayAttr1[i]` + `arrayAttr2[i]`, |
2845 | // If `halfOpen` is true then the admissible interval is [min, max). Otherwise, |
2846 | // the admissible interval is [min, max]. |
2847 | template <typename OpType> |
2848 | static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( |
2849 | OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, |
2850 | ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, |
2851 | bool halfOpen = true, int64_t min = 1) { |
2852 | assert(arrayAttr1.size() <= shape.size()); |
2853 | assert(arrayAttr2.size() <= shape.size()); |
2854 | for (auto [index, it] : |
2855 | llvm::enumerate(llvm::zip(arrayAttr1, arrayAttr2, shape))) { |
2856 | auto val1 = llvm::cast<IntegerAttr>(std::get<0>(it)).getInt(); |
2857 | auto val2 = llvm::cast<IntegerAttr>(std::get<1>(it)).getInt(); |
2858 | int64_t max = std::get<2>(it); |
2859 | if (!halfOpen) |
2860 | max += 1; |
2861 | if (val1 + val2 < 0 || val1 + val2 >= max) |
2862 | return op.emitOpError("expected sum(" ) |
2863 | << attrName1 << ", " << attrName2 << ") dimension " << index |
2864 | << " to be confined to [" << min << ", " << max << ")" ; |
2865 | } |
2866 | return success(); |
2867 | } |
2868 | |
2869 | static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, |
2870 | MLIRContext *context) { |
2871 | auto attrs = llvm::map_range(C&: values, F: [context](int64_t v) -> Attribute { |
2872 | return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); |
2873 | }); |
2874 | return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); |
2875 | } |
2876 | |
2877 | LogicalResult InsertStridedSliceOp::verify() { |
2878 | auto sourceVectorType = getSourceVectorType(); |
2879 | auto destVectorType = getDestVectorType(); |
2880 | auto offsets = getOffsetsAttr(); |
2881 | auto strides = getStridesAttr(); |
2882 | if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) |
2883 | return emitOpError( |
2884 | "expected offsets of same size as destination vector rank" ); |
2885 | if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) |
2886 | return emitOpError("expected strides of same size as source vector rank" ); |
2887 | if (sourceVectorType.getRank() > destVectorType.getRank()) |
2888 | return emitOpError( |
2889 | "expected source rank to be no greater than destination rank" ); |
2890 | |
2891 | auto sourceShape = sourceVectorType.getShape(); |
2892 | auto destShape = destVectorType.getShape(); |
2893 | SmallVector<int64_t, 4> sourceShapeAsDestShape( |
2894 | destShape.size() - sourceShape.size(), 0); |
2895 | sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); |
2896 | auto offName = InsertStridedSliceOp::getOffsetsAttrName(); |
2897 | auto stridesName = InsertStridedSliceOp::getStridesAttrName(); |
2898 | if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, |
2899 | offName)) || |
2900 | failed(isIntegerArrayAttrConfinedToRange(*this, strides, /*min=*/1, |
2901 | /*max=*/1, stridesName, |
2902 | /*halfOpen=*/false)) || |
2903 | failed(isSumOfIntegerArrayAttrConfinedToShape( |
2904 | *this, offsets, |
2905 | makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, |
2906 | offName, "source vector shape" , |
2907 | /*halfOpen=*/false, /*min=*/1))) |
2908 | return failure(); |
2909 | |
2910 | unsigned rankDiff = destShape.size() - sourceShape.size(); |
2911 | for (unsigned idx = 0; idx < sourceShape.size(); ++idx) { |
2912 | if (sourceVectorType.getScalableDims()[idx] != |
2913 | destVectorType.getScalableDims()[idx + rankDiff]) { |
2914 | return emitOpError("mismatching scalable flags (at source vector idx=" ) |
2915 | << idx << ")" ; |
2916 | } |
2917 | if (sourceVectorType.getScalableDims()[idx]) { |
2918 | auto sourceSize = sourceShape[idx]; |
2919 | auto destSize = destShape[idx + rankDiff]; |
2920 | if (sourceSize != destSize) { |
2921 | return emitOpError("expected size at idx=" ) |
2922 | << idx |
2923 | << (" to match the corresponding base size from the input " |
2924 | "vector (" ) |
2925 | << sourceSize << (" vs " ) << destSize << (")" ); |
2926 | } |
2927 | } |
2928 | } |
2929 | |
2930 | return success(); |
2931 | } |
2932 | |
2933 | namespace { |
2934 | /// Pattern to rewrite an InsertStridedSliceOp(SplatOp(X):src_type, |
2935 | /// SplatOp(X):dst_type) to SplatOp(X):dst_type. |
2936 | class FoldInsertStridedSliceSplat final |
2937 | : public OpRewritePattern<InsertStridedSliceOp> { |
2938 | public: |
2939 | using OpRewritePattern::OpRewritePattern; |
2940 | |
2941 | LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp, |
2942 | PatternRewriter &rewriter) const override { |
2943 | auto srcSplatOp = |
2944 | insertStridedSliceOp.getSource().getDefiningOp<vector::SplatOp>(); |
2945 | auto destSplatOp = |
2946 | insertStridedSliceOp.getDest().getDefiningOp<vector::SplatOp>(); |
2947 | |
2948 | if (!srcSplatOp || !destSplatOp) |
2949 | return failure(); |
2950 | |
2951 | if (srcSplatOp.getInput() != destSplatOp.getInput()) |
2952 | return failure(); |
2953 | |
2954 | rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest()); |
2955 | return success(); |
2956 | } |
2957 | }; |
2958 | |
2959 | /// Pattern to rewrite an InsertStridedSliceOp(ExtractStridedSliceOp(dst), dst) |
2960 | /// to dst. |
2961 | class final |
2962 | : public OpRewritePattern<InsertStridedSliceOp> { |
2963 | public: |
2964 | using OpRewritePattern::OpRewritePattern; |
2965 | |
2966 | LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp, |
2967 | PatternRewriter &rewriter) const override { |
2968 | auto = |
2969 | insertStridedSliceOp.getSource() |
2970 | .getDefiningOp<vector::ExtractStridedSliceOp>(); |
2971 | |
2972 | if (!extractStridedSliceOp) |
2973 | return failure(); |
2974 | |
2975 | if (extractStridedSliceOp.getOperand() != insertStridedSliceOp.getDest()) |
2976 | return failure(); |
2977 | |
2978 | // Check if have the same strides and offsets. |
2979 | if (extractStridedSliceOp.getStrides() != |
2980 | insertStridedSliceOp.getStrides() || |
2981 | extractStridedSliceOp.getOffsets() != insertStridedSliceOp.getOffsets()) |
2982 | return failure(); |
2983 | |
2984 | rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest()); |
2985 | return success(); |
2986 | } |
2987 | }; |
2988 | |
2989 | // Pattern to rewrite an InsertStridedSliceOp(ConstantOp into ConstantOp) -> |
2990 | // ConstantOp. |
2991 | class InsertStridedSliceConstantFolder final |
2992 | : public OpRewritePattern<InsertStridedSliceOp> { |
2993 | public: |
2994 | using OpRewritePattern::OpRewritePattern; |
2995 | |
2996 | // Do not create constants with more than `vectorSizeFoldThreashold` elements, |
2997 | // unless the source vector constant has a single use. |
2998 | static constexpr int64_t vectorSizeFoldThreshold = 256; |
2999 | |
3000 | LogicalResult matchAndRewrite(InsertStridedSliceOp op, |
3001 | PatternRewriter &rewriter) const override { |
3002 | // Return if 'InsertOp' operand is not defined by a compatible vector |
3003 | // ConstantOp. |
3004 | TypedValue<VectorType> destVector = op.getDest(); |
3005 | Attribute vectorDestCst; |
3006 | if (!matchPattern(value: destVector, pattern: m_Constant(bind_value: &vectorDestCst))) |
3007 | return failure(); |
3008 | |
3009 | VectorType destTy = destVector.getType(); |
3010 | if (destTy.isScalable()) |
3011 | return failure(); |
3012 | |
3013 | // Make sure we do not create too many large constants. |
3014 | if (destTy.getNumElements() > vectorSizeFoldThreshold && |
3015 | !destVector.hasOneUse()) |
3016 | return failure(); |
3017 | |
3018 | auto denseDest = llvm::cast<DenseElementsAttr>(Val&: vectorDestCst); |
3019 | |
3020 | TypedValue<VectorType> sourceValue = op.getSource(); |
3021 | Attribute sourceCst; |
3022 | if (!matchPattern(value: sourceValue, pattern: m_Constant(bind_value: &sourceCst))) |
3023 | return failure(); |
3024 | |
3025 | // TODO: Handle non-unit strides when they become available. |
3026 | if (op.hasNonUnitStrides()) |
3027 | return failure(); |
3028 | |
3029 | VectorType sliceVecTy = sourceValue.getType(); |
3030 | ArrayRef<int64_t> sliceShape = sliceVecTy.getShape(); |
3031 | int64_t rankDifference = destTy.getRank() - sliceVecTy.getRank(); |
3032 | SmallVector<int64_t, 4> offsets = getI64SubArray(op.getOffsets()); |
3033 | SmallVector<int64_t, 4> destStrides = computeStrides(destTy.getShape()); |
3034 | |
3035 | // Calcualte the destination element indices by enumerating all slice |
3036 | // positions within the destination and linearizing them. The enumeration |
3037 | // order is lexicographic which yields a sequence of monotonically |
3038 | // increasing linearized position indices. |
3039 | // Because the destination may have higher dimensionality then the slice, |
3040 | // we keep track of two overlapping sets of positions and offsets. |
3041 | auto denseSlice = llvm::cast<DenseElementsAttr>(Val&: sourceCst); |
3042 | auto sliceValuesIt = denseSlice.value_begin<Attribute>(); |
3043 | auto newValues = llvm::to_vector(denseDest.getValues<Attribute>()); |
3044 | SmallVector<int64_t> currDestPosition(offsets.begin(), offsets.end()); |
3045 | MutableArrayRef<int64_t> currSlicePosition( |
3046 | currDestPosition.begin() + rankDifference, currDestPosition.end()); |
3047 | ArrayRef<int64_t> sliceOffsets(offsets.begin() + rankDifference, |
3048 | offsets.end()); |
3049 | do { |
3050 | int64_t linearizedPosition = linearize(offsets: currDestPosition, basis: destStrides); |
3051 | assert(linearizedPosition < destTy.getNumElements() && "Invalid index" ); |
3052 | assert(sliceValuesIt != denseSlice.value_end<Attribute>() && |
3053 | "Invalid slice element" ); |
3054 | newValues[linearizedPosition] = *sliceValuesIt; |
3055 | ++sliceValuesIt; |
3056 | } while (succeeded( |
3057 | result: incSlicePosition(position: currSlicePosition, shape: sliceShape, offsets: sliceOffsets))); |
3058 | |
3059 | auto newAttr = DenseElementsAttr::get(destTy, newValues); |
3060 | rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, newAttr); |
3061 | return success(); |
3062 | } |
3063 | }; |
3064 | |
3065 | } // namespace |
3066 | |
3067 | void vector::InsertStridedSliceOp::getCanonicalizationPatterns( |
3068 | RewritePatternSet &results, MLIRContext *context) { |
3069 | results.add<FoldInsertStridedSliceSplat, FoldInsertStridedSliceOfExtract, |
3070 | InsertStridedSliceConstantFolder>(context); |
3071 | } |
3072 | |
3073 | OpFoldResult InsertStridedSliceOp::fold(FoldAdaptor adaptor) { |
3074 | if (getSourceVectorType() == getDestVectorType()) |
3075 | return getSource(); |
3076 | return {}; |
3077 | } |
3078 | |
3079 | //===----------------------------------------------------------------------===// |
3080 | // OuterProductOp |
3081 | //===----------------------------------------------------------------------===// |
3082 | |
3083 | /// Build an op without mask, use the type of `acc` as the return type. |
3084 | void OuterProductOp::build(OpBuilder &builder, OperationState &result, |
3085 | Value lhs, Value rhs, Value acc) { |
3086 | result.addOperands({lhs, rhs, acc}); |
3087 | result.addTypes(acc.getType()); |
3088 | } |
3089 | |
3090 | void OuterProductOp::print(OpAsmPrinter &p) { |
3091 | p << " " << getLhs() << ", " << getRhs(); |
3092 | if (getAcc()) { |
3093 | p << ", " << getAcc(); |
3094 | p.printOptionalAttrDict((*this)->getAttrs()); |
3095 | } |
3096 | p << " : " << getLhs().getType() << ", " << getRhs().getType(); |
3097 | } |
3098 | |
3099 | ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { |
3100 | SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo; |
3101 | Type tLHS, tRHS; |
3102 | if (parser.parseOperandList(operandsInfo) || |
3103 | parser.parseOptionalAttrDict(result.attributes) || |
3104 | parser.parseColonType(tLHS) || parser.parseComma() || |
3105 | parser.parseType(tRHS)) |
3106 | return failure(); |
3107 | if (operandsInfo.size() < 2) |
3108 | return parser.emitError(parser.getNameLoc(), |
3109 | "expected at least 2 operands" ); |
3110 | VectorType vLHS = llvm::dyn_cast<VectorType>(tLHS); |
3111 | VectorType vRHS = llvm::dyn_cast<VectorType>(tRHS); |
3112 | if (!vLHS) |
3113 | return parser.emitError(parser.getNameLoc(), |
3114 | "expected vector type for operand #1" ); |
3115 | |
3116 | VectorType resType; |
3117 | if (vRHS) { |
3118 | SmallVector<bool> scalableDimsRes{vLHS.getScalableDims()[0], |
3119 | vRHS.getScalableDims()[0]}; |
3120 | resType = VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, |
3121 | vLHS.getElementType(), scalableDimsRes); |
3122 | } else { |
3123 | // Scalar RHS operand |
3124 | SmallVector<bool> scalableDimsRes{vLHS.getScalableDims()[0]}; |
3125 | resType = VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType(), |
3126 | scalableDimsRes); |
3127 | } |
3128 | |
3129 | if (!result.attributes.get(OuterProductOp::getKindAttrName(result.name))) { |
3130 | result.attributes.append( |
3131 | OuterProductOp::getKindAttrName(result.name), |
3132 | CombiningKindAttr::get(result.getContext(), |
3133 | OuterProductOp::getDefaultKind())); |
3134 | } |
3135 | |
3136 | return failure( |
3137 | parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || |
3138 | parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || |
3139 | (operandsInfo.size() > 2 && |
3140 | parser.resolveOperand(operandsInfo[2], resType, result.operands)) || |
3141 | parser.addTypeToList(resType, result.types)); |
3142 | } |
3143 | |
3144 | LogicalResult OuterProductOp::verify() { |
3145 | Type tRHS = getOperandTypeRHS(); |
3146 | VectorType vLHS = getOperandVectorTypeLHS(), |
3147 | vRHS = llvm::dyn_cast<VectorType>(tRHS), |
3148 | vACC = getOperandVectorTypeACC(), vRES = getResultVectorType(); |
3149 | |
3150 | if (vLHS.getRank() != 1) |
3151 | return emitOpError("expected 1-d vector for operand #1" ); |
3152 | |
3153 | if (vRHS) { |
3154 | // Proper OUTER operation. |
3155 | if (vRHS.getRank() != 1) |
3156 | return emitOpError("expected 1-d vector for operand #2" ); |
3157 | if (vRES.getRank() != 2) |
3158 | return emitOpError("expected 2-d vector result" ); |
3159 | if (vLHS.getDimSize(0) != vRES.getDimSize(0)) |
3160 | return emitOpError("expected #1 operand dim to match result dim #1" ); |
3161 | if (vRHS.getDimSize(0) != vRES.getDimSize(1)) |
3162 | return emitOpError("expected #2 operand dim to match result dim #2" ); |
3163 | if (vLHS.isScalable() && !vRHS.isScalable()) { |
3164 | // This restriction reflects what's currently supported in terms of |
3165 | // scalable vectors. However, we could relax this if there's a use case. |
3166 | return emitOpError( |
3167 | "expected either both or only #2 operand dim to be scalable" ); |
3168 | } |
3169 | } else { |
3170 | // An AXPY operation. |
3171 | if (vRES.getRank() != 1) |
3172 | return emitOpError("expected 1-d vector result" ); |
3173 | if (vLHS.getDimSize(0) != vRES.getDimSize(0)) |
3174 | return emitOpError("expected #1 operand dim to match result dim #1" ); |
3175 | } |
3176 | |
3177 | if (vACC && vACC != vRES) |
3178 | return emitOpError("expected operand #3 of same type as result type" ); |
3179 | |
3180 | // Verify supported combining kind. |
3181 | if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) |
3182 | return emitOpError("unsupported outerproduct type" ); |
3183 | |
3184 | return success(); |
3185 | } |
3186 | |
3187 | // MaskableOpInterface methods. |
3188 | |
3189 | /// Returns the mask type expected by this operation. Mostly used for |
3190 | /// verification purposes. It requires the operation to be vectorized." |
3191 | Type OuterProductOp::getExpectedMaskType() { |
3192 | auto vecType = this->getResultVectorType(); |
3193 | return VectorType::get(vecType.getShape(), |
3194 | IntegerType::get(vecType.getContext(), /*width=*/1), |
3195 | vecType.getScalableDims()); |
3196 | } |
3197 | |
3198 | //===----------------------------------------------------------------------===// |
3199 | // ReshapeOp |
3200 | //===----------------------------------------------------------------------===// |
3201 | |
3202 | LogicalResult ReshapeOp::verify() { |
3203 | // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. |
3204 | auto inputVectorType = getInputVectorType(); |
3205 | auto outputVectorType = getOutputVectorType(); |
3206 | int64_t inputShapeRank = getNumInputShapeSizes(); |
3207 | int64_t outputShapeRank = getNumOutputShapeSizes(); |
3208 | SmallVector<int64_t, 4> fixedVectorSizes; |
3209 | getFixedVectorSizes(fixedVectorSizes); |
3210 | int64_t numFixedVectorSizes = fixedVectorSizes.size(); |
3211 | |
3212 | if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) |
3213 | return emitError("invalid input shape for vector type " ) << inputVectorType; |
3214 | |
3215 | if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) |
3216 | return emitError("invalid output shape for vector type " ) |
3217 | << outputVectorType; |
3218 | |
3219 | // Verify that the 'fixedVectorSizes' match an input/output vector shape |
3220 | // suffix. |
3221 | unsigned inputVectorRank = inputVectorType.getRank(); |
3222 | for (unsigned i = 0; i < numFixedVectorSizes; ++i) { |
3223 | unsigned index = inputVectorRank - numFixedVectorSizes - i; |
3224 | if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) |
3225 | return emitError("fixed vector size must match input vector for dim " ) |
3226 | << i; |
3227 | } |
3228 | |
3229 | unsigned outputVectorRank = outputVectorType.getRank(); |
3230 | for (unsigned i = 0; i < numFixedVectorSizes; ++i) { |
3231 | unsigned index = outputVectorRank - numFixedVectorSizes - i; |
3232 | if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) |
3233 | return emitError("fixed vector size must match output vector for dim " ) |
3234 | << i; |
3235 | } |
3236 | |
3237 | // If all shape operands are produced by constant ops, verify that product |
3238 | // of dimensions for input/output shape match. |
3239 | auto isDefByConstant = [](Value operand) { |
3240 | return getConstantIntValue(operand).has_value(); |
3241 | }; |
3242 | if (llvm::all_of(getInputShape(), isDefByConstant) && |
3243 | llvm::all_of(getOutputShape(), isDefByConstant)) { |
3244 | int64_t numInputElements = 1; |
3245 | for (auto operand : getInputShape()) |
3246 | numInputElements *= getConstantIntValue(operand).value(); |
3247 | int64_t numOutputElements = 1; |
3248 | for (auto operand : getOutputShape()) |
3249 | numOutputElements *= getConstantIntValue(operand).value(); |
3250 | if (numInputElements != numOutputElements) |
3251 | return emitError("product of input and output shape sizes must match" ); |
3252 | } |
3253 | return success(); |
3254 | } |
3255 | |
3256 | void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { |
3257 | populateFromInt64AttrArray(getFixedVectorSizes(), results); |
3258 | } |
3259 | |
3260 | //===----------------------------------------------------------------------===// |
3261 | // ExtractStridedSliceOp |
3262 | //===----------------------------------------------------------------------===// |
3263 | |
3264 | // Inference works as follows: |
3265 | // 1. Add 'sizes' from prefix of dims in 'offsets'. |
3266 | // 2. Add sizes from 'vectorType' for remaining dims. |
3267 | // Scalable flags are inherited from 'vectorType'. |
3268 | static Type inferStridedSliceOpResultType(VectorType vectorType, |
3269 | ArrayAttr offsets, ArrayAttr sizes, |
3270 | ArrayAttr strides) { |
3271 | assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); |
3272 | SmallVector<int64_t, 4> shape; |
3273 | shape.reserve(N: vectorType.getRank()); |
3274 | unsigned idx = 0; |
3275 | for (unsigned e = offsets.size(); idx < e; ++idx) |
3276 | shape.push_back(Elt: llvm::cast<IntegerAttr>(sizes[idx]).getInt()); |
3277 | for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) |
3278 | shape.push_back(Elt: vectorType.getShape()[idx]); |
3279 | |
3280 | return VectorType::get(shape, vectorType.getElementType(), |
3281 | vectorType.getScalableDims()); |
3282 | } |
3283 | |
3284 | void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, |
3285 | Value source, ArrayRef<int64_t> offsets, |
3286 | ArrayRef<int64_t> sizes, |
3287 | ArrayRef<int64_t> strides) { |
3288 | result.addOperands(source); |
