| 1 | //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements convenience types for working with super-vectorization |
| 10 | // operations, in particular super-vector loads and stores. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| 15 | |
| 16 | #include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h" |
| 17 | #include "mlir/Dialect/Affine/IR/ValueBoundsOpInterfaceImpl.h" |
| 18 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 19 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
| 20 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
| 21 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 22 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 23 | #include "mlir/Dialect/UB/IR/UBOps.h" |
| 24 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
| 25 | #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
| 26 | #include "mlir/IR/AffineExpr.h" |
| 27 | #include "mlir/IR/AffineMap.h" |
| 28 | #include "mlir/IR/Builders.h" |
| 29 | #include "mlir/IR/BuiltinAttributes.h" |
| 30 | #include "mlir/IR/BuiltinTypes.h" |
| 31 | #include "mlir/IR/DialectImplementation.h" |
| 32 | #include "mlir/IR/IRMapping.h" |
| 33 | #include "mlir/IR/OpImplementation.h" |
| 34 | #include "mlir/IR/PatternMatch.h" |
| 35 | #include "mlir/IR/TypeUtilities.h" |
| 36 | #include "mlir/IR/ValueRange.h" |
| 37 | #include "mlir/Interfaces/SubsetOpInterface.h" |
| 38 | #include "mlir/Interfaces/ValueBoundsOpInterface.h" |
| 39 | #include "mlir/Support/LLVM.h" |
| 40 | #include "mlir/Transforms/InliningUtils.h" |
| 41 | #include "llvm/ADT/ArrayRef.h" |
| 42 | #include "llvm/ADT/STLExtras.h" |
| 43 | #include "llvm/ADT/SmallVector.h" |
| 44 | #include "llvm/ADT/StringSet.h" |
| 45 | #include "llvm/ADT/TypeSwitch.h" |
| 46 | #include "llvm/Support/Casting.h" |
| 47 | |
| 48 | #include <cassert> |
| 49 | #include <cstdint> |
| 50 | #include <numeric> |
| 51 | |
| 52 | #include "mlir/Dialect/Vector/IR/VectorDialect.cpp.inc" |
| 53 | // Pull in all enum type and utility function definitions. |
| 54 | #include "mlir/Dialect/Vector/IR/VectorEnums.cpp.inc" |
| 55 | |
| 56 | using namespace mlir; |
| 57 | using namespace mlir::vector; |
| 58 | |
| 59 | /// Helper enum to classify mask value. |
| 60 | enum class MaskFormat { |
| 61 | AllTrue = 0, |
| 62 | AllFalse = 1, |
| 63 | Unknown = 2, |
| 64 | }; |
| 65 | |
| 66 | /// Helper method to classify a mask value. Currently, the method |
| 67 | /// looks "under the hood" of a constant value with dense attributes |
| 68 | /// and a constant mask operation (since the client may be called at |
| 69 | /// various stages during progressive lowering). |
| 70 | static MaskFormat getMaskFormat(Value mask) { |
| 71 | if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { |
| 72 | // Inspect constant dense values. We count up for bits that |
| 73 | // are set, count down for bits that are cleared, and bail |
| 74 | // when a mix is detected. |
| 75 | if (auto denseElts = llvm::dyn_cast<DenseIntElementsAttr>(c.getValue())) { |
| 76 | int64_t val = 0; |
| 77 | for (bool b : denseElts.getValues<bool>()) |
| 78 | if (b && val >= 0) |
| 79 | val++; |
| 80 | else if (!b && val <= 0) |
| 81 | val--; |
| 82 | else |
| 83 | return MaskFormat::Unknown; |
| 84 | if (val > 0) |
| 85 | return MaskFormat::AllTrue; |
| 86 | if (val < 0) |
| 87 | return MaskFormat::AllFalse; |
| 88 | } |
| 89 | } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { |
| 90 | // Inspect constant mask index. If the index exceeds the |
| 91 | // dimension size, all bits are set. If the index is zero |
| 92 | // or less, no bits are set. |
| 93 | ArrayRef<int64_t> masks = m.getMaskDimSizes(); |
| 94 | auto shape = m.getType().getShape(); |
| 95 | bool allTrue = true; |
| 96 | bool allFalse = true; |
| 97 | for (auto [maskIdx, dimSize] : llvm::zip_equal(masks, shape)) { |
| 98 | if (maskIdx < dimSize) |
| 99 | allTrue = false; |
| 100 | if (maskIdx > 0) |
| 101 | allFalse = false; |
| 102 | } |
| 103 | if (allTrue) |
| 104 | return MaskFormat::AllTrue; |
| 105 | if (allFalse) |
| 106 | return MaskFormat::AllFalse; |
| 107 | } else if (auto m = mask.getDefiningOp<CreateMaskOp>()) { |
| 108 | // Finds all-false create_masks. An all-true create_mask requires all |
| 109 | // dims to be constants, so that'll be folded to a constant_mask, then |
| 110 | // detected in the constant_mask case. |
| 111 | auto maskOperands = m.getOperands(); |
| 112 | for (Value operand : maskOperands) { |
| 113 | if (auto constantOp = operand.getDefiningOp<arith::ConstantOp>()) { |
| 114 | int64_t dimSize = |
| 115 | llvm::cast<IntegerAttr>(constantOp.getValue()).getInt(); |
| 116 | if (dimSize <= 0) |
| 117 | return MaskFormat::AllFalse; |
| 118 | } |
| 119 | } |
| 120 | return MaskFormat::Unknown; |
| 121 | } |
| 122 | return MaskFormat::Unknown; |
| 123 | } |
| 124 | |
| 125 | /// Default callback to build a region with a 'vector.yield' terminator with no |
| 126 | /// arguments. |
| 127 | void mlir::vector::buildTerminatedBody(OpBuilder &builder, Location loc) { |
| 128 | builder.create<vector::YieldOp>(loc); |
| 129 | } |
| 130 | |
| 131 | // Helper for verifying combining kinds in contractions and reductions. |
| 132 | static bool isSupportedCombiningKind(CombiningKind combiningKind, |
| 133 | Type elementType) { |
| 134 | switch (combiningKind) { |
| 135 | case CombiningKind::ADD: |
| 136 | case CombiningKind::MUL: |
| 137 | return elementType.isIntOrIndexOrFloat(); |
| 138 | case CombiningKind::MINUI: |
| 139 | case CombiningKind::MINSI: |
| 140 | case CombiningKind::MAXUI: |
| 141 | case CombiningKind::MAXSI: |
| 142 | case CombiningKind::AND: |
| 143 | case CombiningKind::OR: |
| 144 | case CombiningKind::XOR: |
| 145 | return elementType.isIntOrIndex(); |
| 146 | case CombiningKind::MINNUMF: |
| 147 | case CombiningKind::MAXNUMF: |
| 148 | case CombiningKind::MINIMUMF: |
| 149 | case CombiningKind::MAXIMUMF: |
| 150 | return llvm::isa<FloatType>(Val: elementType); |
| 151 | } |
| 152 | return false; |
| 153 | } |
| 154 | |
| 155 | /// Returns the effective rank of the vector to read/write for Xfer Ops |
| 156 | /// |
| 157 | /// When the element type of the shaped type is _a scalar_, this will simply |
| 158 | /// return the rank of the vector ( the result for xfer_read or the value to |
| 159 | /// store for xfer_write). |
| 160 | /// |
| 161 | /// When the element type of the base shaped type is _a vector_, returns the |
| 162 | /// difference between the original vector type and the element type of the |
| 163 | /// shaped type. |
| 164 | /// |
| 165 | /// EXAMPLE 1 (element type is _a scalar_): |
| 166 | /// - shapedType = tensor<10x20xf32>, vectorType = vector<2x4xf32> |
| 167 | /// - shapedType.getElementType() = f32 (rank 0) |
| 168 | /// - vectorType.getRank() = 2 |
| 169 | /// - Result = 2 - 0 = 2 |
| 170 | /// |
| 171 | /// EXAMPLE 2 (element type is _a vector_): |
| 172 | /// - shapedType = tensor<10xvector<20xf32>>, vectorType = vector<20xf32> |
| 173 | /// - shapedType.getElementType() = vector<20xf32> (rank 1) |
| 174 | /// - vectorType.getRank() = 1 |
| 175 | /// - Result = 1 - 1 = 0 |
| 176 | /// |
| 177 | /// This is used to determine the number of minor dimensions for identity maps |
| 178 | /// in vector transfer Ops. |
| 179 | static unsigned getEffectiveVectorRankForXferOp(ShapedType shapedType, |
| 180 | VectorType vectorType) { |
| 181 | unsigned elementVectorRank = 0; |
| 182 | VectorType elementVectorType = |
| 183 | llvm::dyn_cast<VectorType>(shapedType.getElementType()); |
| 184 | if (elementVectorType) |
| 185 | elementVectorRank += elementVectorType.getRank(); |
| 186 | return vectorType.getRank() - elementVectorRank; |
| 187 | } |
| 188 | |
| 189 | AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, |
| 190 | VectorType vectorType) { |
| 191 | // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. |
| 192 | // TODO: replace once we have 0-d vectors. |
| 193 | if (shapedType.getRank() == 0 && |
| 194 | vectorType.getShape() == ArrayRef<int64_t>{1}) |
| 195 | return AffineMap::get( |
| 196 | /*numDims=*/0, /*numSymbols=*/0, |
| 197 | getAffineConstantExpr(0, shapedType.getContext())); |
| 198 | return AffineMap::getMinorIdentityMap( |
| 199 | shapedType.getRank(), |
| 200 | getEffectiveVectorRankForXferOp(shapedType, vectorType), |
| 201 | shapedType.getContext()); |
| 202 | } |
| 203 | |
| 204 | /// Check if `write` is of a constant splat and the masked `read` is padded with |
| 205 | /// the same splat value -- meaning it could be the same value as the initial |
| 206 | /// constant splat. |
| 207 | static bool isSplatWriteConsistentWithMaskedRead(vector::TransferWriteOp write, |
| 208 | vector::TransferReadOp read) { |
| 209 | auto readMask = read.getMask(); |
| 210 | auto writeMask = write.getMask(); |
| 211 | // Check if the masks are consistent. The splat value could be the same if the |
| 212 | // read is masked (and padded with the splat value), and the write is unmasked |
| 213 | // or has the same mask. Note this does not allow the case where the write is |
| 214 | // masked and the read is unmasked, as then the read could be of more elements |
| 215 | // than the write (which may not be the same value). |
| 216 | bool couldBeSameSplat = readMask && (!writeMask || writeMask == readMask); |
| 217 | if (!couldBeSameSplat) |
| 218 | return false; |
| 219 | // Check for constant splat (as the source of the write). |
| 220 | DenseElementsAttr splatAttr; |
| 221 | if (!matchPattern(write.getVector(), |
| 222 | m_Constant<DenseElementsAttr>(bind_value: &splatAttr)) || |
| 223 | !splatAttr.isSplat()) { |
| 224 | return false; |
| 225 | } |
| 226 | // The padding of the read and the constant splat value must be the same. |
| 227 | Attribute padAttr; |
| 228 | if (!matchPattern(read.getPadding(), m_Constant(bind_value: &padAttr))) |
| 229 | return false; |
| 230 | return padAttr == splatAttr.getSplatValue<Attribute>(); |
| 231 | } |
| 232 | |
| 233 | bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, |
| 234 | vector::TransferReadOp read) { |
| 235 | return !defWrite.hasOutOfBoundsDim() && |
| 236 | defWrite.getIndices() == read.getIndices() && |
| 237 | defWrite.getVectorType() == read.getVectorType() && |
| 238 | defWrite.getPermutationMap() == read.getPermutationMap() && |
| 239 | ((!defWrite.getMask() && !read.getMask()) || |
| 240 | isSplatWriteConsistentWithMaskedRead(defWrite, read)); |
| 241 | } |
| 242 | |
| 243 | bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, |
| 244 | vector::TransferWriteOp priorWrite) { |
| 245 | return priorWrite.getIndices() == write.getIndices() && |
| 246 | priorWrite.getMask() == write.getMask() && |
| 247 | priorWrite.getVectorType() == write.getVectorType() && |
| 248 | priorWrite.getPermutationMap() == write.getPermutationMap(); |
| 249 | } |
| 250 | |
| 251 | bool mlir::vector::isDisjointTransferIndices( |
| 252 | VectorTransferOpInterface transferA, VectorTransferOpInterface transferB, |
| 253 | bool testDynamicValueUsingBounds) { |
| 254 | // For simplicity only look at transfer of same type. |
| 255 | if (transferA.getVectorType() != transferB.getVectorType()) |
| 256 | return false; |
| 257 | unsigned rankOffset = transferA.getLeadingShapedRank(); |
| 258 | for (unsigned i = 0, e = transferA.getIndices().size(); i < e; i++) { |
| 259 | Value indexA = transferA.getIndices()[i]; |
| 260 | Value indexB = transferB.getIndices()[i]; |
| 261 | std::optional<int64_t> cstIndexA = getConstantIntValue(ofr: indexA); |
| 262 | std::optional<int64_t> cstIndexB = getConstantIntValue(ofr: indexB); |
| 263 | |
| 264 | if (i < rankOffset) { |
| 265 | // For leading dimensions, if we can prove that index are different we |
| 266 | // know we are accessing disjoint slices. |
| 267 | if (cstIndexA.has_value() && cstIndexB.has_value()) { |
| 268 | if (*cstIndexA != *cstIndexB) |
| 269 | return true; |
| 270 | continue; |
| 271 | } |
| 272 | if (testDynamicValueUsingBounds) { |
| 273 | // First try to see if we can fully compose and simplify the affine |
| 274 | // expression as a fast track. |
| 275 | FailureOr<uint64_t> delta = |
| 276 | affine::fullyComposeAndComputeConstantDelta(value1: indexA, value2: indexB); |
| 277 | if (succeeded(Result: delta) && *delta != 0) |
| 278 | return true; |
| 279 | |
| 280 | FailureOr<bool> testEqual = |
| 281 | ValueBoundsConstraintSet::areEqual(var1: indexA, var2: indexB); |
| 282 | if (succeeded(Result: testEqual) && !testEqual.value()) |
| 283 | return true; |
| 284 | } |
| 285 | } else { |
| 286 | // For this dimension, we slice a part of the memref we need to make sure |
| 287 | // the intervals accessed don't overlap. |
| 288 | int64_t vectorDim = transferA.getVectorType().getDimSize(i - rankOffset); |
| 289 | if (cstIndexA.has_value() && cstIndexB.has_value()) { |
| 290 | int64_t distance = std::abs(i: *cstIndexA - *cstIndexB); |
| 291 | if (distance >= vectorDim) |
| 292 | return true; |
| 293 | continue; |
| 294 | } |
| 295 | if (testDynamicValueUsingBounds) { |
| 296 | // First try to see if we can fully compose and simplify the affine |
| 297 | // expression as a fast track. |
| 298 | FailureOr<int64_t> delta = |
| 299 | affine::fullyComposeAndComputeConstantDelta(value1: indexA, value2: indexB); |
| 300 | if (succeeded(Result: delta) && std::abs(i: *delta) >= vectorDim) |
| 301 | return true; |
| 302 | |
| 303 | FailureOr<int64_t> computeDelta = |
| 304 | ValueBoundsConstraintSet::computeConstantDelta(value1: indexA, value2: indexB); |
| 305 | if (succeeded(Result: computeDelta)) { |
| 306 | if (std::abs(i: computeDelta.value()) >= vectorDim) |
| 307 | return true; |
| 308 | } |
| 309 | } |
| 310 | } |
| 311 | } |
| 312 | return false; |
| 313 | } |
| 314 | |
| 315 | bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, |
| 316 | VectorTransferOpInterface transferB, |
| 317 | bool testDynamicValueUsingBounds) { |
| 318 | if (transferA.getBase() != transferB.getBase()) |
| 319 | return false; |
| 320 | return isDisjointTransferIndices(transferA, transferB, |
| 321 | testDynamicValueUsingBounds); |
| 322 | } |
| 323 | |
| 324 | // Helper to iterate over n-D vector slice elements. Calculate the next |
| 325 | // `position` in the n-D vector of size `shape`, applying an offset `offsets`. |
| 326 | // Modifies the `position` in place. Returns a failure when `position` becomes |
| 327 | // the end position. |
| 328 | static LogicalResult incSlicePosition(MutableArrayRef<int64_t> position, |
| 329 | ArrayRef<int64_t> shape, |
| 330 | ArrayRef<int64_t> offsets) { |
| 331 | for (auto [posInDim, dimSize, offsetInDim] : |
| 332 | llvm::reverse(C: llvm::zip_equal(t&: position, u&: shape, args&: offsets))) { |
| 333 | ++posInDim; |
| 334 | if (posInDim < dimSize + offsetInDim) |
| 335 | return success(); |
| 336 | |
| 337 | // Carry the overflow to the next loop iteration. |
| 338 | posInDim = offsetInDim; |
| 339 | } |
| 340 | |
| 341 | return failure(); |
| 342 | } |
| 343 | |
| 344 | /// Returns the integer numbers in `values`. `values` are expected to be |
| 345 | /// constant operations. |
| 346 | SmallVector<int64_t> vector::getAsIntegers(ArrayRef<Value> values) { |
| 347 | SmallVector<int64_t> ints; |
| 348 | llvm::transform(Range&: values, d_first: std::back_inserter(x&: ints), F: [](Value value) { |
| 349 | auto constOp = value.getDefiningOp<arith::ConstantIndexOp>(); |
| 350 | assert(constOp && "Unexpected non-constant index" ); |
| 351 | return constOp.value(); |
| 352 | }); |
| 353 | return ints; |
| 354 | } |
| 355 | |
| 356 | /// Returns the integer numbers in `foldResults`. `foldResults` are expected to |
| 357 | /// be constant operations. |
| 358 | SmallVector<int64_t> vector::getAsIntegers(ArrayRef<OpFoldResult> foldResults) { |
| 359 | SmallVector<int64_t> ints; |
| 360 | llvm::transform( |
| 361 | Range&: foldResults, d_first: std::back_inserter(x&: ints), F: [](OpFoldResult foldResult) { |
| 362 | assert(isa<Attribute>(foldResult) && "Unexpected non-constant index" ); |
| 363 | return cast<IntegerAttr>(cast<Attribute>(foldResult)).getInt(); |
| 364 | }); |
| 365 | return ints; |
| 366 | } |
| 367 | |
| 368 | /// Convert `foldResults` into Values. Integer attributes are converted to |
| 369 | /// constant op. |
| 370 | SmallVector<Value> vector::getAsValues(OpBuilder &builder, Location loc, |
| 371 | ArrayRef<OpFoldResult> foldResults) { |
| 372 | SmallVector<Value> values; |
| 373 | llvm::transform(Range&: foldResults, d_first: std::back_inserter(x&: values), |
| 374 | F: [&](OpFoldResult foldResult) { |
| 375 | if (auto attr = dyn_cast<Attribute>(foldResult)) |
| 376 | return builder |
| 377 | .create<arith::ConstantIndexOp>( |
| 378 | loc, cast<IntegerAttr>(attr).getInt()) |
| 379 | .getResult(); |
| 380 | |
| 381 | return cast<Value>(foldResult); |
| 382 | }); |
| 383 | return values; |
| 384 | } |
| 385 | |
| 386 | std::optional<int64_t> vector::getConstantVscaleMultiplier(Value value) { |
| 387 | if (value.getDefiningOp<vector::VectorScaleOp>()) |
| 388 | return 1; |
| 389 | auto mul = value.getDefiningOp<arith::MulIOp>(); |
| 390 | if (!mul) |
| 391 | return {}; |
| 392 | auto lhs = mul.getLhs(); |
| 393 | auto rhs = mul.getRhs(); |
| 394 | if (lhs.getDefiningOp<vector::VectorScaleOp>()) |
| 395 | return getConstantIntValue(rhs); |
| 396 | if (rhs.getDefiningOp<vector::VectorScaleOp>()) |
| 397 | return getConstantIntValue(lhs); |
| 398 | return {}; |
| 399 | } |
| 400 | |
| 401 | //===----------------------------------------------------------------------===// |
| 402 | // CombiningKindAttr |
| 403 | //===----------------------------------------------------------------------===// |
| 404 | |
| 405 | namespace mlir { |
| 406 | namespace vector { |
| 407 | namespace detail { |
| 408 | struct BitmaskEnumStorage : public AttributeStorage { |
| 409 | using KeyTy = uint64_t; |
| 410 | |
| 411 | BitmaskEnumStorage(KeyTy val) : value(val) {} |
| 412 | |
| 413 | bool operator==(const KeyTy &key) const { return value == key; } |
| 414 | |
| 415 | static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, |
| 416 | const KeyTy &key) { |
| 417 | return new (allocator.allocate<BitmaskEnumStorage>()) |
| 418 | BitmaskEnumStorage(key); |
| 419 | } |
| 420 | |
| 421 | KeyTy value = 0; |
| 422 | }; |
| 423 | } // namespace detail |
| 424 | } // namespace vector |
| 425 | } // namespace mlir |
| 426 | |
| 427 | //===----------------------------------------------------------------------===// |
| 428 | // VectorDialect |
| 429 | //===----------------------------------------------------------------------===// |
| 430 | |
| 431 | namespace { |
| 432 | /// This class defines the interface for handling inlining with vector dialect |
| 433 | /// operations. |
| 434 | struct VectorInlinerInterface : public DialectInlinerInterface { |
| 435 | using DialectInlinerInterface::DialectInlinerInterface; |
| 436 | |
| 437 | /// All vector dialect ops can be inlined. |
| 438 | bool isLegalToInline(Operation *, Region *, bool, IRMapping &) const final { |
| 439 | return true; |
| 440 | } |
| 441 | }; |
| 442 | } // namespace |
| 443 | |
| 444 | void VectorDialect::initialize() { |
| 445 | addAttributes< |
| 446 | #define GET_ATTRDEF_LIST |
| 447 | #include "mlir/Dialect/Vector/IR/VectorAttributes.cpp.inc" |
| 448 | >(); |
| 449 | |
| 450 | addOperations< |
| 451 | #define GET_OP_LIST |
| 452 | #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" |
| 453 | >(); |
| 454 | |
| 455 | addInterfaces<VectorInlinerInterface>(); |
| 456 | |
| 457 | declarePromisedInterfaces<bufferization::BufferizableOpInterface, |
| 458 | TransferReadOp, TransferWriteOp, GatherOp, MaskOp, |
| 459 | YieldOp>(); |
| 460 | declarePromisedInterfaces<SubsetOpInterface, TransferReadOp, |
| 461 | TransferWriteOp>(); |
| 462 | declarePromisedInterface<SubsetExtractionOpInterface, TransferReadOp>(); |
| 463 | declarePromisedInterface<SubsetInsertionOpInterface, TransferWriteOp>(); |
| 464 | declarePromisedInterface<ConvertToLLVMPatternInterface, VectorDialect>(); |
| 465 | } |
| 466 | |
| 467 | /// Materialize a single constant operation from a given attribute value with |
| 468 | /// the desired resultant type. |
| 469 | Operation *VectorDialect::materializeConstant(OpBuilder &builder, |
| 470 | Attribute value, Type type, |
| 471 | Location loc) { |
| 472 | if (isa<ub::PoisonAttrInterface>(value)) |
| 473 | return value.getDialect().materializeConstant(builder, value, type, loc); |
| 474 | |
| 475 | return arith::ConstantOp::materialize(builder, value, type, loc); |
| 476 | } |
| 477 | |
| 478 | IntegerType vector::getVectorSubscriptType(Builder &builder) { |
| 479 | return builder.getIntegerType(64); |
| 480 | } |
| 481 | |
| 482 | ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, |
| 483 | ArrayRef<int64_t> values) { |
| 484 | return builder.getI64ArrayAttr(values); |
| 485 | } |
| 486 | |
| 487 | //===----------------------------------------------------------------------===// |
| 488 | // MultiDimReductionOp |
| 489 | //===----------------------------------------------------------------------===// |
| 490 | |
| 491 | void vector::MultiDimReductionOp::build(OpBuilder &builder, |
| 492 | OperationState &result, Value source, |
| 493 | Value acc, ArrayRef<bool> reductionMask, |
| 494 | CombiningKind kind) { |
| 495 | SmallVector<int64_t> reductionDims; |
| 496 | for (const auto &en : llvm::enumerate(reductionMask)) |
| 497 | if (en.value()) |
| 498 | reductionDims.push_back(en.index()); |
| 499 | build(builder, result, kind, source, acc, reductionDims); |
| 500 | } |
| 501 | |
| 502 | OpFoldResult MultiDimReductionOp::fold(FoldAdaptor adaptor) { |
| 503 | // Single parallel dim, this is a noop. |
| 504 | if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) |
| 505 | return getSource(); |
| 506 | return {}; |
| 507 | } |
| 508 | |
| 509 | std::optional<SmallVector<int64_t, 4>> |
| 510 | MultiDimReductionOp::getShapeForUnroll() { |
| 511 | return llvm::to_vector<4>(getSourceVectorType().getShape()); |
| 512 | } |
| 513 | |
| 514 | LogicalResult MultiDimReductionOp::verify() { |
| 515 | SmallVector<int64_t> targetShape; |
| 516 | SmallVector<bool> scalableDims; |
| 517 | Type inferredReturnType; |
| 518 | auto sourceScalableDims = getSourceVectorType().getScalableDims(); |
| 519 | for (auto [dimIdx, dimSize] : |
| 520 | llvm::enumerate(getSourceVectorType().getShape())) |
| 521 | if (!llvm::any_of(getReductionDims(), |
| 522 | [dimIdx = dimIdx](int64_t reductionDimIdx) { |
| 523 | return reductionDimIdx == static_cast<int64_t>(dimIdx); |
| 524 | })) { |
| 525 | targetShape.push_back(dimSize); |
| 526 | scalableDims.push_back(sourceScalableDims[dimIdx]); |
| 527 | } |
| 528 | // TODO: update to also allow 0-d vectors when available. |
| 529 | if (targetShape.empty()) |
| 530 | inferredReturnType = getSourceVectorType().getElementType(); |
| 531 | else |
| 532 | inferredReturnType = VectorType::get( |
| 533 | targetShape, getSourceVectorType().getElementType(), scalableDims); |
| 534 | if (getType() != inferredReturnType) |
| 535 | return emitOpError() << "destination type " << getType() |
| 536 | << " is incompatible with source type " |
| 537 | << getSourceVectorType(); |
| 538 | |
| 539 | return success(); |
| 540 | } |
| 541 | |
| 542 | /// Returns the mask type expected by this operation. |
| 543 | Type MultiDimReductionOp::getExpectedMaskType() { |
| 544 | auto vecType = getSourceVectorType(); |
| 545 | return VectorType::get(vecType.getShape(), |
| 546 | IntegerType::get(vecType.getContext(), /*width=*/1), |
| 547 | vecType.getScalableDims()); |
| 548 | } |
| 549 | |
| 550 | namespace { |
| 551 | // Only unit dimensions that are being reduced are folded. If the dimension is |
| 552 | // unit, but not reduced, it is not folded, thereby keeping the output type the |
