1 | //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements convenience types for working with super-vectorization |
10 | // operations, in particular super-vector loads and stores. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
15 | |
16 | #include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h" |
17 | #include "mlir/Dialect/Affine/IR/ValueBoundsOpInterfaceImpl.h" |
18 | #include "mlir/Dialect/Arith/IR/Arith.h" |
19 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
20 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
21 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
22 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
23 | #include "mlir/Dialect/UB/IR/UBOps.h" |
24 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
25 | #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
26 | #include "mlir/IR/AffineExpr.h" |
27 | #include "mlir/IR/AffineMap.h" |
28 | #include "mlir/IR/Builders.h" |
29 | #include "mlir/IR/BuiltinAttributes.h" |
30 | #include "mlir/IR/BuiltinTypes.h" |
31 | #include "mlir/IR/DialectImplementation.h" |
32 | #include "mlir/IR/IRMapping.h" |
33 | #include "mlir/IR/OpImplementation.h" |
34 | #include "mlir/IR/PatternMatch.h" |
35 | #include "mlir/IR/TypeUtilities.h" |
36 | #include "mlir/IR/ValueRange.h" |
37 | #include "mlir/Interfaces/SubsetOpInterface.h" |
38 | #include "mlir/Interfaces/ValueBoundsOpInterface.h" |
39 | #include "mlir/Support/LLVM.h" |
40 | #include "mlir/Transforms/InliningUtils.h" |
41 | #include "llvm/ADT/ArrayRef.h" |
42 | #include "llvm/ADT/STLExtras.h" |
43 | #include "llvm/ADT/SmallVector.h" |
44 | #include "llvm/ADT/StringSet.h" |
45 | #include "llvm/ADT/TypeSwitch.h" |
46 | #include "llvm/Support/Casting.h" |
47 | |
48 | #include <cassert> |
49 | #include <cstdint> |
50 | #include <numeric> |
51 | |
52 | #include "mlir/Dialect/Vector/IR/VectorDialect.cpp.inc" |
53 | // Pull in all enum type and utility function definitions. |
54 | #include "mlir/Dialect/Vector/IR/VectorEnums.cpp.inc" |
55 | |
56 | using namespace mlir; |
57 | using namespace mlir::vector; |
58 | |
59 | /// Helper enum to classify mask value. |
60 | enum class MaskFormat { |
61 | AllTrue = 0, |
62 | AllFalse = 1, |
63 | Unknown = 2, |
64 | }; |
65 | |
66 | /// Helper method to classify a mask value. Currently, the method |
67 | /// looks "under the hood" of a constant value with dense attributes |
68 | /// and a constant mask operation (since the client may be called at |
69 | /// various stages during progressive lowering). |
70 | static MaskFormat getMaskFormat(Value mask) { |
71 | if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { |
72 | // Inspect constant dense values. We count up for bits that |
73 | // are set, count down for bits that are cleared, and bail |
74 | // when a mix is detected. |
75 | if (auto denseElts = llvm::dyn_cast<DenseIntElementsAttr>(c.getValue())) { |
76 | int64_t val = 0; |
77 | for (bool b : denseElts.getValues<bool>()) |
78 | if (b && val >= 0) |
79 | val++; |
80 | else if (!b && val <= 0) |
81 | val--; |
82 | else |
83 | return MaskFormat::Unknown; |
84 | if (val > 0) |
85 | return MaskFormat::AllTrue; |
86 | if (val < 0) |
87 | return MaskFormat::AllFalse; |
88 | } |
89 | } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { |
90 | // Inspect constant mask index. If the index exceeds the |
91 | // dimension size, all bits are set. If the index is zero |
92 | // or less, no bits are set. |
93 | ArrayRef<int64_t> masks = m.getMaskDimSizes(); |
94 | auto shape = m.getType().getShape(); |
95 | bool allTrue = true; |
96 | bool allFalse = true; |
97 | for (auto [maskIdx, dimSize] : llvm::zip_equal(masks, shape)) { |
98 | if (maskIdx < dimSize) |
99 | allTrue = false; |
100 | if (maskIdx > 0) |
101 | allFalse = false; |
102 | } |
103 | if (allTrue) |
104 | return MaskFormat::AllTrue; |
105 | if (allFalse) |
106 | return MaskFormat::AllFalse; |
107 | } else if (auto m = mask.getDefiningOp<CreateMaskOp>()) { |
108 | // Finds all-false create_masks. An all-true create_mask requires all |
109 | // dims to be constants, so that'll be folded to a constant_mask, then |
110 | // detected in the constant_mask case. |
111 | auto maskOperands = m.getOperands(); |
112 | for (Value operand : maskOperands) { |
113 | if (auto constantOp = operand.getDefiningOp<arith::ConstantOp>()) { |
114 | int64_t dimSize = |
115 | llvm::cast<IntegerAttr>(constantOp.getValue()).getInt(); |
116 | if (dimSize <= 0) |
117 | return MaskFormat::AllFalse; |
118 | } |
119 | } |
120 | return MaskFormat::Unknown; |
121 | } |
122 | return MaskFormat::Unknown; |
123 | } |
124 | |
125 | /// Default callback to build a region with a 'vector.yield' terminator with no |
126 | /// arguments. |
127 | void mlir::vector::buildTerminatedBody(OpBuilder &builder, Location loc) { |
128 | builder.create<vector::YieldOp>(loc); |
129 | } |
130 | |
131 | // Helper for verifying combining kinds in contractions and reductions. |
132 | static bool isSupportedCombiningKind(CombiningKind combiningKind, |
133 | Type elementType) { |
134 | switch (combiningKind) { |
135 | case CombiningKind::ADD: |
136 | case CombiningKind::MUL: |
137 | return elementType.isIntOrIndexOrFloat(); |
138 | case CombiningKind::MINUI: |
139 | case CombiningKind::MINSI: |
140 | case CombiningKind::MAXUI: |
141 | case CombiningKind::MAXSI: |
142 | case CombiningKind::AND: |
143 | case CombiningKind::OR: |
144 | case CombiningKind::XOR: |
145 | return elementType.isIntOrIndex(); |
146 | case CombiningKind::MINNUMF: |
147 | case CombiningKind::MAXNUMF: |
148 | case CombiningKind::MINIMUMF: |
149 | case CombiningKind::MAXIMUMF: |
150 | return llvm::isa<FloatType>(Val: elementType); |
151 | } |
152 | return false; |
153 | } |
154 | |
155 | /// Returns the effective rank of the vector to read/write for Xfer Ops |
156 | /// |
157 | /// When the element type of the shaped type is _a scalar_, this will simply |
158 | /// return the rank of the vector ( the result for xfer_read or the value to |
159 | /// store for xfer_write). |
160 | /// |
161 | /// When the element type of the base shaped type is _a vector_, returns the |
162 | /// difference between the original vector type and the element type of the |
163 | /// shaped type. |
164 | /// |
165 | /// EXAMPLE 1 (element type is _a scalar_): |
166 | /// - shapedType = tensor<10x20xf32>, vectorType = vector<2x4xf32> |
167 | /// - shapedType.getElementType() = f32 (rank 0) |
168 | /// - vectorType.getRank() = 2 |
169 | /// - Result = 2 - 0 = 2 |
170 | /// |
171 | /// EXAMPLE 2 (element type is _a vector_): |
172 | /// - shapedType = tensor<10xvector<20xf32>>, vectorType = vector<20xf32> |
173 | /// - shapedType.getElementType() = vector<20xf32> (rank 1) |
174 | /// - vectorType.getRank() = 1 |
175 | /// - Result = 1 - 1 = 0 |
176 | /// |
177 | /// This is used to determine the number of minor dimensions for identity maps |
178 | /// in vector transfer Ops. |
179 | static unsigned getEffectiveVectorRankForXferOp(ShapedType shapedType, |
180 | VectorType vectorType) { |
181 | unsigned elementVectorRank = 0; |
182 | VectorType elementVectorType = |
183 | llvm::dyn_cast<VectorType>(shapedType.getElementType()); |
184 | if (elementVectorType) |
185 | elementVectorRank += elementVectorType.getRank(); |
186 | return vectorType.getRank() - elementVectorRank; |
187 | } |
188 | |
189 | AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, |
190 | VectorType vectorType) { |
191 | // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. |
192 | // TODO: replace once we have 0-d vectors. |
193 | if (shapedType.getRank() == 0 && |
194 | vectorType.getShape() == ArrayRef<int64_t>{1}) |
195 | return AffineMap::get( |
196 | /*numDims=*/0, /*numSymbols=*/0, |
197 | getAffineConstantExpr(0, shapedType.getContext())); |
198 | return AffineMap::getMinorIdentityMap( |
199 | shapedType.getRank(), |
200 | getEffectiveVectorRankForXferOp(shapedType, vectorType), |
201 | shapedType.getContext()); |
202 | } |
203 | |
204 | /// Check if `write` is of a constant splat and the masked `read` is padded with |
205 | /// the same splat value -- meaning it could be the same value as the initial |
206 | /// constant splat. |
207 | static bool isSplatWriteConsistentWithMaskedRead(vector::TransferWriteOp write, |
208 | vector::TransferReadOp read) { |
209 | auto readMask = read.getMask(); |
210 | auto writeMask = write.getMask(); |
211 | // Check if the masks are consistent. The splat value could be the same if the |
212 | // read is masked (and padded with the splat value), and the write is unmasked |
213 | // or has the same mask. Note this does not allow the case where the write is |
214 | // masked and the read is unmasked, as then the read could be of more elements |
215 | // than the write (which may not be the same value). |
216 | bool couldBeSameSplat = readMask && (!writeMask || writeMask == readMask); |
217 | if (!couldBeSameSplat) |
218 | return false; |
219 | // Check for constant splat (as the source of the write). |
220 | DenseElementsAttr splatAttr; |
221 | if (!matchPattern(write.getVector(), |
222 | m_Constant<DenseElementsAttr>(bind_value: &splatAttr)) || |
223 | !splatAttr.isSplat()) { |
224 | return false; |
225 | } |
226 | // The padding of the read and the constant splat value must be the same. |
227 | Attribute padAttr; |
228 | if (!matchPattern(read.getPadding(), m_Constant(bind_value: &padAttr))) |
229 | return false; |
230 | return padAttr == splatAttr.getSplatValue<Attribute>(); |
231 | } |
232 | |
233 | bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, |
234 | vector::TransferReadOp read) { |
235 | return !defWrite.hasOutOfBoundsDim() && |
236 | defWrite.getIndices() == read.getIndices() && |
237 | defWrite.getVectorType() == read.getVectorType() && |
238 | defWrite.getPermutationMap() == read.getPermutationMap() && |
239 | ((!defWrite.getMask() && !read.getMask()) || |
240 | isSplatWriteConsistentWithMaskedRead(defWrite, read)); |
241 | } |
242 | |
243 | bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, |
244 | vector::TransferWriteOp priorWrite) { |
245 | return priorWrite.getIndices() == write.getIndices() && |
246 | priorWrite.getMask() == write.getMask() && |
247 | priorWrite.getVectorType() == write.getVectorType() && |
248 | priorWrite.getPermutationMap() == write.getPermutationMap(); |
249 | } |
250 | |
251 | bool mlir::vector::isDisjointTransferIndices( |
252 | VectorTransferOpInterface transferA, VectorTransferOpInterface transferB, |
253 | bool testDynamicValueUsingBounds) { |
254 | // For simplicity only look at transfer of same type. |
255 | if (transferA.getVectorType() != transferB.getVectorType()) |
256 | return false; |
257 | unsigned rankOffset = transferA.getLeadingShapedRank(); |
258 | for (unsigned i = 0, e = transferA.getIndices().size(); i < e; i++) { |
259 | Value indexA = transferA.getIndices()[i]; |
260 | Value indexB = transferB.getIndices()[i]; |
261 | std::optional<int64_t> cstIndexA = getConstantIntValue(ofr: indexA); |
262 | std::optional<int64_t> cstIndexB = getConstantIntValue(ofr: indexB); |
263 | |
264 | if (i < rankOffset) { |
265 | // For leading dimensions, if we can prove that index are different we |
266 | // know we are accessing disjoint slices. |
267 | if (cstIndexA.has_value() && cstIndexB.has_value()) { |
268 | if (*cstIndexA != *cstIndexB) |
269 | return true; |
270 | continue; |
271 | } |
272 | if (testDynamicValueUsingBounds) { |
273 | // First try to see if we can fully compose and simplify the affine |
274 | // expression as a fast track. |
275 | FailureOr<uint64_t> delta = |
276 | affine::fullyComposeAndComputeConstantDelta(value1: indexA, value2: indexB); |
277 | if (succeeded(Result: delta) && *delta != 0) |
278 | return true; |
279 | |
280 | FailureOr<bool> testEqual = |
281 | ValueBoundsConstraintSet::areEqual(var1: indexA, var2: indexB); |
282 | if (succeeded(Result: testEqual) && !testEqual.value()) |
283 | return true; |
284 | } |
285 | } else { |
286 | // For this dimension, we slice a part of the memref we need to make sure |
287 | // the intervals accessed don't overlap. |
288 | int64_t vectorDim = transferA.getVectorType().getDimSize(i - rankOffset); |
289 | if (cstIndexA.has_value() && cstIndexB.has_value()) { |
290 | int64_t distance = std::abs(i: *cstIndexA - *cstIndexB); |
291 | if (distance >= vectorDim) |
292 | return true; |
293 | continue; |
294 | } |
295 | if (testDynamicValueUsingBounds) { |
296 | // First try to see if we can fully compose and simplify the affine |
297 | // expression as a fast track. |
298 | FailureOr<int64_t> delta = |
299 | affine::fullyComposeAndComputeConstantDelta(value1: indexA, value2: indexB); |
300 | if (succeeded(Result: delta) && std::abs(i: *delta) >= vectorDim) |
301 | return true; |
302 | |
303 | FailureOr<int64_t> computeDelta = |
304 | ValueBoundsConstraintSet::computeConstantDelta(value1: indexA, value2: indexB); |
305 | if (succeeded(Result: computeDelta)) { |
306 | if (std::abs(i: computeDelta.value()) >= vectorDim) |
307 | return true; |
308 | } |
309 | } |
310 | } |
311 | } |
312 | return false; |
313 | } |
314 | |
315 | bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, |
316 | VectorTransferOpInterface transferB, |
317 | bool testDynamicValueUsingBounds) { |
318 | if (transferA.getBase() != transferB.getBase()) |
319 | return false; |
320 | return isDisjointTransferIndices(transferA, transferB, |
321 | testDynamicValueUsingBounds); |
322 | } |
323 | |
324 | // Helper to iterate over n-D vector slice elements. Calculate the next |
325 | // `position` in the n-D vector of size `shape`, applying an offset `offsets`. |
326 | // Modifies the `position` in place. Returns a failure when `position` becomes |
327 | // the end position. |
328 | static LogicalResult incSlicePosition(MutableArrayRef<int64_t> position, |
329 | ArrayRef<int64_t> shape, |
330 | ArrayRef<int64_t> offsets) { |
331 | for (auto [posInDim, dimSize, offsetInDim] : |
332 | llvm::reverse(C: llvm::zip_equal(t&: position, u&: shape, args&: offsets))) { |
333 | ++posInDim; |
334 | if (posInDim < dimSize + offsetInDim) |
335 | return success(); |
336 | |
337 | // Carry the overflow to the next loop iteration. |
338 | posInDim = offsetInDim; |
339 | } |
340 | |
341 | return failure(); |
342 | } |
343 | |
344 | /// Returns the integer numbers in `values`. `values` are expected to be |
345 | /// constant operations. |
346 | SmallVector<int64_t> vector::getAsIntegers(ArrayRef<Value> values) { |
347 | SmallVector<int64_t> ints; |
348 | llvm::transform(Range&: values, d_first: std::back_inserter(x&: ints), F: [](Value value) { |
349 | auto constOp = value.getDefiningOp<arith::ConstantIndexOp>(); |
350 | assert(constOp && "Unexpected non-constant index"); |
351 | return constOp.value(); |
352 | }); |
353 | return ints; |
354 | } |
355 | |
356 | /// Returns the integer numbers in `foldResults`. `foldResults` are expected to |
357 | /// be constant operations. |
358 | SmallVector<int64_t> vector::getAsIntegers(ArrayRef<OpFoldResult> foldResults) { |
359 | SmallVector<int64_t> ints; |
360 | llvm::transform( |
361 | Range&: foldResults, d_first: std::back_inserter(x&: ints), F: [](OpFoldResult foldResult) { |
362 | assert(isa<Attribute>(foldResult) && "Unexpected non-constant index"); |
363 | return cast<IntegerAttr>(cast<Attribute>(foldResult)).getInt(); |
364 | }); |
365 | return ints; |
366 | } |
367 | |
368 | /// Convert `foldResults` into Values. Integer attributes are converted to |
369 | /// constant op. |
370 | SmallVector<Value> vector::getAsValues(OpBuilder &builder, Location loc, |
371 | ArrayRef<OpFoldResult> foldResults) { |
372 | SmallVector<Value> values; |
373 | llvm::transform(Range&: foldResults, d_first: std::back_inserter(x&: values), |
374 | F: [&](OpFoldResult foldResult) { |
375 | if (auto attr = dyn_cast<Attribute>(foldResult)) |
376 | return builder |
377 | .create<arith::ConstantIndexOp>( |
378 | loc, cast<IntegerAttr>(attr).getInt()) |
379 | .getResult(); |
380 | |
381 | return cast<Value>(foldResult); |
382 | }); |
383 | return values; |
384 | } |
385 | |
386 | std::optional<int64_t> vector::getConstantVscaleMultiplier(Value value) { |
387 | if (value.getDefiningOp<vector::VectorScaleOp>()) |
388 | return 1; |
389 | auto mul = value.getDefiningOp<arith::MulIOp>(); |
390 | if (!mul) |
391 | return {}; |
392 | auto lhs = mul.getLhs(); |
393 | auto rhs = mul.getRhs(); |
394 | if (lhs.getDefiningOp<vector::VectorScaleOp>()) |
395 | return getConstantIntValue(rhs); |
396 | if (rhs.getDefiningOp<vector::VectorScaleOp>()) |
397 | return getConstantIntValue(lhs); |
398 | return {}; |
399 | } |
400 | |
401 | //===----------------------------------------------------------------------===// |
402 | // CombiningKindAttr |
403 | //===----------------------------------------------------------------------===// |
404 | |
405 | namespace mlir { |
406 | namespace vector { |
407 | namespace detail { |
408 | struct BitmaskEnumStorage : public AttributeStorage { |
409 | using KeyTy = uint64_t; |
410 | |
411 | BitmaskEnumStorage(KeyTy val) : value(val) {} |
412 | |
413 | bool operator==(const KeyTy &key) const { return value == key; } |
414 | |
415 | static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, |
416 | const KeyTy &key) { |
417 | return new (allocator.allocate<BitmaskEnumStorage>()) |
418 | BitmaskEnumStorage(key); |
419 | } |
420 | |
421 | KeyTy value = 0; |
422 | }; |
423 | } // namespace detail |
424 | } // namespace vector |
425 | } // namespace mlir |
426 | |
427 | //===----------------------------------------------------------------------===// |
428 | // VectorDialect |
429 | //===----------------------------------------------------------------------===// |
430 | |
431 | namespace { |
432 | /// This class defines the interface for handling inlining with vector dialect |
433 | /// operations. |
434 | struct VectorInlinerInterface : public DialectInlinerInterface { |
435 | using DialectInlinerInterface::DialectInlinerInterface; |
436 | |
437 | /// All vector dialect ops can be inlined. |
438 | bool isLegalToInline(Operation *, Region *, bool, IRMapping &) const final { |
439 | return true; |
440 | } |
441 | }; |
442 | } // namespace |
443 | |
444 | void VectorDialect::initialize() { |
445 | addAttributes< |
446 | #define GET_ATTRDEF_LIST |
447 | #include "mlir/Dialect/Vector/IR/VectorAttributes.cpp.inc" |
448 | >(); |
449 | |
450 | addOperations< |
451 | #define GET_OP_LIST |
452 | #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" |
453 | >(); |
454 | |
455 | addInterfaces<VectorInlinerInterface>(); |
456 | |
457 | declarePromisedInterfaces<bufferization::BufferizableOpInterface, |
458 | TransferReadOp, TransferWriteOp, GatherOp, MaskOp, |
459 | YieldOp>(); |
460 | declarePromisedInterfaces<SubsetOpInterface, TransferReadOp, |
461 | TransferWriteOp>(); |
462 | declarePromisedInterface<SubsetExtractionOpInterface, TransferReadOp>(); |
463 | declarePromisedInterface<SubsetInsertionOpInterface, TransferWriteOp>(); |
464 | declarePromisedInterface<ConvertToLLVMPatternInterface, VectorDialect>(); |
465 | } |
466 | |
467 | /// Materialize a single constant operation from a given attribute value with |
468 | /// the desired resultant type. |
469 | Operation *VectorDialect::materializeConstant(OpBuilder &builder, |
470 | Attribute value, Type type, |
471 | Location loc) { |
472 | if (isa<ub::PoisonAttrInterface>(value)) |
473 | return value.getDialect().materializeConstant(builder, value, type, loc); |
474 | |
475 | return arith::ConstantOp::materialize(builder, value, type, loc); |
476 | } |
477 | |
478 | IntegerType vector::getVectorSubscriptType(Builder &builder) { |
479 | return builder.getIntegerType(64); |
480 | } |
481 | |
482 | ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, |
483 | ArrayRef<int64_t> values) { |
484 | return builder.getI64ArrayAttr(values); |
485 | } |
486 | |
487 | //===----------------------------------------------------------------------===// |
488 | // MultiDimReductionOp |
489 | //===----------------------------------------------------------------------===// |
490 | |
491 | void vector::MultiDimReductionOp::build(OpBuilder &builder, |
492 | OperationState &result, Value source, |
493 | Value acc, ArrayRef<bool> reductionMask, |
494 | CombiningKind kind) { |
495 | SmallVector<int64_t> reductionDims; |
496 | for (const auto &en : llvm::enumerate(reductionMask)) |
497 | if (en.value()) |
498 | reductionDims.push_back(en.index()); |
499 | build(builder, result, kind, source, acc, reductionDims); |
500 | } |
501 | |
502 | OpFoldResult MultiDimReductionOp::fold(FoldAdaptor adaptor) { |
503 | // Single parallel dim, this is a noop. |
504 | if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) |
505 | return getSource(); |
506 | return {}; |
507 | } |
508 | |
509 | std::optional<SmallVector<int64_t, 4>> |
510 | MultiDimReductionOp::getShapeForUnroll() { |
511 | return llvm::to_vector<4>(getSourceVectorType().getShape()); |
512 | } |
513 | |
514 | LogicalResult MultiDimReductionOp::verify() { |
515 | SmallVector<int64_t> targetShape; |
516 | SmallVector<bool> scalableDims; |
517 | Type inferredReturnType; |
518 | auto sourceScalableDims = getSourceVectorType().getScalableDims(); |
519 | for (auto [dimIdx, dimSize] : |
520 | llvm::enumerate(getSourceVectorType().getShape())) |
521 | if (!llvm::any_of(getReductionDims(), |
522 | [dimIdx = dimIdx](int64_t reductionDimIdx) { |
523 | return reductionDimIdx == static_cast<int64_t>(dimIdx); |
524 | })) { |
525 | targetShape.push_back(dimSize); |
526 | scalableDims.push_back(sourceScalableDims[dimIdx]); |
527 | } |
528 | // TODO: update to also allow 0-d vectors when available. |
529 | if (targetShape.empty()) |
530 | inferredReturnType = getSourceVectorType().getElementType(); |
531 | else |
532 | inferredReturnType = VectorType::get( |
533 | targetShape, getSourceVectorType().getElementType(), scalableDims); |
534 | if (getType() != inferredReturnType) |
535 | return emitOpError() << "destination type "<< getType() |
536 | << " is incompatible with source type " |
537 | << getSourceVectorType(); |
538 | |
539 | return success(); |
540 | } |
541 | |
542 | /// Returns the mask type expected by this operation. |
543 | Type MultiDimReductionOp::getExpectedMaskType() { |
544 | auto vecType = getSourceVectorType(); |
545 | return VectorType::get(vecType.getShape(), |
546 | IntegerType::get(vecType.getContext(), /*width=*/1), |
547 | vecType.getScalableDims()); |
548 | } |
549 | |
550 | namespace { |
551 | // Only unit dimensions that are being reduced are folded. If the dimension is |
552 | // unit, but not reduced, it is not folded, thereby keeping the output type the |
553 | // same. If not all dimensions which are reduced are of unit dimension, this |
554 | // transformation does nothing. This is just a generalization of |
555 | // ElideSingleElementReduction for ReduceOp. |
556 | struct ElideUnitDimsInMultiDimReduction |
557 | : public OpRewritePattern<MultiDimReductionOp> { |
558 | using OpRewritePattern::OpRewritePattern; |
559 | |
560 | LogicalResult matchAndRewrite(MultiDimReductionOp reductionOp, |
561 | PatternRewriter &rewriter) const override { |
562 | ArrayRef<int64_t> shape = reductionOp.getSourceVectorType().getShape(); |
563 | for (const auto &dim : enumerate(shape)) { |
564 | if (reductionOp.isReducedDim(dim.index()) && dim.value() != 1) |
565 | return failure(); |
566 | } |
567 | |
568 | // Vector mask setup. |
569 | OpBuilder::InsertionGuard guard(rewriter); |
570 | Operation *rootOp; |
571 | Value mask; |
572 | if (reductionOp.isMasked()) { |
573 | rewriter.setInsertionPoint(reductionOp.getMaskingOp()); |
574 | rootOp = reductionOp.getMaskingOp(); |
575 | mask = reductionOp.getMaskingOp().getMask(); |
576 | } else { |
577 | rootOp = reductionOp; |
578 | } |
579 | |
580 | Location loc = reductionOp.getLoc(); |
581 | Value acc = reductionOp.getAcc(); |
582 | Value cast; |
583 | if (auto dstVecType = dyn_cast<VectorType>(reductionOp.getDestType())) { |
584 | if (mask) { |
585 | VectorType newMaskType = |
586 | VectorType::get(dstVecType.getShape(), rewriter.getI1Type(), |
587 | dstVecType.getScalableDims()); |
588 | mask = rewriter.create<vector::ShapeCastOp>(loc, newMaskType, mask); |
589 | } |
590 | cast = rewriter.create<vector::ShapeCastOp>( |
591 | loc, reductionOp.getDestType(), reductionOp.getSource()); |
592 | } else { |
593 | // This means we are reducing all the dimensions, and all reduction |
594 | // dimensions are of size 1. So a simple extraction would do. |
595 | if (mask) |
596 | mask = rewriter.create<vector::ExtractOp>(loc, mask); |
597 | cast = rewriter.create<vector::ExtractOp>(loc, reductionOp.getSource()); |
598 | } |
599 | |
600 | Value result = |
601 | vector::makeArithReduction(rewriter, loc, reductionOp.getKind(), acc, |
602 | cast, /*fastmath=*/nullptr, mask); |
603 | rewriter.replaceOp(op: rootOp, newValues: result); |
604 | return success(); |
605 | } |
606 | }; |
607 | } // namespace |
608 | |
609 | void MultiDimReductionOp::getCanonicalizationPatterns( |
610 | RewritePatternSet &results, MLIRContext *context) { |
611 | results.add<ElideUnitDimsInMultiDimReduction>(context); |
612 | } |
613 | |
614 | //===----------------------------------------------------------------------===// |
615 | // ReductionOp |
616 | //===----------------------------------------------------------------------===// |
617 | |
618 | void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, |
619 | CombiningKind kind, Value vector, |
620 | arith::FastMathFlags fastMathFlags) { |
621 | build(builder, result, kind, vector, /*acc=*/Value(), fastMathFlags); |
622 | } |
623 | |
624 | void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, |
625 | CombiningKind kind, Value vector, Value acc, |
626 | arith::FastMathFlags fastMathFlags) { |
627 | build(builder, result, |
628 | llvm::cast<VectorType>(vector.getType()).getElementType(), kind, vector, |
629 | acc, fastMathFlags); |
630 | } |
631 | |
632 | LogicalResult ReductionOp::verify() { |
633 | // Verify for 0-D and 1-D vector. |
634 | int64_t rank = getSourceVectorType().getRank(); |
635 | if (rank > 1) |
636 | return emitOpError("unsupported reduction rank: ") << rank; |
637 | |
638 | // Verify supported reduction kind. |
639 | Type eltType = getDest().getType(); |
640 | if (!isSupportedCombiningKind(getKind(), eltType)) |
641 | return emitOpError("unsupported reduction type '") |
642 | << eltType << "' for kind '"<< stringifyCombiningKind(getKind()) |
643 | << "'"; |
644 | |
645 | return success(); |
646 | } |
647 | |
648 | // MaskableOpInterface methods. |
649 | |
650 | /// Returns the mask type expected by this operation. |
651 | Type ReductionOp::getExpectedMaskType() { |
652 | auto vecType = getSourceVectorType(); |
653 | return VectorType::get(vecType.getShape(), |
654 | IntegerType::get(vecType.getContext(), /*width=*/1), |
655 | vecType.getScalableDims()); |
656 | } |
657 | |
658 | Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, |
659 | OpBuilder &builder, Location loc, |
660 | Value vector) { |
661 | switch (op) { |
662 | case arith::AtomicRMWKind::addf: |
663 | case arith::AtomicRMWKind::addi: |
664 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
665 | CombiningKind::ADD, vector); |
666 | case arith::AtomicRMWKind::mulf: |
667 | case arith::AtomicRMWKind::muli: |
668 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
669 | CombiningKind::MUL, vector); |
670 | case arith::AtomicRMWKind::minimumf: |
671 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
672 | CombiningKind::MINIMUMF, vector); |
673 | case arith::AtomicRMWKind::mins: |
674 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
675 | CombiningKind::MINSI, vector); |
676 | case arith::AtomicRMWKind::minu: |
677 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
678 | CombiningKind::MINUI, vector); |
679 | case arith::AtomicRMWKind::maximumf: |
680 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
681 | CombiningKind::MAXIMUMF, vector); |
682 | case arith::AtomicRMWKind::maxs: |
683 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
684 | CombiningKind::MAXSI, vector); |
685 | case arith::AtomicRMWKind::maxu: |
686 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
687 | CombiningKind::MAXUI, vector); |
688 | case arith::AtomicRMWKind::andi: |
689 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
690 | CombiningKind::AND, vector); |
691 | case arith::AtomicRMWKind::ori: |
692 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
693 | CombiningKind::OR, vector); |
694 | // TODO: Add remaining reduction operations. |
695 | default: |
696 | (void)emitOptionalError(loc, args: "Reduction operation type not supported"); |
697 | break; |
698 | } |
699 | return nullptr; |
700 | } |
701 | |
702 | std::optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { |
703 | return llvm::to_vector<4>(getSourceVectorType().getShape()); |
704 | } |
705 | |
706 | namespace { |
707 | struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> { |
708 | using OpRewritePattern::OpRewritePattern; |
709 | |
710 | LogicalResult matchAndRewrite(ReductionOp reductionOp, |
711 | PatternRewriter &rewriter) const override { |
712 | // Vector mask setup. |
713 | OpBuilder::InsertionGuard guard(rewriter); |
714 | auto maskableOp = |
715 | cast<vector::MaskableOpInterface>(reductionOp.getOperation()); |
716 | Operation *rootOp; |
717 | Value mask; |
718 | if (maskableOp.isMasked()) { |
719 | rewriter.setInsertionPoint(maskableOp.getMaskingOp()); |
720 | rootOp = maskableOp.getMaskingOp(); |
721 | mask = maskableOp.getMaskingOp().getMask(); |
722 | } else { |
723 | rootOp = reductionOp; |
724 | } |
725 | |
726 | auto vectorType = reductionOp.getSourceVectorType(); |
727 | if (vectorType.getRank() != 0 && vectorType.getDimSize(0) != 1) |
728 | return failure(); |
729 | |
730 | Location loc = reductionOp.getLoc(); |
731 | if (mask) |
732 | mask = rewriter.create<ExtractOp>(loc, mask); |
733 | Value result = rewriter.create<ExtractOp>(loc, reductionOp.getVector()); |
734 | |
735 | if (Value acc = reductionOp.getAcc()) |
736 | result = vector::makeArithReduction(rewriter, loc, reductionOp.getKind(), |
737 | result, acc, |
738 | reductionOp.getFastmathAttr(), mask); |
739 | |
740 | rewriter.replaceOp(op: rootOp, newValues: result); |
741 | return success(); |
742 | } |
743 | }; |
744 | } // namespace |
745 | |
746 | void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results, |
747 | MLIRContext *context) { |
748 | results.add<ElideSingleElementReduction>(context); |
749 | } |
750 | |
751 | //===----------------------------------------------------------------------===// |
752 | // ContractionOp |
753 | //===----------------------------------------------------------------------===// |
754 | |
755 | void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, |
756 | Value lhs, Value rhs, Value acc, |
757 | ArrayRef<ArrayRef<AffineExpr>> indexingExprs, |
758 | ArrayRef<IteratorType> iteratorTypes) { |
759 | result.addOperands({lhs, rhs, acc}); |
760 | result.addTypes(acc.getType()); |
761 | result.addAttribute( |
762 | getIndexingMapsAttrName(result.name), |
763 | builder.getAffineMapArrayAttr( |
764 | AffineMap::inferFromExprList(indexingExprs, builder.getContext()))); |
765 | result.addAttribute( |
766 | getIteratorTypesAttrName(result.name), |
767 | builder.getArrayAttr(llvm::to_vector(llvm::map_range( |
768 | iteratorTypes, [&](IteratorType t) -> mlir::Attribute { |
769 | return IteratorTypeAttr::get(builder.getContext(), t); |
770 | })))); |
771 | } |
772 | |
773 | void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, |
774 | Value lhs, Value rhs, Value acc, |
775 | ArrayAttr indexingMaps, |
776 | ArrayAttr iteratorTypes) { |
777 | build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, |
778 | ContractionOp::getDefaultKind()); |
779 | } |
780 | |
781 | void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, |
782 | Value lhs, Value rhs, Value acc, |
783 | ArrayAttr indexingMaps, |
784 | ArrayAttr iteratorTypes, CombiningKind kind) { |
785 | result.addOperands({lhs, rhs, acc}); |
786 | result.addTypes(acc.getType()); |
787 | result.addAttribute(getIndexingMapsAttrName(result.name), indexingMaps); |
788 | result.addAttribute(getIteratorTypesAttrName(result.name), iteratorTypes); |
789 | result.addAttribute(getKindAttrName(result.name), |
790 | CombiningKindAttr::get(builder.getContext(), kind)); |
791 | } |
792 | |
793 | ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { |
794 | OpAsmParser::UnresolvedOperand lhsInfo; |
795 | OpAsmParser::UnresolvedOperand rhsInfo; |
796 | OpAsmParser::UnresolvedOperand accInfo; |
797 | SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo; |
798 | SmallVector<Type, 2> types; |
799 | Type resultType; |
800 | auto loc = parser.getCurrentLocation(); |
801 | DictionaryAttr dictAttr; |
802 | // TODO: Unify linalg op attribute parsing. |
803 | if (parser.parseAttribute(dictAttr) || parser.parseOperand(lhsInfo) || |
804 | parser.parseComma() || parser.parseOperand(rhsInfo) || |
805 | parser.parseComma() || parser.parseOperand(accInfo) || |
806 | parser.parseTrailingOperandList(masksInfo) || |
807 | parser.parseOptionalAttrDict(result.attributes) || |
808 | parser.parseColonTypeList(types) || |
809 | parser.parseKeywordType("into", resultType) || |
810 | parser.resolveOperand(lhsInfo, types[0], result.operands) || |
811 | parser.resolveOperand(rhsInfo, types[1], result.operands) || |
812 | parser.resolveOperand(accInfo, resultType, result.operands) || |
813 | parser.addTypeToList(resultType, result.types)) |
814 | return failure(); |
815 | result.attributes.append(dictAttr.getValue().begin(), |
816 | dictAttr.getValue().end()); |
817 | |
818 | // Convert array of string into an array of IteratyType enums. This is needed, |
819 | // because tests still use the old format when 'iterator_types' attribute is |
820 | // represented as an array of strings. |
821 | // TODO: Remove this conversion once tests are fixed. |
822 | auto iteratorTypes = dyn_cast_or_null<ArrayAttr>( |
823 | result.attributes.get(getIteratorTypesAttrName(result.name))); |
824 | if (!iteratorTypes) { |
825 | return parser.emitError(loc) |
826 | << "expected "<< getIteratorTypesAttrName(result.name) |
827 | << " array attribute"; |
828 | } |
829 | |
830 | SmallVector<Attribute> iteratorTypeAttrs; |
831 | |
832 | for (StringRef s : iteratorTypes.getAsValueRange<StringAttr>()) { |
833 | auto maybeIteratorType = symbolizeIteratorType(s); |
834 | if (!maybeIteratorType.has_value()) |
835 | return parser.emitError(loc) << "unexpected iterator_type ("<< s << ")"; |
836 | |
837 | iteratorTypeAttrs.push_back( |
838 | IteratorTypeAttr::get(parser.getContext(), maybeIteratorType.value())); |
839 | } |
840 | result.attributes.set(getIteratorTypesAttrName(result.name), |
841 | parser.getBuilder().getArrayAttr(iteratorTypeAttrs)); |
842 | |
843 | if (!result.attributes.get(getKindAttrName(result.name))) { |
844 | result.addAttribute( |
845 | getKindAttrName(result.name), |
846 | CombiningKindAttr::get(result.getContext(), |
847 | ContractionOp::getDefaultKind())); |
848 | } |
849 | if (masksInfo.empty()) |
850 | return success(); |
851 | if (masksInfo.size() != 2) |
852 | return parser.emitError(parser.getNameLoc(), |
853 | "expected zero or exactly 2 vector mask operands"); |
854 | auto lhsType = llvm::cast<VectorType>(types[0]); |
855 | auto rhsType = llvm::cast<VectorType>(types[1]); |
856 | auto maskElementType = parser.getBuilder().getI1Type(); |
857 | std::array<VectorType, 2> maskTypes = { |
858 | VectorType::Builder(lhsType).setElementType(maskElementType), |
859 | VectorType::Builder(rhsType).setElementType(maskElementType)}; |
860 | if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) |
861 | return failure(); |
862 | return success(); |
863 | } |
864 | |
865 | void ContractionOp::print(OpAsmPrinter &p) { |
866 | // TODO: Unify printing code with linalg ops. |
867 | auto attrNames = getTraitAttrNames(); |
868 | llvm::StringSet<> traitAttrsSet; |
869 | traitAttrsSet.insert_range(attrNames); |
870 | SmallVector<NamedAttribute, 8> attrs; |
871 | for (auto attr : (*this)->getAttrs()) { |
872 | if (attr.getName() == getIteratorTypesAttrName()) { |
873 | auto iteratorTypes = |
874 | llvm::cast<ArrayAttr>(attr.getValue()) |
875 | .getAsValueRange<IteratorTypeAttr, IteratorType>(); |
876 | // Convert IteratorType enums into the string representation. This is |
877 | // needed, because tests still use the old format when 'iterator_types' |
878 | // attribute is represented as an array of strings. |
879 | // TODO: Remove this conversion once tests are fixed. |
880 | SmallVector<Attribute> iteratorTypeNames = llvm::to_vector( |
881 | llvm::map_range(iteratorTypes, [&](IteratorType t) -> Attribute { |
882 | return StringAttr::get(getContext(), stringifyIteratorType(t)); |
883 | })); |
884 | |
885 | attrs.emplace_back(getIteratorTypesAttrName(), |
886 | ArrayAttr::get(getContext(), iteratorTypeNames)); |
887 | } else if (traitAttrsSet.count(attr.getName().strref()) > 0) |
888 | attrs.push_back(attr); |
889 | } |
890 | |
891 | auto dictAttr = DictionaryAttr::get(getContext(), attrs); |
892 | p << " "<< dictAttr << " "<< getLhs() << ", "; |
893 | p << getRhs() << ", "<< getAcc(); |
894 | |
895 | p.printOptionalAttrDict((*this)->getAttrs(), attrNames); |
896 | p << " : "<< getLhs().getType() << ", "<< getRhs().getType() << " into " |
897 | << getResultType(); |
898 | } |
899 | |
900 | static bool verifyDimMap(VectorType lhsType, VectorType rhsType, |
901 | const std::vector<std::pair<int64_t, int64_t>> &map) { |
902 | for (auto &dimPair : map) { |
903 | if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || |
904 | dimPair.second < 0 || dimPair.second >= rhsType.getRank() || |
905 | lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) |
906 | return false; |
907 | } |
908 | return true; |
909 | } |
910 | |
911 | static LogicalResult verifyOutputShape( |
912 | ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, |
913 | Type resType, |
914 | const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, |
915 | const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { |
916 | DenseSet<int64_t> lhsContractingDimSet; |
917 | DenseSet<int64_t> rhsContractingDimSet; |
918 | for (auto &dimPair : contractingDimMap) { |
919 | lhsContractingDimSet.insert(V: dimPair.first); |
920 | rhsContractingDimSet.insert(V: dimPair.second); |
921 | } |
922 | DenseSet<int64_t> rhsBatchDimSet(llvm::from_range, |
923 | llvm::make_second_range(c: batchDimMap)); |
924 | |
925 | // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. |
926 | SmallVector<int64_t, 4> expectedResultDims; |
927 | for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { |
928 | if (lhsContractingDimSet.count(V: i) > 0) |
929 | continue; |
930 | expectedResultDims.push_back(Elt: lhsType.getDimSize(i)); |
931 | } |
932 | |
933 | // Add free dimensions from 'rhsType' to 'expectedResultDims'. |
934 | for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { |
935 | if (rhsContractingDimSet.count(V: i) > 0 || rhsBatchDimSet.count(V: i) > 0) |
936 | continue; |
937 | expectedResultDims.push_back(Elt: rhsType.getDimSize(i)); |
938 | } |
939 | |
940 | // Verify 'expectedResultDims'. |
941 | if (expectedResultDims.empty()) { |