3289 | auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); |
3290 | auto sizesAttr = getVectorSubscriptAttr(builder, sizes); |
3291 | auto stridesAttr = getVectorSubscriptAttr(builder, strides); |
3292 | result.addTypes( |
3293 | inferStridedSliceOpResultType(llvm::cast<VectorType>(source.getType()), |
3294 | offsetsAttr, sizesAttr, stridesAttr)); |
3295 | result.addAttribute(ExtractStridedSliceOp::getOffsetsAttrName(result.name), |
3296 | offsetsAttr); |
3297 | result.addAttribute(ExtractStridedSliceOp::getSizesAttrName(result.name), |
3298 | sizesAttr); |
3299 | result.addAttribute(ExtractStridedSliceOp::getStridesAttrName(result.name), |
3300 | stridesAttr); |
3301 | } |
3302 | |
3303 | LogicalResult ExtractStridedSliceOp::verify() { |
3304 | auto type = getSourceVectorType(); |
3305 | auto offsets = getOffsetsAttr(); |
3306 | auto sizes = getSizesAttr(); |
3307 | auto strides = getStridesAttr(); |
3308 | if (offsets.size() != sizes.size() || offsets.size() != strides.size()) |
3309 | return emitOpError( |
3310 | "expected offsets, sizes and strides attributes of same size" ); |
3311 | |
3312 | auto shape = type.getShape(); |
3313 | auto offName = getOffsetsAttrName(); |
3314 | auto sizesName = getSizesAttrName(); |
3315 | auto stridesName = getStridesAttrName(); |
3316 | if (failed( |
3317 | isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || |
3318 | failed( |
3319 | isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || |
3320 | failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, |
3321 | stridesName)) || |
3322 | failed( |
3323 | isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || |
3324 | failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, |
3325 | /*halfOpen=*/false, |
3326 | /*min=*/1)) || |
3327 | failed(isIntegerArrayAttrConfinedToRange(*this, strides, /*min=*/1, |
3328 | /*max=*/1, stridesName, |
3329 | /*halfOpen=*/false)) || |
3330 | failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, |
3331 | shape, offName, sizesName, |
3332 | /*halfOpen=*/false))) |
3333 | return failure(); |
3334 | |
3335 | auto resultType = inferStridedSliceOpResultType(getSourceVectorType(), |
3336 | offsets, sizes, strides); |
3337 | if (getResult().getType() != resultType) |
3338 | return emitOpError("expected result type to be " ) << resultType; |
3339 | |
3340 | for (unsigned idx = 0; idx < sizes.size(); ++idx) { |
3341 | if (type.getScalableDims()[idx]) { |
3342 | auto inputDim = type.getShape()[idx]; |
3343 | auto inputSize = llvm::cast<IntegerAttr>(sizes[idx]).getInt(); |
3344 | if (inputDim != inputSize) |
3345 | return emitOpError("expected size at idx=" ) |
3346 | << idx |
3347 | << (" to match the corresponding base size from the input " |
3348 | "vector (" ) |
3349 | << inputSize << (" vs " ) << inputDim << (")" ); |
3350 | } |
3351 | } |
3352 | |
3353 | return success(); |
3354 | } |
3355 | |
3356 | // When the source of ExtractStrided comes from a chain of InsertStrided ops try |
3357 | // to use the source of the InsertStrided ops if we can detect that the |
3358 | // extracted vector is a subset of one of the vector inserted. |
3359 | static LogicalResult |
3360 | (ExtractStridedSliceOp op) { |
3361 | // Helper to extract integer out of ArrayAttr. |
3362 | auto getElement = [](ArrayAttr array, int idx) { |
3363 | return llvm::cast<IntegerAttr>(array[idx]).getInt(); |
3364 | }; |
3365 | ArrayAttr = op.getOffsets(); |
3366 | ArrayAttr = op.getStrides(); |
3367 | ArrayAttr = op.getSizes(); |
3368 | auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); |
3369 | while (insertOp) { |
3370 | if (op.getSourceVectorType().getRank() != |
3371 | insertOp.getSourceVectorType().getRank()) |
3372 | return failure(); |
3373 | ArrayAttr insertOffsets = insertOp.getOffsets(); |
3374 | ArrayAttr insertStrides = insertOp.getStrides(); |
3375 | // If the rank of extract is greater than the rank of insert, we are likely |
3376 | // extracting a partial chunk of the vector inserted. |
3377 | if (extractOffsets.size() > insertOffsets.size()) |
3378 | return failure(); |
3379 | bool patialoverlap = false; |
3380 | bool disjoint = false; |
3381 | SmallVector<int64_t, 4> offsetDiffs; |
3382 | for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { |
3383 | if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) |
3384 | return failure(); |
3385 | int64_t start = getElement(insertOffsets, dim); |
3386 | int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); |
3387 | int64_t offset = getElement(extractOffsets, dim); |
3388 | int64_t size = getElement(extractSizes, dim); |
3389 | // Check if the start of the extract offset is in the interval inserted. |
3390 | if (start <= offset && offset < end) { |
3391 | // If the extract interval overlaps but is not fully included we may |
3392 | // have a partial overlap that will prevent any folding. |
3393 | if (offset + size > end) |
3394 | patialoverlap = true; |
3395 | offsetDiffs.push_back(Elt: offset - start); |
3396 | continue; |
3397 | } |
3398 | disjoint = true; |
3399 | break; |
3400 | } |
3401 | // The extract element chunk is a subset of the insert element. |
3402 | if (!disjoint && !patialoverlap) { |
3403 | op.setOperand(insertOp.getSource()); |
3404 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
3405 | OpBuilder b(op.getContext()); |
3406 | op.setOffsetsAttr(b.getI64ArrayAttr(offsetDiffs)); |
3407 | return success(); |
3408 | } |
3409 | // If the chunk extracted is disjoint from the chunk inserted, keep looking |
3410 | // in the insert chain. |
3411 | if (disjoint) |
3412 | insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); |
3413 | else { |
3414 | // The extracted vector partially overlap the inserted vector, we cannot |
3415 | // fold. |
3416 | return failure(); |
3417 | } |
3418 | } |
3419 | return failure(); |
3420 | } |
3421 | |
3422 | OpFoldResult ExtractStridedSliceOp::fold(FoldAdaptor adaptor) { |
3423 | if (getSourceVectorType() == getResult().getType()) |
3424 | return getVector(); |
3425 | if (succeeded(foldExtractStridedOpFromInsertChain(*this))) |
3426 | return getResult(); |
3427 | return {}; |
3428 | } |
3429 | |
3430 | void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { |
3431 | populateFromInt64AttrArray(getOffsets(), results); |
3432 | } |
3433 | |
3434 | namespace { |
3435 | |
3436 | // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to |
3437 | // ConstantMaskOp. |
3438 | class StridedSliceConstantMaskFolder final |
3439 | : public OpRewritePattern<ExtractStridedSliceOp> { |
3440 | public: |
3441 | using OpRewritePattern::OpRewritePattern; |
3442 | |
3443 | LogicalResult matchAndRewrite(ExtractStridedSliceOp , |
3444 | PatternRewriter &rewriter) const override { |
3445 | // Return if 'extractStridedSliceOp' operand is not defined by a |
3446 | // ConstantMaskOp. |
3447 | auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); |
3448 | auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); |
3449 | if (!constantMaskOp) |
3450 | return failure(); |
3451 | // Return if 'extractStridedSliceOp' has non-unit strides. |
3452 | if (extractStridedSliceOp.hasNonUnitStrides()) |
3453 | return failure(); |
3454 | // Gather constant mask dimension sizes. |
3455 | SmallVector<int64_t, 4> maskDimSizes; |
3456 | populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes); |
3457 | // Gather strided slice offsets and sizes. |
3458 | SmallVector<int64_t, 4> sliceOffsets; |
3459 | populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), |
3460 | sliceOffsets); |
3461 | SmallVector<int64_t, 4> sliceSizes; |
3462 | populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); |
3463 | |
3464 | // Compute slice of vector mask region. |
3465 | SmallVector<int64_t, 4> sliceMaskDimSizes; |
3466 | sliceMaskDimSizes.reserve(N: maskDimSizes.size()); |
3467 | for (auto [maskDimSize, sliceOffset, sliceSize] : |
3468 | llvm::zip(t&: maskDimSizes, u&: sliceOffsets, args&: sliceSizes)) { |
3469 | int64_t sliceMaskDimSize = std::max( |
3470 | a: static_cast<int64_t>(0), |
3471 | b: std::min(a: sliceOffset + sliceSize, b: maskDimSize) - sliceOffset); |
3472 | sliceMaskDimSizes.push_back(Elt: sliceMaskDimSize); |
3473 | } |
3474 | // Add unchanged dimensions. |
3475 | if (sliceMaskDimSizes.size() < maskDimSizes.size()) |
3476 | for (size_t i = sliceMaskDimSizes.size(); i < maskDimSizes.size(); ++i) |
3477 | sliceMaskDimSizes.push_back(Elt: maskDimSizes[i]); |
3478 | // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked |
3479 | // region is a conjunction of mask dim intervals). |
3480 | if (llvm::is_contained(Range&: sliceMaskDimSizes, Element: 0)) |
3481 | sliceMaskDimSizes.assign(NumElts: maskDimSizes.size(), Elt: 0); |
3482 | |
3483 | // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask |
3484 | // region. |
3485 | rewriter.replaceOpWithNewOp<ConstantMaskOp>( |
3486 | extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), |
3487 | vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); |
3488 | return success(); |
3489 | } |
3490 | }; |
3491 | |
3492 | // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. |
3493 | class StridedSliceSplatConstantFolder final |
3494 | : public OpRewritePattern<ExtractStridedSliceOp> { |
3495 | public: |
3496 | using OpRewritePattern::OpRewritePattern; |
3497 | |
3498 | LogicalResult matchAndRewrite(ExtractStridedSliceOp , |
3499 | PatternRewriter &rewriter) const override { |
3500 | // Return if 'ExtractStridedSliceOp' operand is not defined by a splat |
3501 | // ConstantOp. |
3502 | Value sourceVector = extractStridedSliceOp.getVector(); |
3503 | Attribute vectorCst; |
3504 | if (!matchPattern(value: sourceVector, pattern: m_Constant(bind_value: &vectorCst))) |
3505 | return failure(); |
3506 | |
3507 | auto splat = llvm::dyn_cast<SplatElementsAttr>(Val&: vectorCst); |
3508 | if (!splat) |
3509 | return failure(); |
3510 | |
3511 | auto newAttr = SplatElementsAttr::get(extractStridedSliceOp.getType(), |
3512 | splat.getSplatValue<Attribute>()); |
3513 | rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, |
3514 | newAttr); |
3515 | return success(); |
3516 | } |
3517 | }; |
3518 | |
3519 | // Pattern to rewrite a ExtractStridedSliceOp(non-splat ConstantOp) -> |
3520 | // ConstantOp. |
3521 | class StridedSliceNonSplatConstantFolder final |
3522 | : public OpRewritePattern<ExtractStridedSliceOp> { |
3523 | public: |
3524 | using OpRewritePattern::OpRewritePattern; |
3525 | |
3526 | LogicalResult matchAndRewrite(ExtractStridedSliceOp , |
3527 | PatternRewriter &rewriter) const override { |
3528 | // Return if 'ExtractStridedSliceOp' operand is not defined by a non-splat |
3529 | // ConstantOp. |
3530 | Value sourceVector = extractStridedSliceOp.getVector(); |
3531 | Attribute vectorCst; |
3532 | if (!matchPattern(value: sourceVector, pattern: m_Constant(bind_value: &vectorCst))) |
3533 | return failure(); |
3534 | |
3535 | // The splat case is handled by `StridedSliceSplatConstantFolder`. |
3536 | auto dense = llvm::dyn_cast<DenseElementsAttr>(Val&: vectorCst); |
3537 | if (!dense || dense.isSplat()) |
3538 | return failure(); |
3539 | |
3540 | // TODO: Handle non-unit strides when they become available. |
3541 | if (extractStridedSliceOp.hasNonUnitStrides()) |
3542 | return failure(); |
3543 | |
3544 | auto sourceVecTy = llvm::cast<VectorType>(sourceVector.getType()); |
3545 | ArrayRef<int64_t> sourceShape = sourceVecTy.getShape(); |
3546 | SmallVector<int64_t, 4> sourceStrides = computeStrides(sizes: sourceShape); |
3547 | |
3548 | VectorType sliceVecTy = extractStridedSliceOp.getType(); |
3549 | ArrayRef<int64_t> sliceShape = sliceVecTy.getShape(); |
3550 | int64_t sliceRank = sliceVecTy.getRank(); |
3551 | |
3552 | // Expand offsets and sizes to match the vector rank. |
3553 | SmallVector<int64_t, 4> offsets(sliceRank, 0); |
3554 | copy(getI64SubArray(extractStridedSliceOp.getOffsets()), offsets.begin()); |
3555 | |
3556 | SmallVector<int64_t, 4> sizes(sourceShape.begin(), sourceShape.end()); |
3557 | copy(getI64SubArray(extractStridedSliceOp.getSizes()), sizes.begin()); |
3558 | |
3559 | // Calculate the slice elements by enumerating all slice positions and |
3560 | // linearizing them. The enumeration order is lexicographic which yields a |
3561 | // sequence of monotonically increasing linearized position indices. |
3562 | auto denseValuesBegin = dense.value_begin<Attribute>(); |
3563 | SmallVector<Attribute> sliceValues; |
3564 | sliceValues.reserve(N: sliceVecTy.getNumElements()); |
3565 | SmallVector<int64_t> currSlicePosition(offsets.begin(), offsets.end()); |
3566 | do { |
3567 | int64_t linearizedPosition = linearize(offsets: currSlicePosition, basis: sourceStrides); |
3568 | assert(linearizedPosition < sourceVecTy.getNumElements() && |
3569 | "Invalid index" ); |
3570 | sliceValues.push_back(Elt: *(denseValuesBegin + linearizedPosition)); |
3571 | } while ( |
3572 | succeeded(result: incSlicePosition(position: currSlicePosition, shape: sliceShape, offsets))); |
3573 | |
3574 | assert(static_cast<int64_t>(sliceValues.size()) == |
3575 | sliceVecTy.getNumElements() && |
3576 | "Invalid number of slice elements" ); |
3577 | auto newAttr = DenseElementsAttr::get(sliceVecTy, sliceValues); |
3578 | rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, |
3579 | newAttr); |
3580 | return success(); |
3581 | } |
3582 | }; |
3583 | |
3584 | // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to |
3585 | // BroadcastOp(ExtractStrideSliceOp). |
3586 | class StridedSliceBroadcast final |
3587 | : public OpRewritePattern<ExtractStridedSliceOp> { |
3588 | public: |
3589 | using OpRewritePattern::OpRewritePattern; |
3590 | |
3591 | LogicalResult matchAndRewrite(ExtractStridedSliceOp op, |
3592 | PatternRewriter &rewriter) const override { |
3593 | auto broadcast = op.getVector().getDefiningOp<BroadcastOp>(); |
3594 | if (!broadcast) |
3595 | return failure(); |
3596 | auto srcVecType = |
3597 | llvm::dyn_cast<VectorType>(broadcast.getSource().getType()); |
3598 | unsigned srcRank = srcVecType ? srcVecType.getRank() : 0; |
3599 | auto dstVecType = llvm::cast<VectorType>(op.getType()); |
3600 | unsigned dstRank = dstVecType.getRank(); |
3601 | unsigned rankDiff = dstRank - srcRank; |
3602 | // Check if the most inner dimensions of the source of the broadcast are the |
3603 | // same as the destination of the extract. If this is the case we can just |
3604 | // use a broadcast as the original dimensions are untouched. |
3605 | bool lowerDimMatch = true; |
3606 | for (unsigned i = 0; i < srcRank; i++) { |
3607 | if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { |
3608 | lowerDimMatch = false; |
3609 | break; |
3610 | } |
3611 | } |
3612 | Value source = broadcast.getSource(); |
3613 | // If the inner dimensions don't match, it means we need to extract from the |
3614 | // source of the orignal broadcast and then broadcast the extracted value. |
3615 | // We also need to handle degenerated cases where the source is effectively |
3616 | // just a single scalar. |
3617 | bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1); |
3618 | if (!lowerDimMatch && !isScalarSrc) { |
3619 | source = rewriter.create<ExtractStridedSliceOp>( |
3620 | op->getLoc(), source, |
3621 | getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), |
3622 | getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), |
3623 | getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); |
3624 | } |
3625 | rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); |
3626 | return success(); |
3627 | } |
3628 | }; |
3629 | |
3630 | /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. |
3631 | class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { |
3632 | public: |
3633 | using OpRewritePattern::OpRewritePattern; |
3634 | |
3635 | LogicalResult matchAndRewrite(ExtractStridedSliceOp op, |
3636 | PatternRewriter &rewriter) const override { |
3637 | auto splat = op.getVector().getDefiningOp<SplatOp>(); |
3638 | if (!splat) |
3639 | return failure(); |
3640 | rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput()); |
3641 | return success(); |
3642 | } |
3643 | }; |
3644 | |
3645 | } // namespace |
3646 | |
3647 | void ExtractStridedSliceOp::getCanonicalizationPatterns( |
3648 | RewritePatternSet &results, MLIRContext *context) { |
3649 | // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> |
3650 | // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. |
3651 | results.add<StridedSliceConstantMaskFolder, StridedSliceSplatConstantFolder, |
3652 | StridedSliceNonSplatConstantFolder, StridedSliceBroadcast, |
3653 | StridedSliceSplat>(context); |
3654 | } |
3655 | |
3656 | //===----------------------------------------------------------------------===// |
3657 | // TransferReadOp |
3658 | //===----------------------------------------------------------------------===// |
3659 | |
3660 | /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). |
3661 | void TransferReadOp::build(OpBuilder &builder, OperationState &result, |
3662 | VectorType vectorType, Value source, |
3663 | ValueRange indices, AffineMapAttr permutationMapAttr, |
3664 | /*optional*/ ArrayAttr inBoundsAttr) { |
3665 | Type elemType = llvm::cast<ShapedType>(source.getType()).getElementType(); |
3666 | Value padding = builder.create<arith::ConstantOp>( |
3667 | result.location, elemType, builder.getZeroAttr(elemType)); |
3668 | build(builder, result, vectorType, source, indices, permutationMapAttr, |
3669 | padding, /*mask=*/Value(), inBoundsAttr); |
3670 | } |
3671 | |
3672 | /// 2. Builder that sets padding to zero an empty mask (variant without attrs). |
3673 | void TransferReadOp::build(OpBuilder &builder, OperationState &result, |
3674 | VectorType vectorType, Value source, |
3675 | ValueRange indices, AffineMap permutationMap, |
3676 | std::optional<ArrayRef<bool>> inBounds) { |
3677 | auto permutationMapAttr = AffineMapAttr::get(permutationMap); |
3678 | auto inBoundsAttr = (inBounds && !inBounds.value().empty()) |
3679 | ? builder.getBoolArrayAttr(inBounds.value()) |
3680 | : ArrayAttr(); |
3681 | build(builder, result, vectorType, source, indices, permutationMapAttr, |
3682 | inBoundsAttr); |
3683 | } |
3684 | |
3685 | /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. |
3686 | void TransferReadOp::build(OpBuilder &builder, OperationState &result, |
3687 | VectorType vectorType, Value source, |
3688 | ValueRange indices, Value padding, |
3689 | std::optional<ArrayRef<bool>> inBounds) { |
3690 | AffineMap permutationMap = getTransferMinorIdentityMap( |
3691 | llvm::cast<ShapedType>(source.getType()), vectorType); |
3692 | auto permutationMapAttr = AffineMapAttr::get(permutationMap); |
3693 | auto inBoundsAttr = (inBounds && !inBounds.value().empty()) |
3694 | ? builder.getBoolArrayAttr(inBounds.value()) |
3695 | : ArrayAttr(); |
3696 | build(builder, result, vectorType, source, indices, permutationMapAttr, |
3697 | padding, |
3698 | /*mask=*/Value(), inBoundsAttr); |
3699 | } |
3700 | |
3701 | /// 4. Builder that sets padding to zero and permutation map to |
3702 | /// 'getMinorIdentityMap'. |
3703 | void TransferReadOp::build(OpBuilder &builder, OperationState &result, |
3704 | VectorType vectorType, Value source, |
3705 | ValueRange indices, |
3706 | std::optional<ArrayRef<bool>> inBounds) { |
3707 | Type elemType = llvm::cast<ShapedType>(source.getType()).getElementType(); |
3708 | Value padding = builder.create<arith::ConstantOp>( |
3709 | result.location, elemType, builder.getZeroAttr(elemType)); |
3710 | build(builder, result, vectorType, source, indices, padding, inBounds); |
3711 | } |
3712 | |
3713 | template <typename EmitFun> |
3714 | static LogicalResult verifyPermutationMap(AffineMap permutationMap, |
3715 | EmitFun emitOpError) { |
3716 | SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); |
3717 | for (auto expr : permutationMap.getResults()) { |
3718 | auto dim = dyn_cast<AffineDimExpr>(Val&: expr); |
3719 | auto zero = dyn_cast<AffineConstantExpr>(Val&: expr); |
3720 | if (zero) { |
3721 | if (zero.getValue() != 0) { |
3722 | return emitOpError( |