| 553 | // same. If not all dimensions which are reduced are of unit dimension, this |
| 554 | // transformation does nothing. This is just a generalization of |
| 555 | // ElideSingleElementReduction for ReduceOp. |
| 556 | struct ElideUnitDimsInMultiDimReduction |
| 557 | : public OpRewritePattern<MultiDimReductionOp> { |
| 558 | using OpRewritePattern::OpRewritePattern; |
| 559 | |
| 560 | LogicalResult matchAndRewrite(MultiDimReductionOp reductionOp, |
| 561 | PatternRewriter &rewriter) const override { |
| 562 | ArrayRef<int64_t> shape = reductionOp.getSourceVectorType().getShape(); |
| 563 | for (const auto &dim : enumerate(shape)) { |
| 564 | if (reductionOp.isReducedDim(dim.index()) && dim.value() != 1) |
| 565 | return failure(); |
| 566 | } |
| 567 | |
| 568 | // Vector mask setup. |
| 569 | OpBuilder::InsertionGuard guard(rewriter); |
| 570 | Operation *rootOp; |
| 571 | Value mask; |
| 572 | if (reductionOp.isMasked()) { |
| 573 | rewriter.setInsertionPoint(reductionOp.getMaskingOp()); |
| 574 | rootOp = reductionOp.getMaskingOp(); |
| 575 | mask = reductionOp.getMaskingOp().getMask(); |
| 576 | } else { |
| 577 | rootOp = reductionOp; |
| 578 | } |
| 579 | |
| 580 | Location loc = reductionOp.getLoc(); |
| 581 | Value acc = reductionOp.getAcc(); |
| 582 | Value cast; |
| 583 | if (auto dstVecType = dyn_cast<VectorType>(reductionOp.getDestType())) { |
| 584 | if (mask) { |
| 585 | VectorType newMaskType = |
| 586 | VectorType::get(dstVecType.getShape(), rewriter.getI1Type(), |
| 587 | dstVecType.getScalableDims()); |
| 588 | mask = rewriter.create<vector::ShapeCastOp>(loc, newMaskType, mask); |
| 589 | } |
| 590 | cast = rewriter.create<vector::ShapeCastOp>( |
| 591 | loc, reductionOp.getDestType(), reductionOp.getSource()); |
| 592 | } else { |
| 593 | // This means we are reducing all the dimensions, and all reduction |
| 594 | // dimensions are of size 1. So a simple extraction would do. |
| 595 | if (mask) |
| 596 | mask = rewriter.create<vector::ExtractOp>(loc, mask); |
| 597 | cast = rewriter.create<vector::ExtractOp>(loc, reductionOp.getSource()); |
| 598 | } |
| 599 | |
| 600 | Value result = |
| 601 | vector::makeArithReduction(rewriter, loc, reductionOp.getKind(), acc, |
| 602 | cast, /*fastmath=*/nullptr, mask); |
| 603 | rewriter.replaceOp(op: rootOp, newValues: result); |
| 604 | return success(); |
| 605 | } |
| 606 | }; |
| 607 | } // namespace |
| 608 | |
| 609 | void MultiDimReductionOp::getCanonicalizationPatterns( |
| 610 | RewritePatternSet &results, MLIRContext *context) { |
| 611 | results.add<ElideUnitDimsInMultiDimReduction>(context); |
| 612 | } |
| 613 | |
| 614 | //===----------------------------------------------------------------------===// |
| 615 | // ReductionOp |
| 616 | //===----------------------------------------------------------------------===// |
| 617 | |
| 618 | void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, |
| 619 | CombiningKind kind, Value vector, |
| 620 | arith::FastMathFlags fastMathFlags) { |
| 621 | build(builder, result, kind, vector, /*acc=*/Value(), fastMathFlags); |
| 622 | } |
| 623 | |
| 624 | void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, |
| 625 | CombiningKind kind, Value vector, Value acc, |
| 626 | arith::FastMathFlags fastMathFlags) { |
| 627 | build(builder, result, |
| 628 | llvm::cast<VectorType>(vector.getType()).getElementType(), kind, vector, |
| 629 | acc, fastMathFlags); |
| 630 | } |
| 631 | |
| 632 | LogicalResult ReductionOp::verify() { |
| 633 | // Verify for 0-D and 1-D vector. |
| 634 | int64_t rank = getSourceVectorType().getRank(); |
| 635 | if (rank > 1) |
| 636 | return emitOpError("unsupported reduction rank: " ) << rank; |
| 637 | |
| 638 | // Verify supported reduction kind. |
| 639 | Type eltType = getDest().getType(); |
| 640 | if (!isSupportedCombiningKind(getKind(), eltType)) |
| 641 | return emitOpError("unsupported reduction type '" ) |
| 642 | << eltType << "' for kind '" << stringifyCombiningKind(getKind()) |
| 643 | << "'" ; |
| 644 | |
| 645 | return success(); |
| 646 | } |
| 647 | |
| 648 | // MaskableOpInterface methods. |
| 649 | |
| 650 | /// Returns the mask type expected by this operation. |
| 651 | Type ReductionOp::getExpectedMaskType() { |
| 652 | auto vecType = getSourceVectorType(); |
| 653 | return VectorType::get(vecType.getShape(), |
| 654 | IntegerType::get(vecType.getContext(), /*width=*/1), |
| 655 | vecType.getScalableDims()); |
| 656 | } |
| 657 | |
| 658 | Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, |
| 659 | OpBuilder &builder, Location loc, |
| 660 | Value vector) { |
| 661 | switch (op) { |
| 662 | case arith::AtomicRMWKind::addf: |
| 663 | case arith::AtomicRMWKind::addi: |
| 664 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
| 665 | CombiningKind::ADD, vector); |
| 666 | case arith::AtomicRMWKind::mulf: |
| 667 | case arith::AtomicRMWKind::muli: |
| 668 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
| 669 | CombiningKind::MUL, vector); |
| 670 | case arith::AtomicRMWKind::minimumf: |
| 671 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
| 672 | CombiningKind::MINIMUMF, vector); |
| 673 | case arith::AtomicRMWKind::mins: |
| 674 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
| 675 | CombiningKind::MINSI, vector); |
| 676 | case arith::AtomicRMWKind::minu: |
| 677 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
| 678 | CombiningKind::MINUI, vector); |
| 679 | case arith::AtomicRMWKind::maximumf: |
| 680 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
| 681 | CombiningKind::MAXIMUMF, vector); |
| 682 | case arith::AtomicRMWKind::maxs: |
| 683 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
| 684 | CombiningKind::MAXSI, vector); |
| 685 | case arith::AtomicRMWKind::maxu: |
| 686 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
| 687 | CombiningKind::MAXUI, vector); |
| 688 | case arith::AtomicRMWKind::andi: |
| 689 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
| 690 | CombiningKind::AND, vector); |
| 691 | case arith::AtomicRMWKind::ori: |
| 692 | return builder.create<vector::ReductionOp>(vector.getLoc(), |
| 693 | CombiningKind::OR, vector); |
| 694 | // TODO: Add remaining reduction operations. |
| 695 | default: |
| 696 | (void)emitOptionalError(loc, args: "Reduction operation type not supported" ); |
| 697 | break; |
| 698 | } |
| 699 | return nullptr; |
| 700 | } |
| 701 | |
| 702 | std::optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { |
| 703 | return llvm::to_vector<4>(getSourceVectorType().getShape()); |
| 704 | } |
| 705 | |
| 706 | namespace { |
| 707 | struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> { |
| 708 | using OpRewritePattern::OpRewritePattern; |
| 709 | |
| 710 | LogicalResult matchAndRewrite(ReductionOp reductionOp, |
| 711 | PatternRewriter &rewriter) const override { |
| 712 | // Vector mask setup. |
| 713 | OpBuilder::InsertionGuard guard(rewriter); |
| 714 | auto maskableOp = |
| 715 | cast<vector::MaskableOpInterface>(reductionOp.getOperation()); |
| 716 | Operation *rootOp; |
| 717 | Value mask; |
| 718 | if (maskableOp.isMasked()) { |
| 719 | rewriter.setInsertionPoint(maskableOp.getMaskingOp()); |
| 720 | rootOp = maskableOp.getMaskingOp(); |
| 721 | mask = maskableOp.getMaskingOp().getMask(); |
| 722 | } else { |
| 723 | rootOp = reductionOp; |
| 724 | } |
| 725 | |
| 726 | auto vectorType = reductionOp.getSourceVectorType(); |
| 727 | if (vectorType.getRank() != 0 && vectorType.getDimSize(0) != 1) |
| 728 | return failure(); |
| 729 | |
| 730 | Location loc = reductionOp.getLoc(); |
| 731 | if (mask) |
| 732 | mask = rewriter.create<ExtractOp>(loc, mask); |
| 733 | Value result = rewriter.create<ExtractOp>(loc, reductionOp.getVector()); |
| 734 | |
| 735 | if (Value acc = reductionOp.getAcc()) |
| 736 | result = vector::makeArithReduction(rewriter, loc, reductionOp.getKind(), |
| 737 | result, acc, |
| 738 | reductionOp.getFastmathAttr(), mask); |
| 739 | |
| 740 | rewriter.replaceOp(op: rootOp, newValues: result); |
| 741 | return success(); |
| 742 | } |
| 743 | }; |
| 744 | } // namespace |
| 745 | |
| 746 | void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 747 | MLIRContext *context) { |
| 748 | results.add<ElideSingleElementReduction>(context); |
| 749 | } |
| 750 | |
| 751 | //===----------------------------------------------------------------------===// |
| 752 | // ContractionOp |
| 753 | //===----------------------------------------------------------------------===// |
| 754 | |
| 755 | void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, |
| 756 | Value lhs, Value rhs, Value acc, |
| 757 | ArrayRef<ArrayRef<AffineExpr>> indexingExprs, |
| 758 | ArrayRef<IteratorType> iteratorTypes) { |
| 759 | result.addOperands({lhs, rhs, acc}); |
| 760 | result.addTypes(acc.getType()); |
| 761 | result.addAttribute( |
| 762 | getIndexingMapsAttrName(result.name), |
| 763 | builder.getAffineMapArrayAttr( |
| 764 | AffineMap::inferFromExprList(indexingExprs, builder.getContext()))); |
| 765 | result.addAttribute( |
| 766 | getIteratorTypesAttrName(result.name), |
| 767 | builder.getArrayAttr(llvm::to_vector(llvm::map_range( |
| 768 | iteratorTypes, [&](IteratorType t) -> mlir::Attribute { |
| 769 | return IteratorTypeAttr::get(builder.getContext(), t); |
| 770 | })))); |
| 771 | } |
| 772 | |
| 773 | void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, |
| 774 | Value lhs, Value rhs, Value acc, |
| 775 | ArrayAttr indexingMaps, |
| 776 | ArrayAttr iteratorTypes) { |
| 777 | build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, |
| 778 | ContractionOp::getDefaultKind()); |
| 779 | } |
| 780 | |
| 781 | void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, |
| 782 | Value lhs, Value rhs, Value acc, |
| 783 | ArrayAttr indexingMaps, |
| 784 | ArrayAttr iteratorTypes, CombiningKind kind) { |
| 785 | result.addOperands({lhs, rhs, acc}); |
| 786 | result.addTypes(acc.getType()); |
| 787 | result.addAttribute(getIndexingMapsAttrName(result.name), indexingMaps); |
| 788 | result.addAttribute(getIteratorTypesAttrName(result.name), iteratorTypes); |
| 789 | result.addAttribute(getKindAttrName(result.name), |
| 790 | CombiningKindAttr::get(builder.getContext(), kind)); |
| 791 | } |
| 792 | |
| 793 | ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { |
| 794 | OpAsmParser::UnresolvedOperand lhsInfo; |
| 795 | OpAsmParser::UnresolvedOperand rhsInfo; |
| 796 | OpAsmParser::UnresolvedOperand accInfo; |
| 797 | SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo; |
| 798 | SmallVector<Type, 2> types; |
| 799 | Type resultType; |
| 800 | auto loc = parser.getCurrentLocation(); |
| 801 | DictionaryAttr dictAttr; |
| 802 | // TODO: Unify linalg op attribute parsing. |
| 803 | if (parser.parseAttribute(dictAttr) || parser.parseOperand(lhsInfo) || |
| 804 | parser.parseComma() || parser.parseOperand(rhsInfo) || |
| 805 | parser.parseComma() || parser.parseOperand(accInfo) || |
| 806 | parser.parseTrailingOperandList(masksInfo) || |
| 807 | parser.parseOptionalAttrDict(result.attributes) || |
| 808 | parser.parseColonTypeList(types) || |
| 809 | parser.parseKeywordType("into" , resultType) || |
| 810 | parser.resolveOperand(lhsInfo, types[0], result.operands) || |
| 811 | parser.resolveOperand(rhsInfo, types[1], result.operands) || |
| 812 | parser.resolveOperand(accInfo, resultType, result.operands) || |
| 813 | parser.addTypeToList(resultType, result.types)) |
| 814 | return failure(); |
| 815 | result.attributes.append(dictAttr.getValue().begin(), |
| 816 | dictAttr.getValue().end()); |
| 817 | |
| 818 | // Convert array of string into an array of IteratyType enums. This is needed, |
| 819 | // because tests still use the old format when 'iterator_types' attribute is |
| 820 | // represented as an array of strings. |
| 821 | // TODO: Remove this conversion once tests are fixed. |
| 822 | auto iteratorTypes = dyn_cast_or_null<ArrayAttr>( |
| 823 | result.attributes.get(getIteratorTypesAttrName(result.name))); |
| 824 | if (!iteratorTypes) { |
| 825 | return parser.emitError(loc) |
| 826 | << "expected " << getIteratorTypesAttrName(result.name) |
| 827 | << " array attribute" ; |
| 828 | } |
| 829 | |
| 830 | SmallVector<Attribute> iteratorTypeAttrs; |
| 831 | |
| 832 | for (StringRef s : iteratorTypes.getAsValueRange<StringAttr>()) { |
| 833 | auto maybeIteratorType = symbolizeIteratorType(s); |
| 834 | if (!maybeIteratorType.has_value()) |
| 835 | return parser.emitError(loc) << "unexpected iterator_type (" << s << ")" ; |
| 836 | |
| 837 | iteratorTypeAttrs.push_back( |
| 838 | IteratorTypeAttr::get(parser.getContext(), maybeIteratorType.value())); |
| 839 | } |
| 840 | result.attributes.set(getIteratorTypesAttrName(result.name), |
| 841 | parser.getBuilder().getArrayAttr(iteratorTypeAttrs)); |
| 842 | |
| 843 | if (!result.attributes.get(getKindAttrName(result.name))) { |
| 844 | result.addAttribute( |
| 845 | getKindAttrName(result.name), |
| 846 | CombiningKindAttr::get(result.getContext(), |
| 847 | ContractionOp::getDefaultKind())); |
| 848 | } |
| 849 | if (masksInfo.empty()) |
| 850 | return success(); |
| 851 | if (masksInfo.size() != 2) |
| 852 | return parser.emitError(parser.getNameLoc(), |
| 853 | "expected zero or exactly 2 vector mask operands" ); |
| 854 | auto lhsType = llvm::cast<VectorType>(types[0]); |
| 855 | auto rhsType = llvm::cast<VectorType>(types[1]); |
| 856 | auto maskElementType = parser.getBuilder().getI1Type(); |
| 857 | std::array<VectorType, 2> maskTypes = { |
| 858 | VectorType::Builder(lhsType).setElementType(maskElementType), |
| 859 | VectorType::Builder(rhsType).setElementType(maskElementType)}; |
| 860 | if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) |
| 861 | return failure(); |
| 862 | return success(); |
| 863 | } |
| 864 | |
| 865 | void ContractionOp::print(OpAsmPrinter &p) { |
| 866 | // TODO: Unify printing code with linalg ops. |
| 867 | auto attrNames = getTraitAttrNames(); |
| 868 | llvm::StringSet<> traitAttrsSet; |
| 869 | traitAttrsSet.insert_range(attrNames); |
| 870 | SmallVector<NamedAttribute, 8> attrs; |
| 871 | for (auto attr : (*this)->getAttrs()) { |
| 872 | if (attr.getName() == getIteratorTypesAttrName()) { |
| 873 | auto iteratorTypes = |
| 874 | llvm::cast<ArrayAttr>(attr.getValue()) |
| 875 | .getAsValueRange<IteratorTypeAttr, IteratorType>(); |
| 876 | // Convert IteratorType enums into the string representation. This is |
| 877 | // needed, because tests still use the old format when 'iterator_types' |
| 878 | // attribute is represented as an array of strings. |
| 879 | // TODO: Remove this conversion once tests are fixed. |
| 880 | SmallVector<Attribute> iteratorTypeNames = llvm::to_vector( |
| 881 | llvm::map_range(iteratorTypes, [&](IteratorType t) -> Attribute { |
| 882 | return StringAttr::get(getContext(), stringifyIteratorType(t)); |
| 883 | })); |
| 884 | |
| 885 | attrs.emplace_back(getIteratorTypesAttrName(), |
| 886 | ArrayAttr::get(getContext(), iteratorTypeNames)); |
| 887 | } else if (traitAttrsSet.count(attr.getName().strref()) > 0) |
| 888 | attrs.push_back(attr); |
| 889 | } |
| 890 | |
| 891 | auto dictAttr = DictionaryAttr::get(getContext(), attrs); |
| 892 | p << " " << dictAttr << " " << getLhs() << ", " ; |
| 893 | p << getRhs() << ", " << getAcc(); |
| 894 | |
| 895 | p.printOptionalAttrDict((*this)->getAttrs(), attrNames); |
| 896 | p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into " |
| 897 | << getResultType(); |
| 898 | } |
| 899 | |
| 900 | static bool verifyDimMap(VectorType lhsType, VectorType rhsType, |
| 901 | const std::vector<std::pair<int64_t, int64_t>> &map) { |
| 902 | for (auto &dimPair : map) { |
| 903 | if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || |
| 904 | dimPair.second < 0 || dimPair.second >= rhsType.getRank() || |
| 905 | lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) |
| 906 | return false; |
| 907 | } |
| 908 | return true; |
| 909 | } |
| 910 | |
| 911 | static LogicalResult verifyOutputShape( |
| 912 | ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, |
| 913 | Type resType, |
| 914 | const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, |
| 915 | const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { |
| 916 | DenseSet<int64_t> lhsContractingDimSet; |
| 917 | DenseSet<int64_t> rhsContractingDimSet; |
| 918 | for (auto &dimPair : contractingDimMap) { |
| 919 | lhsContractingDimSet.insert(V: dimPair.first); |
| 920 | rhsContractingDimSet.insert(V: dimPair.second); |
| 921 | } |
| 922 | DenseSet<int64_t> rhsBatchDimSet(llvm::from_range, |
| 923 | llvm::make_second_range(c: batchDimMap)); |
| 924 | |
| 925 | // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. |
| 926 | SmallVector<int64_t, 4> expectedResultDims; |
| 927 | for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { |
| 928 | if (lhsContractingDimSet.count(V: i) > 0) |
| 929 | continue; |
| 930 | expectedResultDims.push_back(Elt: lhsType.getDimSize(i)); |
| 931 | } |
| 932 | |
| 933 | // Add free dimensions from 'rhsType' to 'expectedResultDims'. |
| 934 | for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { |
| 935 | if (rhsContractingDimSet.count(V: i) > 0 || rhsBatchDimSet.count(V: i) > 0) |
| 936 | continue; |
| 937 | expectedResultDims.push_back(Elt: rhsType.getDimSize(i)); |
| 938 | } |
| 939 | |
| 940 | // Verify 'expectedResultDims'. |
| 941 | if (expectedResultDims.empty()) { |
| 942 | // No batch or free dimension implies a scalar result. |
| 943 | if (llvm::isa<VectorType>(Val: resType) || llvm::isa<VectorType>(Val: accType)) |
| 944 | return op.emitOpError("invalid accumulator/result vector shape" ); |
| 945 | } else { |
| 946 | // At least one batch or free dimension implies a vector result. |
| 947 | auto resVectorType = llvm::dyn_cast<VectorType>(resType); |
| 948 | auto accVectorType = llvm::dyn_cast<VectorType>(accType); |
| 949 | if (!resVectorType || !accVectorType) |
| 950 | return op.emitOpError("invalid accumulator/result vector shape" ); |
| 951 | |
| 952 | // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector |
| 953 | // types fully define the result vector type. This assumes the affine maps |
| 954 | // are well-formed, which must have been verified already. |
| 955 | MLIRContext *ctx = op.getContext(); |
| 956 | AffineMap lhsMap = op.getIndexingMapsArray()[0]; |
| 957 | AffineMap rhsMap = op.getIndexingMapsArray()[1]; |
| 958 | if (getUnusedDimsBitVector(maps: {lhsMap, rhsMap}).any()) |
| 959 | return op.emitOpError( |
| 960 | "expected all dimensions to be either a LHS or a RHS dimension" ); |
| 961 | SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); |
| 962 | for (auto pair : |
| 963 | {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { |
| 964 | VectorType v = pair.first; |
| 965 | auto map = pair.second; |
| 966 | for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { |
| 967 | unsigned pos = map.getDimPosition(idx); |
| 968 | if (!extents[pos]) |
| 969 | extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); |
| 970 | } |
| 971 | } |
| 972 | if (!llvm::all_of(Range&: extents, P: [](AffineExpr e) { return e; })) |
| 973 | return op.emitOpError("expected all dimensions to get an extent as " |
| 974 | "either a LHS or a RHS dimension" ); |
| 975 | |
| 976 | AffineMap resMap = op.getIndexingMapsArray()[2]; |
| 977 | auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), |
| 978 | /*symbolCount=*/0, results: extents, context: ctx); |
| 979 | // Compose the resMap with the extentsMap, which is a constant map. |
| 980 | AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); |
| 981 | assert(llvm::all_of(expectedMap.getResults(), |
| 982 | llvm::IsaPred<AffineConstantExpr>) && |
| 983 | "expected constant extent along all dimensions." ); |
| 984 | // Extract the expected shape and build the type. |
| 985 | auto expectedShape = llvm::to_vector<4>( |
| 986 | Range: llvm::map_range(C: expectedMap.getResults(), F: [](AffineExpr e) { |
| 987 | return cast<AffineConstantExpr>(Val&: e).getValue(); |
| 988 | })); |
| 989 | auto expected = |
| 990 | VectorType::get(expectedShape, resVectorType.getElementType(), |
| 991 | resVectorType.getScalableDims()); |
| 992 | if (resVectorType != expected || accVectorType != expected) |
| 993 | return op.emitOpError( |
| 994 | "invalid accumulator/result vector shape, expected: " ) |
| 995 | << expected; |
| 996 | } |
| 997 | return success(); |
| 998 | } |
| 999 | |
| 1000 | LogicalResult ContractionOp::verify() { |
| 1001 | VectorType lhsType = getLhsType(); |
| 1002 | VectorType rhsType = getRhsType(); |
| 1003 | Type accType = getAccType(); |
| 1004 | Type resType = getResultType(); |
| 1005 | |
| 1006 | if (llvm::isa<IntegerType>(lhsType.getElementType())) { |
| 1007 | if (!lhsType.getElementType().isSignlessInteger()) |
| 1008 | return emitOpError("only supports signless integer types" ); |
| 1009 | } |
| 1010 | |
| 1011 | // Verify that an indexing map was specified for each vector operand. |
| 1012 | if (getIndexingMapsArray().size() != 3) |
| 1013 | return emitOpError("expected an indexing map for each vector operand" ); |
| 1014 | |
| 1015 | // Verify that each index map has 'numIterators' inputs, no symbols, and |
| 1016 | // that the number of map outputs equals the rank of its associated |
| 1017 | // vector operand. |
| 1018 | unsigned numIterators = getIteratorTypes().getValue().size(); |
| 1019 | for (const auto &it : llvm::enumerate(getIndexingMapsArray())) { |
| 1020 | auto index = it.index(); |
| 1021 | auto map = it.value(); |
| 1022 | if (map.getNumSymbols() != 0) |
| 1023 | return emitOpError("expected indexing map " ) |
| 1024 | << index << " to have no symbols" ; |
| 1025 | auto vectorType = llvm::dyn_cast<VectorType>(getOperand(index).getType()); |
| 1026 | unsigned rank = vectorType ? vectorType.getShape().size() : 0; |
| 1027 | // Verify that the map has the right number of inputs, outputs, and indices. |
| 1028 | // This also correctly accounts for (..) -> () for rank-0 results. |
| 1029 | if (map.getNumDims() != numIterators) |
| 1030 | return emitOpError("expected indexing map " ) |
| 1031 | << index << " to have " << numIterators << " number of inputs" ; |
| 1032 | if (map.getNumResults() != rank) |
| 1033 | return emitOpError("expected indexing map " ) |
| 1034 | << index << " to have " << rank << " number of outputs" ; |
| 1035 | if (!map.isProjectedPermutation()) |
| 1036 | return emitOpError("expected indexing map " ) |
| 1037 | << index << " to be a projected permutation of its inputs" ; |
| 1038 | } |
| 1039 | |
| 1040 | auto contractingDimMap = getContractingDimMap(); |
| 1041 | auto batchDimMap = getBatchDimMap(); |
| 1042 | |
| 1043 | // Verify at least one contracting dimension pair was specified. |
| 1044 | if (contractingDimMap.empty()) |
| 1045 | return emitOpError("expected at least one contracting dimension pair" ); |
| 1046 | |
| 1047 | // Verify contracting dimension map was properly constructed. |
| 1048 | if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) |
| 1049 | return emitOpError("invalid contracting dimension map" ); |
| 1050 | |
| 1051 | // Verify batch dimension map was properly constructed. |
| 1052 | if (!verifyDimMap(lhsType, rhsType, batchDimMap)) |
| 1053 | return emitOpError("invalid batch dimension map" ); |
| 1054 | |
| 1055 | // Verify 'accType' and 'resType' shape. |
| 1056 | if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, |
| 1057 | contractingDimMap, batchDimMap))) |
| 1058 | return failure(); |
| 1059 | |
| 1060 | // Verify supported combining kind. |
| 1061 | auto vectorType = llvm::dyn_cast<VectorType>(resType); |
| 1062 | auto elementType = vectorType ? vectorType.getElementType() : resType; |