942 | // No batch or free dimension implies a scalar result. |
943 | if (llvm::isa<VectorType>(Val: resType) || llvm::isa<VectorType>(Val: accType)) |
944 | return op.emitOpError("invalid accumulator/result vector shape"); |
945 | } else { |
946 | // At least one batch or free dimension implies a vector result. |
947 | auto resVectorType = llvm::dyn_cast<VectorType>(resType); |
948 | auto accVectorType = llvm::dyn_cast<VectorType>(accType); |
949 | if (!resVectorType || !accVectorType) |
950 | return op.emitOpError("invalid accumulator/result vector shape"); |
951 | |
952 | // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector |
953 | // types fully define the result vector type. This assumes the affine maps |
954 | // are well-formed, which must have been verified already. |
955 | MLIRContext *ctx = op.getContext(); |
956 | AffineMap lhsMap = op.getIndexingMapsArray()[0]; |
957 | AffineMap rhsMap = op.getIndexingMapsArray()[1]; |
958 | if (getUnusedDimsBitVector(maps: {lhsMap, rhsMap}).any()) |
959 | return op.emitOpError( |
960 | "expected all dimensions to be either a LHS or a RHS dimension"); |
961 | SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); |
962 | for (auto pair : |
963 | {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { |
964 | VectorType v = pair.first; |
965 | auto map = pair.second; |
966 | for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { |
967 | unsigned pos = map.getDimPosition(idx); |
968 | if (!extents[pos]) |
969 | extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); |
970 | } |
971 | } |
972 | if (!llvm::all_of(Range&: extents, P: [](AffineExpr e) { return e; })) |
973 | return op.emitOpError("expected all dimensions to get an extent as " |
974 | "either a LHS or a RHS dimension"); |
975 | |
976 | AffineMap resMap = op.getIndexingMapsArray()[2]; |
977 | auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), |
978 | /*symbolCount=*/0, results: extents, context: ctx); |
979 | // Compose the resMap with the extentsMap, which is a constant map. |
980 | AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); |
981 | assert(llvm::all_of(expectedMap.getResults(), |
982 | llvm::IsaPred<AffineConstantExpr>) && |
983 | "expected constant extent along all dimensions."); |
984 | // Extract the expected shape and build the type. |
985 | auto expectedShape = llvm::to_vector<4>( |
986 | Range: llvm::map_range(C: expectedMap.getResults(), F: [](AffineExpr e) { |
987 | return cast<AffineConstantExpr>(Val&: e).getValue(); |
988 | })); |
989 | auto expected = |
990 | VectorType::get(expectedShape, resVectorType.getElementType(), |
991 | resVectorType.getScalableDims()); |
992 | if (resVectorType != expected || accVectorType != expected) |
993 | return op.emitOpError( |
994 | "invalid accumulator/result vector shape, expected: ") |
995 | << expected; |
996 | } |
997 | return success(); |
998 | } |
999 | |
1000 | LogicalResult ContractionOp::verify() { |
1001 | VectorType lhsType = getLhsType(); |
1002 | VectorType rhsType = getRhsType(); |
1003 | Type accType = getAccType(); |
1004 | Type resType = getResultType(); |
1005 | |
1006 | if (llvm::isa<IntegerType>(lhsType.getElementType())) { |
1007 | if (!lhsType.getElementType().isSignlessInteger()) |
1008 | return emitOpError("only supports signless integer types"); |
1009 | } |
1010 | |
1011 | // Verify that an indexing map was specified for each vector operand. |
1012 | if (getIndexingMapsArray().size() != 3) |
1013 | return emitOpError("expected an indexing map for each vector operand"); |
1014 | |
1015 | // Verify that each index map has 'numIterators' inputs, no symbols, and |
1016 | // that the number of map outputs equals the rank of its associated |
1017 | // vector operand. |
1018 | unsigned numIterators = getIteratorTypes().getValue().size(); |
1019 | for (const auto &it : llvm::enumerate(getIndexingMapsArray())) { |
1020 | auto index = it.index(); |
1021 | auto map = it.value(); |
1022 | if (map.getNumSymbols() != 0) |
1023 | return emitOpError("expected indexing map ") |
1024 | << index << " to have no symbols"; |
1025 | auto vectorType = llvm::dyn_cast<VectorType>(getOperand(index).getType()); |
1026 | unsigned rank = vectorType ? vectorType.getShape().size() : 0; |
1027 | // Verify that the map has the right number of inputs, outputs, and indices. |
1028 | // This also correctly accounts for (..) -> () for rank-0 results. |
1029 | if (map.getNumDims() != numIterators) |
1030 | return emitOpError("expected indexing map ") |
1031 | << index << " to have "<< numIterators << " number of inputs"; |
1032 | if (map.getNumResults() != rank) |
1033 | return emitOpError("expected indexing map ") |
1034 | << index << " to have "<< rank << " number of outputs"; |
1035 | if (!map.isProjectedPermutation()) |
1036 | return emitOpError("expected indexing map ") |
1037 | << index << " to be a projected permutation of its inputs"; |
1038 | } |
1039 | |
1040 | auto contractingDimMap = getContractingDimMap(); |
1041 | auto batchDimMap = getBatchDimMap(); |
1042 | |
1043 | // Verify at least one contracting dimension pair was specified. |
1044 | if (contractingDimMap.empty()) |
1045 | return emitOpError("expected at least one contracting dimension pair"); |
1046 | |
1047 | // Verify contracting dimension map was properly constructed. |
1048 | if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) |
1049 | return emitOpError("invalid contracting dimension map"); |
1050 | |
1051 | // Verify batch dimension map was properly constructed. |
1052 | if (!verifyDimMap(lhsType, rhsType, batchDimMap)) |
1053 | return emitOpError("invalid batch dimension map"); |
1054 | |
1055 | // Verify 'accType' and 'resType' shape. |
1056 | if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, |
1057 | contractingDimMap, batchDimMap))) |
1058 | return failure(); |
1059 | |
1060 | // Verify supported combining kind. |
1061 | auto vectorType = llvm::dyn_cast<VectorType>(resType); |
1062 | auto elementType = vectorType ? vectorType.getElementType() : resType; |
1063 | if (!isSupportedCombiningKind(getKind(), elementType)) |
1064 | return emitOpError("unsupported contraction type"); |
1065 | |
1066 | return success(); |
1067 | } |
1068 | |
1069 | // MaskableOpInterface methods. |
1070 | |
1071 | /// Returns the mask type expected by this operation. Mostly used for |
1072 | /// verification purposes. It requires the operation to be vectorized." |
1073 | Type ContractionOp::getExpectedMaskType() { |
1074 | auto indexingMaps = this->getIndexingMapsArray(); |
1075 | AffineMap lhsIdxMap = indexingMaps[0]; |
1076 | AffineMap rhsIdxMap = indexingMaps[1]; |
1077 | VectorType lhsType = this->getLhsType(); |
1078 | VectorType rhsType = this->getRhsType(); |
1079 | |
1080 | unsigned numVecDims = lhsIdxMap.getNumDims(); |
1081 | SmallVector<int64_t> maskShape(numVecDims, ShapedType::kDynamic); |
1082 | SmallVector<bool> maskShapeScalableDims(numVecDims, false); |
1083 | |
1084 | // Using the information in the indexing maps, extract the size of each |
1085 | // dimension in the vector.contract operation from the two input operands. |
1086 | for (auto [dimIdx, dimSize] : llvm::enumerate(lhsType.getShape())) { |
1087 | maskShape[lhsIdxMap.getDimPosition(dimIdx)] = dimSize; |
1088 | maskShapeScalableDims[lhsIdxMap.getDimPosition(dimIdx)] = |
1089 | lhsType.getScalableDims()[dimIdx]; |
1090 | } |
1091 | for (auto [dimIdx, dimSize] : llvm::enumerate(rhsType.getShape())) { |
1092 | maskShape[rhsIdxMap.getDimPosition(dimIdx)] = dimSize; |
1093 | maskShapeScalableDims[rhsIdxMap.getDimPosition(dimIdx)] = |
1094 | rhsType.getScalableDims()[dimIdx]; |
1095 | } |
1096 | |
1097 | assert(!ShapedType::isDynamicShape(maskShape) && |
1098 | "Mask shape couldn't be computed"); |
1099 | |
1100 | return VectorType::get(maskShape, |
1101 | IntegerType::get(lhsType.getContext(), /*width=*/1), |
1102 | maskShapeScalableDims); |
1103 | } |
1104 | |
1105 | SmallVector<StringRef> ContractionOp::getTraitAttrNames() { |
1106 | return SmallVector<StringRef>{getIndexingMapsAttrName(), |
1107 | getIteratorTypesAttrName(), getKindAttrName()}; |
1108 | } |
1109 | |
1110 | static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { |
1111 | for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) |
1112 | if (targetExpr == map.getResult(idx: i)) |
1113 | return i; |
1114 | return -1; |
1115 | } |
1116 | |
1117 | static std::vector<std::pair<int64_t, int64_t>> |
1118 | getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, |
1119 | IteratorType targetIteratorType, MLIRContext *context) { |
1120 | std::vector<std::pair<int64_t, int64_t>> dimMap; |
1121 | for (const auto &it : llvm::enumerate(iteratorTypes)) { |
1122 | auto iteratorType = llvm::cast<IteratorTypeAttr>(it.value()).getValue(); |
1123 | if (iteratorType != targetIteratorType) |
1124 | continue; |
1125 | // Search lhs/rhs map results for 'targetExpr'. |
1126 | auto targetExpr = getAffineDimExpr(it.index(), context); |
1127 | int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); |
1128 | int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); |
1129 | if (lhsDim >= 0 && rhsDim >= 0) |
1130 | dimMap.emplace_back(lhsDim, rhsDim); |
1131 | } |
1132 | return dimMap; |
1133 | } |
1134 | |
1135 | void ContractionOp::getIterationBounds( |
1136 | SmallVectorImpl<int64_t> &iterationBounds) { |
1137 | auto lhsShape = getLhsType().getShape(); |
1138 | auto resVectorType = llvm::dyn_cast<VectorType>(getResultType()); |
1139 | SmallVector<AffineMap, 4> indexingMaps(getIndexingMapsArray()); |
1140 | for (const auto &it : llvm::enumerate(getIteratorTypes())) { |
1141 | // Search lhs/rhs map results for 'targetExpr'. |
1142 | auto targetExpr = getAffineDimExpr(it.index(), getContext()); |
1143 | auto iteratorType = llvm::cast<IteratorTypeAttr>(it.value()).getValue(); |
1144 | if (iteratorType == IteratorType::reduction) { |
1145 | // Get reduction dim size from lhs shape (same size in rhsShape). |
1146 | int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); |
1147 | assert(lhsDimIndex >= 0); |
1148 | iterationBounds.push_back(lhsShape[lhsDimIndex]); |
1149 | continue; |
1150 | } |
1151 | // Get parallel dimension size from result shape. |
1152 | int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); |
1153 | assert(resDimIndex >= 0); |
1154 | assert(resVectorType != nullptr); |
1155 | iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); |
1156 | } |
1157 | } |
1158 | |
1159 | void ContractionOp::getIterationIndexMap( |
1160 | std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { |
1161 | unsigned numMaps = getIndexingMapsArray().size(); |
1162 | iterationIndexMap.resize(numMaps); |
1163 | for (const auto &it : llvm::enumerate(getIndexingMapsArray())) { |
1164 | auto index = it.index(); |
1165 | auto map = it.value(); |
1166 | for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { |
1167 | auto dim = cast<AffineDimExpr>(map.getResult(i)); |
1168 | iterationIndexMap[index][dim.getPosition()] = i; |
1169 | } |
1170 | } |
1171 | } |
1172 | |
1173 | std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { |
1174 | SmallVector<AffineMap, 4> indexingMaps(getIndexingMapsArray()); |
1175 | return getDimMap(indexingMaps, getIteratorTypes(), IteratorType::reduction, |
1176 | getContext()); |
1177 | } |
1178 | |
1179 | std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { |
1180 | SmallVector<AffineMap, 4> indexingMaps(getIndexingMapsArray()); |
1181 | return getDimMap(indexingMaps, getIteratorTypes(), IteratorType::parallel, |
1182 | getContext()); |
1183 | } |
1184 | |
1185 | std::optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { |
1186 | SmallVector<int64_t, 4> shape; |
1187 | getIterationBounds(shape); |
1188 | return shape; |
1189 | } |
1190 | |
1191 | /// Return a fused vector::ContractionOp which represents a patterns such as: |
1192 | /// |
1193 | /// ```mlir |
1194 | /// %c0 = vector.constant 0: ... |
1195 | /// %c = vector.contract %a, %b, %c0: ... |
1196 | /// %e = add %c, %d: ... |
1197 | /// ``` |
1198 | /// |
1199 | /// by: |
1200 | /// |
1201 | /// ```mlir |
1202 | /// %e = vector.contract %a, %b, %d: ... |
1203 | /// ``` |
1204 | /// |
1205 | /// Return null if the canonicalization does not apply. |
1206 | // TODO: This should be a folding of Add into Contract in core but while they |
1207 | // live in different dialects, it is not possible without unnatural |
1208 | // dependencies. |
1209 | template <typename AddOpType> |
1210 | struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { |
1211 | using OpRewritePattern<AddOpType>::OpRewritePattern; |
1212 | |
1213 | LogicalResult matchAndRewrite(AddOpType addOp, |
1214 | PatternRewriter &rewriter) const override { |
1215 | auto canonicalize = [&](Value maybeContraction, |
1216 | Value otherOperand) -> vector::ContractionOp { |
1217 | vector::ContractionOp contractionOp = |
1218 | dyn_cast_or_null<vector::ContractionOp>( |
1219 | maybeContraction.getDefiningOp()); |
1220 | if (!contractionOp) |
1221 | return vector::ContractionOp(); |
1222 | if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( |
1223 | contractionOp.getAcc().getDefiningOp())) { |
1224 | if (maybeZero.getValue() == |
1225 | rewriter.getZeroAttr(type: contractionOp.getAcc().getType())) { |
1226 | IRMapping bvm; |
1227 | bvm.map(contractionOp.getAcc(), otherOperand); |
1228 | auto newContraction = |
1229 | cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); |
1230 | rewriter.replaceOp(addOp, newContraction.getResult()); |
1231 | return newContraction; |
1232 | } |
1233 | } |
1234 | return vector::ContractionOp(); |
1235 | }; |
1236 | |
1237 | Value a = addOp->getOperand(0), b = addOp->getOperand(1); |
1238 | vector::ContractionOp contract = canonicalize(a, b); |
1239 | contract = contract ? contract : canonicalize(b, a); |
1240 | return contract ? success() : failure(); |
1241 | } |
1242 | }; |
1243 | |
1244 | void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, |
1245 | MLIRContext *context) { |
1246 | results.add<CanonicalizeContractAdd<arith::AddIOp>, |
1247 | CanonicalizeContractAdd<arith::AddFOp>>(context); |
1248 | } |
1249 | |
1250 | //===----------------------------------------------------------------------===// |
1251 | // ExtractElementOp |
1252 | //===----------------------------------------------------------------------===// |
1253 | |
1254 | void ExtractElementOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges, |
1255 | SetIntRangeFn setResultRanges) { |
1256 | setResultRanges(getResult(), argRanges.front()); |
1257 | } |
1258 | |
1259 | void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, |
1260 | Value source) { |
1261 | result.addOperands({source}); |
1262 | result.addTypes(llvm::cast<VectorType>(source.getType()).getElementType()); |
1263 | } |
1264 | |
1265 | LogicalResult vector::ExtractElementOp::verify() { |
1266 | VectorType vectorType = getSourceVectorType(); |
1267 | if (vectorType.getRank() == 0) { |
1268 | if (getPosition()) |
1269 | return emitOpError("expected position to be empty with 0-D vector"); |
1270 | return success(); |
1271 | } |
1272 | if (vectorType.getRank() != 1) |
1273 | return emitOpError("unexpected >1 vector rank"); |
1274 | if (!getPosition()) |
1275 | return emitOpError("expected position for 1-D vector"); |
1276 | return success(); |
1277 | } |
1278 | |
1279 | OpFoldResult vector::ExtractElementOp::fold(FoldAdaptor adaptor) { |
1280 | // Skip the 0-D vector here now. |
1281 | if (!adaptor.getPosition()) |
1282 | return {}; |
1283 | |
1284 | // Fold extractelement (splat X) -> X. |
1285 | if (auto splat = getVector().getDefiningOp<vector::SplatOp>()) |
1286 | return splat.getInput(); |
1287 | |
1288 | // Fold extractelement(broadcast(X)) -> X. |
1289 | if (auto broadcast = getVector().getDefiningOp<vector::BroadcastOp>()) |
1290 | if (!llvm::isa<VectorType>(broadcast.getSource().getType())) |
1291 | return broadcast.getSource(); |
1292 | |
1293 | auto src = dyn_cast_or_null<DenseElementsAttr>(adaptor.getVector()); |
1294 | auto pos = dyn_cast_or_null<IntegerAttr>(adaptor.getPosition()); |
1295 | if (!pos || !src) |
1296 | return {}; |
1297 | |
1298 | auto srcElements = src.getValues<Attribute>(); |
1299 | |
1300 | uint64_t posIdx = pos.getInt(); |
1301 | if (posIdx >= srcElements.size()) |
1302 | return {}; |
1303 | |
1304 | return srcElements[posIdx]; |
1305 | } |
1306 | |
1307 | // Returns `true` if `index` is either within [0, maxIndex) or equal to |
1308 | // `poisonValue`. |
1309 | static bool isValidPositiveIndexOrPoison(int64_t index, int64_t poisonValue, |
1310 | int64_t maxIndex) { |
1311 | return index == poisonValue || (index >= 0 && index < maxIndex); |
1312 | } |
1313 | |
1314 | //===----------------------------------------------------------------------===// |
1315 | // ExtractOp |
1316 | //===----------------------------------------------------------------------===// |
1317 | |
1318 | void ExtractOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges, |
1319 | SetIntRangeFn setResultRanges) { |
1320 | setResultRanges(getResult(), argRanges.front()); |
1321 | } |
1322 | |
1323 | void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, |
1324 | Value source) { |
1325 | auto vectorTy = cast<VectorType>(source.getType()); |
1326 | build(builder, result, source, SmallVector<int64_t>(vectorTy.getRank(), 0)); |
1327 | } |
1328 | |
1329 | void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, |
1330 | Value source, int64_t position) { |
1331 | build(builder, result, source, ArrayRef<int64_t>{position}); |
1332 | } |
1333 | |
1334 | void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, |
1335 | Value source, OpFoldResult position) { |
1336 | build(builder, result, source, ArrayRef<OpFoldResult>{position}); |
1337 | } |
1338 | |
1339 | void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, |
1340 | Value source, ArrayRef<int64_t> position) { |
1341 | build(builder, result, source, /*dynamic_position=*/ArrayRef<Value>(), |
1342 | builder.getDenseI64ArrayAttr(position)); |
1343 | } |
1344 | |
1345 | void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, |
1346 | Value source, ArrayRef<OpFoldResult> position) { |
1347 | SmallVector<int64_t> staticPos; |
1348 | SmallVector<Value> dynamicPos; |
1349 | dispatchIndexOpFoldResults(position, dynamicPos, staticPos); |
1350 | build(builder, result, source, dynamicPos, |
1351 | builder.getDenseI64ArrayAttr(staticPos)); |
1352 | } |
1353 | |
1354 | LogicalResult |
1355 | ExtractOp::inferReturnTypes(MLIRContext *, std::optional<Location>, |
1356 | ExtractOp::Adaptor adaptor, |
1357 | SmallVectorImpl<Type> &inferredReturnTypes) { |
1358 | auto vectorType = llvm::cast<VectorType>(adaptor.getVector().getType()); |
1359 | if (static_cast<int64_t>(adaptor.getStaticPosition().size()) == |
1360 | vectorType.getRank()) { |
1361 | inferredReturnTypes.push_back(vectorType.getElementType()); |
1362 | } else { |
1363 | auto n = std::min<size_t>(adaptor.getStaticPosition().size(), |
1364 | vectorType.getRank()); |
1365 | inferredReturnTypes.push_back(VectorType::get( |
1366 | vectorType.getShape().drop_front(n), vectorType.getElementType(), |
1367 | vectorType.getScalableDims().drop_front(n))); |
1368 | } |
1369 | return success(); |
1370 | } |
1371 | |
1372 | bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
1373 | // Allow extracting 1-element vectors instead of scalars. |
1374 | auto isCompatible = [](TypeRange l, TypeRange r) { |
1375 | auto vectorType = llvm::dyn_cast<VectorType>(l.front()); |
1376 | return vectorType && vectorType.getShape().equals({1}) && |
1377 | vectorType.getElementType() == r.front(); |
1378 | }; |
1379 | if (l.size() == 1 && r.size() == 1 && |
1380 | (isCompatible(l, r) || isCompatible(r, l))) |
1381 | return true; |
1382 | return l == r; |
1383 | } |
1384 | |
1385 | LogicalResult vector::ExtractOp::verify() { |
1386 | // Note: This check must come before getMixedPosition() to prevent a crash. |
1387 | auto dynamicMarkersCount = |
1388 | llvm::count_if(getStaticPosition(), ShapedType::isDynamic); |
1389 | if (static_cast<size_t>(dynamicMarkersCount) != getDynamicPosition().size()) |
1390 | return emitOpError( |
1391 | "mismatch between dynamic and static positions (kDynamic marker but no " |
1392 | "corresponding dynamic position) -- this can only happen due to an " |
1393 | "incorrect fold/rewrite"); |
1394 | auto position = getMixedPosition(); |
1395 | if (position.size() > static_cast<unsigned>(getSourceVectorType().getRank())) |
1396 | return emitOpError( |
1397 | "expected position attribute of rank no greater than vector rank"); |
1398 | for (auto [idx, pos] : llvm::enumerate(position)) { |
1399 | if (auto attr = dyn_cast<Attribute>(pos)) { |
1400 | int64_t constIdx = cast<IntegerAttr>(attr).getInt(); |
1401 | if (!isValidPositiveIndexOrPoison( |
1402 | constIdx, kPoisonIndex, getSourceVectorType().getDimSize(idx))) { |
1403 | return emitOpError("expected position attribute #") |
1404 | << (idx + 1) |
1405 | << " to be a non-negative integer smaller than the " |
1406 | "corresponding vector dimension or poison (-1)"; |
1407 | } |
1408 | } |
1409 | } |
1410 | return success(); |
1411 | } |
1412 | |
1413 | template <typename IntType> |
1414 | static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { |
1415 | return llvm::to_vector<4>(llvm::map_range( |
1416 | arrayAttr.getAsRange<IntegerAttr>(), |
1417 | [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); |
1418 | } |
1419 | |
1420 | /// Fold the result of chains of ExtractOp in place by simply concatenating the |
1421 | /// positions. |
1422 | static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { |
1423 | if (!extractOp.getVector().getDefiningOp<ExtractOp>()) |
1424 | return failure(); |
1425 | |
1426 | // TODO: Canonicalization for dynamic position not implemented yet. |
1427 | if (extractOp.hasDynamicPosition()) |
1428 | return failure(); |
1429 | |
1430 | SmallVector<int64_t> globalPosition; |
1431 | ExtractOp currentOp = extractOp; |
1432 | ArrayRef<int64_t> extrPos = currentOp.getStaticPosition(); |
1433 | globalPosition.append(in_start: extrPos.rbegin(), in_end: extrPos.rend()); |
1434 | while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) { |
1435 | currentOp = nextOp; |
1436 | // TODO: Canonicalization for dynamic position not implemented yet. |
1437 | if (currentOp.hasDynamicPosition()) |
1438 | return failure(); |
1439 | ArrayRef<int64_t> extrPos = currentOp.getStaticPosition(); |
1440 | globalPosition.append(in_start: extrPos.rbegin(), in_end: extrPos.rend()); |
1441 | } |
1442 | extractOp.setOperand(0, currentOp.getVector()); |
1443 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
1444 | OpBuilder b(extractOp.getContext()); |
1445 | std::reverse(first: globalPosition.begin(), last: globalPosition.end()); |
1446 | extractOp.setStaticPosition(globalPosition); |
1447 | return success(); |
1448 | } |
1449 | |
1450 | namespace { |
1451 | /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. |
1452 | /// Walk back a chain of InsertOp/TransposeOp until we hit a match. |
1453 | /// Compose TransposeOp permutations as we walk back. |
1454 | /// This helper class keeps an updated extraction position `extractPosition` |
1455 | /// with extra trailing sentinels. |
1456 | /// The sentinels encode the internal transposition status of the result vector. |
1457 | /// As we iterate, extractPosition is permuted and updated. |
1458 | class ExtractFromInsertTransposeChainState { |
1459 | public: |
1460 | ExtractFromInsertTransposeChainState(ExtractOp e); |
1461 | |
1462 | /// Iterate over producing insert and transpose ops until we find a fold. |
1463 | Value fold(); |
1464 | |
1465 | private: |
1466 | /// Return true if the vector at position `a` is contained within the vector |
1467 | /// at position `b`. Under insert/extract semantics, this is the same as `a` |
1468 | /// is a prefix of `b`. |
1469 | template <typename ContainerA, typename ContainerB> |
1470 | bool isContainedWithin(const ContainerA &a, const ContainerB &b) { |
1471 | return a.size() <= b.size() && |
1472 | std::equal(a.begin(), a.begin() + a.size(), b.begin()); |
1473 | } |
1474 | |
1475 | /// Return true if the vector at position `a` intersects the vector at |
1476 | /// position `b`. Under insert/extract semantics, this is the same as equality |
1477 | /// of all entries of `a` that are >=0 with the corresponding entries of b. |
1478 | /// Comparison is on the common prefix (i.e. zip). |
1479 | template <typename ContainerA, typename ContainerB> |
1480 | bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { |
1481 | for (auto [elemA, elemB] : llvm::zip(a, b)) { |
1482 | if (elemA < 0 || elemB < 0) |
1483 | continue; |
1484 | if (elemA != elemB) |
1485 | return false; |
1486 | } |
1487 | return true; |
1488 | } |
1489 | |
1490 | /// Folding is only possible in the absence of an internal permutation in the |
1491 | /// result vector. |
1492 | bool canFold() { |
1493 | return (sentinels == ArrayRef(extractPosition).drop_front(N: extractedRank)); |
1494 | } |
1495 | |
1496 | // Helper to get the next defining op of interest. |
1497 | void updateStateForNextIteration(Value v) { |
1498 | nextInsertOp = v.getDefiningOp<vector::InsertOp>(); |
1499 | nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); |
1500 | }; |
1501 | |
1502 | // Case 1. If we hit a transpose, just compose the map and iterate. |
1503 | // Invariant: insert + transpose do not change rank, we can always compose. |
1504 | LogicalResult handleTransposeOp(); |
1505 | |
1506 | // Case 2: the insert position matches extractPosition exactly, early return. |
1507 | LogicalResult handleInsertOpWithMatchingPos(Value &res); |
1508 | |
1509 | /// Case 3: if the insert position is a prefix of extractPosition, extract a |
1510 | /// portion of the source of the insert. |
1511 | /// Example: |
1512 | /// ``` |
1513 | /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> |
1514 | /// // extractPosition == [1, 2, 3] |
1515 | /// %ext = vector.extract %ins[1, 0]: vector<5> from vector<3x4x5> |
1516 | /// // can fold to vector.extract %source[0, 3] |
1517 | /// %ext = vector.extract %source[3]: vector<6> from vector<5x6> |
1518 | /// ``` |
1519 | /// To traverse through %source, we need to set the leading dims to 0 and |
1520 | /// drop the extra leading dims. |
1521 | /// This method updates the internal state. |
1522 | LogicalResult handleInsertOpWithPrefixPos(Value &res); |
1523 | |
1524 | /// Try to fold in place to extract(source, extractPosition) and return the |
1525 | /// folded result. Return null if folding is not possible (e.g. due to an |
1526 | /// internal transposition in the result). |
1527 | Value tryToFoldExtractOpInPlace(Value source); |
1528 | |
1529 | ExtractOp extractOp; |
1530 | int64_t vectorRank; |
1531 | int64_t extractedRank; |
1532 | |
1533 | InsertOp nextInsertOp; |
1534 | TransposeOp nextTransposeOp; |
1535 | |
1536 | /// Sentinel values that encode the internal permutation status of the result. |
1537 | /// They are set to (-1, ... , -k) at the beginning and appended to |
1538 | /// `extractPosition`. |
1539 | /// In the end, the tail of `extractPosition` must be exactly `sentinels` to |
1540 | /// ensure that there is no internal transposition. |
1541 | /// Internal transposition cannot be accounted for with a folding pattern. |
1542 | // TODO: We could relax the internal transposition with an extra transposition |
1543 | // operation in a future canonicalizer. |
1544 | SmallVector<int64_t> sentinels; |
1545 | SmallVector<int64_t> extractPosition; |
1546 | }; |
1547 | } // namespace |
1548 | |
1549 | ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( |
1550 | ExtractOp e) |
1551 | : extractOp(e), vectorRank(extractOp.getSourceVectorType().getRank()), |
1552 | extractedRank(extractOp.getNumIndices()) { |
1553 | assert(vectorRank >= extractedRank && "Extracted position overflow"); |
1554 | sentinels.reserve(N: vectorRank - extractedRank); |
1555 | for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) |
1556 | sentinels.push_back(Elt: -(i + 1)); |
1557 | extractPosition.assign(extractOp.getStaticPosition().begin(), |
1558 | extractOp.getStaticPosition().end()); |
1559 | llvm::append_range(C&: extractPosition, R&: sentinels); |
1560 | } |
1561 | |
1562 | // Case 1. If we hit a transpose, just compose the map and iterate. |
1563 | // Invariant: insert + transpose do not change rank, we can always compose. |
1564 | LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { |
1565 | // TODO: Canonicalization for dynamic position not implemented yet. |
1566 | if (extractOp.hasDynamicPosition()) |
1567 | return failure(); |
1568 | |
1569 | if (!nextTransposeOp) |
1570 | return failure(); |
1571 | AffineMap m = inversePermutation(AffineMap::getPermutationMap( |
1572 | nextTransposeOp.getPermutation(), extractOp.getContext())); |
1573 | extractPosition = applyPermutationMap(map: m, source: ArrayRef(extractPosition)); |
1574 | return success(); |
1575 | } |
1576 | |
1577 | // Case 2: the insert position matches extractPosition exactly, early return. |
1578 | LogicalResult |
1579 | ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( |
1580 | Value &res) { |
1581 | // TODO: Canonicalization for dynamic position not implemented yet. |
1582 | if (extractOp.hasDynamicPosition() || nextInsertOp.hasDynamicPosition()) |
1583 | return failure(); |
1584 | |
1585 | ArrayRef<int64_t> insertedPos = nextInsertOp.getStaticPosition(); |
1586 | if (insertedPos != llvm::ArrayRef(extractPosition).take_front(N: extractedRank)) |
1587 | return failure(); |
1588 | // Case 2.a. early-exit fold. |
1589 | res = nextInsertOp.getValueToStore(); |
1590 | // Case 2.b. if internal transposition is present, canFold will be false. |
1591 | return success(IsSuccess: canFold()); |
1592 | } |
1593 | |
1594 | /// Case 3: if inserted position is a prefix of extractPosition, |
1595 | /// extract a portion of the source of the insertion. |
1596 | /// This method updates the internal state. |
1597 | LogicalResult |
1598 | ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { |
1599 | // TODO: Canonicalization for dynamic position not implemented yet. |
1600 | if (extractOp.hasDynamicPosition() || nextInsertOp.hasDynamicPosition()) |
1601 | return failure(); |
1602 | |
1603 | ArrayRef<int64_t> insertedPos = nextInsertOp.getStaticPosition(); |
1604 | if (!isContainedWithin(a: insertedPos, b: extractPosition)) |
1605 | return failure(); |
1606 | // Set leading dims to zero. |
1607 | std::fill_n(first: extractPosition.begin(), n: insertedPos.size(), value: 0); |
1608 | // Drop extra leading dims. |
1609 | extractPosition.erase(CS: extractPosition.begin(), |
1610 | CE: extractPosition.begin() + insertedPos.size()); |
1611 | extractedRank = extractPosition.size() - sentinels.size(); |
1612 | // Case 3.a. early-exit fold (break and delegate to post-while path). |
1613 | res = nextInsertOp.getValueToStore(); |
1614 | // Case 3.b. if internal transposition is present, canFold will be false. |
1615 | return success(); |
1616 | } |
1617 | |
1618 | /// Try to fold in place to extract(source, extractPosition) and return the |
1619 | /// folded result. Return null if folding is not possible (e.g. due to an |
1620 | /// internal transposition in the result). |
1621 | Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( |
1622 | Value source) { |
1623 | // TODO: Canonicalization for dynamic position not implemented yet. |
1624 | if (extractOp.hasDynamicPosition()) |
1625 | return Value(); |
1626 | |
1627 | // If we can't fold (either internal transposition, or nothing to fold), bail. |
1628 | bool nothingToFold = (source == extractOp.getVector()); |
1629 | if (nothingToFold || !canFold()) |
1630 | return Value(); |
1631 | |
1632 | // Otherwise, fold by updating the op inplace and return its result. |
1633 | OpBuilder b(extractOp.getContext()); |
1634 | extractOp.setStaticPosition( |
1635 | ArrayRef(extractPosition).take_front(extractedRank)); |
1636 | extractOp.getVectorMutable().assign(source); |
1637 | return extractOp.getResult(); |
1638 | } |
1639 | |
1640 | /// Iterate over producing insert and transpose ops until we find a fold. |
1641 | Value ExtractFromInsertTransposeChainState::fold() { |
1642 | // TODO: Canonicalization for dynamic position not implemented yet. |
1643 | if (extractOp.hasDynamicPosition()) |
1644 | return Value(); |
1645 | |
1646 | Value valueToExtractFrom = extractOp.getVector(); |
1647 | updateStateForNextIteration(v: valueToExtractFrom); |
1648 | while (nextInsertOp || nextTransposeOp) { |
1649 | // Case 1. If we hit a transpose, just compose the map and iterate. |
1650 | // Invariant: insert + transpose do not change rank, we can always compose. |
1651 | if (succeeded(Result: handleTransposeOp())) { |
1652 | valueToExtractFrom = nextTransposeOp.getVector(); |
1653 | updateStateForNextIteration(v: valueToExtractFrom); |
1654 | continue; |
1655 | } |
1656 | |
1657 | Value result; |
1658 | // Case 2: the position match exactly. |
1659 | if (succeeded(Result: handleInsertOpWithMatchingPos(res&: result))) |
1660 | return result; |
1661 | |
1662 | // Case 3: if the inserted position is a prefix of extractPosition, we can |
1663 | // just extract a portion of the source of the insert. |
1664 | if (succeeded(Result: handleInsertOpWithPrefixPos(res&: result))) |
1665 | return tryToFoldExtractOpInPlace(source: result); |
1666 | |
1667 | // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel |
1668 | // values. This is a more difficult case and we bail. |
1669 | ArrayRef<int64_t> insertedPos = nextInsertOp.getStaticPosition(); |
1670 | if (isContainedWithin(a: extractPosition, b: insertedPos) || |
1671 | intersectsWhereNonNegative(a: extractPosition, b: insertedPos)) |
1672 | return Value(); |
1673 | |
1674 | // Case 5: No intersection, we forward the extract to insertOp.dest(). |
1675 | valueToExtractFrom = nextInsertOp.getDest(); |
1676 | updateStateForNextIteration(v: valueToExtractFrom); |
1677 | } |
1678 | // If after all this we can fold, go for it. |
1679 | return tryToFoldExtractOpInPlace(source: valueToExtractFrom); |
1680 | } |
1681 | |
1682 | /// Returns true if the operation has a 0-D vector type operand or result. |
1683 | static bool hasZeroDimVectors(Operation *op) { |
1684 | auto hasZeroDimVectorType = [](Type type) -> bool { |
1685 | auto vecType = dyn_cast<VectorType>(type); |
1686 | return vecType && vecType.getRank() == 0; |
1687 | }; |
1688 | |
1689 | return llvm::any_of(Range: op->getOperandTypes(), P: hasZeroDimVectorType) || |
1690 | llvm::any_of(Range: op->getResultTypes(), P: hasZeroDimVectorType); |
1691 | } |
1692 | |
1693 | /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. |
1694 | static Value foldExtractFromBroadcast(ExtractOp extractOp) { |
1695 | Operation *defOp = extractOp.getVector().getDefiningOp(); |
1696 | if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) |
1697 | return Value(); |
1698 | |
1699 | Value source = defOp->getOperand(idx: 0); |
1700 | if (extractOp.getType() == source.getType()) |
1701 | return source; |
1702 | auto getRank = [](Type type) { |
1703 | return llvm::isa<VectorType>(type) ? llvm::cast<VectorType>(type).getRank() |
1704 | : 0; |
1705 | }; |
1706 | |
1707 | // If splat or broadcast from a scalar, just return the source scalar. |
1708 | unsigned broadcastSrcRank = getRank(source.getType()); |
1709 | if (broadcastSrcRank == 0 && source.getType() == extractOp.getType()) |
1710 | return source; |
1711 | |
1712 | unsigned extractResultRank = getRank(extractOp.getType()); |
1713 | if (extractResultRank > broadcastSrcRank) |
1714 | return Value(); |
1715 | // Check that the dimension of the result haven't been broadcasted. |
1716 | auto extractVecType = llvm::dyn_cast<VectorType>(extractOp.getType()); |
1717 | auto broadcastVecType = llvm::dyn_cast<VectorType>(source.getType()); |
1718 | if (extractVecType && broadcastVecType && |
1719 | extractVecType.getShape() != |
1720 | broadcastVecType.getShape().take_back(extractResultRank)) |
1721 | return Value(); |
1722 | |
1723 | auto broadcastOp = cast<vector::BroadcastOp>(defOp); |
1724 | int64_t broadcastDstRank = broadcastOp.getResultVectorType().getRank(); |
1725 | |
1726 | // Detect all the positions that come from "dim-1" broadcasting. |
1727 | // These dimensions correspond to "dim-1" broadcasted dims; set the mathching |
1728 | // extract position to `0` when extracting from the source operand. |
1729 | llvm::SetVector<int64_t> broadcastedUnitDims = |
1730 | broadcastOp.computeBroadcastedUnitDims(); |
1731 | SmallVector<OpFoldResult> extractPos(extractOp.getMixedPosition()); |
1732 | OpBuilder b(extractOp.getContext()); |
1733 | int64_t broadcastRankDiff = broadcastDstRank - broadcastSrcRank; |
1734 | for (int64_t i = broadcastRankDiff, e = extractPos.size(); i < e; ++i) |
1735 | if (broadcastedUnitDims.contains(key: i)) |
1736 | extractPos[i] = b.getIndexAttr(0); |
1737 | // `rankDiff` leading dimensions correspond to new broadcasted dims, drop the |
1738 | // matching extract position when extracting from the source operand. |
1739 | int64_t rankDiff = broadcastSrcRank - extractResultRank; |
1740 | extractPos.erase(CS: extractPos.begin(), |
1741 | CE: std::next(x: extractPos.begin(), n: extractPos.size() - rankDiff)); |
1742 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
1743 | auto [staticPos, dynPos] = decomposeMixedValues(mixedValues: extractPos); |
1744 | extractOp->setOperands( |
1745 | llvm::to_vector(llvm::concat<Value>(ValueRange(source), dynPos))); |
1746 | extractOp.setStaticPosition(staticPos); |
1747 | return extractOp.getResult(); |
1748 | } |
1749 | |
1750 | /// Fold extractOp coming from ShuffleOp. |
1751 | /// |
1752 | /// Example: |
1753 | /// |
1754 | /// %shuffle = vector.shuffle %a, %b [0, 8, 7, 15] |
1755 | /// : vector<8xf32>, vector<8xf32> |
1756 | /// %extract = vector.extract %shuffle[3] : f32 from vector<4xf32> |
1757 | /// -> |
1758 | /// %extract = vector.extract %b[7] : f32 from vector<8xf32> |
1759 | /// |
1760 | static Value foldExtractFromShuffle(ExtractOp extractOp) { |
1761 | // Dynamic positions are not folded as the resulting code would be more |
1762 | // complex than the input code. |
1763 | if (extractOp.hasDynamicPosition()) |
1764 | return Value(); |
1765 | |
1766 | auto shuffleOp = extractOp.getVector().getDefiningOp<ShuffleOp>(); |
1767 | if (!shuffleOp) |
1768 | return Value(); |
1769 | |
1770 | // TODO: 0-D or multi-dimensional vectors not supported yet. |
1771 | if (shuffleOp.getResultVectorType().getRank() != 1) |
1772 | return Value(); |
1773 | |
1774 | int64_t inputVecSize = shuffleOp.getV1().getType().getShape()[0]; |
1775 | auto shuffleMask = shuffleOp.getMask(); |
1776 | int64_t extractIdx = extractOp.getStaticPosition()[0]; |
1777 | int64_t shuffleIdx = shuffleMask[extractIdx]; |
1778 | |
1779 | // Find the shuffled vector to extract from based on the shuffle index. |
1780 | if (shuffleIdx < inputVecSize) { |
1781 | extractOp.setOperand(0, shuffleOp.getV1()); |
1782 | extractOp.setStaticPosition({shuffleIdx}); |
1783 | } else { |
1784 | extractOp.setOperand(0, shuffleOp.getV2()); |
1785 | extractOp.setStaticPosition({shuffleIdx - inputVecSize}); |
1786 | } |
1787 | |
1788 | return extractOp.getResult(); |
1789 | } |
1790 | |
1791 | // Fold extractOp with source coming from ShapeCast op. |