3723 | "requires a projected permutation_map (at most one dim or the zero " |
3724 | "constant can appear in each result)" ); |
3725 | } |
3726 | continue; |
3727 | } |
3728 | if (!dim) { |
3729 | return emitOpError("requires a projected permutation_map (at most one " |
3730 | "dim or the zero constant can appear in each result)" ); |
3731 | } |
3732 | if (seen[dim.getPosition()]) { |
3733 | return emitOpError( |
3734 | "requires a permutation_map that is a permutation (found one dim " |
3735 | "used more than once)" ); |
3736 | } |
3737 | seen[dim.getPosition()] = true; |
3738 | } |
3739 | return success(); |
3740 | } |
3741 | |
3742 | static LogicalResult |
3743 | verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, |
3744 | VectorType vectorType, VectorType maskType, |
3745 | VectorType inferredMaskType, AffineMap permutationMap, |
3746 | ArrayAttr inBounds) { |
3747 | if (op->hasAttr("masked" )) { |
3748 | return op->emitOpError("masked attribute has been removed. " |
3749 | "Use in_bounds instead." ); |
3750 | } |
3751 | |
3752 | if (!llvm::isa<MemRefType, RankedTensorType>(shapedType)) |
3753 | return op->emitOpError( |
3754 | "requires source to be a memref or ranked tensor type" ); |
3755 | |
3756 | auto elementType = shapedType.getElementType(); |
3757 | DataLayout dataLayout = DataLayout::closest(op: op); |
3758 | if (auto vectorElementType = llvm::dyn_cast<VectorType>(elementType)) { |
3759 | // Memref or tensor has vector element type. |
3760 | unsigned sourceVecSize = |
3761 | dataLayout.getTypeSizeInBits(t: vectorElementType.getElementType()) * |
3762 | vectorElementType.getShape().back(); |
3763 | unsigned resultVecSize = |
3764 | dataLayout.getTypeSizeInBits(t: vectorType.getElementType()) * |
3765 | vectorType.getShape().back(); |
3766 | if (resultVecSize % sourceVecSize != 0) |
3767 | return op->emitOpError( |
3768 | "requires the bitwidth of the minor 1-D vector to be an integral " |
3769 | "multiple of the bitwidth of the minor 1-D vector of the source" ); |
3770 | |
3771 | unsigned sourceVecEltRank = vectorElementType.getRank(); |
3772 | unsigned resultVecRank = vectorType.getRank(); |
3773 | if (sourceVecEltRank > resultVecRank) |
3774 | return op->emitOpError( |
3775 | "requires source vector element and vector result ranks to match." ); |
3776 | unsigned rankOffset = resultVecRank - sourceVecEltRank; |
3777 | // Check that permutation map results match 'rankOffset' of vector type. |
3778 | if (permutationMap.getNumResults() != rankOffset) |
3779 | return op->emitOpError("requires a permutation_map with result dims of " |
3780 | "the same rank as the vector type" ); |
3781 | |
3782 | if (maskType) |
3783 | return op->emitOpError("does not support masks with vector element type" ); |
3784 | } else { |
3785 | // Memref or tensor has scalar element type. |
3786 | unsigned minorSize = |
3787 | vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); |
3788 | unsigned resultVecSize = |
3789 | dataLayout.getTypeSizeInBits(t: vectorType.getElementType()) * minorSize; |
3790 | if (resultVecSize % dataLayout.getTypeSizeInBits(t: elementType) != 0) |
3791 | return op->emitOpError( |
3792 | "requires the bitwidth of the minor 1-D vector to be an integral " |
3793 | "multiple of the bitwidth of the source element type" ); |
3794 | |
3795 | // Check that permutation map results match rank of vector type. |
3796 | if (permutationMap.getNumResults() != vectorType.getRank()) |
3797 | return op->emitOpError("requires a permutation_map with result dims of " |
3798 | "the same rank as the vector type" ); |
3799 | } |
3800 | |
3801 | if (permutationMap.getNumSymbols() != 0) |
3802 | return op->emitOpError("requires permutation_map without symbols" ); |
3803 | |
3804 | if (permutationMap.getNumInputs() != shapedType.getRank()) |
3805 | return op->emitOpError("requires a permutation_map with input dims of the " |
3806 | "same rank as the source type" ); |
3807 | |
3808 | if (maskType && maskType != inferredMaskType) |
3809 | return op->emitOpError("inferred mask type (" ) |
3810 | << inferredMaskType << ") and mask operand type (" << maskType |
3811 | << ") don't match" ; |
3812 | |
3813 | if (inBounds) { |
3814 | if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) |
3815 | return op->emitOpError("expects the optional in_bounds attr of same rank " |
3816 | "as permutation_map results: " ) |
3817 | << AffineMapAttr::get(permutationMap) |
3818 | << " vs inBounds of size: " << inBounds.size(); |
3819 | for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) |
3820 | if (isa<AffineConstantExpr>(Val: permutationMap.getResult(idx: i)) && |
3821 | !llvm::cast<BoolAttr>(inBounds.getValue()[i]).getValue()) |
3822 | return op->emitOpError("requires broadcast dimensions to be in-bounds" ); |
3823 | } |
3824 | |
3825 | return success(); |
3826 | } |
3827 | |
3828 | static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { |
3829 | SmallVector<StringRef, 3> elidedAttrs; |
3830 | elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); |
3831 | if (op.getPermutationMap().isMinorIdentity()) |
3832 | elidedAttrs.push_back(Elt: op.getPermutationMapAttrName()); |
3833 | // Elide in_bounds attribute if all dims are out-of-bounds. |
3834 | if (llvm::none_of(op.getInBoundsValues(), [](bool b) { return b; })) |
3835 | elidedAttrs.push_back(Elt: op.getInBoundsAttrName()); |
3836 | p.printOptionalAttrDict(attrs: op->getAttrs(), elidedAttrs); |
3837 | } |
3838 | |
3839 | void TransferReadOp::print(OpAsmPrinter &p) { |
3840 | p << " " << getSource() << "[" << getIndices() << "], " << getPadding(); |
3841 | if (getMask()) |
3842 | p << ", " << getMask(); |
3843 | printTransferAttrs(p, *this); |
3844 | p << " : " << getShapedType() << ", " << getVectorType(); |
3845 | } |
3846 | |
3847 | VectorType mlir::vector::inferTransferOpMaskType(VectorType vecType, |
3848 | AffineMap permMap) { |
3849 | auto i1Type = IntegerType::get(permMap.getContext(), 1); |
3850 | AffineMap invPermMap = inversePermutation(map: compressUnusedDims(map: permMap)); |
3851 | assert(invPermMap && "Inversed permutation map couldn't be computed" ); |
3852 | SmallVector<int64_t, 8> maskShape = invPermMap.compose(vecType.getShape()); |
3853 | |
3854 | SmallVector<bool> scalableDims = |
3855 | applyPermutationMap(invPermMap, vecType.getScalableDims()); |
3856 | |
3857 | return VectorType::get(maskShape, i1Type, scalableDims); |
3858 | } |
3859 | |
3860 | ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { |
3861 | auto &builder = parser.getBuilder(); |
3862 | SMLoc typesLoc; |
3863 | OpAsmParser::UnresolvedOperand sourceInfo; |
3864 | SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; |
3865 | OpAsmParser::UnresolvedOperand paddingInfo; |
3866 | SmallVector<Type, 2> types; |
3867 | OpAsmParser::UnresolvedOperand maskInfo; |
3868 | // Parsing with support for paddingValue. |
3869 | if (parser.parseOperand(sourceInfo) || |
3870 | parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || |
3871 | parser.parseComma() || parser.parseOperand(paddingInfo)) |
3872 | return failure(); |
3873 | ParseResult hasMask = parser.parseOptionalComma(); |
3874 | if (hasMask.succeeded()) { |
3875 | if (parser.parseOperand(maskInfo)) |
3876 | return failure(); |
3877 | } |
3878 | if (parser.parseOptionalAttrDict(result.attributes) || |
3879 | parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) |
3880 | return failure(); |
3881 | if (types.size() != 2) |
3882 | return parser.emitError(typesLoc, "requires two types" ); |
3883 | auto indexType = builder.getIndexType(); |
3884 | auto shapedType = llvm::dyn_cast<ShapedType>(types[0]); |
3885 | if (!shapedType || !llvm::isa<MemRefType, RankedTensorType>(shapedType)) |
3886 | return parser.emitError(typesLoc, "requires memref or ranked tensor type" ); |
3887 | VectorType vectorType = llvm::dyn_cast<VectorType>(types[1]); |
3888 | if (!vectorType) |
3889 | return parser.emitError(typesLoc, "requires vector type" ); |
3890 | auto permMapAttrName = TransferReadOp::getPermutationMapAttrName(result.name); |
3891 | Attribute permMapAttr = result.attributes.get(permMapAttrName); |
3892 | AffineMap permMap; |
3893 | if (!permMapAttr) { |
3894 | permMap = getTransferMinorIdentityMap(shapedType, vectorType); |
3895 | result.attributes.set(permMapAttrName, AffineMapAttr::get(permMap)); |
3896 | } else { |
3897 | permMap = llvm::cast<AffineMapAttr>(permMapAttr).getValue(); |
3898 | } |
3899 | if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || |
3900 | parser.resolveOperands(indexInfo, indexType, result.operands) || |
3901 | parser.resolveOperand(paddingInfo, shapedType.getElementType(), |
3902 | result.operands)) |
3903 | return failure(); |
3904 | if (hasMask.succeeded()) { |
3905 | if (llvm::dyn_cast<VectorType>(shapedType.getElementType())) |
3906 | return parser.emitError( |
3907 | maskInfo.location, "does not support masks with vector element type" ); |
3908 | if (vectorType.getRank() != permMap.getNumResults()) { |
3909 | return parser.emitError(typesLoc, |
3910 | "expected the same rank for the vector and the " |
3911 | "results of the permutation map" ); |
3912 | } |
3913 | // Instead of adding the mask type as an op type, compute it based on the |
3914 | // vector type and the permutation map (to keep the type signature small). |
3915 | auto maskType = inferTransferOpMaskType(vectorType, permMap); |
3916 | if (parser.resolveOperand(maskInfo, maskType, result.operands)) |
3917 | return failure(); |
3918 | } |
3919 | result.addAttribute(TransferReadOp::getOperandSegmentSizeAttr(), |
3920 | builder.getDenseI32ArrayAttr( |
3921 | {1, static_cast<int32_t>(indexInfo.size()), 1, |
3922 | static_cast<int32_t>(hasMask.succeeded())})); |
3923 | return parser.addTypeToList(vectorType, result.types); |
3924 | } |
3925 | |
3926 | LogicalResult TransferReadOp::verify() { |
3927 | // Consistency of elemental types in source and vector. |
3928 | ShapedType shapedType = getShapedType(); |
3929 | VectorType vectorType = getVectorType(); |
3930 | VectorType maskType = getMaskType(); |
3931 | auto paddingType = getPadding().getType(); |
3932 | auto permutationMap = getPermutationMap(); |
3933 | VectorType inferredMaskType = |
3934 | maskType ? inferTransferOpMaskType(vectorType, permutationMap) |
3935 | : VectorType(); |
3936 | auto sourceElementType = shapedType.getElementType(); |
3937 | |
3938 | if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank()) |
3939 | return emitOpError("requires " ) << shapedType.getRank() << " indices" ; |
3940 | |
3941 | if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), |
3942 | shapedType, vectorType, maskType, |
3943 | inferredMaskType, permutationMap, |
3944 | getInBounds() ? *getInBounds() : ArrayAttr()))) |
3945 | return failure(); |
3946 | |
3947 | if (auto sourceVectorElementType = |
3948 | llvm::dyn_cast<VectorType>(sourceElementType)) { |
3949 | // Source has vector element type. |
3950 | // Check that 'sourceVectorElementType' and 'paddingType' types match. |
3951 | if (sourceVectorElementType != paddingType) |
3952 | return emitOpError( |
3953 | "requires source element type and padding type to match." ); |
3954 | |
3955 | } else { |
3956 | // Check that 'paddingType' is valid to store in a vector type. |
3957 | if (!VectorType::isValidElementType(paddingType)) |
3958 | return emitOpError("requires valid padding vector elemental type" ); |
3959 | |
3960 | // Check that padding type and vector element types match. |
3961 | if (paddingType != sourceElementType) |
3962 | return emitOpError( |
3963 | "requires formal padding and source of the same elemental type" ); |
3964 | } |
3965 | |
3966 | return verifyPermutationMap(permutationMap, |
3967 | [&](Twine t) { return emitOpError(t); }); |
3968 | } |
3969 | |
3970 | // MaskableOpInterface methods. |
3971 | |
3972 | /// Returns the mask type expected by this operation. Mostly used for |
3973 | /// verification purposes. It requires the operation to be vectorized." |
3974 | Type TransferReadOp::getExpectedMaskType() { |
3975 | return inferTransferOpMaskType(getVectorType(), getPermutationMap()); |
3976 | } |
3977 | |
3978 | template <typename TransferOp> |
3979 | static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { |
3980 | // TODO: support more aggressive createOrFold on: |
3981 | // op.getIndices()[indicesIdx] + vectorType < dim(op.getSource(), indicesIdx) |
3982 | if (op.getShapedType().isDynamicDim(indicesIdx)) |
3983 | return false; |
3984 | Value index = op.getIndices()[indicesIdx]; |
3985 | std::optional<int64_t> cstOp = getConstantIntValue(ofr: index); |
3986 | if (!cstOp.has_value()) |
3987 | return false; |
3988 | |
3989 | int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); |
3990 | int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); |
3991 | |
3992 | return cstOp.value() + vectorSize <= sourceSize; |
3993 | } |
3994 | |
3995 | template <typename TransferOp> |
3996 | static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { |
3997 | // TODO: support 0-d corner case. |
3998 | // TODO: Be less conservative. |
3999 | if (op.getTransferRank() == 0) |
4000 | return failure(); |
4001 | AffineMap permutationMap = op.getPermutationMap(); |
4002 | bool changed = false; |
4003 | SmallVector<bool, 4> newInBounds; |
4004 | newInBounds.reserve(N: op.getTransferRank()); |
4005 | for (unsigned i = 0; i < op.getTransferRank(); ++i) { |
4006 | // Already marked as in-bounds, nothing to see here. |
4007 | if (op.isDimInBounds(i)) { |
4008 | newInBounds.push_back(Elt: true); |
4009 | continue; |
4010 | } |
4011 | // Currently out-of-bounds, check whether we can statically determine it is |
4012 | // inBounds. |
4013 | auto dimExpr = dyn_cast<AffineDimExpr>(Val: permutationMap.getResult(idx: i)); |
4014 | assert(dimExpr && "Broadcast dims must be in-bounds" ); |
4015 | auto inBounds = |
4016 | isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); |
4017 | newInBounds.push_back(Elt: inBounds); |
4018 | // We commit the pattern if it is "more inbounds". |
4019 | changed |= inBounds; |
4020 | } |
4021 | if (!changed) |
4022 | return failure(); |
4023 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
4024 | OpBuilder b(op.getContext()); |
4025 | op.setInBoundsAttr(b.getBoolArrayAttr(newInBounds)); |
4026 | return success(); |
4027 | } |
4028 | |
4029 | template <typename TransferOp> |
4030 | static LogicalResult foldTransferFullMask(TransferOp op) { |
4031 | auto mask = op.getMask(); |
4032 | if (!mask) |
4033 | return failure(); |
4034 | |
4035 | auto constantMask = mask.template getDefiningOp<vector::ConstantMaskOp>(); |
4036 | if (!constantMask) |
4037 | return failure(); |
4038 | |
4039 | if (!constantMask.isAllOnesMask()) |
4040 | return failure(); |
4041 | |
4042 | op.getMaskMutable().clear(); |
4043 | return success(); |
4044 | } |
4045 | |
4046 | /// ``` |
4047 | /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} |
4048 | /// : vector<1x4xf32>, tensor<4x4xf32> |
4049 | /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} |
4050 | /// : tensor<4x4xf32>, vector<1x4xf32> |
4051 | /// ``` |
4052 | /// -> Folds into |
4053 | /// ``` |
4054 | /// %v0 |
4055 | /// ``` |
4056 | static Value foldRAW(TransferReadOp readOp) { |
4057 | if (!llvm::isa<RankedTensorType>(readOp.getShapedType())) |
4058 | return {}; |
4059 | auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>(); |
4060 | while (defWrite) { |
4061 | if (checkSameValueRAW(defWrite, readOp)) |
4062 | return defWrite.getVector(); |
4063 | if (!isDisjointTransferIndices( |
4064 | cast<VectorTransferOpInterface>(defWrite.getOperation()), |
4065 | cast<VectorTransferOpInterface>(readOp.getOperation()))) |
4066 | break; |
4067 | defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); |
4068 | } |
4069 | return {}; |
4070 | } |
4071 | |
4072 | OpFoldResult TransferReadOp::fold(FoldAdaptor) { |
4073 | if (Value vec = foldRAW(*this)) |
4074 | return vec; |
4075 | /// transfer_read(memrefcast) -> transfer_read |
4076 | if (succeeded(foldTransferInBoundsAttribute(*this))) |
4077 | return getResult(); |
4078 | if (succeeded(foldTransferFullMask(*this))) |
4079 | return getResult(); |
4080 | if (succeeded(memref::foldMemRefCast(*this))) |
4081 | return getResult(); |
4082 | if (succeeded(tensor::foldTensorCast(*this))) |
4083 | return getResult(); |
4084 | return OpFoldResult(); |
4085 | } |
4086 | |
4087 | std::optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { |
4088 | return llvm::to_vector<4>(getVectorType().getShape()); |
4089 | } |
4090 | |
4091 | void TransferReadOp::getEffects( |
4092 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
4093 | &effects) { |
4094 | if (llvm::isa<MemRefType>(getShapedType())) |
4095 | effects.emplace_back(MemoryEffects::Read::get(), getSource(), |
4096 | SideEffects::DefaultResource::get()); |
4097 | } |
4098 | |
4099 | namespace { |
4100 | /// Store to load forwarding for transfer operations with permuation maps. |
4101 | /// Even if the permutation maps are different we can still propagate the store |
4102 | /// into the load if the size of the dimensions read and written match. Then we |
4103 | /// can replace the transfer_read + transfer_write by vector.broadcast and |
4104 | /// vector.transpose. |
4105 | /// Example: |
4106 | /// ``` |
4107 | /// %w0 = vector.transfer_write %v0, %arg0[%c0, %c0, %c0] |
4108 | /// {in_bounds = [true, true], |
4109 | /// permutation_map = affine_map<(d0, d1, d2) -> (d2, d1)>} : |
4110 | /// vector<4x1xf32>, tensor<4x4x4xf32> |
4111 | /// %r = vector.transfer_read %w0[%c0, %c0, %c0], %cf0 |
4112 | /// {in_bounds = [true, true, true, true], |
4113 | /// permutation_map = affine_map<(d0, d1, d2) -> (d1, 0, d2, 0)>} : |
4114 | /// tensor<4x4x4xf32>, vector<1x100x4x5xf32> |
4115 | /// ``` |
4116 | /// To: |
4117 | /// ``` |
4118 | /// %0 = vector.broadcast %arg1 : vector<4x1xf32> to vector<100x5x4x1xf32> |
4119 | /// %r = vector.transpose %0, [3, 0, 2, 1] : |
4120 | /// vector<100x5x4x1xf32> to vector<1x100x4x5xf32> |
4121 | /// ``` |
4122 | struct TransferReadAfterWriteToBroadcast |
4123 | : public OpRewritePattern<TransferReadOp> { |
4124 | using OpRewritePattern::OpRewritePattern; |
4125 | |
4126 | LogicalResult matchAndRewrite(TransferReadOp readOp, |
4127 | PatternRewriter &rewriter) const override { |
4128 | if (readOp.hasOutOfBoundsDim() || |
4129 | !llvm::isa<RankedTensorType>(readOp.getShapedType())) |
4130 | return failure(); |
4131 | auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>(); |
4132 | if (!defWrite) |
4133 | return failure(); |
4134 | // TODO: If the written transfer chunk is a superset of the read transfer |
4135 | // chunk we could do an extract_strided_slice. |
4136 | if (readOp.getTransferChunkAccessed() != |
4137 | defWrite.getTransferChunkAccessed()) |
4138 | return failure(); |
4139 | // TODO: Support cases where a dim is explicitly written but implicitly |
4140 | // read (i.e., a unit dim that is rank reduced). |
4141 | if (getUnusedDimsBitVector({readOp.getPermutationMap()}) != |
4142 | getUnusedDimsBitVector({defWrite.getPermutationMap()})) |
4143 | return failure(); |
4144 | if (readOp.getIndices() != defWrite.getIndices() || |
4145 | readOp.getMask() != defWrite.getMask()) |
4146 | return failure(); |
4147 | Value vec = defWrite.getVector(); |
4148 | // TODO: loop through the chain of transfer_write if we can prove that they |
4149 | // don't overlap with the transfer_read. This requires improving |
4150 | // `isDisjointTransferIndices` helper. |
4151 | AffineMap readMap = compressUnusedDims(readOp.getPermutationMap()); |
4152 | AffineMap writeMap = compressUnusedDims(defWrite.getPermutationMap()); |
4153 | AffineMap map = readMap.compose(map: writeMap); |
4154 | if (map.getNumResults() == 0) |
4155 | return failure(); |
4156 | // Calculate the permutation to apply to go from the vector stored to the |
4157 | // vector read. |
4158 | SmallVector<unsigned> permutation; |
4159 | if (!map.isPermutationOfMinorIdentityWithBroadcasting(permutedDims&: permutation)) |
4160 | return failure(); |
4161 | |
4162 | Location loc = readOp.getLoc(); |