| 1063 | if (!isSupportedCombiningKind(getKind(), elementType)) |
| 1064 | return emitOpError("unsupported contraction type" ); |
| 1065 | |
| 1066 | return success(); |
| 1067 | } |
| 1068 | |
| 1069 | // MaskableOpInterface methods. |
| 1070 | |
| 1071 | /// Returns the mask type expected by this operation. Mostly used for |
| 1072 | /// verification purposes. It requires the operation to be vectorized." |
| 1073 | Type ContractionOp::getExpectedMaskType() { |
| 1074 | auto indexingMaps = this->getIndexingMapsArray(); |
| 1075 | AffineMap lhsIdxMap = indexingMaps[0]; |
| 1076 | AffineMap rhsIdxMap = indexingMaps[1]; |
| 1077 | VectorType lhsType = this->getLhsType(); |
| 1078 | VectorType rhsType = this->getRhsType(); |
| 1079 | |
| 1080 | unsigned numVecDims = lhsIdxMap.getNumDims(); |
| 1081 | SmallVector<int64_t> maskShape(numVecDims, ShapedType::kDynamic); |
| 1082 | SmallVector<bool> maskShapeScalableDims(numVecDims, false); |
| 1083 | |
| 1084 | // Using the information in the indexing maps, extract the size of each |
| 1085 | // dimension in the vector.contract operation from the two input operands. |
| 1086 | for (auto [dimIdx, dimSize] : llvm::enumerate(lhsType.getShape())) { |
| 1087 | maskShape[lhsIdxMap.getDimPosition(dimIdx)] = dimSize; |
| 1088 | maskShapeScalableDims[lhsIdxMap.getDimPosition(dimIdx)] = |
| 1089 | lhsType.getScalableDims()[dimIdx]; |
| 1090 | } |
| 1091 | for (auto [dimIdx, dimSize] : llvm::enumerate(rhsType.getShape())) { |
| 1092 | maskShape[rhsIdxMap.getDimPosition(dimIdx)] = dimSize; |
| 1093 | maskShapeScalableDims[rhsIdxMap.getDimPosition(dimIdx)] = |
| 1094 | rhsType.getScalableDims()[dimIdx]; |
| 1095 | } |
| 1096 | |
| 1097 | assert(!ShapedType::isDynamicShape(maskShape) && |
| 1098 | "Mask shape couldn't be computed" ); |
| 1099 | |
| 1100 | return VectorType::get(maskShape, |
| 1101 | IntegerType::get(lhsType.getContext(), /*width=*/1), |
| 1102 | maskShapeScalableDims); |
| 1103 | } |
| 1104 | |
| 1105 | SmallVector<StringRef> ContractionOp::getTraitAttrNames() { |
| 1106 | return SmallVector<StringRef>{getIndexingMapsAttrName(), |
| 1107 | getIteratorTypesAttrName(), getKindAttrName()}; |
| 1108 | } |
| 1109 | |
| 1110 | static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { |
| 1111 | for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) |
| 1112 | if (targetExpr == map.getResult(idx: i)) |
| 1113 | return i; |
| 1114 | return -1; |
| 1115 | } |
| 1116 | |
| 1117 | static std::vector<std::pair<int64_t, int64_t>> |
| 1118 | getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, |
| 1119 | IteratorType targetIteratorType, MLIRContext *context) { |
| 1120 | std::vector<std::pair<int64_t, int64_t>> dimMap; |
| 1121 | for (const auto &it : llvm::enumerate(iteratorTypes)) { |
| 1122 | auto iteratorType = llvm::cast<IteratorTypeAttr>(it.value()).getValue(); |
| 1123 | if (iteratorType != targetIteratorType) |
| 1124 | continue; |
| 1125 | // Search lhs/rhs map results for 'targetExpr'. |
| 1126 | auto targetExpr = getAffineDimExpr(it.index(), context); |
| 1127 | int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); |
| 1128 | int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); |
| 1129 | if (lhsDim >= 0 && rhsDim >= 0) |
| 1130 | dimMap.emplace_back(lhsDim, rhsDim); |
| 1131 | } |
| 1132 | return dimMap; |
| 1133 | } |
| 1134 | |
| 1135 | void ContractionOp::getIterationBounds( |
| 1136 | SmallVectorImpl<int64_t> &iterationBounds) { |
| 1137 | auto lhsShape = getLhsType().getShape(); |
| 1138 | auto resVectorType = llvm::dyn_cast<VectorType>(getResultType()); |
| 1139 | SmallVector<AffineMap, 4> indexingMaps(getIndexingMapsArray()); |
| 1140 | for (const auto &it : llvm::enumerate(getIteratorTypes())) { |
| 1141 | // Search lhs/rhs map results for 'targetExpr'. |
| 1142 | auto targetExpr = getAffineDimExpr(it.index(), getContext()); |
| 1143 | auto iteratorType = llvm::cast<IteratorTypeAttr>(it.value()).getValue(); |
| 1144 | if (iteratorType == IteratorType::reduction) { |
| 1145 | // Get reduction dim size from lhs shape (same size in rhsShape). |
| 1146 | int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); |
| 1147 | assert(lhsDimIndex >= 0); |
| 1148 | iterationBounds.push_back(lhsShape[lhsDimIndex]); |
| 1149 | continue; |
| 1150 | } |
| 1151 | // Get parallel dimension size from result shape. |
| 1152 | int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); |
| 1153 | assert(resDimIndex >= 0); |
| 1154 | assert(resVectorType != nullptr); |
| 1155 | iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); |
| 1156 | } |
| 1157 | } |
| 1158 | |
| 1159 | void ContractionOp::getIterationIndexMap( |
| 1160 | std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { |
| 1161 | unsigned numMaps = getIndexingMapsArray().size(); |
| 1162 | iterationIndexMap.resize(numMaps); |
| 1163 | for (const auto &it : llvm::enumerate(getIndexingMapsArray())) { |
| 1164 | auto index = it.index(); |
| 1165 | auto map = it.value(); |
| 1166 | for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { |
| 1167 | auto dim = cast<AffineDimExpr>(map.getResult(i)); |
| 1168 | iterationIndexMap[index][dim.getPosition()] = i; |
| 1169 | } |
| 1170 | } |
| 1171 | } |
| 1172 | |
| 1173 | std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { |
| 1174 | SmallVector<AffineMap, 4> indexingMaps(getIndexingMapsArray()); |
| 1175 | return getDimMap(indexingMaps, getIteratorTypes(), IteratorType::reduction, |
| 1176 | getContext()); |
| 1177 | } |
| 1178 | |
| 1179 | std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { |
| 1180 | SmallVector<AffineMap, 4> indexingMaps(getIndexingMapsArray()); |
| 1181 | return getDimMap(indexingMaps, getIteratorTypes(), IteratorType::parallel, |
| 1182 | getContext()); |
| 1183 | } |
| 1184 | |
| 1185 | std::optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { |
| 1186 | SmallVector<int64_t, 4> shape; |
| 1187 | getIterationBounds(shape); |
| 1188 | return shape; |
| 1189 | } |
| 1190 | |
| 1191 | /// Return a fused vector::ContractionOp which represents a patterns such as: |
| 1192 | /// |
| 1193 | /// ```mlir |
| 1194 | /// %c0 = vector.constant 0: ... |
| 1195 | /// %c = vector.contract %a, %b, %c0: ... |
| 1196 | /// %e = add %c, %d: ... |
| 1197 | /// ``` |
| 1198 | /// |
| 1199 | /// by: |
| 1200 | /// |
| 1201 | /// ```mlir |
| 1202 | /// %e = vector.contract %a, %b, %d: ... |
| 1203 | /// ``` |
| 1204 | /// |
| 1205 | /// Return null if the canonicalization does not apply. |
| 1206 | // TODO: This should be a folding of Add into Contract in core but while they |
| 1207 | // live in different dialects, it is not possible without unnatural |
| 1208 | // dependencies. |
| 1209 | template <typename AddOpType> |
| 1210 | struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { |
| 1211 | using OpRewritePattern<AddOpType>::OpRewritePattern; |
| 1212 | |
| 1213 | LogicalResult matchAndRewrite(AddOpType addOp, |
| 1214 | PatternRewriter &rewriter) const override { |
| 1215 | auto canonicalize = [&](Value maybeContraction, |
| 1216 | Value otherOperand) -> vector::ContractionOp { |
| 1217 | vector::ContractionOp contractionOp = |
| 1218 | dyn_cast_or_null<vector::ContractionOp>( |
| 1219 | maybeContraction.getDefiningOp()); |
| 1220 | if (!contractionOp) |
| 1221 | return vector::ContractionOp(); |
| 1222 | if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( |
| 1223 | contractionOp.getAcc().getDefiningOp())) { |
| 1224 | if (maybeZero.getValue() == |
| 1225 | rewriter.getZeroAttr(type: contractionOp.getAcc().getType())) { |
| 1226 | IRMapping bvm; |
| 1227 | bvm.map(contractionOp.getAcc(), otherOperand); |
| 1228 | auto newContraction = |
| 1229 | cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); |
| 1230 | rewriter.replaceOp(addOp, newContraction.getResult()); |
| 1231 | return newContraction; |
| 1232 | } |
| 1233 | } |
| 1234 | return vector::ContractionOp(); |
| 1235 | }; |
| 1236 | |
| 1237 | Value a = addOp->getOperand(0), b = addOp->getOperand(1); |
| 1238 | vector::ContractionOp contract = canonicalize(a, b); |
| 1239 | contract = contract ? contract : canonicalize(b, a); |
| 1240 | return contract ? success() : failure(); |
| 1241 | } |
| 1242 | }; |
| 1243 | |
| 1244 | void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 1245 | MLIRContext *context) { |
| 1246 | results.add<CanonicalizeContractAdd<arith::AddIOp>, |
| 1247 | CanonicalizeContractAdd<arith::AddFOp>>(context); |
| 1248 | } |
| 1249 | |
| 1250 | //===----------------------------------------------------------------------===// |
| 1251 | // ExtractElementOp |
| 1252 | //===----------------------------------------------------------------------===// |
| 1253 | |
| 1254 | void ExtractElementOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges, |
| 1255 | SetIntRangeFn setResultRanges) { |
| 1256 | setResultRanges(getResult(), argRanges.front()); |
| 1257 | } |
| 1258 | |
| 1259 | void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, |
| 1260 | Value source) { |
| 1261 | result.addOperands({source}); |
| 1262 | result.addTypes(llvm::cast<VectorType>(source.getType()).getElementType()); |
| 1263 | } |
| 1264 | |
| 1265 | LogicalResult vector::ExtractElementOp::verify() { |
| 1266 | VectorType vectorType = getSourceVectorType(); |
| 1267 | if (vectorType.getRank() == 0) { |
| 1268 | if (getPosition()) |
| 1269 | return emitOpError("expected position to be empty with 0-D vector" ); |
| 1270 | return success(); |
| 1271 | } |
| 1272 | if (vectorType.getRank() != 1) |
| 1273 | return emitOpError("unexpected >1 vector rank" ); |
| 1274 | if (!getPosition()) |
| 1275 | return emitOpError("expected position for 1-D vector" ); |
| 1276 | return success(); |
| 1277 | } |
| 1278 | |
| 1279 | OpFoldResult vector::ExtractElementOp::fold(FoldAdaptor adaptor) { |
| 1280 | // Skip the 0-D vector here now. |
| 1281 | if (!adaptor.getPosition()) |
| 1282 | return {}; |
| 1283 | |
| 1284 | // Fold extractelement (splat X) -> X. |
| 1285 | if (auto splat = getVector().getDefiningOp<vector::SplatOp>()) |
| 1286 | return splat.getInput(); |
| 1287 | |
| 1288 | // Fold extractelement(broadcast(X)) -> X. |
| 1289 | if (auto broadcast = getVector().getDefiningOp<vector::BroadcastOp>()) |
| 1290 | if (!llvm::isa<VectorType>(broadcast.getSource().getType())) |
| 1291 | return broadcast.getSource(); |
| 1292 | |
| 1293 | auto src = dyn_cast_or_null<DenseElementsAttr>(adaptor.getVector()); |
| 1294 | auto pos = dyn_cast_or_null<IntegerAttr>(adaptor.getPosition()); |
| 1295 | if (!pos || !src) |
| 1296 | return {}; |
| 1297 | |
| 1298 | auto srcElements = src.getValues<Attribute>(); |
| 1299 | |
| 1300 | uint64_t posIdx = pos.getInt(); |
| 1301 | if (posIdx >= srcElements.size()) |
| 1302 | return {}; |
| 1303 | |
| 1304 | return srcElements[posIdx]; |
| 1305 | } |
| 1306 | |
| 1307 | // Returns `true` if `index` is either within [0, maxIndex) or equal to |
| 1308 | // `poisonValue`. |
| 1309 | static bool isValidPositiveIndexOrPoison(int64_t index, int64_t poisonValue, |
| 1310 | int64_t maxIndex) { |
| 1311 | return index == poisonValue || (index >= 0 && index < maxIndex); |
| 1312 | } |
| 1313 | |
| 1314 | //===----------------------------------------------------------------------===// |
| 1315 | // ExtractOp |
| 1316 | //===----------------------------------------------------------------------===// |
| 1317 | |
| 1318 | void ExtractOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges, |
| 1319 | SetIntRangeFn setResultRanges) { |
| 1320 | setResultRanges(getResult(), argRanges.front()); |
| 1321 | } |
| 1322 | |
| 1323 | void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, |
| 1324 | Value source) { |
| 1325 | auto vectorTy = cast<VectorType>(source.getType()); |
| 1326 | build(builder, result, source, SmallVector<int64_t>(vectorTy.getRank(), 0)); |
| 1327 | } |
| 1328 | |
| 1329 | void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, |
| 1330 | Value source, int64_t position) { |
| 1331 | build(builder, result, source, ArrayRef<int64_t>{position}); |
| 1332 | } |
| 1333 | |
| 1334 | void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, |
| 1335 | Value source, OpFoldResult position) { |
| 1336 | build(builder, result, source, ArrayRef<OpFoldResult>{position}); |
| 1337 | } |
| 1338 | |
| 1339 | void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, |
| 1340 | Value source, ArrayRef<int64_t> position) { |
| 1341 | build(builder, result, source, /*dynamic_position=*/ArrayRef<Value>(), |
| 1342 | builder.getDenseI64ArrayAttr(position)); |
| 1343 | } |
| 1344 | |
| 1345 | void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, |
| 1346 | Value source, ArrayRef<OpFoldResult> position) { |
| 1347 | SmallVector<int64_t> staticPos; |
| 1348 | SmallVector<Value> dynamicPos; |
| 1349 | dispatchIndexOpFoldResults(position, dynamicPos, staticPos); |
| 1350 | build(builder, result, source, dynamicPos, |
| 1351 | builder.getDenseI64ArrayAttr(staticPos)); |
| 1352 | } |
| 1353 | |
| 1354 | LogicalResult |
| 1355 | ExtractOp::inferReturnTypes(MLIRContext *, std::optional<Location>, |
| 1356 | ExtractOp::Adaptor adaptor, |
| 1357 | SmallVectorImpl<Type> &inferredReturnTypes) { |
| 1358 | auto vectorType = llvm::cast<VectorType>(adaptor.getVector().getType()); |
| 1359 | if (static_cast<int64_t>(adaptor.getStaticPosition().size()) == |
| 1360 | vectorType.getRank()) { |
| 1361 | inferredReturnTypes.push_back(vectorType.getElementType()); |
| 1362 | } else { |
| 1363 | auto n = std::min<size_t>(adaptor.getStaticPosition().size(), |
| 1364 | vectorType.getRank()); |
| 1365 | inferredReturnTypes.push_back(VectorType::get( |
| 1366 | vectorType.getShape().drop_front(n), vectorType.getElementType(), |
| 1367 | vectorType.getScalableDims().drop_front(n))); |
| 1368 | } |
| 1369 | return success(); |
| 1370 | } |
| 1371 | |
| 1372 | bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| 1373 | // Allow extracting 1-element vectors instead of scalars. |
| 1374 | auto isCompatible = [](TypeRange l, TypeRange r) { |
| 1375 | auto vectorType = llvm::dyn_cast<VectorType>(l.front()); |
| 1376 | return vectorType && vectorType.getShape().equals({1}) && |
| 1377 | vectorType.getElementType() == r.front(); |
| 1378 | }; |
| 1379 | if (l.size() == 1 && r.size() == 1 && |
| 1380 | (isCompatible(l, r) || isCompatible(r, l))) |
| 1381 | return true; |
| 1382 | return l == r; |
| 1383 | } |
| 1384 | |
| 1385 | LogicalResult vector::ExtractOp::verify() { |
| 1386 | // Note: This check must come before getMixedPosition() to prevent a crash. |
| 1387 | auto dynamicMarkersCount = |
| 1388 | llvm::count_if(getStaticPosition(), ShapedType::isDynamic); |
| 1389 | if (static_cast<size_t>(dynamicMarkersCount) != getDynamicPosition().size()) |
| 1390 | return emitOpError( |
| 1391 | "mismatch between dynamic and static positions (kDynamic marker but no " |
| 1392 | "corresponding dynamic position) -- this can only happen due to an " |
| 1393 | "incorrect fold/rewrite" ); |
| 1394 | auto position = getMixedPosition(); |
| 1395 | if (position.size() > static_cast<unsigned>(getSourceVectorType().getRank())) |
| 1396 | return emitOpError( |
| 1397 | "expected position attribute of rank no greater than vector rank" ); |
| 1398 | for (auto [idx, pos] : llvm::enumerate(position)) { |
| 1399 | if (auto attr = dyn_cast<Attribute>(pos)) { |
| 1400 | int64_t constIdx = cast<IntegerAttr>(attr).getInt(); |
| 1401 | if (!isValidPositiveIndexOrPoison( |
| 1402 | constIdx, kPoisonIndex, getSourceVectorType().getDimSize(idx))) { |
| 1403 | return emitOpError("expected position attribute #" ) |
| 1404 | << (idx + 1) |
| 1405 | << " to be a non-negative integer smaller than the " |
| 1406 | "corresponding vector dimension or poison (-1)" ; |
| 1407 | } |
| 1408 | } |
| 1409 | } |
| 1410 | return success(); |
| 1411 | } |
| 1412 | |
| 1413 | template <typename IntType> |
| 1414 | static SmallVector<IntType> (ArrayAttr arrayAttr) { |
| 1415 | return llvm::to_vector<4>(llvm::map_range( |
| 1416 | arrayAttr.getAsRange<IntegerAttr>(), |
| 1417 | [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); |
| 1418 | } |
| 1419 | |
| 1420 | /// Fold the result of chains of ExtractOp in place by simply concatenating the |
| 1421 | /// positions. |
| 1422 | static LogicalResult (ExtractOp ) { |
| 1423 | if (!extractOp.getVector().getDefiningOp<ExtractOp>()) |
| 1424 | return failure(); |
| 1425 | |
| 1426 | // TODO: Canonicalization for dynamic position not implemented yet. |
| 1427 | if (extractOp.hasDynamicPosition()) |
| 1428 | return failure(); |
| 1429 | |
| 1430 | SmallVector<int64_t> globalPosition; |
| 1431 | ExtractOp currentOp = extractOp; |
| 1432 | ArrayRef<int64_t> extrPos = currentOp.getStaticPosition(); |
| 1433 | globalPosition.append(in_start: extrPos.rbegin(), in_end: extrPos.rend()); |
| 1434 | while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) { |
| 1435 | currentOp = nextOp; |
| 1436 | // TODO: Canonicalization for dynamic position not implemented yet. |
| 1437 | if (currentOp.hasDynamicPosition()) |
| 1438 | return failure(); |
| 1439 | ArrayRef<int64_t> extrPos = currentOp.getStaticPosition(); |
| 1440 | globalPosition.append(in_start: extrPos.rbegin(), in_end: extrPos.rend()); |
| 1441 | } |
| 1442 | extractOp.setOperand(0, currentOp.getVector()); |
| 1443 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
| 1444 | OpBuilder b(extractOp.getContext()); |
| 1445 | std::reverse(first: globalPosition.begin(), last: globalPosition.end()); |
| 1446 | extractOp.setStaticPosition(globalPosition); |
| 1447 | return success(); |
| 1448 | } |
| 1449 | |
| 1450 | namespace { |
| 1451 | /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. |
| 1452 | /// Walk back a chain of InsertOp/TransposeOp until we hit a match. |
| 1453 | /// Compose TransposeOp permutations as we walk back. |
| 1454 | /// This helper class keeps an updated extraction position `extractPosition` |
| 1455 | /// with extra trailing sentinels. |
| 1456 | /// The sentinels encode the internal transposition status of the result vector. |
| 1457 | /// As we iterate, extractPosition is permuted and updated. |
| 1458 | class { |
| 1459 | public: |
| 1460 | (ExtractOp e); |
| 1461 | |
| 1462 | /// Iterate over producing insert and transpose ops until we find a fold. |
| 1463 | Value fold(); |
| 1464 | |
| 1465 | private: |
| 1466 | /// Return true if the vector at position `a` is contained within the vector |
| 1467 | /// at position `b`. Under insert/extract semantics, this is the same as `a` |
| 1468 | /// is a prefix of `b`. |
| 1469 | template <typename ContainerA, typename ContainerB> |
| 1470 | bool (const ContainerA &a, const ContainerB &b) { |
| 1471 | return a.size() <= b.size() && |
| 1472 | std::equal(a.begin(), a.begin() + a.size(), b.begin()); |
| 1473 | } |
| 1474 | |
| 1475 | /// Return true if the vector at position `a` intersects the vector at |
| 1476 | /// position `b`. Under insert/extract semantics, this is the same as equality |
| 1477 | /// of all entries of `a` that are >=0 with the corresponding entries of b. |
| 1478 | /// Comparison is on the common prefix (i.e. zip). |
| 1479 | template <typename ContainerA, typename ContainerB> |
| 1480 | bool (const ContainerA &a, const ContainerB &b) { |
| 1481 | for (auto [elemA, elemB] : llvm::zip(a, b)) { |
| 1482 | if (elemA < 0 || elemB < 0) |
| 1483 | continue; |
| 1484 | if (elemA != elemB) |
| 1485 | return false; |
| 1486 | } |
| 1487 | return true; |
| 1488 | } |
| 1489 | |
| 1490 | /// Folding is only possible in the absence of an internal permutation in the |
| 1491 | /// result vector. |
| 1492 | bool () { |
| 1493 | return (sentinels == ArrayRef(extractPosition).drop_front(N: extractedRank)); |
| 1494 | } |
| 1495 | |
| 1496 | // Helper to get the next defining op of interest. |
| 1497 | void (Value v) { |
| 1498 | nextInsertOp = v.getDefiningOp<vector::InsertOp>(); |
| 1499 | nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); |
| 1500 | }; |
| 1501 | |
| 1502 | // Case 1. If we hit a transpose, just compose the map and iterate. |
| 1503 | // Invariant: insert + transpose do not change rank, we can always compose. |
| 1504 | LogicalResult handleTransposeOp(); |
| 1505 | |
| 1506 | // Case 2: the insert position matches extractPosition exactly, early return. |
| 1507 | LogicalResult handleInsertOpWithMatchingPos(Value &res); |
| 1508 | |
| 1509 | /// Case 3: if the insert position is a prefix of extractPosition, extract a |
| 1510 | /// portion of the source of the insert. |
| 1511 | /// Example: |
| 1512 | /// ``` |
| 1513 | /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> |
| 1514 | /// // extractPosition == [1, 2, 3] |
| 1515 | /// %ext = vector.extract %ins[1, 0]: vector<5> from vector<3x4x5> |
| 1516 | /// // can fold to vector.extract %source[0, 3] |
| 1517 | /// %ext = vector.extract %source[3]: vector<6> from vector<5x6> |
| 1518 | /// ``` |
| 1519 | /// To traverse through %source, we need to set the leading dims to 0 and |
| 1520 | /// drop the extra leading dims. |
| 1521 | /// This method updates the internal state. |
| 1522 | LogicalResult handleInsertOpWithPrefixPos(Value &res); |
| 1523 | |
| 1524 | /// Try to fold in place to extract(source, extractPosition) and return the |
| 1525 | /// folded result. Return null if folding is not possible (e.g. due to an |
| 1526 | /// internal transposition in the result). |
| 1527 | Value tryToFoldExtractOpInPlace(Value source); |
| 1528 | |
| 1529 | ExtractOp ; |
| 1530 | int64_t ; |
| 1531 | int64_t ; |
| 1532 | |
| 1533 | InsertOp ; |
| 1534 | TransposeOp ; |
| 1535 | |
| 1536 | /// Sentinel values that encode the internal permutation status of the result. |
| 1537 | /// They are set to (-1, ... , -k) at the beginning and appended to |
| 1538 | /// `extractPosition`. |
| 1539 | /// In the end, the tail of `extractPosition` must be exactly `sentinels` to |
| 1540 | /// ensure that there is no internal transposition. |
| 1541 | /// Internal transposition cannot be accounted for with a folding pattern. |
| 1542 | // TODO: We could relax the internal transposition with an extra transposition |
| 1543 | // operation in a future canonicalizer. |
| 1544 | SmallVector<int64_t> ; |
| 1545 | SmallVector<int64_t> ; |
| 1546 | }; |
| 1547 | } // namespace |
| 1548 | |
| 1549 | ExtractFromInsertTransposeChainState::( |
| 1550 | ExtractOp e) |
| 1551 | : extractOp(e), vectorRank(extractOp.getSourceVectorType().getRank()), |
| 1552 | extractedRank(extractOp.getNumIndices()) { |
| 1553 | assert(vectorRank >= extractedRank && "Extracted position overflow" ); |
| 1554 | sentinels.reserve(N: vectorRank - extractedRank); |
| 1555 | for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) |
| 1556 | sentinels.push_back(Elt: -(i + 1)); |
| 1557 | extractPosition.assign(extractOp.getStaticPosition().begin(), |
| 1558 | extractOp.getStaticPosition().end()); |
| 1559 | llvm::append_range(C&: extractPosition, R&: sentinels); |
| 1560 | } |
| 1561 | |
| 1562 | // Case 1. If we hit a transpose, just compose the map and iterate. |
| 1563 | // Invariant: insert + transpose do not change rank, we can always compose. |
| 1564 | LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { |
| 1565 | // TODO: Canonicalization for dynamic position not implemented yet. |
| 1566 | if (extractOp.hasDynamicPosition()) |
| 1567 | return failure(); |
| 1568 | |
| 1569 | if (!nextTransposeOp) |
| 1570 | return failure(); |
| 1571 | AffineMap m = inversePermutation(AffineMap::getPermutationMap( |
| 1572 | nextTransposeOp.getPermutation(), extractOp.getContext())); |
| 1573 | extractPosition = applyPermutationMap(map: m, source: ArrayRef(extractPosition)); |
| 1574 | return success(); |
| 1575 | } |