1792 | static Value foldExtractFromShapeCast(ExtractOp extractOp) { |
1793 | // TODO: Canonicalization for dynamic position not implemented yet. |
1794 | if (extractOp.hasDynamicPosition()) |
1795 | return Value(); |
1796 | |
1797 | auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>(); |
1798 | if (!shapeCastOp) |
1799 | return Value(); |
1800 | |
1801 | // Get the nth dimension size starting from lowest dimension. |
1802 | auto getDimReverse = [](VectorType type, int64_t n) { |
1803 | return type.getShape().take_back(n + 1).front(); |
1804 | }; |
1805 | int64_t destinationRank = |
1806 | llvm::isa<VectorType>(extractOp.getType()) |
1807 | ? llvm::cast<VectorType>(extractOp.getType()).getRank() |
1808 | : 0; |
1809 | if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) |
1810 | return Value(); |
1811 | if (destinationRank > 0) { |
1812 | auto destinationType = |
1813 | llvm::cast<VectorType>(extractOp.getResult().getType()); |
1814 | for (int64_t i = 0; i < destinationRank; i++) { |
1815 | // The lowest dimension of the destination must match the lowest |
1816 | // dimension of the shapecast op source. |
1817 | // TODO: This case could be support in a canonicalization pattern. |
1818 | if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != |
1819 | getDimReverse(destinationType, i)) |
1820 | return Value(); |
1821 | } |
1822 | } |
1823 | // Extract the strides associated with the extract op vector source. Then use |
1824 | // this to calculate a linearized position for the extract. |
1825 | SmallVector<int64_t> extractedPos(extractOp.getStaticPosition()); |
1826 | std::reverse(first: extractedPos.begin(), last: extractedPos.end()); |
1827 | SmallVector<int64_t, 4> strides; |
1828 | int64_t stride = 1; |
1829 | for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { |
1830 | strides.push_back(Elt: stride); |
1831 | stride *= |
1832 | getDimReverse(extractOp.getSourceVectorType(), i + destinationRank); |
1833 | } |
1834 | |
1835 | int64_t position = linearize(offsets: extractedPos, basis: strides); |
1836 | // Then extract the strides associated to the shapeCast op vector source and |
1837 | // delinearize the position using those strides. |
1838 | SmallVector<int64_t, 4> newStrides; |
1839 | int64_t numDimension = |
1840 | shapeCastOp.getSourceVectorType().getRank() - destinationRank; |
1841 | stride = 1; |
1842 | for (int64_t i = 0; i < numDimension; i++) { |
1843 | newStrides.push_back(Elt: stride); |
1844 | stride *= |
1845 | getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); |
1846 | } |
1847 | std::reverse(first: newStrides.begin(), last: newStrides.end()); |
1848 | SmallVector<int64_t, 4> newPosition = delinearize(linearIndex: position, strides: newStrides); |
1849 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
1850 | OpBuilder b(extractOp.getContext()); |
1851 | extractOp.setStaticPosition(newPosition); |
1852 | extractOp.setOperand(0, shapeCastOp.getSource()); |
1853 | return extractOp.getResult(); |
1854 | } |
1855 | |
1856 | /// Fold an ExtractOp from ExtractStridedSliceOp. |
1857 | static Value foldExtractFromExtractStrided(ExtractOp extractOp) { |
1858 | // TODO: Canonicalization for dynamic position not implemented yet. |
1859 | if (extractOp.hasDynamicPosition()) |
1860 | return Value(); |
1861 | |
1862 | auto extractStridedSliceOp = |
1863 | extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>(); |
1864 | if (!extractStridedSliceOp) |
1865 | return Value(); |
1866 | |
1867 | // 0-D vectors not supported. |
1868 | assert(!hasZeroDimVectors(extractOp) && "0-D vectors not supported"); |
1869 | if (hasZeroDimVectors(extractStridedSliceOp)) |
1870 | return Value(); |
1871 | |
1872 | // Return if 'extractStridedSliceOp' has non-unit strides. |
1873 | if (extractStridedSliceOp.hasNonUnitStrides()) |
1874 | return Value(); |
1875 | |
1876 | // Trim offsets for dimensions fully extracted. |
1877 | auto sliceOffsets = |
1878 | extractVector<int64_t>(extractStridedSliceOp.getOffsets()); |
1879 | while (!sliceOffsets.empty()) { |
1880 | size_t lastOffset = sliceOffsets.size() - 1; |
1881 | if (sliceOffsets.back() != 0 || |
1882 | extractStridedSliceOp.getType().getDimSize(lastOffset) != |
1883 | extractStridedSliceOp.getSourceVectorType().getDimSize(lastOffset)) |
1884 | break; |
1885 | sliceOffsets.pop_back(); |
1886 | } |
1887 | unsigned destinationRank = 0; |
1888 | if (auto vecType = llvm::dyn_cast<VectorType>(extractOp.getType())) |
1889 | destinationRank = vecType.getRank(); |
1890 | // The dimensions of the result need to be untouched by the |
1891 | // extractStridedSlice op. |
1892 | if (destinationRank > extractStridedSliceOp.getSourceVectorType().getRank() - |
1893 | sliceOffsets.size()) |
1894 | return Value(); |
1895 | |
1896 | SmallVector<int64_t> extractedPos(extractOp.getStaticPosition()); |
1897 | assert(extractedPos.size() >= sliceOffsets.size()); |
1898 | for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) |
1899 | extractedPos[i] = extractedPos[i] + sliceOffsets[i]; |
1900 | extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); |
1901 | |
1902 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
1903 | OpBuilder b(extractOp.getContext()); |
1904 | extractOp.setStaticPosition(extractedPos); |
1905 | return extractOp.getResult(); |
1906 | } |
1907 | |
1908 | /// Fold extract_op fed from a chain of insertStridedSlice ops. |
1909 | static Value foldExtractStridedOpFromInsertChain(ExtractOp extractOp) { |
1910 | // TODO: Canonicalization for dynamic position not implemented yet. |
1911 | if (extractOp.hasDynamicPosition()) |
1912 | return Value(); |
1913 | |
1914 | int64_t destinationRank = |
1915 | llvm::isa<VectorType>(extractOp.getType()) |
1916 | ? llvm::cast<VectorType>(extractOp.getType()).getRank() |
1917 | : 0; |
1918 | auto insertOp = extractOp.getVector().getDefiningOp<InsertStridedSliceOp>(); |
1919 | if (!insertOp) |
1920 | return Value(); |
1921 | |
1922 | // 0-D vectors not supported. |
1923 | assert(!hasZeroDimVectors(extractOp) && "0-D vectors not supported"); |
1924 | if (hasZeroDimVectors(insertOp)) |
1925 | return Value(); |
1926 | |
1927 | while (insertOp) { |
1928 | int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - |
1929 | insertOp.getSourceVectorType().getRank(); |
1930 | if (destinationRank > insertOp.getSourceVectorType().getRank()) |
1931 | return Value(); |
1932 | auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets()); |
1933 | ArrayRef<int64_t> extractOffsets = extractOp.getStaticPosition(); |
1934 | |
1935 | if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { |
1936 | return llvm::cast<IntegerAttr>(attr).getInt() != 1; |
1937 | })) |
1938 | return Value(); |
1939 | bool disjoint = false; |
1940 | SmallVector<int64_t, 4> offsetDiffs; |
1941 | for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { |
1942 | int64_t start = insertOffsets[dim]; |
1943 | int64_t size = |
1944 | (dim < insertRankDiff) |
1945 | ? 1 |
1946 | : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); |
1947 | int64_t end = start + size; |
1948 | int64_t offset = extractOffsets[dim]; |
1949 | // Check if the start of the extract offset is in the interval inserted. |
1950 | if (start <= offset && offset < end) { |
1951 | if (dim >= insertRankDiff) |
1952 | offsetDiffs.push_back(Elt: offset - start); |
1953 | continue; |
1954 | } |
1955 | disjoint = true; |
1956 | break; |
1957 | } |
1958 | // The extract element chunk overlap with the vector inserted. |
1959 | if (!disjoint) { |
1960 | // If any of the inner dimensions are only partially inserted we have a |
1961 | // partial overlap. |
1962 | int64_t srcRankDiff = |
1963 | insertOp.getSourceVectorType().getRank() - destinationRank; |
1964 | for (int64_t i = 0; i < destinationRank; i++) { |
1965 | if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != |
1966 | insertOp.getDestVectorType().getDimSize(i + srcRankDiff + |
1967 | insertRankDiff)) |
1968 | return Value(); |
1969 | } |
1970 | extractOp.getVectorMutable().assign(insertOp.getValueToStore()); |
1971 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
1972 | OpBuilder b(extractOp.getContext()); |
1973 | extractOp.setStaticPosition(offsetDiffs); |
1974 | return extractOp.getResult(); |
1975 | } |
1976 | // If the chunk extracted is disjoint from the chunk inserted, keep |
1977 | // looking in the insert chain. |
1978 | insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); |
1979 | } |
1980 | return Value(); |
1981 | } |
1982 | |
1983 | /// Try to fold the extraction of a scalar from a vector defined by |
1984 | /// vector.from_elements. E.g.: |
1985 | /// |
1986 | /// %0 = vector.from_elements %a, %b : vector<2xf32> |
1987 | /// %1 = vector.extract %0[0] : f32 from vector<2xf32> |
1988 | /// ==> fold to %a |
1989 | static Value foldScalarExtractFromFromElements(ExtractOp extractOp) { |
1990 | // Dynamic extractions cannot be folded. |
1991 | if (extractOp.hasDynamicPosition()) |
1992 | return {}; |
1993 | |
1994 | // Look for extract(from_elements). |
1995 | auto fromElementsOp = extractOp.getVector().getDefiningOp<FromElementsOp>(); |
1996 | if (!fromElementsOp) |
1997 | return {}; |
1998 | |
1999 | // Scalable vectors are not supported. |
2000 | auto vecType = llvm::cast<VectorType>(fromElementsOp.getType()); |
2001 | if (vecType.isScalable()) |
2002 | return {}; |
2003 | |
2004 | // Only extractions of scalars are supported. |
2005 | int64_t rank = vecType.getRank(); |
2006 | ArrayRef<int64_t> indices = extractOp.getStaticPosition(); |
2007 | if (extractOp.getType() != vecType.getElementType()) |
2008 | return {}; |
2009 | assert(static_cast<int64_t>(indices.size()) == rank && |
2010 | "unexpected number of indices"); |
2011 | |
2012 | // Compute flattened/linearized index and fold to operand. |
2013 | int flatIndex = 0; |
2014 | int stride = 1; |
2015 | for (int i = rank - 1; i >= 0; --i) { |
2016 | flatIndex += indices[i] * stride; |
2017 | stride *= vecType.getDimSize(i); |
2018 | } |
2019 | return fromElementsOp.getElements()[flatIndex]; |
2020 | } |
2021 | |
2022 | /// If the dynamic indices of `extractOp` or `insertOp` are in fact constants, |
2023 | /// then fold it. |
2024 | template <typename OpType, typename AdaptorType> |
2025 | static Value extractInsertFoldConstantOp(OpType op, AdaptorType adaptor, |
2026 | SmallVectorImpl<Value> &operands) { |
2027 | std::vector<int64_t> staticPosition = op.getStaticPosition().vec(); |
2028 | OperandRange dynamicPosition = op.getDynamicPosition(); |
2029 | ArrayRef<Attribute> dynamicPositionAttr = adaptor.getDynamicPosition(); |
2030 | ArrayRef<int64_t> vectorShape; |
2031 | if constexpr (std::is_same_v<OpType, ExtractOp>) |
2032 | vectorShape = op.getSourceVectorType().getShape(); |
2033 | else |
2034 | vectorShape = op.getDestVectorType().getShape(); |
2035 | |
2036 | // If the dynamic operands is empty, it is returned directly. |
2037 | if (!dynamicPosition.size()) |
2038 | return {}; |
2039 | |
2040 | // `index` is used to iterate over the `dynamicPosition`. |
2041 | unsigned index = 0; |
2042 | |
2043 | // `opChange` is a flag. If it is true, it means to update `op` in place. |
2044 | bool opChange = false; |
2045 | for (unsigned i = 0, e = staticPosition.size(); i < e; ++i) { |
2046 | if (!ShapedType::isDynamic(staticPosition[i])) |
2047 | continue; |
2048 | Attribute positionAttr = dynamicPositionAttr[index]; |
2049 | Value position = dynamicPosition[index++]; |
2050 | if (auto attr = mlir::dyn_cast_if_present<IntegerAttr>(positionAttr)) { |
2051 | int64_t value = attr.getInt(); |
2052 | // Do not fold if the value is out of bounds (-1 signifies a poison |
2053 | // value rather than OOB index). |
2054 | if (value >= -1 && value < vectorShape[i]) { |
2055 | staticPosition[i] = attr.getInt(); |
2056 | opChange = true; |
2057 | continue; |
2058 | } |
2059 | } |
2060 | operands.push_back(Elt: position); |
2061 | } |
2062 | |
2063 | if (opChange) { |
2064 | op.setStaticPosition(staticPosition); |
2065 | op.getOperation()->setOperands(operands); |
2066 | return op.getResult(); |
2067 | } |
2068 | return {}; |
2069 | } |
2070 | |
2071 | /// Fold an insert or extract operation into an poison value when a poison index |
2072 | /// is found at any dimension of the static position. |
2073 | static Attribute foldPoisonIndexInsertExtractOp(MLIRContext *context, |
2074 | ArrayRef<int64_t> staticPos, |
2075 | int64_t poisonVal) { |
2076 | if (!is_contained(Range&: staticPos, Element: poisonVal)) |
2077 | return {}; |
2078 | |
2079 | return ub::PoisonAttr::get(context); |
2080 | } |
2081 | |
2082 | /// Fold a vector extract from is a poison source. |
2083 | static Attribute foldPoisonSrcExtractOp(Attribute srcAttr) { |
2084 | if (isa_and_nonnull<ub::PoisonAttr>(srcAttr)) |
2085 | return srcAttr; |
2086 | |
2087 | return {}; |
2088 | } |
2089 | |
2090 | /// Fold a vector extract extracting from a DenseElementsAttr. |
2091 | static Attribute foldDenseElementsAttrSrcExtractOp(ExtractOp extractOp, |
2092 | Attribute srcAttr) { |
2093 | auto denseAttr = dyn_cast_if_present<DenseElementsAttr>(Val&: srcAttr); |
2094 | if (!denseAttr) { |
2095 | return {}; |
2096 | } |
2097 | |
2098 | if (denseAttr.isSplat()) { |
2099 | Attribute newAttr = denseAttr.getSplatValue<Attribute>(); |
2100 | if (auto vecDstType = dyn_cast<VectorType>(extractOp.getType())) |
2101 | newAttr = DenseElementsAttr::get(vecDstType, newAttr); |
2102 | return newAttr; |
2103 | } |
2104 | |
2105 | auto vecTy = cast<VectorType>(extractOp.getSourceVectorType()); |
2106 | if (vecTy.isScalable()) |
2107 | return {}; |
2108 | |
2109 | if (extractOp.hasDynamicPosition()) { |
2110 | return {}; |
2111 | } |
2112 | |
2113 | // Materializing subsets of a large constant array can generally lead to |
2114 | // explosion in IR size because of different combination of subsets that |
2115 | // can exist. However, vector.extract is a restricted form of subset |
2116 | // extract where you can only extract non-overlapping (or the same) subset for |
2117 | // a given rank of the subset. Because of this property, the IR size can only |
2118 | // increase at most by `rank * size(array)` from a single constant array being |
2119 | // extracted by multiple extracts. |
2120 | |
2121 | // Calculate the linearized position of the continuous chunk of elements to |
2122 | // extract. |
2123 | SmallVector<int64_t> completePositions(vecTy.getRank(), 0); |
2124 | copy(extractOp.getStaticPosition(), completePositions.begin()); |
2125 | int64_t startPos = |
2126 | linearize(completePositions, computeStrides(vecTy.getShape())); |
2127 | auto denseValuesBegin = denseAttr.value_begin<TypedAttr>() + startPos; |
2128 | |
2129 | TypedAttr newAttr; |
2130 | if (auto resVecTy = dyn_cast<VectorType>(extractOp.getType())) { |
2131 | SmallVector<Attribute> elementValues( |
2132 | denseValuesBegin, denseValuesBegin + resVecTy.getNumElements()); |
2133 | newAttr = DenseElementsAttr::get(resVecTy, elementValues); |
2134 | } else { |
2135 | newAttr = *denseValuesBegin; |
2136 | } |
2137 | |
2138 | return newAttr; |
2139 | } |
2140 | |
2141 | OpFoldResult ExtractOp::fold(FoldAdaptor adaptor) { |
2142 | // Fold "vector.extract %v[] : vector<2x2xf32> from vector<2x2xf32>" to %v. |
2143 | // Note: Do not fold "vector.extract %v[] : f32 from vector<f32>" (type |
2144 | // mismatch). |
2145 | if (getNumIndices() == 0 && getVector().getType() == getResult().getType()) |
2146 | return getVector(); |
2147 | if (auto res = foldPoisonSrcExtractOp(adaptor.getVector())) |
2148 | return res; |
2149 | // Fold `arith.constant` indices into the `vector.extract` operation. Make |
2150 | // sure that patterns requiring constant indices are added after this fold. |
2151 | SmallVector<Value> operands = {getVector()}; |
2152 | if (auto val = extractInsertFoldConstantOp(*this, adaptor, operands)) |
2153 | return val; |
2154 | if (auto res = foldPoisonIndexInsertExtractOp( |
2155 | getContext(), adaptor.getStaticPosition(), kPoisonIndex)) |
2156 | return res; |
2157 | if (auto res = foldDenseElementsAttrSrcExtractOp(*this, adaptor.getVector())) |
2158 | return res; |
2159 | if (succeeded(foldExtractOpFromExtractChain(*this))) |
2160 | return getResult(); |
2161 | if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) |
2162 | return res; |
2163 | if (auto res = foldExtractFromBroadcast(*this)) |
2164 | return res; |
2165 | if (auto res = foldExtractFromShuffle(*this)) |
2166 | return res; |
2167 | if (auto res = foldExtractFromShapeCast(*this)) |
2168 | return res; |
2169 | if (auto val = foldExtractFromExtractStrided(*this)) |
2170 | return val; |
2171 | if (auto val = foldExtractStridedOpFromInsertChain(*this)) |
2172 | return val; |
2173 | if (auto val = foldScalarExtractFromFromElements(*this)) |
2174 | return val; |
2175 | return OpFoldResult(); |
2176 | } |
2177 | |
2178 | namespace { |
2179 | |
2180 | // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. |
2181 | class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { |
2182 | public: |
2183 | using OpRewritePattern::OpRewritePattern; |
2184 | |
2185 | LogicalResult matchAndRewrite(ExtractOp extractOp, |
2186 | PatternRewriter &rewriter) const override { |
2187 | Operation *defOp = extractOp.getVector().getDefiningOp(); |
2188 | if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) |
2189 | return failure(); |
2190 | |
2191 | Value source = defOp->getOperand(idx: 0); |
2192 | if (extractOp.getType() == source.getType()) |
2193 | return failure(); |
2194 | auto getRank = [](Type type) { |
2195 | return llvm::isa<VectorType>(type) |
2196 | ? llvm::cast<VectorType>(type).getRank() |
2197 | : 0; |
2198 | }; |
2199 | unsigned broadcastSrcRank = getRank(source.getType()); |
2200 | unsigned extractResultRank = getRank(extractOp.getType()); |
2201 | // We only consider the case where the rank of the source is less than or |
2202 | // equal to the rank of the extract dst. The other cases are handled in the |
2203 | // folding patterns. |
2204 | if (extractResultRank < broadcastSrcRank) |
2205 | return failure(); |
2206 | // For scalar result, the input can only be a rank-0 vector, which will |
2207 | // be handled by the folder. |
2208 | if (extractResultRank == 0) |
2209 | return failure(); |
2210 | |
2211 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>( |
2212 | extractOp, extractOp.getType(), source); |
2213 | return success(); |
2214 | } |
2215 | }; |
2216 | |
2217 | // Pattern to rewrite a ExtractOp(CreateMask) -> CreateMask. |
2218 | class ExtractOpFromCreateMask final : public OpRewritePattern<ExtractOp> { |
2219 | public: |
2220 | using OpRewritePattern::OpRewritePattern; |
2221 | |
2222 | LogicalResult matchAndRewrite(ExtractOp extractOp, |
2223 | PatternRewriter &rewriter) const override { |
2224 | auto createMaskOp = |
2225 | extractOp.getVector().getDefiningOp<vector::CreateMaskOp>(); |
2226 | if (!createMaskOp) |
2227 | return failure(); |
2228 | |
2229 | VectorType extractedMaskType = |
2230 | llvm::dyn_cast<VectorType>(extractOp.getResult().getType()); |
2231 | |
2232 | if (!extractedMaskType) |
2233 | return failure(); |
2234 | |
2235 | auto maskOperands = createMaskOp.getOperands(); |
2236 | ArrayRef<int64_t> extractOpPos = extractOp.getStaticPosition(); |
2237 | VectorType maskType = createMaskOp.getVectorType(); |
2238 | |
2239 | bool containsUnknownDims = false; |
2240 | bool allFalse = getMaskFormat(createMaskOp) == MaskFormat::AllFalse; |
2241 | |
2242 | for (size_t dimIdx = 0; !allFalse && dimIdx < extractOpPos.size(); |
2243 | dimIdx++) { |
2244 | int64_t pos = extractOpPos[dimIdx]; |
2245 | Value operand = maskOperands[dimIdx]; |
2246 | auto constantOp = operand.getDefiningOp<arith::ConstantOp>(); |
2247 | if (!constantOp) { |
2248 | // Bounds of this dim unknown. |
2249 | containsUnknownDims = true; |
2250 | continue; |
2251 | } |
2252 | |
2253 | int64_t createMaskBound = |
2254 | llvm::cast<IntegerAttr>(constantOp.getValue()).getInt(); |
2255 | |
2256 | if (pos != ShapedType::kDynamic) { |
2257 | // If any position is outside the range from the `create_mask`, then the |
2258 | // extracted mask will be all-false. |
2259 | allFalse |= pos >= createMaskBound; |
2260 | } else if (createMaskBound < maskType.getDimSize(dimIdx)) { |
2261 | // This dim is not all-true and since this is a dynamic index we don't |
2262 | // know if the extraction is within the true or false region. |
2263 | // Note: Zero dims have already handled via getMaskFormat(). |
2264 | containsUnknownDims = true; |
2265 | } |
2266 | } |
2267 | |
2268 | if (allFalse) { |
2269 | rewriter.replaceOpWithNewOp<arith::ConstantOp>( |
2270 | extractOp, DenseElementsAttr::get(extractedMaskType, false)); |
2271 | } else if (!containsUnknownDims) { |
2272 | rewriter.replaceOpWithNewOp<vector::CreateMaskOp>( |
2273 | extractOp, extractedMaskType, |
2274 | maskOperands.drop_front(extractOpPos.size())); |
2275 | } else { |
2276 | return failure(); |
2277 | } |
2278 | return success(); |
2279 | } |
2280 | }; |
2281 | |
2282 | // Folds extract(shape_cast(..)) into shape_cast when the total element count |
2283 | // does not change. |
2284 | LogicalResult foldExtractFromShapeCastToShapeCast(ExtractOp extractOp, |
2285 | PatternRewriter &rewriter) { |
2286 | auto castOp = extractOp.getVector().getDefiningOp<ShapeCastOp>(); |
2287 | if (!castOp) |
2288 | return failure(); |
2289 | |
2290 | VectorType sourceType = castOp.getSourceVectorType(); |
2291 | auto targetType = dyn_cast<VectorType>(extractOp.getResult().getType()); |
2292 | if (!targetType) |
2293 | return failure(); |
2294 | |
2295 | if (sourceType.getNumElements() != targetType.getNumElements()) |
2296 | return failure(); |
2297 | |
2298 | rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(extractOp, targetType, |
2299 | castOp.getSource()); |
2300 | return success(); |
2301 | } |
2302 | |
2303 | /// Try to canonicalize the extraction of a subvector from a vector defined by |
2304 | /// vector.from_elements. E.g.: |
2305 | /// |
2306 | /// %0 = vector.from_elements %a, %b, %a, %a : vector<2x2xf32> |
2307 | /// %1 = vector.extract %0[0] : vector<2xf32> from vector<2x2xf32> |
2308 | /// ==> canonicalize to vector.from_elements %a, %b : vector<2xf32> |
2309 | LogicalResult foldExtractFromFromElements(ExtractOp extractOp, |
2310 | PatternRewriter &rewriter) { |
2311 | // Dynamic positions are not supported. |
2312 | if (extractOp.hasDynamicPosition()) |
2313 | return failure(); |
2314 | |
2315 | // Scalar extracts are handled by the folder. |
2316 | auto resultType = dyn_cast<VectorType>(extractOp.getType()); |
2317 | if (!resultType) |
2318 | return failure(); |
2319 | |
2320 | // Look for extracts from a from_elements op. |
2321 | auto fromElementsOp = extractOp.getVector().getDefiningOp<FromElementsOp>(); |
2322 | if (!fromElementsOp) |
2323 | return failure(); |
2324 | VectorType inputType = fromElementsOp.getType(); |
2325 | |
2326 | // Scalable vectors are not supported. |
2327 | if (resultType.isScalable() || inputType.isScalable()) |
2328 | return failure(); |
2329 | |
2330 | // Compute the position of first extracted element and flatten/linearize the |
2331 | // position. |
2332 | SmallVector<int64_t> firstElementPos = |
2333 | llvm::to_vector(extractOp.getStaticPosition()); |
2334 | firstElementPos.append(/*NumInputs=*/resultType.getRank(), /*Elt=*/0); |
2335 | int flatIndex = 0; |
2336 | int stride = 1; |
2337 | for (int64_t i = inputType.getRank() - 1; i >= 0; --i) { |
2338 | flatIndex += firstElementPos[i] * stride; |
2339 | stride *= inputType.getDimSize(i); |
2340 | } |
2341 | |
2342 | // Replace the op with a smaller from_elements op. |
2343 | rewriter.replaceOpWithNewOp<FromElementsOp>( |
2344 | extractOp, resultType, |
2345 | fromElementsOp.getElements().slice(flatIndex, |
2346 | resultType.getNumElements())); |
2347 | return success(); |
2348 | } |
2349 | |
2350 | } // namespace |
2351 | |
2352 | void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, |
2353 | MLIRContext *context) { |
2354 | results.add<ExtractOpFromBroadcast, ExtractOpFromCreateMask>(context); |
2355 | results.add(foldExtractFromShapeCastToShapeCast); |
2356 | results.add(foldExtractFromFromElements); |
2357 | } |
2358 | |
2359 | static void populateFromInt64AttrArray(ArrayAttr arrayAttr, |
2360 | SmallVectorImpl<int64_t> &results) { |
2361 | for (auto attr : arrayAttr) |
2362 | results.push_back(llvm::cast<IntegerAttr>(attr).getInt()); |
2363 | } |
2364 | |
2365 | //===----------------------------------------------------------------------===// |
2366 | // FmaOp |
2367 | //===----------------------------------------------------------------------===// |
2368 | |
2369 | std::optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { |
2370 | return llvm::to_vector<4>(getVectorType().getShape()); |
2371 | } |
2372 | |
2373 | //===----------------------------------------------------------------------===// |
2374 | // FromElementsOp |
2375 | //===----------------------------------------------------------------------===// |
2376 | |
2377 | /// Rewrite a vector.from_elements into a vector.splat if all elements are the |
2378 | /// same SSA value. E.g.: |
2379 | /// |
2380 | /// %0 = vector.from_elements %a, %a, %a : vector<3xf32> |
2381 | /// ==> rewrite to vector.splat %a : vector<3xf32> |
2382 | static LogicalResult rewriteFromElementsAsSplat(FromElementsOp fromElementsOp, |
2383 | PatternRewriter &rewriter) { |
2384 | if (!llvm::all_equal(fromElementsOp.getElements())) |
2385 | return failure(); |
2386 | rewriter.replaceOpWithNewOp<SplatOp>(fromElementsOp, fromElementsOp.getType(), |
2387 | fromElementsOp.getElements().front()); |
2388 | return success(); |
2389 | } |
2390 | |
2391 | /// Rewrite from_elements on multiple scalar extracts as a shape_cast |
2392 | /// on a single extract. Example: |
2393 | /// %0 = vector.extract %source[0, 0] : i8 from vector<2x2xi8> |
2394 | /// %1 = vector.extract %source[0, 1] : i8 from vector<2x2xi8> |
2395 | /// %2 = vector.from_elements %0, %1 : vector<2xi8> |
2396 | /// |
2397 | /// becomes |
2398 | /// %1 = vector.extract %source[0] : vector<1x2xi8> from vector<2x2xi8> |
2399 | /// %2 = vector.shape_cast %1 : vector<1x2xi8> to vector<2xi8> |
2400 | /// |
2401 | /// The requirements for this to be valid are |
2402 | /// |
2403 | /// i) The elements are extracted from the same vector (%source). |
2404 | /// |
2405 | /// ii) The elements form a suffix of %source. Specifically, the number |
2406 | /// of elements is the same as the product of the last N dimension sizes |
2407 | /// of %source, for some N. |
2408 | /// |
2409 | /// iii) The elements are extracted contiguously in ascending order. |
2410 | |
2411 | class FromElementsToShapeCast : public OpRewritePattern<FromElementsOp> { |
2412 | |
2413 | using OpRewritePattern::OpRewritePattern; |
2414 | |
2415 | LogicalResult matchAndRewrite(FromElementsOp fromElements, |
2416 | PatternRewriter &rewriter) const override { |
2417 | |
2418 | // Handled by `rewriteFromElementsAsSplat` |
2419 | if (fromElements.getType().getNumElements() == 1) |
2420 | return failure(); |
2421 | |
2422 | // The common source that all elements are extracted from, if one exists. |
2423 | TypedValue<VectorType> source; |
2424 | // The position of the combined extract operation, if one is created. |
2425 | ArrayRef<int64_t> combinedPosition; |
2426 | // The expected index of extraction of the current element in the loop, if |
2427 | // elements are extracted contiguously in ascending order. |
2428 | SmallVector<int64_t> expectedPosition; |
2429 | |
2430 | for (auto [insertIndex, element] : |
2431 | llvm::enumerate(fromElements.getElements())) { |
2432 | |
2433 | // Check that the element is from a vector.extract operation. |
2434 | auto extractOp = |
2435 | dyn_cast_if_present<vector::ExtractOp>(element.getDefiningOp()); |
2436 | if (!extractOp) { |
2437 | return rewriter.notifyMatchFailure(fromElements, |
2438 | "element not from vector.extract"); |
2439 | } |
2440 | |
2441 | // Check condition (i) by checking that all elements have the same source |
2442 | // as the first element. |
2443 | if (insertIndex == 0) { |
2444 | source = extractOp.getVector(); |
2445 | } else if (extractOp.getVector() != source) { |
2446 | return rewriter.notifyMatchFailure(fromElements, |
2447 | "element from different vector"); |
2448 | } |
2449 | |
2450 | ArrayRef<int64_t> position = extractOp.getStaticPosition(); |
2451 | int64_t rank = position.size(); |
2452 | assert(rank == source.getType().getRank() && |
2453 | "scalar extract must have full rank position"); |
2454 | |
2455 | // Check condition (ii) by checking that the position that the first |
2456 | // element is extracted from has sufficient trailing 0s. For example, in |
2457 | // |
2458 | // %elm0 = vector.extract %source[1, 0, 0] : i8 from vector<2x3x4xi8> |
2459 | // [...] |
2460 | // %elms = vector.from_elements %elm0, [...] : vector<12xi8> |
2461 | // |
2462 | // The 2 trailing 0s in the position of extraction of %elm0 cover 3*4 = 12 |
2463 | // elements, which is the number of elements of %n, so this is valid. |
2464 | if (insertIndex == 0) { |
2465 | const int64_t numElms = fromElements.getType().getNumElements(); |
2466 | int64_t numSuffixElms = 1; |
2467 | int64_t index = rank; |
2468 | while (index > 0 && position[index - 1] == 0 && |
2469 | numSuffixElms < numElms) { |
2470 | numSuffixElms *= source.getType().getDimSize(index - 1); |
2471 | --index; |
2472 | } |
2473 | if (numSuffixElms != numElms) { |
2474 | return rewriter.notifyMatchFailure( |
2475 | fromElements, "elements do not form a suffix of source"); |
2476 | } |
2477 | expectedPosition = llvm::to_vector(position); |
2478 | combinedPosition = position.drop_back(rank - index); |
2479 | } |
2480 | |
2481 | // Check condition (iii). |
2482 | else if (expectedPosition != position) { |
2483 | return rewriter.notifyMatchFailure( |
2484 | fromElements, "elements not in ascending order (static order)"); |
2485 | } |
2486 | increment(expectedPosition, source.getType().getShape()); |
2487 | } |
2488 | |
2489 | auto extracted = rewriter.createOrFold<vector::ExtractOp>( |
2490 | fromElements.getLoc(), source, combinedPosition); |
2491 | |
2492 | rewriter.replaceOpWithNewOp<vector::ShapeCastOp>( |
2493 | fromElements, fromElements.getType(), extracted); |
2494 | |
2495 | return success(); |
2496 | } |
2497 | |
2498 | /// Increments n-D `indices` by 1 starting from the innermost dimension. |
2499 | static void increment(MutableArrayRef<int64_t> indices, |
2500 | ArrayRef<int64_t> shape) { |
2501 | for (int dim : llvm::reverse(C: llvm::seq<int>(Begin: 0, End: indices.size()))) { |
2502 | indices[dim] += 1; |
2503 | if (indices[dim] < shape[dim]) |
2504 | break; |
2505 | indices[dim] = 0; |
2506 | } |
2507 | } |
2508 | }; |
2509 | |
2510 | void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results, |
2511 | MLIRContext *context) { |
2512 | results.add(rewriteFromElementsAsSplat); |
2513 | results.add<FromElementsToShapeCast>(context); |
2514 | } |
2515 | |
2516 | //===----------------------------------------------------------------------===// |
2517 | // BroadcastOp |
2518 | //===----------------------------------------------------------------------===// |
2519 | |
2520 | void BroadcastOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges, |
2521 | SetIntRangeFn setResultRanges) { |
2522 | setResultRanges(getResult(), argRanges.front()); |
2523 | } |
2524 | |
2525 | std::optional<SmallVector<int64_t, 4>> BroadcastOp::getShapeForUnroll() { |
2526 | return llvm::to_vector<4>(getResultVectorType().getShape()); |
2527 | } |
2528 | |
2529 | /// Return the dimensions of the result vector that were formerly ones in the |
2530 | /// source tensor and thus correspond to "dim-1" broadcasting. |
2531 | static llvm::SetVector<int64_t> |
2532 | computeBroadcastedUnitDims(ArrayRef<int64_t> srcShape, |
2533 | ArrayRef<int64_t> dstShape) { |
2534 | int64_t rankDiff = dstShape.size() - srcShape.size(); |
2535 | int64_t dstDim = rankDiff; |
2536 | llvm::SetVector<int64_t> res; |
2537 | for (auto [s1, s2] : |
2538 | llvm::zip_equal(t&: srcShape, u: dstShape.drop_front(N: rankDiff))) { |
2539 | if (s1 != s2) { |
2540 | assert(s1 == 1 && "expected \"dim-1\" broadcasting"); |
2541 | res.insert(X: dstDim); |
2542 | } |
2543 | ++dstDim; |
2544 | } |
2545 | return res; |
2546 | } |
2547 | |
2548 | llvm::SetVector<int64_t> BroadcastOp::computeBroadcastedUnitDims() { |
2549 | // Scalar broadcast is without any unit dim broadcast. |
2550 | auto srcVectorType = llvm::dyn_cast<VectorType>(getSourceType()); |
2551 | if (!srcVectorType) |
2552 | return {}; |
2553 | return ::computeBroadcastedUnitDims(srcVectorType.getShape(), |
2554 | getResultVectorType().getShape()); |
2555 | } |
2556 | |
2557 | /// Broadcast `value` to a vector of `dstShape`, knowing that exactly the |
2558 | /// `broadcastedDims` dimensions in the dstShape are broadcasted. |
2559 | /// This requires (and asserts) that the broadcast is free of "dim-1" |
2560 | /// broadcasting. |
2561 | /// Since vector.broadcast only allows expanding leading dimensions, an extra |
2562 | /// vector.transpose may be inserted to make the broadcast possible. |
2563 | /// `value`, `dstShape` and `broadcastedDims` must be properly specified or |
2564 | /// the helper will assert. This means: |
2565 | /// 1. `dstShape` must not be empty. |
2566 | /// 2. `broadcastedDims` must be confined to [0 .. rank(value.getVectorType)] |
2567 | /// 2. `dstShape` trimmed of the dimensions specified in `broadcastedDims` |
2568 | // must match the `value` shape. |
2569 | Value BroadcastOp::createOrFoldBroadcastOp( |
2570 | OpBuilder &b, Value value, ArrayRef<int64_t> dstShape, |
2571 | const llvm::SetVector<int64_t> &broadcastedDims) { |
2572 | assert(!dstShape.empty() && "unexpected empty dst shape"); |
2573 | |
2574 | // Well-formedness check. |
2575 | SmallVector<int64_t> checkShape; |
2576 | for (int i = 0, e = dstShape.size(); i < e; ++i) { |
2577 | if (broadcastedDims.contains(i)) |
2578 | continue; |
2579 | checkShape.push_back(dstShape[i]); |
2580 | } |
2581 | assert(broadcastedDims.size() == dstShape.size() - checkShape.size() && |
2582 | "ill-formed broadcastedDims contains values not confined to " |
2583 | "destVectorShape"); |
2584 | |
2585 | Location loc = value.getLoc(); |
2586 | Type elementType = getElementTypeOrSelf(value.getType()); |
2587 | VectorType srcVectorType = llvm::dyn_cast<VectorType>(value.getType()); |
2588 | VectorType dstVectorType = VectorType::get(dstShape, elementType); |
2589 | |
2590 | // Step 2. If scalar -> dstShape broadcast, just do it. |
2591 | if (!srcVectorType) { |
2592 | assert(checkShape.empty() && |
2593 | "ill-formed createOrFoldBroadcastOp arguments"); |
2594 | return b.createOrFold<vector::BroadcastOp>(loc, dstVectorType, value); |
2595 | } |
2596 | |
2597 | assert(srcVectorType.getShape().equals(checkShape) && |
2598 | "ill-formed createOrFoldBroadcastOp arguments"); |
2599 | |
2600 | // Step 3. Since vector.broadcast only allows creating leading dims, |
2601 | // vector -> dstShape broadcast may require a transpose. |
2602 | // Traverse the dims in order and construct: |
2603 | // 1. The leading entries of the broadcastShape that is guaranteed to be |
2604 | // achievable by a simple broadcast. |
2605 | // 2. The induced permutation for the subsequent vector.transpose that will |
2606 | // bring us from `broadcastShape` back to he desired `dstShape`. |
2607 | // If the induced permutation is not the identity, create a vector.transpose. |
2608 | SmallVector<int64_t> broadcastShape, permutation(dstShape.size(), -1); |
2609 | broadcastShape.reserve(dstShape.size()); |
2610 | // Consider the example: |
2611 | // srcShape = 2x4 |
2612 | // dstShape = 1x2x3x4x5 |
2613 | // broadcastedDims = [0, 2, 4] |
2614 | // |
2615 | // We want to build: |
2616 | // broadcastShape = 1x3x5x2x4 |
2617 | // permutation = [0, 2, 4, 1, 3] |
2618 | // ---V--- -----V----- |
2619 | // leading broadcast part src shape part |
2620 | // |
2621 | // Note that the trailing dims of broadcastShape are exactly the srcShape |
2622 | // by construction. |
2623 | // nextSrcShapeDim is used to keep track of where in the permutation the |
2624 | // "src shape part" occurs. |
2625 | int64_t nextSrcShapeDim = broadcastedDims.size(); |
2626 | for (int64_t i = 0, e = dstShape.size(); i < e; ++i) { |
2627 | if (broadcastedDims.contains(i)) { |
2628 | // 3.a. For each dim in the dst shape, if it is a broadcasted dim, |
2629 | // bring it to the head of the broadcastShape. |
2630 | // It will need to be permuted back from `broadcastShape.size() - 1` into |
2631 | // position `i`. |
2632 | broadcastShape.push_back(dstShape[i]); |
2633 | permutation[i] = broadcastShape.size() - 1; |
2634 | } else { |
2635 | // 3.b. Otherwise, the dim is not broadcasted, it comes from the src |
2636 | // shape and needs to be permuted into position `i`. |
2637 | // Don't touch `broadcastShape` here, the whole srcShape will be |
2638 | // appended after. |
2639 | permutation[i] = nextSrcShapeDim++; |
2640 | } |
2641 | } |
2642 | // 3.c. Append the srcShape. |
2643 | llvm::append_range(broadcastShape, srcVectorType.getShape()); |
2644 | |
2645 | // Ensure there are no "dim-1" broadcasts. |
2646 | assert(::computeBroadcastedUnitDims(srcVectorType.getShape(), broadcastShape) |
2647 | .empty() && |
2648 | "unexpected \"dim-1\" broadcast"); |
2649 | |
2650 | VectorType broadcastType = VectorType::get(broadcastShape, elementType); |
2651 | assert(vector::isBroadcastableTo(value.getType(), broadcastType) == |
2652 | vector::BroadcastableToResult::Success && |
2653 | "must be broadcastable"); |
2654 | Value res = b.createOrFold<vector::BroadcastOp>(loc, broadcastType, value); |
2655 | // Step 4. If we find any dimension that indeed needs to be permuted, |
2656 | // immediately return a new vector.transpose. |
2657 | for (int64_t i = 0, e = permutation.size(); i < e; ++i) |
2658 | if (permutation[i] != i) |
2659 | return b.createOrFold<vector::TransposeOp>(loc, res, permutation); |
2660 | // Otherwise return res. |
2661 | return res; |
2662 | } |
2663 | |
2664 | BroadcastableToResult mlir::vector::isBroadcastableTo( |
2665 | Type srcType, VectorType dstVectorType, |
2666 | std::pair<VectorDim, VectorDim> *mismatchingDims) { |
2667 | // Broadcast scalar to vector of the same element type. |
2668 | if (srcType.isIntOrIndexOrFloat() && dstVectorType && |
2669 | getElementTypeOrSelf(type: srcType) == getElementTypeOrSelf(dstVectorType)) |
2670 | return BroadcastableToResult::Success; |
2671 | // From now on, only vectors broadcast. |
2672 | VectorType srcVectorType = llvm::dyn_cast<VectorType>(srcType); |
2673 | if (!srcVectorType) |
2674 | return BroadcastableToResult::SourceTypeNotAVector; |
2675 | |
2676 | int64_t srcRank = srcVectorType.getRank(); |
2677 | int64_t dstRank = dstVectorType.getRank(); |
2678 | if (srcRank > dstRank) |
2679 | return BroadcastableToResult::SourceRankHigher; |
2680 | // Source has an exact match or singleton value for all trailing dimensions |
2681 | // (all leading dimensions are simply duplicated). |
2682 | int64_t lead = dstRank - srcRank; |
2683 | for (int64_t dimIdx = 0; dimIdx < srcRank; ++dimIdx) { |
2684 | // Have mismatching dims (in the sense of vector.broadcast semantics) been |
2685 | // encountered? |
2686 | bool foundMismatchingDims = false; |
2687 | |