4163 | // Calculate the broadcast shape by applying the reverse permutation to the |
4164 | // final shape we want. |
4165 | ArrayRef<int64_t> destShape = readOp.getVectorType().getShape(); |
4166 | SmallVector<int64_t> broadcastShape(destShape.size()); |
4167 | SmallVector<bool> broadcastScalableFlags(destShape.size()); |
4168 | for (const auto &pos : llvm::enumerate(First&: permutation)) { |
4169 | broadcastShape[pos.value()] = destShape[pos.index()]; |
4170 | broadcastScalableFlags[pos.value()] = |
4171 | readOp.getVectorType().getScalableDims()[pos.index()]; |
4172 | } |
4173 | VectorType broadcastedType = VectorType::get( |
4174 | broadcastShape, defWrite.getVectorType().getElementType(), |
4175 | broadcastScalableFlags); |
4176 | vec = rewriter.create<vector::BroadcastOp>(loc, broadcastedType, vec); |
4177 | SmallVector<int64_t> transposePerm(permutation.begin(), permutation.end()); |
4178 | rewriter.replaceOpWithNewOp<vector::TransposeOp>(readOp, vec, |
4179 | transposePerm); |
4180 | return success(); |
4181 | } |
4182 | }; |
4183 | } // namespace |
4184 | |
4185 | void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, |
4186 | MLIRContext *context) { |
4187 | results.add<TransferReadAfterWriteToBroadcast>(context); |
4188 | } |
4189 | |
4190 | //===----------------------------------------------------------------------===// |
4191 | // TransferWriteOp |
4192 | //===----------------------------------------------------------------------===// |
4193 | |
4194 | /// 1. Builder with type inference. |
4195 | void TransferWriteOp::build(OpBuilder &builder, OperationState &result, |
4196 | Value vector, Value dest, ValueRange indices, |
4197 | AffineMapAttr permutationMapAttr, |
4198 | /*optional*/ Value mask, |
4199 | /*optional*/ ArrayAttr inBoundsAttr) { |
4200 | Type resultType = llvm::dyn_cast<RankedTensorType>(dest.getType()); |
4201 | build(builder, result, resultType, vector, dest, indices, permutationMapAttr, |
4202 | mask, inBoundsAttr); |
4203 | } |
4204 | |
4205 | /// 2. Builder with type inference that sets an empty mask (variant with attrs). |
4206 | void TransferWriteOp::build(OpBuilder &builder, OperationState &result, |
4207 | Value vector, Value dest, ValueRange indices, |
4208 | AffineMapAttr permutationMapAttr, |
4209 | /*optional*/ ArrayAttr inBoundsAttr) { |
4210 | build(builder, result, vector, dest, indices, permutationMapAttr, |
4211 | /*mask=*/Value(), inBoundsAttr); |
4212 | } |
4213 | |
4214 | /// 3. Builder with type inference that sets an empty mask (variant without |
4215 | /// attrs) |
4216 | void TransferWriteOp::build(OpBuilder &builder, OperationState &result, |
4217 | Value vector, Value dest, ValueRange indices, |
4218 | AffineMap permutationMap, |
4219 | std::optional<ArrayRef<bool>> inBounds) { |
4220 | auto permutationMapAttr = AffineMapAttr::get(permutationMap); |
4221 | auto inBoundsAttr = (inBounds && !inBounds.value().empty()) |
4222 | ? builder.getBoolArrayAttr(inBounds.value()) |
4223 | : ArrayAttr(); |
4224 | build(builder, result, vector, dest, indices, permutationMapAttr, |
4225 | /*mask=*/Value(), inBoundsAttr); |
4226 | } |
4227 | |
4228 | /// 4. Builder with type inference that sets an empty mask and sets permutation |
4229 | /// map to 'getMinorIdentityMap'. |
4230 | void TransferWriteOp::build(OpBuilder &builder, OperationState &result, |
4231 | Value vector, Value dest, ValueRange indices, |
4232 | std::optional<ArrayRef<bool>> inBounds) { |
4233 | auto vectorType = llvm::cast<VectorType>(vector.getType()); |
4234 | AffineMap permutationMap = getTransferMinorIdentityMap( |
4235 | llvm::cast<ShapedType>(dest.getType()), vectorType); |
4236 | build(builder, result, vector, dest, indices, permutationMap, inBounds); |
4237 | } |
4238 | |
4239 | ParseResult TransferWriteOp::parse(OpAsmParser &parser, |
4240 | OperationState &result) { |
4241 | auto &builder = parser.getBuilder(); |
4242 | SMLoc typesLoc; |
4243 | OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; |
4244 | SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; |
4245 | SmallVector<Type, 2> types; |
4246 | OpAsmParser::UnresolvedOperand maskInfo; |
4247 | if (parser.parseOperand(vectorInfo) || parser.parseComma() || |
4248 | parser.parseOperand(sourceInfo) || |
4249 | parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) |
4250 | return failure(); |
4251 | ParseResult hasMask = parser.parseOptionalComma(); |
4252 | if (hasMask.succeeded() && parser.parseOperand(maskInfo)) |
4253 | return failure(); |
4254 | if (parser.parseOptionalAttrDict(result.attributes) || |
4255 | parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) |
4256 | return failure(); |
4257 | if (types.size() != 2) |
4258 | return parser.emitError(typesLoc, "requires two types" ); |
4259 | auto indexType = builder.getIndexType(); |
4260 | VectorType vectorType = llvm::dyn_cast<VectorType>(types[0]); |
4261 | if (!vectorType) |
4262 | return parser.emitError(typesLoc, "requires vector type" ); |
4263 | ShapedType shapedType = llvm::dyn_cast<ShapedType>(types[1]); |
4264 | if (!shapedType || !llvm::isa<MemRefType, RankedTensorType>(shapedType)) |
4265 | return parser.emitError(typesLoc, "requires memref or ranked tensor type" ); |
4266 | auto permMapAttrName = |
4267 | TransferWriteOp::getPermutationMapAttrName(result.name); |
4268 | auto permMapAttr = result.attributes.get(permMapAttrName); |
4269 | AffineMap permMap; |
4270 | if (!permMapAttr) { |
4271 | permMap = getTransferMinorIdentityMap(shapedType, vectorType); |
4272 | result.attributes.set(permMapAttrName, AffineMapAttr::get(permMap)); |
4273 | } else { |
4274 | permMap = llvm::cast<AffineMapAttr>(permMapAttr).getValue(); |
4275 | } |
4276 | if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || |
4277 | parser.resolveOperand(sourceInfo, shapedType, result.operands) || |
4278 | parser.resolveOperands(indexInfo, indexType, result.operands)) |
4279 | return failure(); |
4280 | if (hasMask.succeeded()) { |
4281 | if (llvm::dyn_cast<VectorType>(shapedType.getElementType())) |
4282 | return parser.emitError( |
4283 | maskInfo.location, "does not support masks with vector element type" ); |
4284 | if (vectorType.getRank() != permMap.getNumResults()) { |
4285 | return parser.emitError(typesLoc, |
4286 | "expected the same rank for the vector and the " |
4287 | "results of the permutation map" ); |
4288 | } |
4289 | auto maskType = inferTransferOpMaskType(vectorType, permMap); |
4290 | if (parser.resolveOperand(maskInfo, maskType, result.operands)) |
4291 | return failure(); |
4292 | } |
4293 | result.addAttribute(TransferWriteOp::getOperandSegmentSizeAttr(), |
4294 | builder.getDenseI32ArrayAttr( |
4295 | {1, 1, static_cast<int32_t>(indexInfo.size()), |
4296 | static_cast<int32_t>(hasMask.succeeded())})); |
4297 | return failure(llvm::isa<RankedTensorType>(shapedType) && |
4298 | parser.addTypeToList(shapedType, result.types)); |
4299 | } |
4300 | |
4301 | void TransferWriteOp::print(OpAsmPrinter &p) { |
4302 | p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]" ; |
4303 | if (getMask()) |
4304 | p << ", " << getMask(); |
4305 | printTransferAttrs(p, *this); |
4306 | p << " : " << getVectorType() << ", " << getShapedType(); |
4307 | } |
4308 | |
4309 | LogicalResult TransferWriteOp::verify() { |
4310 | // Consistency of elemental types in shape and vector. |
4311 | ShapedType shapedType = getShapedType(); |
4312 | VectorType vectorType = getVectorType(); |
4313 | VectorType maskType = getMaskType(); |
4314 | auto permutationMap = getPermutationMap(); |
4315 | VectorType inferredMaskType = |
4316 | maskType ? inferTransferOpMaskType(vectorType, permutationMap) |
4317 | : VectorType(); |
4318 | |
4319 | if (llvm::size(getIndices()) != shapedType.getRank()) |
4320 | return emitOpError("requires " ) << shapedType.getRank() << " indices" ; |
4321 | |
4322 | // We do not allow broadcast dimensions on TransferWriteOps for the moment, |
4323 | // as the semantics is unclear. This can be revisited later if necessary. |
4324 | if (hasBroadcastDim()) |
4325 | return emitOpError("should not have broadcast dimensions" ); |
4326 | |
4327 | if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), |
4328 | shapedType, vectorType, maskType, |
4329 | inferredMaskType, permutationMap, |
4330 | getInBounds() ? *getInBounds() : ArrayAttr()))) |
4331 | return failure(); |
4332 | |
4333 | return verifyPermutationMap(permutationMap, |
4334 | [&](Twine t) { return emitOpError(t); }); |
4335 | } |
4336 | |
4337 | // MaskableOpInterface methods. |
4338 | |
4339 | /// Returns the mask type expected by this operation. Mostly used for |
4340 | /// verification purposes. |
4341 | Type TransferWriteOp::getExpectedMaskType() { |
4342 | return inferTransferOpMaskType(getVectorType(), getPermutationMap()); |
4343 | } |
4344 | |
4345 | /// Fold: |
4346 | /// ``` |
4347 | /// %t1 = ... |
4348 | /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : |
4349 | /// tensor<static_sizesxf32>, vector<static_sizesxf32> |
4350 | /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : |
4351 | /// vector<static_sizesxf32>, tensor<static_sizesxf32> |
4352 | /// ``` |
4353 | /// |
4354 | /// into: |
4355 | /// |
4356 | /// ``` |
4357 | /// %t0 |
4358 | /// ``` |
4359 | /// |
4360 | /// The producer of t1 may or may not be DCE'd depending on whether it is a |
4361 | /// block argument or has side effects. |
4362 | static LogicalResult foldReadInitWrite(TransferWriteOp write, |
4363 | ArrayRef<Attribute>, |
4364 | SmallVectorImpl<OpFoldResult> &results) { |
4365 | // TODO: support 0-d corner case. |
4366 | if (write.getTransferRank() == 0) |
4367 | return failure(); |
4368 | auto rankedTensorType = |
4369 | llvm::dyn_cast<RankedTensorType>(write.getSource().getType()); |
4370 | // If not operating on tensors, bail. |
4371 | if (!rankedTensorType) |
4372 | return failure(); |
4373 | // If no read, bail. |
4374 | auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); |
4375 | if (!read) |
4376 | return failure(); |
4377 | // TODO: support 0-d corner case. |
4378 | if (read.getTransferRank() == 0) |
4379 | return failure(); |
4380 | // For now, only accept minor identity. Future: composition is minor identity. |
4381 | if (!read.getPermutationMap().isMinorIdentity() || |
4382 | !write.getPermutationMap().isMinorIdentity()) |
4383 | return failure(); |
4384 | // Bail on mismatching ranks. |
4385 | if (read.getTransferRank() != write.getTransferRank()) |
4386 | return failure(); |
4387 | // Bail on potential out-of-bounds accesses. |
4388 | if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) |
4389 | return failure(); |
4390 | // Tensor types must be the same. |
4391 | if (read.getSource().getType() != rankedTensorType) |
4392 | return failure(); |
4393 | // Vector types must be the same. |
4394 | if (read.getVectorType() != write.getVectorType()) |
4395 | return failure(); |
4396 | // Vector and Tensor shapes must match. |
4397 | if (read.getVectorType().getShape() != rankedTensorType.getShape()) |
4398 | return failure(); |
4399 | // If any index is nonzero. |
4400 | auto isNotConstantZero = [](Value v) { |
4401 | auto cstOp = getConstantIntValue(ofr: v); |
4402 | return !cstOp.has_value() || cstOp.value() != 0; |
4403 | }; |
4404 | if (llvm::any_of(read.getIndices(), isNotConstantZero) || |
4405 | llvm::any_of(write.getIndices(), isNotConstantZero)) |
4406 | return failure(); |
4407 | // Success. |
4408 | results.push_back(Elt: read.getSource()); |
4409 | return success(); |
4410 | } |
4411 | |
4412 | static bool checkSameValueWAR(vector::TransferReadOp read, |
4413 | vector::TransferWriteOp write) { |
4414 | return read.getSource() == write.getSource() && |
4415 | read.getIndices() == write.getIndices() && |
4416 | read.getPermutationMap() == write.getPermutationMap() && |
4417 | read.getVectorType() == write.getVectorType() && !read.getMask() && |
4418 | !write.getMask(); |
4419 | } |
4420 | /// Fold transfer_write write after read: |
4421 | /// ``` |
4422 | /// %t0 = ... |
4423 | /// %v = vector.transfer_read %t0[%c0...] : |
4424 | /// tensor<static_sizesxf32>, vector<static_sizesxf32> |
4425 | /// %t1 = vector.transfer_write %v, %t0[%c0...] : |
4426 | /// vector<static_sizesxf32>, tensor<static_sizesxf32> |
4427 | /// ``` |
4428 | /// |
4429 | /// into: |
4430 | /// |
4431 | /// ``` |
4432 | /// %t0 |
4433 | /// ``` |
4434 | static LogicalResult foldWAR(TransferWriteOp write, |
4435 | SmallVectorImpl<OpFoldResult> &results) { |
4436 | if (!llvm::isa<RankedTensorType>(write.getSource().getType())) |
4437 | return failure(); |
4438 | auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); |
4439 | if (!read) |
4440 | return failure(); |
4441 | |
4442 | if (!checkSameValueWAR(read, write)) |
4443 | return failure(); |
4444 | results.push_back(Elt: read.getSource()); |
4445 | return success(); |
4446 | } |
4447 | |
4448 | LogicalResult TransferWriteOp::fold(FoldAdaptor adaptor, |
4449 | SmallVectorImpl<OpFoldResult> &results) { |
4450 | if (succeeded(foldReadInitWrite(*this, adaptor.getOperands(), results))) |
4451 | return success(); |
4452 | if (succeeded(foldWAR(*this, results))) |
4453 | return success(); |
4454 | if (succeeded(foldTransferInBoundsAttribute(*this))) |
4455 | return success(); |
4456 | if (succeeded(foldTransferFullMask(*this))) |
4457 | return success(); |
4458 | return memref::foldMemRefCast(*this); |
4459 | } |
4460 | |
4461 | std::optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { |
4462 | return llvm::to_vector<4>(getVectorType().getShape()); |
4463 | } |
4464 | |
4465 | void TransferWriteOp::getEffects( |
4466 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
4467 | &effects) { |
4468 | if (llvm::isa<MemRefType>(getShapedType())) |
4469 | effects.emplace_back(MemoryEffects::Write::get(), getSource(), |
4470 | SideEffects::DefaultResource::get()); |
4471 | } |
4472 | |
4473 | namespace { |
4474 | /// Remove dead transfer write from the SSA chain so that it an be eliminated by |
4475 | /// DCE |
4476 | /// ``` |
4477 | /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} |
4478 | /// : vector<1x4xf32>, tensor<4x4xf32> |
4479 | /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} |
4480 | /// : vector<1x4xf32>, tensor<4x4xf32> |
4481 | /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} |
4482 | /// : vector<1x4xf32>, tensor<4x4xf32> |
4483 | /// ``` |
4484 | /// |
4485 | /// into: |
4486 | /// |
4487 | /// ``` |
4488 | /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} |
4489 | /// : vector<1x4xf32>, tensor<4x4xf32> |
4490 | /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} |
4491 | /// : vector<1x4xf32>, tensor<4x4xf32> |
4492 | /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} |
4493 | /// : vector<1x4xf32>, tensor<4x4xf32> |
4494 | /// ``` |
4495 | /// |
4496 | /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have |
4497 | /// any other uses. |
4498 | class FoldWaw final : public OpRewritePattern<TransferWriteOp> { |
4499 | public: |
4500 | using OpRewritePattern::OpRewritePattern; |
4501 | LogicalResult matchAndRewrite(TransferWriteOp writeOp, |
4502 | PatternRewriter &rewriter) const override { |
4503 | if (!llvm::isa<RankedTensorType>(writeOp.getShapedType())) |
4504 | return failure(); |
4505 | vector::TransferWriteOp writeToModify = writeOp; |
4506 | |
4507 | auto defWrite = |
4508 | writeOp.getSource().getDefiningOp<vector::TransferWriteOp>(); |
4509 | while (defWrite) { |
4510 | if (checkSameValueWAW(writeOp, defWrite)) { |
4511 | rewriter.modifyOpInPlace(writeToModify, [&]() { |
4512 | writeToModify.getSourceMutable().assign(defWrite.getSource()); |
4513 | }); |
4514 | return success(); |
4515 | } |
4516 | if (!isDisjointTransferIndices( |
4517 | cast<VectorTransferOpInterface>(defWrite.getOperation()), |
4518 | cast<VectorTransferOpInterface>(writeOp.getOperation()))) |
4519 | break; |
4520 | // If the previous write op doesn't have any other use we an safely look |
4521 | // at the previous store to see if it can be removed. |
4522 | if (!defWrite->hasOneUse()) |
4523 | break; |
4524 | writeToModify = defWrite; |
4525 | defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); |
4526 | } |
4527 | return failure(); |
4528 | } |
4529 | }; |
4530 | |
4531 | /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to |
4532 | /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is |
4533 | /// overwritten and inserted into another tensor. After this rewrite, the |
4534 | /// operations bufferize in-place since all of them work on the same slice. |
4535 | /// |
4536 | /// For example: |
4537 | /// ```mlir |
4538 | /// %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0] |
4539 | /// : vector<8x16xf32>, tensor<8x16xf32> |
4540 | /// %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1] |
4541 | /// : tensor<8x16xf32> to tensor<?x?xf32> |
4542 | /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] |
4543 | /// : tensor<?x?xf32> into tensor<27x37xf32> |
4544 | /// ``` |
4545 | /// folds to |
4546 | /// ```mlir |
4547 | /// %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] |
4548 | /// : tensor<27x37xf32> to tensor<?x?xf32> |
4549 | /// %1 = vector.transfer_write %vec, %0[%c0, %c0] |
4550 | /// : vector<8x16xf32>, tensor<?x?xf32> |
4551 | /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] |
4552 | /// : tensor<?x?xf32> into tensor<27x37xf32> |
4553 | /// ``` |
4554 | struct |
4555 | : public OpRewritePattern<tensor::InsertSliceOp> { |
4556 | public: |
4557 | using OpRewritePattern::OpRewritePattern; |
4558 | |
4559 | LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, |
4560 | PatternRewriter &rewriter) const override { |
4561 | if (!insertOp.hasUnitStride()) |
4562 | return failure(); |
4563 | auto = |
4564 | insertOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); |
4565 | if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse()) |
4566 | return failure(); |
4567 | auto transferOp = extractOp.getSource().getDefiningOp<TransferWriteOp>(); |
4568 | if (!transferOp || !transferOp->hasOneUse()) |
4569 | return failure(); |
4570 | |
4571 | // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is |
4572 | // rank-reducing. |
4573 | if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) { |
4574 | return rewriter.notifyMatchFailure(insertOp, |
4575 | "use-def chain is rank-reducing" ); |
4576 | } |
4577 | |
4578 | // Fail if tensor::ExtractSliceOp has non-zero offset. |
4579 | if (!extractOp.hasZeroOffset()) { |
4580 | return rewriter.notifyMatchFailure(insertOp, |
4581 | "ExtractSliceOp has non-zero offset" ); |
4582 | } |
4583 | |
4584 | // Fail if tensor::TransferWriteOp has non-zero offset. |
4585 | if (!llvm::all_of(transferOp.getIndices(), [](Value value) { |
4586 | return getConstantIntValue(ofr: value) == static_cast<int64_t>(0); |
4587 | })) { |
4588 | return rewriter.notifyMatchFailure(insertOp, |
4589 | "TranferWriteOp has non-zero offset" ); |
4590 | } |
4591 | |
4592 | // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ. |
4593 | if (insertOp.getMixedSizes().size() != extractOp.getMixedSizes().size()) { |
4594 | return rewriter.notifyMatchFailure( |
4595 | insertOp, "InsertSliceOp and ExtractSliceOp ranks differ" ); |
4596 | } |
4597 | |
4598 | for (auto [insertSize, extractSize] : |
4599 | llvm::zip_equal(insertOp.getMixedSizes(), extractOp.getMixedSizes())) { |
4600 | if (!isEqualConstantIntOrValue(insertSize, extractSize)) { |
4601 | return rewriter.notifyMatchFailure( |
4602 | insertOp, "InsertSliceOp and ExtractSliceOp sizes differ" ); |
4603 | } |
4604 | } |
4605 | |
4606 | // Fail if the vector::TransferWriteOp may not overwrite the full tensor. |
4607 | assert(transferOp.getVectorType().hasStaticShape() && |
4608 | "expected vector to have a static shape" ); |
4609 | ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape(); |
4610 | SmallVector<int64_t> resultShape = applyPermutationMap( |
4611 | transferOp.getPermutationMap(), transferOp.getShapedType().getShape()); |
4612 | if (transferOp.getMask() || !vectorShape.equals(RHS: resultShape)) { |