| 1576 | |
| 1577 | // Case 2: the insert position matches extractPosition exactly, early return. |
| 1578 | LogicalResult |
| 1579 | ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( |
| 1580 | Value &res) { |
| 1581 | // TODO: Canonicalization for dynamic position not implemented yet. |
| 1582 | if (extractOp.hasDynamicPosition() || nextInsertOp.hasDynamicPosition()) |
| 1583 | return failure(); |
| 1584 | |
| 1585 | ArrayRef<int64_t> insertedPos = nextInsertOp.getStaticPosition(); |
| 1586 | if (insertedPos != llvm::ArrayRef(extractPosition).take_front(N: extractedRank)) |
| 1587 | return failure(); |
| 1588 | // Case 2.a. early-exit fold. |
| 1589 | res = nextInsertOp.getValueToStore(); |
| 1590 | // Case 2.b. if internal transposition is present, canFold will be false. |
| 1591 | return success(IsSuccess: canFold()); |
| 1592 | } |
| 1593 | |
| 1594 | /// Case 3: if inserted position is a prefix of extractPosition, |
| 1595 | /// extract a portion of the source of the insertion. |
| 1596 | /// This method updates the internal state. |
| 1597 | LogicalResult |
| 1598 | ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { |
| 1599 | // TODO: Canonicalization for dynamic position not implemented yet. |
| 1600 | if (extractOp.hasDynamicPosition() || nextInsertOp.hasDynamicPosition()) |
| 1601 | return failure(); |
| 1602 | |
| 1603 | ArrayRef<int64_t> insertedPos = nextInsertOp.getStaticPosition(); |
| 1604 | if (!isContainedWithin(a: insertedPos, b: extractPosition)) |
| 1605 | return failure(); |
| 1606 | // Set leading dims to zero. |
| 1607 | std::fill_n(first: extractPosition.begin(), n: insertedPos.size(), value: 0); |
| 1608 | // Drop extra leading dims. |
| 1609 | extractPosition.erase(CS: extractPosition.begin(), |
| 1610 | CE: extractPosition.begin() + insertedPos.size()); |
| 1611 | extractedRank = extractPosition.size() - sentinels.size(); |
| 1612 | // Case 3.a. early-exit fold (break and delegate to post-while path). |
| 1613 | res = nextInsertOp.getValueToStore(); |
| 1614 | // Case 3.b. if internal transposition is present, canFold will be false. |
| 1615 | return success(); |
| 1616 | } |
| 1617 | |
| 1618 | /// Try to fold in place to extract(source, extractPosition) and return the |
| 1619 | /// folded result. Return null if folding is not possible (e.g. due to an |
| 1620 | /// internal transposition in the result). |
| 1621 | Value ExtractFromInsertTransposeChainState::( |
| 1622 | Value source) { |
| 1623 | // TODO: Canonicalization for dynamic position not implemented yet. |
| 1624 | if (extractOp.hasDynamicPosition()) |
| 1625 | return Value(); |
| 1626 | |
| 1627 | // If we can't fold (either internal transposition, or nothing to fold), bail. |
| 1628 | bool nothingToFold = (source == extractOp.getVector()); |
| 1629 | if (nothingToFold || !canFold()) |
| 1630 | return Value(); |
| 1631 | |
| 1632 | // Otherwise, fold by updating the op inplace and return its result. |
| 1633 | OpBuilder b(extractOp.getContext()); |
| 1634 | extractOp.setStaticPosition( |
| 1635 | ArrayRef(extractPosition).take_front(extractedRank)); |
| 1636 | extractOp.getVectorMutable().assign(source); |
| 1637 | return extractOp.getResult(); |
| 1638 | } |
| 1639 | |
| 1640 | /// Iterate over producing insert and transpose ops until we find a fold. |
| 1641 | Value ExtractFromInsertTransposeChainState::() { |
| 1642 | // TODO: Canonicalization for dynamic position not implemented yet. |
| 1643 | if (extractOp.hasDynamicPosition()) |
| 1644 | return Value(); |
| 1645 | |
| 1646 | Value = extractOp.getVector(); |
| 1647 | updateStateForNextIteration(v: valueToExtractFrom); |
| 1648 | while (nextInsertOp || nextTransposeOp) { |
| 1649 | // Case 1. If we hit a transpose, just compose the map and iterate. |
| 1650 | // Invariant: insert + transpose do not change rank, we can always compose. |
| 1651 | if (succeeded(Result: handleTransposeOp())) { |
| 1652 | valueToExtractFrom = nextTransposeOp.getVector(); |
| 1653 | updateStateForNextIteration(v: valueToExtractFrom); |
| 1654 | continue; |
| 1655 | } |
| 1656 | |
| 1657 | Value result; |
| 1658 | // Case 2: the position match exactly. |
| 1659 | if (succeeded(Result: handleInsertOpWithMatchingPos(res&: result))) |
| 1660 | return result; |
| 1661 | |
| 1662 | // Case 3: if the inserted position is a prefix of extractPosition, we can |
| 1663 | // just extract a portion of the source of the insert. |
| 1664 | if (succeeded(Result: handleInsertOpWithPrefixPos(res&: result))) |
| 1665 | return tryToFoldExtractOpInPlace(source: result); |
| 1666 | |
| 1667 | // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel |
| 1668 | // values. This is a more difficult case and we bail. |
| 1669 | ArrayRef<int64_t> insertedPos = nextInsertOp.getStaticPosition(); |
| 1670 | if (isContainedWithin(a: extractPosition, b: insertedPos) || |
| 1671 | intersectsWhereNonNegative(a: extractPosition, b: insertedPos)) |
| 1672 | return Value(); |
| 1673 | |
| 1674 | // Case 5: No intersection, we forward the extract to insertOp.dest(). |
| 1675 | valueToExtractFrom = nextInsertOp.getDest(); |
| 1676 | updateStateForNextIteration(v: valueToExtractFrom); |
| 1677 | } |
| 1678 | // If after all this we can fold, go for it. |
| 1679 | return tryToFoldExtractOpInPlace(source: valueToExtractFrom); |
| 1680 | } |
| 1681 | |
| 1682 | /// Returns true if the operation has a 0-D vector type operand or result. |
| 1683 | static bool hasZeroDimVectors(Operation *op) { |
| 1684 | auto hasZeroDimVectorType = [](Type type) -> bool { |
| 1685 | auto vecType = dyn_cast<VectorType>(type); |
| 1686 | return vecType && vecType.getRank() == 0; |
| 1687 | }; |
| 1688 | |
| 1689 | return llvm::any_of(Range: op->getOperandTypes(), P: hasZeroDimVectorType) || |
| 1690 | llvm::any_of(Range: op->getResultTypes(), P: hasZeroDimVectorType); |
| 1691 | } |
| 1692 | |
| 1693 | /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. |
| 1694 | static Value (ExtractOp ) { |
| 1695 | Operation *defOp = extractOp.getVector().getDefiningOp(); |
| 1696 | if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) |
| 1697 | return Value(); |
| 1698 | |
| 1699 | Value source = defOp->getOperand(idx: 0); |
| 1700 | if (extractOp.getType() == source.getType()) |
| 1701 | return source; |
| 1702 | auto getRank = [](Type type) { |
| 1703 | return llvm::isa<VectorType>(type) ? llvm::cast<VectorType>(type).getRank() |
| 1704 | : 0; |
| 1705 | }; |
| 1706 | |
| 1707 | // If splat or broadcast from a scalar, just return the source scalar. |
| 1708 | unsigned broadcastSrcRank = getRank(source.getType()); |
| 1709 | if (broadcastSrcRank == 0 && source.getType() == extractOp.getType()) |
| 1710 | return source; |
| 1711 | |
| 1712 | unsigned = getRank(extractOp.getType()); |
| 1713 | if (extractResultRank > broadcastSrcRank) |
| 1714 | return Value(); |
| 1715 | // Check that the dimension of the result haven't been broadcasted. |
| 1716 | auto = llvm::dyn_cast<VectorType>(extractOp.getType()); |
| 1717 | auto broadcastVecType = llvm::dyn_cast<VectorType>(source.getType()); |
| 1718 | if (extractVecType && broadcastVecType && |
| 1719 | extractVecType.getShape() != |
| 1720 | broadcastVecType.getShape().take_back(extractResultRank)) |
| 1721 | return Value(); |
| 1722 | |
| 1723 | auto broadcastOp = cast<vector::BroadcastOp>(defOp); |
| 1724 | int64_t broadcastDstRank = broadcastOp.getResultVectorType().getRank(); |
| 1725 | |
| 1726 | // Detect all the positions that come from "dim-1" broadcasting. |
| 1727 | // These dimensions correspond to "dim-1" broadcasted dims; set the mathching |
| 1728 | // extract position to `0` when extracting from the source operand. |
| 1729 | llvm::SetVector<int64_t> broadcastedUnitDims = |
| 1730 | broadcastOp.computeBroadcastedUnitDims(); |
| 1731 | SmallVector<OpFoldResult> (extractOp.getMixedPosition()); |
| 1732 | OpBuilder b(extractOp.getContext()); |
| 1733 | int64_t broadcastRankDiff = broadcastDstRank - broadcastSrcRank; |
| 1734 | for (int64_t i = broadcastRankDiff, e = extractPos.size(); i < e; ++i) |
| 1735 | if (broadcastedUnitDims.contains(key: i)) |
| 1736 | extractPos[i] = b.getIndexAttr(0); |
| 1737 | // `rankDiff` leading dimensions correspond to new broadcasted dims, drop the |
| 1738 | // matching extract position when extracting from the source operand. |
| 1739 | int64_t rankDiff = broadcastSrcRank - extractResultRank; |
| 1740 | extractPos.erase(CS: extractPos.begin(), |
| 1741 | CE: std::next(x: extractPos.begin(), n: extractPos.size() - rankDiff)); |
| 1742 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
| 1743 | auto [staticPos, dynPos] = decomposeMixedValues(mixedValues: extractPos); |
| 1744 | extractOp->setOperands( |
| 1745 | llvm::to_vector(llvm::concat<Value>(ValueRange(source), dynPos))); |
| 1746 | extractOp.setStaticPosition(staticPos); |
| 1747 | return extractOp.getResult(); |
| 1748 | } |
| 1749 | |
| 1750 | /// Fold extractOp coming from ShuffleOp. |
| 1751 | /// |
| 1752 | /// Example: |
| 1753 | /// |
| 1754 | /// %shuffle = vector.shuffle %a, %b [0, 8, 7, 15] |
| 1755 | /// : vector<8xf32>, vector<8xf32> |
| 1756 | /// %extract = vector.extract %shuffle[3] : f32 from vector<4xf32> |
| 1757 | /// -> |
| 1758 | /// %extract = vector.extract %b[7] : f32 from vector<8xf32> |
| 1759 | /// |
| 1760 | static Value (ExtractOp ) { |
| 1761 | // Dynamic positions are not folded as the resulting code would be more |
| 1762 | // complex than the input code. |
| 1763 | if (extractOp.hasDynamicPosition()) |
| 1764 | return Value(); |
| 1765 | |
| 1766 | auto shuffleOp = extractOp.getVector().getDefiningOp<ShuffleOp>(); |
| 1767 | if (!shuffleOp) |
| 1768 | return Value(); |
| 1769 | |
| 1770 | // TODO: 0-D or multi-dimensional vectors not supported yet. |
| 1771 | if (shuffleOp.getResultVectorType().getRank() != 1) |
| 1772 | return Value(); |
| 1773 | |
| 1774 | int64_t inputVecSize = shuffleOp.getV1().getType().getShape()[0]; |
| 1775 | auto shuffleMask = shuffleOp.getMask(); |
| 1776 | int64_t = extractOp.getStaticPosition()[0]; |
| 1777 | int64_t shuffleIdx = shuffleMask[extractIdx]; |
| 1778 | |
| 1779 | // Find the shuffled vector to extract from based on the shuffle index. |
| 1780 | if (shuffleIdx < inputVecSize) { |
| 1781 | extractOp.setOperand(0, shuffleOp.getV1()); |
| 1782 | extractOp.setStaticPosition({shuffleIdx}); |
| 1783 | } else { |
| 1784 | extractOp.setOperand(0, shuffleOp.getV2()); |
| 1785 | extractOp.setStaticPosition({shuffleIdx - inputVecSize}); |
| 1786 | } |
| 1787 | |
| 1788 | return extractOp.getResult(); |
| 1789 | } |
| 1790 | |
| 1791 | // Fold extractOp with source coming from ShapeCast op. |
| 1792 | static Value (ExtractOp ) { |
| 1793 | // TODO: Canonicalization for dynamic position not implemented yet. |
| 1794 | if (extractOp.hasDynamicPosition()) |
| 1795 | return Value(); |
| 1796 | |
| 1797 | auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>(); |
| 1798 | if (!shapeCastOp) |
| 1799 | return Value(); |
| 1800 | |
| 1801 | // Get the nth dimension size starting from lowest dimension. |
| 1802 | auto getDimReverse = [](VectorType type, int64_t n) { |
| 1803 | return type.getShape().take_back(n + 1).front(); |
| 1804 | }; |
| 1805 | int64_t destinationRank = |
| 1806 | llvm::isa<VectorType>(extractOp.getType()) |
| 1807 | ? llvm::cast<VectorType>(extractOp.getType()).getRank() |
| 1808 | : 0; |
| 1809 | if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) |
| 1810 | return Value(); |
| 1811 | if (destinationRank > 0) { |
| 1812 | auto destinationType = |
| 1813 | llvm::cast<VectorType>(extractOp.getResult().getType()); |
| 1814 | for (int64_t i = 0; i < destinationRank; i++) { |
| 1815 | // The lowest dimension of the destination must match the lowest |
| 1816 | // dimension of the shapecast op source. |
| 1817 | // TODO: This case could be support in a canonicalization pattern. |
| 1818 | if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != |
| 1819 | getDimReverse(destinationType, i)) |
| 1820 | return Value(); |
| 1821 | } |
| 1822 | } |
| 1823 | // Extract the strides associated with the extract op vector source. Then use |
| 1824 | // this to calculate a linearized position for the extract. |
| 1825 | SmallVector<int64_t> (extractOp.getStaticPosition()); |
| 1826 | std::reverse(first: extractedPos.begin(), last: extractedPos.end()); |
| 1827 | SmallVector<int64_t, 4> strides; |
| 1828 | int64_t stride = 1; |
| 1829 | for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { |
| 1830 | strides.push_back(Elt: stride); |
| 1831 | stride *= |
| 1832 | getDimReverse(extractOp.getSourceVectorType(), i + destinationRank); |
| 1833 | } |
| 1834 | |
| 1835 | int64_t position = linearize(offsets: extractedPos, basis: strides); |
| 1836 | // Then extract the strides associated to the shapeCast op vector source and |
| 1837 | // delinearize the position using those strides. |
| 1838 | SmallVector<int64_t, 4> newStrides; |
| 1839 | int64_t numDimension = |
| 1840 | shapeCastOp.getSourceVectorType().getRank() - destinationRank; |
| 1841 | stride = 1; |
| 1842 | for (int64_t i = 0; i < numDimension; i++) { |
| 1843 | newStrides.push_back(Elt: stride); |
| 1844 | stride *= |
| 1845 | getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); |
| 1846 | } |
| 1847 | std::reverse(first: newStrides.begin(), last: newStrides.end()); |
| 1848 | SmallVector<int64_t, 4> newPosition = delinearize(linearIndex: position, strides: newStrides); |
| 1849 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
| 1850 | OpBuilder b(extractOp.getContext()); |
| 1851 | extractOp.setStaticPosition(newPosition); |
| 1852 | extractOp.setOperand(0, shapeCastOp.getSource()); |
| 1853 | return extractOp.getResult(); |
| 1854 | } |
| 1855 | |
| 1856 | /// Fold an ExtractOp from ExtractStridedSliceOp. |
| 1857 | static Value (ExtractOp ) { |
| 1858 | // TODO: Canonicalization for dynamic position not implemented yet. |
| 1859 | if (extractOp.hasDynamicPosition()) |
| 1860 | return Value(); |
| 1861 | |
| 1862 | auto = |
| 1863 | extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>(); |
| 1864 | if (!extractStridedSliceOp) |
| 1865 | return Value(); |
| 1866 | |
| 1867 | // 0-D vectors not supported. |
| 1868 | assert(!hasZeroDimVectors(extractOp) && "0-D vectors not supported" ); |
| 1869 | if (hasZeroDimVectors(extractStridedSliceOp)) |
| 1870 | return Value(); |
| 1871 | |
| 1872 | // Return if 'extractStridedSliceOp' has non-unit strides. |
| 1873 | if (extractStridedSliceOp.hasNonUnitStrides()) |
| 1874 | return Value(); |
| 1875 | |
| 1876 | // Trim offsets for dimensions fully extracted. |
| 1877 | auto sliceOffsets = |
| 1878 | extractVector<int64_t>(extractStridedSliceOp.getOffsets()); |
| 1879 | while (!sliceOffsets.empty()) { |
| 1880 | size_t lastOffset = sliceOffsets.size() - 1; |
| 1881 | if (sliceOffsets.back() != 0 || |
| 1882 | extractStridedSliceOp.getType().getDimSize(lastOffset) != |
| 1883 | extractStridedSliceOp.getSourceVectorType().getDimSize(lastOffset)) |
| 1884 | break; |
| 1885 | sliceOffsets.pop_back(); |
| 1886 | } |
| 1887 | unsigned destinationRank = 0; |
| 1888 | if (auto vecType = llvm::dyn_cast<VectorType>(extractOp.getType())) |
| 1889 | destinationRank = vecType.getRank(); |
| 1890 | // The dimensions of the result need to be untouched by the |
| 1891 | // extractStridedSlice op. |
| 1892 | if (destinationRank > extractStridedSliceOp.getSourceVectorType().getRank() - |
| 1893 | sliceOffsets.size()) |
| 1894 | return Value(); |
| 1895 | |
| 1896 | SmallVector<int64_t> (extractOp.getStaticPosition()); |
| 1897 | assert(extractedPos.size() >= sliceOffsets.size()); |
| 1898 | for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) |
| 1899 | extractedPos[i] = extractedPos[i] + sliceOffsets[i]; |
| 1900 | extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); |
| 1901 | |
| 1902 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
| 1903 | OpBuilder b(extractOp.getContext()); |
| 1904 | extractOp.setStaticPosition(extractedPos); |
| 1905 | return extractOp.getResult(); |
| 1906 | } |
| 1907 | |
| 1908 | /// Fold extract_op fed from a chain of insertStridedSlice ops. |
| 1909 | static Value (ExtractOp ) { |
| 1910 | // TODO: Canonicalization for dynamic position not implemented yet. |
| 1911 | if (extractOp.hasDynamicPosition()) |
| 1912 | return Value(); |
| 1913 | |
| 1914 | int64_t destinationRank = |
| 1915 | llvm::isa<VectorType>(extractOp.getType()) |
| 1916 | ? llvm::cast<VectorType>(extractOp.getType()).getRank() |
| 1917 | : 0; |
| 1918 | auto insertOp = extractOp.getVector().getDefiningOp<InsertStridedSliceOp>(); |
| 1919 | if (!insertOp) |
| 1920 | return Value(); |
| 1921 | |
| 1922 | // 0-D vectors not supported. |
| 1923 | assert(!hasZeroDimVectors(extractOp) && "0-D vectors not supported" ); |
| 1924 | if (hasZeroDimVectors(insertOp)) |
| 1925 | return Value(); |
| 1926 | |
| 1927 | while (insertOp) { |
| 1928 | int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - |
| 1929 | insertOp.getSourceVectorType().getRank(); |
| 1930 | if (destinationRank > insertOp.getSourceVectorType().getRank()) |
| 1931 | return Value(); |
| 1932 | auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets()); |
| 1933 | ArrayRef<int64_t> = extractOp.getStaticPosition(); |
| 1934 | |
| 1935 | if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { |
| 1936 | return llvm::cast<IntegerAttr>(attr).getInt() != 1; |
| 1937 | })) |
| 1938 | return Value(); |
| 1939 | bool disjoint = false; |
| 1940 | SmallVector<int64_t, 4> offsetDiffs; |
| 1941 | for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { |
| 1942 | int64_t start = insertOffsets[dim]; |
| 1943 | int64_t size = |
| 1944 | (dim < insertRankDiff) |
| 1945 | ? 1 |
| 1946 | : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); |
| 1947 | int64_t end = start + size; |
| 1948 | int64_t offset = extractOffsets[dim]; |
| 1949 | // Check if the start of the extract offset is in the interval inserted. |
| 1950 | if (start <= offset && offset < end) { |
| 1951 | if (dim >= insertRankDiff) |
| 1952 | offsetDiffs.push_back(Elt: offset - start); |
| 1953 | continue; |
| 1954 | } |
| 1955 | disjoint = true; |
| 1956 | break; |
| 1957 | } |
| 1958 | // The extract element chunk overlap with the vector inserted. |
| 1959 | if (!disjoint) { |
| 1960 | // If any of the inner dimensions are only partially inserted we have a |
| 1961 | // partial overlap. |
| 1962 | int64_t srcRankDiff = |
| 1963 | insertOp.getSourceVectorType().getRank() - destinationRank; |
| 1964 | for (int64_t i = 0; i < destinationRank; i++) { |
| 1965 | if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != |
| 1966 | insertOp.getDestVectorType().getDimSize(i + srcRankDiff + |
| 1967 | insertRankDiff)) |
| 1968 | return Value(); |
| 1969 | } |
| 1970 | extractOp.getVectorMutable().assign(insertOp.getValueToStore()); |
| 1971 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
| 1972 | OpBuilder b(extractOp.getContext()); |
| 1973 | extractOp.setStaticPosition(offsetDiffs); |
| 1974 | return extractOp.getResult(); |
| 1975 | } |
| 1976 | // If the chunk extracted is disjoint from the chunk inserted, keep |
| 1977 | // looking in the insert chain. |
| 1978 | insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); |
| 1979 | } |
| 1980 | return Value(); |
| 1981 | } |
| 1982 | |
| 1983 | /// Try to fold the extraction of a scalar from a vector defined by |
| 1984 | /// vector.from_elements. E.g.: |
| 1985 | /// |
| 1986 | /// %0 = vector.from_elements %a, %b : vector<2xf32> |
| 1987 | /// %1 = vector.extract %0[0] : f32 from vector<2xf32> |
| 1988 | /// ==> fold to %a |
| 1989 | static Value (ExtractOp ) { |
| 1990 | // Dynamic extractions cannot be folded. |
| 1991 | if (extractOp.hasDynamicPosition()) |
| 1992 | return {}; |
| 1993 | |
| 1994 | // Look for extract(from_elements). |
| 1995 | auto fromElementsOp = extractOp.getVector().getDefiningOp<FromElementsOp>(); |
| 1996 | if (!fromElementsOp) |
| 1997 | return {}; |
| 1998 | |
| 1999 | // Scalable vectors are not supported. |
| 2000 | auto vecType = llvm::cast<VectorType>(fromElementsOp.getType()); |
| 2001 | if (vecType.isScalable()) |
| 2002 | return {}; |
| 2003 | |
| 2004 | // Only extractions of scalars are supported. |
| 2005 | int64_t rank = vecType.getRank(); |
| 2006 | ArrayRef<int64_t> indices = extractOp.getStaticPosition(); |
| 2007 | if (extractOp.getType() != vecType.getElementType()) |
| 2008 | return {}; |
| 2009 | assert(static_cast<int64_t>(indices.size()) == rank && |
| 2010 | "unexpected number of indices" ); |
| 2011 | |
| 2012 | // Compute flattened/linearized index and fold to operand. |
| 2013 | int flatIndex = 0; |
| 2014 | int stride = 1; |
| 2015 | for (int i = rank - 1; i >= 0; --i) { |
| 2016 | flatIndex += indices[i] * stride; |
| 2017 | stride *= vecType.getDimSize(i); |
| 2018 | } |
| 2019 | return fromElementsOp.getElements()[flatIndex]; |
| 2020 | } |
| 2021 | |
| 2022 | /// If the dynamic indices of `extractOp` or `insertOp` are in fact constants, |
| 2023 | /// then fold it. |
| 2024 | template <typename OpType, typename AdaptorType> |
| 2025 | static Value (OpType op, AdaptorType adaptor, |
| 2026 | SmallVectorImpl<Value> &operands) { |
| 2027 | std::vector<int64_t> staticPosition = op.getStaticPosition().vec(); |
| 2028 | OperandRange dynamicPosition = op.getDynamicPosition(); |
| 2029 | ArrayRef<Attribute> dynamicPositionAttr = adaptor.getDynamicPosition(); |
| 2030 | ArrayRef<int64_t> vectorShape; |
| 2031 | if constexpr (std::is_same_v<OpType, ExtractOp>) |
| 2032 | vectorShape = op.getSourceVectorType().getShape(); |
| 2033 | else |
| 2034 | vectorShape = op.getDestVectorType().getShape(); |
| 2035 | |
| 2036 | // If the dynamic operands is empty, it is returned directly. |
| 2037 | if (!dynamicPosition.size()) |
| 2038 | return {}; |
| 2039 | |
| 2040 | // `index` is used to iterate over the `dynamicPosition`. |
| 2041 | unsigned index = 0; |
| 2042 | |
| 2043 | // `opChange` is a flag. If it is true, it means to update `op` in place. |
| 2044 | bool opChange = false; |
| 2045 | for (unsigned i = 0, e = staticPosition.size(); i < e; ++i) { |
| 2046 | if (!ShapedType::isDynamic(staticPosition[i])) |
| 2047 | continue; |
| 2048 | Attribute positionAttr = dynamicPositionAttr[index]; |
| 2049 | Value position = dynamicPosition[index++]; |
| 2050 | if (auto attr = mlir::dyn_cast_if_present<IntegerAttr>(positionAttr)) { |
| 2051 | int64_t value = attr.getInt(); |
| 2052 | // Do not fold if the value is out of bounds (-1 signifies a poison |
| 2053 | // value rather than OOB index). |
| 2054 | if (value >= -1 && value < vectorShape[i]) { |
| 2055 | staticPosition[i] = attr.getInt(); |
| 2056 | opChange = true; |
| 2057 | continue; |
| 2058 | } |
| 2059 | } |
| 2060 | operands.push_back(Elt: position); |
| 2061 | } |
| 2062 | |
| 2063 | if (opChange) { |
| 2064 | op.setStaticPosition(staticPosition); |
| 2065 | op.getOperation()->setOperands(operands); |
| 2066 | return op.getResult(); |
| 2067 | } |
| 2068 | return {}; |
| 2069 | } |
| 2070 | |
| 2071 | /// Fold an insert or extract operation into an poison value when a poison index |
| 2072 | /// is found at any dimension of the static position. |
| 2073 | static Attribute (MLIRContext *context, |
| 2074 | ArrayRef<int64_t> staticPos, |
| 2075 | int64_t poisonVal) { |
| 2076 | if (!is_contained(Range&: staticPos, Element: poisonVal)) |
| 2077 | return {}; |
| 2078 | |
| 2079 | return ub::PoisonAttr::get(context); |
| 2080 | } |
| 2081 | |
| 2082 | /// Fold a vector extract from is a poison source. |
| 2083 | static Attribute (Attribute srcAttr) { |
| 2084 | if (isa_and_nonnull<ub::PoisonAttr>(srcAttr)) |
| 2085 | return srcAttr; |
| 2086 | |