2688 | // Check fixed-width dims. |
2689 | int64_t srcDim = srcVectorType.getDimSize(dimIdx); |
2690 | int64_t dstDim = dstVectorType.getDimSize(lead + dimIdx); |
2691 | if (srcDim != 1 && srcDim != dstDim) |
2692 | foundMismatchingDims = true; |
2693 | |
2694 | // Check scalable flags. |
2695 | bool srcDimScalableFlag = srcVectorType.getScalableDims()[dimIdx]; |
2696 | bool dstDimScalableFlag = dstVectorType.getScalableDims()[lead + dimIdx]; |
2697 | if ((srcDim == 1 && srcDimScalableFlag && dstDim != 1) || |
2698 | // 1 -> [N] is fine, everything else should be rejected when mixing |
2699 | // fixed-width and scalable dims |
2700 | (srcDimScalableFlag != dstDimScalableFlag && |
2701 | (srcDim != 1 || srcDimScalableFlag))) |
2702 | foundMismatchingDims = true; |
2703 | |
2704 | if (foundMismatchingDims) { |
2705 | if (mismatchingDims != nullptr) { |
2706 | mismatchingDims->first.dim = srcDim; |
2707 | mismatchingDims->first.isScalable = srcDimScalableFlag; |
2708 | |
2709 | mismatchingDims->second.dim = dstDim; |
2710 | mismatchingDims->second.isScalable = dstDimScalableFlag; |
2711 | } |
2712 | return BroadcastableToResult::DimensionMismatch; |
2713 | } |
2714 | } |
2715 | |
2716 | return BroadcastableToResult::Success; |
2717 | } |
2718 | |
2719 | LogicalResult BroadcastOp::verify() { |
2720 | std::pair<VectorDim, VectorDim> mismatchingDims; |
2721 | BroadcastableToResult res = isBroadcastableTo( |
2722 | getSourceType(), getResultVectorType(), &mismatchingDims); |
2723 | if (res == BroadcastableToResult::Success) |
2724 | return success(); |
2725 | if (res == BroadcastableToResult::SourceRankHigher) |
2726 | return emitOpError("source rank higher than destination rank"); |
2727 | if (res == BroadcastableToResult::DimensionMismatch) { |
2728 | return emitOpError("dimension mismatch (") |
2729 | << (mismatchingDims.first.isScalable ? "[": "") |
2730 | << mismatchingDims.first.dim |
2731 | << (mismatchingDims.first.isScalable ? "]": "") << " vs. " |
2732 | << (mismatchingDims.second.isScalable ? "[": "") |
2733 | << mismatchingDims.second.dim |
2734 | << (mismatchingDims.second.isScalable ? "]": "") << ")"; |
2735 | } |
2736 | if (res == BroadcastableToResult::SourceTypeNotAVector) |
2737 | return emitOpError("source type is not a vector"); |
2738 | llvm_unreachable("unexpected vector.broadcast op error"); |
2739 | } |
2740 | |
2741 | OpFoldResult BroadcastOp::fold(FoldAdaptor adaptor) { |
2742 | if (getSourceType() == getResultVectorType()) |
2743 | return getSource(); |
2744 | if (!adaptor.getSource()) |
2745 | return {}; |
2746 | auto vectorType = getResultVectorType(); |
2747 | if (auto attr = llvm::dyn_cast<IntegerAttr>(adaptor.getSource())) { |
2748 | if (vectorType.getElementType() != attr.getType()) |
2749 | return {}; |
2750 | return DenseElementsAttr::get(vectorType, attr); |
2751 | } |
2752 | if (auto attr = llvm::dyn_cast<FloatAttr>(adaptor.getSource())) { |
2753 | if (vectorType.getElementType() != attr.getType()) |
2754 | return {}; |
2755 | return DenseElementsAttr::get(vectorType, attr); |
2756 | } |
2757 | if (auto attr = llvm::dyn_cast<SplatElementsAttr>(adaptor.getSource())) |
2758 | return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); |
2759 | if (llvm::dyn_cast<ub::PoisonAttr>(adaptor.getSource())) |
2760 | return ub::PoisonAttr::get(getContext()); |
2761 | return {}; |
2762 | } |
2763 | |
2764 | namespace { |
2765 | |
2766 | // Fold broadcast1(broadcast2(x)) into broadcast1(x). |
2767 | struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { |
2768 | using OpRewritePattern::OpRewritePattern; |
2769 | |
2770 | LogicalResult matchAndRewrite(BroadcastOp broadcastOp, |
2771 | PatternRewriter &rewriter) const override { |
2772 | auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>(); |
2773 | if (!srcBroadcast) |
2774 | return failure(); |
2775 | rewriter.replaceOpWithNewOp<BroadcastOp>(broadcastOp, |
2776 | broadcastOp.getResultVectorType(), |
2777 | srcBroadcast.getSource()); |
2778 | return success(); |
2779 | } |
2780 | }; |
2781 | } // namespace |
2782 | |
2783 | void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, |
2784 | MLIRContext *context) { |
2785 | // BroadcastToShapeCast is not a default canonicalization, it is opt-in by |
2786 | // calling `populateCastAwayVectorLeadingOneDimPatterns` |
2787 | results.add<BroadcastFolder>(context); |
2788 | } |
2789 | |
2790 | //===----------------------------------------------------------------------===// |
2791 | // ShuffleOp |
2792 | //===----------------------------------------------------------------------===// |
2793 | |
2794 | LogicalResult ShuffleOp::verify() { |
2795 | VectorType resultType = getResultVectorType(); |
2796 | VectorType v1Type = getV1VectorType(); |
2797 | VectorType v2Type = getV2VectorType(); |
2798 | // Verify ranks. |
2799 | int64_t resRank = resultType.getRank(); |
2800 | int64_t v1Rank = v1Type.getRank(); |
2801 | int64_t v2Rank = v2Type.getRank(); |
2802 | bool wellFormed0DCase = v1Rank == 0 && v2Rank == 0 && resRank == 1; |
2803 | bool wellFormedNDCase = v1Rank == resRank && v2Rank == resRank; |
2804 | if (!wellFormed0DCase && !wellFormedNDCase) |
2805 | return emitOpError("rank mismatch"); |
2806 | |
2807 | // Verify all but leading dimension sizes. |
2808 | for (int64_t r = 1; r < v1Rank; ++r) { |
2809 | int64_t resDim = resultType.getDimSize(r); |
2810 | int64_t v1Dim = v1Type.getDimSize(r); |
2811 | int64_t v2Dim = v2Type.getDimSize(r); |
2812 | if (resDim != v1Dim || v1Dim != v2Dim) |
2813 | return emitOpError("dimension mismatch"); |
2814 | } |
2815 | // Verify mask length. |
2816 | ArrayRef<int64_t> mask = getMask(); |
2817 | int64_t maskLength = mask.size(); |
2818 | if (maskLength <= 0) |
2819 | return emitOpError("invalid mask length"); |
2820 | if (maskLength != resultType.getDimSize(0)) |
2821 | return emitOpError("mask length mismatch"); |
2822 | // Verify all indices. |
2823 | int64_t indexSize = (v1Type.getRank() == 0 ? 1 : v1Type.getDimSize(0)) + |
2824 | (v2Type.getRank() == 0 ? 1 : v2Type.getDimSize(0)); |
2825 | for (auto [idx, maskPos] : llvm::enumerate(mask)) { |
2826 | if (!isValidPositiveIndexOrPoison(maskPos, kPoisonIndex, indexSize)) |
2827 | return emitOpError("mask index #") << (idx + 1) << " out of range"; |
2828 | } |
2829 | return success(); |
2830 | } |
2831 | |
2832 | LogicalResult |
2833 | ShuffleOp::inferReturnTypes(MLIRContext *, std::optional<Location>, |
2834 | ShuffleOp::Adaptor adaptor, |
2835 | SmallVectorImpl<Type> &inferredReturnTypes) { |
2836 | auto v1Type = llvm::cast<VectorType>(adaptor.getV1().getType()); |
2837 | auto v1Rank = v1Type.getRank(); |
2838 | // Construct resulting type: leading dimension matches mask |
2839 | // length, all trailing dimensions match the operands. |
2840 | SmallVector<int64_t, 4> shape; |
2841 | shape.reserve(v1Rank); |
2842 | shape.push_back(std::max<size_t>(1, adaptor.getMask().size())); |
2843 | // In the 0-D case there is no trailing shape to append. |
2844 | if (v1Rank > 0) |
2845 | llvm::append_range(shape, v1Type.getShape().drop_front()); |
2846 | inferredReturnTypes.push_back( |
2847 | VectorType::get(shape, v1Type.getElementType())); |
2848 | return success(); |
2849 | } |
2850 | |
2851 | template <typename T> |
2852 | static bool isStepIndexArray(ArrayRef<T> idxArr, uint64_t begin, size_t width) { |
2853 | T expected = begin; |
2854 | return idxArr.size() == width && llvm::all_of(idxArr, [&expected](T value) { |
2855 | return value == expected++; |
2856 | }); |
2857 | } |
2858 | |
2859 | OpFoldResult vector::ShuffleOp::fold(FoldAdaptor adaptor) { |
2860 | auto v1Type = getV1VectorType(); |
2861 | auto v2Type = getV2VectorType(); |
2862 | |
2863 | assert(!v1Type.isScalable() && !v2Type.isScalable() && |
2864 | "Vector shuffle does not support scalable vectors"); |
2865 | |
2866 | // For consistency: 0-D shuffle return type is 1-D, this cannot be a folding |
2867 | // but must be a canonicalization into a vector.broadcast. |
2868 | if (v1Type.getRank() == 0) |
2869 | return {}; |
2870 | |
2871 | // Fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1. |
2872 | auto mask = getMask(); |
2873 | if (isStepIndexArray(mask, 0, v1Type.getDimSize(0))) |
2874 | return getV1(); |
2875 | // Fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2. |
2876 | if (isStepIndexArray(mask, v1Type.getDimSize(0), v2Type.getDimSize(0))) |
2877 | return getV2(); |
2878 | |
2879 | Attribute v1Attr = adaptor.getV1(), v2Attr = adaptor.getV2(); |
2880 | if (!v1Attr || !v2Attr) |
2881 | return {}; |
2882 | |
2883 | // Fold shuffle poison, poison -> poison. |
2884 | bool isV1Poison = isa<ub::PoisonAttr>(v1Attr); |
2885 | bool isV2Poison = isa<ub::PoisonAttr>(v2Attr); |
2886 | if (isV1Poison && isV2Poison) |
2887 | return ub::PoisonAttr::get(getContext()); |
2888 | |
2889 | // Only support 1-D for now to avoid complicated n-D DenseElementsAttr |
2890 | // manipulation. |
2891 | if (v1Type.getRank() != 1) |
2892 | return {}; |
2893 | |
2894 | // Poison input attributes need special handling as they are not |
2895 | // DenseElementsAttr. If an index is poison, we select the first element of |
2896 | // the first non-poison input. |
2897 | SmallVector<Attribute> v1Elements, v2Elements; |
2898 | Attribute poisonElement; |
2899 | if (!isV2Poison) { |
2900 | v2Elements = |
2901 | to_vector(cast<DenseElementsAttr>(v2Attr).getValues<Attribute>()); |
2902 | poisonElement = v2Elements[0]; |
2903 | } |
2904 | if (!isV1Poison) { |
2905 | v1Elements = |
2906 | to_vector(cast<DenseElementsAttr>(v1Attr).getValues<Attribute>()); |
2907 | poisonElement = v1Elements[0]; |
2908 | } |
2909 | |
2910 | SmallVector<Attribute> results; |
2911 | int64_t v1Size = v1Type.getDimSize(0); |
2912 | for (int64_t maskIdx : mask) { |
2913 | Attribute indexedElm; |
2914 | // TODO: Return a partial poison vector when supported by the UB dialect. |
2915 | if (maskIdx == ShuffleOp::kPoisonIndex) { |
2916 | indexedElm = poisonElement; |
2917 | } else { |
2918 | if (maskIdx < v1Size) |
2919 | indexedElm = isV1Poison ? poisonElement : v1Elements[maskIdx]; |
2920 | else |
2921 | indexedElm = isV2Poison ? poisonElement : v2Elements[maskIdx - v1Size]; |
2922 | } |
2923 | |
2924 | results.push_back(indexedElm); |
2925 | } |
2926 | |
2927 | return DenseElementsAttr::get(getResultVectorType(), results); |
2928 | } |
2929 | |
2930 | namespace { |
2931 | |
2932 | // Pattern to rewrite a 0-D shuffle with [0] or [1] mask returning a 1-D vector |
2933 | // to a broadcast. |
2934 | struct Canonicalize0DShuffleOp : public OpRewritePattern<ShuffleOp> { |
2935 | using OpRewritePattern::OpRewritePattern; |
2936 | |
2937 | LogicalResult matchAndRewrite(ShuffleOp shuffleOp, |
2938 | PatternRewriter &rewriter) const override { |
2939 | VectorType v1VectorType = shuffleOp.getV1VectorType(); |
2940 | ArrayRef<int64_t> mask = shuffleOp.getMask(); |
2941 | if (v1VectorType.getRank() > 0) |
2942 | return failure(); |
2943 | if (mask.size() != 1) |
2944 | return failure(); |
2945 | VectorType resType = VectorType::Builder(v1VectorType).setShape({1}); |
2946 | if (mask[0] == 0) |
2947 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>(shuffleOp, resType, |
2948 | shuffleOp.getV1()); |
2949 | else |
2950 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>(shuffleOp, resType, |
2951 | shuffleOp.getV2()); |
2952 | return success(); |
2953 | } |
2954 | }; |
2955 | |
2956 | /// Pattern to rewrite a ShuffleOp(SplatOp, SplatOp) to SplatOp. |
2957 | class ShuffleSplat final : public OpRewritePattern<ShuffleOp> { |
2958 | public: |
2959 | using OpRewritePattern::OpRewritePattern; |
2960 | |
2961 | LogicalResult matchAndRewrite(ShuffleOp op, |
2962 | PatternRewriter &rewriter) const override { |
2963 | auto v1Splat = op.getV1().getDefiningOp<SplatOp>(); |
2964 | auto v2Splat = op.getV2().getDefiningOp<SplatOp>(); |
2965 | |
2966 | if (!v1Splat || !v2Splat) |
2967 | return failure(); |
2968 | |
2969 | if (v1Splat.getInput() != v2Splat.getInput()) |
2970 | return failure(); |
2971 | |
2972 | rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), v1Splat.getInput()); |
2973 | return success(); |
2974 | } |
2975 | }; |
2976 | |
2977 | /// Pattern to rewrite a fixed-size interleave via vector.shuffle to |
2978 | /// vector.interleave. |
2979 | class ShuffleInterleave : public OpRewritePattern<ShuffleOp> { |
2980 | public: |
2981 | using OpRewritePattern::OpRewritePattern; |
2982 | |
2983 | LogicalResult matchAndRewrite(ShuffleOp op, |
2984 | PatternRewriter &rewriter) const override { |
2985 | VectorType resultType = op.getResultVectorType(); |
2986 | if (resultType.isScalable()) |
2987 | return rewriter.notifyMatchFailure( |
2988 | op, "ShuffleOp can't represent a scalable interleave"); |
2989 | |
2990 | if (resultType.getRank() != 1) |
2991 | return rewriter.notifyMatchFailure( |
2992 | op, "ShuffleOp can't represent an n-D interleave"); |
2993 | |
2994 | VectorType sourceType = op.getV1VectorType(); |
2995 | if (sourceType != op.getV2VectorType() || |
2996 | sourceType.getNumElements() * 2 != resultType.getNumElements()) { |
2997 | return rewriter.notifyMatchFailure( |
2998 | op, "ShuffleOp types don't match an interleave"); |
2999 | } |
3000 | |
3001 | ArrayRef<int64_t> shuffleMask = op.getMask(); |
3002 | int64_t resultVectorSize = resultType.getNumElements(); |
3003 | for (int i = 0, e = resultVectorSize / 2; i < e; ++i) { |
3004 | int64_t maskValueA = shuffleMask[i * 2]; |
3005 | int64_t maskValueB = shuffleMask[(i * 2) + 1]; |
3006 | if (maskValueA != i || maskValueB != (resultVectorSize / 2) + i) |
3007 | return rewriter.notifyMatchFailure(op, |
3008 | "ShuffleOp mask not interleaving"); |
3009 | } |
3010 | |
3011 | rewriter.replaceOpWithNewOp<InterleaveOp>(op, op.getV1(), op.getV2()); |
3012 | return success(); |
3013 | } |
3014 | }; |
3015 | |
3016 | } // namespace |
3017 | |
3018 | void ShuffleOp::getCanonicalizationPatterns(RewritePatternSet &results, |
3019 | MLIRContext *context) { |
3020 | results.add<ShuffleSplat, ShuffleInterleave, Canonicalize0DShuffleOp>( |
3021 | context); |
3022 | } |
3023 | |
3024 | //===----------------------------------------------------------------------===// |
3025 | // InsertElementOp |
3026 | //===----------------------------------------------------------------------===// |
3027 | |
3028 | void InsertElementOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges, |
3029 | SetIntRangeFn setResultRanges) { |
3030 | setResultRanges(getResult(), argRanges[0].rangeUnion(argRanges[1])); |
3031 | } |
3032 | |
3033 | void InsertElementOp::build(OpBuilder &builder, OperationState &result, |
3034 | Value source, Value dest) { |
3035 | build(builder, result, source, dest, {}); |
3036 | } |
3037 | |
3038 | LogicalResult InsertElementOp::verify() { |
3039 | auto dstVectorType = getDestVectorType(); |
3040 | if (dstVectorType.getRank() == 0) { |
3041 | if (getPosition()) |
3042 | return emitOpError("expected position to be empty with 0-D vector"); |
3043 | return success(); |
3044 | } |
3045 | if (dstVectorType.getRank() != 1) |
3046 | return emitOpError("unexpected >1 vector rank"); |
3047 | if (!getPosition()) |
3048 | return emitOpError("expected position for 1-D vector"); |
3049 | return success(); |
3050 | } |
3051 | |
3052 | OpFoldResult vector::InsertElementOp::fold(FoldAdaptor adaptor) { |
3053 | // Skip the 0-D vector here. |
3054 | if (!adaptor.getPosition()) |
3055 | return {}; |
3056 | |
3057 | auto src = dyn_cast_or_null<TypedAttr>(adaptor.getSource()); |
3058 | auto dst = dyn_cast_or_null<DenseElementsAttr>(adaptor.getDest()); |
3059 | auto pos = dyn_cast_or_null<IntegerAttr>(adaptor.getPosition()); |
3060 | if (!src || !dst || !pos) |
3061 | return {}; |
3062 | |
3063 | if (src.getType() != getDestVectorType().getElementType()) |
3064 | return {}; |
3065 | |
3066 | auto dstElements = dst.getValues<Attribute>(); |
3067 | |
3068 | SmallVector<Attribute> results(dstElements); |
3069 | |
3070 | uint64_t posIdx = pos.getInt(); |
3071 | if (posIdx >= results.size()) |
3072 | return {}; |
3073 | results[posIdx] = src; |
3074 | |
3075 | return DenseElementsAttr::get(getDestVectorType(), results); |
3076 | } |
3077 | |
3078 | //===----------------------------------------------------------------------===// |
3079 | // InsertOp |
3080 | //===----------------------------------------------------------------------===// |
3081 | |
3082 | void vector::InsertOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges, |
3083 | SetIntRangeFn setResultRanges) { |
3084 | setResultRanges(getResult(), argRanges[0].rangeUnion(argRanges[1])); |
3085 | } |
3086 | |
3087 | void vector::InsertOp::build(OpBuilder &builder, OperationState &result, |
3088 | Value source, Value dest) { |
3089 | auto vectorTy = cast<VectorType>(dest.getType()); |
3090 | build(builder, result, source, dest, |
3091 | SmallVector<int64_t>(vectorTy.getRank(), 0)); |
3092 | } |
3093 | |
3094 | void vector::InsertOp::build(OpBuilder &builder, OperationState &result, |
3095 | Value source, Value dest, int64_t position) { |
3096 | build(builder, result, source, dest, ArrayRef<int64_t>{position}); |
3097 | } |
3098 | |
3099 | void vector::InsertOp::build(OpBuilder &builder, OperationState &result, |
3100 | Value source, Value dest, OpFoldResult position) { |
3101 | build(builder, result, source, dest, ArrayRef<OpFoldResult>{position}); |
3102 | } |
3103 | |
3104 | void vector::InsertOp::build(OpBuilder &builder, OperationState &result, |
3105 | Value source, Value dest, |
3106 | ArrayRef<int64_t> position) { |
3107 | SmallVector<OpFoldResult> posVals; |
3108 | posVals.reserve(position.size()); |
3109 | llvm::transform(position, std::back_inserter(posVals), |
3110 | [&](int64_t pos) { return builder.getI64IntegerAttr(pos); }); |
3111 | build(builder, result, source, dest, posVals); |
3112 | } |
3113 | |
3114 | void vector::InsertOp::build(OpBuilder &builder, OperationState &result, |
3115 | Value source, Value dest, |
3116 | ArrayRef<OpFoldResult> position) { |
3117 | SmallVector<int64_t> staticPos; |
3118 | SmallVector<Value> dynamicPos; |
3119 | dispatchIndexOpFoldResults(position, dynamicPos, staticPos); |
3120 | build(builder, result, source, dest, dynamicPos, |
3121 | builder.getDenseI64ArrayAttr(staticPos)); |
3122 | } |
3123 | |
3124 | LogicalResult InsertOp::verify() { |
3125 | SmallVector<OpFoldResult> position = getMixedPosition(); |
3126 | auto destVectorType = getDestVectorType(); |
3127 | if (position.size() > static_cast<unsigned>(destVectorType.getRank())) |
3128 | return emitOpError( |
3129 | "expected position attribute of rank no greater than dest vector rank"); |
3130 | auto srcVectorType = llvm::dyn_cast<VectorType>(getValueToStoreType()); |
3131 | if (srcVectorType && |
3132 | (static_cast<unsigned>(srcVectorType.getRank()) + position.size() != |
3133 | static_cast<unsigned>(destVectorType.getRank()))) |
3134 | return emitOpError("expected position attribute rank + source rank to " |
3135 | "match dest vector rank"); |
3136 | if (!srcVectorType && |
3137 | (position.size() != static_cast<unsigned>(destVectorType.getRank()))) |
3138 | return emitOpError( |
3139 | "expected position attribute rank to match the dest vector rank"); |
3140 | for (auto [idx, pos] : llvm::enumerate(position)) { |
3141 | if (auto attr = dyn_cast<Attribute>(pos)) { |
3142 | int64_t constIdx = cast<IntegerAttr>(attr).getInt(); |
3143 | if (!isValidPositiveIndexOrPoison(constIdx, kPoisonIndex, |
3144 | destVectorType.getDimSize(idx))) { |
3145 | return emitOpError("expected position attribute #") |
3146 | << (idx + 1) |
3147 | << " to be a non-negative integer smaller than the " |
3148 | "corresponding " |
3149 | "dest vector dimension"; |
3150 | } |
3151 | } |
3152 | } |
3153 | return success(); |
3154 | } |
3155 | |
3156 | namespace { |
3157 | |
3158 | // If insertOp is only inserting unit dimensions it can be transformed to a |
3159 | // broadcast. |
3160 | class InsertToBroadcast final : public OpRewritePattern<InsertOp> { |
3161 | public: |
3162 | using OpRewritePattern::OpRewritePattern; |
3163 | |
3164 | LogicalResult matchAndRewrite(InsertOp insertOp, |
3165 | PatternRewriter &rewriter) const override { |
3166 | auto srcVecType = |
3167 | llvm::dyn_cast<VectorType>(insertOp.getValueToStoreType()); |
3168 | if (!srcVecType || insertOp.getDestVectorType().getNumElements() != |
3169 | srcVecType.getNumElements()) |
3170 | return failure(); |
3171 | rewriter.replaceOpWithNewOp<BroadcastOp>( |
3172 | insertOp, insertOp.getDestVectorType(), insertOp.getValueToStore()); |
3173 | return success(); |
3174 | } |
3175 | }; |
3176 | |
3177 | /// Pattern to rewrite a InsertOp(SplatOp, SplatOp) to SplatOp. |
3178 | class InsertSplatToSplat final : public OpRewritePattern<InsertOp> { |
3179 | public: |
3180 | using OpRewritePattern::OpRewritePattern; |
3181 | |
3182 | LogicalResult matchAndRewrite(InsertOp op, |
3183 | PatternRewriter &rewriter) const override { |
3184 | auto srcSplat = op.getValueToStore().getDefiningOp<SplatOp>(); |
3185 | auto dstSplat = op.getDest().getDefiningOp<SplatOp>(); |
3186 | |
3187 | if (!srcSplat || !dstSplat) |
3188 | return failure(); |
3189 | |
3190 | if (srcSplat.getInput() != dstSplat.getInput()) |
3191 | return failure(); |
3192 | |
3193 | rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), srcSplat.getInput()); |
3194 | return success(); |
3195 | } |
3196 | }; |
3197 | |
3198 | } // namespace |
3199 | |
3200 | static Attribute |
3201 | foldDenseElementsAttrDestInsertOp(InsertOp insertOp, Attribute srcAttr, |
3202 | Attribute dstAttr, |
3203 | int64_t maxVectorSizeFoldThreshold) { |
3204 | if (insertOp.hasDynamicPosition()) |
3205 | return {}; |
3206 | |
3207 | auto denseDst = llvm::dyn_cast_if_present<DenseElementsAttr>(Val&: dstAttr); |
3208 | if (!denseDst) |
3209 | return {}; |
3210 | |
3211 | if (!srcAttr) { |
3212 | return {}; |
3213 | } |
3214 | |
3215 | VectorType destTy = insertOp.getDestVectorType(); |
3216 | if (destTy.isScalable()) |
3217 | return {}; |
3218 | |
3219 | // Make sure we do not create too many large constants. |
3220 | if (destTy.getNumElements() > maxVectorSizeFoldThreshold && |
3221 | !insertOp->hasOneUse()) |
3222 | return {}; |
3223 | |
3224 | // Calculate the linearized position of the continuous chunk of elements to |
3225 | // insert. |
3226 | llvm::SmallVector<int64_t> completePositions(destTy.getRank(), 0); |
3227 | copy(insertOp.getStaticPosition(), completePositions.begin()); |
3228 | int64_t insertBeginPosition = |
3229 | linearize(completePositions, computeStrides(destTy.getShape())); |
3230 | |
3231 | SmallVector<Attribute> insertedValues; |
3232 | Type destEltType = destTy.getElementType(); |
3233 | |
3234 | /// Converts the expected type to an IntegerAttr if there's |
3235 | /// a mismatch. |
3236 | auto convertIntegerAttr = [](Attribute attr, Type expectedType) -> Attribute { |
3237 | if (auto intAttr = mlir::dyn_cast<IntegerAttr>(attr)) { |
3238 | if (intAttr.getType() != expectedType) |
3239 | return IntegerAttr::get(expectedType, intAttr.getInt()); |
3240 | } |
3241 | return attr; |
3242 | }; |
3243 | |
3244 | // The `convertIntegerAttr` method specifically handles the case |
3245 | // for `llvm.mlir.constant` which can hold an attribute with a |
3246 | // different type than the return type. |
3247 | if (auto denseSource = llvm::dyn_cast<DenseElementsAttr>(Val&: srcAttr)) { |
3248 | for (auto value : denseSource.getValues<Attribute>()) |
3249 | insertedValues.push_back(convertIntegerAttr(value, destEltType)); |
3250 | } else { |
3251 | insertedValues.push_back(Elt: convertIntegerAttr(srcAttr, destEltType)); |
3252 | } |
3253 | |
3254 | auto allValues = llvm::to_vector(denseDst.getValues<Attribute>()); |
3255 | copy(insertedValues, allValues.begin() + insertBeginPosition); |
3256 | auto newAttr = DenseElementsAttr::get(destTy, allValues); |
3257 | |
3258 | return newAttr; |
3259 | } |
3260 | |
3261 | void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, |
3262 | MLIRContext *context) { |
3263 | results.add<InsertToBroadcast, BroadcastFolder, InsertSplatToSplat>(context); |
3264 | } |
3265 | |
3266 | OpFoldResult vector::InsertOp::fold(FoldAdaptor adaptor) { |
3267 | // Do not create constants with more than `vectorSizeFoldThreashold` elements, |
3268 | // unless the source vector constant has a single use. |
3269 | constexpr int64_t vectorSizeFoldThreshold = 256; |
3270 | // Fold "vector.insert %v, %dest [] : vector<2x2xf32> from vector<2x2xf32>" to |
3271 | // %v. Note: Do not fold "vector.insert %v, %dest [] : f32 into vector<f32>" |
3272 | // (type mismatch). |
3273 | if (getNumIndices() == 0 && getValueToStoreType() == getType()) |
3274 | return getValueToStore(); |
3275 | // Fold `arith.constant` indices into the `vector.insert` operation. Make |
3276 | // sure that patterns requiring constant indices are added after this fold. |
3277 | SmallVector<Value> operands = {getValueToStore(), getDest()}; |
3278 | if (auto val = extractInsertFoldConstantOp(*this, adaptor, operands)) |
3279 | return val; |
3280 | if (auto res = foldPoisonIndexInsertExtractOp( |
3281 | getContext(), adaptor.getStaticPosition(), kPoisonIndex)) |
3282 | return res; |
3283 | if (auto res = foldDenseElementsAttrDestInsertOp( |
3284 | *this, adaptor.getValueToStore(), adaptor.getDest(), |
3285 | vectorSizeFoldThreshold)) { |
3286 | return res; |
3287 | } |
3288 | |
3289 | return {}; |
3290 | } |
3291 | |
3292 | //===----------------------------------------------------------------------===// |
3293 | // InsertStridedSliceOp |
3294 | //===----------------------------------------------------------------------===// |
3295 | |
3296 | void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, |
3297 | Value source, Value dest, |
3298 | ArrayRef<int64_t> offsets, |
3299 | ArrayRef<int64_t> strides) { |
3300 | result.addOperands({source, dest}); |
3301 | auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); |
3302 | auto stridesAttr = getVectorSubscriptAttr(builder, strides); |
3303 | result.addTypes(dest.getType()); |
3304 | result.addAttribute(InsertStridedSliceOp::getOffsetsAttrName(result.name), |
3305 | offsetsAttr); |
3306 | result.addAttribute(InsertStridedSliceOp::getStridesAttrName(result.name), |
3307 | stridesAttr); |
3308 | } |
3309 | |
3310 | // TODO: Should be moved to Tablegen ConfinedAttr attributes. |
3311 | template <typename OpType> |
3312 | static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, |
3313 | ArrayAttr arrayAttr, |
3314 | ArrayRef<int64_t> shape, |
3315 | StringRef attrName) { |
3316 | if (arrayAttr.size() > shape.size()) |
3317 | return op.emitOpError("expected ") |
3318 | << attrName << " attribute of rank no greater than vector rank"; |
3319 | return success(); |
3320 | } |
3321 | |
3322 | // Returns true if all integers in `arrayAttr` are in the half-open [min, max} |
3323 | // interval. If `halfOpen` is true then the admissible interval is [min, max). |
3324 | // Otherwise, the admissible interval is [min, max]. |
3325 | template <typename OpType> |
3326 | static LogicalResult |
3327 | isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, |
3328 | int64_t max, StringRef attrName, |
3329 | bool halfOpen = true) { |
3330 | for (auto attr : arrayAttr) { |
3331 | auto val = llvm::cast<IntegerAttr>(attr).getInt(); |
3332 | auto upper = max; |
3333 | if (!halfOpen) |
3334 | upper += 1; |
3335 | if (val < min || val >= upper) |
3336 | return op.emitOpError("expected ") << attrName << " to be confined to [" |
3337 | << min << ", "<< upper << ")"; |
3338 | } |
3339 | return success(); |
3340 | } |
3341 | |
3342 | // Returns true if all integers in `arrayAttr` are in the half-open [min, max} |
3343 | // interval. If `halfOpen` is true then the admissible interval is [min, max). |
3344 | // Otherwise, the admissible interval is [min, max]. |
3345 | template <typename OpType> |
3346 | static LogicalResult |
3347 | isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, |
3348 | ArrayRef<int64_t> shape, StringRef attrName, |
3349 | bool halfOpen = true, int64_t min = 0) { |
3350 | for (auto [index, attrDimPair] : |
3351 | llvm::enumerate(llvm::zip_first(arrayAttr, shape))) { |
3352 | int64_t val = llvm::cast<IntegerAttr>(std::get<0>(attrDimPair)).getInt(); |
3353 | int64_t max = std::get<1>(attrDimPair); |
3354 | if (!halfOpen) |
3355 | max += 1; |
3356 | if (val < min || val >= max) |
3357 | return op.emitOpError("expected ") |
3358 | << attrName << " dimension "<< index << " to be confined to [" |
3359 | << min << ", "<< max << ")"; |
3360 | } |
3361 | return success(); |
3362 | } |
3363 | |
3364 | // Returns true if, for all indices i = 0..shape.size()-1, val is in the |
3365 | // [min, max} interval: |
3366 | // val = `arrayAttr1[i]` + `arrayAttr2[i]`, |
3367 | // If `halfOpen` is true then the admissible interval is [min, max). Otherwise, |
3368 | // the admissible interval is [min, max]. |
3369 | template <typename OpType> |
3370 | static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( |
3371 | OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, |
3372 | ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, |
3373 | bool halfOpen = true, int64_t min = 1) { |
3374 | assert(arrayAttr1.size() <= shape.size()); |
3375 | assert(arrayAttr2.size() <= shape.size()); |
3376 | for (auto [index, it] : |
3377 | llvm::enumerate(llvm::zip(arrayAttr1, arrayAttr2, shape))) { |
3378 | auto val1 = llvm::cast<IntegerAttr>(std::get<0>(it)).getInt(); |
3379 | auto val2 = llvm::cast<IntegerAttr>(std::get<1>(it)).getInt(); |
3380 | int64_t max = std::get<2>(it); |
3381 | if (!halfOpen) |
3382 | max += 1; |
3383 | if (val1 + val2 < 0 || val1 + val2 >= max) |
3384 | return op.emitOpError("expected sum(") |
3385 | << attrName1 << ", "<< attrName2 << ") dimension "<< index |
3386 | << " to be confined to ["<< min << ", "<< max << ")"; |
3387 | } |
3388 | return success(); |
3389 | } |
3390 | |
3391 | static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, |
3392 | MLIRContext *context) { |
3393 | auto attrs = llvm::map_range(C&: values, F: [context](int64_t v) -> Attribute { |
3394 | return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); |
3395 | }); |
3396 | return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); |
3397 | } |
3398 | |
3399 | LogicalResult InsertStridedSliceOp::verify() { |
3400 | auto sourceVectorType = getSourceVectorType(); |
3401 | auto destVectorType = getDestVectorType(); |
3402 | auto offsets = getOffsetsAttr(); |
3403 | auto strides = getStridesAttr(); |
3404 | if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) |
3405 | return emitOpError( |
3406 | "expected offsets of same size as destination vector rank"); |
3407 | if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) |
3408 | return emitOpError("expected strides of same size as source vector rank"); |
3409 | if (sourceVectorType.getRank() > destVectorType.getRank()) |
3410 | return emitOpError( |
3411 | "expected source rank to be no greater than destination rank"); |
3412 | |
3413 | auto sourceShape = sourceVectorType.getShape(); |
3414 | auto destShape = destVectorType.getShape(); |
3415 | SmallVector<int64_t, 4> sourceShapeAsDestShape( |
3416 | destShape.size() - sourceShape.size(), 0); |
3417 | sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); |
3418 | auto offName = InsertStridedSliceOp::getOffsetsAttrName(); |
3419 | auto stridesName = InsertStridedSliceOp::getStridesAttrName(); |
3420 | if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, |
3421 | offName)) || |
3422 | failed(isIntegerArrayAttrConfinedToRange(*this, strides, /*min=*/1, |
3423 | /*max=*/1, stridesName, |
3424 | /*halfOpen=*/false)) || |
3425 | failed(isSumOfIntegerArrayAttrConfinedToShape( |
3426 | *this, offsets, |
3427 | makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, |
3428 | offName, "source vector shape", |
3429 | /*halfOpen=*/false, /*min=*/1))) |
3430 | return failure(); |
3431 | |
3432 | unsigned rankDiff = destShape.size() - sourceShape.size(); |
3433 | for (unsigned idx = 0; idx < sourceShape.size(); ++idx) { |
3434 | if (sourceVectorType.getScalableDims()[idx] != |
3435 | destVectorType.getScalableDims()[idx + rankDiff]) { |
3436 | return emitOpError("mismatching scalable flags (at source vector idx=") |
3437 | << idx << ")"; |
3438 | } |
3439 | if (sourceVectorType.getScalableDims()[idx]) { |
3440 | auto sourceSize = sourceShape[idx]; |
3441 | auto destSize = destShape[idx + rankDiff]; |
3442 | if (sourceSize != destSize) { |
3443 | return emitOpError("expected size at idx=") |
3444 | << idx |
3445 | << (" to match the corresponding base size from the input " |
3446 | "vector (") |
3447 | << sourceSize << (" vs ") << destSize << ( ")"); |
3448 | } |
3449 | } |
3450 | } |
3451 | |
3452 | return success(); |
3453 | } |
3454 | |
3455 | namespace { |
3456 | /// Pattern to rewrite an InsertStridedSliceOp(SplatOp(X):src_type, |
3457 | /// SplatOp(X):dst_type) to SplatOp(X):dst_type. |
3458 | class FoldInsertStridedSliceSplat final |
3459 | : public OpRewritePattern<InsertStridedSliceOp> { |
3460 | public: |
3461 | using OpRewritePattern::OpRewritePattern; |
3462 | |
3463 | LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp, |
3464 | PatternRewriter &rewriter) const override { |
3465 | auto srcSplatOp = |
3466 | insertStridedSliceOp.getValueToStore().getDefiningOp<vector::SplatOp>(); |
3467 | auto destSplatOp = |
3468 | insertStridedSliceOp.getDest().getDefiningOp<vector::SplatOp>(); |
3469 | |
3470 | if (!srcSplatOp || !destSplatOp) |
3471 | return failure(); |
3472 | |
3473 | if (srcSplatOp.getInput() != destSplatOp.getInput()) |
3474 | return failure(); |
3475 | |
3476 | rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest()); |
3477 | return success(); |
3478 | } |
3479 | }; |
3480 | |
3481 | /// Pattern to rewrite an InsertStridedSliceOp(ExtractStridedSliceOp(dst), dst) |
3482 | /// to dst. |
3483 | class FoldInsertStridedSliceOfExtract final |
3484 | : public OpRewritePattern<InsertStridedSliceOp> { |
3485 | public: |
3486 | using OpRewritePattern::OpRewritePattern; |
3487 | |
3488 | LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp, |
3489 | PatternRewriter &rewriter) const override { |
3490 | auto extractStridedSliceOp = |
3491 | insertStridedSliceOp.getValueToStore() |
3492 | .getDefiningOp<vector::ExtractStridedSliceOp>(); |
3493 | |
3494 | if (!extractStridedSliceOp) |
3495 | return failure(); |
3496 | |
3497 | if (extractStridedSliceOp.getOperand() != insertStridedSliceOp.getDest()) |
3498 | return failure(); |
3499 | |
3500 | // Check if have the same strides and offsets. |
3501 | if (extractStridedSliceOp.getStrides() != |
3502 | insertStridedSliceOp.getStrides() || |
3503 | extractStridedSliceOp.getOffsets() != insertStridedSliceOp.getOffsets()) |
3504 | return failure(); |
3505 | |
3506 | rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest()); |
3507 | return success(); |
3508 | } |
3509 | }; |
3510 | |
3511 | // Pattern to rewrite an InsertStridedSliceOp(ConstantOp into ConstantOp) -> |
3512 | // ConstantOp. |
3513 | class InsertStridedSliceConstantFolder final |
3514 | : public OpRewritePattern<InsertStridedSliceOp> { |
3515 | public: |
3516 | using OpRewritePattern::OpRewritePattern; |
3517 | |
3518 | // Do not create constants with more than `vectorSizeFoldThreashold` elements, |
3519 | // unless the source vector constant has a single use. |
3520 | static constexpr int64_t vectorSizeFoldThreshold = 256; |
3521 | |
3522 | LogicalResult matchAndRewrite(InsertStridedSliceOp op, |
3523 | PatternRewriter &rewriter) const override { |
3524 | // Return if 'InsertOp' operand is not defined by a compatible vector |
3525 | // ConstantOp. |
3526 | TypedValue<VectorType> destVector = op.getDest(); |
3527 | Attribute vectorDestCst; |
3528 | if (!matchPattern(value: destVector, pattern: m_Constant(bind_value: &vectorDestCst))) |
3529 | return failure(); |
3530 | |
3531 | VectorType destTy = destVector.getType(); |
3532 | if (destTy.isScalable()) |
3533 | return failure(); |
3534 | |
3535 | // Make sure we do not create too many large constants. |
3536 | if (destTy.getNumElements() > vectorSizeFoldThreshold && |
3537 | !destVector.hasOneUse()) |
3538 | return failure(); |
3539 | |
3540 | TypedValue<VectorType> sourceValue = op.getValueToStore(); |
3541 | Attribute sourceCst; |
3542 | if (!matchPattern(value: sourceValue, pattern: m_Constant(bind_value: &sourceCst))) |
3543 | return failure(); |
3544 | |
3545 | // TODO: Support poison. |
3546 | if (isa<ub::PoisonAttr>(vectorDestCst) || isa<ub::PoisonAttr>(sourceCst)) |
3547 | return failure(); |
3548 | |
3549 | // TODO: Handle non-unit strides when they become available. |
3550 | if (op.hasNonUnitStrides()) |
3551 | return failure(); |
3552 | |
3553 | VectorType sliceVecTy = sourceValue.getType(); |
3554 | ArrayRef<int64_t> sliceShape = sliceVecTy.getShape(); |
3555 | int64_t rankDifference = destTy.getRank() - sliceVecTy.getRank(); |
3556 | SmallVector<int64_t, 4> offsets = getI64SubArray(op.getOffsets()); |
3557 | SmallVector<int64_t, 4> destStrides = computeStrides(destTy.getShape()); |
3558 | |
3559 | // Calcualte the destination element indices by enumerating all slice |
3560 | // positions within the destination and linearizing them. The enumeration |
3561 | // order is lexicographic which yields a sequence of monotonically |
3562 | // increasing linearized position indices. |
3563 | // Because the destination may have higher dimensionality then the slice, |
3564 | // we keep track of two overlapping sets of positions and offsets. |
3565 | auto denseDest = llvm::cast<DenseElementsAttr>(Val&: vectorDestCst); |
3566 | auto denseSlice = llvm::cast<DenseElementsAttr>(Val&: sourceCst); |
3567 | auto sliceValuesIt = denseSlice.value_begin<Attribute>(); |
3568 | auto newValues = llvm::to_vector(denseDest.getValues<Attribute>()); |
3569 | SmallVector<int64_t> currDestPosition(offsets.begin(), offsets.end()); |
3570 | MutableArrayRef<int64_t> currSlicePosition( |
3571 | currDestPosition.begin() + rankDifference, currDestPosition.end()); |
3572 | ArrayRef<int64_t> sliceOffsets(offsets.begin() + rankDifference, |
3573 | offsets.end()); |
3574 | do { |
3575 | int64_t linearizedPosition = linearize(offsets: currDestPosition, basis: destStrides); |
3576 | assert(linearizedPosition < destTy.getNumElements() && "Invalid index"); |
3577 | assert(sliceValuesIt != denseSlice.value_end<Attribute>() && |
3578 | "Invalid slice element"); |
3579 | newValues[linearizedPosition] = *sliceValuesIt; |
3580 | ++sliceValuesIt; |
3581 | } while (succeeded( |
3582 | Result: incSlicePosition(position: currSlicePosition, shape: sliceShape, offsets: sliceOffsets))); |
3583 | |
3584 | auto newAttr = DenseElementsAttr::get(destTy, newValues); |
3585 | rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, newAttr); |
3586 | return success(); |
3587 | } |
3588 | }; |
3589 | |
3590 | } // namespace |
3591 | |
3592 | void vector::InsertStridedSliceOp::getCanonicalizationPatterns( |
3593 | RewritePatternSet &results, MLIRContext *context) { |
3594 | results.add<FoldInsertStridedSliceSplat, FoldInsertStridedSliceOfExtract, |
3595 | InsertStridedSliceConstantFolder>(context); |
3596 | } |
3597 | |
3598 | OpFoldResult InsertStridedSliceOp::fold(FoldAdaptor adaptor) { |
3599 | if (getSourceVectorType() == getDestVectorType()) |