4613 | return rewriter.notifyMatchFailure( |
4614 | insertOp, "TransferWriteOp may not write the full tensor." ); |
4615 | } |
4616 | |
4617 | // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp. |
4618 | // Set all in_bounds to false and let the folder infer them. |
4619 | SmallVector<bool> newInBounds(vectorShape.size(), false); |
4620 | auto = rewriter.create<tensor::ExtractSliceOp>( |
4621 | extractOp.getLoc(), insertOp.getSourceType(), insertOp.getDest(), |
4622 | insertOp.getMixedOffsets(), insertOp.getMixedSizes(), |
4623 | insertOp.getMixedStrides()); |
4624 | auto newTransferWriteOp = rewriter.create<TransferWriteOp>( |
4625 | transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(), |
4626 | transferOp.getIndices(), transferOp.getPermutationMapAttr(), |
4627 | rewriter.getBoolArrayAttr(newInBounds)); |
4628 | rewriter.modifyOpInPlace(insertOp, [&]() { |
4629 | insertOp.getSourceMutable().assign(newTransferWriteOp.getResult()); |
4630 | }); |
4631 | return success(); |
4632 | } |
4633 | }; |
4634 | |
4635 | } // namespace |
4636 | |
4637 | void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, |
4638 | MLIRContext *context) { |
4639 | results.add<FoldWaw, SwapExtractSliceOfTransferWrite>(context); |
4640 | } |
4641 | |
4642 | //===----------------------------------------------------------------------===// |
4643 | // LoadOp |
4644 | //===----------------------------------------------------------------------===// |
4645 | |
4646 | static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, |
4647 | MemRefType memRefTy) { |
4648 | if (!isLastMemrefDimUnitStride(memRefTy)) |
4649 | return op->emitOpError(message: "most minor memref dim must have unit stride" ); |
4650 | return success(); |
4651 | } |
4652 | |
4653 | LogicalResult vector::LoadOp::verify() { |
4654 | VectorType resVecTy = getVectorType(); |
4655 | MemRefType memRefTy = getMemRefType(); |
4656 | |
4657 | if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) |
4658 | return failure(); |
4659 | |
4660 | // Checks for vector memrefs. |
4661 | Type memElemTy = memRefTy.getElementType(); |
4662 | if (auto memVecTy = llvm::dyn_cast<VectorType>(memElemTy)) { |
4663 | if (memVecTy != resVecTy) |
4664 | return emitOpError("base memref and result vector types should match" ); |
4665 | memElemTy = memVecTy.getElementType(); |
4666 | } |
4667 | |
4668 | if (resVecTy.getElementType() != memElemTy) |
4669 | return emitOpError("base and result element types should match" ); |
4670 | if (llvm::size(getIndices()) != memRefTy.getRank()) |
4671 | return emitOpError("requires " ) << memRefTy.getRank() << " indices" ; |
4672 | return success(); |
4673 | } |
4674 | |
4675 | OpFoldResult LoadOp::fold(FoldAdaptor) { |
4676 | if (succeeded(memref::foldMemRefCast(*this))) |
4677 | return getResult(); |
4678 | return OpFoldResult(); |
4679 | } |
4680 | |
4681 | //===----------------------------------------------------------------------===// |
4682 | // StoreOp |
4683 | //===----------------------------------------------------------------------===// |
4684 | |
4685 | LogicalResult vector::StoreOp::verify() { |
4686 | VectorType valueVecTy = getVectorType(); |
4687 | MemRefType memRefTy = getMemRefType(); |
4688 | |
4689 | if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) |
4690 | return failure(); |
4691 | |
4692 | // Checks for vector memrefs. |
4693 | Type memElemTy = memRefTy.getElementType(); |
4694 | if (auto memVecTy = llvm::dyn_cast<VectorType>(memElemTy)) { |
4695 | if (memVecTy != valueVecTy) |
4696 | return emitOpError( |
4697 | "base memref and valueToStore vector types should match" ); |
4698 | memElemTy = memVecTy.getElementType(); |
4699 | } |
4700 | |
4701 | if (valueVecTy.getElementType() != memElemTy) |
4702 | return emitOpError("base and valueToStore element type should match" ); |
4703 | if (llvm::size(getIndices()) != memRefTy.getRank()) |
4704 | return emitOpError("requires " ) << memRefTy.getRank() << " indices" ; |
4705 | return success(); |
4706 | } |
4707 | |
4708 | LogicalResult StoreOp::fold(FoldAdaptor adaptor, |
4709 | SmallVectorImpl<OpFoldResult> &results) { |
4710 | return memref::foldMemRefCast(*this); |
4711 | } |
4712 | |
4713 | //===----------------------------------------------------------------------===// |
4714 | // MaskedLoadOp |
4715 | //===----------------------------------------------------------------------===// |
4716 | |
4717 | LogicalResult MaskedLoadOp::verify() { |
4718 | VectorType maskVType = getMaskVectorType(); |
4719 | VectorType passVType = getPassThruVectorType(); |
4720 | VectorType resVType = getVectorType(); |
4721 | MemRefType memType = getMemRefType(); |
4722 | |
4723 | if (resVType.getElementType() != memType.getElementType()) |
4724 | return emitOpError("base and result element type should match" ); |
4725 | if (llvm::size(getIndices()) != memType.getRank()) |
4726 | return emitOpError("requires " ) << memType.getRank() << " indices" ; |
4727 | if (resVType.getDimSize(0) != maskVType.getDimSize(0)) |
4728 | return emitOpError("expected result dim to match mask dim" ); |
4729 | if (resVType != passVType) |
4730 | return emitOpError("expected pass_thru of same type as result type" ); |
4731 | return success(); |
4732 | } |
4733 | |
4734 | namespace { |
4735 | class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { |
4736 | public: |
4737 | using OpRewritePattern::OpRewritePattern; |
4738 | LogicalResult matchAndRewrite(MaskedLoadOp load, |
4739 | PatternRewriter &rewriter) const override { |
4740 | switch (getMaskFormat(load.getMask())) { |
4741 | case MaskFormat::AllTrue: |
4742 | rewriter.replaceOpWithNewOp<vector::LoadOp>( |
4743 | load, load.getType(), load.getBase(), load.getIndices()); |
4744 | return success(); |
4745 | case MaskFormat::AllFalse: |
4746 | rewriter.replaceOp(load, load.getPassThru()); |
4747 | return success(); |
4748 | case MaskFormat::Unknown: |
4749 | return failure(); |
4750 | } |
4751 | llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad" ); |
4752 | } |
4753 | }; |
4754 | } // namespace |
4755 | |
4756 | void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, |
4757 | MLIRContext *context) { |
4758 | results.add<MaskedLoadFolder>(context); |
4759 | } |
4760 | |
4761 | OpFoldResult MaskedLoadOp::fold(FoldAdaptor) { |
4762 | if (succeeded(memref::foldMemRefCast(*this))) |
4763 | return getResult(); |
4764 | return OpFoldResult(); |
4765 | } |
4766 | |
4767 | //===----------------------------------------------------------------------===// |
4768 | // MaskedStoreOp |
4769 | //===----------------------------------------------------------------------===// |
4770 | |
4771 | LogicalResult MaskedStoreOp::verify() { |
4772 | VectorType maskVType = getMaskVectorType(); |
4773 | VectorType valueVType = getVectorType(); |
4774 | MemRefType memType = getMemRefType(); |
4775 | |
4776 | if (valueVType.getElementType() != memType.getElementType()) |
4777 | return emitOpError("base and valueToStore element type should match" ); |
4778 | if (llvm::size(getIndices()) != memType.getRank()) |
4779 | return emitOpError("requires " ) << memType.getRank() << " indices" ; |
4780 | if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) |
4781 | return emitOpError("expected valueToStore dim to match mask dim" ); |
4782 | return success(); |
4783 | } |
4784 | |
4785 | namespace { |
4786 | class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { |
4787 | public: |
4788 | using OpRewritePattern::OpRewritePattern; |
4789 | LogicalResult matchAndRewrite(MaskedStoreOp store, |
4790 | PatternRewriter &rewriter) const override { |
4791 | switch (getMaskFormat(store.getMask())) { |
4792 | case MaskFormat::AllTrue: |
4793 | rewriter.replaceOpWithNewOp<vector::StoreOp>( |
4794 | store, store.getValueToStore(), store.getBase(), store.getIndices()); |
4795 | return success(); |
4796 | case MaskFormat::AllFalse: |
4797 | rewriter.eraseOp(op: store); |
4798 | return success(); |
4799 | case MaskFormat::Unknown: |
4800 | return failure(); |
4801 | } |
4802 | llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore" ); |
4803 | } |
4804 | }; |
4805 | } // namespace |
4806 | |
4807 | void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, |
4808 | MLIRContext *context) { |
4809 | results.add<MaskedStoreFolder>(context); |
4810 | } |
4811 | |
4812 | LogicalResult MaskedStoreOp::fold(FoldAdaptor adaptor, |
4813 | SmallVectorImpl<OpFoldResult> &results) { |
4814 | return memref::foldMemRefCast(*this); |
4815 | } |
4816 | |
4817 | //===----------------------------------------------------------------------===// |
4818 | // GatherOp |
4819 | //===----------------------------------------------------------------------===// |
4820 | |
4821 | LogicalResult GatherOp::verify() { |
4822 | VectorType indVType = getIndexVectorType(); |
4823 | VectorType maskVType = getMaskVectorType(); |
4824 | VectorType resVType = getVectorType(); |
4825 | ShapedType baseType = getBaseType(); |
4826 | |
4827 | if (!llvm::isa<MemRefType, RankedTensorType>(baseType)) |
4828 | return emitOpError("requires base to be a memref or ranked tensor type" ); |
4829 | |
4830 | if (resVType.getElementType() != baseType.getElementType()) |
4831 | return emitOpError("base and result element type should match" ); |
4832 | if (llvm::size(getIndices()) != baseType.getRank()) |
4833 | return emitOpError("requires " ) << baseType.getRank() << " indices" ; |
4834 | if (resVType.getShape() != indVType.getShape()) |
4835 | return emitOpError("expected result dim to match indices dim" ); |
4836 | if (resVType.getShape() != maskVType.getShape()) |
4837 | return emitOpError("expected result dim to match mask dim" ); |
4838 | if (resVType != getPassThruVectorType()) |
4839 | return emitOpError("expected pass_thru of same type as result type" ); |
4840 | return success(); |
4841 | } |
4842 | |
4843 | // MaskableOpInterface methods. |
4844 | |
4845 | /// Returns the mask type expected by this operation. Mostly used for |
4846 | /// verification purposes. It requires the operation to be vectorized." |
4847 | Type GatherOp::getExpectedMaskType() { |
4848 | auto vecType = this->getIndexVectorType(); |
4849 | return VectorType::get(vecType.getShape(), |
4850 | IntegerType::get(vecType.getContext(), /*width=*/1), |
4851 | vecType.getScalableDims()); |
4852 | } |
4853 | |
4854 | std::optional<SmallVector<int64_t, 4>> GatherOp::getShapeForUnroll() { |
4855 | return llvm::to_vector<4>(getVectorType().getShape()); |
4856 | } |
4857 | |
4858 | namespace { |
4859 | class GatherFolder final : public OpRewritePattern<GatherOp> { |
4860 | public: |
4861 | using OpRewritePattern::OpRewritePattern; |
4862 | LogicalResult matchAndRewrite(GatherOp gather, |
4863 | PatternRewriter &rewriter) const override { |
4864 | switch (getMaskFormat(gather.getMask())) { |
4865 | case MaskFormat::AllTrue: |
4866 | return failure(); // no unmasked equivalent |
4867 | case MaskFormat::AllFalse: |
4868 | rewriter.replaceOp(gather, gather.getPassThru()); |
4869 | return success(); |
4870 | case MaskFormat::Unknown: |
4871 | return failure(); |
4872 | } |
4873 | llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder" ); |
4874 | } |
4875 | }; |
4876 | } // namespace |
4877 | |
4878 | void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, |
4879 | MLIRContext *context) { |
4880 | results.add<GatherFolder>(context); |
4881 | } |
4882 | |
4883 | //===----------------------------------------------------------------------===// |
4884 | // ScatterOp |
4885 | //===----------------------------------------------------------------------===// |
4886 | |
4887 | LogicalResult ScatterOp::verify() { |
4888 | VectorType indVType = getIndexVectorType(); |
4889 | VectorType maskVType = getMaskVectorType(); |
4890 | VectorType valueVType = getVectorType(); |
4891 | MemRefType memType = getMemRefType(); |
4892 | |
4893 | if (valueVType.getElementType() != memType.getElementType()) |
4894 | return emitOpError("base and valueToStore element type should match" ); |
4895 | if (llvm::size(getIndices()) != memType.getRank()) |
4896 | return emitOpError("requires " ) << memType.getRank() << " indices" ; |
4897 | if (valueVType.getDimSize(0) != indVType.getDimSize(0)) |
4898 | return emitOpError("expected valueToStore dim to match indices dim" ); |
4899 | if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) |
4900 | return emitOpError("expected valueToStore dim to match mask dim" ); |
4901 | return success(); |
4902 | } |
4903 | |
4904 | namespace { |
4905 | class ScatterFolder final : public OpRewritePattern<ScatterOp> { |
4906 | public: |
4907 | using OpRewritePattern::OpRewritePattern; |
4908 | LogicalResult matchAndRewrite(ScatterOp scatter, |
4909 | PatternRewriter &rewriter) const override { |
4910 | switch (getMaskFormat(scatter.getMask())) { |
4911 | case MaskFormat::AllTrue: |
4912 | return failure(); // no unmasked equivalent |
4913 | case MaskFormat::AllFalse: |
4914 | rewriter.eraseOp(op: scatter); |
4915 | return success(); |
4916 | case MaskFormat::Unknown: |
4917 | return failure(); |
4918 | } |
4919 | llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder" ); |
4920 | } |
4921 | }; |
4922 | } // namespace |
4923 | |
4924 | void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, |
4925 | MLIRContext *context) { |
4926 | results.add<ScatterFolder>(context); |
4927 | } |
4928 | |
4929 | //===----------------------------------------------------------------------===// |
4930 | // ExpandLoadOp |
4931 | //===----------------------------------------------------------------------===// |
4932 | |
4933 | LogicalResult ExpandLoadOp::verify() { |
4934 | VectorType maskVType = getMaskVectorType(); |
4935 | VectorType passVType = getPassThruVectorType(); |
4936 | VectorType resVType = getVectorType(); |
4937 | MemRefType memType = getMemRefType(); |
4938 | |
4939 | if (resVType.getElementType() != memType.getElementType()) |
4940 | return emitOpError("base and result element type should match" ); |
4941 | if (llvm::size(getIndices()) != memType.getRank()) |
4942 | return emitOpError("requires " ) << memType.getRank() << " indices" ; |
4943 | if (resVType.getDimSize(0) != maskVType.getDimSize(0)) |
4944 | return emitOpError("expected result dim to match mask dim" ); |
4945 | if (resVType != passVType) |
4946 | return emitOpError("expected pass_thru of same type as result type" ); |
4947 | return success(); |
4948 | } |
4949 | |
4950 | namespace { |
4951 | class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { |
4952 | public: |
4953 | using OpRewritePattern::OpRewritePattern; |
4954 | LogicalResult matchAndRewrite(ExpandLoadOp expand, |
4955 | PatternRewriter &rewriter) const override { |
4956 | switch (getMaskFormat(expand.getMask())) { |
4957 | case MaskFormat::AllTrue: |
4958 | rewriter.replaceOpWithNewOp<vector::LoadOp>( |
4959 | expand, expand.getType(), expand.getBase(), expand.getIndices()); |
4960 | return success(); |
4961 | case MaskFormat::AllFalse: |
4962 | rewriter.replaceOp(expand, expand.getPassThru()); |
4963 | return success(); |
4964 | case MaskFormat::Unknown: |
4965 | return failure(); |
4966 | } |
4967 | llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder" ); |
4968 | } |
4969 | }; |
4970 | } // namespace |
4971 | |
4972 | void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, |
4973 | MLIRContext *context) { |
4974 | results.add<ExpandLoadFolder>(context); |
4975 | } |
4976 | |
4977 | //===----------------------------------------------------------------------===// |
4978 | // CompressStoreOp |
4979 | //===----------------------------------------------------------------------===// |
4980 | |
4981 | LogicalResult CompressStoreOp::verify() { |
4982 | VectorType maskVType = getMaskVectorType(); |
4983 | VectorType valueVType = getVectorType(); |
4984 | MemRefType memType = getMemRefType(); |
4985 | |
4986 | if (valueVType.getElementType() != memType.getElementType()) |
4987 | return emitOpError("base and valueToStore element type should match" ); |
4988 | if (llvm::size(getIndices()) != memType.getRank()) |
4989 | return emitOpError("requires " ) << memType.getRank() << " indices" ; |
4990 | if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) |
4991 | return emitOpError("expected valueToStore dim to match mask dim" ); |
4992 | return success(); |
4993 | } |
4994 | |
4995 | namespace { |
4996 | class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { |
4997 | public: |
4998 | using OpRewritePattern::OpRewritePattern; |
4999 | LogicalResult matchAndRewrite(CompressStoreOp compress, |
5000 | PatternRewriter &rewriter) const override { |
5001 | switch (getMaskFormat(compress.getMask())) { |
5002 | case MaskFormat::AllTrue: |
5003 | rewriter.replaceOpWithNewOp<vector::StoreOp>( |
5004 | compress, compress.getValueToStore(), compress.getBase(), |
5005 | compress.getIndices()); |
5006 | return success(); |
5007 | case MaskFormat::AllFalse: |
5008 | rewriter.eraseOp(op: compress); |
5009 | return success(); |
5010 | case MaskFormat::Unknown: |
5011 | return failure(); |
5012 | } |
5013 | llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder" ); |
5014 | } |
5015 | }; |
5016 | } // namespace |
5017 | |
5018 | void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, |
5019 | MLIRContext *context) { |
5020 | results.add<CompressStoreFolder>(context); |
5021 | } |
5022 | |
5023 | //===----------------------------------------------------------------------===// |
5024 | // ShapeCastOp |
5025 | //===----------------------------------------------------------------------===// |
5026 | |
5027 | /// Returns true if each element of 'a' is equal to the product of a contiguous |
5028 | /// sequence of the elements of 'b'. Returns false otherwise. |
5029 | static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { |
5030 | unsigned rankA = a.size(); |
5031 | unsigned rankB = b.size(); |
5032 | assert(rankA < rankB); |
5033 | |
5034 | auto isOne = [](int64_t v) { return v == 1; }; |
5035 | |
5036 | // Special-case for n-D to 0-d shape cast. 'b' must be all ones to be shape |
5037 | // casted to a 0-d vector. |
5038 | if (rankA == 0 && llvm::all_of(Range&: b, P: isOne)) |
5039 | return true; |
5040 | |
5041 | unsigned i = 0; |
5042 | unsigned j = 0; |
5043 | while (i < rankA && j < rankB) { |
5044 | int64_t dimA = a[i]; |
5045 | int64_t dimB = 1; |
5046 | while (dimB < dimA && j < rankB) |
5047 | dimB *= b[j++]; |
5048 | if (dimA != dimB) |
5049 | break; |
5050 | ++i; |
5051 | |
5052 | // Handle the case when trailing dimensions are of size 1. |
5053 | // Include them into the contiguous sequence. |
5054 | if (i < rankA && llvm::all_of(Range: a.slice(N: i), P: isOne)) |
5055 | i = rankA; |
5056 | if (j < rankB && llvm::all_of(Range: b.slice(N: j), P: isOne)) |
5057 | j = rankB; |
5058 | } |
5059 | |
5060 | return i == rankA && j == rankB; |
5061 | } |
5062 | |
5063 | static LogicalResult verifyVectorShapeCast(Operation *op, |
5064 | VectorType sourceVectorType, |
5065 | VectorType resultVectorType) { |
5066 | // Check that element type is the same. |
5067 | if (sourceVectorType.getElementType() != resultVectorType.getElementType()) |
5068 | return op->emitOpError(message: "source/result vectors must have same element type" ); |
5069 | auto sourceShape = sourceVectorType.getShape(); |
5070 | auto resultShape = resultVectorType.getShape(); |
5071 | |
5072 | // Check that product of source dim sizes matches product of result dim sizes. |
5073 | int64_t sourceDimProduct = std::accumulate( |
5074 | sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); |
5075 | int64_t resultDimProduct = std::accumulate( |
5076 | resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); |
5077 | if (sourceDimProduct != resultDimProduct) |
5078 | return op->emitOpError(message: "source/result number of elements must match" ); |
5079 | |
5080 | // Check that expanding/contracting rank cases. |
5081 | unsigned sourceRank = sourceVectorType.getRank(); |
5082 | unsigned resultRank = resultVectorType.getRank(); |
5083 | if (sourceRank < resultRank) { |