| 2087 | return {}; |
| 2088 | } |
| 2089 | |
| 2090 | /// Fold a vector extract extracting from a DenseElementsAttr. |
| 2091 | static Attribute (ExtractOp , |
| 2092 | Attribute srcAttr) { |
| 2093 | auto denseAttr = dyn_cast_if_present<DenseElementsAttr>(Val&: srcAttr); |
| 2094 | if (!denseAttr) { |
| 2095 | return {}; |
| 2096 | } |
| 2097 | |
| 2098 | if (denseAttr.isSplat()) { |
| 2099 | Attribute newAttr = denseAttr.getSplatValue<Attribute>(); |
| 2100 | if (auto vecDstType = dyn_cast<VectorType>(extractOp.getType())) |
| 2101 | newAttr = DenseElementsAttr::get(vecDstType, newAttr); |
| 2102 | return newAttr; |
| 2103 | } |
| 2104 | |
| 2105 | auto vecTy = cast<VectorType>(extractOp.getSourceVectorType()); |
| 2106 | if (vecTy.isScalable()) |
| 2107 | return {}; |
| 2108 | |
| 2109 | if (extractOp.hasDynamicPosition()) { |
| 2110 | return {}; |
| 2111 | } |
| 2112 | |
| 2113 | // Materializing subsets of a large constant array can generally lead to |
| 2114 | // explosion in IR size because of different combination of subsets that |
| 2115 | // can exist. However, vector.extract is a restricted form of subset |
| 2116 | // extract where you can only extract non-overlapping (or the same) subset for |
| 2117 | // a given rank of the subset. Because of this property, the IR size can only |
| 2118 | // increase at most by `rank * size(array)` from a single constant array being |
| 2119 | // extracted by multiple extracts. |
| 2120 | |
| 2121 | // Calculate the linearized position of the continuous chunk of elements to |
| 2122 | // extract. |
| 2123 | SmallVector<int64_t> completePositions(vecTy.getRank(), 0); |
| 2124 | copy(extractOp.getStaticPosition(), completePositions.begin()); |
| 2125 | int64_t startPos = |
| 2126 | linearize(completePositions, computeStrides(vecTy.getShape())); |
| 2127 | auto denseValuesBegin = denseAttr.value_begin<TypedAttr>() + startPos; |
| 2128 | |
| 2129 | TypedAttr newAttr; |
| 2130 | if (auto resVecTy = dyn_cast<VectorType>(extractOp.getType())) { |
| 2131 | SmallVector<Attribute> elementValues( |
| 2132 | denseValuesBegin, denseValuesBegin + resVecTy.getNumElements()); |
| 2133 | newAttr = DenseElementsAttr::get(resVecTy, elementValues); |
| 2134 | } else { |
| 2135 | newAttr = *denseValuesBegin; |
| 2136 | } |
| 2137 | |
| 2138 | return newAttr; |
| 2139 | } |
| 2140 | |
| 2141 | OpFoldResult ExtractOp::fold(FoldAdaptor adaptor) { |
| 2142 | // Fold "vector.extract %v[] : vector<2x2xf32> from vector<2x2xf32>" to %v. |
| 2143 | // Note: Do not fold "vector.extract %v[] : f32 from vector<f32>" (type |
| 2144 | // mismatch). |
| 2145 | if (getNumIndices() == 0 && getVector().getType() == getResult().getType()) |
| 2146 | return getVector(); |
| 2147 | if (auto res = foldPoisonSrcExtractOp(adaptor.getVector())) |
| 2148 | return res; |
| 2149 | // Fold `arith.constant` indices into the `vector.extract` operation. Make |
| 2150 | // sure that patterns requiring constant indices are added after this fold. |
| 2151 | SmallVector<Value> operands = {getVector()}; |
| 2152 | if (auto val = extractInsertFoldConstantOp(*this, adaptor, operands)) |
| 2153 | return val; |
| 2154 | if (auto res = foldPoisonIndexInsertExtractOp( |
| 2155 | getContext(), adaptor.getStaticPosition(), kPoisonIndex)) |
| 2156 | return res; |
| 2157 | if (auto res = foldDenseElementsAttrSrcExtractOp(*this, adaptor.getVector())) |
| 2158 | return res; |
| 2159 | if (succeeded(foldExtractOpFromExtractChain(*this))) |
| 2160 | return getResult(); |
| 2161 | if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) |
| 2162 | return res; |
| 2163 | if (auto res = foldExtractFromBroadcast(*this)) |
| 2164 | return res; |
| 2165 | if (auto res = foldExtractFromShuffle(*this)) |
| 2166 | return res; |
| 2167 | if (auto res = foldExtractFromShapeCast(*this)) |
| 2168 | return res; |
| 2169 | if (auto val = foldExtractFromExtractStrided(*this)) |
| 2170 | return val; |
| 2171 | if (auto val = foldExtractStridedOpFromInsertChain(*this)) |
| 2172 | return val; |
| 2173 | if (auto val = foldScalarExtractFromFromElements(*this)) |
| 2174 | return val; |
| 2175 | return OpFoldResult(); |
| 2176 | } |
| 2177 | |
| 2178 | namespace { |
| 2179 | |
| 2180 | // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. |
| 2181 | class final : public OpRewritePattern<ExtractOp> { |
| 2182 | public: |
| 2183 | using OpRewritePattern::OpRewritePattern; |
| 2184 | |
| 2185 | LogicalResult matchAndRewrite(ExtractOp , |
| 2186 | PatternRewriter &rewriter) const override { |
| 2187 | Operation *defOp = extractOp.getVector().getDefiningOp(); |
| 2188 | if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) |
| 2189 | return failure(); |
| 2190 | |
| 2191 | Value source = defOp->getOperand(idx: 0); |
| 2192 | if (extractOp.getType() == source.getType()) |
| 2193 | return failure(); |
| 2194 | auto getRank = [](Type type) { |
| 2195 | return llvm::isa<VectorType>(type) |
| 2196 | ? llvm::cast<VectorType>(type).getRank() |
| 2197 | : 0; |
| 2198 | }; |
| 2199 | unsigned broadcastSrcRank = getRank(source.getType()); |
| 2200 | unsigned = getRank(extractOp.getType()); |
| 2201 | // We only consider the case where the rank of the source is less than or |
| 2202 | // equal to the rank of the extract dst. The other cases are handled in the |
| 2203 | // folding patterns. |
| 2204 | if (extractResultRank < broadcastSrcRank) |
| 2205 | return failure(); |
| 2206 | // For scalar result, the input can only be a rank-0 vector, which will |
| 2207 | // be handled by the folder. |
| 2208 | if (extractResultRank == 0) |
| 2209 | return failure(); |
| 2210 | |
| 2211 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>( |
| 2212 | extractOp, extractOp.getType(), source); |
| 2213 | return success(); |
| 2214 | } |
| 2215 | }; |
| 2216 | |
| 2217 | // Pattern to rewrite a ExtractOp(CreateMask) -> CreateMask. |
| 2218 | class final : public OpRewritePattern<ExtractOp> { |
| 2219 | public: |
| 2220 | using OpRewritePattern::OpRewritePattern; |
| 2221 | |
| 2222 | LogicalResult matchAndRewrite(ExtractOp , |
| 2223 | PatternRewriter &rewriter) const override { |
| 2224 | auto createMaskOp = |
| 2225 | extractOp.getVector().getDefiningOp<vector::CreateMaskOp>(); |
| 2226 | if (!createMaskOp) |
| 2227 | return failure(); |
| 2228 | |
| 2229 | VectorType = |
| 2230 | llvm::dyn_cast<VectorType>(extractOp.getResult().getType()); |
| 2231 | |
| 2232 | if (!extractedMaskType) |
| 2233 | return failure(); |
| 2234 | |
| 2235 | auto maskOperands = createMaskOp.getOperands(); |
| 2236 | ArrayRef<int64_t> = extractOp.getStaticPosition(); |
| 2237 | VectorType maskType = createMaskOp.getVectorType(); |
| 2238 | |
| 2239 | bool containsUnknownDims = false; |
| 2240 | bool allFalse = getMaskFormat(createMaskOp) == MaskFormat::AllFalse; |
| 2241 | |
| 2242 | for (size_t dimIdx = 0; !allFalse && dimIdx < extractOpPos.size(); |
| 2243 | dimIdx++) { |
| 2244 | int64_t pos = extractOpPos[dimIdx]; |
| 2245 | Value operand = maskOperands[dimIdx]; |
| 2246 | auto constantOp = operand.getDefiningOp<arith::ConstantOp>(); |
| 2247 | if (!constantOp) { |
| 2248 | // Bounds of this dim unknown. |
| 2249 | containsUnknownDims = true; |
| 2250 | continue; |
| 2251 | } |
| 2252 | |
| 2253 | int64_t createMaskBound = |
| 2254 | llvm::cast<IntegerAttr>(constantOp.getValue()).getInt(); |
| 2255 | |
| 2256 | if (pos != ShapedType::kDynamic) { |
| 2257 | // If any position is outside the range from the `create_mask`, then the |
| 2258 | // extracted mask will be all-false. |
| 2259 | allFalse |= pos >= createMaskBound; |
| 2260 | } else if (createMaskBound < maskType.getDimSize(dimIdx)) { |
| 2261 | // This dim is not all-true and since this is a dynamic index we don't |
| 2262 | // know if the extraction is within the true or false region. |
| 2263 | // Note: Zero dims have already handled via getMaskFormat(). |
| 2264 | containsUnknownDims = true; |
| 2265 | } |
| 2266 | } |
| 2267 | |
| 2268 | if (allFalse) { |
| 2269 | rewriter.replaceOpWithNewOp<arith::ConstantOp>( |
| 2270 | extractOp, DenseElementsAttr::get(extractedMaskType, false)); |
| 2271 | } else if (!containsUnknownDims) { |
| 2272 | rewriter.replaceOpWithNewOp<vector::CreateMaskOp>( |
| 2273 | extractOp, extractedMaskType, |
| 2274 | maskOperands.drop_front(extractOpPos.size())); |
| 2275 | } else { |
| 2276 | return failure(); |
| 2277 | } |
| 2278 | return success(); |
| 2279 | } |
| 2280 | }; |
| 2281 | |
| 2282 | // Folds extract(shape_cast(..)) into shape_cast when the total element count |
| 2283 | // does not change. |
| 2284 | LogicalResult (ExtractOp , |
| 2285 | PatternRewriter &rewriter) { |
| 2286 | auto castOp = extractOp.getVector().getDefiningOp<ShapeCastOp>(); |
| 2287 | if (!castOp) |
| 2288 | return failure(); |
| 2289 | |
| 2290 | VectorType sourceType = castOp.getSourceVectorType(); |
| 2291 | auto targetType = dyn_cast<VectorType>(extractOp.getResult().getType()); |
| 2292 | if (!targetType) |
| 2293 | return failure(); |
| 2294 | |
| 2295 | if (sourceType.getNumElements() != targetType.getNumElements()) |
| 2296 | return failure(); |
| 2297 | |
| 2298 | rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(extractOp, targetType, |
| 2299 | castOp.getSource()); |
| 2300 | return success(); |
| 2301 | } |
| 2302 | |
| 2303 | /// Try to canonicalize the extraction of a subvector from a vector defined by |
| 2304 | /// vector.from_elements. E.g.: |
| 2305 | /// |
| 2306 | /// %0 = vector.from_elements %a, %b, %a, %a : vector<2x2xf32> |
| 2307 | /// %1 = vector.extract %0[0] : vector<2xf32> from vector<2x2xf32> |
| 2308 | /// ==> canonicalize to vector.from_elements %a, %b : vector<2xf32> |
| 2309 | LogicalResult (ExtractOp , |
| 2310 | PatternRewriter &rewriter) { |
| 2311 | // Dynamic positions are not supported. |
| 2312 | if (extractOp.hasDynamicPosition()) |
| 2313 | return failure(); |
| 2314 | |
| 2315 | // Scalar extracts are handled by the folder. |
| 2316 | auto resultType = dyn_cast<VectorType>(extractOp.getType()); |
| 2317 | if (!resultType) |
| 2318 | return failure(); |
| 2319 | |
| 2320 | // Look for extracts from a from_elements op. |
| 2321 | auto fromElementsOp = extractOp.getVector().getDefiningOp<FromElementsOp>(); |
| 2322 | if (!fromElementsOp) |
| 2323 | return failure(); |
| 2324 | VectorType inputType = fromElementsOp.getType(); |
| 2325 | |
| 2326 | // Scalable vectors are not supported. |
| 2327 | if (resultType.isScalable() || inputType.isScalable()) |
| 2328 | return failure(); |
| 2329 | |
| 2330 | // Compute the position of first extracted element and flatten/linearize the |
| 2331 | // position. |
| 2332 | SmallVector<int64_t> firstElementPos = |
| 2333 | llvm::to_vector(extractOp.getStaticPosition()); |
| 2334 | firstElementPos.append(/*NumInputs=*/resultType.getRank(), /*Elt=*/0); |
| 2335 | int flatIndex = 0; |
| 2336 | int stride = 1; |
| 2337 | for (int64_t i = inputType.getRank() - 1; i >= 0; --i) { |
| 2338 | flatIndex += firstElementPos[i] * stride; |
| 2339 | stride *= inputType.getDimSize(i); |
| 2340 | } |
| 2341 | |
| 2342 | // Replace the op with a smaller from_elements op. |
| 2343 | rewriter.replaceOpWithNewOp<FromElementsOp>( |
| 2344 | extractOp, resultType, |
| 2345 | fromElementsOp.getElements().slice(flatIndex, |
| 2346 | resultType.getNumElements())); |
| 2347 | return success(); |
| 2348 | } |
| 2349 | |
| 2350 | } // namespace |
| 2351 | |
| 2352 | void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 2353 | MLIRContext *context) { |
| 2354 | results.add<ExtractOpFromBroadcast, ExtractOpFromCreateMask>(context); |
| 2355 | results.add(foldExtractFromShapeCastToShapeCast); |
| 2356 | results.add(foldExtractFromFromElements); |
| 2357 | } |
| 2358 | |
| 2359 | static void populateFromInt64AttrArray(ArrayAttr arrayAttr, |
| 2360 | SmallVectorImpl<int64_t> &results) { |
| 2361 | for (auto attr : arrayAttr) |
| 2362 | results.push_back(llvm::cast<IntegerAttr>(attr).getInt()); |
| 2363 | } |
| 2364 | |
| 2365 | //===----------------------------------------------------------------------===// |
| 2366 | // FmaOp |
| 2367 | //===----------------------------------------------------------------------===// |
| 2368 | |
| 2369 | std::optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { |
| 2370 | return llvm::to_vector<4>(getVectorType().getShape()); |
| 2371 | } |
| 2372 | |
| 2373 | //===----------------------------------------------------------------------===// |
| 2374 | // FromElementsOp |
| 2375 | //===----------------------------------------------------------------------===// |
| 2376 | |
| 2377 | /// Rewrite a vector.from_elements into a vector.splat if all elements are the |
| 2378 | /// same SSA value. E.g.: |
| 2379 | /// |
| 2380 | /// %0 = vector.from_elements %a, %a, %a : vector<3xf32> |
| 2381 | /// ==> rewrite to vector.splat %a : vector<3xf32> |
| 2382 | static LogicalResult rewriteFromElementsAsSplat(FromElementsOp fromElementsOp, |
| 2383 | PatternRewriter &rewriter) { |
| 2384 | if (!llvm::all_equal(fromElementsOp.getElements())) |
| 2385 | return failure(); |
| 2386 | rewriter.replaceOpWithNewOp<SplatOp>(fromElementsOp, fromElementsOp.getType(), |
| 2387 | fromElementsOp.getElements().front()); |
| 2388 | return success(); |
| 2389 | } |
| 2390 | |
| 2391 | /// Rewrite from_elements on multiple scalar extracts as a shape_cast |
| 2392 | /// on a single extract. Example: |
| 2393 | /// %0 = vector.extract %source[0, 0] : i8 from vector<2x2xi8> |
| 2394 | /// %1 = vector.extract %source[0, 1] : i8 from vector<2x2xi8> |
| 2395 | /// %2 = vector.from_elements %0, %1 : vector<2xi8> |
| 2396 | /// |
| 2397 | /// becomes |
| 2398 | /// %1 = vector.extract %source[0] : vector<1x2xi8> from vector<2x2xi8> |
| 2399 | /// %2 = vector.shape_cast %1 : vector<1x2xi8> to vector<2xi8> |
| 2400 | /// |
| 2401 | /// The requirements for this to be valid are |
| 2402 | /// |
| 2403 | /// i) The elements are extracted from the same vector (%source). |
| 2404 | /// |
| 2405 | /// ii) The elements form a suffix of %source. Specifically, the number |
| 2406 | /// of elements is the same as the product of the last N dimension sizes |
| 2407 | /// of %source, for some N. |
| 2408 | /// |
| 2409 | /// iii) The elements are extracted contiguously in ascending order. |
| 2410 | |
| 2411 | class FromElementsToShapeCast : public OpRewritePattern<FromElementsOp> { |
| 2412 | |
| 2413 | using OpRewritePattern::OpRewritePattern; |
| 2414 | |
| 2415 | LogicalResult matchAndRewrite(FromElementsOp fromElements, |
| 2416 | PatternRewriter &rewriter) const override { |
| 2417 | |
| 2418 | // Handled by `rewriteFromElementsAsSplat` |
| 2419 | if (fromElements.getType().getNumElements() == 1) |
| 2420 | return failure(); |
| 2421 | |
| 2422 | // The common source that all elements are extracted from, if one exists. |
| 2423 | TypedValue<VectorType> source; |
| 2424 | // The position of the combined extract operation, if one is created. |
| 2425 | ArrayRef<int64_t> combinedPosition; |
| 2426 | // The expected index of extraction of the current element in the loop, if |
| 2427 | // elements are extracted contiguously in ascending order. |
| 2428 | SmallVector<int64_t> expectedPosition; |
| 2429 | |
| 2430 | for (auto [insertIndex, element] : |
| 2431 | llvm::enumerate(fromElements.getElements())) { |
| 2432 | |
| 2433 | // Check that the element is from a vector.extract operation. |
| 2434 | auto extractOp = |
| 2435 | dyn_cast_if_present<vector::ExtractOp>(element.getDefiningOp()); |
| 2436 | if (!extractOp) { |
| 2437 | return rewriter.notifyMatchFailure(fromElements, |
| 2438 | "element not from vector.extract" ); |
| 2439 | } |
| 2440 | |
| 2441 | // Check condition (i) by checking that all elements have the same source |
| 2442 | // as the first element. |
| 2443 | if (insertIndex == 0) { |
| 2444 | source = extractOp.getVector(); |
| 2445 | } else if (extractOp.getVector() != source) { |
| 2446 | return rewriter.notifyMatchFailure(fromElements, |
| 2447 | "element from different vector" ); |
| 2448 | } |
| 2449 | |
| 2450 | ArrayRef<int64_t> position = extractOp.getStaticPosition(); |
| 2451 | int64_t rank = position.size(); |
| 2452 | assert(rank == source.getType().getRank() && |
| 2453 | "scalar extract must have full rank position" ); |
| 2454 | |
| 2455 | // Check condition (ii) by checking that the position that the first |
| 2456 | // element is extracted from has sufficient trailing 0s. For example, in |
| 2457 | // |
| 2458 | // %elm0 = vector.extract %source[1, 0, 0] : i8 from vector<2x3x4xi8> |
| 2459 | // [...] |
| 2460 | // %elms = vector.from_elements %elm0, [...] : vector<12xi8> |
| 2461 | // |
| 2462 | // The 2 trailing 0s in the position of extraction of %elm0 cover 3*4 = 12 |
| 2463 | // elements, which is the number of elements of %n, so this is valid. |
| 2464 | if (insertIndex == 0) { |
| 2465 | const int64_t numElms = fromElements.getType().getNumElements(); |
| 2466 | int64_t numSuffixElms = 1; |
| 2467 | int64_t index = rank; |
| 2468 | while (index > 0 && position[index - 1] == 0 && |
| 2469 | numSuffixElms < numElms) { |
| 2470 | numSuffixElms *= source.getType().getDimSize(index - 1); |
| 2471 | --index; |
| 2472 | } |
| 2473 | if (numSuffixElms != numElms) { |
| 2474 | return rewriter.notifyMatchFailure( |
| 2475 | fromElements, "elements do not form a suffix of source" ); |
| 2476 | } |
| 2477 | expectedPosition = llvm::to_vector(position); |
| 2478 | combinedPosition = position.drop_back(rank - index); |
| 2479 | } |
| 2480 | |
| 2481 | // Check condition (iii). |
| 2482 | else if (expectedPosition != position) { |
| 2483 | return rewriter.notifyMatchFailure( |
| 2484 | fromElements, "elements not in ascending order (static order)" ); |
| 2485 | } |
| 2486 | increment(expectedPosition, source.getType().getShape()); |
| 2487 | } |
| 2488 | |
| 2489 | auto = rewriter.createOrFold<vector::ExtractOp>( |
| 2490 | fromElements.getLoc(), source, combinedPosition); |
| 2491 | |
| 2492 | rewriter.replaceOpWithNewOp<vector::ShapeCastOp>( |
| 2493 | fromElements, fromElements.getType(), extracted); |
| 2494 | |
| 2495 | return success(); |
| 2496 | } |
| 2497 | |
| 2498 | /// Increments n-D `indices` by 1 starting from the innermost dimension. |
| 2499 | static void increment(MutableArrayRef<int64_t> indices, |
| 2500 | ArrayRef<int64_t> shape) { |
| 2501 | for (int dim : llvm::reverse(C: llvm::seq<int>(Begin: 0, End: indices.size()))) { |
| 2502 | indices[dim] += 1; |
| 2503 | if (indices[dim] < shape[dim]) |
| 2504 | break; |
| 2505 | indices[dim] = 0; |
| 2506 | } |
| 2507 | } |
| 2508 | }; |
| 2509 | |
| 2510 | void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 2511 | MLIRContext *context) { |
| 2512 | results.add(rewriteFromElementsAsSplat); |
| 2513 | results.add<FromElementsToShapeCast>(context); |
| 2514 | } |
| 2515 | |
| 2516 | //===----------------------------------------------------------------------===// |
| 2517 | // BroadcastOp |
| 2518 | //===----------------------------------------------------------------------===// |
| 2519 | |
| 2520 | void BroadcastOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges, |
| 2521 | SetIntRangeFn setResultRanges) { |
| 2522 | setResultRanges(getResult(), argRanges.front()); |
| 2523 | } |
| 2524 | |
| 2525 | std::optional<SmallVector<int64_t, 4>> BroadcastOp::getShapeForUnroll() { |
| 2526 | return llvm::to_vector<4>(getResultVectorType().getShape()); |
| 2527 | } |
| 2528 | |
| 2529 | /// Return the dimensions of the result vector that were formerly ones in the |
| 2530 | /// source tensor and thus correspond to "dim-1" broadcasting. |
| 2531 | static llvm::SetVector<int64_t> |
| 2532 | computeBroadcastedUnitDims(ArrayRef<int64_t> srcShape, |
| 2533 | ArrayRef<int64_t> dstShape) { |
| 2534 | int64_t rankDiff = dstShape.size() - srcShape.size(); |
| 2535 | int64_t dstDim = rankDiff; |
| 2536 | llvm::SetVector<int64_t> res; |
| 2537 | for (auto [s1, s2] : |
| 2538 | llvm::zip_equal(t&: srcShape, u: dstShape.drop_front(N: rankDiff))) { |
| 2539 | if (s1 != s2) { |
| 2540 | assert(s1 == 1 && "expected \"dim-1\" broadcasting" ); |
| 2541 | res.insert(X: dstDim); |
| 2542 | } |
| 2543 | ++dstDim; |
| 2544 | } |
| 2545 | return res; |
| 2546 | } |
| 2547 | |
| 2548 | llvm::SetVector<int64_t> BroadcastOp::computeBroadcastedUnitDims() { |
| 2549 | // Scalar broadcast is without any unit dim broadcast. |
| 2550 | auto srcVectorType = llvm::dyn_cast<VectorType>(getSourceType()); |
| 2551 | if (!srcVectorType) |
| 2552 | return {}; |
| 2553 | return ::computeBroadcastedUnitDims(srcVectorType.getShape(), |
| 2554 | getResultVectorType().getShape()); |
| 2555 | } |
| 2556 | |
| 2557 | /// Broadcast `value` to a vector of `dstShape`, knowing that exactly the |
| 2558 | /// `broadcastedDims` dimensions in the dstShape are broadcasted. |
| 2559 | /// This requires (and asserts) that the broadcast is free of "dim-1" |
| 2560 | /// broadcasting. |
| 2561 | /// Since vector.broadcast only allows expanding leading dimensions, an extra |
| 2562 | /// vector.transpose may be inserted to make the broadcast possible. |
| 2563 | /// `value`, `dstShape` and `broadcastedDims` must be properly specified or |
| 2564 | /// the helper will assert. This means: |
| 2565 | /// 1. `dstShape` must not be empty. |
| 2566 | /// 2. `broadcastedDims` must be confined to [0 .. rank(value.getVectorType)] |
| 2567 | /// 2. `dstShape` trimmed of the dimensions specified in `broadcastedDims` |
| 2568 | // must match the `value` shape. |
| 2569 | Value BroadcastOp::createOrFoldBroadcastOp( |
| 2570 | OpBuilder &b, Value value, ArrayRef<int64_t> dstShape, |
| 2571 | const llvm::SetVector<int64_t> &broadcastedDims) { |
| 2572 | assert(!dstShape.empty() && "unexpected empty dst shape" ); |
| 2573 | |
| 2574 | // Well-formedness check. |
| 2575 | SmallVector<int64_t> checkShape; |
| 2576 | for (int i = 0, e = dstShape.size(); i < e; ++i) { |
| 2577 | if (broadcastedDims.contains(i)) |
| 2578 | continue; |
| 2579 | checkShape.push_back(dstShape[i]); |
| 2580 | } |
| 2581 | assert(broadcastedDims.size() == dstShape.size() - checkShape.size() && |
| 2582 | "ill-formed broadcastedDims contains values not confined to " |
| 2583 | "destVectorShape" ); |
| 2584 | |
| 2585 | Location loc = value.getLoc(); |
| 2586 | Type elementType = getElementTypeOrSelf(value.getType()); |
| 2587 | VectorType srcVectorType = llvm::dyn_cast<VectorType>(value.getType()); |
| 2588 | VectorType dstVectorType = VectorType::get(dstShape, elementType); |
| 2589 | |
| 2590 | // Step 2. If scalar -> dstShape broadcast, just do it. |
| 2591 | if (!srcVectorType) { |
| 2592 | assert(checkShape.empty() && |
| 2593 | "ill-formed createOrFoldBroadcastOp arguments" ); |
| 2594 | return b.createOrFold<vector::BroadcastOp>(loc, dstVectorType, value); |
| 2595 | } |
| 2596 | |
| 2597 | assert(srcVectorType.getShape().equals(checkShape) && |
| 2598 | "ill-formed createOrFoldBroadcastOp arguments" ); |
| 2599 | |
| 2600 | // Step 3. Since vector.broadcast only allows creating leading dims, |
| 2601 | // vector -> dstShape broadcast may require a transpose. |
| 2602 | // Traverse the dims in order and construct: |
| 2603 | // 1. The leading entries of the broadcastShape that is guaranteed to be |
| 2604 | // achievable by a simple broadcast. |
| 2605 | // 2. The induced permutation for the subsequent vector.transpose that will |
| 2606 | // bring us from `broadcastShape` back to he desired `dstShape`. |
| 2607 | // If the induced permutation is not the identity, create a vector.transpose. |
| 2608 | SmallVector<int64_t> broadcastShape, permutation(dstShape.size(), -1); |
| 2609 | broadcastShape.reserve(dstShape.size()); |
| 2610 | // Consider the example: |
| 2611 | // srcShape = 2x4 |