3600 | return getValueToStore(); |
3601 | return {}; |
3602 | } |
3603 | |
3604 | //===----------------------------------------------------------------------===// |
3605 | // OuterProductOp |
3606 | //===----------------------------------------------------------------------===// |
3607 | |
3608 | /// Build an op without mask, use the type of `acc` as the return type. |
3609 | void OuterProductOp::build(OpBuilder &builder, OperationState &result, |
3610 | Value lhs, Value rhs, Value acc) { |
3611 | result.addOperands({lhs, rhs, acc}); |
3612 | result.addTypes(acc.getType()); |
3613 | } |
3614 | |
3615 | void OuterProductOp::print(OpAsmPrinter &p) { |
3616 | p << " "<< getLhs() << ", "<< getRhs(); |
3617 | if (getAcc()) { |
3618 | p << ", "<< getAcc(); |
3619 | p.printOptionalAttrDict((*this)->getAttrs()); |
3620 | } |
3621 | p << " : "<< getLhs().getType() << ", "<< getRhs().getType(); |
3622 | } |
3623 | |
3624 | ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { |
3625 | SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo; |
3626 | Type tLHS, tRHS; |
3627 | if (parser.parseOperandList(operandsInfo) || |
3628 | parser.parseOptionalAttrDict(result.attributes) || |
3629 | parser.parseColonType(tLHS) || parser.parseComma() || |
3630 | parser.parseType(tRHS)) |
3631 | return failure(); |
3632 | if (operandsInfo.size() < 2) |
3633 | return parser.emitError(parser.getNameLoc(), |
3634 | "expected at least 2 operands"); |
3635 | VectorType vLHS = llvm::dyn_cast<VectorType>(tLHS); |
3636 | VectorType vRHS = llvm::dyn_cast<VectorType>(tRHS); |
3637 | if (!vLHS) |
3638 | return parser.emitError(parser.getNameLoc(), |
3639 | "expected vector type for operand #1"); |
3640 | |
3641 | VectorType resType; |
3642 | if (vRHS) { |
3643 | SmallVector<bool> scalableDimsRes{vLHS.getScalableDims()[0], |
3644 | vRHS.getScalableDims()[0]}; |
3645 | resType = VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, |
3646 | vLHS.getElementType(), scalableDimsRes); |
3647 | } else { |
3648 | // Scalar RHS operand |
3649 | SmallVector<bool> scalableDimsRes{vLHS.getScalableDims()[0]}; |
3650 | resType = VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType(), |
3651 | scalableDimsRes); |
3652 | } |
3653 | |
3654 | if (!result.attributes.get(OuterProductOp::getKindAttrName(result.name))) { |
3655 | result.attributes.append( |
3656 | OuterProductOp::getKindAttrName(result.name), |
3657 | CombiningKindAttr::get(result.getContext(), |
3658 | OuterProductOp::getDefaultKind())); |
3659 | } |
3660 | |
3661 | return failure( |
3662 | parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || |
3663 | parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || |
3664 | (operandsInfo.size() > 2 && |
3665 | parser.resolveOperand(operandsInfo[2], resType, result.operands)) || |
3666 | parser.addTypeToList(resType, result.types)); |
3667 | } |
3668 | |
3669 | LogicalResult OuterProductOp::verify() { |
3670 | Type tRHS = getOperandTypeRHS(); |
3671 | VectorType vLHS = getOperandVectorTypeLHS(), |
3672 | vRHS = llvm::dyn_cast<VectorType>(tRHS), |
3673 | vACC = getOperandVectorTypeACC(), vRES = getResultVectorType(); |
3674 | |
3675 | if (vLHS.getRank() != 1) |
3676 | return emitOpError("expected 1-d vector for operand #1"); |
3677 | |
3678 | if (vRHS) { |
3679 | // Proper OUTER operation. |
3680 | if (vRHS.getRank() != 1) |
3681 | return emitOpError("expected 1-d vector for operand #2"); |
3682 | if (vRES.getRank() != 2) |
3683 | return emitOpError("expected 2-d vector result"); |
3684 | if (vLHS.getDimSize(0) != vRES.getDimSize(0)) |
3685 | return emitOpError("expected #1 operand dim to match result dim #1"); |
3686 | if (vRHS.getDimSize(0) != vRES.getDimSize(1)) |
3687 | return emitOpError("expected #2 operand dim to match result dim #2"); |
3688 | if (vLHS.isScalable() && !vRHS.isScalable()) { |
3689 | // This restriction reflects what's currently supported in terms of |
3690 | // scalable vectors. However, we could relax this if there's a use case. |
3691 | return emitOpError( |
3692 | "expected either both or only #2 operand dim to be scalable"); |
3693 | } |
3694 | } else { |
3695 | // An AXPY operation. |
3696 | if (vRES.getRank() != 1) |
3697 | return emitOpError("expected 1-d vector result"); |
3698 | if (vLHS.getDimSize(0) != vRES.getDimSize(0)) |
3699 | return emitOpError("expected #1 operand dim to match result dim #1"); |
3700 | } |
3701 | |
3702 | if (vACC && vACC != vRES) |
3703 | return emitOpError("expected operand #3 of same type as result type"); |
3704 | |
3705 | // Verify supported combining kind. |
3706 | if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) |
3707 | return emitOpError("unsupported outerproduct type"); |
3708 | |
3709 | return success(); |
3710 | } |
3711 | |
3712 | // MaskableOpInterface methods. |
3713 | |
3714 | /// Returns the mask type expected by this operation. Mostly used for |
3715 | /// verification purposes. It requires the operation to be vectorized." |
3716 | Type OuterProductOp::getExpectedMaskType() { |
3717 | auto vecType = this->getResultVectorType(); |
3718 | return VectorType::get(vecType.getShape(), |
3719 | IntegerType::get(vecType.getContext(), /*width=*/1), |
3720 | vecType.getScalableDims()); |
3721 | } |
3722 | |
3723 | //===----------------------------------------------------------------------===// |
3724 | // ExtractStridedSliceOp |
3725 | //===----------------------------------------------------------------------===// |
3726 | |
3727 | // Inference works as follows: |
3728 | // 1. Add 'sizes' from prefix of dims in 'offsets'. |
3729 | // 2. Add sizes from 'vectorType' for remaining dims. |
3730 | // Scalable flags are inherited from 'vectorType'. |
3731 | static Type inferStridedSliceOpResultType(VectorType vectorType, |
3732 | ArrayAttr offsets, ArrayAttr sizes, |
3733 | ArrayAttr strides) { |
3734 | assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); |
3735 | SmallVector<int64_t, 4> shape; |
3736 | shape.reserve(N: vectorType.getRank()); |
3737 | unsigned idx = 0; |
3738 | for (unsigned e = offsets.size(); idx < e; ++idx) |
3739 | shape.push_back(Elt: llvm::cast<IntegerAttr>(sizes[idx]).getInt()); |
3740 | for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) |
3741 | shape.push_back(Elt: vectorType.getShape()[idx]); |
3742 | |
3743 | return VectorType::get(shape, vectorType.getElementType(), |
3744 | vectorType.getScalableDims()); |
3745 | } |
3746 | |
3747 | void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, |
3748 | Value source, ArrayRef<int64_t> offsets, |
3749 | ArrayRef<int64_t> sizes, |
3750 | ArrayRef<int64_t> strides) { |
3751 | result.addOperands(source); |
3752 | auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); |
3753 | auto sizesAttr = getVectorSubscriptAttr(builder, sizes); |
3754 | auto stridesAttr = getVectorSubscriptAttr(builder, strides); |
3755 | result.addTypes( |
3756 | inferStridedSliceOpResultType(llvm::cast<VectorType>(source.getType()), |
3757 | offsetsAttr, sizesAttr, stridesAttr)); |
3758 | result.addAttribute(ExtractStridedSliceOp::getOffsetsAttrName(result.name), |
3759 | offsetsAttr); |
3760 | result.addAttribute(ExtractStridedSliceOp::getSizesAttrName(result.name), |
3761 | sizesAttr); |
3762 | result.addAttribute(ExtractStridedSliceOp::getStridesAttrName(result.name), |
3763 | stridesAttr); |
3764 | } |
3765 | |
3766 | LogicalResult ExtractStridedSliceOp::verify() { |
3767 | auto type = getSourceVectorType(); |
3768 | auto offsets = getOffsetsAttr(); |
3769 | auto sizes = getSizesAttr(); |
3770 | auto strides = getStridesAttr(); |
3771 | if (offsets.size() != sizes.size() || offsets.size() != strides.size()) |
3772 | return emitOpError( |
3773 | "expected offsets, sizes and strides attributes of same size"); |
3774 | |
3775 | auto shape = type.getShape(); |
3776 | auto offName = getOffsetsAttrName(); |
3777 | auto sizesName = getSizesAttrName(); |
3778 | auto stridesName = getStridesAttrName(); |
3779 | if (failed( |
3780 | isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || |
3781 | failed( |
3782 | isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || |
3783 | failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, |
3784 | stridesName)) || |
3785 | failed( |
3786 | isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || |
3787 | failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, |
3788 | /*halfOpen=*/false, |
3789 | /*min=*/1)) || |
3790 | failed(isIntegerArrayAttrConfinedToRange(*this, strides, /*min=*/1, |
3791 | /*max=*/1, stridesName, |
3792 | /*halfOpen=*/false)) || |
3793 | failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, |
3794 | shape, offName, sizesName, |
3795 | /*halfOpen=*/false))) |
3796 | return failure(); |
3797 | |
3798 | auto resultType = inferStridedSliceOpResultType(getSourceVectorType(), |
3799 | offsets, sizes, strides); |
3800 | if (getResult().getType() != resultType) |
3801 | return emitOpError("expected result type to be ") << resultType; |
3802 | |
3803 | for (unsigned idx = 0; idx < sizes.size(); ++idx) { |
3804 | if (type.getScalableDims()[idx]) { |
3805 | auto inputDim = type.getShape()[idx]; |
3806 | auto inputSize = llvm::cast<IntegerAttr>(sizes[idx]).getInt(); |
3807 | if (inputDim != inputSize) |
3808 | return emitOpError("expected size at idx=") |
3809 | << idx |
3810 | << (" to match the corresponding base size from the input " |
3811 | "vector (") |
3812 | << inputSize << (" vs ") << inputDim << ( ")"); |
3813 | } |
3814 | } |
3815 | |
3816 | return success(); |
3817 | } |
3818 | |
3819 | // When the source of ExtractStrided comes from a chain of InsertStrided ops try |
3820 | // to use the source of the InsertStrided ops if we can detect that the |
3821 | // extracted vector is a subset of one of the vector inserted. |
3822 | static LogicalResult |
3823 | foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { |
3824 | // Helper to extract integer out of ArrayAttr. |
3825 | auto getElement = [](ArrayAttr array, int idx) { |
3826 | return llvm::cast<IntegerAttr>(array[idx]).getInt(); |
3827 | }; |
3828 | ArrayAttr extractOffsets = op.getOffsets(); |
3829 | ArrayAttr extractStrides = op.getStrides(); |
3830 | ArrayAttr extractSizes = op.getSizes(); |
3831 | auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); |
3832 | while (insertOp) { |
3833 | if (op.getSourceVectorType().getRank() != |
3834 | insertOp.getSourceVectorType().getRank()) |
3835 | return failure(); |
3836 | ArrayAttr insertOffsets = insertOp.getOffsets(); |
3837 | ArrayAttr insertStrides = insertOp.getStrides(); |
3838 | // If the rank of extract is greater than the rank of insert, we are likely |
3839 | // extracting a partial chunk of the vector inserted. |
3840 | if (extractOffsets.size() > insertOffsets.size()) |
3841 | return failure(); |
3842 | bool patialoverlap = false; |
3843 | bool disjoint = false; |
3844 | SmallVector<int64_t, 4> offsetDiffs; |
3845 | for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { |
3846 | if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) |
3847 | return failure(); |
3848 | int64_t start = getElement(insertOffsets, dim); |
3849 | int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); |
3850 | int64_t offset = getElement(extractOffsets, dim); |
3851 | int64_t size = getElement(extractSizes, dim); |
3852 | // Check if the start of the extract offset is in the interval inserted. |
3853 | if (start <= offset && offset < end) { |
3854 | // If the extract interval overlaps but is not fully included we may |
3855 | // have a partial overlap that will prevent any folding. |
3856 | if (offset + size > end) |
3857 | patialoverlap = true; |
3858 | offsetDiffs.push_back(Elt: offset - start); |
3859 | continue; |
3860 | } |
3861 | disjoint = true; |
3862 | break; |
3863 | } |
3864 | // The extract element chunk is a subset of the insert element. |
3865 | if (!disjoint && !patialoverlap) { |
3866 | op.setOperand(insertOp.getValueToStore()); |
3867 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
3868 | OpBuilder b(op.getContext()); |
3869 | op.setOffsetsAttr(b.getI64ArrayAttr(offsetDiffs)); |
3870 | return success(); |
3871 | } |
3872 | // If the chunk extracted is disjoint from the chunk inserted, keep looking |
3873 | // in the insert chain. |
3874 | if (disjoint) |
3875 | insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); |
3876 | else { |
3877 | // The extracted vector partially overlap the inserted vector, we cannot |
3878 | // fold. |
3879 | return failure(); |
3880 | } |
3881 | } |
3882 | return failure(); |
3883 | } |
3884 | |
3885 | // ExtractStridedSliceOp(non-splat ConstantOp) -> ConstantOp. |
3886 | static OpFoldResult |
3887 | foldExtractStridedSliceNonSplatConstant(ExtractStridedSliceOp op, |
3888 | Attribute foldInput) { |
3889 | |
3890 | auto dense = llvm::dyn_cast_if_present<DenseElementsAttr>(Val&: foldInput); |
3891 | if (!dense) |
3892 | return {}; |
3893 | |
3894 | // TODO: Handle non-unit strides when they become available. |
3895 | if (op.hasNonUnitStrides()) |
3896 | return {}; |
3897 | |
3898 | VectorType sourceVecTy = op.getSourceVectorType(); |
3899 | ArrayRef<int64_t> sourceShape = sourceVecTy.getShape(); |
3900 | SmallVector<int64_t, 4> sourceStrides = computeStrides(sizes: sourceShape); |
3901 | |
3902 | VectorType sliceVecTy = op.getType(); |
3903 | ArrayRef<int64_t> sliceShape = sliceVecTy.getShape(); |
3904 | int64_t rank = sliceVecTy.getRank(); |
3905 | |
3906 | // Expand offsets and sizes to match the vector rank. |
3907 | SmallVector<int64_t, 4> offsets(rank, 0); |
3908 | copy(getI64SubArray(op.getOffsets()), offsets.begin()); |
3909 | |
3910 | SmallVector<int64_t, 4> sizes(sourceShape); |
3911 | copy(getI64SubArray(op.getSizes()), sizes.begin()); |
3912 | |
3913 | // Calculate the slice elements by enumerating all slice positions and |
3914 | // linearizing them. The enumeration order is lexicographic which yields a |
3915 | // sequence of monotonically increasing linearized position indices. |
3916 | const auto denseValuesBegin = dense.value_begin<Attribute>(); |
3917 | SmallVector<Attribute> sliceValues; |
3918 | sliceValues.reserve(N: sliceVecTy.getNumElements()); |
3919 | SmallVector<int64_t> currSlicePosition(offsets.begin(), offsets.end()); |
3920 | do { |
3921 | int64_t linearizedPosition = linearize(offsets: currSlicePosition, basis: sourceStrides); |
3922 | assert(linearizedPosition < sourceVecTy.getNumElements() && |
3923 | "Invalid index"); |
3924 | sliceValues.push_back(Elt: *(denseValuesBegin + linearizedPosition)); |
3925 | } while (succeeded(Result: incSlicePosition(position: currSlicePosition, shape: sliceShape, offsets))); |
3926 | |
3927 | assert(static_cast<int64_t>(sliceValues.size()) == |
3928 | sliceVecTy.getNumElements() && |
3929 | "Invalid number of slice elements"); |
3930 | return DenseElementsAttr::get(sliceVecTy, sliceValues); |
3931 | } |
3932 | |
3933 | OpFoldResult ExtractStridedSliceOp::fold(FoldAdaptor adaptor) { |
3934 | if (getSourceVectorType() == getResult().getType()) |
3935 | return getVector(); |
3936 | if (succeeded(foldExtractStridedOpFromInsertChain(*this))) |
3937 | return getResult(); |
3938 | |
3939 | // ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. |
3940 | if (auto splat = |
3941 | llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getVector())) |
3942 | DenseElementsAttr::get(getType(), splat.getSplatValue<Attribute>()); |
3943 | |
3944 | // ExtractStridedSliceOp(non-splat ConstantOp) -> ConstantOp. |
3945 | return foldExtractStridedSliceNonSplatConstant(*this, adaptor.getVector()); |
3946 | } |
3947 | |
3948 | void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { |
3949 | populateFromInt64AttrArray(getOffsets(), results); |
3950 | } |
3951 | |
3952 | namespace { |
3953 | |
3954 | // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to |
3955 | // ConstantMaskOp. |
3956 | class StridedSliceConstantMaskFolder final |
3957 | : public OpRewritePattern<ExtractStridedSliceOp> { |
3958 | public: |
3959 | using OpRewritePattern::OpRewritePattern; |
3960 | |
3961 | LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, |
3962 | PatternRewriter &rewriter) const override { |
3963 | // Return if 'extractStridedSliceOp' operand is not defined by a |
3964 | // ConstantMaskOp. |
3965 | auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); |
3966 | auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); |
3967 | if (!constantMaskOp) |
3968 | return failure(); |
3969 | // Return if 'extractStridedSliceOp' has non-unit strides. |
3970 | if (extractStridedSliceOp.hasNonUnitStrides()) |
3971 | return failure(); |
3972 | // Gather constant mask dimension sizes. |
3973 | ArrayRef<int64_t> maskDimSizes = constantMaskOp.getMaskDimSizes(); |
3974 | // Gather strided slice offsets and sizes. |
3975 | SmallVector<int64_t, 4> sliceOffsets; |
3976 | populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), |
3977 | sliceOffsets); |
3978 | SmallVector<int64_t, 4> sliceSizes; |
3979 | populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); |
3980 | |
3981 | // Compute slice of vector mask region. |
3982 | SmallVector<int64_t, 4> sliceMaskDimSizes; |
3983 | sliceMaskDimSizes.reserve(N: maskDimSizes.size()); |
3984 | for (auto [maskDimSize, sliceOffset, sliceSize] : |
3985 | llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { |
3986 | int64_t sliceMaskDimSize = std::max( |
3987 | static_cast<int64_t>(0), |
3988 | std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); |
3989 | sliceMaskDimSizes.push_back(sliceMaskDimSize); |
3990 | } |
3991 | // Add unchanged dimensions. |
3992 | if (sliceMaskDimSizes.size() < maskDimSizes.size()) |
3993 | for (size_t i = sliceMaskDimSizes.size(); i < maskDimSizes.size(); ++i) |
3994 | sliceMaskDimSizes.push_back(Elt: maskDimSizes[i]); |
3995 | // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked |
3996 | // region is a conjunction of mask dim intervals). |
3997 | if (llvm::is_contained(Range&: sliceMaskDimSizes, Element: 0)) |
3998 | sliceMaskDimSizes.assign(NumElts: maskDimSizes.size(), Elt: 0); |
3999 | |
4000 | // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask |
4001 | // region. |
4002 | rewriter.replaceOpWithNewOp<ConstantMaskOp>( |
4003 | extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), |
4004 | sliceMaskDimSizes); |
4005 | return success(); |
4006 | } |
4007 | }; |
4008 | |
4009 | // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to |
4010 | // BroadcastOp(ExtractStrideSliceOp). |
4011 | class StridedSliceBroadcast final |
4012 | : public OpRewritePattern<ExtractStridedSliceOp> { |
4013 | public: |
4014 | using OpRewritePattern::OpRewritePattern; |
4015 | |
4016 | LogicalResult matchAndRewrite(ExtractStridedSliceOp op, |
4017 | PatternRewriter &rewriter) const override { |
4018 | auto broadcast = op.getVector().getDefiningOp<BroadcastOp>(); |
4019 | if (!broadcast) |
4020 | return failure(); |
4021 | auto srcVecType = |
4022 | llvm::dyn_cast<VectorType>(broadcast.getSource().getType()); |
4023 | unsigned srcRank = srcVecType ? srcVecType.getRank() : 0; |
4024 | auto dstVecType = llvm::cast<VectorType>(op.getType()); |
4025 | unsigned dstRank = dstVecType.getRank(); |
4026 | unsigned rankDiff = dstRank - srcRank; |
4027 | // Check if the most inner dimensions of the source of the broadcast are the |
4028 | // same as the destination of the extract. If this is the case we can just |
4029 | // use a broadcast as the original dimensions are untouched. |
4030 | bool lowerDimMatch = true; |
4031 | for (unsigned i = 0; i < srcRank; i++) { |
4032 | if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { |
4033 | lowerDimMatch = false; |
4034 | break; |
4035 | } |
4036 | } |
4037 | Value source = broadcast.getSource(); |
4038 | // If the inner dimensions don't match, it means we need to extract from the |
4039 | // source of the orignal broadcast and then broadcast the extracted value. |
4040 | // We also need to handle degenerated cases where the source is effectively |
4041 | // just a single scalar. |
4042 | bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1); |
4043 | if (!lowerDimMatch && !isScalarSrc) { |
4044 | source = rewriter.create<ExtractStridedSliceOp>( |
4045 | op->getLoc(), source, |
4046 | getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), |
4047 | getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), |
4048 | getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); |
4049 | } |
4050 | rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); |
4051 | return success(); |
4052 | } |
4053 | }; |
4054 | |
4055 | /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. |
4056 | class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { |
4057 | public: |
4058 | using OpRewritePattern::OpRewritePattern; |
4059 | |
4060 | LogicalResult matchAndRewrite(ExtractStridedSliceOp op, |
4061 | PatternRewriter &rewriter) const override { |
4062 | auto splat = op.getVector().getDefiningOp<SplatOp>(); |
4063 | if (!splat) |
4064 | return failure(); |
4065 | rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput()); |
4066 | return success(); |
4067 | } |
4068 | }; |
4069 | |
4070 | /// Pattern to rewrite simple cases of N-D extract_strided_slice, where the |
4071 | /// slice is contiguous, into extract and shape_cast. |
4072 | /// |
4073 | /// Example: |
4074 | /// Before: |
4075 | /// %1 = vector.extract_strided_slice %arg0 { |
4076 | /// offsets = [0, 0, 0, 0, 0], |
4077 | /// sizes = [1, 1, 1, 1, 8], |
4078 | /// strides = [1, 1, 1, 1, 1] |
4079 | /// } : vector<8x1x1x2x8xi8> to vector<1x1x1x1x8xi8> |
4080 | /// After: |
4081 | /// %0 = vector.extract %arg0[0, 0, 0, 0] |
4082 | /// : vector<8xi8> from vector<8x1x1x2x8xi8> |
4083 | /// %1 = vector.shape_cast %0 |
4084 | /// : vector<8xi8> to vector<1x1x1x1x8xi8> |
4085 | /// |
4086 | class ContiguousExtractStridedSliceToExtract final |
4087 | : public OpRewritePattern<ExtractStridedSliceOp> { |
4088 | public: |
4089 | using OpRewritePattern::OpRewritePattern; |
4090 | |
4091 | LogicalResult matchAndRewrite(ExtractStridedSliceOp op, |
4092 | PatternRewriter &rewriter) const override { |
4093 | if (op.hasNonUnitStrides()) |
4094 | return failure(); |
4095 | Value source = op.getOperand(); |
4096 | auto sourceType = cast<VectorType>(source.getType()); |
4097 | if (sourceType.isScalable() || sourceType.getRank() == 0) |
4098 | return failure(); |
4099 | |
4100 | // Compute the number of offsets to pass to ExtractOp::build. That is the |
4101 | // difference between the source rank and the desired slice rank. We walk |
4102 | // the dimensions from innermost out, and stop when the next slice dimension |
4103 | // is not full-size. |
4104 | SmallVector<int64_t> sizes = getI64SubArray(op.getSizes()); |
4105 | int numOffsets; |
4106 | for (numOffsets = sizes.size(); numOffsets > 0; --numOffsets) { |
4107 | if (sizes[numOffsets - 1] != sourceType.getDimSize(numOffsets - 1)) |
4108 | break; |
4109 | } |
4110 | |
4111 | // If the created extract op would have no offsets, then this whole |
4112 | // extract_strided_slice is the identity and should have been handled by |
4113 | // other canonicalizations. |
4114 | if (numOffsets == 0) |
4115 | return failure(); |
4116 | |
4117 | // If not even the inner-most dimension is full-size, this op can't be |
4118 | // rewritten as an ExtractOp. |
4119 | if (numOffsets == sourceType.getRank() && |
4120 | static_cast<int>(sizes.size()) == sourceType.getRank()) |
4121 | return failure(); |
4122 | |
4123 | // The outer dimensions must have unit size. |
4124 | for (int i = 0; i < numOffsets; ++i) { |
4125 | if (sizes[i] != 1) |
4126 | return failure(); |
4127 | } |
4128 | |
4129 | // Avoid generating slices that have leading unit dimensions. The shape_cast |
4130 | // op that we create below would take bad generic fallback patterns |
4131 | // (ShapeCastOpRewritePattern). |
4132 | while (numOffsets < static_cast<int>(sizes.size()) - 1 && |
4133 | sizes[numOffsets] == 1) { |
4134 | ++numOffsets; |
4135 | } |
4136 | |
4137 | SmallVector<int64_t> offsets = getI64SubArray(op.getOffsets()); |
4138 | auto extractOffsets = ArrayRef(offsets).take_front(N: numOffsets); |
4139 | Value extract = rewriter.create<vector::ExtractOp>(op->getLoc(), source, |
4140 | extractOffsets); |
4141 | rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, op.getType(), extract); |
4142 | return success(); |
4143 | } |
4144 | }; |
4145 | |
4146 | } // namespace |
4147 | |
4148 | void ExtractStridedSliceOp::getCanonicalizationPatterns( |
4149 | RewritePatternSet &results, MLIRContext *context) { |
4150 | // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> |
4151 | // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. |
4152 | results.add<StridedSliceConstantMaskFolder, StridedSliceBroadcast, |
4153 | StridedSliceSplat, ContiguousExtractStridedSliceToExtract>( |
4154 | context); |
4155 | } |
4156 | |
4157 | //===----------------------------------------------------------------------===// |
4158 | // TransferReadOp |
4159 | //===----------------------------------------------------------------------===// |
4160 | |
4161 | /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). |
4162 | void TransferReadOp::build(OpBuilder &builder, OperationState &result, |
4163 | VectorType vectorType, Value source, |
4164 | ValueRange indices, AffineMapAttr permutationMapAttr, |
4165 | /*optional*/ ArrayAttr inBoundsAttr) { |
4166 | Type elemType = llvm::cast<ShapedType>(source.getType()).getElementType(); |
4167 | Value padding = builder.create<arith::ConstantOp>( |
4168 | result.location, elemType, builder.getZeroAttr(elemType)); |
4169 | build(builder, result, vectorType, source, indices, permutationMapAttr, |
4170 | padding, /*mask=*/Value(), inBoundsAttr); |
4171 | } |
4172 | |
4173 | /// 2. Builder that sets padding to zero an empty mask (variant without attrs). |
4174 | void TransferReadOp::build(OpBuilder &builder, OperationState &result, |
4175 | VectorType vectorType, Value source, |
4176 | ValueRange indices, AffineMap permutationMap, |
4177 | std::optional<ArrayRef<bool>> inBounds) { |
4178 | auto permutationMapAttr = AffineMapAttr::get(permutationMap); |
4179 | auto inBoundsAttr = (inBounds && !inBounds.value().empty()) |
4180 | ? builder.getBoolArrayAttr(inBounds.value()) |
4181 | : builder.getBoolArrayAttr( |
4182 | SmallVector<bool>(vectorType.getRank(), false)); |
4183 | build(builder, result, vectorType, source, indices, permutationMapAttr, |
4184 | inBoundsAttr); |
4185 | } |
4186 | |
4187 | /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. |
4188 | void TransferReadOp::build(OpBuilder &builder, OperationState &result, |
4189 | VectorType vectorType, Value source, |
4190 | ValueRange indices, Value padding, |
4191 | std::optional<ArrayRef<bool>> inBounds) { |
4192 | AffineMap permutationMap = getTransferMinorIdentityMap( |
4193 | llvm::cast<ShapedType>(source.getType()), vectorType); |
4194 | auto permutationMapAttr = AffineMapAttr::get(permutationMap); |
4195 | auto inBoundsAttr = (inBounds && !inBounds.value().empty()) |
4196 | ? builder.getBoolArrayAttr(inBounds.value()) |
4197 | : builder.getBoolArrayAttr( |
4198 | SmallVector<bool>(vectorType.getRank(), false)); |
4199 | build(builder, result, vectorType, source, indices, permutationMapAttr, |
4200 | padding, |
4201 | /*mask=*/Value(), inBoundsAttr); |
4202 | } |
4203 | |
4204 | /// 4. Builder that sets padding to zero and permutation map to |
4205 | /// 'getMinorIdentityMap'. |
4206 | void TransferReadOp::build(OpBuilder &builder, OperationState &result, |
4207 | VectorType vectorType, Value source, |
4208 | ValueRange indices, |
4209 | std::optional<ArrayRef<bool>> inBounds) { |
4210 | Type elemType = llvm::cast<ShapedType>(source.getType()).getElementType(); |
4211 | Value padding = builder.create<arith::ConstantOp>( |
4212 | result.location, elemType, builder.getZeroAttr(elemType)); |
4213 | build(builder, result, vectorType, source, indices, padding, inBounds); |
4214 | } |
4215 | |
4216 | template <typename EmitFun> |
4217 | static LogicalResult verifyPermutationMap(AffineMap permutationMap, |
4218 | EmitFun emitOpError) { |
4219 | SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); |
4220 | for (auto expr : permutationMap.getResults()) { |
4221 | auto dim = dyn_cast<AffineDimExpr>(Val&: expr); |
4222 | auto zero = dyn_cast<AffineConstantExpr>(Val&: expr); |
4223 | if (zero) { |
4224 | if (zero.getValue() != 0) { |
4225 | return emitOpError( |
4226 | "requires a projected permutation_map (at most one dim or the zero " |
4227 | "constant can appear in each result)"); |
4228 | } |
4229 | continue; |
4230 | } |
4231 | if (!dim) { |
4232 | return emitOpError("requires a projected permutation_map (at most one " |
4233 | "dim or the zero constant can appear in each result)"); |
4234 | } |
4235 | if (seen[dim.getPosition()]) { |
4236 | return emitOpError( |
4237 | "requires a permutation_map that is a permutation (found one dim " |
4238 | "used more than once)"); |
4239 | } |
4240 | seen[dim.getPosition()] = true; |
4241 | } |
4242 | return success(); |
4243 | } |
4244 | |
4245 | static LogicalResult |
4246 | verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, |
4247 | VectorType vectorType, VectorType maskType, |
4248 | VectorType inferredMaskType, AffineMap permutationMap, |
4249 | ArrayAttr inBounds) { |
4250 | if (op->hasAttr("masked")) { |
4251 | return op->emitOpError("masked attribute has been removed. " |
4252 | "Use in_bounds instead."); |
4253 | } |
4254 | |
4255 | if (!llvm::isa<MemRefType, RankedTensorType>(shapedType)) |
4256 | return op->emitOpError( |
4257 | "requires source to be a memref or ranked tensor type"); |
4258 | |
4259 | auto elementType = shapedType.getElementType(); |
4260 | DataLayout dataLayout = DataLayout::closest(op: op); |
4261 | if (auto vectorElementType = llvm::dyn_cast<VectorType>(elementType)) { |
4262 | // Memref or tensor has vector element type. |
4263 | unsigned sourceVecSize = |
4264 | dataLayout.getTypeSizeInBits(t: vectorElementType.getElementType()) * |
4265 | vectorElementType.getShape().back(); |
4266 | unsigned resultVecSize = |
4267 | dataLayout.getTypeSizeInBits(t: vectorType.getElementType()) * |
4268 | vectorType.getShape().back(); |
4269 | if (resultVecSize % sourceVecSize != 0) |
4270 | return op->emitOpError( |
4271 | "requires the bitwidth of the minor 1-D vector to be an integral " |
4272 | "multiple of the bitwidth of the minor 1-D vector of the source"); |
4273 | |
4274 | unsigned sourceVecEltRank = vectorElementType.getRank(); |
4275 | unsigned resultVecRank = vectorType.getRank(); |
4276 | if (sourceVecEltRank > resultVecRank) |
4277 | return op->emitOpError( |
4278 | "requires source vector element and vector result ranks to match."); |
4279 | unsigned rankOffset = resultVecRank - sourceVecEltRank; |
4280 | // Check that permutation map results match 'rankOffset' of vector type. |
4281 | if (permutationMap.getNumResults() != rankOffset) |
4282 | return op->emitOpError("requires a permutation_map with result dims of " |
4283 | "the same rank as the vector type"); |
4284 | |
4285 | if (maskType) |
4286 | return op->emitOpError("does not support masks with vector element type"); |
4287 | } else { |
4288 | // Memref or tensor has scalar element type. |
4289 | unsigned minorSize = |
4290 | vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); |
4291 | unsigned resultVecSize = |
4292 | dataLayout.getTypeSizeInBits(t: vectorType.getElementType()) * minorSize; |
4293 | if (resultVecSize % dataLayout.getTypeSizeInBits(t: elementType) != 0) |
4294 | return op->emitOpError( |
4295 | "requires the bitwidth of the minor 1-D vector to be an integral " |
4296 | "multiple of the bitwidth of the source element type"); |
4297 | |
4298 | // Check that permutation map results match rank of vector type. |
4299 | if (permutationMap.getNumResults() != vectorType.getRank()) |
4300 | return op->emitOpError("requires a permutation_map with result dims of " |
4301 | "the same rank as the vector type"); |
4302 | } |
4303 | |
4304 | if (permutationMap.getNumSymbols() != 0) |
4305 | return op->emitOpError("requires permutation_map without symbols"); |
4306 | |
4307 | if (permutationMap.getNumInputs() != shapedType.getRank()) |
4308 | return op->emitOpError("requires a permutation_map with input dims of the " |
4309 | "same rank as the source type"); |
4310 | |
4311 | if (maskType && maskType != inferredMaskType) |
4312 | return op->emitOpError("inferred mask type (") |
4313 | << inferredMaskType << ") and mask operand type ("<< maskType |
4314 | << ") don't match"; |
4315 | |
4316 | if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) |
4317 | return op->emitOpError("expects the in_bounds attr of same rank " |
4318 | "as permutation_map results: ") |
4319 | << AffineMapAttr::get(permutationMap) |
4320 | << " vs inBounds of size: "<< inBounds.size(); |
4321 | |
4322 | return success(); |
4323 | } |
4324 | |
4325 | static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { |
4326 | SmallVector<StringRef, 3> elidedAttrs; |
4327 | elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); |
4328 | if (op.getPermutationMap().isMinorIdentity()) |
4329 | elidedAttrs.push_back(Elt: op.getPermutationMapAttrName()); |
4330 | // Elide in_bounds attribute if all dims are out-of-bounds. |
4331 | if (llvm::none_of(op.getInBoundsValues(), [](bool b) { return b; })) |
4332 | elidedAttrs.push_back(Elt: op.getInBoundsAttrName()); |
4333 | p.printOptionalAttrDict(attrs: op->getAttrs(), elidedAttrs); |
4334 | } |
4335 | |
4336 | void TransferReadOp::print(OpAsmPrinter &p) { |
4337 | p << " "<< getBase() << "["<< getIndices() << "], "<< getPadding(); |
4338 | if (getMask()) |
4339 | p << ", "<< getMask(); |
4340 | printTransferAttrs(p, *this); |
4341 | p << " : "<< getShapedType() << ", "<< getVectorType(); |
4342 | } |
4343 | |
4344 | VectorType mlir::vector::inferTransferOpMaskType(VectorType vecType, |
4345 | AffineMap permMap) { |
4346 | auto i1Type = IntegerType::get(permMap.getContext(), 1); |
4347 | AffineMap invPermMap = inversePermutation(map: compressUnusedDims(map: permMap)); |
4348 | assert(invPermMap && "Inversed permutation map couldn't be computed"); |
4349 | SmallVector<int64_t, 8> maskShape = invPermMap.compose(vecType.getShape()); |
4350 | |
4351 | // The MaskOp specification doesn't support 0-D vectors at the moment. Turn a |
4352 | // 0-D mask into a single-element 1-D mask. |
4353 | if (maskShape.empty()) |
4354 | maskShape.push_back(Elt: 1); |
4355 | |
4356 | SmallVector<bool> scalableDims = |
4357 | applyPermutationMap(invPermMap, vecType.getScalableDims()); |
4358 | |
4359 | return VectorType::get(maskShape, i1Type, scalableDims); |
4360 | } |
4361 | |
4362 | ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { |
4363 | auto &builder = parser.getBuilder(); |
4364 | SMLoc typesLoc; |
4365 | OpAsmParser::UnresolvedOperand sourceInfo; |
4366 | SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; |
4367 | OpAsmParser::UnresolvedOperand paddingInfo; |
4368 | SmallVector<Type, 2> types; |
4369 | OpAsmParser::UnresolvedOperand maskInfo; |
4370 | // Parsing with support for paddingValue. |
4371 | if (parser.parseOperand(sourceInfo) || |
4372 | parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || |
4373 | parser.parseComma() || parser.parseOperand(paddingInfo)) |
4374 | return failure(); |
4375 | ParseResult hasMask = parser.parseOptionalComma(); |
4376 | if (hasMask.succeeded()) { |
4377 | if (parser.parseOperand(maskInfo)) |
4378 | return failure(); |
4379 | } |
4380 | if (parser.parseOptionalAttrDict(result.attributes) || |
4381 | parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) |
4382 | return failure(); |
4383 | if (types.size() != 2) |
4384 | return parser.emitError(typesLoc, "requires two types"); |
4385 | auto indexType = builder.getIndexType(); |
4386 | auto shapedType = llvm::dyn_cast<ShapedType>(types[0]); |
4387 | if (!shapedType || !llvm::isa<MemRefType, RankedTensorType>(shapedType)) |
4388 | return parser.emitError(typesLoc, "requires memref or ranked tensor type"); |
4389 | VectorType vectorType = llvm::dyn_cast<VectorType>(types[1]); |
4390 | if (!vectorType) |
4391 | return parser.emitError(typesLoc, "requires vector type"); |
4392 | auto permMapAttrName = TransferReadOp::getPermutationMapAttrName(result.name); |
4393 | Attribute permMapAttr = result.attributes.get(permMapAttrName); |
4394 | AffineMap permMap; |
4395 | if (!permMapAttr) { |
4396 | if (shapedType.getRank() < |
4397 | getEffectiveVectorRankForXferOp(shapedType, vectorType)) |
4398 | return parser.emitError(typesLoc, |
4399 | "expected a custom permutation_map when " |
4400 | "rank(source) != rank(destination)"); |
4401 | permMap = getTransferMinorIdentityMap(shapedType, vectorType); |
4402 | result.attributes.set(permMapAttrName, AffineMapAttr::get(permMap)); |
4403 | } else { |
4404 | permMap = llvm::cast<AffineMapAttr>(permMapAttr).getValue(); |
4405 | } |
4406 | auto inBoundsAttrName = TransferReadOp::getInBoundsAttrName(result.name); |
4407 | Attribute inBoundsAttr = result.attributes.get(inBoundsAttrName); |
4408 | if (!inBoundsAttr) { |
4409 | result.addAttribute(inBoundsAttrName, |
4410 | builder.getBoolArrayAttr( |
4411 | SmallVector<bool>(permMap.getNumResults(), false))); |
4412 | } |
4413 | if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || |
4414 | parser.resolveOperands(indexInfo, indexType, result.operands) || |
4415 | parser.resolveOperand(paddingInfo, shapedType.getElementType(), |
4416 | result.operands)) |
4417 | return failure(); |
4418 | if (hasMask.succeeded()) { |
4419 | if (llvm::dyn_cast<VectorType>(shapedType.getElementType())) |
4420 | return parser.emitError( |
4421 | maskInfo.location, "does not support masks with vector element type"); |
4422 | if (vectorType.getRank() != permMap.getNumResults()) { |
4423 | return parser.emitError(typesLoc, |
4424 | "expected the same rank for the vector and the " |
4425 | "results of the permutation map"); |
4426 | } |
4427 | // Instead of adding the mask type as an op type, compute it based on the |
4428 | // vector type and the permutation map (to keep the type signature small). |
4429 | auto maskType = inferTransferOpMaskType(vectorType, permMap); |
4430 | if (parser.resolveOperand(maskInfo, maskType, result.operands)) |
4431 | return failure(); |
4432 | } |
4433 | result.addAttribute(TransferReadOp::getOperandSegmentSizeAttr(), |
4434 | builder.getDenseI32ArrayAttr( |
4435 | {1, static_cast<int32_t>(indexInfo.size()), 1, |
4436 | static_cast<int32_t>(hasMask.succeeded())})); |
4437 | return parser.addTypeToList(vectorType, result.types); |
4438 | } |
4439 | |
4440 | LogicalResult TransferReadOp::verify() { |
4441 | // Consistency of elemental types in source and vector. |
4442 | ShapedType shapedType = getShapedType(); |
4443 | VectorType vectorType = getVectorType(); |
4444 | VectorType maskType = getMaskType(); |
4445 | auto paddingType = getPadding().getType(); |
4446 | auto permutationMap = getPermutationMap(); |
4447 | VectorType inferredMaskType = |
4448 | maskType ? inferTransferOpMaskType(vectorType, permutationMap) |
4449 | : VectorType(); |
4450 | auto sourceElementType = shapedType.getElementType(); |
4451 | |
4452 | if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank()) |
4453 | return emitOpError("requires ") << shapedType.getRank() << " indices"; |