5084 | if (!isValidShapeCast(sourceShape, resultShape)) |
5085 | return op->emitOpError(message: "invalid shape cast" ); |
5086 | } else if (sourceRank > resultRank) { |
5087 | if (!isValidShapeCast(resultShape, sourceShape)) |
5088 | return op->emitOpError(message: "invalid shape cast" ); |
5089 | } |
5090 | return success(); |
5091 | } |
5092 | |
5093 | LogicalResult ShapeCastOp::verify() { |
5094 | auto sourceVectorType = |
5095 | llvm::dyn_cast_or_null<VectorType>(getSource().getType()); |
5096 | auto resultVectorType = |
5097 | llvm::dyn_cast_or_null<VectorType>(getResult().getType()); |
5098 | |
5099 | // Check if source/result are of vector type. |
5100 | if (sourceVectorType && resultVectorType) |
5101 | return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); |
5102 | |
5103 | return success(); |
5104 | } |
5105 | |
5106 | OpFoldResult ShapeCastOp::fold(FoldAdaptor adaptor) { |
5107 | // No-op shape cast. |
5108 | if (getSource().getType() == getResult().getType()) |
5109 | return getSource(); |
5110 | |
5111 | // Canceling shape casts. |
5112 | if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) { |
5113 | if (getResult().getType() == otherOp.getSource().getType()) |
5114 | return otherOp.getSource(); |
5115 | |
5116 | // Only allows valid transitive folding. |
5117 | VectorType srcType = llvm::cast<VectorType>(otherOp.getSource().getType()); |
5118 | VectorType resultType = llvm::cast<VectorType>(getResult().getType()); |
5119 | if (srcType.getRank() < resultType.getRank()) { |
5120 | if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) |
5121 | return {}; |
5122 | } else if (srcType.getRank() > resultType.getRank()) { |
5123 | if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) |
5124 | return {}; |
5125 | } else { |
5126 | return {}; |
5127 | } |
5128 | |
5129 | setOperand(otherOp.getSource()); |
5130 | return getResult(); |
5131 | } |
5132 | |
5133 | // Cancelling broadcast and shape cast ops. |
5134 | if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) { |
5135 | if (bcastOp.getSourceType() == getType()) |
5136 | return bcastOp.getSource(); |
5137 | } |
5138 | |
5139 | return {}; |
5140 | } |
5141 | |
5142 | namespace { |
5143 | // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. |
5144 | class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { |
5145 | public: |
5146 | using OpRewritePattern::OpRewritePattern; |
5147 | |
5148 | LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, |
5149 | PatternRewriter &rewriter) const override { |
5150 | auto constantOp = |
5151 | shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>(); |
5152 | if (!constantOp) |
5153 | return failure(); |
5154 | // Only handle splat for now. |
5155 | auto dense = llvm::dyn_cast<SplatElementsAttr>(constantOp.getValue()); |
5156 | if (!dense) |
5157 | return failure(); |
5158 | auto newAttr = |
5159 | DenseElementsAttr::get(llvm::cast<VectorType>(shapeCastOp.getType()), |
5160 | dense.getSplatValue<Attribute>()); |
5161 | rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); |
5162 | return success(); |
5163 | } |
5164 | }; |
5165 | |
5166 | /// Helper function that computes a new vector type based on the input vector |
5167 | /// type by removing the trailing one dims: |
5168 | /// |
5169 | /// vector<4x1x1xi1> --> vector<4x1> |
5170 | /// |
5171 | static VectorType trimTrailingOneDims(VectorType oldType) { |
5172 | ArrayRef<int64_t> oldShape = oldType.getShape(); |
5173 | ArrayRef<int64_t> newShape = oldShape; |
5174 | |
5175 | ArrayRef<bool> oldScalableDims = oldType.getScalableDims(); |
5176 | ArrayRef<bool> newScalableDims = oldScalableDims; |
5177 | |
5178 | while (!newShape.empty() && newShape.back() == 1 && !newScalableDims.back()) { |
5179 | newShape = newShape.drop_back(N: 1); |
5180 | newScalableDims = newScalableDims.drop_back(N: 1); |
5181 | } |
5182 | |
5183 | // Make sure we have at least 1 dimension. |
5184 | // TODO: Add support for 0-D vectors. |
5185 | if (newShape.empty()) { |
5186 | newShape = oldShape.take_back(); |
5187 | newScalableDims = oldScalableDims.take_back(); |
5188 | } |
5189 | |
5190 | return VectorType::get(newShape, oldType.getElementType(), newScalableDims); |
5191 | } |
5192 | |
5193 | /// Folds qualifying shape_cast(create_mask) into a new create_mask |
5194 | /// |
5195 | /// Looks at `vector.shape_cast` Ops that simply "drop" the trailing unit |
5196 | /// dimension. If the input vector comes from `vector.create_mask` for which |
5197 | /// the corresponding mask input value is 1 (e.g. `%c1` below), then it is safe |
5198 | /// to fold shape_cast into create_mask. |
5199 | /// |
5200 | /// BEFORE: |
5201 | /// %1 = vector.create_mask %c1, %dim, %c1, %c1 : vector<1x[4]x1x1xi1> |
5202 | /// %2 = vector.shape_cast %1 : vector<1x[4]x1x1xi1> to vector<1x[4]xi1> |
5203 | /// AFTER: |
5204 | /// %0 = vector.create_mask %c1, %dim : vector<1x[4]xi1> |
5205 | class ShapeCastCreateMaskFolderTrailingOneDim final |
5206 | : public OpRewritePattern<ShapeCastOp> { |
5207 | public: |
5208 | using OpRewritePattern::OpRewritePattern; |
5209 | |
5210 | LogicalResult matchAndRewrite(ShapeCastOp shapeOp, |
5211 | PatternRewriter &rewriter) const override { |
5212 | Value shapeOpSrc = shapeOp->getOperand(0); |
5213 | auto createMaskOp = shapeOpSrc.getDefiningOp<vector::CreateMaskOp>(); |
5214 | auto constantMaskOp = shapeOpSrc.getDefiningOp<vector::ConstantMaskOp>(); |
5215 | if (!createMaskOp && !constantMaskOp) |
5216 | return failure(); |
5217 | |
5218 | VectorType shapeOpResTy = shapeOp.getResultVectorType(); |
5219 | VectorType shapeOpSrcTy = shapeOp.getSourceVectorType(); |
5220 | |
5221 | VectorType newVecType = trimTrailingOneDims(shapeOpSrcTy); |
5222 | if (newVecType != shapeOpResTy) |
5223 | return failure(); |
5224 | |
5225 | auto numDimsToDrop = |
5226 | shapeOpSrcTy.getShape().size() - shapeOpResTy.getShape().size(); |
5227 | |
5228 | // No unit dims to drop |
5229 | if (!numDimsToDrop) |
5230 | return failure(); |
5231 | |
5232 | if (createMaskOp) { |
5233 | auto maskOperands = createMaskOp.getOperands(); |
5234 | auto numMaskOperands = maskOperands.size(); |
5235 | |
5236 | // Check every mask dim size to see whether it can be dropped |
5237 | for (size_t i = numMaskOperands - 1; i >= numMaskOperands - numDimsToDrop; |
5238 | --i) { |
5239 | auto constant = maskOperands[i].getDefiningOp<arith::ConstantIndexOp>(); |
5240 | if (!constant || (constant.value() != 1)) |
5241 | return failure(); |
5242 | } |
5243 | SmallVector<Value> newMaskOperands = |
5244 | maskOperands.drop_back(numDimsToDrop); |
5245 | |
5246 | rewriter.replaceOpWithNewOp<vector::CreateMaskOp>(shapeOp, shapeOpResTy, |
5247 | newMaskOperands); |
5248 | return success(); |
5249 | } |
5250 | |
5251 | if (constantMaskOp) { |
5252 | auto maskDimSizes = constantMaskOp.getMaskDimSizes().getValue(); |
5253 | auto numMaskOperands = maskDimSizes.size(); |
5254 | |
5255 | // Check every mask dim size to see whether it can be dropped |
5256 | for (size_t i = numMaskOperands - 1; i >= numMaskOperands - numDimsToDrop; |
5257 | --i) { |
5258 | if (cast<IntegerAttr>(maskDimSizes[i]).getValue() != 1) |
5259 | return failure(); |
5260 | } |
5261 | |
5262 | auto newMaskOperands = maskDimSizes.drop_back(numDimsToDrop); |
5263 | ArrayAttr newMaskOperandsAttr = rewriter.getArrayAttr(newMaskOperands); |
5264 | |
5265 | rewriter.replaceOpWithNewOp<vector::ConstantMaskOp>(shapeOp, shapeOpResTy, |
5266 | newMaskOperandsAttr); |
5267 | return success(); |
5268 | } |
5269 | |
5270 | return failure(); |
5271 | } |
5272 | }; |
5273 | |
5274 | /// Pattern to rewrite a ShapeCast(Broadcast) -> Broadcast. |
5275 | /// This only applies when the shape of the broadcast source |
5276 | /// 1. is a suffix of the shape of the result (i.e. when broadcast without |
5277 | /// reshape is expressive enough to capture the result in a single op), or |
5278 | /// 2. has the same element count as the shape cast result. |
5279 | class ShapeCastBroadcastFolder final : public OpRewritePattern<ShapeCastOp> { |
5280 | public: |
5281 | using OpRewritePattern::OpRewritePattern; |
5282 | |
5283 | LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, |
5284 | PatternRewriter &rewriter) const override { |
5285 | auto broadcastOp = |
5286 | shapeCastOp.getSource().getDefiningOp<vector::BroadcastOp>(); |
5287 | if (!broadcastOp) |
5288 | return failure(); |
5289 | |
5290 | ArrayRef<int64_t> broadcastSourceShape; |
5291 | if (auto srcType = dyn_cast<VectorType>(broadcastOp.getSourceType())) |
5292 | broadcastSourceShape = srcType.getShape(); |
5293 | ArrayRef<int64_t> shapeCastTargetShape = |
5294 | shapeCastOp.getResultVectorType().getShape(); |
5295 | |
5296 | // If `broadcastSourceShape` is a suffix of the result, we can just replace |
5297 | // with a broadcast to the final shape. |
5298 | if (broadcastSourceShape == |
5299 | shapeCastTargetShape.take_back(N: broadcastSourceShape.size())) { |
5300 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>( |
5301 | shapeCastOp, shapeCastOp.getResultVectorType(), |
5302 | broadcastOp.getSource()); |
5303 | return success(); |
5304 | } |
5305 | |
5306 | // Otherwise, if the final result has the same element count, we can replace |
5307 | // with a shape cast. |
5308 | if (auto srcType = dyn_cast<VectorType>(broadcastOp.getSourceType())) { |
5309 | if (srcType.getNumElements() == |
5310 | shapeCastOp.getResultVectorType().getNumElements()) { |
5311 | rewriter.replaceOpWithNewOp<vector::ShapeCastOp>( |
5312 | shapeCastOp, shapeCastOp.getResultVectorType(), |
5313 | broadcastOp.getSource()); |
5314 | return success(); |
5315 | } |
5316 | } |
5317 | |
5318 | return failure(); |
5319 | } |
5320 | }; |
5321 | |
5322 | } // namespace |
5323 | |
5324 | void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, |
5325 | MLIRContext *context) { |
5326 | results.add<ShapeCastConstantFolder, ShapeCastCreateMaskFolderTrailingOneDim, |
5327 | ShapeCastBroadcastFolder>(context); |
5328 | } |
5329 | |
5330 | //===----------------------------------------------------------------------===// |
5331 | // VectorBitCastOp |
5332 | //===----------------------------------------------------------------------===// |
5333 | |
5334 | LogicalResult BitCastOp::verify() { |
5335 | auto sourceVectorType = getSourceVectorType(); |
5336 | auto resultVectorType = getResultVectorType(); |
5337 | |
5338 | for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { |
5339 | if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) |
5340 | return emitOpError("dimension size mismatch at: " ) << i; |
5341 | } |
5342 | |
5343 | DataLayout dataLayout = DataLayout::closest(*this); |
5344 | auto sourceElementBits = |
5345 | dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); |
5346 | auto resultElementBits = |
5347 | dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); |
5348 | |
5349 | if (sourceVectorType.getRank() == 0) { |
5350 | if (sourceElementBits != resultElementBits) |
5351 | return emitOpError("source/result bitwidth of the 0-D vector element " |
5352 | "types must be equal" ); |
5353 | } else if (sourceElementBits * sourceVectorType.getShape().back() != |
5354 | resultElementBits * resultVectorType.getShape().back()) { |
5355 | return emitOpError( |
5356 | "source/result bitwidth of the minor 1-D vectors must be equal" ); |
5357 | } |
5358 | |
5359 | return success(); |
5360 | } |
5361 | |
5362 | OpFoldResult BitCastOp::fold(FoldAdaptor adaptor) { |
5363 | // Nop cast. |
5364 | if (getSource().getType() == getResult().getType()) |
5365 | return getSource(); |
5366 | |
5367 | // Canceling bitcasts. |
5368 | if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) { |
5369 | if (getResult().getType() == otherOp.getSource().getType()) |
5370 | return otherOp.getSource(); |
5371 | |
5372 | setOperand(otherOp.getSource()); |
5373 | return getResult(); |
5374 | } |
5375 | |
5376 | Attribute sourceConstant = adaptor.getSource(); |
5377 | if (!sourceConstant) |
5378 | return {}; |
5379 | |
5380 | Type srcElemType = getSourceVectorType().getElementType(); |
5381 | Type dstElemType = getResultVectorType().getElementType(); |
5382 | |
5383 | if (auto floatPack = llvm::dyn_cast<DenseFPElementsAttr>(sourceConstant)) { |
5384 | if (floatPack.isSplat()) { |
5385 | auto splat = floatPack.getSplatValue<FloatAttr>(); |
5386 | |
5387 | // Casting fp16 into fp32. |
5388 | if (srcElemType.isF16() && dstElemType.isF32()) { |
5389 | uint32_t bits = static_cast<uint32_t>( |
5390 | splat.getValue().bitcastToAPInt().getZExtValue()); |
5391 | // Duplicate the 16-bit pattern. |
5392 | bits = (bits << 16) | (bits & 0xffff); |
5393 | APInt intBits(32, bits); |
5394 | APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); |
5395 | return DenseElementsAttr::get(getResultVectorType(), floatBits); |
5396 | } |
5397 | } |
5398 | } |
5399 | |
5400 | if (auto intPack = llvm::dyn_cast<DenseIntElementsAttr>(sourceConstant)) { |
5401 | if (intPack.isSplat()) { |
5402 | auto splat = intPack.getSplatValue<IntegerAttr>(); |
5403 | |
5404 | if (llvm::isa<IntegerType>(dstElemType)) { |
5405 | uint64_t srcBitWidth = srcElemType.getIntOrFloatBitWidth(); |
5406 | uint64_t dstBitWidth = dstElemType.getIntOrFloatBitWidth(); |
5407 | |
5408 | // Casting to a larger integer bit width. |
5409 | if (dstBitWidth > srcBitWidth && dstBitWidth % srcBitWidth == 0) { |
5410 | APInt intBits = splat.getValue().zext(dstBitWidth); |
5411 | |
5412 | // Duplicate the lower width element. |
5413 | for (uint64_t i = 0; i < dstBitWidth / srcBitWidth - 1; i++) |
5414 | intBits = (intBits << srcBitWidth) | intBits; |
5415 | return DenseElementsAttr::get(getResultVectorType(), intBits); |
5416 | } |
5417 | } |
5418 | } |
5419 | } |
5420 | |
5421 | return {}; |
5422 | } |
5423 | |
5424 | //===----------------------------------------------------------------------===// |
5425 | // TypeCastOp |
5426 | //===----------------------------------------------------------------------===// |
5427 | |
5428 | static SmallVector<int64_t, 8> (MemRefType memRefType) { |
5429 | auto vectorType = llvm::dyn_cast<VectorType>(memRefType.getElementType()); |
5430 | SmallVector<int64_t, 8> res(memRefType.getShape().begin(), |
5431 | memRefType.getShape().end()); |
5432 | if (vectorType) |
5433 | res.append(vectorType.getShape().begin(), vectorType.getShape().end()); |
5434 | return res; |
5435 | } |
5436 | |
5437 | /// Build the canonical memRefType with a single vector. |
5438 | /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. |
5439 | void TypeCastOp::build(OpBuilder &builder, OperationState &result, |
5440 | Value source) { |
5441 | result.addOperands(source); |
5442 | MemRefType memRefType = llvm::cast<MemRefType>(source.getType()); |
5443 | VectorType vectorType = |
5444 | VectorType::get(extractShape(memRefType), |
5445 | getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); |
5446 | result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), |
5447 | memRefType.getMemorySpace())); |
5448 | } |
5449 | |
5450 | LogicalResult TypeCastOp::verify() { |
5451 | MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); |
5452 | if (!canonicalType.getLayout().isIdentity()) |
5453 | return emitOpError("expects operand to be a memref with identity layout" ); |
5454 | if (!getResultMemRefType().getLayout().isIdentity()) |
5455 | return emitOpError("expects result to be a memref with identity layout" ); |
5456 | if (getResultMemRefType().getMemorySpace() != |
5457 | getMemRefType().getMemorySpace()) |
5458 | return emitOpError("expects result in same memory space" ); |
5459 | |
5460 | auto sourceType = getMemRefType(); |
5461 | auto resultType = getResultMemRefType(); |
5462 | if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != |
5463 | getElementTypeOrSelf(getElementTypeOrSelf(resultType))) |
5464 | return emitOpError( |
5465 | "expects result and operand with same underlying scalar type: " ) |
5466 | << resultType; |
5467 | if (extractShape(sourceType) != extractShape(resultType)) |
5468 | return emitOpError( |
5469 | "expects concatenated result and operand shapes to be equal: " ) |
5470 | << resultType; |
5471 | return success(); |
5472 | } |
5473 | |
5474 | //===----------------------------------------------------------------------===// |
5475 | // TransposeOp |
5476 | //===----------------------------------------------------------------------===// |
5477 | |
5478 | void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, |
5479 | Value vector, ArrayRef<int64_t> permutation) { |
5480 | VectorType vt = llvm::cast<VectorType>(vector.getType()); |
5481 | SmallVector<int64_t, 4> transposedShape(vt.getRank()); |
5482 | SmallVector<bool, 4> transposedScalableDims(vt.getRank()); |
5483 | for (unsigned i = 0; i < permutation.size(); ++i) { |
5484 | transposedShape[i] = vt.getShape()[permutation[i]]; |
5485 | transposedScalableDims[i] = vt.getScalableDims()[permutation[i]]; |
5486 | } |
5487 | |
5488 | result.addOperands(vector); |
5489 | result.addTypes(VectorType::get(transposedShape, vt.getElementType(), |
5490 | transposedScalableDims)); |
5491 | result.addAttribute(TransposeOp::getPermutationAttrName(result.name), |
5492 | builder.getDenseI64ArrayAttr(permutation)); |
5493 | } |
5494 | |
5495 | OpFoldResult vector::TransposeOp::fold(FoldAdaptor adaptor) { |
5496 | // Eliminate splat constant transpose ops. |
5497 | if (auto attr = |
5498 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getVector())) |
5499 | if (attr.isSplat()) |
5500 | return attr.reshape(getResultVectorType()); |
5501 | |
5502 | // Eliminate identity transpose ops. This happens when the dimensions of the |
5503 | // input vector remain in their original order after the transpose operation. |
5504 | ArrayRef<int64_t> perm = getPermutation(); |
5505 | |
5506 | // Check if the permutation of the dimensions contains sequential values: |
5507 | // {0, 1, 2, ...}. |
5508 | for (int64_t i = 0, e = perm.size(); i < e; i++) { |
5509 | if (perm[i] != i) |
5510 | return {}; |
5511 | } |
5512 | |
5513 | return getVector(); |
5514 | } |
5515 | |
5516 | LogicalResult vector::TransposeOp::verify() { |
5517 | VectorType vectorType = getSourceVectorType(); |
5518 | VectorType resultType = getResultVectorType(); |
5519 | int64_t rank = resultType.getRank(); |
5520 | if (vectorType.getRank() != rank) |
5521 | return emitOpError("vector result rank mismatch: " ) << rank; |
5522 | // Verify transposition array. |
5523 | ArrayRef<int64_t> perm = getPermutation(); |
5524 | int64_t size = perm.size(); |
5525 | if (rank != size) |
5526 | return emitOpError("transposition length mismatch: " ) << size; |
5527 | SmallVector<bool, 8> seen(rank, false); |
5528 | for (const auto &ta : llvm::enumerate(perm)) { |
5529 | if (ta.value() < 0 || ta.value() >= rank) |
5530 | return emitOpError("transposition index out of range: " ) << ta.value(); |
5531 | if (seen[ta.value()]) |
5532 | return emitOpError("duplicate position index: " ) << ta.value(); |
5533 | seen[ta.value()] = true; |
5534 | if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(ta.value())) |
5535 | return emitOpError("dimension size mismatch at: " ) << ta.value(); |
5536 | } |
5537 | return success(); |
5538 | } |
5539 | |
5540 | std::optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() { |
5541 | return llvm::to_vector<4>(getResultVectorType().getShape()); |
5542 | } |
5543 | |
5544 | namespace { |
5545 | |
5546 | // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. |
5547 | class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { |
5548 | public: |
5549 | using OpRewritePattern::OpRewritePattern; |
5550 | |
5551 | LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, |
5552 | PatternRewriter &rewriter) const override { |
5553 | // Composes two permutations: result[i] = permutation1[permutation2[i]]. |
5554 | auto composePermutations = [](ArrayRef<int64_t> permutation1, |
5555 | ArrayRef<int64_t> permutation2) { |
5556 | SmallVector<int64_t, 4> result; |
5557 | for (auto index : permutation2) |
5558 | result.push_back(Elt: permutation1[index]); |