| 2612 | // dstShape = 1x2x3x4x5 |
| 2613 | // broadcastedDims = [0, 2, 4] |
| 2614 | // |
| 2615 | // We want to build: |
| 2616 | // broadcastShape = 1x3x5x2x4 |
| 2617 | // permutation = [0, 2, 4, 1, 3] |
| 2618 | // ---V--- -----V----- |
| 2619 | // leading broadcast part src shape part |
| 2620 | // |
| 2621 | // Note that the trailing dims of broadcastShape are exactly the srcShape |
| 2622 | // by construction. |
| 2623 | // nextSrcShapeDim is used to keep track of where in the permutation the |
| 2624 | // "src shape part" occurs. |
| 2625 | int64_t nextSrcShapeDim = broadcastedDims.size(); |
| 2626 | for (int64_t i = 0, e = dstShape.size(); i < e; ++i) { |
| 2627 | if (broadcastedDims.contains(i)) { |
| 2628 | // 3.a. For each dim in the dst shape, if it is a broadcasted dim, |
| 2629 | // bring it to the head of the broadcastShape. |
| 2630 | // It will need to be permuted back from `broadcastShape.size() - 1` into |
| 2631 | // position `i`. |
| 2632 | broadcastShape.push_back(dstShape[i]); |
| 2633 | permutation[i] = broadcastShape.size() - 1; |
| 2634 | } else { |
| 2635 | // 3.b. Otherwise, the dim is not broadcasted, it comes from the src |
| 2636 | // shape and needs to be permuted into position `i`. |
| 2637 | // Don't touch `broadcastShape` here, the whole srcShape will be |
| 2638 | // appended after. |
| 2639 | permutation[i] = nextSrcShapeDim++; |
| 2640 | } |
| 2641 | } |
| 2642 | // 3.c. Append the srcShape. |
| 2643 | llvm::append_range(broadcastShape, srcVectorType.getShape()); |
| 2644 | |
| 2645 | // Ensure there are no "dim-1" broadcasts. |
| 2646 | assert(::computeBroadcastedUnitDims(srcVectorType.getShape(), broadcastShape) |
| 2647 | .empty() && |
| 2648 | "unexpected \"dim-1\" broadcast" ); |
| 2649 | |
| 2650 | VectorType broadcastType = VectorType::get(broadcastShape, elementType); |
| 2651 | assert(vector::isBroadcastableTo(value.getType(), broadcastType) == |
| 2652 | vector::BroadcastableToResult::Success && |
| 2653 | "must be broadcastable" ); |
| 2654 | Value res = b.createOrFold<vector::BroadcastOp>(loc, broadcastType, value); |
| 2655 | // Step 4. If we find any dimension that indeed needs to be permuted, |
| 2656 | // immediately return a new vector.transpose. |
| 2657 | for (int64_t i = 0, e = permutation.size(); i < e; ++i) |
| 2658 | if (permutation[i] != i) |
| 2659 | return b.createOrFold<vector::TransposeOp>(loc, res, permutation); |
| 2660 | // Otherwise return res. |
| 2661 | return res; |
| 2662 | } |
| 2663 | |
| 2664 | BroadcastableToResult mlir::vector::isBroadcastableTo( |
| 2665 | Type srcType, VectorType dstVectorType, |
| 2666 | std::pair<VectorDim, VectorDim> *mismatchingDims) { |
| 2667 | // Broadcast scalar to vector of the same element type. |
| 2668 | if (srcType.isIntOrIndexOrFloat() && dstVectorType && |
| 2669 | getElementTypeOrSelf(type: srcType) == getElementTypeOrSelf(dstVectorType)) |
| 2670 | return BroadcastableToResult::Success; |
| 2671 | // From now on, only vectors broadcast. |
| 2672 | VectorType srcVectorType = llvm::dyn_cast<VectorType>(srcType); |
| 2673 | if (!srcVectorType) |
| 2674 | return BroadcastableToResult::SourceTypeNotAVector; |
| 2675 | |
| 2676 | int64_t srcRank = srcVectorType.getRank(); |
| 2677 | int64_t dstRank = dstVectorType.getRank(); |
| 2678 | if (srcRank > dstRank) |
| 2679 | return BroadcastableToResult::SourceRankHigher; |
| 2680 | // Source has an exact match or singleton value for all trailing dimensions |
| 2681 | // (all leading dimensions are simply duplicated). |
| 2682 | int64_t lead = dstRank - srcRank; |
| 2683 | for (int64_t dimIdx = 0; dimIdx < srcRank; ++dimIdx) { |
| 2684 | // Have mismatching dims (in the sense of vector.broadcast semantics) been |
| 2685 | // encountered? |
| 2686 | bool foundMismatchingDims = false; |
| 2687 | |
| 2688 | // Check fixed-width dims. |
| 2689 | int64_t srcDim = srcVectorType.getDimSize(dimIdx); |
| 2690 | int64_t dstDim = dstVectorType.getDimSize(lead + dimIdx); |
| 2691 | if (srcDim != 1 && srcDim != dstDim) |
| 2692 | foundMismatchingDims = true; |
| 2693 | |
| 2694 | // Check scalable flags. |
| 2695 | bool srcDimScalableFlag = srcVectorType.getScalableDims()[dimIdx]; |
| 2696 | bool dstDimScalableFlag = dstVectorType.getScalableDims()[lead + dimIdx]; |
| 2697 | if ((srcDim == 1 && srcDimScalableFlag && dstDim != 1) || |
| 2698 | // 1 -> [N] is fine, everything else should be rejected when mixing |
| 2699 | // fixed-width and scalable dims |
| 2700 | (srcDimScalableFlag != dstDimScalableFlag && |
| 2701 | (srcDim != 1 || srcDimScalableFlag))) |
| 2702 | foundMismatchingDims = true; |
| 2703 | |
| 2704 | if (foundMismatchingDims) { |
| 2705 | if (mismatchingDims != nullptr) { |
| 2706 | mismatchingDims->first.dim = srcDim; |
| 2707 | mismatchingDims->first.isScalable = srcDimScalableFlag; |
| 2708 | |
| 2709 | mismatchingDims->second.dim = dstDim; |
| 2710 | mismatchingDims->second.isScalable = dstDimScalableFlag; |
| 2711 | } |
| 2712 | return BroadcastableToResult::DimensionMismatch; |
| 2713 | } |
| 2714 | } |
| 2715 | |
| 2716 | return BroadcastableToResult::Success; |
| 2717 | } |
| 2718 | |
| 2719 | LogicalResult BroadcastOp::verify() { |
| 2720 | std::pair<VectorDim, VectorDim> mismatchingDims; |
| 2721 | BroadcastableToResult res = isBroadcastableTo( |
| 2722 | getSourceType(), getResultVectorType(), &mismatchingDims); |
| 2723 | if (res == BroadcastableToResult::Success) |
| 2724 | return success(); |
| 2725 | if (res == BroadcastableToResult::SourceRankHigher) |
| 2726 | return emitOpError("source rank higher than destination rank" ); |
| 2727 | if (res == BroadcastableToResult::DimensionMismatch) { |
| 2728 | return emitOpError("dimension mismatch (" ) |
| 2729 | << (mismatchingDims.first.isScalable ? "[" : "" ) |
| 2730 | << mismatchingDims.first.dim |
| 2731 | << (mismatchingDims.first.isScalable ? "]" : "" ) << " vs. " |
| 2732 | << (mismatchingDims.second.isScalable ? "[" : "" ) |
| 2733 | << mismatchingDims.second.dim |
| 2734 | << (mismatchingDims.second.isScalable ? "]" : "" ) << ")" ; |
| 2735 | } |
| 2736 | if (res == BroadcastableToResult::SourceTypeNotAVector) |
| 2737 | return emitOpError("source type is not a vector" ); |
| 2738 | llvm_unreachable("unexpected vector.broadcast op error" ); |
| 2739 | } |
| 2740 | |
| 2741 | OpFoldResult BroadcastOp::fold(FoldAdaptor adaptor) { |
| 2742 | if (getSourceType() == getResultVectorType()) |
| 2743 | return getSource(); |
| 2744 | if (!adaptor.getSource()) |
| 2745 | return {}; |
| 2746 | auto vectorType = getResultVectorType(); |
| 2747 | if (auto attr = llvm::dyn_cast<IntegerAttr>(adaptor.getSource())) { |
| 2748 | if (vectorType.getElementType() != attr.getType()) |
| 2749 | return {}; |
| 2750 | return DenseElementsAttr::get(vectorType, attr); |
| 2751 | } |
| 2752 | if (auto attr = llvm::dyn_cast<FloatAttr>(adaptor.getSource())) { |
| 2753 | if (vectorType.getElementType() != attr.getType()) |
| 2754 | return {}; |
| 2755 | return DenseElementsAttr::get(vectorType, attr); |
| 2756 | } |
| 2757 | if (auto attr = llvm::dyn_cast<SplatElementsAttr>(adaptor.getSource())) |
| 2758 | return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); |
| 2759 | if (llvm::dyn_cast<ub::PoisonAttr>(adaptor.getSource())) |
| 2760 | return ub::PoisonAttr::get(getContext()); |
| 2761 | return {}; |
| 2762 | } |
| 2763 | |
| 2764 | namespace { |
| 2765 | |
| 2766 | // Fold broadcast1(broadcast2(x)) into broadcast1(x). |
| 2767 | struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { |
| 2768 | using OpRewritePattern::OpRewritePattern; |
| 2769 | |
| 2770 | LogicalResult matchAndRewrite(BroadcastOp broadcastOp, |
| 2771 | PatternRewriter &rewriter) const override { |
| 2772 | auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>(); |
| 2773 | if (!srcBroadcast) |
| 2774 | return failure(); |
| 2775 | rewriter.replaceOpWithNewOp<BroadcastOp>(broadcastOp, |
| 2776 | broadcastOp.getResultVectorType(), |
| 2777 | srcBroadcast.getSource()); |
| 2778 | return success(); |
| 2779 | } |
| 2780 | }; |
| 2781 | } // namespace |
| 2782 | |
| 2783 | void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 2784 | MLIRContext *context) { |
| 2785 | // BroadcastToShapeCast is not a default canonicalization, it is opt-in by |
| 2786 | // calling `populateCastAwayVectorLeadingOneDimPatterns` |
| 2787 | results.add<BroadcastFolder>(context); |
| 2788 | } |
| 2789 | |
| 2790 | //===----------------------------------------------------------------------===// |
| 2791 | // ShuffleOp |
| 2792 | //===----------------------------------------------------------------------===// |
| 2793 | |
| 2794 | LogicalResult ShuffleOp::verify() { |
| 2795 | VectorType resultType = getResultVectorType(); |
| 2796 | VectorType v1Type = getV1VectorType(); |
| 2797 | VectorType v2Type = getV2VectorType(); |
| 2798 | // Verify ranks. |
| 2799 | int64_t resRank = resultType.getRank(); |
| 2800 | int64_t v1Rank = v1Type.getRank(); |
| 2801 | int64_t v2Rank = v2Type.getRank(); |
| 2802 | bool wellFormed0DCase = v1Rank == 0 && v2Rank == 0 && resRank == 1; |
| 2803 | bool wellFormedNDCase = v1Rank == resRank && v2Rank == resRank; |
| 2804 | if (!wellFormed0DCase && !wellFormedNDCase) |
| 2805 | return emitOpError("rank mismatch" ); |
| 2806 | |
| 2807 | // Verify all but leading dimension sizes. |
| 2808 | for (int64_t r = 1; r < v1Rank; ++r) { |
| 2809 | int64_t resDim = resultType.getDimSize(r); |
| 2810 | int64_t v1Dim = v1Type.getDimSize(r); |
| 2811 | int64_t v2Dim = v2Type.getDimSize(r); |
| 2812 | if (resDim != v1Dim || v1Dim != v2Dim) |
| 2813 | return emitOpError("dimension mismatch" ); |
| 2814 | } |
| 2815 | // Verify mask length. |
| 2816 | ArrayRef<int64_t> mask = getMask(); |
| 2817 | int64_t maskLength = mask.size(); |
| 2818 | if (maskLength <= 0) |
| 2819 | return emitOpError("invalid mask length" ); |
| 2820 | if (maskLength != resultType.getDimSize(0)) |
| 2821 | return emitOpError("mask length mismatch" ); |
| 2822 | // Verify all indices. |
| 2823 | int64_t indexSize = (v1Type.getRank() == 0 ? 1 : v1Type.getDimSize(0)) + |
| 2824 | (v2Type.getRank() == 0 ? 1 : v2Type.getDimSize(0)); |
| 2825 | for (auto [idx, maskPos] : llvm::enumerate(mask)) { |
| 2826 | if (!isValidPositiveIndexOrPoison(maskPos, kPoisonIndex, indexSize)) |
| 2827 | return emitOpError("mask index #" ) << (idx + 1) << " out of range" ; |
| 2828 | } |
| 2829 | return success(); |
| 2830 | } |
| 2831 | |
| 2832 | LogicalResult |
| 2833 | ShuffleOp::inferReturnTypes(MLIRContext *, std::optional<Location>, |
| 2834 | ShuffleOp::Adaptor adaptor, |
| 2835 | SmallVectorImpl<Type> &inferredReturnTypes) { |
| 2836 | auto v1Type = llvm::cast<VectorType>(adaptor.getV1().getType()); |
| 2837 | auto v1Rank = v1Type.getRank(); |
| 2838 | // Construct resulting type: leading dimension matches mask |
| 2839 | // length, all trailing dimensions match the operands. |
| 2840 | SmallVector<int64_t, 4> shape; |
| 2841 | shape.reserve(v1Rank); |
| 2842 | shape.push_back(std::max<size_t>(1, adaptor.getMask().size())); |
| 2843 | // In the 0-D case there is no trailing shape to append. |
| 2844 | if (v1Rank > 0) |
| 2845 | llvm::append_range(shape, v1Type.getShape().drop_front()); |
| 2846 | inferredReturnTypes.push_back( |
| 2847 | VectorType::get(shape, v1Type.getElementType())); |
| 2848 | return success(); |
| 2849 | } |
| 2850 | |
| 2851 | template <typename T> |
| 2852 | static bool isStepIndexArray(ArrayRef<T> idxArr, uint64_t begin, size_t width) { |
| 2853 | T expected = begin; |
| 2854 | return idxArr.size() == width && llvm::all_of(idxArr, [&expected](T value) { |
| 2855 | return value == expected++; |
| 2856 | }); |
| 2857 | } |
| 2858 | |
| 2859 | OpFoldResult vector::ShuffleOp::fold(FoldAdaptor adaptor) { |
| 2860 | auto v1Type = getV1VectorType(); |
| 2861 | auto v2Type = getV2VectorType(); |
| 2862 | |
| 2863 | assert(!v1Type.isScalable() && !v2Type.isScalable() && |
| 2864 | "Vector shuffle does not support scalable vectors" ); |
| 2865 | |
| 2866 | // For consistency: 0-D shuffle return type is 1-D, this cannot be a folding |
| 2867 | // but must be a canonicalization into a vector.broadcast. |
| 2868 | if (v1Type.getRank() == 0) |
| 2869 | return {}; |
| 2870 | |
| 2871 | // Fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1. |
| 2872 | auto mask = getMask(); |
| 2873 | if (isStepIndexArray(mask, 0, v1Type.getDimSize(0))) |
| 2874 | return getV1(); |
| 2875 | // Fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2. |
| 2876 | if (isStepIndexArray(mask, v1Type.getDimSize(0), v2Type.getDimSize(0))) |
| 2877 | return getV2(); |
| 2878 | |
| 2879 | Attribute v1Attr = adaptor.getV1(), v2Attr = adaptor.getV2(); |
| 2880 | if (!v1Attr || !v2Attr) |
| 2881 | return {}; |
| 2882 | |
| 2883 | // Fold shuffle poison, poison -> poison. |
| 2884 | bool isV1Poison = isa<ub::PoisonAttr>(v1Attr); |
| 2885 | bool isV2Poison = isa<ub::PoisonAttr>(v2Attr); |
| 2886 | if (isV1Poison && isV2Poison) |
| 2887 | return ub::PoisonAttr::get(getContext()); |
| 2888 | |
| 2889 | // Only support 1-D for now to avoid complicated n-D DenseElementsAttr |
| 2890 | // manipulation. |
| 2891 | if (v1Type.getRank() != 1) |
| 2892 | return {}; |
| 2893 | |
| 2894 | // Poison input attributes need special handling as they are not |
| 2895 | // DenseElementsAttr. If an index is poison, we select the first element of |
| 2896 | // the first non-poison input. |
| 2897 | SmallVector<Attribute> v1Elements, v2Elements; |
| 2898 | Attribute poisonElement; |
| 2899 | if (!isV2Poison) { |
| 2900 | v2Elements = |
| 2901 | to_vector(cast<DenseElementsAttr>(v2Attr).getValues<Attribute>()); |
| 2902 | poisonElement = v2Elements[0]; |
| 2903 | } |
| 2904 | if (!isV1Poison) { |
| 2905 | v1Elements = |
| 2906 | to_vector(cast<DenseElementsAttr>(v1Attr).getValues<Attribute>()); |
| 2907 | poisonElement = v1Elements[0]; |
| 2908 | } |
| 2909 | |
| 2910 | SmallVector<Attribute> results; |
| 2911 | int64_t v1Size = v1Type.getDimSize(0); |
| 2912 | for (int64_t maskIdx : mask) { |
| 2913 | Attribute indexedElm; |
| 2914 | // TODO: Return a partial poison vector when supported by the UB dialect. |
| 2915 | if (maskIdx == ShuffleOp::kPoisonIndex) { |
| 2916 | indexedElm = poisonElement; |
| 2917 | } else { |
| 2918 | if (maskIdx < v1Size) |
| 2919 | indexedElm = isV1Poison ? poisonElement : v1Elements[maskIdx]; |
| 2920 | else |
| 2921 | indexedElm = isV2Poison ? poisonElement : v2Elements[maskIdx - v1Size]; |
| 2922 | } |
| 2923 | |
| 2924 | results.push_back(indexedElm); |
| 2925 | } |
| 2926 | |
| 2927 | return DenseElementsAttr::get(getResultVectorType(), results); |
| 2928 | } |
| 2929 | |
| 2930 | namespace { |
| 2931 | |
| 2932 | // Pattern to rewrite a 0-D shuffle with [0] or [1] mask returning a 1-D vector |
| 2933 | // to a broadcast. |
| 2934 | struct Canonicalize0DShuffleOp : public OpRewritePattern<ShuffleOp> { |
| 2935 | using OpRewritePattern::OpRewritePattern; |
| 2936 | |
| 2937 | LogicalResult matchAndRewrite(ShuffleOp shuffleOp, |
| 2938 | PatternRewriter &rewriter) const override { |
| 2939 | VectorType v1VectorType = shuffleOp.getV1VectorType(); |
| 2940 | ArrayRef<int64_t> mask = shuffleOp.getMask(); |
| 2941 | if (v1VectorType.getRank() > 0) |
| 2942 | return failure(); |
| 2943 | if (mask.size() != 1) |
| 2944 | return failure(); |
| 2945 | VectorType resType = VectorType::Builder(v1VectorType).setShape({1}); |
| 2946 | if (mask[0] == 0) |
| 2947 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>(shuffleOp, resType, |
| 2948 | shuffleOp.getV1()); |
| 2949 | else |
| 2950 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>(shuffleOp, resType, |
| 2951 | shuffleOp.getV2()); |
| 2952 | return success(); |
| 2953 | } |
| 2954 | }; |
| 2955 | |
| 2956 | /// Pattern to rewrite a ShuffleOp(SplatOp, SplatOp) to SplatOp. |
| 2957 | class ShuffleSplat final : public OpRewritePattern<ShuffleOp> { |
| 2958 | public: |
| 2959 | using OpRewritePattern::OpRewritePattern; |
| 2960 | |
| 2961 | LogicalResult matchAndRewrite(ShuffleOp op, |
| 2962 | PatternRewriter &rewriter) const override { |
| 2963 | auto v1Splat = op.getV1().getDefiningOp<SplatOp>(); |
| 2964 | auto v2Splat = op.getV2().getDefiningOp<SplatOp>(); |
| 2965 | |
| 2966 | if (!v1Splat || !v2Splat) |
| 2967 | return failure(); |
| 2968 | |
| 2969 | if (v1Splat.getInput() != v2Splat.getInput()) |
| 2970 | return failure(); |
| 2971 | |
| 2972 | rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), v1Splat.getInput()); |
| 2973 | return success(); |
| 2974 | } |
| 2975 | }; |
| 2976 | |
| 2977 | /// Pattern to rewrite a fixed-size interleave via vector.shuffle to |
| 2978 | /// vector.interleave. |
| 2979 | class ShuffleInterleave : public OpRewritePattern<ShuffleOp> { |
| 2980 | public: |
| 2981 | using OpRewritePattern::OpRewritePattern; |
| 2982 | |
| 2983 | LogicalResult matchAndRewrite(ShuffleOp op, |
| 2984 | PatternRewriter &rewriter) const override { |
| 2985 | VectorType resultType = op.getResultVectorType(); |
| 2986 | if (resultType.isScalable()) |
| 2987 | return rewriter.notifyMatchFailure( |
| 2988 | op, "ShuffleOp can't represent a scalable interleave" ); |
| 2989 | |
| 2990 | if (resultType.getRank() != 1) |
| 2991 | return rewriter.notifyMatchFailure( |
| 2992 | op, "ShuffleOp can't represent an n-D interleave" ); |
| 2993 | |
| 2994 | VectorType sourceType = op.getV1VectorType(); |
| 2995 | if (sourceType != op.getV2VectorType() || |
| 2996 | sourceType.getNumElements() * 2 != resultType.getNumElements()) { |
| 2997 | return rewriter.notifyMatchFailure( |
| 2998 | op, "ShuffleOp types don't match an interleave" ); |
| 2999 | } |
| 3000 | |
| 3001 | ArrayRef<int64_t> shuffleMask = op.getMask(); |
| 3002 | int64_t resultVectorSize = resultType.getNumElements(); |
| 3003 | for (int i = 0, e = resultVectorSize / 2; i < e; ++i) { |
| 3004 | int64_t maskValueA = shuffleMask[i * 2]; |
| 3005 | int64_t maskValueB = shuffleMask[(i * 2) + 1]; |
| 3006 | if (maskValueA != i || maskValueB != (resultVectorSize / 2) + i) |
| 3007 | return rewriter.notifyMatchFailure(op, |
| 3008 | "ShuffleOp mask not interleaving" ); |
| 3009 | } |
| 3010 | |
| 3011 | rewriter.replaceOpWithNewOp<InterleaveOp>(op, op.getV1(), op.getV2()); |
| 3012 | return success(); |
| 3013 | } |
| 3014 | }; |
| 3015 | |
| 3016 | } // namespace |
| 3017 | |
| 3018 | void ShuffleOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 3019 | MLIRContext *context) { |
| 3020 | results.add<ShuffleSplat, ShuffleInterleave, Canonicalize0DShuffleOp>( |
| 3021 | context); |
| 3022 | } |
| 3023 | |
| 3024 | //===----------------------------------------------------------------------===// |
| 3025 | // InsertElementOp |
| 3026 | //===----------------------------------------------------------------------===// |
| 3027 | |
| 3028 | void InsertElementOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges, |
| 3029 | SetIntRangeFn setResultRanges) { |
| 3030 | setResultRanges(getResult(), argRanges[0].rangeUnion(argRanges[1])); |
| 3031 | } |
| 3032 | |
| 3033 | void InsertElementOp::build(OpBuilder &builder, OperationState &result, |
| 3034 | Value source, Value dest) { |
| 3035 | build(builder, result, source, dest, {}); |
| 3036 | } |
| 3037 | |
| 3038 | LogicalResult InsertElementOp::verify() { |
| 3039 | auto dstVectorType = getDestVectorType(); |
| 3040 | if (dstVectorType.getRank() == 0) { |
| 3041 | if (getPosition()) |
| 3042 | return emitOpError("expected position to be empty with 0-D vector" ); |
| 3043 | return success(); |
| 3044 | } |
| 3045 | if (dstVectorType.getRank() != 1) |
| 3046 | return emitOpError("unexpected >1 vector rank" ); |
| 3047 | if (!getPosition()) |
| 3048 | return emitOpError("expected position for 1-D vector" ); |
| 3049 | return success(); |
| 3050 | } |
| 3051 | |
| 3052 | OpFoldResult vector::InsertElementOp::fold(FoldAdaptor adaptor) { |
| 3053 | // Skip the 0-D vector here. |
| 3054 | if (!adaptor.getPosition()) |
| 3055 | return {}; |
| 3056 | |
| 3057 | auto src = dyn_cast_or_null<TypedAttr>(adaptor.getSource()); |
| 3058 | auto dst = dyn_cast_or_null<DenseElementsAttr>(adaptor.getDest()); |
| 3059 | auto pos = dyn_cast_or_null<IntegerAttr>(adaptor.getPosition()); |
| 3060 | if (!src || !dst || !pos) |
| 3061 | return {}; |
| 3062 | |
| 3063 | if (src.getType() != getDestVectorType().getElementType()) |
| 3064 | return {}; |
| 3065 | |
| 3066 | auto dstElements = dst.getValues<Attribute>(); |
| 3067 | |
| 3068 | SmallVector<Attribute> results(dstElements); |
| 3069 | |
| 3070 | uint64_t posIdx = pos.getInt(); |
| 3071 | if (posIdx >= results.size()) |
| 3072 | return {}; |
| 3073 | results[posIdx] = src; |
| 3074 | |
| 3075 | return DenseElementsAttr::get(getDestVectorType(), results); |
| 3076 | } |
| 3077 | |
| 3078 | //===----------------------------------------------------------------------===// |
| 3079 | // InsertOp |
| 3080 | //===----------------------------------------------------------------------===// |
| 3081 | |
| 3082 | void vector::InsertOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges, |
| 3083 | SetIntRangeFn setResultRanges) { |
| 3084 | setResultRanges(getResult(), argRanges[0].rangeUnion(argRanges[1])); |
| 3085 | } |
| 3086 | |
| 3087 | void vector::InsertOp::build(OpBuilder &builder, OperationState &result, |
| 3088 | Value source, Value dest) { |
| 3089 | auto vectorTy = cast<VectorType>(dest.getType()); |
| 3090 | build(builder, result, source, dest, |
| 3091 | SmallVector<int64_t>(vectorTy.getRank(), 0)); |
| 3092 | } |
| 3093 | |
| 3094 | void vector::InsertOp::build(OpBuilder &builder, OperationState &result, |
| 3095 | Value source, Value dest, int64_t position) { |
| 3096 | build(builder, result, source, dest, ArrayRef<int64_t>{position}); |
| 3097 | } |
| 3098 | |
| 3099 | void vector::InsertOp::build(OpBuilder &builder, OperationState &result, |
| 3100 | Value source, Value dest, OpFoldResult position) { |
| 3101 | build(builder, result, source, dest, ArrayRef<OpFoldResult>{position}); |
| 3102 | } |
| 3103 | |
| 3104 | void vector::InsertOp::build(OpBuilder &builder, OperationState &result, |
| 3105 | Value source, Value dest, |
| 3106 | ArrayRef<int64_t> position) { |
| 3107 | SmallVector<OpFoldResult> posVals; |
| 3108 | posVals.reserve(position.size()); |
| 3109 | llvm::transform(position, std::back_inserter(posVals), |
| 3110 | [&](int64_t pos) { return builder.getI64IntegerAttr(pos); }); |
| 3111 | build(builder, result, source, dest, posVals); |
| 3112 | } |
| 3113 | |
| 3114 | void vector::InsertOp::build(OpBuilder &builder, OperationState &result, |
| 3115 | Value source, Value dest, |
| 3116 | ArrayRef<OpFoldResult> position) { |
| 3117 | SmallVector<int64_t> staticPos; |
| 3118 | SmallVector<Value> dynamicPos; |
| 3119 | dispatchIndexOpFoldResults(position, dynamicPos, staticPos); |
| 3120 | build(builder, result, source, dest, dynamicPos, |
| 3121 | builder.getDenseI64ArrayAttr(staticPos)); |
| 3122 | } |
| 3123 | |
| 3124 | LogicalResult InsertOp::verify() { |
| 3125 | SmallVector<OpFoldResult> position = getMixedPosition(); |
| 3126 | auto destVectorType = getDestVectorType(); |
| 3127 | if (position.size() > static_cast<unsigned>(destVectorType.getRank())) |
| 3128 | return emitOpError( |
| 3129 | "expected position attribute of rank no greater than dest vector rank" ); |
| 3130 | auto srcVectorType = llvm::dyn_cast<VectorType>(getValueToStoreType()); |
| 3131 | if (srcVectorType && |
| 3132 | (static_cast<unsigned>(srcVectorType.getRank()) + position.size() != |
| 3133 | static_cast<unsigned>(destVectorType.getRank()))) |
| 3134 | return emitOpError("expected position attribute rank + source rank to " |
| 3135 | "match dest vector rank" ); |
| 3136 | if (!srcVectorType && |