4454 | |
4455 | if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), |
4456 | shapedType, vectorType, maskType, |
4457 | inferredMaskType, permutationMap, getInBounds()))) |
4458 | return failure(); |
4459 | |
4460 | if (auto sourceVectorElementType = |
4461 | llvm::dyn_cast<VectorType>(sourceElementType)) { |
4462 | // Source has vector element type. |
4463 | // Check that 'sourceVectorElementType' and 'paddingType' types match. |
4464 | if (sourceVectorElementType != paddingType) |
4465 | return emitOpError( |
4466 | "requires source element type and padding type to match."); |
4467 | |
4468 | } else { |
4469 | // Check that 'paddingType' is valid to store in a vector type. |
4470 | if (!VectorType::isValidElementType(paddingType)) |
4471 | return emitOpError("requires valid padding vector elemental type"); |
4472 | |
4473 | // Check that padding type and vector element types match. |
4474 | if (paddingType != sourceElementType) |
4475 | return emitOpError( |
4476 | "requires formal padding and source of the same elemental type"); |
4477 | } |
4478 | |
4479 | return verifyPermutationMap(permutationMap, |
4480 | [&](Twine t) { return emitOpError(t); }); |
4481 | } |
4482 | |
4483 | // MaskableOpInterface methods. |
4484 | |
4485 | /// Returns the mask type expected by this operation. Mostly used for |
4486 | /// verification purposes. It requires the operation to be vectorized." |
4487 | Type TransferReadOp::getExpectedMaskType() { |
4488 | return inferTransferOpMaskType(getVectorType(), getPermutationMap()); |
4489 | } |
4490 | |
4491 | //===----------------------------------------------------------------------===// |
4492 | // TransferReadOp: VectorTransferOpInterface methods. |
4493 | //===----------------------------------------------------------------------===// |
4494 | VectorType TransferReadOp::getVectorType() { |
4495 | return cast<VectorType>(getVector().getType()); |
4496 | } |
4497 | |
4498 | template <typename TransferOp> |
4499 | static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { |
4500 | // TODO: support more aggressive createOrFold on: |
4501 | // op.getIndices()[indicesIdx] + vectorType < dim(op.getSource(), indicesIdx) |
4502 | if (op.getShapedType().isDynamicDim(indicesIdx)) |
4503 | return false; |
4504 | Value index = op.getIndices()[indicesIdx]; |
4505 | std::optional<int64_t> cstOp = getConstantIntValue(ofr: index); |
4506 | if (!cstOp.has_value()) |
4507 | return false; |
4508 | |
4509 | int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); |
4510 | int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); |
4511 | |
4512 | return cstOp.value() + vectorSize <= sourceSize; |
4513 | } |
4514 | |
4515 | template <typename TransferOp> |
4516 | static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { |
4517 | // TODO: support 0-d corner case. |
4518 | // TODO: Be less conservative. |
4519 | if (op.getTransferRank() == 0) |
4520 | return failure(); |
4521 | AffineMap permutationMap = op.getPermutationMap(); |
4522 | bool changed = false; |
4523 | SmallVector<bool, 4> newInBounds; |
4524 | newInBounds.reserve(N: op.getTransferRank()); |
4525 | // Idxs of non-bcast dims - used when analysing bcast dims. |
4526 | SmallVector<unsigned> nonBcastDims; |
4527 | |
4528 | // 1. Process non-broadcast dims |
4529 | for (unsigned i = 0; i < op.getTransferRank(); ++i) { |
4530 | // 1.1. Already marked as in-bounds, nothing to see here. |
4531 | if (op.isDimInBounds(i)) { |
4532 | newInBounds.push_back(Elt: true); |
4533 | continue; |
4534 | } |
4535 | // 1.2. Currently out-of-bounds, check whether we can statically determine |
4536 | // it is inBounds. |
4537 | bool inBounds = false; |
4538 | auto dimExpr = dyn_cast<AffineDimExpr>(Val: permutationMap.getResult(idx: i)); |
4539 | if (dimExpr) { |
4540 | inBounds = isInBounds(op, /*resultIdx=*/i, |
4541 | /*indicesIdx=*/dimExpr.getPosition()); |
4542 | nonBcastDims.push_back(Elt: i); |
4543 | } |
4544 | |
4545 | newInBounds.push_back(Elt: inBounds); |
4546 | // We commit the pattern if it is "more inbounds". |
4547 | changed |= inBounds; |
4548 | } |
4549 | |
4550 | // 2. Handle broadcast dims |
4551 | // If all non-broadcast dims are "in bounds", then all bcast dims should be |
4552 | // "in bounds" as well. |
4553 | bool allNonBcastDimsInBounds = llvm::all_of( |
4554 | nonBcastDims, [&newInBounds](unsigned idx) { return newInBounds[idx]; }); |
4555 | if (allNonBcastDimsInBounds) { |
4556 | for (size_t idx : permutationMap.getBroadcastDims()) { |
4557 | changed |= !newInBounds[idx]; |
4558 | newInBounds[idx] = true; |
4559 | } |
4560 | } |
4561 | |
4562 | if (!changed) |
4563 | return failure(); |
4564 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
4565 | OpBuilder b(op.getContext()); |
4566 | op.setInBoundsAttr(b.getBoolArrayAttr(newInBounds)); |
4567 | return success(); |
4568 | } |
4569 | |
4570 | template <typename TransferOp> |
4571 | static LogicalResult foldTransferFullMask(TransferOp op) { |
4572 | auto mask = op.getMask(); |
4573 | if (!mask) |
4574 | return failure(); |
4575 | |
4576 | if (getMaskFormat(mask) != MaskFormat::AllTrue) |
4577 | return failure(); |
4578 | |
4579 | op.getMaskMutable().clear(); |
4580 | return success(); |
4581 | } |
4582 | |
4583 | /// ``` |
4584 | /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} |
4585 | /// : vector<1x4xf32>, tensor<4x4xf32> |
4586 | /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} |
4587 | /// : tensor<4x4xf32>, vector<1x4xf32> |
4588 | /// ``` |
4589 | /// -> Folds into |
4590 | /// ``` |
4591 | /// %v0 |
4592 | /// ``` |
4593 | static Value foldRAW(TransferReadOp readOp) { |
4594 | if (!llvm::isa<RankedTensorType>(readOp.getShapedType())) |
4595 | return {}; |
4596 | auto defWrite = readOp.getBase().getDefiningOp<vector::TransferWriteOp>(); |
4597 | while (defWrite) { |
4598 | if (checkSameValueRAW(defWrite, readOp)) |
4599 | return defWrite.getVector(); |
4600 | if (!isDisjointTransferIndices( |
4601 | cast<VectorTransferOpInterface>(defWrite.getOperation()), |
4602 | cast<VectorTransferOpInterface>(readOp.getOperation()))) |
4603 | break; |
4604 | defWrite = defWrite.getBase().getDefiningOp<vector::TransferWriteOp>(); |
4605 | } |
4606 | return {}; |
4607 | } |
4608 | |
4609 | OpFoldResult TransferReadOp::fold(FoldAdaptor) { |
4610 | if (Value vec = foldRAW(*this)) |
4611 | return vec; |
4612 | /// transfer_read(memrefcast) -> transfer_read |
4613 | if (succeeded(foldTransferInBoundsAttribute(*this))) |
4614 | return getResult(); |
4615 | if (succeeded(foldTransferFullMask(*this))) |
4616 | return getResult(); |
4617 | if (succeeded(memref::foldMemRefCast(*this))) |
4618 | return getResult(); |
4619 | if (succeeded(tensor::foldTensorCast(*this))) |
4620 | return getResult(); |
4621 | return OpFoldResult(); |
4622 | } |
4623 | |
4624 | std::optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { |
4625 | return llvm::to_vector<4>(getVectorType().getShape()); |
4626 | } |
4627 | |
4628 | void TransferReadOp::getEffects( |
4629 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
4630 | &effects) { |
4631 | if (llvm::isa<MemRefType>(getShapedType())) |
4632 | effects.emplace_back(MemoryEffects::Read::get(), &getBaseMutable(), |
4633 | SideEffects::DefaultResource::get()); |
4634 | } |
4635 | |
4636 | Speculation::Speculatability TransferReadOp::getSpeculatability() { |
4637 | if (hasPureTensorSemantics()) |
4638 | return Speculation::Speculatable; |
4639 | return Speculation::NotSpeculatable; |
4640 | } |
4641 | |
4642 | namespace { |
4643 | /// Store to load forwarding for transfer operations with permuation maps. |
4644 | /// Even if the permutation maps are different we can still propagate the store |
4645 | /// into the load if the size of the dimensions read and written match. Then we |
4646 | /// can replace the transfer_read + transfer_write by vector.broadcast and |
4647 | /// vector.transpose. |
4648 | /// Example: |
4649 | /// ``` |
4650 | /// %w0 = vector.transfer_write %v0, %arg0[%c0, %c0, %c0] |
4651 | /// {in_bounds = [true, true], |
4652 | /// permutation_map = affine_map<(d0, d1, d2) -> (d2, d1)>} : |
4653 | /// vector<4x1xf32>, tensor<4x4x4xf32> |
4654 | /// %r = vector.transfer_read %w0[%c0, %c0, %c0], %cf0 |
4655 | /// {in_bounds = [true, true, true, true], |
4656 | /// permutation_map = affine_map<(d0, d1, d2) -> (d1, 0, d2, 0)>} : |
4657 | /// tensor<4x4x4xf32>, vector<1x100x4x5xf32> |
4658 | /// ``` |
4659 | /// To: |
4660 | /// ``` |
4661 | /// %0 = vector.broadcast %arg1 : vector<4x1xf32> to vector<100x5x4x1xf32> |
4662 | /// %r = vector.transpose %0, [3, 0, 2, 1] : |
4663 | /// vector<100x5x4x1xf32> to vector<1x100x4x5xf32> |
4664 | /// ``` |
4665 | struct TransferReadAfterWriteToBroadcast |
4666 | : public OpRewritePattern<TransferReadOp> { |
4667 | using OpRewritePattern::OpRewritePattern; |
4668 | |
4669 | LogicalResult matchAndRewrite(TransferReadOp readOp, |
4670 | PatternRewriter &rewriter) const override { |
4671 | if (readOp.hasOutOfBoundsDim() || |
4672 | !llvm::isa<RankedTensorType>(readOp.getShapedType())) |
4673 | return failure(); |
4674 | auto defWrite = readOp.getBase().getDefiningOp<vector::TransferWriteOp>(); |
4675 | if (!defWrite) |
4676 | return failure(); |
4677 | // TODO: If the written transfer chunk is a superset of the read transfer |
4678 | // chunk we could do an extract_strided_slice. |
4679 | if (readOp.getTransferChunkAccessed() != |
4680 | defWrite.getTransferChunkAccessed()) |
4681 | return failure(); |
4682 | // TODO: Support cases where a dim is explicitly written but implicitly |
4683 | // read (i.e., a unit dim that is rank reduced). |
4684 | if (getUnusedDimsBitVector({readOp.getPermutationMap()}) != |
4685 | getUnusedDimsBitVector({defWrite.getPermutationMap()})) |
4686 | return failure(); |
4687 | if (readOp.getIndices() != defWrite.getIndices() || |
4688 | readOp.getMask() != defWrite.getMask()) |
4689 | return failure(); |
4690 | Value vec = defWrite.getVector(); |
4691 | // TODO: loop through the chain of transfer_write if we can prove that they |
4692 | // don't overlap with the transfer_read. This requires improving |
4693 | // `isDisjointTransferIndices` helper. |
4694 | AffineMap readMap = compressUnusedDims(readOp.getPermutationMap()); |
4695 | AffineMap writeMap = compressUnusedDims(defWrite.getPermutationMap()); |
4696 | AffineMap map = readMap.compose(map: writeMap); |
4697 | if (map.getNumResults() == 0) |
4698 | return failure(); |
4699 | // Calculate the permutation to apply to go from the vector stored to the |
4700 | // vector read. |
4701 | SmallVector<unsigned> permutation; |
4702 | if (!map.isPermutationOfMinorIdentityWithBroadcasting(permutedDims&: permutation)) |
4703 | return failure(); |
4704 | |
4705 | Location loc = readOp.getLoc(); |
4706 | // Calculate the broadcast shape by applying the reverse permutation to the |
4707 | // final shape we want. |
4708 | ArrayRef<int64_t> destShape = readOp.getVectorType().getShape(); |
4709 | SmallVector<int64_t> broadcastShape(destShape.size()); |
4710 | SmallVector<bool> broadcastScalableFlags(destShape.size()); |
4711 | for (const auto &pos : llvm::enumerate(First&: permutation)) { |
4712 | broadcastShape[pos.value()] = destShape[pos.index()]; |
4713 | broadcastScalableFlags[pos.value()] = |
4714 | readOp.getVectorType().getScalableDims()[pos.index()]; |
4715 | } |
4716 | VectorType broadcastedType = VectorType::get( |
4717 | broadcastShape, defWrite.getVectorType().getElementType(), |
4718 | broadcastScalableFlags); |
4719 | vec = rewriter.create<vector::BroadcastOp>(loc, broadcastedType, vec); |
4720 | SmallVector<int64_t> transposePerm(permutation.begin(), permutation.end()); |
4721 | rewriter.replaceOpWithNewOp<vector::TransposeOp>(readOp, vec, |
4722 | transposePerm); |
4723 | return success(); |
4724 | } |
4725 | }; |
4726 | } // namespace |
4727 | |
4728 | void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, |
4729 | MLIRContext *context) { |
4730 | results.add<TransferReadAfterWriteToBroadcast>(context); |
4731 | } |
4732 | |
4733 | //===----------------------------------------------------------------------===// |
4734 | // TransferWriteOp |
4735 | //===----------------------------------------------------------------------===// |
4736 | |
4737 | /// 1. Builder with type inference. |
4738 | void TransferWriteOp::build(OpBuilder &builder, OperationState &result, |
4739 | Value vector, Value dest, ValueRange indices, |
4740 | AffineMapAttr permutationMapAttr, |
4741 | /*optional*/ Value mask, |
4742 | /*optional*/ ArrayAttr inBoundsAttr) { |
4743 | Type resultType = llvm::dyn_cast<RankedTensorType>(dest.getType()); |
4744 | build(builder, result, resultType, vector, dest, indices, permutationMapAttr, |
4745 | mask, inBoundsAttr); |
4746 | } |
4747 | |
4748 | /// 2. Builder with type inference that sets an empty mask (variant with attrs). |
4749 | void TransferWriteOp::build(OpBuilder &builder, OperationState &result, |
4750 | Value vector, Value dest, ValueRange indices, |
4751 | AffineMapAttr permutationMapAttr, |
4752 | /*optional*/ ArrayAttr inBoundsAttr) { |
4753 | build(builder, result, vector, dest, indices, permutationMapAttr, |
4754 | /*mask=*/Value(), inBoundsAttr); |
4755 | } |
4756 | |
4757 | /// 3. Builder with type inference that sets an empty mask (variant without |
4758 | /// attrs) |
4759 | void TransferWriteOp::build(OpBuilder &builder, OperationState &result, |
4760 | Value vector, Value dest, ValueRange indices, |
4761 | AffineMap permutationMap, |
4762 | std::optional<ArrayRef<bool>> inBounds) { |
4763 | auto permutationMapAttr = AffineMapAttr::get(permutationMap); |
4764 | auto inBoundsAttr = |
4765 | (inBounds && !inBounds.value().empty()) |
4766 | ? builder.getBoolArrayAttr(inBounds.value()) |
4767 | : builder.getBoolArrayAttr(SmallVector<bool>( |
4768 | llvm::cast<VectorType>(vector.getType()).getRank(), false)); |
4769 | build(builder, result, vector, dest, indices, permutationMapAttr, |
4770 | /*mask=*/Value(), inBoundsAttr); |
4771 | } |
4772 | |
4773 | /// 4. Builder with type inference that sets an empty mask and sets permutation |
4774 | /// map to 'getMinorIdentityMap'. |
4775 | void TransferWriteOp::build(OpBuilder &builder, OperationState &result, |
4776 | Value vector, Value dest, ValueRange indices, |
4777 | std::optional<ArrayRef<bool>> inBounds) { |
4778 | auto vectorType = llvm::cast<VectorType>(vector.getType()); |
4779 | AffineMap permutationMap = getTransferMinorIdentityMap( |
4780 | llvm::cast<ShapedType>(dest.getType()), vectorType); |
4781 | build(builder, result, vector, dest, indices, permutationMap, inBounds); |
4782 | } |
4783 | |
4784 | ParseResult TransferWriteOp::parse(OpAsmParser &parser, |
4785 | OperationState &result) { |
4786 | auto &builder = parser.getBuilder(); |
4787 | SMLoc typesLoc; |
4788 | OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; |
4789 | SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; |
4790 | SmallVector<Type, 2> types; |
4791 | OpAsmParser::UnresolvedOperand maskInfo; |
4792 | if (parser.parseOperand(vectorInfo) || parser.parseComma() || |
4793 | parser.parseOperand(sourceInfo) || |
4794 | parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) |
4795 | return failure(); |
4796 | ParseResult hasMask = parser.parseOptionalComma(); |
4797 | if (hasMask.succeeded() && parser.parseOperand(maskInfo)) |
4798 | return failure(); |
4799 | if (parser.parseOptionalAttrDict(result.attributes) || |
4800 | parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) |
4801 | return failure(); |
4802 | if (types.size() != 2) |
4803 | return parser.emitError(typesLoc, "requires two types"); |
4804 | auto indexType = builder.getIndexType(); |
4805 | VectorType vectorType = llvm::dyn_cast<VectorType>(types[0]); |
4806 | if (!vectorType) |
4807 | return parser.emitError(typesLoc, "requires vector type"); |
4808 | ShapedType shapedType = llvm::dyn_cast<ShapedType>(types[1]); |
4809 | if (!shapedType || !llvm::isa<MemRefType, RankedTensorType>(shapedType)) |
4810 | return parser.emitError(typesLoc, "requires memref or ranked tensor type"); |
4811 | auto permMapAttrName = |
4812 | TransferWriteOp::getPermutationMapAttrName(result.name); |
4813 | auto permMapAttr = result.attributes.get(permMapAttrName); |
4814 | AffineMap permMap; |
4815 | if (!permMapAttr) { |
4816 | if (shapedType.getRank() < |
4817 | getEffectiveVectorRankForXferOp(shapedType, vectorType)) |
4818 | return parser.emitError(typesLoc, |
4819 | "expected a custom permutation_map when " |
4820 | "rank(source) != rank(destination)"); |
4821 | permMap = getTransferMinorIdentityMap(shapedType, vectorType); |
4822 | result.attributes.set(permMapAttrName, AffineMapAttr::get(permMap)); |
4823 | } else { |
4824 | permMap = llvm::cast<AffineMapAttr>(permMapAttr).getValue(); |
4825 | } |
4826 | auto inBoundsAttrName = TransferWriteOp::getInBoundsAttrName(result.name); |
4827 | Attribute inBoundsAttr = result.attributes.get(inBoundsAttrName); |
4828 | if (!inBoundsAttr) { |
4829 | result.addAttribute(inBoundsAttrName, |
4830 | builder.getBoolArrayAttr( |
4831 | SmallVector<bool>(permMap.getNumResults(), false))); |
4832 | } |
4833 | if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || |
4834 | parser.resolveOperand(sourceInfo, shapedType, result.operands) || |
4835 | parser.resolveOperands(indexInfo, indexType, result.operands)) |
4836 | return failure(); |
4837 | if (hasMask.succeeded()) { |
4838 | if (llvm::dyn_cast<VectorType>(shapedType.getElementType())) |
4839 | return parser.emitError( |
4840 | maskInfo.location, "does not support masks with vector element type"); |
4841 | if (vectorType.getRank() != permMap.getNumResults()) { |
4842 | return parser.emitError(typesLoc, |
4843 | "expected the same rank for the vector and the " |
4844 | "results of the permutation map"); |
4845 | } |
4846 | auto maskType = inferTransferOpMaskType(vectorType, permMap); |
4847 | if (parser.resolveOperand(maskInfo, maskType, result.operands)) |
4848 | return failure(); |
4849 | } |
4850 | result.addAttribute(TransferWriteOp::getOperandSegmentSizeAttr(), |
4851 | builder.getDenseI32ArrayAttr( |
4852 | {1, 1, static_cast<int32_t>(indexInfo.size()), |
4853 | static_cast<int32_t>(hasMask.succeeded())})); |
4854 | return failure(llvm::isa<RankedTensorType>(shapedType) && |
4855 | parser.addTypeToList(shapedType, result.types)); |
4856 | } |
4857 | |
4858 | void TransferWriteOp::print(OpAsmPrinter &p) { |
4859 | p << " "<< getVector() << ", "<< getBase() << "["<< getIndices() << "]"; |
4860 | if (getMask()) |
4861 | p << ", "<< getMask(); |
4862 | printTransferAttrs(p, *this); |
4863 | p << " : "<< getVectorType() << ", "<< getShapedType(); |
4864 | } |
4865 | |
4866 | LogicalResult TransferWriteOp::verify() { |
4867 | // Consistency of elemental types in shape and vector. |
4868 | ShapedType shapedType = getShapedType(); |
4869 | VectorType vectorType = getVectorType(); |
4870 | VectorType maskType = getMaskType(); |
4871 | auto permutationMap = getPermutationMap(); |
4872 | VectorType inferredMaskType = |
4873 | maskType ? inferTransferOpMaskType(vectorType, permutationMap) |
4874 | : VectorType(); |
4875 | |
4876 | if (llvm::size(getIndices()) != shapedType.getRank()) |
4877 | return emitOpError("requires ") << shapedType.getRank() << " indices"; |
4878 | |
4879 | // We do not allow broadcast dimensions on TransferWriteOps for the moment, |
4880 | // as the semantics is unclear. This can be revisited later if necessary. |
4881 | if (hasBroadcastDim()) |
4882 | return emitOpError("should not have broadcast dimensions"); |
4883 | |
4884 | if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), |
4885 | shapedType, vectorType, maskType, |
4886 | inferredMaskType, permutationMap, getInBounds()))) |
4887 | return failure(); |
4888 | |
4889 | return verifyPermutationMap(permutationMap, |
4890 | [&](Twine t) { return emitOpError(t); }); |
4891 | } |
4892 | |
4893 | //===----------------------------------------------------------------------===// |
4894 | // TransferWriteOp: MaskableOpInterface methods. |
4895 | //===----------------------------------------------------------------------===// |
4896 | |
4897 | /// Returns the mask type expected by this operation. Mostly used for |
4898 | /// verification purposes. |
4899 | Type TransferWriteOp::getExpectedMaskType() { |
4900 | return inferTransferOpMaskType(getVectorType(), getPermutationMap()); |
4901 | } |
4902 | |
4903 | //===----------------------------------------------------------------------===// |
4904 | // TransferWriteOp: VectorTransferOpInterface methods. |
4905 | //===----------------------------------------------------------------------===// |
4906 | Value TransferWriteOp::getVector() { return getOperand(0); } |
4907 | VectorType TransferWriteOp::getVectorType() { |
4908 | return cast<VectorType>(getValueToStore().getType()); |
4909 | } |
4910 | |
4911 | //===----------------------------------------------------------------------===// |
4912 | // TransferWriteOp: fold methods. |
4913 | //===----------------------------------------------------------------------===// |
4914 | /// Fold: |
4915 | /// ``` |
4916 | /// %t1 = ... |
4917 | /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : |
4918 | /// tensor<static_sizesxf32>, vector<static_sizesxf32> |
4919 | /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : |
4920 | /// vector<static_sizesxf32>, tensor<static_sizesxf32> |
4921 | /// ``` |
4922 | /// |
4923 | /// into: |
4924 | /// |
4925 | /// ``` |
4926 | /// %t0 |
4927 | /// ``` |
4928 | /// |
4929 | /// The producer of t1 may or may not be DCE'd depending on whether it is a |
4930 | /// block argument or has side effects. |
4931 | static LogicalResult foldReadInitWrite(TransferWriteOp write, |
4932 | ArrayRef<Attribute>, |
4933 | SmallVectorImpl<OpFoldResult> &results) { |
4934 | // TODO: support 0-d corner case. |
4935 | if (write.getTransferRank() == 0) |
4936 | return failure(); |
4937 | auto rankedTensorType = |
4938 | llvm::dyn_cast<RankedTensorType>(write.getBase().getType()); |
4939 | // If not operating on tensors, bail. |
4940 | if (!rankedTensorType) |
4941 | return failure(); |
4942 | // If no read, bail. |
4943 | auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); |
4944 | if (!read) |
4945 | return failure(); |
4946 | // TODO: support 0-d corner case. |
4947 | if (read.getTransferRank() == 0) |
4948 | return failure(); |
4949 | // For now, only accept minor identity. Future: composition is minor identity. |
4950 | if (!read.getPermutationMap().isMinorIdentity() || |
4951 | !write.getPermutationMap().isMinorIdentity()) |
4952 | return failure(); |
4953 | // Bail on mismatching ranks. |
4954 | if (read.getTransferRank() != write.getTransferRank()) |
4955 | return failure(); |
4956 | // Bail on potential out-of-bounds accesses. |
4957 | if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) |
4958 | return failure(); |
4959 | // Tensor types must be the same. |
4960 | if (read.getBase().getType() != rankedTensorType) |
4961 | return failure(); |
4962 | // Vector types must be the same. |
4963 | if (read.getVectorType() != write.getVectorType()) |
4964 | return failure(); |
4965 | // Vector and Tensor shapes must match. |
4966 | if (read.getVectorType().getShape() != rankedTensorType.getShape()) |
4967 | return failure(); |
4968 | // If any index is nonzero. |
4969 | auto isNotConstantZero = [](Value v) { |
4970 | auto cstOp = getConstantIntValue(ofr: v); |
4971 | return !cstOp.has_value() || cstOp.value() != 0; |
4972 | }; |
4973 | if (llvm::any_of(read.getIndices(), isNotConstantZero) || |
4974 | llvm::any_of(write.getIndices(), isNotConstantZero)) |
4975 | return failure(); |
4976 | // Success. |
4977 | results.push_back(Elt: read.getBase()); |
4978 | return success(); |
4979 | } |
4980 | |
4981 | static bool checkSameValueWAR(vector::TransferReadOp read, |
4982 | vector::TransferWriteOp write) { |
4983 | return read.getBase() == write.getBase() && |
4984 | read.getIndices() == write.getIndices() && |
4985 | read.getPermutationMap() == write.getPermutationMap() && |
4986 | read.getVectorType() == write.getVectorType() && !read.getMask() && |
4987 | !write.getMask(); |
4988 | } |
4989 | /// Fold transfer_write write after read: |
4990 | /// ``` |
4991 | /// %t0 = ... |
4992 | /// %v = vector.transfer_read %t0[%c0...] : |
4993 | /// tensor<static_sizesxf32>, vector<static_sizesxf32> |
4994 | /// %t1 = vector.transfer_write %v, %t0[%c0...] : |
4995 | /// vector<static_sizesxf32>, tensor<static_sizesxf32> |
4996 | /// ``` |
4997 | /// |
4998 | /// into: |
4999 | /// |
5000 | /// ``` |
5001 | /// %t0 |
5002 | /// ``` |
5003 | static LogicalResult foldWAR(TransferWriteOp write, |
5004 | SmallVectorImpl<OpFoldResult> &results) { |
5005 | if (!llvm::isa<RankedTensorType>(write.getBase().getType())) |
5006 | return failure(); |
5007 | auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); |
5008 | if (!read) |
5009 | return failure(); |
5010 | |
5011 | if (!checkSameValueWAR(read, write)) |
5012 | return failure(); |
5013 | results.push_back(Elt: read.getBase()); |
5014 | return success(); |
5015 | } |
5016 | |
5017 | LogicalResult TransferWriteOp::fold(FoldAdaptor adaptor, |
5018 | SmallVectorImpl<OpFoldResult> &results) { |
5019 | if (succeeded(foldReadInitWrite(*this, adaptor.getOperands(), results))) |
5020 | return success(); |
5021 | if (succeeded(foldWAR(*this, results))) |
5022 | return success(); |
5023 | if (succeeded(foldTransferInBoundsAttribute(*this))) |
5024 | return success(); |
5025 | if (succeeded(foldTransferFullMask(*this))) |
5026 | return success(); |
5027 | return memref::foldMemRefCast(*this); |
5028 | } |
5029 | |
5030 | //===----------------------------------------------------------------------===// |
5031 | // TransferWriteOp: other methods. |
5032 | //===----------------------------------------------------------------------===// |
5033 | std::optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { |
5034 | return llvm::to_vector<4>(getVectorType().getShape()); |
5035 | } |
5036 | |
5037 | void TransferWriteOp::getEffects( |
5038 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
5039 | &effects) { |
5040 | if (llvm::isa<MemRefType>(getShapedType())) |
5041 | effects.emplace_back(MemoryEffects::Write::get(), &getBaseMutable(), |
5042 | SideEffects::DefaultResource::get()); |
5043 | } |
5044 | |
5045 | Speculation::Speculatability TransferWriteOp::getSpeculatability() { |
5046 | if (hasPureTensorSemantics()) |
5047 | return Speculation::Speculatable; |
5048 | return Speculation::NotSpeculatable; |
5049 | } |
5050 | |
5051 | namespace { |
5052 | /// Remove dead transfer write from the SSA chain so that it an be eliminated by |
5053 | /// DCE |
5054 | /// ``` |
5055 | /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} |
5056 | /// : vector<1x4xf32>, tensor<4x4xf32> |
5057 | /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} |
5058 | /// : vector<1x4xf32>, tensor<4x4xf32> |
5059 | /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} |
5060 | /// : vector<1x4xf32>, tensor<4x4xf32> |
5061 | /// ``` |
5062 | /// |
5063 | /// into: |
5064 | /// |
5065 | /// ``` |
5066 | /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} |
5067 | /// : vector<1x4xf32>, tensor<4x4xf32> |
5068 | /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} |
5069 | /// : vector<1x4xf32>, tensor<4x4xf32> |
5070 | /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} |
5071 | /// : vector<1x4xf32>, tensor<4x4xf32> |
5072 | /// ``` |
5073 | /// |
5074 | /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have |
5075 | /// any other uses. |
5076 | class FoldWaw final : public OpRewritePattern<TransferWriteOp> { |
5077 | public: |
5078 | using OpRewritePattern::OpRewritePattern; |
5079 | LogicalResult matchAndRewrite(TransferWriteOp writeOp, |
5080 | PatternRewriter &rewriter) const override { |
5081 | if (!llvm::isa<RankedTensorType>(writeOp.getShapedType())) |
5082 | return failure(); |
5083 | vector::TransferWriteOp writeToModify = writeOp; |
5084 | |
5085 | auto defWrite = writeOp.getBase().getDefiningOp<vector::TransferWriteOp>(); |
5086 | while (defWrite) { |
5087 | if (checkSameValueWAW(writeOp, defWrite)) { |
5088 | rewriter.modifyOpInPlace(writeToModify, [&]() { |
5089 | writeToModify.getBaseMutable().assign(defWrite.getBase()); |
5090 | }); |
5091 | return success(); |
5092 | } |
5093 | if (!isDisjointTransferIndices( |
5094 | cast<VectorTransferOpInterface>(defWrite.getOperation()), |
5095 | cast<VectorTransferOpInterface>(writeOp.getOperation()))) |
5096 | break; |
5097 | // If the previous write op doesn't have any other use we an safely look |
5098 | // at the previous store to see if it can be removed. |
5099 | if (!defWrite->hasOneUse()) |
5100 | break; |
5101 | writeToModify = defWrite; |
5102 | defWrite = defWrite.getBase().getDefiningOp<vector::TransferWriteOp>(); |
5103 | } |
5104 | return failure(); |
5105 | } |
5106 | }; |
5107 | |
5108 | /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to |
5109 | /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is |
5110 | /// overwritten and inserted into another tensor. After this rewrite, the |
5111 | /// operations bufferize in-place since all of them work on the same slice. |
5112 | /// |
5113 | /// For example: |
5114 | /// ```mlir |
5115 | /// %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0] |
5116 | /// : vector<8x16xf32>, tensor<8x16xf32> |
5117 | /// %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1] |
5118 | /// : tensor<8x16xf32> to tensor<?x?xf32> |
5119 | /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] |
5120 | /// : tensor<?x?xf32> into tensor<27x37xf32> |
5121 | /// ``` |
5122 | /// folds to |
5123 | /// ```mlir |
5124 | /// %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] |
5125 | /// : tensor<27x37xf32> to tensor<?x?xf32> |
5126 | /// %1 = vector.transfer_write %vec, %0[%c0, %c0] |
5127 | /// : vector<8x16xf32>, tensor<?x?xf32> |
5128 | /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] |
5129 | /// : tensor<?x?xf32> into tensor<27x37xf32> |
5130 | /// ``` |
5131 | struct SwapExtractSliceOfTransferWrite |
5132 | : public OpRewritePattern<tensor::InsertSliceOp> { |
5133 | public: |
5134 | using OpRewritePattern::OpRewritePattern; |
5135 | |
5136 | LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, |
5137 | PatternRewriter &rewriter) const override { |
5138 | if (!insertOp.hasUnitStride()) |
5139 | return failure(); |
5140 | auto extractOp = |
5141 | insertOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); |
5142 | if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse()) |
5143 | return failure(); |
5144 | auto transferOp = extractOp.getSource().getDefiningOp<TransferWriteOp>(); |
5145 | if (!transferOp || !transferOp->hasOneUse()) |
5146 | return failure(); |
5147 | |
5148 | // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is |
5149 | // rank-reducing. |
5150 | if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) { |
5151 | return rewriter.notifyMatchFailure(insertOp, |
5152 | "use-def chain is rank-reducing"); |
5153 | } |
5154 | |
5155 | // Fail if tensor::ExtractSliceOp has non-zero offset. |
5156 | if (!extractOp.hasZeroOffset()) { |
5157 | return rewriter.notifyMatchFailure(insertOp, |
5158 | "ExtractSliceOp has non-zero offset"); |
5159 | } |
5160 | |
5161 | // Fail if tensor::TransferWriteOp has non-zero offset. |
5162 | if (!llvm::all_of(transferOp.getIndices(), [](Value value) { |
5163 | return getConstantIntValue(ofr: value) == static_cast<int64_t>(0); |
5164 | })) { |
5165 | return rewriter.notifyMatchFailure(insertOp, |
5166 | "TranferWriteOp has non-zero offset"); |
5167 | } |
5168 | |
5169 | // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ. |
5170 | if (insertOp.getMixedSizes().size() != extractOp.getMixedSizes().size()) { |
5171 | return rewriter.notifyMatchFailure( |
5172 | insertOp, "InsertSliceOp and ExtractSliceOp ranks differ"); |
5173 | } |
5174 | |
5175 | for (auto [insertSize, extractSize] : |
5176 | llvm::zip_equal(insertOp.getMixedSizes(), extractOp.getMixedSizes())) { |
5177 | if (!isEqualConstantIntOrValue(insertSize, extractSize)) { |
5178 | return rewriter.notifyMatchFailure( |
5179 | insertOp, "InsertSliceOp and ExtractSliceOp sizes differ"); |
5180 | } |
5181 | } |
5182 | |
5183 | // Fail if the vector::TransferWriteOp may not overwrite the full tensor. |
5184 | assert(transferOp.getVectorType().hasStaticShape() && |
5185 | "expected vector to have a static shape"); |
5186 | ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape(); |
5187 | SmallVector<int64_t> resultShape = applyPermutationMap( |
5188 | transferOp.getPermutationMap(), transferOp.getShapedType().getShape()); |
5189 | if (transferOp.getMask() || !vectorShape.equals(RHS: resultShape)) { |
5190 | return rewriter.notifyMatchFailure( |
5191 | insertOp, "TransferWriteOp may not write the full tensor."); |
5192 | } |
5193 | |
5194 | // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp. |
5195 | // Set all in_bounds to false and let the folder infer them. |
5196 | SmallVector<bool> newInBounds(vectorShape.size(), false); |
5197 | auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>( |
5198 | extractOp.getLoc(), insertOp.getSourceType(), insertOp.getDest(), |
5199 | insertOp.getMixedOffsets(), insertOp.getMixedSizes(), |
5200 | insertOp.getMixedStrides()); |
5201 | auto newTransferWriteOp = rewriter.create<TransferWriteOp>( |
5202 | transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(), |
5203 | transferOp.getIndices(), transferOp.getPermutationMapAttr(), |
5204 | rewriter.getBoolArrayAttr(newInBounds)); |
5205 | rewriter.modifyOpInPlace(insertOp, [&]() { |
5206 | insertOp.getSourceMutable().assign(newTransferWriteOp.getResult()); |
5207 | }); |
5208 | return success(); |
5209 | } |
5210 | }; |
5211 | |
5212 | } // namespace |
5213 | |
5214 | void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, |
5215 | MLIRContext *context) { |
5216 | results.add<FoldWaw, SwapExtractSliceOfTransferWrite>(context); |
5217 | } |
5218 | |
5219 | //===----------------------------------------------------------------------===// |
5220 | // LoadOp |
5221 | //===----------------------------------------------------------------------===// |
5222 | |
5223 | static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, |
5224 | VectorType vecTy, |
5225 | MemRefType memRefTy) { |
5226 | // If rank==0 or size==1 it's equivalent to scalar load/store, so we don't |
5227 | // need any strides limitations. |
5228 | if (!vecTy.isScalable() && |
5229 | (vecTy.getRank() == 0 || vecTy.getNumElements() == 1)) |
5230 | return success(); |
5231 | |
5232 | if (!memRefTy.isLastDimUnitStride()) |
5233 | return op->emitOpError(message: "most minor memref dim must have unit stride"); |
5234 | return success(); |
5235 | } |
5236 | |
5237 | LogicalResult vector::LoadOp::verify() { |
5238 | VectorType resVecTy = getVectorType(); |
5239 | MemRefType memRefTy = getMemRefType(); |
5240 | |
5241 | if (failed(verifyLoadStoreMemRefLayout(*this, resVecTy, memRefTy))) |
5242 | return failure(); |
5243 | |
5244 | if (memRefTy.getRank() < resVecTy.getRank()) |
5245 | return emitOpError( |
5246 | "destination memref has lower rank than the result vector"); |
5247 | |
5248 | // Checks for vector memrefs. |
5249 | Type memElemTy = memRefTy.getElementType(); |
5250 | if (auto memVecTy = llvm::dyn_cast<VectorType>(memElemTy)) { |
5251 | if (memVecTy != resVecTy) |
5252 | return emitOpError("base memref and result vector types should match"); |
5253 | memElemTy = memVecTy.getElementType(); |
5254 | } |
5255 | |
5256 | if (resVecTy.getElementType() != memElemTy) |
5257 | return emitOpError("base and result element types should match"); |
5258 | if (llvm::size(getIndices()) != memRefTy.getRank()) |
5259 | return emitOpError("requires ") << memRefTy.getRank() << " indices"; |
5260 | return success(); |
5261 | } |
5262 | |
5263 | OpFoldResult LoadOp::fold(FoldAdaptor) { |
5264 | if (succeeded(memref::foldMemRefCast(*this))) |
5265 | return getResult(); |
5266 | return OpFoldResult(); |
5267 | } |
5268 | |
5269 | //===----------------------------------------------------------------------===// |
5270 | // StoreOp |
5271 | //===----------------------------------------------------------------------===// |
5272 | |
5273 | LogicalResult vector::StoreOp::verify() { |
5274 | VectorType valueVecTy = getVectorType(); |
5275 | MemRefType memRefTy = getMemRefType(); |
5276 | |
5277 | if (failed(verifyLoadStoreMemRefLayout(*this, valueVecTy, memRefTy))) |
5278 | return failure(); |
5279 | |
5280 | if (memRefTy.getRank() < valueVecTy.getRank()) |
5281 | return emitOpError("source memref has lower rank than the vector to store"); |
5282 | |
5283 | // Checks for vector memrefs. |
5284 | Type memElemTy = memRefTy.getElementType(); |
5285 | if (auto memVecTy = llvm::dyn_cast<VectorType>(memElemTy)) { |
5286 | if (memVecTy != valueVecTy) |
5287 | return emitOpError( |
5288 | "base memref and valueToStore vector types should match"); |
5289 | memElemTy = memVecTy.getElementType(); |
5290 | } |
5291 | |
5292 | if (valueVecTy.getElementType() != memElemTy) |
5293 | return emitOpError("base and valueToStore element type should match"); |
5294 | if (llvm::size(getIndices()) != memRefTy.getRank()) |
5295 | return emitOpError("requires ") << memRefTy.getRank() << " indices"; |
5296 | return success(); |
5297 | } |
5298 | |
5299 | LogicalResult StoreOp::fold(FoldAdaptor adaptor, |
5300 | SmallVectorImpl<OpFoldResult> &results) { |
5301 | return memref::foldMemRefCast(*this); |
5302 | } |
5303 | |
5304 | //===----------------------------------------------------------------------===// |
5305 | // MaskedLoadOp |
5306 | //===----------------------------------------------------------------------===// |
5307 | |
5308 | LogicalResult MaskedLoadOp::verify() { |
5309 | VectorType maskVType = getMaskVectorType(); |
5310 | VectorType passVType = getPassThruVectorType(); |
5311 | VectorType resVType = getVectorType(); |
5312 | MemRefType memType = getMemRefType(); |
5313 | |
5314 | if (resVType.getElementType() != memType.getElementType()) |
5315 | return emitOpError("base and result element type should match"); |
5316 | if (llvm::size(getIndices()) != memType.getRank()) |
5317 | return emitOpError("requires ") << memType.getRank() << " indices"; |
5318 | if (resVType.getShape() != maskVType.getShape()) |
5319 | return emitOpError("expected result shape to match mask shape"); |
5320 | if (resVType != passVType) |
5321 | return emitOpError("expected pass_thru of same type as result type"); |
5322 | return success(); |
5323 | } |
5324 | |
5325 | namespace { |
5326 | class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { |
5327 | public: |
5328 | using OpRewritePattern::OpRewritePattern; |
5329 | LogicalResult matchAndRewrite(MaskedLoadOp load, |
5330 | PatternRewriter &rewriter) const override { |
5331 | switch (getMaskFormat(load.getMask())) { |
5332 | case MaskFormat::AllTrue: |
5333 | rewriter.replaceOpWithNewOp<vector::LoadOp>( |
5334 | load, load.getType(), load.getBase(), load.getIndices()); |
5335 | return success(); |
5336 | case MaskFormat::AllFalse: |
5337 | rewriter.replaceOp(load, load.getPassThru()); |
5338 | return success(); |