5559 | return result; |
5560 | }; |
5561 | |
5562 | // Return if the input of 'transposeOp' is not defined by another transpose. |
5563 | vector::TransposeOp parentTransposeOp = |
5564 | transposeOp.getVector().getDefiningOp<vector::TransposeOp>(); |
5565 | if (!parentTransposeOp) |
5566 | return failure(); |
5567 | |
5568 | SmallVector<int64_t, 4> permutation = composePermutations( |
5569 | parentTransposeOp.getPermutation(), transposeOp.getPermutation()); |
5570 | // Replace 'transposeOp' with a new transpose operation. |
5571 | rewriter.replaceOpWithNewOp<vector::TransposeOp>( |
5572 | transposeOp, transposeOp.getResult().getType(), |
5573 | parentTransposeOp.getVector(), permutation); |
5574 | return success(); |
5575 | } |
5576 | }; |
5577 | |
5578 | // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>). |
5579 | struct FoldTransposedScalarBroadcast final |
5580 | : public OpRewritePattern<vector::TransposeOp> { |
5581 | using OpRewritePattern::OpRewritePattern; |
5582 | |
5583 | LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, |
5584 | PatternRewriter &rewriter) const override { |
5585 | auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>(); |
5586 | if (!bcastOp) |
5587 | return failure(); |
5588 | |
5589 | auto srcVectorType = llvm::dyn_cast<VectorType>(bcastOp.getSourceType()); |
5590 | if (!srcVectorType || srcVectorType.getNumElements() == 1) { |
5591 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>( |
5592 | transposeOp, transposeOp.getResultVectorType(), bcastOp.getSource()); |
5593 | return success(); |
5594 | } |
5595 | |
5596 | return failure(); |
5597 | } |
5598 | }; |
5599 | |
5600 | // Folds transpose(splat x : src_type) : res_type into splat x : res_type. |
5601 | class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> { |
5602 | public: |
5603 | using OpRewritePattern::OpRewritePattern; |
5604 | |
5605 | LogicalResult matchAndRewrite(TransposeOp transposeOp, |
5606 | PatternRewriter &rewriter) const override { |
5607 | auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>(); |
5608 | if (!splatOp) |
5609 | return failure(); |
5610 | |
5611 | rewriter.replaceOpWithNewOp<vector::SplatOp>( |
5612 | transposeOp, transposeOp.getResultVectorType(), splatOp.getInput()); |
5613 | return success(); |
5614 | } |
5615 | }; |
5616 | |
5617 | /// Folds transpose(create_mask) into a new transposed create_mask. |
5618 | class FoldTransposeCreateMask final : public OpRewritePattern<TransposeOp> { |
5619 | public: |
5620 | using OpRewritePattern::OpRewritePattern; |
5621 | |
5622 | LogicalResult matchAndRewrite(TransposeOp transpOp, |
5623 | PatternRewriter &rewriter) const override { |
5624 | Value transposeSrc = transpOp.getVector(); |
5625 | auto createMaskOp = transposeSrc.getDefiningOp<vector::CreateMaskOp>(); |
5626 | auto constantMaskOp = transposeSrc.getDefiningOp<vector::ConstantMaskOp>(); |
5627 | if (!createMaskOp && !constantMaskOp) |
5628 | return failure(); |
5629 | |
5630 | // Get the transpose permutation and apply it to the vector.create_mask or |
5631 | // vector.constant_mask operands. |
5632 | ArrayRef<int64_t> permutation = transpOp.getPermutation(); |
5633 | |
5634 | if (createMaskOp) { |
5635 | auto maskOperands = createMaskOp.getOperands(); |
5636 | SmallVector<Value> newOperands(maskOperands.begin(), maskOperands.end()); |
5637 | applyPermutationToVector(inVec&: newOperands, permutation); |
5638 | |
5639 | rewriter.replaceOpWithNewOp<vector::CreateMaskOp>( |
5640 | transpOp, transpOp.getResultVectorType(), newOperands); |
5641 | return success(); |
5642 | } |
5643 | |
5644 | // ConstantMaskOp case. |
5645 | auto maskDimSizes = constantMaskOp.getMaskDimSizes(); |
5646 | SmallVector<Attribute> newMaskDimSizes(maskDimSizes.getValue()); |
5647 | applyPermutationToVector(inVec&: newMaskDimSizes, permutation); |
5648 | |
5649 | rewriter.replaceOpWithNewOp<vector::ConstantMaskOp>( |
5650 | transpOp, transpOp.getResultVectorType(), |
5651 | ArrayAttr::get(transpOp.getContext(), newMaskDimSizes)); |
5652 | return success(); |
5653 | } |
5654 | }; |
5655 | |
5656 | } // namespace |
5657 | |
5658 | void vector::TransposeOp::getCanonicalizationPatterns( |
5659 | RewritePatternSet &results, MLIRContext *context) { |
5660 | results.add<FoldTransposeCreateMask, FoldTransposedScalarBroadcast, |
5661 | TransposeFolder, FoldTransposeSplat>(context); |
5662 | } |
5663 | |
5664 | //===----------------------------------------------------------------------===// |
5665 | // ConstantMaskOp |
5666 | //===----------------------------------------------------------------------===// |
5667 | |
5668 | LogicalResult ConstantMaskOp::verify() { |
5669 | auto resultType = llvm::cast<VectorType>(getResult().getType()); |
5670 | // Check the corner case of 0-D vectors first. |
5671 | if (resultType.getRank() == 0) { |
5672 | if (getMaskDimSizes().size() != 1) |
5673 | return emitError("array attr must have length 1 for 0-D vectors" ); |
5674 | auto dim = llvm::cast<IntegerAttr>(getMaskDimSizes()[0]).getInt(); |
5675 | if (dim != 0 && dim != 1) |
5676 | return emitError("mask dim size must be either 0 or 1 for 0-D vectors" ); |
5677 | return success(); |
5678 | } |
5679 | |
5680 | // Verify that array attr size matches the rank of the vector result. |
5681 | if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank()) |
5682 | return emitOpError( |
5683 | "must specify array attr of size equal vector result rank" ); |
5684 | // Verify that each array attr element is in bounds of corresponding vector |
5685 | // result dimension size. |
5686 | auto resultShape = resultType.getShape(); |
5687 | auto resultScalableDims = resultType.getScalableDims(); |
5688 | SmallVector<int64_t, 4> maskDimSizes; |
5689 | for (const auto [index, intAttr] : llvm::enumerate(getMaskDimSizes())) { |
5690 | int64_t maskDimSize = llvm::cast<IntegerAttr>(intAttr).getInt(); |
5691 | if (maskDimSize < 0 || maskDimSize > resultShape[index]) |
5692 | return emitOpError( |
5693 | "array attr of size out of bounds of vector result dimension size" ); |
5694 | if (resultScalableDims[index] && maskDimSize != 0 && |
5695 | maskDimSize != resultShape[index]) |
5696 | return emitOpError( |
5697 | "only supports 'none set' or 'all set' scalable dimensions" ); |
5698 | maskDimSizes.push_back(maskDimSize); |
5699 | } |
5700 | // Verify that if one mask dim size is zero, they all should be zero (because |
5701 | // the mask region is a conjunction of each mask dimension interval). |
5702 | bool anyZeros = llvm::is_contained(maskDimSizes, 0); |
5703 | bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); |
5704 | if (anyZeros && !allZeros) |
5705 | return emitOpError("expected all mask dim sizes to be zeros, " |
5706 | "as a result of conjunction with zero mask dim" ); |
5707 | return success(); |
5708 | } |
5709 | |
5710 | bool ConstantMaskOp::isAllOnesMask() { |
5711 | auto resultType = getVectorType(); |
5712 | // Check the corner case of 0-D vectors first. |
5713 | if (resultType.getRank() == 0) { |
5714 | assert(getMaskDimSizes().size() == 1 && "invalid sizes for zero rank mask" ); |
5715 | return llvm::cast<IntegerAttr>(getMaskDimSizes()[0]).getInt() == 1; |
5716 | } |
5717 | for (const auto [resultSize, intAttr] : |
5718 | llvm::zip_equal(resultType.getShape(), getMaskDimSizes())) { |
5719 | int64_t maskDimSize = llvm::cast<IntegerAttr>(intAttr).getInt(); |
5720 | if (maskDimSize < resultSize) |
5721 | return false; |
5722 | } |
5723 | return true; |
5724 | } |
5725 | |
5726 | //===----------------------------------------------------------------------===// |
5727 | // CreateMaskOp |
5728 | //===----------------------------------------------------------------------===// |
5729 | |
5730 | void CreateMaskOp::build(OpBuilder &builder, OperationState &result, |
5731 | VectorType type, |
5732 | ArrayRef<OpFoldResult> mixedOperands) { |
5733 | SmallVector<Value> operands = |
5734 | getValueOrCreateConstantIndexOp(builder, result.location, mixedOperands); |
5735 | build(builder, result, type, operands); |
5736 | } |
5737 | |
5738 | LogicalResult CreateMaskOp::verify() { |
5739 | auto vectorType = llvm::cast<VectorType>(getResult().getType()); |
5740 | // Verify that an operand was specified for each result vector each dimension. |
5741 | if (vectorType.getRank() == 0) { |
5742 | if (getNumOperands() != 1) |
5743 | return emitOpError( |
5744 | "must specify exactly one operand for 0-D create_mask" ); |
5745 | } else if (getNumOperands() != |
5746 | llvm::cast<VectorType>(getResult().getType()).getRank()) { |
5747 | return emitOpError( |
5748 | "must specify an operand for each result vector dimension" ); |
5749 | } |
5750 | return success(); |
5751 | } |
5752 | |
5753 | namespace { |
5754 | |
5755 | /// Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. |
5756 | /// |
5757 | /// Ex 1: |
5758 | /// %c2 = arith.constant 2 : index |
5759 | /// %c3 = arith.constant 3 : index |
5760 | /// %0 = vector.create_mask %c3, %c2 : vector<4x3xi1> |
5761 | /// Becomes: |
5762 | /// vector.constant_mask [3, 2] : vector<4x3xi1> |
5763 | /// |
5764 | /// Ex 2: |
5765 | /// %c_neg_1 = arith.constant -1 : index |
5766 | /// %0 = vector.create_mask %c_neg_1 : vector<[8]xi1> |
5767 | /// becomes: |
5768 | /// vector.constant_mask [0] : vector<[8]xi1> |
5769 | /// |
5770 | /// Ex 3: |
5771 | /// %c8 = arith.constant 8 : index |
5772 | /// %c16 = arith.constant 16 : index |
5773 | /// %0 = vector.vscale |
5774 | /// %1 = arith.muli %0, %c16 : index |
5775 | /// %10 = vector.create_mask %c8, %1 : vector<8x[16]xi1> |
5776 | /// becomes: |
5777 | /// %0 = vector.constant_mask [8, 16] : vector<8x[16]xi1> |
5778 | class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { |
5779 | public: |
5780 | using OpRewritePattern::OpRewritePattern; |
5781 | |
5782 | LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, |
5783 | PatternRewriter &rewriter) const override { |
5784 | VectorType retTy = createMaskOp.getResult().getType(); |
5785 | bool isScalable = retTy.isScalable(); |
5786 | |
5787 | // Check every mask operand |
5788 | for (auto [opIdx, operand] : llvm::enumerate(createMaskOp.getOperands())) { |
5789 | if (auto cst = getConstantIntValue(operand)) { |
5790 | // Most basic case - this operand is a constant value. Note that for |
5791 | // scalable dimensions, CreateMaskOp can be folded only if the |
5792 | // corresponding operand is negative or zero. |
5793 | if (retTy.getScalableDims()[opIdx] && *cst > 0) |
5794 | return failure(); |
5795 | |
5796 | continue; |
5797 | } |
5798 | |
5799 | // Non-constant operands are not allowed for non-scalable vectors. |
5800 | if (!isScalable) |
5801 | return failure(); |
5802 | |
5803 | // For scalable vectors, "arith.muli %vscale, %dimSize" means an "all |
5804 | // true" mask, so can also be treated as constant. |
5805 | auto mul = operand.getDefiningOp<arith::MulIOp>(); |
5806 | if (!mul) |
5807 | return failure(); |
5808 | auto mulLHS = mul.getRhs(); |
5809 | auto mulRHS = mul.getLhs(); |
5810 | bool isOneOpVscale = |
5811 | (isa<vector::VectorScaleOp>(mulLHS.getDefiningOp()) || |
5812 | isa<vector::VectorScaleOp>(mulRHS.getDefiningOp())); |
5813 | |
5814 | auto isConstantValMatchingDim = |
5815 | [=, dim = retTy.getShape()[opIdx]](Value operand) { |
5816 | auto constantVal = getConstantIntValue(operand); |
5817 | return (constantVal.has_value() && constantVal.value() == dim); |
5818 | }; |
5819 | |
5820 | bool isOneOpConstantMatchingDim = |
5821 | isConstantValMatchingDim(mulLHS) || isConstantValMatchingDim(mulRHS); |
5822 | |
5823 | if (!isOneOpVscale || !isOneOpConstantMatchingDim) |
5824 | return failure(); |
5825 | } |
5826 | |
5827 | // Gather constant mask dimension sizes. |
5828 | SmallVector<int64_t, 4> maskDimSizes; |
5829 | maskDimSizes.reserve(N: createMaskOp->getNumOperands()); |
5830 | for (auto [operand, maxDimSize] : llvm::zip_equal( |
5831 | createMaskOp.getOperands(), createMaskOp.getType().getShape())) { |
5832 | std::optional dimSize = getConstantIntValue(operand); |
5833 | if (!dimSize) { |
5834 | // Although not a constant, it is safe to assume that `operand` is |
5835 | // "vscale * maxDimSize". |
5836 | maskDimSizes.push_back(maxDimSize); |
5837 | continue; |
5838 | } |
5839 | int64_t dimSizeVal = std::min(dimSize.value(), maxDimSize); |
5840 | // If one of dim sizes is zero, set all dims to zero. |
5841 | if (dimSize <= 0) { |
5842 | maskDimSizes.assign(createMaskOp.getType().getRank(), 0); |
5843 | break; |
5844 | } |
5845 | maskDimSizes.push_back(dimSizeVal); |
5846 | } |
5847 | |
5848 | // Replace 'createMaskOp' with ConstantMaskOp. |
5849 | rewriter.replaceOpWithNewOp<ConstantMaskOp>( |
5850 | createMaskOp, retTy, |
5851 | vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); |
5852 | return success(); |
5853 | } |
5854 | }; |
5855 | |
5856 | } // namespace |
5857 | |
5858 | void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, |
5859 | MLIRContext *context) { |
5860 | results.add<CreateMaskFolder>(context); |
5861 | } |
5862 | |
5863 | //===----------------------------------------------------------------------===// |
5864 | // MaskOp |
5865 | //===----------------------------------------------------------------------===// |
5866 | |
5867 | void MaskOp::build( |
5868 | OpBuilder &builder, OperationState &result, Value mask, |
5869 | Operation *maskableOp, |
5870 | function_ref<void(OpBuilder &, Operation *)> maskRegionBuilder) { |
5871 | assert(maskRegionBuilder && |
5872 | "builder callback for 'maskRegion' must be present" ); |
5873 | |
5874 | result.addOperands(mask); |
5875 | OpBuilder::InsertionGuard guard(builder); |
5876 | Region *maskRegion = result.addRegion(); |
5877 | builder.createBlock(maskRegion); |
5878 | maskRegionBuilder(builder, maskableOp); |
5879 | } |
5880 | |
5881 | void MaskOp::build( |
5882 | OpBuilder &builder, OperationState &result, TypeRange resultTypes, |
5883 | Value mask, Operation *maskableOp, |
5884 | function_ref<void(OpBuilder &, Operation *)> maskRegionBuilder) { |
5885 | build(builder, result, resultTypes, mask, /*passthru=*/Value(), maskableOp, |
5886 | maskRegionBuilder); |
5887 | } |
5888 | |
5889 | void MaskOp::build( |
5890 | OpBuilder &builder, OperationState &result, TypeRange resultTypes, |
5891 | Value mask, Value passthru, Operation *maskableOp, |
5892 | function_ref<void(OpBuilder &, Operation *)> maskRegionBuilder) { |
5893 | build(builder, result, mask, maskableOp, maskRegionBuilder); |
5894 | if (passthru) |
5895 | result.addOperands(passthru); |
5896 | result.addTypes(resultTypes); |
5897 | } |
5898 | |
5899 | ParseResult MaskOp::parse(OpAsmParser &parser, OperationState &result) { |
5900 | // Create the op region. |
5901 | result.regions.reserve(1); |
5902 | Region &maskRegion = *result.addRegion(); |
5903 | |
5904 | auto &builder = parser.getBuilder(); |
5905 | |
5906 | // Parse all the operands. |
5907 | OpAsmParser::UnresolvedOperand mask; |
5908 | if (parser.parseOperand(mask)) |
5909 | return failure(); |
5910 | |
5911 | // Optional passthru operand. |
5912 | OpAsmParser::UnresolvedOperand passthru; |
5913 | ParseResult parsePassthru = parser.parseOptionalComma(); |
5914 | if (parsePassthru.succeeded() && parser.parseOperand(passthru)) |
5915 | return failure(); |
5916 | |
5917 | // Parse op region. |
5918 | if (parser.parseRegion(maskRegion, /*arguments=*/{}, /*argTypes=*/{})) |
5919 | return failure(); |
5920 | |
5921 | MaskOp::ensureTerminator(maskRegion, builder, result.location); |
5922 | |
5923 | // Parse the optional attribute list. |
5924 | if (parser.parseOptionalAttrDict(result.attributes)) |
5925 | return failure(); |
5926 | |
5927 | // Parse all the types. |
5928 | Type maskType; |
5929 | if (parser.parseColonType(maskType)) |
5930 | return failure(); |
5931 | |
5932 | SmallVector<Type> resultTypes; |
5933 | if (parser.parseOptionalArrowTypeList(resultTypes)) |
5934 | return failure(); |
5935 | result.types.append(resultTypes); |
5936 | |
5937 | // Resolve operands. |
5938 | if (parser.resolveOperand(mask, maskType, result.operands)) |
5939 | return failure(); |
5940 | |
5941 | if (parsePassthru.succeeded()) |
5942 | if (parser.resolveOperand(passthru, resultTypes[0], result.operands)) |
5943 | return failure(); |
5944 | |
5945 | return success(); |
5946 | } |
5947 | |
5948 | void mlir::vector::MaskOp::print(OpAsmPrinter &p) { |
5949 | p << " " << getMask(); |
5950 | if (getPassthru()) |
5951 | p << ", " << getPassthru(); |
5952 | |
5953 | // Print single masked operation and skip terminator. |
5954 | p << " { " ; |
5955 | Block *singleBlock = &getMaskRegion().getBlocks().front(); |
5956 | if (singleBlock && !singleBlock->getOperations().empty()) |
5957 | p.printCustomOrGenericOp(&singleBlock->front()); |
5958 | p << " }" ; |
5959 | |
5960 | p.printOptionalAttrDict(getOperation()->getAttrs()); |
5961 | |
5962 | p << " : " << getMask().getType(); |
5963 | if (getNumResults() > 0) |
5964 | p << " -> " << getResultTypes(); |
5965 | } |
5966 | |
5967 | void MaskOp::ensureTerminator(Region ®ion, Builder &builder, Location loc) { |
5968 | OpTrait::SingleBlockImplicitTerminator<vector::YieldOp>::Impl< |
5969 | MaskOp>::ensureTerminator(region, builder, loc); |
5970 | // Keep the default yield terminator if the number of masked operations is not |
5971 | // the expected. This case will trigger a verification failure. |
5972 | Block &block = region.front(); |
5973 | if (block.getOperations().size() != 2) |
5974 | return; |
5975 | |
5976 | // Replace default yield terminator with a new one that returns the results |
5977 | // from the masked operation. |
5978 | OpBuilder opBuilder(builder.getContext()); |
5979 | Operation *maskedOp = &block.front(); |
5980 | Operation *oldYieldOp = &block.back(); |
5981 | assert(isa<vector::YieldOp>(oldYieldOp) && "Expected vector::YieldOp" ); |
5982 | |
5983 | // Empty vector.mask op. |
5984 | if (maskedOp == oldYieldOp) |
5985 | return; |
5986 | |
5987 | opBuilder.setInsertionPoint(oldYieldOp); |
5988 | opBuilder.create<vector::YieldOp>(loc, maskedOp->getResults()); |
5989 | oldYieldOp->dropAllReferences(); |
5990 | oldYieldOp->erase(); |
5991 | } |
5992 | |
5993 | LogicalResult MaskOp::verify() { |
5994 | // Structural checks. |
5995 | Block &block = getMaskRegion().getBlocks().front(); |
5996 | if (block.getOperations().empty()) |
5997 | return emitOpError("expects a terminator within the mask region" ); |
5998 | if (block.getOperations().size() > 2) |
5999 | return emitOpError("expects only one operation to mask" ); |
6000 | |
6001 | // Terminator checks. |
6002 | auto terminator = dyn_cast<vector::YieldOp>(block.back()); |
6003 | if (!terminator) |
6004 | return emitOpError("expects a terminator within the mask region" ); |
6005 | |
6006 | if (terminator->getNumOperands() != getNumResults()) |
6007 | return emitOpError( |
6008 | "expects number of results to match mask region yielded values" ); |
6009 | |
6010 | auto maskableOp = dyn_cast<MaskableOpInterface>(block.front()); |
6011 | // Empty vector.mask. Nothing else to check. |
6012 | if (!maskableOp) |
6013 | return success(); |
6014 | |
6015 | // Result checks. |
6016 | if (maskableOp->getNumResults() != getNumResults()) |
6017 | return emitOpError("expects number of results to match maskable operation " |
6018 | "number of results" ); |
6019 | |
6020 | if (!llvm::equal(maskableOp->getResultTypes(), getResultTypes())) |
6021 | return emitOpError( |
6022 | "expects result type to match maskable operation result type" ); |
6023 | |
6024 | if (llvm::count_if(maskableOp->getResultTypes(), |
6025 | [](Type t) { return llvm::isa<VectorType>(t); }) > 1) |
6026 | return emitOpError("multiple vector results not supported" ); |
6027 | |
6028 | // Mask checks. |
6029 | Type expectedMaskType = maskableOp.getExpectedMaskType(); |
6030 | if (getMask().getType() != expectedMaskType) |
6031 | return emitOpError("expects a " ) |
6032 | << expectedMaskType << " mask for the maskable operation" ; |
6033 | |
6034 | // Passthru checks. |
6035 | Value passthru = getPassthru(); |
6036 | if (passthru) { |
6037 | if (!maskableOp.supportsPassthru()) |