| 3137 | (position.size() != static_cast<unsigned>(destVectorType.getRank()))) |
| 3138 | return emitOpError( |
| 3139 | "expected position attribute rank to match the dest vector rank" ); |
| 3140 | for (auto [idx, pos] : llvm::enumerate(position)) { |
| 3141 | if (auto attr = dyn_cast<Attribute>(pos)) { |
| 3142 | int64_t constIdx = cast<IntegerAttr>(attr).getInt(); |
| 3143 | if (!isValidPositiveIndexOrPoison(constIdx, kPoisonIndex, |
| 3144 | destVectorType.getDimSize(idx))) { |
| 3145 | return emitOpError("expected position attribute #" ) |
| 3146 | << (idx + 1) |
| 3147 | << " to be a non-negative integer smaller than the " |
| 3148 | "corresponding " |
| 3149 | "dest vector dimension" ; |
| 3150 | } |
| 3151 | } |
| 3152 | } |
| 3153 | return success(); |
| 3154 | } |
| 3155 | |
| 3156 | namespace { |
| 3157 | |
| 3158 | // If insertOp is only inserting unit dimensions it can be transformed to a |
| 3159 | // broadcast. |
| 3160 | class InsertToBroadcast final : public OpRewritePattern<InsertOp> { |
| 3161 | public: |
| 3162 | using OpRewritePattern::OpRewritePattern; |
| 3163 | |
| 3164 | LogicalResult matchAndRewrite(InsertOp insertOp, |
| 3165 | PatternRewriter &rewriter) const override { |
| 3166 | auto srcVecType = |
| 3167 | llvm::dyn_cast<VectorType>(insertOp.getValueToStoreType()); |
| 3168 | if (!srcVecType || insertOp.getDestVectorType().getNumElements() != |
| 3169 | srcVecType.getNumElements()) |
| 3170 | return failure(); |
| 3171 | rewriter.replaceOpWithNewOp<BroadcastOp>( |
| 3172 | insertOp, insertOp.getDestVectorType(), insertOp.getValueToStore()); |
| 3173 | return success(); |
| 3174 | } |
| 3175 | }; |
| 3176 | |
| 3177 | /// Pattern to rewrite a InsertOp(SplatOp, SplatOp) to SplatOp. |
| 3178 | class InsertSplatToSplat final : public OpRewritePattern<InsertOp> { |
| 3179 | public: |
| 3180 | using OpRewritePattern::OpRewritePattern; |
| 3181 | |
| 3182 | LogicalResult matchAndRewrite(InsertOp op, |
| 3183 | PatternRewriter &rewriter) const override { |
| 3184 | auto srcSplat = op.getValueToStore().getDefiningOp<SplatOp>(); |
| 3185 | auto dstSplat = op.getDest().getDefiningOp<SplatOp>(); |
| 3186 | |
| 3187 | if (!srcSplat || !dstSplat) |
| 3188 | return failure(); |
| 3189 | |
| 3190 | if (srcSplat.getInput() != dstSplat.getInput()) |
| 3191 | return failure(); |
| 3192 | |
| 3193 | rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), srcSplat.getInput()); |
| 3194 | return success(); |
| 3195 | } |
| 3196 | }; |
| 3197 | |
| 3198 | } // namespace |
| 3199 | |
| 3200 | static Attribute |
| 3201 | foldDenseElementsAttrDestInsertOp(InsertOp insertOp, Attribute srcAttr, |
| 3202 | Attribute dstAttr, |
| 3203 | int64_t maxVectorSizeFoldThreshold) { |
| 3204 | if (insertOp.hasDynamicPosition()) |
| 3205 | return {}; |
| 3206 | |
| 3207 | auto denseDst = llvm::dyn_cast_if_present<DenseElementsAttr>(Val&: dstAttr); |
| 3208 | if (!denseDst) |
| 3209 | return {}; |
| 3210 | |
| 3211 | if (!srcAttr) { |
| 3212 | return {}; |
| 3213 | } |
| 3214 | |
| 3215 | VectorType destTy = insertOp.getDestVectorType(); |
| 3216 | if (destTy.isScalable()) |
| 3217 | return {}; |
| 3218 | |
| 3219 | // Make sure we do not create too many large constants. |
| 3220 | if (destTy.getNumElements() > maxVectorSizeFoldThreshold && |
| 3221 | !insertOp->hasOneUse()) |
| 3222 | return {}; |
| 3223 | |
| 3224 | // Calculate the linearized position of the continuous chunk of elements to |
| 3225 | // insert. |
| 3226 | llvm::SmallVector<int64_t> completePositions(destTy.getRank(), 0); |
| 3227 | copy(insertOp.getStaticPosition(), completePositions.begin()); |
| 3228 | int64_t insertBeginPosition = |
| 3229 | linearize(completePositions, computeStrides(destTy.getShape())); |
| 3230 | |
| 3231 | SmallVector<Attribute> insertedValues; |
| 3232 | Type destEltType = destTy.getElementType(); |
| 3233 | |
| 3234 | /// Converts the expected type to an IntegerAttr if there's |
| 3235 | /// a mismatch. |
| 3236 | auto convertIntegerAttr = [](Attribute attr, Type expectedType) -> Attribute { |
| 3237 | if (auto intAttr = mlir::dyn_cast<IntegerAttr>(attr)) { |
| 3238 | if (intAttr.getType() != expectedType) |
| 3239 | return IntegerAttr::get(expectedType, intAttr.getInt()); |
| 3240 | } |
| 3241 | return attr; |
| 3242 | }; |
| 3243 | |
| 3244 | // The `convertIntegerAttr` method specifically handles the case |
| 3245 | // for `llvm.mlir.constant` which can hold an attribute with a |
| 3246 | // different type than the return type. |
| 3247 | if (auto denseSource = llvm::dyn_cast<DenseElementsAttr>(Val&: srcAttr)) { |
| 3248 | for (auto value : denseSource.getValues<Attribute>()) |
| 3249 | insertedValues.push_back(convertIntegerAttr(value, destEltType)); |
| 3250 | } else { |
| 3251 | insertedValues.push_back(Elt: convertIntegerAttr(srcAttr, destEltType)); |
| 3252 | } |
| 3253 | |
| 3254 | auto allValues = llvm::to_vector(denseDst.getValues<Attribute>()); |
| 3255 | copy(insertedValues, allValues.begin() + insertBeginPosition); |
| 3256 | auto newAttr = DenseElementsAttr::get(destTy, allValues); |
| 3257 | |
| 3258 | return newAttr; |
| 3259 | } |
| 3260 | |
| 3261 | void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 3262 | MLIRContext *context) { |
| 3263 | results.add<InsertToBroadcast, BroadcastFolder, InsertSplatToSplat>(context); |
| 3264 | } |
| 3265 | |
| 3266 | OpFoldResult vector::InsertOp::fold(FoldAdaptor adaptor) { |
| 3267 | // Do not create constants with more than `vectorSizeFoldThreashold` elements, |
| 3268 | // unless the source vector constant has a single use. |
| 3269 | constexpr int64_t vectorSizeFoldThreshold = 256; |
| 3270 | // Fold "vector.insert %v, %dest [] : vector<2x2xf32> from vector<2x2xf32>" to |
| 3271 | // %v. Note: Do not fold "vector.insert %v, %dest [] : f32 into vector<f32>" |
| 3272 | // (type mismatch). |
| 3273 | if (getNumIndices() == 0 && getValueToStoreType() == getType()) |
| 3274 | return getValueToStore(); |
| 3275 | // Fold `arith.constant` indices into the `vector.insert` operation. Make |
| 3276 | // sure that patterns requiring constant indices are added after this fold. |
| 3277 | SmallVector<Value> operands = {getValueToStore(), getDest()}; |
| 3278 | if (auto val = extractInsertFoldConstantOp(*this, adaptor, operands)) |
| 3279 | return val; |
| 3280 | if (auto res = foldPoisonIndexInsertExtractOp( |
| 3281 | getContext(), adaptor.getStaticPosition(), kPoisonIndex)) |
| 3282 | return res; |
| 3283 | if (auto res = foldDenseElementsAttrDestInsertOp( |
| 3284 | *this, adaptor.getValueToStore(), adaptor.getDest(), |
| 3285 | vectorSizeFoldThreshold)) { |
| 3286 | return res; |
| 3287 | } |
| 3288 | |
| 3289 | return {}; |
| 3290 | } |
| 3291 | |
| 3292 | //===----------------------------------------------------------------------===// |
| 3293 | // InsertStridedSliceOp |
| 3294 | //===----------------------------------------------------------------------===// |
| 3295 | |
| 3296 | void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, |
| 3297 | Value source, Value dest, |
| 3298 | ArrayRef<int64_t> offsets, |
| 3299 | ArrayRef<int64_t> strides) { |
| 3300 | result.addOperands({source, dest}); |
| 3301 | auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); |
| 3302 | auto stridesAttr = getVectorSubscriptAttr(builder, strides); |
| 3303 | result.addTypes(dest.getType()); |
| 3304 | result.addAttribute(InsertStridedSliceOp::getOffsetsAttrName(result.name), |
| 3305 | offsetsAttr); |
| 3306 | result.addAttribute(InsertStridedSliceOp::getStridesAttrName(result.name), |
| 3307 | stridesAttr); |
| 3308 | } |
| 3309 | |
| 3310 | // TODO: Should be moved to Tablegen ConfinedAttr attributes. |
| 3311 | template <typename OpType> |
| 3312 | static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, |
| 3313 | ArrayAttr arrayAttr, |
| 3314 | ArrayRef<int64_t> shape, |
| 3315 | StringRef attrName) { |
| 3316 | if (arrayAttr.size() > shape.size()) |
| 3317 | return op.emitOpError("expected " ) |
| 3318 | << attrName << " attribute of rank no greater than vector rank" ; |
| 3319 | return success(); |
| 3320 | } |
| 3321 | |
| 3322 | // Returns true if all integers in `arrayAttr` are in the half-open [min, max} |
| 3323 | // interval. If `halfOpen` is true then the admissible interval is [min, max). |
| 3324 | // Otherwise, the admissible interval is [min, max]. |
| 3325 | template <typename OpType> |
| 3326 | static LogicalResult |
| 3327 | isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, |
| 3328 | int64_t max, StringRef attrName, |
| 3329 | bool halfOpen = true) { |
| 3330 | for (auto attr : arrayAttr) { |
| 3331 | auto val = llvm::cast<IntegerAttr>(attr).getInt(); |
| 3332 | auto upper = max; |
| 3333 | if (!halfOpen) |
| 3334 | upper += 1; |
| 3335 | if (val < min || val >= upper) |
| 3336 | return op.emitOpError("expected " ) << attrName << " to be confined to [" |
| 3337 | << min << ", " << upper << ")" ; |
| 3338 | } |
| 3339 | return success(); |
| 3340 | } |
| 3341 | |
| 3342 | // Returns true if all integers in `arrayAttr` are in the half-open [min, max} |
| 3343 | // interval. If `halfOpen` is true then the admissible interval is [min, max). |
| 3344 | // Otherwise, the admissible interval is [min, max]. |
| 3345 | template <typename OpType> |
| 3346 | static LogicalResult |
| 3347 | isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, |
| 3348 | ArrayRef<int64_t> shape, StringRef attrName, |
| 3349 | bool halfOpen = true, int64_t min = 0) { |
| 3350 | for (auto [index, attrDimPair] : |
| 3351 | llvm::enumerate(llvm::zip_first(arrayAttr, shape))) { |
| 3352 | int64_t val = llvm::cast<IntegerAttr>(std::get<0>(attrDimPair)).getInt(); |
| 3353 | int64_t max = std::get<1>(attrDimPair); |
| 3354 | if (!halfOpen) |
| 3355 | max += 1; |
| 3356 | if (val < min || val >= max) |
| 3357 | return op.emitOpError("expected " ) |
| 3358 | << attrName << " dimension " << index << " to be confined to [" |
| 3359 | << min << ", " << max << ")" ; |
| 3360 | } |
| 3361 | return success(); |
| 3362 | } |
| 3363 | |
| 3364 | // Returns true if, for all indices i = 0..shape.size()-1, val is in the |
| 3365 | // [min, max} interval: |
| 3366 | // val = `arrayAttr1[i]` + `arrayAttr2[i]`, |
| 3367 | // If `halfOpen` is true then the admissible interval is [min, max). Otherwise, |
| 3368 | // the admissible interval is [min, max]. |
| 3369 | template <typename OpType> |
| 3370 | static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( |
| 3371 | OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, |
| 3372 | ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, |
| 3373 | bool halfOpen = true, int64_t min = 1) { |
| 3374 | assert(arrayAttr1.size() <= shape.size()); |
| 3375 | assert(arrayAttr2.size() <= shape.size()); |
| 3376 | for (auto [index, it] : |
| 3377 | llvm::enumerate(llvm::zip(arrayAttr1, arrayAttr2, shape))) { |
| 3378 | auto val1 = llvm::cast<IntegerAttr>(std::get<0>(it)).getInt(); |
| 3379 | auto val2 = llvm::cast<IntegerAttr>(std::get<1>(it)).getInt(); |
| 3380 | int64_t max = std::get<2>(it); |
| 3381 | if (!halfOpen) |
| 3382 | max += 1; |
| 3383 | if (val1 + val2 < 0 || val1 + val2 >= max) |
| 3384 | return op.emitOpError("expected sum(" ) |
| 3385 | << attrName1 << ", " << attrName2 << ") dimension " << index |
| 3386 | << " to be confined to [" << min << ", " << max << ")" ; |
| 3387 | } |
| 3388 | return success(); |
| 3389 | } |
| 3390 | |
| 3391 | static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, |
| 3392 | MLIRContext *context) { |
| 3393 | auto attrs = llvm::map_range(C&: values, F: [context](int64_t v) -> Attribute { |
| 3394 | return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); |
| 3395 | }); |
| 3396 | return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); |
| 3397 | } |
| 3398 | |
| 3399 | LogicalResult InsertStridedSliceOp::verify() { |
| 3400 | auto sourceVectorType = getSourceVectorType(); |
| 3401 | auto destVectorType = getDestVectorType(); |
| 3402 | auto offsets = getOffsetsAttr(); |
| 3403 | auto strides = getStridesAttr(); |
| 3404 | if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) |
| 3405 | return emitOpError( |
| 3406 | "expected offsets of same size as destination vector rank" ); |
| 3407 | if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) |
| 3408 | return emitOpError("expected strides of same size as source vector rank" ); |
| 3409 | if (sourceVectorType.getRank() > destVectorType.getRank()) |
| 3410 | return emitOpError( |
| 3411 | "expected source rank to be no greater than destination rank" ); |
| 3412 | |
| 3413 | auto sourceShape = sourceVectorType.getShape(); |
| 3414 | auto destShape = destVectorType.getShape(); |
| 3415 | SmallVector<int64_t, 4> sourceShapeAsDestShape( |
| 3416 | destShape.size() - sourceShape.size(), 0); |
| 3417 | sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); |
| 3418 | auto offName = InsertStridedSliceOp::getOffsetsAttrName(); |
| 3419 | auto stridesName = InsertStridedSliceOp::getStridesAttrName(); |
| 3420 | if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, |
| 3421 | offName)) || |
| 3422 | failed(isIntegerArrayAttrConfinedToRange(*this, strides, /*min=*/1, |
| 3423 | /*max=*/1, stridesName, |
| 3424 | /*halfOpen=*/false)) || |
| 3425 | failed(isSumOfIntegerArrayAttrConfinedToShape( |
| 3426 | *this, offsets, |
| 3427 | makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, |
| 3428 | offName, "source vector shape" , |
| 3429 | /*halfOpen=*/false, /*min=*/1))) |
| 3430 | return failure(); |
| 3431 | |
| 3432 | unsigned rankDiff = destShape.size() - sourceShape.size(); |
| 3433 | for (unsigned idx = 0; idx < sourceShape.size(); ++idx) { |
| 3434 | if (sourceVectorType.getScalableDims()[idx] != |
| 3435 | destVectorType.getScalableDims()[idx + rankDiff]) { |
| 3436 | return emitOpError("mismatching scalable flags (at source vector idx=" ) |
| 3437 | << idx << ")" ; |
| 3438 | } |
| 3439 | if (sourceVectorType.getScalableDims()[idx]) { |
| 3440 | auto sourceSize = sourceShape[idx]; |
| 3441 | auto destSize = destShape[idx + rankDiff]; |
| 3442 | if (sourceSize != destSize) { |
| 3443 | return emitOpError("expected size at idx=" ) |
| 3444 | << idx |
| 3445 | << (" to match the corresponding base size from the input " |
| 3446 | "vector (" ) |
| 3447 | << sourceSize << (" vs " ) << destSize << (")" ); |
| 3448 | } |
| 3449 | } |
| 3450 | } |
| 3451 | |
| 3452 | return success(); |
| 3453 | } |
| 3454 | |
| 3455 | namespace { |
| 3456 | /// Pattern to rewrite an InsertStridedSliceOp(SplatOp(X):src_type, |
| 3457 | /// SplatOp(X):dst_type) to SplatOp(X):dst_type. |
| 3458 | class FoldInsertStridedSliceSplat final |
| 3459 | : public OpRewritePattern<InsertStridedSliceOp> { |
| 3460 | public: |
| 3461 | using OpRewritePattern::OpRewritePattern; |
| 3462 | |
| 3463 | LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp, |
| 3464 | PatternRewriter &rewriter) const override { |
| 3465 | auto srcSplatOp = |
| 3466 | insertStridedSliceOp.getValueToStore().getDefiningOp<vector::SplatOp>(); |
| 3467 | auto destSplatOp = |
| 3468 | insertStridedSliceOp.getDest().getDefiningOp<vector::SplatOp>(); |
| 3469 | |
| 3470 | if (!srcSplatOp || !destSplatOp) |
| 3471 | return failure(); |
| 3472 | |
| 3473 | if (srcSplatOp.getInput() != destSplatOp.getInput()) |
| 3474 | return failure(); |
| 3475 | |
| 3476 | rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest()); |
| 3477 | return success(); |
| 3478 | } |
| 3479 | }; |
| 3480 | |
| 3481 | /// Pattern to rewrite an InsertStridedSliceOp(ExtractStridedSliceOp(dst), dst) |
| 3482 | /// to dst. |
| 3483 | class final |
| 3484 | : public OpRewritePattern<InsertStridedSliceOp> { |
| 3485 | public: |
| 3486 | using OpRewritePattern::OpRewritePattern; |
| 3487 | |
| 3488 | LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp, |
| 3489 | PatternRewriter &rewriter) const override { |
| 3490 | auto = |
| 3491 | insertStridedSliceOp.getValueToStore() |
| 3492 | .getDefiningOp<vector::ExtractStridedSliceOp>(); |
| 3493 | |
| 3494 | if (!extractStridedSliceOp) |
| 3495 | return failure(); |
| 3496 | |
| 3497 | if (extractStridedSliceOp.getOperand() != insertStridedSliceOp.getDest()) |
| 3498 | return failure(); |
| 3499 | |
| 3500 | // Check if have the same strides and offsets. |
| 3501 | if (extractStridedSliceOp.getStrides() != |
| 3502 | insertStridedSliceOp.getStrides() || |
| 3503 | extractStridedSliceOp.getOffsets() != insertStridedSliceOp.getOffsets()) |
| 3504 | return failure(); |
| 3505 | |
| 3506 | rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest()); |
| 3507 | return success(); |
| 3508 | } |
| 3509 | }; |
| 3510 | |
| 3511 | // Pattern to rewrite an InsertStridedSliceOp(ConstantOp into ConstantOp) -> |
| 3512 | // ConstantOp. |
| 3513 | class InsertStridedSliceConstantFolder final |
| 3514 | : public OpRewritePattern<InsertStridedSliceOp> { |
| 3515 | public: |
| 3516 | using OpRewritePattern::OpRewritePattern; |
| 3517 | |
| 3518 | // Do not create constants with more than `vectorSizeFoldThreashold` elements, |
| 3519 | // unless the source vector constant has a single use. |
| 3520 | static constexpr int64_t vectorSizeFoldThreshold = 256; |
| 3521 | |
| 3522 | LogicalResult matchAndRewrite(InsertStridedSliceOp op, |
| 3523 | PatternRewriter &rewriter) const override { |
| 3524 | // Return if 'InsertOp' operand is not defined by a compatible vector |
| 3525 | // ConstantOp. |
| 3526 | TypedValue<VectorType> destVector = op.getDest(); |
| 3527 | Attribute vectorDestCst; |
| 3528 | if (!matchPattern(value: destVector, pattern: m_Constant(bind_value: &vectorDestCst))) |
| 3529 | return failure(); |
| 3530 | |
| 3531 | VectorType destTy = destVector.getType(); |
| 3532 | if (destTy.isScalable()) |
| 3533 | return failure(); |
| 3534 | |
| 3535 | // Make sure we do not create too many large constants. |
| 3536 | if (destTy.getNumElements() > vectorSizeFoldThreshold && |
| 3537 | !destVector.hasOneUse()) |
| 3538 | return failure(); |
| 3539 | |
| 3540 | TypedValue<VectorType> sourceValue = op.getValueToStore(); |
| 3541 | Attribute sourceCst; |
| 3542 | if (!matchPattern(value: sourceValue, pattern: m_Constant(bind_value: &sourceCst))) |
| 3543 | return failure(); |
| 3544 | |
| 3545 | // TODO: Support poison. |
| 3546 | if (isa<ub::PoisonAttr>(vectorDestCst) || isa<ub::PoisonAttr>(sourceCst)) |
| 3547 | return failure(); |
| 3548 | |
| 3549 | // TODO: Handle non-unit strides when they become available. |
| 3550 | if (op.hasNonUnitStrides()) |
| 3551 | return failure(); |
| 3552 | |
| 3553 | VectorType sliceVecTy = sourceValue.getType(); |
| 3554 | ArrayRef<int64_t> sliceShape = sliceVecTy.getShape(); |
| 3555 | int64_t rankDifference = destTy.getRank() - sliceVecTy.getRank(); |
| 3556 | SmallVector<int64_t, 4> offsets = getI64SubArray(op.getOffsets()); |
| 3557 | SmallVector<int64_t, 4> destStrides = computeStrides(destTy.getShape()); |
| 3558 | |
| 3559 | // Calcualte the destination element indices by enumerating all slice |
| 3560 | // positions within the destination and linearizing them. The enumeration |
| 3561 | // order is lexicographic which yields a sequence of monotonically |
| 3562 | // increasing linearized position indices. |
| 3563 | // Because the destination may have higher dimensionality then the slice, |
| 3564 | // we keep track of two overlapping sets of positions and offsets. |
| 3565 | auto denseDest = llvm::cast<DenseElementsAttr>(Val&: vectorDestCst); |
| 3566 | auto denseSlice = llvm::cast<DenseElementsAttr>(Val&: sourceCst); |
| 3567 | auto sliceValuesIt = denseSlice.value_begin<Attribute>(); |
| 3568 | auto newValues = llvm::to_vector(denseDest.getValues<Attribute>()); |
| 3569 | SmallVector<int64_t> currDestPosition(offsets.begin(), offsets.end()); |
| 3570 | MutableArrayRef<int64_t> currSlicePosition( |
| 3571 | currDestPosition.begin() + rankDifference, currDestPosition.end()); |
| 3572 | ArrayRef<int64_t> sliceOffsets(offsets.begin() + rankDifference, |
| 3573 | offsets.end()); |
| 3574 | do { |
| 3575 | int64_t linearizedPosition = linearize(offsets: currDestPosition, basis: destStrides); |
| 3576 | assert(linearizedPosition < destTy.getNumElements() && "Invalid index" ); |
| 3577 | assert(sliceValuesIt != denseSlice.value_end<Attribute>() && |
| 3578 | "Invalid slice element" ); |
| 3579 | newValues[linearizedPosition] = *sliceValuesIt; |
| 3580 | ++sliceValuesIt; |
| 3581 | } while (succeeded( |
| 3582 | Result: incSlicePosition(position: currSlicePosition, shape: sliceShape, offsets: sliceOffsets))); |
| 3583 | |
| 3584 | auto newAttr = DenseElementsAttr::get(destTy, newValues); |
| 3585 | rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, newAttr); |
| 3586 | return success(); |
| 3587 | } |
| 3588 | }; |
| 3589 | |
| 3590 | } // namespace |
| 3591 | |
| 3592 | void vector::InsertStridedSliceOp::getCanonicalizationPatterns( |
| 3593 | RewritePatternSet &results, MLIRContext *context) { |
| 3594 | results.add<FoldInsertStridedSliceSplat, FoldInsertStridedSliceOfExtract, |
| 3595 | InsertStridedSliceConstantFolder>(context); |
| 3596 | } |
| 3597 | |
| 3598 | OpFoldResult InsertStridedSliceOp::fold(FoldAdaptor adaptor) { |
| 3599 | if (getSourceVectorType() == getDestVectorType()) |
| 3600 | return getValueToStore(); |
| 3601 | return {}; |
| 3602 | } |
| 3603 | |
| 3604 | //===----------------------------------------------------------------------===// |
| 3605 | // OuterProductOp |
| 3606 | //===----------------------------------------------------------------------===// |
| 3607 | |
| 3608 | /// Build an op without mask, use the type of `acc` as the return type. |
| 3609 | void OuterProductOp::build(OpBuilder &builder, OperationState &result, |
| 3610 | Value lhs, Value rhs, Value acc) { |
| 3611 | result.addOperands({lhs, rhs, acc}); |
| 3612 | result.addTypes(acc.getType()); |
| 3613 | } |
| 3614 | |
| 3615 | void OuterProductOp::print(OpAsmPrinter &p) { |
| 3616 | p << " " << getLhs() << ", " << getRhs(); |
| 3617 | if (getAcc()) { |
| 3618 | p << ", " << getAcc(); |
| 3619 | p.printOptionalAttrDict((*this)->getAttrs()); |
| 3620 | } |
| 3621 | p << " : " << getLhs().getType() << ", " << getRhs().getType(); |
| 3622 | } |
| 3623 | |
| 3624 | ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { |
| 3625 | SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo; |
| 3626 | Type tLHS, tRHS; |
| 3627 | if (parser.parseOperandList(operandsInfo) || |
| 3628 | parser.parseOptionalAttrDict(result.attributes) || |
| 3629 | parser.parseColonType(tLHS) || parser.parseComma() || |
| 3630 | parser.parseType(tRHS)) |
| 3631 | return failure(); |
| 3632 | if (operandsInfo.size() < 2) |
| 3633 | return parser.emitError(parser.getNameLoc(), |
| 3634 | "expected at least 2 operands" ); |
| 3635 | VectorType vLHS = llvm::dyn_cast<VectorType>(tLHS); |
| 3636 | VectorType vRHS = llvm::dyn_cast<VectorType>(tRHS); |
| 3637 | if (!vLHS) |
| 3638 | return parser.emitError(parser.getNameLoc(), |
| 3639 | "expected vector type for operand #1" ); |
| 3640 | |
| 3641 | VectorType resType; |
| 3642 | if (vRHS) { |
| 3643 | SmallVector<bool> scalableDimsRes{vLHS.getScalableDims()[0], |
| 3644 | vRHS.getScalableDims()[0]}; |
| 3645 | resType = VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, |
| 3646 | vLHS.getElementType(), scalableDimsRes); |
| 3647 | } else { |
| 3648 | // Scalar RHS operand |
| 3649 | SmallVector<bool> scalableDimsRes{vLHS.getScalableDims()[0]}; |
| 3650 | resType = VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType(), |
| 3651 | scalableDimsRes); |
| 3652 | } |
| 3653 | |
| 3654 | if (!result.attributes.get(OuterProductOp::getKindAttrName(result.name))) { |
| 3655 | result.attributes.append( |
| 3656 | OuterProductOp::getKindAttrName(result.name), |