5339 | case MaskFormat::Unknown: |
5340 | return failure(); |
5341 | } |
5342 | llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); |
5343 | } |
5344 | }; |
5345 | } // namespace |
5346 | |
5347 | void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, |
5348 | MLIRContext *context) { |
5349 | results.add<MaskedLoadFolder>(context); |
5350 | } |
5351 | |
5352 | OpFoldResult MaskedLoadOp::fold(FoldAdaptor) { |
5353 | if (succeeded(memref::foldMemRefCast(*this))) |
5354 | return getResult(); |
5355 | return OpFoldResult(); |
5356 | } |
5357 | |
5358 | //===----------------------------------------------------------------------===// |
5359 | // MaskedStoreOp |
5360 | //===----------------------------------------------------------------------===// |
5361 | |
5362 | LogicalResult MaskedStoreOp::verify() { |
5363 | VectorType maskVType = getMaskVectorType(); |
5364 | VectorType valueVType = getVectorType(); |
5365 | MemRefType memType = getMemRefType(); |
5366 | |
5367 | if (valueVType.getElementType() != memType.getElementType()) |
5368 | return emitOpError("base and valueToStore element type should match"); |
5369 | if (llvm::size(getIndices()) != memType.getRank()) |
5370 | return emitOpError("requires ") << memType.getRank() << " indices"; |
5371 | if (valueVType.getShape() != maskVType.getShape()) |
5372 | return emitOpError("expected valueToStore shape to match mask shape"); |
5373 | return success(); |
5374 | } |
5375 | |
5376 | namespace { |
5377 | class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { |
5378 | public: |
5379 | using OpRewritePattern::OpRewritePattern; |
5380 | LogicalResult matchAndRewrite(MaskedStoreOp store, |
5381 | PatternRewriter &rewriter) const override { |
5382 | switch (getMaskFormat(store.getMask())) { |
5383 | case MaskFormat::AllTrue: |
5384 | rewriter.replaceOpWithNewOp<vector::StoreOp>( |
5385 | store, store.getValueToStore(), store.getBase(), store.getIndices()); |
5386 | return success(); |
5387 | case MaskFormat::AllFalse: |
5388 | rewriter.eraseOp(op: store); |
5389 | return success(); |
5390 | case MaskFormat::Unknown: |
5391 | return failure(); |
5392 | } |
5393 | llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); |
5394 | } |
5395 | }; |
5396 | } // namespace |
5397 | |
5398 | void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, |
5399 | MLIRContext *context) { |
5400 | results.add<MaskedStoreFolder>(context); |
5401 | } |
5402 | |
5403 | LogicalResult MaskedStoreOp::fold(FoldAdaptor adaptor, |
5404 | SmallVectorImpl<OpFoldResult> &results) { |
5405 | return memref::foldMemRefCast(*this); |
5406 | } |
5407 | |
5408 | //===----------------------------------------------------------------------===// |
5409 | // GatherOp |
5410 | //===----------------------------------------------------------------------===// |
5411 | |
5412 | LogicalResult GatherOp::verify() { |
5413 | VectorType indVType = getIndexVectorType(); |
5414 | VectorType maskVType = getMaskVectorType(); |
5415 | VectorType resVType = getVectorType(); |
5416 | ShapedType baseType = getBaseType(); |
5417 | |
5418 | if (!llvm::isa<MemRefType, RankedTensorType>(baseType)) |
5419 | return emitOpError("requires base to be a memref or ranked tensor type"); |
5420 | |
5421 | if (resVType.getElementType() != baseType.getElementType()) |
5422 | return emitOpError("base and result element type should match"); |
5423 | if (llvm::size(getIndices()) != baseType.getRank()) |
5424 | return emitOpError("requires ") << baseType.getRank() << " indices"; |
5425 | if (resVType.getShape() != indVType.getShape()) |
5426 | return emitOpError("expected result dim to match indices dim"); |
5427 | if (resVType.getShape() != maskVType.getShape()) |
5428 | return emitOpError("expected result dim to match mask dim"); |
5429 | if (resVType != getPassThruVectorType()) |
5430 | return emitOpError("expected pass_thru of same type as result type"); |
5431 | return success(); |
5432 | } |
5433 | |
5434 | // MaskableOpInterface methods. |
5435 | |
5436 | /// Returns the mask type expected by this operation. Mostly used for |
5437 | /// verification purposes. It requires the operation to be vectorized." |
5438 | Type GatherOp::getExpectedMaskType() { |
5439 | auto vecType = this->getIndexVectorType(); |
5440 | return VectorType::get(vecType.getShape(), |
5441 | IntegerType::get(vecType.getContext(), /*width=*/1), |
5442 | vecType.getScalableDims()); |
5443 | } |
5444 | |
5445 | std::optional<SmallVector<int64_t, 4>> GatherOp::getShapeForUnroll() { |
5446 | return llvm::to_vector<4>(getVectorType().getShape()); |
5447 | } |
5448 | |
5449 | /// Cheeck if `indexVec` is constant 1D vec of consecutive values [0, 1, 2, ...] |
5450 | static LogicalResult isZeroBasedContiguousSeq(Value indexVec) { |
5451 | auto vecType = dyn_cast<VectorType>(indexVec.getType()); |
5452 | if (!vecType || vecType.getRank() != 1 || vecType.isScalable()) |
5453 | return failure(); |
5454 | |
5455 | if (indexVec.getDefiningOp<StepOp>()) |
5456 | return success(); |
5457 | |
5458 | DenseIntElementsAttr elements; |
5459 | if (!matchPattern(value: indexVec, pattern: m_Constant(bind_value: &elements))) |
5460 | return failure(); |
5461 | |
5462 | return success( |
5463 | llvm::equal(elements, llvm::seq<int64_t>(0, vecType.getNumElements()))); |
5464 | } |
5465 | |
5466 | namespace { |
5467 | class GatherFolder final : public OpRewritePattern<GatherOp> { |
5468 | public: |
5469 | using OpRewritePattern::OpRewritePattern; |
5470 | LogicalResult matchAndRewrite(GatherOp gather, |
5471 | PatternRewriter &rewriter) const override { |
5472 | switch (getMaskFormat(gather.getMask())) { |
5473 | case MaskFormat::AllTrue: |
5474 | return failure(); // no unmasked equivalent |
5475 | case MaskFormat::AllFalse: |
5476 | rewriter.replaceOp(gather, gather.getPassThru()); |
5477 | return success(); |
5478 | case MaskFormat::Unknown: |
5479 | return failure(); |
5480 | } |
5481 | llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); |
5482 | } |
5483 | }; |
5484 | |
5485 | /// Fold gathers with consecutive offsets [0, 1, 2, ...] into contiguous |
5486 | /// maskedload. Only 1D fixed vectors are supported for now. |
5487 | class FoldContiguousGather final : public OpRewritePattern<GatherOp> { |
5488 | public: |
5489 | using OpRewritePattern::OpRewritePattern; |
5490 | LogicalResult matchAndRewrite(GatherOp op, |
5491 | PatternRewriter &rewriter) const override { |
5492 | if (!isa<MemRefType>(op.getBase().getType())) |
5493 | return rewriter.notifyMatchFailure(op, "base must be of memref type"); |
5494 | |
5495 | if (failed(isZeroBasedContiguousSeq(op.getIndexVec()))) |
5496 | return failure(); |
5497 | |
5498 | rewriter.replaceOpWithNewOp<MaskedLoadOp>(op, op.getType(), op.getBase(), |
5499 | op.getIndices(), op.getMask(), |
5500 | op.getPassThru()); |
5501 | return success(); |
5502 | } |
5503 | }; |
5504 | } // namespace |
5505 | |
5506 | void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, |
5507 | MLIRContext *context) { |
5508 | results.add<GatherFolder, FoldContiguousGather>(context); |
5509 | } |
5510 | |
5511 | //===----------------------------------------------------------------------===// |
5512 | // ScatterOp |
5513 | //===----------------------------------------------------------------------===// |
5514 | |
5515 | LogicalResult ScatterOp::verify() { |
5516 | VectorType indVType = getIndexVectorType(); |
5517 | VectorType maskVType = getMaskVectorType(); |
5518 | VectorType valueVType = getVectorType(); |
5519 | MemRefType memType = getMemRefType(); |
5520 | |
5521 | if (valueVType.getElementType() != memType.getElementType()) |
5522 | return emitOpError("base and valueToStore element type should match"); |
5523 | if (llvm::size(getIndices()) != memType.getRank()) |
5524 | return emitOpError("requires ") << memType.getRank() << " indices"; |
5525 | if (valueVType.getShape() != indVType.getShape()) |
5526 | return emitOpError("expected valueToStore dim to match indices dim"); |
5527 | if (valueVType.getShape() != maskVType.getShape()) |
5528 | return emitOpError("expected valueToStore dim to match mask dim"); |
5529 | return success(); |
5530 | } |
5531 | |
5532 | namespace { |
5533 | class ScatterFolder final : public OpRewritePattern<ScatterOp> { |
5534 | public: |
5535 | using OpRewritePattern::OpRewritePattern; |
5536 | LogicalResult matchAndRewrite(ScatterOp scatter, |
5537 | PatternRewriter &rewriter) const override { |
5538 | switch (getMaskFormat(scatter.getMask())) { |
5539 | case MaskFormat::AllTrue: |
5540 | return failure(); // no unmasked equivalent |
5541 | case MaskFormat::AllFalse: |
5542 | rewriter.eraseOp(op: scatter); |
5543 | return success(); |
5544 | case MaskFormat::Unknown: |
5545 | return failure(); |
5546 | } |
5547 | llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); |
5548 | } |
5549 | }; |
5550 | |
5551 | /// Fold scatters with consecutive offsets [0, 1, 2, ...] into contiguous |
5552 | /// maskedstore. Only 1D fixed vectors are supported for now. |
5553 | class FoldContiguousScatter final : public OpRewritePattern<ScatterOp> { |
5554 | public: |
5555 | using OpRewritePattern::OpRewritePattern; |
5556 | LogicalResult matchAndRewrite(ScatterOp op, |
5557 | PatternRewriter &rewriter) const override { |
5558 | if (failed(isZeroBasedContiguousSeq(op.getIndexVec()))) |
5559 | return failure(); |
5560 | |
5561 | rewriter.replaceOpWithNewOp<MaskedStoreOp>( |
5562 | op, op.getBase(), op.getIndices(), op.getMask(), op.getValueToStore()); |
5563 | return success(); |
5564 | } |
5565 | }; |
5566 | } // namespace |
5567 | |
5568 | void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, |
5569 | MLIRContext *context) { |
5570 | results.add<ScatterFolder, FoldContiguousScatter>(context); |
5571 | } |
5572 | |
5573 | //===----------------------------------------------------------------------===// |
5574 | // ExpandLoadOp |
5575 | //===----------------------------------------------------------------------===// |
5576 | |
5577 | LogicalResult ExpandLoadOp::verify() { |
5578 | VectorType maskVType = getMaskVectorType(); |
5579 | VectorType passVType = getPassThruVectorType(); |
5580 | VectorType resVType = getVectorType(); |
5581 | MemRefType memType = getMemRefType(); |
5582 | |
5583 | if (resVType.getElementType() != memType.getElementType()) |
5584 | return emitOpError("base and result element type should match"); |
5585 | if (llvm::size(getIndices()) != memType.getRank()) |
5586 | return emitOpError("requires ") << memType.getRank() << " indices"; |
5587 | if (resVType.getDimSize(0) != maskVType.getDimSize(0)) |
5588 | return emitOpError("expected result dim to match mask dim"); |
5589 | if (resVType != passVType) |
5590 | return emitOpError("expected pass_thru of same type as result type"); |
5591 | return success(); |
5592 | } |
5593 | |
5594 | namespace { |
5595 | class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { |
5596 | public: |
5597 | using OpRewritePattern::OpRewritePattern; |
5598 | LogicalResult matchAndRewrite(ExpandLoadOp expand, |
5599 | PatternRewriter &rewriter) const override { |
5600 | switch (getMaskFormat(expand.getMask())) { |
5601 | case MaskFormat::AllTrue: |
5602 | rewriter.replaceOpWithNewOp<vector::LoadOp>( |
5603 | expand, expand.getType(), expand.getBase(), expand.getIndices()); |
5604 | return success(); |
5605 | case MaskFormat::AllFalse: |
5606 | rewriter.replaceOp(expand, expand.getPassThru()); |
5607 | return success(); |
5608 | case MaskFormat::Unknown: |
5609 | return failure(); |
5610 | } |
5611 | llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); |
5612 | } |
5613 | }; |
5614 | } // namespace |
5615 | |
5616 | void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, |
5617 | MLIRContext *context) { |
5618 | results.add<ExpandLoadFolder>(context); |
5619 | } |
5620 | |
5621 | //===----------------------------------------------------------------------===// |
5622 | // CompressStoreOp |
5623 | //===----------------------------------------------------------------------===// |
5624 | |
5625 | LogicalResult CompressStoreOp::verify() { |
5626 | VectorType maskVType = getMaskVectorType(); |
5627 | VectorType valueVType = getVectorType(); |
5628 | MemRefType memType = getMemRefType(); |
5629 | |
5630 | if (valueVType.getElementType() != memType.getElementType()) |
5631 | return emitOpError("base and valueToStore element type should match"); |
5632 | if (llvm::size(getIndices()) != memType.getRank()) |
5633 | return emitOpError("requires ") << memType.getRank() << " indices"; |
5634 | if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) |
5635 | return emitOpError("expected valueToStore dim to match mask dim"); |
5636 | return success(); |
5637 | } |
5638 | |
5639 | namespace { |
5640 | class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { |
5641 | public: |
5642 | using OpRewritePattern::OpRewritePattern; |
5643 | LogicalResult matchAndRewrite(CompressStoreOp compress, |
5644 | PatternRewriter &rewriter) const override { |
5645 | switch (getMaskFormat(compress.getMask())) { |
5646 | case MaskFormat::AllTrue: |
5647 | rewriter.replaceOpWithNewOp<vector::StoreOp>( |
5648 | compress, compress.getValueToStore(), compress.getBase(), |
5649 | compress.getIndices()); |
5650 | return success(); |
5651 | case MaskFormat::AllFalse: |
5652 | rewriter.eraseOp(op: compress); |
5653 | return success(); |
5654 | case MaskFormat::Unknown: |
5655 | return failure(); |
5656 | } |
5657 | llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); |
5658 | } |
5659 | }; |
5660 | } // namespace |
5661 | |
5662 | void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, |
5663 | MLIRContext *context) { |
5664 | results.add<CompressStoreFolder>(context); |
5665 | } |
5666 | |
5667 | //===----------------------------------------------------------------------===// |
5668 | // ShapeCastOp |
5669 | //===----------------------------------------------------------------------===// |
5670 | |
5671 | void ShapeCastOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges, |
5672 | SetIntRangeFn setResultRanges) { |
5673 | setResultRanges(getResult(), argRanges.front()); |
5674 | } |
5675 | |
5676 | LogicalResult ShapeCastOp::verify() { |
5677 | |
5678 | VectorType sourceType = getSourceVectorType(); |
5679 | VectorType resultType = getResultVectorType(); |
5680 | |
5681 | // Check that element type is preserved |
5682 | if (sourceType.getElementType() != resultType.getElementType()) |
5683 | return emitOpError("has different source and result element types"); |
5684 | |
5685 | // Check that number of elements is preserved |
5686 | int64_t sourceNElms = sourceType.getNumElements(); |
5687 | int64_t resultNElms = resultType.getNumElements(); |
5688 | if (sourceNElms != resultNElms) { |
5689 | return emitOpError() << "has different number of elements at source (" |
5690 | << sourceNElms << ") and result ("<< resultNElms |
5691 | << ")"; |
5692 | } |
5693 | |
5694 | // Check that (non-)scalability is preserved |
5695 | int64_t sourceNScalableDims = sourceType.getNumScalableDims(); |
5696 | int64_t resultNScalableDims = resultType.getNumScalableDims(); |
5697 | if (sourceNScalableDims != resultNScalableDims) |
5698 | return emitOpError() << "has different number of scalable dims at source (" |
5699 | << sourceNScalableDims << ") and result (" |
5700 | << resultNScalableDims << ")"; |
5701 | |
5702 | return success(); |
5703 | } |
5704 | |
5705 | /// Return true if `transpose` does not permute a pair of non-unit dims. |
5706 | /// By `order preserving` we mean that the flattened versions of the input and |
5707 | /// output vectors are (numerically) identical. In other words `transpose` is |
5708 | /// effectively a shape cast. |
5709 | static bool isOrderPreserving(TransposeOp transpose) { |
5710 | ArrayRef<int64_t> permutation = transpose.getPermutation(); |
5711 | VectorType sourceType = transpose.getSourceVectorType(); |
5712 | ArrayRef<int64_t> inShape = sourceType.getShape(); |
5713 | ArrayRef<bool> inDimIsScalable = sourceType.getScalableDims(); |
5714 | auto isNonScalableUnitDim = [&](int64_t dim) { |
5715 | return inShape[dim] == 1 && !inDimIsScalable[dim]; |
5716 | }; |
5717 | int64_t current = 0; |
5718 | for (auto p : permutation) { |
5719 | if (!isNonScalableUnitDim(p)) { |
5720 | if (p < current) { |
5721 | return false; |
5722 | } |
5723 | current = p; |
5724 | } |
5725 | } |
5726 | return true; |
5727 | } |
5728 | |
5729 | OpFoldResult ShapeCastOp::fold(FoldAdaptor adaptor) { |
5730 | |
5731 | VectorType resultType = getType(); |
5732 | |
5733 | // No-op shape cast. |
5734 | if (getSource().getType() == resultType) |
5735 | return getSource(); |
5736 | |
5737 | // shape_cast(shape_cast(x)) -> shape_cast(x) |
5738 | if (auto precedingShapeCast = getSource().getDefiningOp<ShapeCastOp>()) { |
5739 | setOperand(precedingShapeCast.getSource()); |
5740 | return getResult(); |
5741 | } |
5742 | |
5743 | // shape_cast(transpose(x)) -> shape_cast(x) |
5744 | if (auto transpose = getSource().getDefiningOp<TransposeOp>()) { |
5745 | // This folder does |
5746 | // shape_cast(transpose) -> shape_cast |
5747 | // But another pattern, ConvertIllegalShapeCastOpsToTransposes, does |
5748 | // shape_cast -> shape_cast(transpose) |
5749 | // i.e. the complete opposite. When paired, these 2 patterns can cause |
5750 | // infinite cycles in pattern rewriting. |
5751 | // ConvertIllegalShapeCastOpsToTransposes only matches on scalable |
5752 | // vectors, so by disabling this folder for scalable vectors the |
5753 | // cycle is avoided. |
5754 | // TODO: Check if ConvertIllegalShapeCastOpsToTransposes is |
5755 | // still needed. If it's not, then we can fold here. |
5756 | if (!transpose.getType().isScalable() && isOrderPreserving(transpose)) { |
5757 | setOperand(transpose.getVector()); |
5758 | return getResult(); |
5759 | } |
5760 | return {}; |
5761 | } |
5762 | |
5763 | // Y = shape_cast(broadcast(X)) |
5764 | // -> X, if X and Y have same type |
5765 | if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) { |
5766 | if (bcastOp.getSourceType() == resultType) |
5767 | return bcastOp.getSource(); |
5768 | } |
5769 | |
5770 | // shape_cast(constant) -> constant |
5771 | if (auto splatAttr = |
5772 | llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getSource())) |
5773 | return splatAttr.reshape(getType()); |
5774 | |
5775 | // shape_cast(poison) -> poison |
5776 | if (llvm::dyn_cast_if_present<ub::PoisonAttr>(adaptor.getSource())) { |
5777 | return ub::PoisonAttr::get(getContext()); |
5778 | } |
5779 | |
5780 | return {}; |
5781 | } |
5782 | |
5783 | namespace { |
5784 | |
5785 | /// Helper function that computes a new vector type based on the input vector |
5786 | /// type by removing the trailing one dims: |
5787 | /// |
5788 | /// vector<4x1x1xi1> --> vector<4x1xi1> |
5789 | /// |
5790 | static VectorType trimTrailingOneDims(VectorType oldType) { |
5791 | ArrayRef<int64_t> oldShape = oldType.getShape(); |
5792 | ArrayRef<int64_t> newShape = oldShape; |
5793 | |
5794 | ArrayRef<bool> oldScalableDims = oldType.getScalableDims(); |
5795 | ArrayRef<bool> newScalableDims = oldScalableDims; |
5796 | |
5797 | while (!newShape.empty() && newShape.back() == 1 && !newScalableDims.back()) { |
5798 | newShape = newShape.drop_back(N: 1); |
5799 | newScalableDims = newScalableDims.drop_back(N: 1); |
5800 | } |
5801 | |
5802 | // Make sure we have at least 1 dimension. |
5803 | // TODO: Add support for 0-D vectors. |
5804 | if (newShape.empty()) { |
5805 | newShape = oldShape.take_back(); |
5806 | newScalableDims = oldScalableDims.take_back(); |
5807 | } |
5808 | |
5809 | return VectorType::get(newShape, oldType.getElementType(), newScalableDims); |
5810 | } |
5811 | |
5812 | /// Folds qualifying shape_cast(create_mask) into a new create_mask |
5813 | /// |
5814 | /// Looks at `vector.shape_cast` Ops that simply "drop" the trailing unit |
5815 | /// dimension. If the input vector comes from `vector.create_mask` for which |
5816 | /// the corresponding mask input value is 1 (e.g. `%c1` below), then it is safe |
5817 | /// to fold shape_cast into create_mask. |
5818 | /// |
5819 | /// BEFORE: |
5820 | /// %1 = vector.create_mask %c1, %dim, %c1, %c1 : vector<1x[4]x1x1xi1> |
5821 | /// %2 = vector.shape_cast %1 : vector<1x[4]x1x1xi1> to vector<1x[4]xi1> |
5822 | /// AFTER: |
5823 | /// %0 = vector.create_mask %c1, %dim : vector<1x[4]xi1> |
5824 | class ShapeCastCreateMaskFolderTrailingOneDim final |
5825 | : public OpRewritePattern<ShapeCastOp> { |
5826 | public: |
5827 | using OpRewritePattern::OpRewritePattern; |
5828 | |
5829 | LogicalResult matchAndRewrite(ShapeCastOp shapeOp, |
5830 | PatternRewriter &rewriter) const override { |
5831 | Value shapeOpSrc = shapeOp->getOperand(0); |
5832 | auto createMaskOp = shapeOpSrc.getDefiningOp<vector::CreateMaskOp>(); |
5833 | auto constantMaskOp = shapeOpSrc.getDefiningOp<vector::ConstantMaskOp>(); |
5834 | if (!createMaskOp && !constantMaskOp) |
5835 | return failure(); |
5836 | |
5837 | VectorType shapeOpResTy = shapeOp.getResultVectorType(); |
5838 | VectorType shapeOpSrcTy = shapeOp.getSourceVectorType(); |
5839 | |
5840 | VectorType newVecType = trimTrailingOneDims(shapeOpSrcTy); |
5841 | if (newVecType != shapeOpResTy) |
5842 | return failure(); |
5843 | |
5844 | auto numDimsToDrop = |
5845 | shapeOpSrcTy.getShape().size() - shapeOpResTy.getShape().size(); |
5846 | |
5847 | // No unit dims to drop |
5848 | if (!numDimsToDrop) |
5849 | return failure(); |
5850 | |
5851 | if (createMaskOp) { |
5852 | auto maskOperands = createMaskOp.getOperands(); |
5853 | auto numMaskOperands = maskOperands.size(); |
5854 | |
5855 | // Check every mask dim size to see whether it can be dropped |
5856 | for (size_t i = numMaskOperands - 1; i >= numMaskOperands - numDimsToDrop; |
5857 | --i) { |
5858 | auto constant = maskOperands[i].getDefiningOp<arith::ConstantIndexOp>(); |
5859 | if (!constant || (constant.value() != 1)) |
5860 | return failure(); |
5861 | } |
5862 | SmallVector<Value> newMaskOperands = |
5863 | maskOperands.drop_back(numDimsToDrop); |
5864 | |
5865 | rewriter.replaceOpWithNewOp<vector::CreateMaskOp>(shapeOp, shapeOpResTy, |
5866 | newMaskOperands); |
5867 | return success(); |
5868 | } |
5869 | |
5870 | if (constantMaskOp) { |
5871 | auto maskDimSizes = constantMaskOp.getMaskDimSizes(); |
5872 | auto numMaskOperands = maskDimSizes.size(); |
5873 | |
5874 | // Check every mask dim size to see whether it can be dropped |
5875 | for (size_t i = numMaskOperands - 1; i >= numMaskOperands - numDimsToDrop; |
5876 | --i) { |
5877 | if (maskDimSizes[i] != 1) |
5878 | return failure(); |
5879 | } |
5880 | |
5881 | auto newMaskOperands = maskDimSizes.drop_back(numDimsToDrop); |
5882 | rewriter.replaceOpWithNewOp<vector::ConstantMaskOp>(shapeOp, shapeOpResTy, |
5883 | newMaskOperands); |
5884 | return success(); |
5885 | } |
5886 | |
5887 | return failure(); |
5888 | } |
5889 | }; |
5890 | |
5891 | /// Pattern to rewrite Y = ShapeCast(Broadcast(X)) as either |
5892 | /// i) Y = ShapeCast(X), or |
5893 | /// ii) Y = Broadcast(X) |
5894 | /// If both (i) and (ii) are possible, (i) is chosen. |
5895 | class ShapeCastBroadcastFolder final : public OpRewritePattern<ShapeCastOp> { |
5896 | public: |
5897 | using OpRewritePattern::OpRewritePattern; |
5898 | |
5899 | LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, |
5900 | PatternRewriter &rewriter) const override { |
5901 | auto broadcastOp = |
5902 | shapeCastOp.getSource().getDefiningOp<vector::BroadcastOp>(); |
5903 | if (!broadcastOp) |
5904 | return failure(); |
5905 | |
5906 | auto srcVectorType = dyn_cast<VectorType>(broadcastOp.getSourceType()); |
5907 | bool srcIsScalar = !srcVectorType; |
5908 | |
5909 | // Replace Y = ShapeCast(Broadcast(X)) with Y = ShapeCast(X). |
5910 | // Example: |
5911 | // %0 = vector.broadcast %in : vector<3x4xf32> to vector<1x3x4xf32> |
5912 | // %1 = vector.shape_cast %0 : vector<1x3x4xf32> to vector<12xf32> |
5913 | // to |
5914 | // %1 = vector.shape_cast %in : vector<3x4xf32> to vector<12xf32> |
5915 | if (srcVectorType) { |
5916 | if (srcVectorType.getNumElements() == |
5917 | shapeCastOp.getResultVectorType().getNumElements()) { |
5918 | rewriter.replaceOpWithNewOp<vector::ShapeCastOp>( |
5919 | shapeCastOp, shapeCastOp.getResultVectorType(), |
5920 | broadcastOp.getSource()); |
5921 | return success(); |
5922 | } |
5923 | } |
5924 | |
5925 | // Replace Y = ShapeCast(Broadcast(X)) with Y = Broadcast(X) |
5926 | // Example |
5927 | // %0 = vector.broadcast %in : vector<3xf32> to vector<2x4x3xf32> |
5928 | // %1 = vector.shape_cast %0 : vector<2x4x3xf32> to vector<8x3xf32> |
5929 | // to |
5930 | // %1 = vector.broadcast %in : vector<3xf32> to vector<8x3xf32> |
5931 | VectorType dstVectorType = shapeCastOp.getResultVectorType(); |
5932 | if (srcIsScalar || isBroadcastableTo(srcVectorType, dstVectorType) == |
5933 | BroadcastableToResult::Success) { |
5934 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>( |
5935 | shapeCastOp, dstVectorType, broadcastOp.getSource()); |
5936 | return success(); |
5937 | } |
5938 | return failure(); |
5939 | } |
5940 | }; |
5941 | |
5942 | } // namespace |
5943 | |
5944 | void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, |
5945 | MLIRContext *context) { |
5946 | results |
5947 | .add<ShapeCastCreateMaskFolderTrailingOneDim, ShapeCastBroadcastFolder>( |
5948 | context); |
5949 | } |
5950 | |
5951 | //===----------------------------------------------------------------------===// |
5952 | // VectorBitCastOp |
5953 | //===----------------------------------------------------------------------===// |
5954 | |
5955 | LogicalResult BitCastOp::verify() { |
5956 | auto sourceVectorType = getSourceVectorType(); |
5957 | auto resultVectorType = getResultVectorType(); |
5958 | |
5959 | for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { |
5960 | if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) |
5961 | return emitOpError("dimension size mismatch at: ") << i; |
5962 | } |
5963 | |
5964 | DataLayout dataLayout = DataLayout::closest(*this); |
5965 | auto sourceElementBits = |
5966 | dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); |
5967 | auto resultElementBits = |
5968 | dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); |
5969 | |
5970 | if (sourceVectorType.getRank() == 0) { |
5971 | if (sourceElementBits != resultElementBits) |
5972 | return emitOpError("source/result bitwidth of the 0-D vector element " |
5973 | "types must be equal"); |
5974 | } else if (sourceElementBits * sourceVectorType.getShape().back() != |
5975 | resultElementBits * resultVectorType.getShape().back()) { |
5976 | return emitOpError( |
5977 | "source/result bitwidth of the minor 1-D vectors must be equal"); |
5978 | } |
5979 | |
5980 | return success(); |
5981 | } |
5982 | |
5983 | OpFoldResult BitCastOp::fold(FoldAdaptor adaptor) { |
5984 | // Nop cast. |
5985 | if (getSource().getType() == getResult().getType()) |
5986 | return getSource(); |
5987 | |
5988 | // Canceling bitcasts. |
5989 | if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) { |
5990 | if (getResult().getType() == otherOp.getSource().getType()) |
5991 | return otherOp.getSource(); |
5992 | |
5993 | setOperand(otherOp.getSource()); |
5994 | return getResult(); |
5995 | } |
5996 | |
5997 | Attribute sourceConstant = adaptor.getSource(); |
5998 | if (!sourceConstant) |
5999 | return {}; |
6000 | |
6001 | Type srcElemType = getSourceVectorType().getElementType(); |
6002 | Type dstElemType = getResultVectorType().getElementType(); |
6003 | |
6004 | if (auto floatPack = llvm::dyn_cast<DenseFPElementsAttr>(sourceConstant)) { |
6005 | if (floatPack.isSplat()) { |
6006 | auto splat = floatPack.getSplatValue<FloatAttr>(); |
6007 | |
6008 | // Casting fp16 into fp32. |
6009 | if (srcElemType.isF16() && dstElemType.isF32()) { |
6010 | uint32_t bits = static_cast<uint32_t>( |
6011 | splat.getValue().bitcastToAPInt().getZExtValue()); |
6012 | // Duplicate the 16-bit pattern. |
6013 | bits = (bits << 16) | (bits & 0xffff); |
6014 | APInt intBits(32, bits); |
6015 | APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); |
6016 | return DenseElementsAttr::get(getResultVectorType(), floatBits); |
6017 | } |
6018 | } |
6019 | } |
6020 | |
6021 | if (auto intPack = llvm::dyn_cast<DenseIntElementsAttr>(sourceConstant)) { |
6022 | if (intPack.isSplat()) { |
6023 | auto splat = intPack.getSplatValue<IntegerAttr>(); |
6024 | |
6025 | if (llvm::isa<IntegerType>(dstElemType)) { |
6026 | uint64_t srcBitWidth = srcElemType.getIntOrFloatBitWidth(); |
6027 | uint64_t dstBitWidth = dstElemType.getIntOrFloatBitWidth(); |
6028 | |
6029 | // Casting to a larger integer bit width. |
6030 | if (dstBitWidth > srcBitWidth && dstBitWidth % srcBitWidth == 0) { |
6031 | APInt intBits = splat.getValue().zext(dstBitWidth); |
6032 | |
6033 | // Duplicate the lower width element. |
6034 | for (uint64_t i = 0; i < dstBitWidth / srcBitWidth - 1; i++) |
6035 | intBits = (intBits << srcBitWidth) | intBits; |
6036 | return DenseElementsAttr::get(getResultVectorType(), intBits); |
6037 | } |
6038 | } |
6039 | } |
6040 | } |
6041 | |
6042 | return {}; |
6043 | } |
6044 | |
6045 | //===----------------------------------------------------------------------===// |
6046 | // TypeCastOp |
6047 | //===----------------------------------------------------------------------===// |
6048 | |
6049 | static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { |
6050 | auto vectorType = llvm::dyn_cast<VectorType>(memRefType.getElementType()); |
6051 | SmallVector<int64_t, 8> res(memRefType.getShape()); |
6052 | if (vectorType) |
6053 | res.append(vectorType.getShape().begin(), vectorType.getShape().end()); |
6054 | return res; |
6055 | } |
6056 | |
6057 | /// Build the canonical memRefType with a single vector. |
6058 | /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. |
6059 | void TypeCastOp::build(OpBuilder &builder, OperationState &result, |
6060 | Value source) { |
6061 | result.addOperands(source); |
6062 | MemRefType memRefType = llvm::cast<MemRefType>(source.getType()); |
6063 | VectorType vectorType = |
6064 | VectorType::get(extractShape(memRefType), |
6065 | getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); |
6066 | result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), |
6067 | memRefType.getMemorySpace())); |
6068 | } |
6069 | |
6070 | LogicalResult TypeCastOp::verify() { |
6071 | MemRefType canonicalType = getMemRefType().canonicalizeStridedLayout(); |
6072 | if (!canonicalType.getLayout().isIdentity()) |
6073 | return emitOpError("expects operand to be a memref with identity layout"); |
6074 | if (!getResultMemRefType().getLayout().isIdentity()) |
6075 | return emitOpError("expects result to be a memref with identity layout"); |
6076 | if (getResultMemRefType().getMemorySpace() != |
6077 | getMemRefType().getMemorySpace()) |
6078 | return emitOpError("expects result in same memory space"); |
6079 | |
6080 | auto sourceType = getMemRefType(); |
6081 | auto resultType = getResultMemRefType(); |
6082 | if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != |
6083 | getElementTypeOrSelf(getElementTypeOrSelf(resultType))) |
6084 | return emitOpError( |
6085 | "expects result and operand with same underlying scalar type: ") |
6086 | << resultType; |
6087 | if (extractShape(sourceType) != extractShape(resultType)) |
6088 | return emitOpError( |
6089 | "expects concatenated result and operand shapes to be equal: ") |
6090 | << resultType; |
6091 | return success(); |
6092 | } |
6093 | |
6094 | //===----------------------------------------------------------------------===// |
6095 | // TransposeOp |
6096 | //===----------------------------------------------------------------------===// |
6097 | |
6098 | void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, |
6099 | Value vector, ArrayRef<int64_t> permutation) { |
6100 | VectorType vt = llvm::cast<VectorType>(vector.getType()); |
6101 | SmallVector<int64_t, 4> transposedShape(vt.getRank()); |
6102 | SmallVector<bool, 4> transposedScalableDims(vt.getRank()); |
6103 | for (unsigned i = 0; i < permutation.size(); ++i) { |
6104 | transposedShape[i] = vt.getShape()[permutation[i]]; |
6105 | transposedScalableDims[i] = vt.getScalableDims()[permutation[i]]; |
6106 | } |
6107 | |
6108 | result.addOperands(vector); |
6109 | result.addTypes(VectorType::get(transposedShape, vt.getElementType(), |
6110 | transposedScalableDims)); |
6111 | result.addAttribute(TransposeOp::getPermutationAttrName(result.name), |
6112 | builder.getDenseI64ArrayAttr(permutation)); |
6113 | } |
6114 | |
6115 | OpFoldResult vector::TransposeOp::fold(FoldAdaptor adaptor) { |
6116 | // Eliminate splat constant transpose ops. |
6117 | if (auto splat = |
6118 | llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getVector())) |
6119 | return splat.reshape(getResultVectorType()); |
6120 | |
6121 | // Eliminate poison transpose ops. |
6122 | if (llvm::dyn_cast_if_present<ub::PoisonAttr>(adaptor.getVector())) |
6123 | return ub::PoisonAttr::get(getContext()); |
6124 | |
6125 | // Eliminate identity transposes, and more generally any transposes that |
6126 | // preserves the shape without permuting elements. |
6127 | // |
6128 | // Examples of what to fold: |
6129 | // %0 = vector.transpose %arg, [0, 1] : vector<1x1xi8> to vector<1x1xi8> |
6130 | // %0 = vector.transpose %arg, [0, 1] : vector<2x2xi8> to vector<2x2xi8> |
6131 | // %0 = vector.transpose %arg, [1, 0] : vector<1x1xi8> to vector<1x1xi8> |
6132 | // |
6133 | // Example of what NOT to fold: |
6134 | // %0 = vector.transpose %arg, [1, 0] : vector<2x2xi8> to vector<2x2xi8> |
6135 | // |
6136 | if (getSourceVectorType() == getResultVectorType() && |
6137 | isOrderPreserving(*this)) |
6138 | return getVector(); |
6139 | |
6140 | return {}; |
6141 | } |
6142 | |
6143 | LogicalResult vector::TransposeOp::verify() { |
6144 | VectorType vectorType = getSourceVectorType(); |
6145 | VectorType resultType = getResultVectorType(); |
6146 | int64_t rank = resultType.getRank(); |
6147 | if (vectorType.getRank() != rank) |
6148 | return emitOpError("vector result rank mismatch: ") << rank; |
6149 | // Verify transposition array. |
6150 | ArrayRef<int64_t> perm = getPermutation(); |
6151 | int64_t size = perm.size(); |
6152 | if (rank != size) |
6153 | return emitOpError("transposition length mismatch: ") << size; |
6154 | SmallVector<bool, 8> seen(rank, false); |
6155 | for (const auto &ta : llvm::enumerate(perm)) { |
6156 | if (ta.value() < 0 || ta.value() >= rank) |
6157 | return emitOpError("transposition index out of range: ") << ta.value(); |
6158 | if (seen[ta.value()]) |
6159 | return emitOpError("duplicate position index: ") << ta.value(); |
6160 | seen[ta.value()] = true; |
6161 | if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(ta.value())) |
6162 | return emitOpError("dimension size mismatch at: ") << ta.value(); |
6163 | } |
6164 | return success(); |
6165 | } |
6166 | |
6167 | std::optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() { |
6168 | return llvm::to_vector<4>(getResultVectorType().getShape()); |
6169 | } |
6170 | |
6171 | namespace { |
6172 | |
6173 | // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. |
6174 | class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { |
6175 | public: |
6176 | using OpRewritePattern::OpRewritePattern; |
6177 | |
6178 | LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, |
6179 | PatternRewriter &rewriter) const override { |
6180 | // Composes two permutations: result[i] = permutation1[permutation2[i]]. |
6181 | auto composePermutations = [](ArrayRef<int64_t> permutation1, |
6182 | ArrayRef<int64_t> permutation2) { |
6183 | SmallVector<int64_t, 4> result; |
6184 | for (auto index : permutation2) |
6185 | result.push_back(Elt: permutation1[index]); |
6186 | return result; |
6187 | }; |
6188 | |
6189 | // Return if the input of 'transposeOp' is not defined by another transpose. |
6190 | vector::TransposeOp parentTransposeOp = |
6191 | transposeOp.getVector().getDefiningOp<vector::TransposeOp>(); |
6192 | if (!parentTransposeOp) |
6193 | return failure(); |
6194 | |
6195 | SmallVector<int64_t, 4> permutation = composePermutations( |
6196 | parentTransposeOp.getPermutation(), transposeOp.getPermutation()); |
6197 | // Replace 'transposeOp' with a new transpose operation. |
6198 | rewriter.replaceOpWithNewOp<vector::TransposeOp>( |
6199 | transposeOp, transposeOp.getResult().getType(), |
6200 | parentTransposeOp.getVector(), permutation); |
6201 | return success(); |
6202 | } |
6203 | }; |
6204 | |
6205 | // Folds transpose(splat x : src_type) : res_type into splat x : res_type. |
6206 | class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> { |
6207 | public: |
6208 | using OpRewritePattern::OpRewritePattern; |
6209 | |
6210 | LogicalResult matchAndRewrite(TransposeOp transposeOp, |
6211 | PatternRewriter &rewriter) const override { |
6212 | auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>(); |
6213 | if (!splatOp) |
6214 | return failure(); |
6215 | |
6216 | rewriter.replaceOpWithNewOp<vector::SplatOp>( |
6217 | transposeOp, transposeOp.getResultVectorType(), splatOp.getInput()); |
6218 | return success(); |
6219 | } |
6220 | }; |
6221 | |
6222 | /// Folds transpose(create_mask) into a new transposed create_mask. |
6223 | class FoldTransposeCreateMask final : public OpRewritePattern<TransposeOp> { |
6224 | public: |
6225 | using OpRewritePattern::OpRewritePattern; |
6226 | |
6227 | LogicalResult matchAndRewrite(TransposeOp transpOp, |
6228 | PatternRewriter &rewriter) const override { |
6229 | Value transposeSrc = transpOp.getVector(); |
6230 | auto createMaskOp = transposeSrc.getDefiningOp<vector::CreateMaskOp>(); |
6231 | auto constantMaskOp = transposeSrc.getDefiningOp<vector::ConstantMaskOp>(); |
6232 | if (!createMaskOp && !constantMaskOp) |
6233 | return failure(); |
6234 | |
6235 | // Get the transpose permutation and apply it to the vector.create_mask or |
6236 | // vector.constant_mask operands. |
6237 | ArrayRef<int64_t> permutation = transpOp.getPermutation(); |
6238 | |
6239 | if (createMaskOp) { |
6240 | auto maskOperands = createMaskOp.getOperands(); |
6241 | SmallVector<Value> newOperands(maskOperands.begin(), maskOperands.end()); |
6242 | applyPermutationToVector(inVec&: newOperands, permutation); |
6243 | |
6244 | rewriter.replaceOpWithNewOp<vector::CreateMaskOp>( |
6245 | transpOp, transpOp.getResultVectorType(), newOperands); |
6246 | return success(); |
6247 | } |
6248 | |
6249 | // ConstantMaskOp case. |
6250 | auto maskDimSizes = constantMaskOp.getMaskDimSizes(); |
6251 | auto newMaskDimSizes = applyPermutation(maskDimSizes, permutation); |
6252 | |
6253 | rewriter.replaceOpWithNewOp<vector::ConstantMaskOp>( |
6254 | transpOp, transpOp.getResultVectorType(), newMaskDimSizes); |
6255 | return success(); |
6256 | } |
6257 | }; |
6258 | |
6259 | /// Folds transpose(shape_cast) into a new shape_cast. |
6260 | class FoldTransposeShapeCast final : public OpRewritePattern<TransposeOp> { |
6261 | public: |
6262 | using OpRewritePattern::OpRewritePattern; |
6263 | |
6264 | LogicalResult matchAndRewrite(TransposeOp transposeOp, |
6265 | PatternRewriter &rewriter) const override { |
6266 | auto shapeCastOp = |
6267 | transposeOp.getVector().getDefiningOp<vector::ShapeCastOp>(); |