6038 | return emitOpError( |
6039 | "doesn't expect a passthru argument for this maskable operation" ); |
6040 | |
6041 | if (maskableOp->getNumResults() != 1) |
6042 | return emitOpError("expects result when passthru argument is provided" ); |
6043 | |
6044 | if (passthru.getType() != maskableOp->getResultTypes()[0]) |
6045 | return emitOpError("expects passthru type to match result type" ); |
6046 | } |
6047 | |
6048 | return success(); |
6049 | } |
6050 | |
6051 | /// Folds vector.mask ops with an all-true mask. |
6052 | LogicalResult MaskOp::fold(FoldAdaptor adaptor, |
6053 | SmallVectorImpl<OpFoldResult> &results) { |
6054 | MaskFormat maskFormat = getMaskFormat(getMask()); |
6055 | if (isEmpty()) |
6056 | return failure(); |
6057 | |
6058 | if (maskFormat != MaskFormat::AllTrue) |
6059 | return failure(); |
6060 | |
6061 | // Move maskable operation outside of the `vector.mask` region. |
6062 | Operation *maskableOp = getMaskableOp(); |
6063 | maskableOp->dropAllUses(); |
6064 | maskableOp->moveBefore(getOperation()); |
6065 | |
6066 | llvm::append_range(results, maskableOp->getResults()); |
6067 | return success(); |
6068 | } |
6069 | |
6070 | // Elides empty vector.mask operations with or without return values. Propagates |
6071 | // the yielded values by the vector.yield terminator, if any, or erases the op, |
6072 | // otherwise. |
6073 | class ElideEmptyMaskOp : public OpRewritePattern<MaskOp> { |
6074 | using OpRewritePattern::OpRewritePattern; |
6075 | |
6076 | LogicalResult matchAndRewrite(MaskOp maskOp, |
6077 | PatternRewriter &rewriter) const override { |
6078 | auto maskingOp = cast<MaskingOpInterface>(maskOp.getOperation()); |
6079 | if (maskingOp.getMaskableOp()) |
6080 | return failure(); |
6081 | |
6082 | if (!maskOp.isEmpty()) |
6083 | return failure(); |
6084 | |
6085 | Block *block = maskOp.getMaskBlock(); |
6086 | auto terminator = cast<vector::YieldOp>(block->front()); |
6087 | if (terminator.getNumOperands() == 0) |
6088 | rewriter.eraseOp(op: maskOp); |
6089 | else |
6090 | rewriter.replaceOp(maskOp, terminator.getOperands()); |
6091 | |
6092 | return success(); |
6093 | } |
6094 | }; |
6095 | |
6096 | void MaskOp::getCanonicalizationPatterns(RewritePatternSet &results, |
6097 | MLIRContext *context) { |
6098 | results.add<ElideEmptyMaskOp>(context); |
6099 | } |
6100 | |
6101 | // MaskingOpInterface definitions. |
6102 | |
6103 | /// Returns the operation masked by this 'vector.mask'. |
6104 | Operation *MaskOp::getMaskableOp() { |
6105 | Block *block = getMaskBlock(); |
6106 | if (block->getOperations().size() < 2) |
6107 | return nullptr; |
6108 | |
6109 | return &block->front(); |
6110 | } |
6111 | |
6112 | /// Returns true if 'vector.mask' has a passthru value. |
6113 | bool MaskOp::hasPassthru() { return getPassthru() != Value(); } |
6114 | |
6115 | //===----------------------------------------------------------------------===// |
6116 | // ScanOp |
6117 | //===----------------------------------------------------------------------===// |
6118 | |
6119 | LogicalResult ScanOp::verify() { |
6120 | VectorType srcType = getSourceType(); |
6121 | VectorType initialType = getInitialValueType(); |
6122 | // Check reduction dimension < rank. |
6123 | int64_t srcRank = srcType.getRank(); |
6124 | int64_t reductionDim = getReductionDim(); |
6125 | if (reductionDim >= srcRank) |
6126 | return emitOpError("reduction dimension " ) |
6127 | << reductionDim << " has to be less than " << srcRank; |
6128 | |
6129 | // Check that rank(initial_value) = rank(src) - 1. |
6130 | int64_t initialValueRank = initialType.getRank(); |
6131 | if (initialValueRank != srcRank - 1) |
6132 | return emitOpError("initial value rank " ) |
6133 | << initialValueRank << " has to be equal to " << srcRank - 1; |
6134 | |
6135 | // Check shapes of initial value and src. |
6136 | ArrayRef<int64_t> srcShape = srcType.getShape(); |
6137 | ArrayRef<int64_t> initialValueShapes = initialType.getShape(); |
6138 | SmallVector<int64_t> expectedShape; |
6139 | for (int i = 0; i < srcRank; i++) { |
6140 | if (i != reductionDim) |
6141 | expectedShape.push_back(srcShape[i]); |
6142 | } |
6143 | if (!llvm::equal(initialValueShapes, expectedShape)) { |
6144 | return emitOpError("incompatible input/initial value shapes" ); |
6145 | } |
6146 | |
6147 | // Verify supported reduction kind. |
6148 | Type eltType = getDestType().getElementType(); |
6149 | if (!isSupportedCombiningKind(getKind(), eltType)) |
6150 | return emitOpError("unsupported reduction type " ) |
6151 | << eltType << " for kind '" << stringifyCombiningKind(getKind()) |
6152 | << "'" ; |
6153 | |
6154 | return success(); |
6155 | } |
6156 | |
6157 | void mlir::vector::populateVectorToVectorCanonicalizationPatterns( |
6158 | RewritePatternSet &patterns, PatternBenefit benefit) { |
6159 | patterns |
6160 | .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, |
6161 | ScatterFolder, ExpandLoadFolder, CompressStoreFolder, |
6162 | StridedSliceConstantMaskFolder, TransposeFolder>( |
6163 | arg: patterns.getContext(), args&: benefit); |
6164 | } |
6165 | |
6166 | //===----------------------------------------------------------------------===// |
6167 | // SplatOp |
6168 | //===----------------------------------------------------------------------===// |
6169 | |
6170 | OpFoldResult SplatOp::fold(FoldAdaptor adaptor) { |
6171 | auto constOperand = adaptor.getInput(); |
6172 | if (!isa_and_nonnull<IntegerAttr, FloatAttr>(constOperand)) |
6173 | return {}; |
6174 | |
6175 | // SplatElementsAttr::get treats single value for second arg as being a splat. |
6176 | return SplatElementsAttr::get(getType(), {constOperand}); |
6177 | } |
6178 | |
6179 | //===----------------------------------------------------------------------===// |
6180 | // WarpExecuteOnLane0Op |
6181 | //===----------------------------------------------------------------------===// |
6182 | |
6183 | void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) { |
6184 | p << "(" << getLaneid() << ")" ; |
6185 | |
6186 | SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()}; |
6187 | auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName()); |
6188 | p << "[" << llvm::cast<IntegerAttr>(warpSizeAttr).getInt() << "]" ; |
6189 | |
6190 | if (!getArgs().empty()) |
6191 | p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")" ; |
6192 | if (!getResults().empty()) |
6193 | p << " -> (" << getResults().getTypes() << ')'; |
6194 | p << " " ; |
6195 | p.printRegion(getRegion(), |
6196 | /*printEntryBlockArgs=*/true, |
6197 | /*printBlockTerminators=*/!getResults().empty()); |
6198 | p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr); |
6199 | } |
6200 | |
6201 | ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser, |
6202 | OperationState &result) { |
6203 | // Create the region. |
6204 | result.regions.reserve(1); |
6205 | Region *warpRegion = result.addRegion(); |
6206 | |
6207 | auto &builder = parser.getBuilder(); |
6208 | OpAsmParser::UnresolvedOperand laneId; |
6209 | |
6210 | // Parse predicate operand. |
6211 | if (parser.parseLParen() || |
6212 | parser.parseOperand(laneId, /*allowResultNumber=*/false) || |
6213 | parser.parseRParen()) |
6214 | return failure(); |
6215 | |
6216 | int64_t warpSize; |
6217 | if (parser.parseLSquare() || parser.parseInteger(warpSize) || |
6218 | parser.parseRSquare()) |
6219 | return failure(); |
6220 | result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(), |
6221 | builder.getContext())), |
6222 | builder.getI64IntegerAttr(warpSize)); |
6223 | |
6224 | if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands)) |
6225 | return failure(); |
6226 | |
6227 | llvm::SMLoc inputsOperandsLoc; |
6228 | SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands; |
6229 | SmallVector<Type> inputTypes; |
6230 | if (succeeded(parser.parseOptionalKeyword("args" ))) { |
6231 | if (parser.parseLParen()) |
6232 | return failure(); |
6233 | |
6234 | inputsOperandsLoc = parser.getCurrentLocation(); |
6235 | if (parser.parseOperandList(inputsOperands) || |
6236 | parser.parseColonTypeList(inputTypes) || parser.parseRParen()) |
6237 | return failure(); |
6238 | } |
6239 | if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc, |
6240 | result.operands)) |
6241 | return failure(); |
6242 | |
6243 | // Parse optional results type list. |
6244 | if (parser.parseOptionalArrowTypeList(result.types)) |
6245 | return failure(); |
6246 | // Parse the region. |
6247 | if (parser.parseRegion(*warpRegion, /*arguments=*/{}, |
6248 | /*argTypes=*/{})) |
6249 | return failure(); |
6250 | WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location); |
6251 | |
6252 | // Parse the optional attribute list. |
6253 | if (parser.parseOptionalAttrDict(result.attributes)) |
6254 | return failure(); |
6255 | return success(); |
6256 | } |
6257 | |
6258 | void WarpExecuteOnLane0Op::getSuccessorRegions( |
6259 | RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> ®ions) { |
6260 | if (!point.isParent()) { |
6261 | regions.push_back(RegionSuccessor(getResults())); |
6262 | return; |
6263 | } |
6264 | |
6265 | // The warp region is always executed |
6266 | regions.push_back(RegionSuccessor(&getWarpRegion())); |
6267 | } |
6268 | |
6269 | void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, |
6270 | TypeRange resultTypes, Value laneId, |
6271 | int64_t warpSize) { |
6272 | build(builder, result, resultTypes, laneId, warpSize, |
6273 | /*operands=*/std::nullopt, /*argTypes=*/std::nullopt); |
6274 | } |
6275 | |
6276 | void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, |
6277 | TypeRange resultTypes, Value laneId, |
6278 | int64_t warpSize, ValueRange args, |
6279 | TypeRange blockArgTypes) { |
6280 | result.addOperands(laneId); |
6281 | result.addAttribute(getAttributeNames()[0], |
6282 | builder.getI64IntegerAttr(warpSize)); |
6283 | result.addTypes(resultTypes); |
6284 | result.addOperands(args); |
6285 | assert(args.size() == blockArgTypes.size()); |
6286 | OpBuilder::InsertionGuard guard(builder); |
6287 | Region *warpRegion = result.addRegion(); |
6288 | Block *block = builder.createBlock(warpRegion); |
6289 | for (auto [type, arg] : llvm::zip_equal(blockArgTypes, args)) |
6290 | block->addArgument(type, arg.getLoc()); |
6291 | } |
6292 | |
6293 | /// Helper check if the distributed vector type is consistent with the expanded |
6294 | /// type and distributed size. |
6295 | static LogicalResult verifyDistributedType(Type expanded, Type distributed, |
6296 | int64_t warpSize, Operation *op) { |
6297 | // If the types matches there is no distribution. |
6298 | if (expanded == distributed) |
6299 | return success(); |
6300 | auto expandedVecType = llvm::dyn_cast<VectorType>(expanded); |
6301 | auto distributedVecType = llvm::dyn_cast<VectorType>(distributed); |
6302 | if (!expandedVecType || !distributedVecType) |
6303 | return op->emitOpError(message: "expected vector type for distributed operands." ); |
6304 | if (expandedVecType.getRank() != distributedVecType.getRank() || |
6305 | expandedVecType.getElementType() != distributedVecType.getElementType()) |
6306 | return op->emitOpError( |
6307 | message: "expected distributed vectors to have same rank and element type." ); |
6308 | |
6309 | SmallVector<int64_t> scales(expandedVecType.getRank(), 1); |
6310 | for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) { |
6311 | int64_t eDim = expandedVecType.getDimSize(i); |
6312 | int64_t dDim = distributedVecType.getDimSize(i); |
6313 | if (eDim == dDim) |
6314 | continue; |
6315 | if (eDim % dDim != 0) |
6316 | return op->emitOpError() |
6317 | << "expected expanded vector dimension #" << i << " (" << eDim |
6318 | << ") to be a multipler of the distributed vector dimension (" |
6319 | << dDim << ")" ; |
6320 | scales[i] = eDim / dDim; |
6321 | } |
6322 | if (std::accumulate(first: scales.begin(), last: scales.end(), init: 1, |
6323 | binary_op: std::multiplies<int64_t>()) != warpSize) |
6324 | return op->emitOpError() |
6325 | << "incompatible distribution dimensions from " << expandedVecType |
6326 | << " to " << distributedVecType << " with warp size = " << warpSize; |
6327 | |
6328 | return success(); |
6329 | } |
6330 | |
6331 | LogicalResult WarpExecuteOnLane0Op::verify() { |
6332 | if (getArgs().size() != getWarpRegion().getNumArguments()) |
6333 | return emitOpError( |
6334 | "expected same number op arguments and block arguments." ); |
6335 | auto yield = |
6336 | cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator()); |
6337 | if (yield.getNumOperands() != getNumResults()) |
6338 | return emitOpError( |
6339 | "expected same number of yield operands and return values." ); |
6340 | int64_t warpSize = getWarpSize(); |
6341 | for (auto [regionArg, arg] : |
6342 | llvm::zip_equal(getWarpRegion().getArguments(), getArgs())) { |
6343 | if (failed(verifyDistributedType(regionArg.getType(), arg.getType(), |
6344 | warpSize, getOperation()))) |
6345 | return failure(); |
6346 | } |
6347 | for (auto [yieldOperand, result] : |
6348 | llvm::zip_equal(yield.getOperands(), getResults())) { |
6349 | if (failed(verifyDistributedType(yieldOperand.getType(), result.getType(), |
6350 | warpSize, getOperation()))) |
6351 | return failure(); |
6352 | } |
6353 | return success(); |
6354 | } |
6355 | |
6356 | bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) { |
6357 | return succeeded( |
6358 | verifyDistributedType(lhs, rhs, getWarpSize(), getOperation())); |
6359 | } |
6360 | |
6361 | Value mlir::vector::makeArithReduction(OpBuilder &b, Location loc, |
6362 | CombiningKind kind, Value v1, Value acc, |
6363 | arith::FastMathFlagsAttr fastmath, |
6364 | Value mask) { |
6365 | Type t1 = getElementTypeOrSelf(type: v1.getType()); |
6366 | Type tAcc = getElementTypeOrSelf(type: acc.getType()); |
6367 | Value result; |
6368 | |
6369 | switch (kind) { |
6370 | case CombiningKind::ADD: |
6371 | if (t1.isIntOrIndex() && tAcc.isIntOrIndex()) |
6372 | result = b.createOrFold<arith::AddIOp>(loc, v1, acc); |
6373 | else if (llvm::isa<FloatType>(Val: t1) && llvm::isa<FloatType>(Val: tAcc)) |
6374 | result = b.createOrFold<arith::AddFOp>(loc, v1, acc, fastmath); |
6375 | else |
6376 | llvm_unreachable("invalid value types for ADD reduction" ); |
6377 | break; |
6378 | case CombiningKind::AND: |
6379 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values" ); |
6380 | result = b.createOrFold<arith::AndIOp>(loc, v1, acc); |
6381 | break; |
6382 | case CombiningKind::MAXNUMF: |
6383 | assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) && |
6384 | "expected float values" ); |
6385 | result = b.createOrFold<arith::MaxNumFOp>(loc, v1, acc, fastmath); |
6386 | break; |
6387 | case CombiningKind::MAXIMUMF: |
6388 | assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) && |
6389 | "expected float values" ); |
6390 | result = b.createOrFold<arith::MaximumFOp>(loc, v1, acc, fastmath); |
6391 | break; |
6392 | case CombiningKind::MINNUMF: |
6393 | assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) && |
6394 | "expected float values" ); |
6395 | result = b.createOrFold<arith::MinNumFOp>(loc, v1, acc, fastmath); |
6396 | break; |
6397 | case CombiningKind::MINIMUMF: |
6398 | assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) && |
6399 | "expected float values" ); |
6400 | result = b.createOrFold<arith::MinimumFOp>(loc, v1, acc, fastmath); |
6401 | break; |
6402 | case CombiningKind::MAXSI: |
6403 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values" ); |
6404 | result = b.createOrFold<arith::MaxSIOp>(loc, v1, acc); |
6405 | break; |
6406 | case CombiningKind::MINSI: |
6407 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values" ); |
6408 | result = b.createOrFold<arith::MinSIOp>(loc, v1, acc); |
6409 | break; |
6410 | case CombiningKind::MAXUI: |
6411 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values" ); |
6412 | result = b.createOrFold<arith::MaxUIOp>(loc, v1, acc); |
6413 | break; |
6414 | case CombiningKind::MINUI: |
6415 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values" ); |
6416 | result = b.createOrFold<arith::MinUIOp>(loc, v1, acc); |
6417 | break; |
6418 | case CombiningKind::MUL: |
6419 | if (t1.isIntOrIndex() && tAcc.isIntOrIndex()) |
6420 | result = b.createOrFold<arith::MulIOp>(loc, v1, acc); |
6421 | else if (llvm::isa<FloatType>(Val: t1) && llvm::isa<FloatType>(Val: tAcc)) |
6422 | result = b.createOrFold<arith::MulFOp>(loc, v1, acc, fastmath); |
6423 | else |
6424 | llvm_unreachable("invalid value types for MUL reduction" ); |
6425 | break; |
6426 | case CombiningKind::OR: |
6427 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values" ); |
6428 | result = b.createOrFold<arith::OrIOp>(loc, v1, acc); |
6429 | break; |
6430 | case CombiningKind::XOR: |
6431 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values" ); |
6432 | result = b.createOrFold<arith::XOrIOp>(loc, v1, acc); |
6433 | break; |
6434 | }; |
6435 | |
6436 | assert(result && "unknown CombiningKind" ); |
6437 | return selectPassthru(builder&: b, mask, newValue: result, passthru: acc); |
6438 | } |
6439 | |
6440 | //===----------------------------------------------------------------------===// |
6441 | // Vector Masking Utilities |
6442 | //===----------------------------------------------------------------------===// |
6443 | |
6444 | /// Create the vector.yield-ended region of a vector.mask op with `maskableOp` |
6445 | /// as masked operation. |
6446 | void mlir::vector::createMaskOpRegion(OpBuilder &builder, |
6447 | Operation *maskableOp) { |
6448 | assert(maskableOp->getBlock() && "MaskableOp must be inserted into a block" ); |
6449 | Block *insBlock = builder.getInsertionBlock(); |
6450 | // Create a block and move the op to that block. |
6451 | insBlock->getOperations().splice( |
6452 | where: insBlock->begin(), L2&: maskableOp->getBlock()->getOperations(), N: maskableOp); |
6453 | builder.create<YieldOp>(maskableOp->getLoc(), maskableOp->getResults()); |
6454 | } |
6455 | |
6456 | /// Creates a vector.mask operation around a maskable operation. Returns the |
6457 | /// vector.mask operation if the mask provided is valid. Otherwise, returns |
6458 | /// the maskable operation itself. |
6459 | Operation *mlir::vector::maskOperation(OpBuilder &builder, |
6460 | Operation *maskableOp, Value mask, |
6461 | Value passthru) { |
6462 | if (!mask) |
6463 | return maskableOp; |
6464 | if (passthru) |
6465 | return builder.create<MaskOp>(maskableOp->getLoc(), |
6466 | maskableOp->getResultTypes(), mask, passthru, |
6467 | maskableOp, createMaskOpRegion); |
6468 | return builder.create<MaskOp>(maskableOp->getLoc(), |
6469 | maskableOp->getResultTypes(), mask, maskableOp, |
6470 | createMaskOpRegion); |
6471 | } |
6472 | |
6473 | /// Creates a vector select operation that picks values from `newValue` or |
6474 | /// `passthru` for each result vector lane based on `mask`. This utility is used |
6475 | /// to propagate the pass-thru value of vector.mask or for cases where only the |
6476 | /// pass-thru value propagation is needed. VP intrinsics do not support |
6477 | /// pass-thru values and every mask-out lane is set to poison. LLVM backends are |
6478 | /// usually able to match op + select patterns and fold them into a native |
6479 | /// target instructions. |
6480 | Value mlir::vector::selectPassthru(OpBuilder &builder, Value mask, |
6481 | Value newValue, Value passthru) { |
6482 | if (!mask) |
6483 | return newValue; |
6484 | |
6485 | return builder.create<arith::SelectOp>(newValue.getLoc(), newValue.getType(), |
6486 | mask, newValue, passthru); |
6487 | } |
6488 | |
6489 | //===----------------------------------------------------------------------===// |
6490 | // TableGen'd op method definitions |
6491 | //===----------------------------------------------------------------------===// |
6492 | |
6493 | #define GET_ATTRDEF_CLASSES |
6494 | #include "mlir/Dialect/Vector/IR/VectorAttributes.cpp.inc" |
6495 | |
6496 | #define GET_OP_CLASSES |
6497 | #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" |
6498 | |