6268 | if (!shapeCastOp) |
6269 | return failure(); |
6270 | if (!isOrderPreserving(transposeOp)) |
6271 | return failure(); |
6272 | |
6273 | VectorType resultType = transposeOp.getType(); |
6274 | |
6275 | // We don't need to check isValidShapeCast at this point, because it is |
6276 | // guaranteed that merging the transpose into the the shape_cast is a valid |
6277 | // shape_cast, because the transpose just inserts/removes ones. |
6278 | |
6279 | rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(transposeOp, resultType, |
6280 | shapeCastOp.getSource()); |
6281 | return success(); |
6282 | } |
6283 | }; |
6284 | |
6285 | /// Folds transpose(broadcast(x)) to broadcast(x) if the transpose is |
6286 | /// 'order preserving', where 'order preserving' means the flattened |
6287 | /// inputs and outputs of the transpose have identical (numerical) values. |
6288 | /// |
6289 | /// Example: |
6290 | /// ``` |
6291 | /// %0 = vector.broadcast %input : vector<1x1xi32> to vector<1x8xi32> |
6292 | /// %1 = vector.transpose %0, [1, 0] : vector<1x8xi32> |
6293 | /// to vector<8x1xi32> |
6294 | /// ``` |
6295 | /// can be rewritten as the equivalent |
6296 | /// ``` |
6297 | /// %0 = vector.broadcast %input : vector<1x1xi32> to vector<8x1xi32>. |
6298 | /// ``` |
6299 | /// The algorithm works by partitioning dimensions into groups that can be |
6300 | /// locally permuted while preserving order, and checks that the transpose |
6301 | /// only permutes within these groups. |
6302 | /// |
6303 | /// Groups are either contiguous sequences of 1s, or non-1s (1-element groups). |
6304 | /// Consider broadcasting 4x1x1x7 to 2x3x4x5x6x7. This is equivalent to |
6305 | /// broadcasting from 1x1x4x1x1x7. |
6306 | /// ^^^ ^ ^^^ ^ |
6307 | /// groups: 0 1 2 3 |
6308 | /// Order preserving permutations for this example are ones that only permute |
6309 | /// within the groups [0,1] and [3,4], like (1 0 2 4 3 5 6). |
6310 | class FoldTransposeBroadcast : public OpRewritePattern<vector::TransposeOp> { |
6311 | public: |
6312 | using OpRewritePattern::OpRewritePattern; |
6313 | FoldTransposeBroadcast(MLIRContext *context, PatternBenefit benefit = 1) |
6314 | : OpRewritePattern<vector::TransposeOp>(context, benefit) {} |
6315 | |
6316 | LogicalResult matchAndRewrite(vector::TransposeOp transpose, |
6317 | PatternRewriter &rewriter) const override { |
6318 | |
6319 | vector::BroadcastOp broadcast = |
6320 | transpose.getVector().getDefiningOp<vector::BroadcastOp>(); |
6321 | if (!broadcast) { |
6322 | return rewriter.notifyMatchFailure(transpose, |
6323 | "not preceded by a broadcast"); |
6324 | } |
6325 | |
6326 | auto inputType = dyn_cast<VectorType>(broadcast.getSourceType()); |
6327 | VectorType outputType = transpose.getResultVectorType(); |
6328 | |
6329 | // transpose(broadcast(scalar)) -> broadcast(scalar) is always valid |
6330 | bool inputIsScalar = !inputType; |
6331 | if (inputIsScalar) { |
6332 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>(transpose, outputType, |
6333 | broadcast.getSource()); |
6334 | return success(); |
6335 | } |
6336 | |
6337 | ArrayRef<int64_t> permutation = transpose.getPermutation(); |
6338 | ArrayRef<int64_t> inputShape = inputType.getShape(); |
6339 | int64_t inputRank = inputType.getRank(); |
6340 | int64_t outputRank = transpose.getType().getRank(); |
6341 | int64_t deltaRank = outputRank - inputRank; |
6342 | |
6343 | int low = 0; |
6344 | for (int inputIndex = 0; inputIndex < inputRank; ++inputIndex) { |
6345 | bool notOne = inputShape[inputIndex] != 1; |
6346 | bool prevNotOne = (inputIndex != 0 && inputShape[inputIndex - 1] != 1); |
6347 | bool groupEndFound = notOne || prevNotOne; |
6348 | if (groupEndFound) { |
6349 | int high = inputIndex + deltaRank; |
6350 | // Return failure if not all permutation destinations for indices in |
6351 | // [low, high) are in [low, high), i.e. the permutation is not local to |
6352 | // the group. |
6353 | for (int i = low; i < high; ++i) { |
6354 | if (permutation[i] < low || permutation[i] >= high) { |
6355 | return rewriter.notifyMatchFailure( |
6356 | transpose, "permutation not local to group"); |
6357 | } |
6358 | } |
6359 | low = high; |
6360 | } |
6361 | } |
6362 | |
6363 | // We don't need to check the final group [low, outputRank) because if it is |
6364 | // not locally bound, there must be a preceding group that already failed |
6365 | // the check (impossible to have just 1 non-locally bound group). |
6366 | |
6367 | // The preceding logic also ensures that at this point, the output of the |
6368 | // transpose is definitely broadcastable from the input shape, assert so: |
6369 | assert(vector::isBroadcastableTo(inputType, outputType) == |
6370 | vector::BroadcastableToResult::Success && |
6371 | "not broadcastable directly to transpose output"); |
6372 | |
6373 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>(transpose, outputType, |
6374 | broadcast.getSource()); |
6375 | |
6376 | return success(); |
6377 | } |
6378 | }; |
6379 | |
6380 | } // namespace |
6381 | |
6382 | void vector::TransposeOp::getCanonicalizationPatterns( |
6383 | RewritePatternSet &results, MLIRContext *context) { |
6384 | results.add<FoldTransposeCreateMask, FoldTransposeShapeCast, TransposeFolder, |
6385 | FoldTransposeSplat, FoldTransposeBroadcast>(context); |
6386 | } |
6387 | |
6388 | //===----------------------------------------------------------------------===// |
6389 | // ConstantMaskOp |
6390 | //===----------------------------------------------------------------------===// |
6391 | |
6392 | void ConstantMaskOp::build(OpBuilder &builder, OperationState &result, |
6393 | VectorType type, ConstantMaskKind kind) { |
6394 | assert(kind == ConstantMaskKind::AllTrue || |
6395 | kind == ConstantMaskKind::AllFalse); |
6396 | build(builder, result, type, |
6397 | kind == ConstantMaskKind::AllTrue |
6398 | ? type.getShape() |
6399 | : SmallVector<int64_t>(type.getRank(), 0)); |
6400 | } |
6401 | |
6402 | LogicalResult ConstantMaskOp::verify() { |
6403 | auto resultType = llvm::cast<VectorType>(getResult().getType()); |
6404 | // Check the corner case of 0-D vectors first. |
6405 | if (resultType.getRank() == 0) { |
6406 | if (getMaskDimSizes().size() != 1) |
6407 | return emitError("array attr must have length 1 for 0-D vectors"); |
6408 | auto dim = getMaskDimSizes()[0]; |
6409 | if (dim != 0 && dim != 1) |
6410 | return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); |
6411 | return success(); |
6412 | } |
6413 | |
6414 | // Verify that array attr size matches the rank of the vector result. |
6415 | if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank()) |
6416 | return emitOpError( |
6417 | "must specify array attr of size equal vector result rank"); |
6418 | // Verify that each array attr element is in bounds of corresponding vector |
6419 | // result dimension size. |
6420 | auto resultShape = resultType.getShape(); |
6421 | auto resultScalableDims = resultType.getScalableDims(); |
6422 | ArrayRef<int64_t> maskDimSizes = getMaskDimSizes(); |
6423 | for (const auto [index, maskDimSize] : llvm::enumerate(maskDimSizes)) { |
6424 | if (maskDimSize < 0 || maskDimSize > resultShape[index]) |
6425 | return emitOpError( |
6426 | "array attr of size out of bounds of vector result dimension size"); |
6427 | if (resultScalableDims[index] && maskDimSize != 0 && |
6428 | maskDimSize != resultShape[index]) |
6429 | return emitOpError( |
6430 | "only supports 'none set' or 'all set' scalable dimensions"); |
6431 | } |
6432 | // Verify that if one mask dim size is zero, they all should be zero (because |
6433 | // the mask region is a conjunction of each mask dimension interval). |
6434 | bool anyZeros = llvm::is_contained(maskDimSizes, 0); |
6435 | bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); |
6436 | if (anyZeros && !allZeros) |
6437 | return emitOpError("expected all mask dim sizes to be zeros, " |
6438 | "as a result of conjunction with zero mask dim"); |
6439 | return success(); |
6440 | } |
6441 | |
6442 | bool ConstantMaskOp::isAllOnesMask() { |
6443 | auto resultType = getVectorType(); |
6444 | // Check the corner case of 0-D vectors first. |
6445 | if (resultType.getRank() == 0) { |
6446 | assert(getMaskDimSizes().size() == 1 && "invalid sizes for zero rank mask"); |
6447 | return getMaskDimSizes()[0] == 1; |
6448 | } |
6449 | for (const auto [resultSize, maskDimSize] : |
6450 | llvm::zip_equal(resultType.getShape(), getMaskDimSizes())) { |
6451 | if (maskDimSize < resultSize) |
6452 | return false; |
6453 | } |
6454 | return true; |
6455 | } |
6456 | |
6457 | //===----------------------------------------------------------------------===// |
6458 | // CreateMaskOp |
6459 | //===----------------------------------------------------------------------===// |
6460 | |
6461 | void CreateMaskOp::build(OpBuilder &builder, OperationState &result, |
6462 | VectorType type, |
6463 | ArrayRef<OpFoldResult> mixedOperands) { |
6464 | SmallVector<Value> operands = |
6465 | getValueOrCreateConstantIndexOp(builder, result.location, mixedOperands); |
6466 | build(builder, result, type, operands); |
6467 | } |
6468 | |
6469 | LogicalResult CreateMaskOp::verify() { |
6470 | auto vectorType = llvm::cast<VectorType>(getResult().getType()); |
6471 | // Verify that an operand was specified for each result vector each dimension. |
6472 | if (vectorType.getRank() == 0) { |
6473 | if (getNumOperands() != 1) |
6474 | return emitOpError( |
6475 | "must specify exactly one operand for 0-D create_mask"); |
6476 | } else if (getNumOperands() != |
6477 | llvm::cast<VectorType>(getResult().getType()).getRank()) { |
6478 | return emitOpError( |
6479 | "must specify an operand for each result vector dimension"); |
6480 | } |
6481 | return success(); |
6482 | } |
6483 | |
6484 | namespace { |
6485 | |
6486 | /// Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. |
6487 | /// |
6488 | /// Ex 1: |
6489 | /// %c2 = arith.constant 2 : index |
6490 | /// %c3 = arith.constant 3 : index |
6491 | /// %0 = vector.create_mask %c3, %c2 : vector<4x3xi1> |
6492 | /// Becomes: |
6493 | /// vector.constant_mask [3, 2] : vector<4x3xi1> |
6494 | /// |
6495 | /// Ex 2: |
6496 | /// %c_neg_1 = arith.constant -1 : index |
6497 | /// %0 = vector.create_mask %c_neg_1 : vector<[8]xi1> |
6498 | /// becomes: |
6499 | /// vector.constant_mask [0] : vector<[8]xi1> |
6500 | /// |
6501 | /// Ex 3: |
6502 | /// %c8 = arith.constant 8 : index |
6503 | /// %c16 = arith.constant 16 : index |
6504 | /// %0 = vector.vscale |
6505 | /// %1 = arith.muli %0, %c16 : index |
6506 | /// %10 = vector.create_mask %c8, %1 : vector<8x[16]xi1> |
6507 | /// becomes: |
6508 | /// %0 = vector.constant_mask [8, 16] : vector<8x[16]xi1> |
6509 | class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { |
6510 | public: |
6511 | using OpRewritePattern::OpRewritePattern; |
6512 | |
6513 | LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, |
6514 | PatternRewriter &rewriter) const override { |
6515 | VectorType maskType = createMaskOp.getVectorType(); |
6516 | ArrayRef<int64_t> maskTypeDimSizes = maskType.getShape(); |
6517 | ArrayRef<bool> maskTypeDimScalableFlags = maskType.getScalableDims(); |
6518 | |
6519 | // Special case: Rank zero shape. |
6520 | constexpr std::array<int64_t, 1> rankZeroShape{1}; |
6521 | constexpr std::array<bool, 1> rankZeroScalableDims{false}; |
6522 | if (maskType.getRank() == 0) { |
6523 | maskTypeDimSizes = rankZeroShape; |
6524 | maskTypeDimScalableFlags = rankZeroScalableDims; |
6525 | } |
6526 | |
6527 | // Determine if this CreateMaskOp can be folded to a ConstantMaskOp and |
6528 | // collect the `constantDims` (for the ConstantMaskOp). |
6529 | SmallVector<int64_t, 4> constantDims; |
6530 | for (auto [i, dimSize] : llvm::enumerate(createMaskOp.getOperands())) { |
6531 | if (auto intSize = getConstantIntValue(dimSize)) { |
6532 | // Constant value. |
6533 | // If the mask dim is non-scalable this can be any value. |
6534 | // If the mask dim is scalable only zero (all-false) is supported. |
6535 | if (maskTypeDimScalableFlags[i] && intSize >= 0) |
6536 | return failure(); |
6537 | constantDims.push_back(*intSize); |
6538 | } else if (auto vscaleMultiplier = getConstantVscaleMultiplier(dimSize)) { |
6539 | // Constant vscale multiple (e.g. 4 x vscale). |
6540 | // Must be all-true to fold to a ConstantMask. |
6541 | if (vscaleMultiplier < maskTypeDimSizes[i]) |
6542 | return failure(); |
6543 | constantDims.push_back(*vscaleMultiplier); |
6544 | } else { |
6545 | return failure(); |
6546 | } |
6547 | } |
6548 | |
6549 | // Clamp values to constant_mask bounds. |
6550 | for (auto [value, maskDimSize] : llvm::zip(constantDims, maskTypeDimSizes)) |
6551 | value = std::clamp<int64_t>(value, 0, maskDimSize); |
6552 | |
6553 | // If one of dim sizes is zero, set all dims to zero. |
6554 | if (llvm::is_contained(Range&: constantDims, Element: 0)) |
6555 | constantDims.assign(NumElts: constantDims.size(), Elt: 0); |
6556 | |
6557 | // Replace 'createMaskOp' with ConstantMaskOp. |
6558 | rewriter.replaceOpWithNewOp<ConstantMaskOp>(createMaskOp, maskType, |
6559 | constantDims); |
6560 | return success(); |
6561 | } |
6562 | }; |
6563 | |
6564 | } // namespace |
6565 | |
6566 | void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, |
6567 | MLIRContext *context) { |
6568 | results.add<CreateMaskFolder>(context); |
6569 | } |
6570 | |
6571 | //===----------------------------------------------------------------------===// |
6572 | // MaskOp |
6573 | //===----------------------------------------------------------------------===// |
6574 | |
6575 | void MaskOp::build( |
6576 | OpBuilder &builder, OperationState &result, Value mask, |
6577 | Operation *maskableOp, |
6578 | function_ref<void(OpBuilder &, Operation *)> maskRegionBuilder) { |
6579 | assert(maskRegionBuilder && |
6580 | "builder callback for 'maskRegion' must be present"); |
6581 | |
6582 | result.addOperands(mask); |
6583 | OpBuilder::InsertionGuard guard(builder); |
6584 | Region *maskRegion = result.addRegion(); |
6585 | builder.createBlock(maskRegion); |
6586 | maskRegionBuilder(builder, maskableOp); |
6587 | } |
6588 | |
6589 | void MaskOp::build( |
6590 | OpBuilder &builder, OperationState &result, TypeRange resultTypes, |
6591 | Value mask, Operation *maskableOp, |
6592 | function_ref<void(OpBuilder &, Operation *)> maskRegionBuilder) { |
6593 | build(builder, result, resultTypes, mask, /*passthru=*/Value(), maskableOp, |
6594 | maskRegionBuilder); |
6595 | } |
6596 | |
6597 | void MaskOp::build( |
6598 | OpBuilder &builder, OperationState &result, TypeRange resultTypes, |
6599 | Value mask, Value passthru, Operation *maskableOp, |
6600 | function_ref<void(OpBuilder &, Operation *)> maskRegionBuilder) { |
6601 | build(builder, result, mask, maskableOp, maskRegionBuilder); |
6602 | if (passthru) |
6603 | result.addOperands(passthru); |
6604 | result.addTypes(resultTypes); |
6605 | } |
6606 | |
6607 | ParseResult MaskOp::parse(OpAsmParser &parser, OperationState &result) { |
6608 | // Create the op region. |
6609 | result.regions.reserve(1); |
6610 | Region &maskRegion = *result.addRegion(); |
6611 | |
6612 | auto &builder = parser.getBuilder(); |
6613 | |
6614 | // Parse all the operands. |
6615 | OpAsmParser::UnresolvedOperand mask; |
6616 | if (parser.parseOperand(mask)) |
6617 | return failure(); |
6618 | |
6619 | // Optional passthru operand. |
6620 | OpAsmParser::UnresolvedOperand passthru; |
6621 | ParseResult parsePassthru = parser.parseOptionalComma(); |
6622 | if (parsePassthru.succeeded() && parser.parseOperand(passthru)) |
6623 | return failure(); |
6624 | |
6625 | // Parse op region. |
6626 | if (parser.parseRegion(maskRegion, /*arguments=*/{}, /*argTypes=*/{})) |
6627 | return failure(); |
6628 | |
6629 | MaskOp::ensureTerminator(maskRegion, builder, result.location); |
6630 | |
6631 | // Parse the optional attribute list. |
6632 | if (parser.parseOptionalAttrDict(result.attributes)) |
6633 | return failure(); |
6634 | |
6635 | // Parse all the types. |
6636 | Type maskType; |
6637 | if (parser.parseColonType(maskType)) |
6638 | return failure(); |
6639 | |
6640 | SmallVector<Type> resultTypes; |
6641 | if (parser.parseOptionalArrowTypeList(resultTypes)) |
6642 | return failure(); |
6643 | result.types.append(resultTypes); |
6644 | |
6645 | // Resolve operands. |
6646 | if (parser.resolveOperand(mask, maskType, result.operands)) |
6647 | return failure(); |
6648 | |
6649 | if (parsePassthru.succeeded()) { |
6650 | if (resultTypes.empty()) |
6651 | return parser.emitError( |
6652 | parser.getNameLoc(), |
6653 | "expects a result if passthru operand is provided"); |
6654 | |
6655 | if (parser.resolveOperand(passthru, resultTypes[0], result.operands)) |
6656 | return failure(); |
6657 | } |
6658 | |
6659 | return success(); |
6660 | } |
6661 | |
6662 | void mlir::vector::MaskOp::print(OpAsmPrinter &p) { |
6663 | p << " "<< getMask(); |
6664 | if (getPassthru()) |
6665 | p << ", "<< getPassthru(); |
6666 | |
6667 | // Print single masked operation and skip terminator. |
6668 | p << " { "; |
6669 | Block *singleBlock = &getMaskRegion().getBlocks().front(); |
6670 | if (singleBlock && !singleBlock->getOperations().empty()) |
6671 | p.printCustomOrGenericOp(&singleBlock->front()); |
6672 | p << " }"; |
6673 | |
6674 | p.printOptionalAttrDict(getOperation()->getAttrs()); |
6675 | |
6676 | p << " : "<< getMask().getType(); |
6677 | if (getNumResults() > 0) |
6678 | p << " -> "<< getResultTypes(); |
6679 | } |
6680 | |
6681 | void MaskOp::ensureTerminator(Region ®ion, Builder &builder, Location loc) { |
6682 | // 1. For an empty `vector.mask`, create a default terminator. |
6683 | if (region.empty() || region.front().empty()) { |
6684 | OpTrait::SingleBlockImplicitTerminator<vector::YieldOp>::Impl< |
6685 | MaskOp>::ensureTerminator(region, builder, loc); |
6686 | return; |
6687 | } |
6688 | |
6689 | // 2. For a non-empty `vector.mask` with an explicit terminator, do nothing. |
6690 | Block &block = region.front(); |
6691 | if (isa<vector::YieldOp>(block.back())) |
6692 | return; |
6693 | |
6694 | // 3. For a non-empty `vector.mask` without an explicit terminator: |
6695 | |
6696 | // Create default terminator if the number of masked operations is not |
6697 | // one. This case will trigger a verification failure. |
6698 | if (block.getOperations().size() != 1) { |
6699 | OpTrait::SingleBlockImplicitTerminator<vector::YieldOp>::Impl< |
6700 | MaskOp>::ensureTerminator(region, builder, loc); |
6701 | return; |
6702 | } |
6703 | |
6704 | // Create a terminator that yields the results from the masked operation. |
6705 | OpBuilder opBuilder(builder.getContext()); |
6706 | Operation *maskedOp = &block.front(); |
6707 | opBuilder.setInsertionPointToEnd(&block); |
6708 | opBuilder.create<vector::YieldOp>(loc, maskedOp->getResults()); |
6709 | } |
6710 | |
6711 | LogicalResult MaskOp::verify() { |
6712 | // Structural checks. |
6713 | Block &block = getMaskRegion().getBlocks().front(); |
6714 | if (block.getOperations().empty()) |
6715 | return emitOpError("expects a terminator within the mask region"); |
6716 | |
6717 | unsigned numMaskRegionOps = block.getOperations().size(); |
6718 | if (numMaskRegionOps > 2) |
6719 | return emitOpError("expects only one operation to mask"); |
6720 | |
6721 | // Terminator checks. |
6722 | auto terminator = dyn_cast<vector::YieldOp>(block.back()); |
6723 | if (!terminator) |
6724 | return emitOpError("expects a terminator within the mask region"); |
6725 | |
6726 | if (terminator->getNumOperands() != getNumResults()) |
6727 | return emitOpError( |
6728 | "expects number of results to match mask region yielded values"); |
6729 | |
6730 | // Empty vector.mask. Nothing else to check. |
6731 | if (numMaskRegionOps == 1) |
6732 | return success(); |
6733 | |
6734 | auto maskableOp = dyn_cast<MaskableOpInterface>(block.front()); |
6735 | if (!maskableOp) |
6736 | return emitOpError("expects a MaskableOpInterface within the mask region"); |
6737 | |
6738 | // Result checks. |
6739 | if (maskableOp->getNumResults() != getNumResults()) |
6740 | return emitOpError("expects number of results to match maskable operation " |
6741 | "number of results"); |
6742 | |
6743 | if (!llvm::equal(maskableOp->getResults(), terminator.getOperands())) |
6744 | return emitOpError("expects all the results from the MaskableOpInterface " |
6745 | "to match all the values returned by the terminator"); |
6746 | |
6747 | if (!llvm::equal(maskableOp->getResultTypes(), getResultTypes())) |
6748 | return emitOpError( |
6749 | "expects result type to match maskable operation result type"); |
6750 | |
6751 | if (llvm::count_if(maskableOp->getResultTypes(), |
6752 | [](Type t) { return llvm::isa<VectorType>(t); }) > 1) |
6753 | return emitOpError("multiple vector results not supported"); |
6754 | |
6755 | // Mask checks. |
6756 | Type expectedMaskType = maskableOp.getExpectedMaskType(); |
6757 | if (getMask().getType() != expectedMaskType) |
6758 | return emitOpError("expects a ") |
6759 | << expectedMaskType << " mask for the maskable operation"; |
6760 | |
6761 | // Passthru checks. |
6762 | Value passthru = getPassthru(); |
6763 | if (passthru) { |
6764 | if (!maskableOp.supportsPassthru()) |
6765 | return emitOpError( |
6766 | "doesn't expect a passthru argument for this maskable operation"); |
6767 | |
6768 | if (maskableOp->getNumResults() != 1) |
6769 | return emitOpError("expects result when passthru argument is provided"); |
6770 | |
6771 | if (passthru.getType() != maskableOp->getResultTypes()[0]) |
6772 | return emitOpError("expects passthru type to match result type"); |
6773 | } |
6774 | |
6775 | return success(); |
6776 | } |
6777 | |
6778 | /// Folds empty `vector.mask` with no passthru operand and with or without |
6779 | /// return values. For example: |
6780 | /// |
6781 | /// %0 = vector.mask %mask { vector.yield %a : vector<8xf32> } : |
6782 | /// vector<8xi1> -> vector<8xf32> |
6783 | /// %1 = user_op %0 : vector<8xf32> |
6784 | /// |
6785 | /// becomes: |
6786 | /// |
6787 | /// %0 = user_op %a : vector<8xf32> |
6788 | /// |
6789 | /// Empty `vector.mask` with passthru operand are handled by the canonicalizer |
6790 | /// as it requires creating new operations. |
6791 | |
6792 | static LogicalResult foldEmptyMaskOp(MaskOp maskOp, MaskOp::FoldAdaptor adaptor, |
6793 | SmallVectorImpl<OpFoldResult> &results) { |
6794 | if (!maskOp.isEmpty() || maskOp.hasPassthru()) |
6795 | return failure(); |
6796 | |
6797 | Block *block = maskOp.getMaskBlock(); |
6798 | auto terminator = cast<vector::YieldOp>(block->front()); |
6799 | if (terminator.getNumOperands() == 0) { |
6800 | // `vector.mask` has no results, just remove the `vector.mask`. |
6801 | return success(); |
6802 | } |
6803 | |
6804 | // `vector.mask` has results, propagate the results. |
6805 | llvm::append_range(results, terminator.getOperands()); |
6806 | return success(); |
6807 | } |
6808 | |
6809 | LogicalResult MaskOp::fold(FoldAdaptor adaptor, |
6810 | SmallVectorImpl<OpFoldResult> &results) { |
6811 | if (succeeded(foldEmptyMaskOp(*this, adaptor, results))) |
6812 | return success(); |
6813 | |
6814 | MaskFormat maskFormat = getMaskFormat(getMask()); |
6815 | if (maskFormat != MaskFormat::AllTrue) |
6816 | return failure(); |
6817 | |
6818 | // Move maskable operation outside of the `vector.mask` region. |
6819 | Operation *maskableOp = getMaskableOp(); |
6820 | maskableOp->dropAllUses(); |
6821 | maskableOp->moveBefore(getOperation()); |
6822 | |
6823 | llvm::append_range(results, maskableOp->getResults()); |
6824 | return success(); |
6825 | } |
6826 | |
6827 | /// Canonialize empty `vector.mask` operations that can't be handled in |
6828 | /// `VectorMask::fold` as they require creating new operations. |
6829 | /// |
6830 | /// Example 1: Empty `vector.mask` with passthru operand. |
6831 | /// |
6832 | /// %0 = vector.mask %mask, %passthru { vector.yield %a : vector<8xf32> } : |
6833 | /// vector<8xi1> -> vector<8xf32> |
6834 | /// |
6835 | /// becomes: |
6836 | /// |
6837 | /// %0 = arith.select %mask, %a, %passthru : vector<8xf32> |
6838 | /// |
6839 | class CanonializeEmptyMaskOp : public OpRewritePattern<MaskOp> { |
6840 | using OpRewritePattern::OpRewritePattern; |
6841 | |
6842 | LogicalResult matchAndRewrite(MaskOp maskOp, |
6843 | PatternRewriter &rewriter) const override { |
6844 | if (!maskOp.isEmpty()) |
6845 | return failure(); |
6846 | |
6847 | if (!maskOp.hasPassthru()) |
6848 | return failure(); |
6849 | |
6850 | Block *block = maskOp.getMaskBlock(); |
6851 | auto terminator = cast<vector::YieldOp>(block->front()); |
6852 | assert(terminator.getNumOperands() == 1 && |
6853 | "expected one result when passthru is provided"); |
6854 | |
6855 | rewriter.replaceOpWithNewOp<arith::SelectOp>( |
6856 | maskOp, maskOp.getResultTypes(), maskOp.getMask(), |
6857 | terminator.getOperand(0), maskOp.getPassthru()); |
6858 | |
6859 | return success(); |
6860 | } |
6861 | }; |
6862 | |
6863 | void MaskOp::getCanonicalizationPatterns(RewritePatternSet &results, |
6864 | MLIRContext *context) { |
6865 | results.add<CanonializeEmptyMaskOp>(context); |
6866 | } |
6867 | |
6868 | // MaskingOpInterface definitions. |
6869 | |
6870 | /// Returns the operation masked by this 'vector.mask'. |
6871 | Operation *MaskOp::getMaskableOp() { |
6872 | Block *block = getMaskBlock(); |
6873 | if (block->getOperations().size() < 2) |
6874 | return nullptr; |
6875 | |
6876 | return &block->front(); |
6877 | } |
6878 | |
6879 | /// Returns true if 'vector.mask' has a passthru value. |
6880 | bool MaskOp::hasPassthru() { return getPassthru() != Value(); } |
6881 | |
6882 | //===----------------------------------------------------------------------===// |
6883 | // ScanOp |
6884 | //===----------------------------------------------------------------------===// |
6885 | |
6886 | LogicalResult ScanOp::verify() { |
6887 | VectorType srcType = getSourceType(); |
6888 | VectorType initialType = getInitialValueType(); |
6889 | // Check reduction dimension < rank. |
6890 | int64_t srcRank = srcType.getRank(); |
6891 | int64_t reductionDim = getReductionDim(); |
6892 | if (reductionDim >= srcRank) |
6893 | return emitOpError("reduction dimension ") |
6894 | << reductionDim << " has to be less than "<< srcRank; |
6895 | |
6896 | // Check that rank(initial_value) = rank(src) - 1. |
6897 | int64_t initialValueRank = initialType.getRank(); |
6898 | if (initialValueRank != srcRank - 1) |
6899 | return emitOpError("initial value rank ") |
6900 | << initialValueRank << " has to be equal to "<< srcRank - 1; |
6901 | |
6902 | // Check shapes of initial value and src. |
6903 | ArrayRef<int64_t> srcShape = srcType.getShape(); |
6904 | ArrayRef<int64_t> initialValueShapes = initialType.getShape(); |
6905 | SmallVector<int64_t> expectedShape; |
6906 | for (int i = 0; i < srcRank; i++) { |
6907 | if (i != reductionDim) |
6908 | expectedShape.push_back(srcShape[i]); |
6909 | } |
6910 | if (!llvm::equal(initialValueShapes, expectedShape)) { |
6911 | return emitOpError("incompatible input/initial value shapes"); |
6912 | } |
6913 | |
6914 | // Verify supported reduction kind. |
6915 | Type eltType = getDestType().getElementType(); |
6916 | if (!isSupportedCombiningKind(getKind(), eltType)) |
6917 | return emitOpError("unsupported reduction type ") |
6918 | << eltType << " for kind '"<< stringifyCombiningKind(getKind()) |
6919 | << "'"; |
6920 | |
6921 | return success(); |
6922 | } |
6923 | |
6924 | void mlir::vector::populateVectorToVectorCanonicalizationPatterns( |
6925 | RewritePatternSet &patterns, PatternBenefit benefit) { |
6926 | patterns |
6927 | .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, |
6928 | ScatterFolder, ExpandLoadFolder, CompressStoreFolder, |
6929 | StridedSliceConstantMaskFolder, TransposeFolder>( |
6930 | arg: patterns.getContext(), args&: benefit); |
6931 | } |
6932 | |
6933 | //===----------------------------------------------------------------------===// |
6934 | // SplatOp |
6935 | //===----------------------------------------------------------------------===// |
6936 | |
6937 | OpFoldResult SplatOp::fold(FoldAdaptor adaptor) { |
6938 | auto constOperand = adaptor.getInput(); |
6939 | if (!isa_and_nonnull<IntegerAttr, FloatAttr>(constOperand)) |
6940 | return {}; |
6941 | |
6942 | // SplatElementsAttr::get treats single value for second arg as being a splat. |
6943 | return SplatElementsAttr::get(getType(), {constOperand}); |
6944 | } |
6945 | |
6946 | void SplatOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges, |
6947 | SetIntRangeFn setResultRanges) { |
6948 | setResultRanges(getResult(), argRanges.front()); |
6949 | } |
6950 | |
6951 | Value mlir::vector::makeArithReduction(OpBuilder &b, Location loc, |
6952 | CombiningKind kind, Value v1, Value acc, |
6953 | arith::FastMathFlagsAttr fastmath, |
6954 | Value mask) { |
6955 | Type t1 = getElementTypeOrSelf(type: v1.getType()); |
6956 | Type tAcc = getElementTypeOrSelf(type: acc.getType()); |
6957 | Value result; |
6958 | |
6959 | switch (kind) { |
6960 | case CombiningKind::ADD: |
6961 | if (t1.isIntOrIndex() && tAcc.isIntOrIndex()) |
6962 | result = b.createOrFold<arith::AddIOp>(loc, v1, acc); |
6963 | else if (llvm::isa<FloatType>(Val: t1) && llvm::isa<FloatType>(Val: tAcc)) |
6964 | result = b.createOrFold<arith::AddFOp>(loc, v1, acc, fastmath); |
6965 | else |
6966 | llvm_unreachable("invalid value types for ADD reduction"); |
6967 | break; |
6968 | case CombiningKind::AND: |
6969 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values"); |
6970 | result = b.createOrFold<arith::AndIOp>(loc, v1, acc); |
6971 | break; |
6972 | case CombiningKind::MAXNUMF: |
6973 | assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) && |
6974 | "expected float values"); |
6975 | result = b.createOrFold<arith::MaxNumFOp>(loc, v1, acc, fastmath); |
6976 | break; |
6977 | case CombiningKind::MAXIMUMF: |
6978 | assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) && |
6979 | "expected float values"); |
6980 | result = b.createOrFold<arith::MaximumFOp>(loc, v1, acc, fastmath); |
6981 | break; |
6982 | case CombiningKind::MINNUMF: |
6983 | assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) && |
6984 | "expected float values"); |
6985 | result = b.createOrFold<arith::MinNumFOp>(loc, v1, acc, fastmath); |
6986 | break; |
6987 | case CombiningKind::MINIMUMF: |
6988 | assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) && |
6989 | "expected float values"); |
6990 | result = b.createOrFold<arith::MinimumFOp>(loc, v1, acc, fastmath); |
6991 | break; |
6992 | case CombiningKind::MAXSI: |
6993 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values"); |
6994 | result = b.createOrFold<arith::MaxSIOp>(loc, v1, acc); |
6995 | break; |
6996 | case CombiningKind::MINSI: |
6997 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values"); |
6998 | result = b.createOrFold<arith::MinSIOp>(loc, v1, acc); |
6999 | break; |
7000 | case CombiningKind::MAXUI: |
7001 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values"); |
7002 | result = b.createOrFold<arith::MaxUIOp>(loc, v1, acc); |
7003 | break; |
7004 | case CombiningKind::MINUI: |
7005 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values"); |
7006 | result = b.createOrFold<arith::MinUIOp>(loc, v1, acc); |
7007 | break; |
7008 | case CombiningKind::MUL: |
7009 | if (t1.isIntOrIndex() && tAcc.isIntOrIndex()) |
7010 | result = b.createOrFold<arith::MulIOp>(loc, v1, acc); |
7011 | else if (llvm::isa<FloatType>(Val: t1) && llvm::isa<FloatType>(Val: tAcc)) |
7012 | result = b.createOrFold<arith::MulFOp>(loc, v1, acc, fastmath); |
7013 | else |
7014 | llvm_unreachable("invalid value types for MUL reduction"); |
7015 | break; |
7016 | case CombiningKind::OR: |
7017 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values"); |
7018 | result = b.createOrFold<arith::OrIOp>(loc, v1, acc); |
7019 | break; |
7020 | case CombiningKind::XOR: |
7021 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values"); |
7022 | result = b.createOrFold<arith::XOrIOp>(loc, v1, acc); |
7023 | break; |
7024 | }; |
7025 | |
7026 | assert(result && "unknown CombiningKind"); |
7027 | return selectPassthru(builder&: b, mask, newValue: result, passthru: acc); |
7028 | } |
7029 | |
7030 | //===----------------------------------------------------------------------===// |
7031 | // Vector Masking Utilities |
7032 | //===----------------------------------------------------------------------===// |
7033 | |
7034 | /// Create the vector.yield-ended region of a vector.mask op with `maskableOp` |
7035 | /// as masked operation. |
7036 | void mlir::vector::createMaskOpRegion(OpBuilder &builder, |
7037 | Operation *maskableOp) { |
7038 | assert(maskableOp->getBlock() && "MaskableOp must be inserted into a block"); |
7039 | Block *insBlock = builder.getInsertionBlock(); |
7040 | // Create a block and move the op to that block. |
7041 | insBlock->getOperations().splice( |
7042 | where: insBlock->begin(), L2&: maskableOp->getBlock()->getOperations(), N: maskableOp); |
7043 | builder.create<YieldOp>(maskableOp->getLoc(), maskableOp->getResults()); |
7044 | } |
7045 | |
7046 | /// Creates a vector.mask operation around a maskable operation. Returns the |
7047 | /// vector.mask operation if the mask provided is valid. Otherwise, returns |
7048 | /// the maskable operation itself. |
7049 | Operation *mlir::vector::maskOperation(OpBuilder &builder, |
7050 | Operation *maskableOp, Value mask, |
7051 | Value passthru) { |
7052 | if (!mask) |
7053 | return maskableOp; |
7054 | if (passthru) |
7055 | return builder.create<MaskOp>(maskableOp->getLoc(), |
7056 | maskableOp->getResultTypes(), mask, passthru, |
7057 | maskableOp, createMaskOpRegion); |
7058 | return builder.create<MaskOp>(maskableOp->getLoc(), |
7059 | maskableOp->getResultTypes(), mask, maskableOp, |
7060 | createMaskOpRegion); |
7061 | } |
7062 | |
7063 | /// Creates a vector select operation that picks values from `newValue` or |
7064 | /// `passthru` for each result vector lane based on `mask`. This utility is used |
7065 | /// to propagate the pass-thru value of vector.mask or for cases where only the |
7066 | /// pass-thru value propagation is needed. VP intrinsics do not support |
7067 | /// pass-thru values and every mask-out lane is set to poison. LLVM backends are |
7068 | /// usually able to match op + select patterns and fold them into a native |
7069 | /// target instructions. |
7070 | Value mlir::vector::selectPassthru(OpBuilder &builder, Value mask, |
7071 | Value newValue, Value passthru) { |
7072 | if (!mask) |
7073 | return newValue; |
7074 | |
7075 | return builder.create<arith::SelectOp>(newValue.getLoc(), newValue.getType(), |
7076 | mask, newValue, passthru); |
7077 | } |
7078 | |
7079 | //===----------------------------------------------------------------------===// |
7080 | // TableGen'd op method definitions |
7081 | //===----------------------------------------------------------------------===// |
7082 | |
7083 | #define GET_ATTRDEF_CLASSES |
7084 | #include "mlir/Dialect/Vector/IR/VectorAttributes.cpp.inc" |
7085 | |
7086 | #define GET_OP_CLASSES |
7087 | #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" |
7088 |
Definitions
- MaskFormat
- getMaskFormat
- buildTerminatedBody
- isSupportedCombiningKind
- getEffectiveVectorRankForXferOp
- getTransferMinorIdentityMap
- isSplatWriteConsistentWithMaskedRead
- checkSameValueRAW
- checkSameValueWAW
- isDisjointTransferIndices
- isDisjointTransferSet
- incSlicePosition
- getAsIntegers
- getAsIntegers
- getAsValues
- getConstantVscaleMultiplier
- BitmaskEnumStorage
- BitmaskEnumStorage
- operator==
- construct
- VectorInlinerInterface
- isLegalToInline
- getVectorSubscriptType
- getVectorSubscriptAttr
- ElideUnitDimsInMultiDimReduction
- matchAndRewrite
- getVectorReductionOp
- ElideSingleElementReduction
- matchAndRewrite
- verifyDimMap
- verifyOutputShape
- getResultIndex
- getDimMap
- CanonicalizeContractAdd
- matchAndRewrite
- isValidPositiveIndexOrPoison
- extractVector
- foldExtractOpFromExtractChain
- ExtractFromInsertTransposeChainState
- isContainedWithin
- intersectsWhereNonNegative
- canFold
- updateStateForNextIteration
- ExtractFromInsertTransposeChainState
- handleTransposeOp
- handleInsertOpWithMatchingPos
- handleInsertOpWithPrefixPos
- tryToFoldExtractOpInPlace
- fold
- hasZeroDimVectors
- foldExtractFromBroadcast
- foldExtractFromShuffle
- foldExtractFromShapeCast
- foldExtractFromExtractStrided
- foldExtractStridedOpFromInsertChain
- foldScalarExtractFromFromElements
- extractInsertFoldConstantOp
- foldPoisonIndexInsertExtractOp
- foldPoisonSrcExtractOp
- foldDenseElementsAttrSrcExtractOp
- ExtractOpFromBroadcast
- matchAndRewrite
- ExtractOpFromCreateMask
- matchAndRewrite
- foldExtractFromShapeCastToShapeCast
- foldExtractFromFromElements
- populateFromInt64AttrArray
- rewriteFromElementsAsSplat
- FromElementsToShapeCast
- matchAndRewrite
- increment
- computeBroadcastedUnitDims
- isBroadcastableTo
- BroadcastFolder
- matchAndRewrite
- isStepIndexArray
- Canonicalize0DShuffleOp
- matchAndRewrite
- ShuffleSplat
- matchAndRewrite
- ShuffleInterleave
- matchAndRewrite
- InsertToBroadcast
- matchAndRewrite
- InsertSplatToSplat
- matchAndRewrite
- foldDenseElementsAttrDestInsertOp
- isIntegerArrayAttrSmallerThanShape
- isIntegerArrayAttrConfinedToRange
- isIntegerArrayAttrConfinedToShape
- isSumOfIntegerArrayAttrConfinedToShape
- makeI64ArrayAttr
- FoldInsertStridedSliceSplat
- matchAndRewrite
- FoldInsertStridedSliceOfExtract
- matchAndRewrite
- InsertStridedSliceConstantFolder
- vectorSizeFoldThreshold
- matchAndRewrite
- inferStridedSliceOpResultType
- foldExtractStridedOpFromInsertChain
- foldExtractStridedSliceNonSplatConstant
- StridedSliceConstantMaskFolder
- matchAndRewrite
- StridedSliceBroadcast
- matchAndRewrite
- StridedSliceSplat
- matchAndRewrite
- ContiguousExtractStridedSliceToExtract
- matchAndRewrite
- verifyPermutationMap
- verifyTransferOp
- printTransferAttrs
- inferTransferOpMaskType
- isInBounds
- foldTransferInBoundsAttribute
- foldTransferFullMask
- foldRAW
- TransferReadAfterWriteToBroadcast
- matchAndRewrite
- foldReadInitWrite
- checkSameValueWAR
- foldWAR
- FoldWaw
- matchAndRewrite
- SwapExtractSliceOfTransferWrite
- matchAndRewrite
- verifyLoadStoreMemRefLayout
- MaskedLoadFolder
- matchAndRewrite
- MaskedStoreFolder
- matchAndRewrite
- isZeroBasedContiguousSeq
- GatherFolder
- matchAndRewrite
- FoldContiguousGather
- matchAndRewrite
- ScatterFolder
- matchAndRewrite
- FoldContiguousScatter
- matchAndRewrite
- ExpandLoadFolder
- matchAndRewrite
- CompressStoreFolder
- matchAndRewrite
- isOrderPreserving
- trimTrailingOneDims
- ShapeCastCreateMaskFolderTrailingOneDim
- matchAndRewrite
- ShapeCastBroadcastFolder
- matchAndRewrite
- extractShape
- TransposeFolder
- matchAndRewrite
- FoldTransposeSplat
- matchAndRewrite
- FoldTransposeCreateMask
- matchAndRewrite
- FoldTransposeShapeCast
- matchAndRewrite
- FoldTransposeBroadcast
- FoldTransposeBroadcast
- matchAndRewrite
- CreateMaskFolder
- matchAndRewrite
- foldEmptyMaskOp
- CanonializeEmptyMaskOp
- matchAndRewrite
- populateVectorToVectorCanonicalizationPatterns
- makeArithReduction
- createMaskOpRegion
- maskOperation
Learn to use CMake with our Intro Training
Find out more