| 3657 | CombiningKindAttr::get(result.getContext(), |
| 3658 | OuterProductOp::getDefaultKind())); |
| 3659 | } |
| 3660 | |
| 3661 | return failure( |
| 3662 | parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || |
| 3663 | parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || |
| 3664 | (operandsInfo.size() > 2 && |
| 3665 | parser.resolveOperand(operandsInfo[2], resType, result.operands)) || |
| 3666 | parser.addTypeToList(resType, result.types)); |
| 3667 | } |
| 3668 | |
| 3669 | LogicalResult OuterProductOp::verify() { |
| 3670 | Type tRHS = getOperandTypeRHS(); |
| 3671 | VectorType vLHS = getOperandVectorTypeLHS(), |
| 3672 | vRHS = llvm::dyn_cast<VectorType>(tRHS), |
| 3673 | vACC = getOperandVectorTypeACC(), vRES = getResultVectorType(); |
| 3674 | |
| 3675 | if (vLHS.getRank() != 1) |
| 3676 | return emitOpError("expected 1-d vector for operand #1" ); |
| 3677 | |
| 3678 | if (vRHS) { |
| 3679 | // Proper OUTER operation. |
| 3680 | if (vRHS.getRank() != 1) |
| 3681 | return emitOpError("expected 1-d vector for operand #2" ); |
| 3682 | if (vRES.getRank() != 2) |
| 3683 | return emitOpError("expected 2-d vector result" ); |
| 3684 | if (vLHS.getDimSize(0) != vRES.getDimSize(0)) |
| 3685 | return emitOpError("expected #1 operand dim to match result dim #1" ); |
| 3686 | if (vRHS.getDimSize(0) != vRES.getDimSize(1)) |
| 3687 | return emitOpError("expected #2 operand dim to match result dim #2" ); |
| 3688 | if (vLHS.isScalable() && !vRHS.isScalable()) { |
| 3689 | // This restriction reflects what's currently supported in terms of |
| 3690 | // scalable vectors. However, we could relax this if there's a use case. |
| 3691 | return emitOpError( |
| 3692 | "expected either both or only #2 operand dim to be scalable" ); |
| 3693 | } |
| 3694 | } else { |
| 3695 | // An AXPY operation. |
| 3696 | if (vRES.getRank() != 1) |
| 3697 | return emitOpError("expected 1-d vector result" ); |
| 3698 | if (vLHS.getDimSize(0) != vRES.getDimSize(0)) |
| 3699 | return emitOpError("expected #1 operand dim to match result dim #1" ); |
| 3700 | } |
| 3701 | |
| 3702 | if (vACC && vACC != vRES) |
| 3703 | return emitOpError("expected operand #3 of same type as result type" ); |
| 3704 | |
| 3705 | // Verify supported combining kind. |
| 3706 | if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) |
| 3707 | return emitOpError("unsupported outerproduct type" ); |
| 3708 | |
| 3709 | return success(); |
| 3710 | } |
| 3711 | |
| 3712 | // MaskableOpInterface methods. |
| 3713 | |
| 3714 | /// Returns the mask type expected by this operation. Mostly used for |
| 3715 | /// verification purposes. It requires the operation to be vectorized." |
| 3716 | Type OuterProductOp::getExpectedMaskType() { |
| 3717 | auto vecType = this->getResultVectorType(); |
| 3718 | return VectorType::get(vecType.getShape(), |
| 3719 | IntegerType::get(vecType.getContext(), /*width=*/1), |
| 3720 | vecType.getScalableDims()); |
| 3721 | } |
| 3722 | |
| 3723 | //===----------------------------------------------------------------------===// |
| 3724 | // ExtractStridedSliceOp |
| 3725 | //===----------------------------------------------------------------------===// |
| 3726 | |
| 3727 | // Inference works as follows: |
| 3728 | // 1. Add 'sizes' from prefix of dims in 'offsets'. |
| 3729 | // 2. Add sizes from 'vectorType' for remaining dims. |
| 3730 | // Scalable flags are inherited from 'vectorType'. |
| 3731 | static Type inferStridedSliceOpResultType(VectorType vectorType, |
| 3732 | ArrayAttr offsets, ArrayAttr sizes, |
| 3733 | ArrayAttr strides) { |
| 3734 | assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); |
| 3735 | SmallVector<int64_t, 4> shape; |
| 3736 | shape.reserve(N: vectorType.getRank()); |
| 3737 | unsigned idx = 0; |
| 3738 | for (unsigned e = offsets.size(); idx < e; ++idx) |
| 3739 | shape.push_back(Elt: llvm::cast<IntegerAttr>(sizes[idx]).getInt()); |
| 3740 | for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) |
| 3741 | shape.push_back(Elt: vectorType.getShape()[idx]); |
| 3742 | |
| 3743 | return VectorType::get(shape, vectorType.getElementType(), |
| 3744 | vectorType.getScalableDims()); |
| 3745 | } |
| 3746 | |
| 3747 | void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, |
| 3748 | Value source, ArrayRef<int64_t> offsets, |
| 3749 | ArrayRef<int64_t> sizes, |
| 3750 | ArrayRef<int64_t> strides) { |
| 3751 | result.addOperands(source); |
| 3752 | auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); |
| 3753 | auto sizesAttr = getVectorSubscriptAttr(builder, sizes); |
| 3754 | auto stridesAttr = getVectorSubscriptAttr(builder, strides); |
| 3755 | result.addTypes( |
| 3756 | inferStridedSliceOpResultType(llvm::cast<VectorType>(source.getType()), |
| 3757 | offsetsAttr, sizesAttr, stridesAttr)); |
| 3758 | result.addAttribute(ExtractStridedSliceOp::getOffsetsAttrName(result.name), |
| 3759 | offsetsAttr); |
| 3760 | result.addAttribute(ExtractStridedSliceOp::getSizesAttrName(result.name), |
| 3761 | sizesAttr); |
| 3762 | result.addAttribute(ExtractStridedSliceOp::getStridesAttrName(result.name), |
| 3763 | stridesAttr); |
| 3764 | } |
| 3765 | |
| 3766 | LogicalResult ExtractStridedSliceOp::verify() { |
| 3767 | auto type = getSourceVectorType(); |
| 3768 | auto offsets = getOffsetsAttr(); |
| 3769 | auto sizes = getSizesAttr(); |
| 3770 | auto strides = getStridesAttr(); |
| 3771 | if (offsets.size() != sizes.size() || offsets.size() != strides.size()) |
| 3772 | return emitOpError( |
| 3773 | "expected offsets, sizes and strides attributes of same size" ); |
| 3774 | |
| 3775 | auto shape = type.getShape(); |
| 3776 | auto offName = getOffsetsAttrName(); |
| 3777 | auto sizesName = getSizesAttrName(); |
| 3778 | auto stridesName = getStridesAttrName(); |
| 3779 | if (failed( |
| 3780 | isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || |
| 3781 | failed( |
| 3782 | isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || |
| 3783 | failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, |
| 3784 | stridesName)) || |
| 3785 | failed( |
| 3786 | isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || |
| 3787 | failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, |
| 3788 | /*halfOpen=*/false, |
| 3789 | /*min=*/1)) || |
| 3790 | failed(isIntegerArrayAttrConfinedToRange(*this, strides, /*min=*/1, |
| 3791 | /*max=*/1, stridesName, |
| 3792 | /*halfOpen=*/false)) || |
| 3793 | failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, |
| 3794 | shape, offName, sizesName, |
| 3795 | /*halfOpen=*/false))) |
| 3796 | return failure(); |
| 3797 | |
| 3798 | auto resultType = inferStridedSliceOpResultType(getSourceVectorType(), |
| 3799 | offsets, sizes, strides); |
| 3800 | if (getResult().getType() != resultType) |
| 3801 | return emitOpError("expected result type to be " ) << resultType; |
| 3802 | |
| 3803 | for (unsigned idx = 0; idx < sizes.size(); ++idx) { |
| 3804 | if (type.getScalableDims()[idx]) { |
| 3805 | auto inputDim = type.getShape()[idx]; |
| 3806 | auto inputSize = llvm::cast<IntegerAttr>(sizes[idx]).getInt(); |
| 3807 | if (inputDim != inputSize) |
| 3808 | return emitOpError("expected size at idx=" ) |
| 3809 | << idx |
| 3810 | << (" to match the corresponding base size from the input " |
| 3811 | "vector (" ) |
| 3812 | << inputSize << (" vs " ) << inputDim << (")" ); |
| 3813 | } |
| 3814 | } |
| 3815 | |
| 3816 | return success(); |
| 3817 | } |
| 3818 | |
| 3819 | // When the source of ExtractStrided comes from a chain of InsertStrided ops try |
| 3820 | // to use the source of the InsertStrided ops if we can detect that the |
| 3821 | // extracted vector is a subset of one of the vector inserted. |
| 3822 | static LogicalResult |
| 3823 | (ExtractStridedSliceOp op) { |
| 3824 | // Helper to extract integer out of ArrayAttr. |
| 3825 | auto getElement = [](ArrayAttr array, int idx) { |
| 3826 | return llvm::cast<IntegerAttr>(array[idx]).getInt(); |
| 3827 | }; |
| 3828 | ArrayAttr = op.getOffsets(); |
| 3829 | ArrayAttr = op.getStrides(); |
| 3830 | ArrayAttr = op.getSizes(); |
| 3831 | auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); |
| 3832 | while (insertOp) { |
| 3833 | if (op.getSourceVectorType().getRank() != |
| 3834 | insertOp.getSourceVectorType().getRank()) |
| 3835 | return failure(); |
| 3836 | ArrayAttr insertOffsets = insertOp.getOffsets(); |
| 3837 | ArrayAttr insertStrides = insertOp.getStrides(); |
| 3838 | // If the rank of extract is greater than the rank of insert, we are likely |
| 3839 | // extracting a partial chunk of the vector inserted. |
| 3840 | if (extractOffsets.size() > insertOffsets.size()) |
| 3841 | return failure(); |
| 3842 | bool patialoverlap = false; |
| 3843 | bool disjoint = false; |
| 3844 | SmallVector<int64_t, 4> offsetDiffs; |
| 3845 | for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { |
| 3846 | if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) |
| 3847 | return failure(); |
| 3848 | int64_t start = getElement(insertOffsets, dim); |
| 3849 | int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); |
| 3850 | int64_t offset = getElement(extractOffsets, dim); |
| 3851 | int64_t size = getElement(extractSizes, dim); |
| 3852 | // Check if the start of the extract offset is in the interval inserted. |
| 3853 | if (start <= offset && offset < end) { |
| 3854 | // If the extract interval overlaps but is not fully included we may |
| 3855 | // have a partial overlap that will prevent any folding. |
| 3856 | if (offset + size > end) |
| 3857 | patialoverlap = true; |
| 3858 | offsetDiffs.push_back(Elt: offset - start); |
| 3859 | continue; |
| 3860 | } |
| 3861 | disjoint = true; |
| 3862 | break; |
| 3863 | } |
| 3864 | // The extract element chunk is a subset of the insert element. |
| 3865 | if (!disjoint && !patialoverlap) { |
| 3866 | op.setOperand(insertOp.getValueToStore()); |
| 3867 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
| 3868 | OpBuilder b(op.getContext()); |
| 3869 | op.setOffsetsAttr(b.getI64ArrayAttr(offsetDiffs)); |
| 3870 | return success(); |
| 3871 | } |
| 3872 | // If the chunk extracted is disjoint from the chunk inserted, keep looking |
| 3873 | // in the insert chain. |
| 3874 | if (disjoint) |
| 3875 | insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); |
| 3876 | else { |
| 3877 | // The extracted vector partially overlap the inserted vector, we cannot |
| 3878 | // fold. |
| 3879 | return failure(); |
| 3880 | } |
| 3881 | } |
| 3882 | return failure(); |
| 3883 | } |
| 3884 | |
| 3885 | // ExtractStridedSliceOp(non-splat ConstantOp) -> ConstantOp. |
| 3886 | static OpFoldResult |
| 3887 | (ExtractStridedSliceOp op, |
| 3888 | Attribute foldInput) { |
| 3889 | |
| 3890 | auto dense = llvm::dyn_cast_if_present<DenseElementsAttr>(Val&: foldInput); |
| 3891 | if (!dense) |
| 3892 | return {}; |
| 3893 | |
| 3894 | // TODO: Handle non-unit strides when they become available. |
| 3895 | if (op.hasNonUnitStrides()) |
| 3896 | return {}; |
| 3897 | |
| 3898 | VectorType sourceVecTy = op.getSourceVectorType(); |
| 3899 | ArrayRef<int64_t> sourceShape = sourceVecTy.getShape(); |
| 3900 | SmallVector<int64_t, 4> sourceStrides = computeStrides(sizes: sourceShape); |
| 3901 | |
| 3902 | VectorType sliceVecTy = op.getType(); |
| 3903 | ArrayRef<int64_t> sliceShape = sliceVecTy.getShape(); |
| 3904 | int64_t rank = sliceVecTy.getRank(); |
| 3905 | |
| 3906 | // Expand offsets and sizes to match the vector rank. |
| 3907 | SmallVector<int64_t, 4> offsets(rank, 0); |
| 3908 | copy(getI64SubArray(op.getOffsets()), offsets.begin()); |
| 3909 | |
| 3910 | SmallVector<int64_t, 4> sizes(sourceShape); |
| 3911 | copy(getI64SubArray(op.getSizes()), sizes.begin()); |
| 3912 | |
| 3913 | // Calculate the slice elements by enumerating all slice positions and |
| 3914 | // linearizing them. The enumeration order is lexicographic which yields a |
| 3915 | // sequence of monotonically increasing linearized position indices. |
| 3916 | const auto denseValuesBegin = dense.value_begin<Attribute>(); |
| 3917 | SmallVector<Attribute> sliceValues; |
| 3918 | sliceValues.reserve(N: sliceVecTy.getNumElements()); |
| 3919 | SmallVector<int64_t> currSlicePosition(offsets.begin(), offsets.end()); |
| 3920 | do { |
| 3921 | int64_t linearizedPosition = linearize(offsets: currSlicePosition, basis: sourceStrides); |
| 3922 | assert(linearizedPosition < sourceVecTy.getNumElements() && |
| 3923 | "Invalid index" ); |
| 3924 | sliceValues.push_back(Elt: *(denseValuesBegin + linearizedPosition)); |
| 3925 | } while (succeeded(Result: incSlicePosition(position: currSlicePosition, shape: sliceShape, offsets))); |
| 3926 | |
| 3927 | assert(static_cast<int64_t>(sliceValues.size()) == |
| 3928 | sliceVecTy.getNumElements() && |
| 3929 | "Invalid number of slice elements" ); |
| 3930 | return DenseElementsAttr::get(sliceVecTy, sliceValues); |
| 3931 | } |
| 3932 | |
| 3933 | OpFoldResult ExtractStridedSliceOp::fold(FoldAdaptor adaptor) { |
| 3934 | if (getSourceVectorType() == getResult().getType()) |
| 3935 | return getVector(); |
| 3936 | if (succeeded(foldExtractStridedOpFromInsertChain(*this))) |
| 3937 | return getResult(); |
| 3938 | |
| 3939 | // ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. |
| 3940 | if (auto splat = |
| 3941 | llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getVector())) |
| 3942 | DenseElementsAttr::get(getType(), splat.getSplatValue<Attribute>()); |
| 3943 | |
| 3944 | // ExtractStridedSliceOp(non-splat ConstantOp) -> ConstantOp. |
| 3945 | return foldExtractStridedSliceNonSplatConstant(*this, adaptor.getVector()); |
| 3946 | } |
| 3947 | |
| 3948 | void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { |
| 3949 | populateFromInt64AttrArray(getOffsets(), results); |
| 3950 | } |
| 3951 | |
| 3952 | namespace { |
| 3953 | |
| 3954 | // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to |
| 3955 | // ConstantMaskOp. |
| 3956 | class StridedSliceConstantMaskFolder final |
| 3957 | : public OpRewritePattern<ExtractStridedSliceOp> { |
| 3958 | public: |
| 3959 | using OpRewritePattern::OpRewritePattern; |
| 3960 | |
| 3961 | LogicalResult matchAndRewrite(ExtractStridedSliceOp , |
| 3962 | PatternRewriter &rewriter) const override { |
| 3963 | // Return if 'extractStridedSliceOp' operand is not defined by a |
| 3964 | // ConstantMaskOp. |
| 3965 | auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); |
| 3966 | auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); |
| 3967 | if (!constantMaskOp) |
| 3968 | return failure(); |
| 3969 | // Return if 'extractStridedSliceOp' has non-unit strides. |
| 3970 | if (extractStridedSliceOp.hasNonUnitStrides()) |
| 3971 | return failure(); |
| 3972 | // Gather constant mask dimension sizes. |
| 3973 | ArrayRef<int64_t> maskDimSizes = constantMaskOp.getMaskDimSizes(); |
| 3974 | // Gather strided slice offsets and sizes. |
| 3975 | SmallVector<int64_t, 4> sliceOffsets; |
| 3976 | populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), |
| 3977 | sliceOffsets); |
| 3978 | SmallVector<int64_t, 4> sliceSizes; |
| 3979 | populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); |
| 3980 | |
| 3981 | // Compute slice of vector mask region. |
| 3982 | SmallVector<int64_t, 4> sliceMaskDimSizes; |
| 3983 | sliceMaskDimSizes.reserve(N: maskDimSizes.size()); |
| 3984 | for (auto [maskDimSize, sliceOffset, sliceSize] : |
| 3985 | llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { |
| 3986 | int64_t sliceMaskDimSize = std::max( |
| 3987 | static_cast<int64_t>(0), |
| 3988 | std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); |
| 3989 | sliceMaskDimSizes.push_back(sliceMaskDimSize); |
| 3990 | } |
| 3991 | // Add unchanged dimensions. |
| 3992 | if (sliceMaskDimSizes.size() < maskDimSizes.size()) |
| 3993 | for (size_t i = sliceMaskDimSizes.size(); i < maskDimSizes.size(); ++i) |
| 3994 | sliceMaskDimSizes.push_back(Elt: maskDimSizes[i]); |
| 3995 | // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked |
| 3996 | // region is a conjunction of mask dim intervals). |
| 3997 | if (llvm::is_contained(Range&: sliceMaskDimSizes, Element: 0)) |
| 3998 | sliceMaskDimSizes.assign(NumElts: maskDimSizes.size(), Elt: 0); |
| 3999 | |
| 4000 | // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask |
| 4001 | // region. |
| 4002 | rewriter.replaceOpWithNewOp<ConstantMaskOp>( |
| 4003 | extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), |
| 4004 | sliceMaskDimSizes); |
| 4005 | return success(); |
| 4006 | } |
| 4007 | }; |
| 4008 | |
| 4009 | // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to |
| 4010 | // BroadcastOp(ExtractStrideSliceOp). |
| 4011 | class StridedSliceBroadcast final |
| 4012 | : public OpRewritePattern<ExtractStridedSliceOp> { |
| 4013 | public: |
| 4014 | using OpRewritePattern::OpRewritePattern; |
| 4015 | |
| 4016 | LogicalResult matchAndRewrite(ExtractStridedSliceOp op, |
| 4017 | PatternRewriter &rewriter) const override { |
| 4018 | auto broadcast = op.getVector().getDefiningOp<BroadcastOp>(); |
| 4019 | if (!broadcast) |
| 4020 | return failure(); |
| 4021 | auto srcVecType = |
| 4022 | llvm::dyn_cast<VectorType>(broadcast.getSource().getType()); |
| 4023 | unsigned srcRank = srcVecType ? srcVecType.getRank() : 0; |
| 4024 | auto dstVecType = llvm::cast<VectorType>(op.getType()); |
| 4025 | unsigned dstRank = dstVecType.getRank(); |
| 4026 | unsigned rankDiff = dstRank - srcRank; |
| 4027 | // Check if the most inner dimensions of the source of the broadcast are the |
| 4028 | // same as the destination of the extract. If this is the case we can just |
| 4029 | // use a broadcast as the original dimensions are untouched. |
| 4030 | bool lowerDimMatch = true; |
| 4031 | for (unsigned i = 0; i < srcRank; i++) { |
| 4032 | if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { |
| 4033 | lowerDimMatch = false; |
| 4034 | break; |
| 4035 | } |
| 4036 | } |
| 4037 | Value source = broadcast.getSource(); |
| 4038 | // If the inner dimensions don't match, it means we need to extract from the |
| 4039 | // source of the orignal broadcast and then broadcast the extracted value. |
| 4040 | // We also need to handle degenerated cases where the source is effectively |
| 4041 | // just a single scalar. |
| 4042 | bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1); |
| 4043 | if (!lowerDimMatch && !isScalarSrc) { |
| 4044 | source = rewriter.create<ExtractStridedSliceOp>( |
| 4045 | op->getLoc(), source, |
| 4046 | getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), |
| 4047 | getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), |
| 4048 | getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); |
| 4049 | } |
| 4050 | rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); |
| 4051 | return success(); |
| 4052 | } |
| 4053 | }; |
| 4054 | |
| 4055 | /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. |
| 4056 | class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { |
| 4057 | public: |
| 4058 | using OpRewritePattern::OpRewritePattern; |
| 4059 | |
| 4060 | LogicalResult matchAndRewrite(ExtractStridedSliceOp op, |
| 4061 | PatternRewriter &rewriter) const override { |
| 4062 | auto splat = op.getVector().getDefiningOp<SplatOp>(); |
| 4063 | if (!splat) |
| 4064 | return failure(); |
| 4065 | rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput()); |
| 4066 | return success(); |
| 4067 | } |
| 4068 | }; |
| 4069 | |
| 4070 | /// Pattern to rewrite simple cases of N-D extract_strided_slice, where the |
| 4071 | /// slice is contiguous, into extract and shape_cast. |
| 4072 | /// |
| 4073 | /// Example: |
| 4074 | /// Before: |
| 4075 | /// %1 = vector.extract_strided_slice %arg0 { |
| 4076 | /// offsets = [0, 0, 0, 0, 0], |
| 4077 | /// sizes = [1, 1, 1, 1, 8], |
| 4078 | /// strides = [1, 1, 1, 1, 1] |
| 4079 | /// } : vector<8x1x1x2x8xi8> to vector<1x1x1x1x8xi8> |
| 4080 | /// After: |
| 4081 | /// %0 = vector.extract %arg0[0, 0, 0, 0] |
| 4082 | /// : vector<8xi8> from vector<8x1x1x2x8xi8> |
| 4083 | /// %1 = vector.shape_cast %0 |
| 4084 | /// : vector<8xi8> to vector<1x1x1x1x8xi8> |
| 4085 | /// |
| 4086 | class final |
| 4087 | : public OpRewritePattern<ExtractStridedSliceOp> { |
| 4088 | public: |
| 4089 | using OpRewritePattern::OpRewritePattern; |
| 4090 | |
| 4091 | LogicalResult matchAndRewrite(ExtractStridedSliceOp op, |
| 4092 | PatternRewriter &rewriter) const override { |
| 4093 | if (op.hasNonUnitStrides()) |
| 4094 | return failure(); |
| 4095 | Value source = op.getOperand(); |
| 4096 | auto sourceType = cast<VectorType>(source.getType()); |
| 4097 | if (sourceType.isScalable() || sourceType.getRank() == 0) |
| 4098 | return failure(); |
| 4099 | |
| 4100 | // Compute the number of offsets to pass to ExtractOp::build. That is the |
| 4101 | // difference between the source rank and the desired slice rank. We walk |
| 4102 | // the dimensions from innermost out, and stop when the next slice dimension |
| 4103 | // is not full-size. |
| 4104 | SmallVector<int64_t> sizes = getI64SubArray(op.getSizes()); |
| 4105 | int numOffsets; |
| 4106 | for (numOffsets = sizes.size(); numOffsets > 0; --numOffsets) { |
| 4107 | if (sizes[numOffsets - 1] != sourceType.getDimSize(numOffsets - 1)) |
| 4108 | break; |
| 4109 | } |
| 4110 | |
| 4111 | // If the created extract op would have no offsets, then this whole |
| 4112 | // extract_strided_slice is the identity and should have been handled by |
| 4113 | // other canonicalizations. |
| 4114 | if (numOffsets == 0) |
| 4115 | return failure(); |
| 4116 | |
| 4117 | // If not even the inner-most dimension is full-size, this op can't be |
| 4118 | // rewritten as an ExtractOp. |
| 4119 | if (numOffsets == sourceType.getRank() && |
| 4120 | static_cast<int>(sizes.size()) == sourceType.getRank()) |
| 4121 | return failure(); |
| 4122 | |
| 4123 | // The outer dimensions must have unit size. |
| 4124 | for (int i = 0; i < numOffsets; ++i) { |
| 4125 | if (sizes[i] != 1) |
| 4126 | return failure(); |
| 4127 | } |
| 4128 | |
| 4129 | // Avoid generating slices that have leading unit dimensions. The shape_cast |
| 4130 | // op that we create below would take bad generic fallback patterns |
| 4131 | // (ShapeCastOpRewritePattern). |
| 4132 | while (numOffsets < static_cast<int>(sizes.size()) - 1 && |
| 4133 | sizes[numOffsets] == 1) { |
| 4134 | ++numOffsets; |
| 4135 | } |
| 4136 | |
| 4137 | SmallVector<int64_t> offsets = getI64SubArray(op.getOffsets()); |
| 4138 | auto = ArrayRef(offsets).take_front(N: numOffsets); |
| 4139 | Value = rewriter.create<vector::ExtractOp>(op->getLoc(), source, |
| 4140 | extractOffsets); |
| 4141 | rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, op.getType(), extract); |
| 4142 | return success(); |
| 4143 | } |
| 4144 | }; |
| 4145 | |
| 4146 | } // namespace |
| 4147 | |
| 4148 | void ExtractStridedSliceOp::getCanonicalizationPatterns( |
| 4149 | RewritePatternSet &results, MLIRContext *context) { |
| 4150 | // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> |
| 4151 | // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. |
| 4152 | results.add<StridedSliceConstantMaskFolder, StridedSliceBroadcast, |
| 4153 | StridedSliceSplat, ContiguousExtractStridedSliceToExtract>( |
| 4154 | context); |
| 4155 | } |
| 4156 | |
| 4157 | //===----------------------------------------------------------------------===// |
| 4158 | // TransferReadOp |
| 4159 | //===----------------------------------------------------------------------===// |
| 4160 | |
| 4161 | /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). |
| 4162 | void TransferReadOp::build(OpBuilder &builder, OperationState &result, |
| 4163 | VectorType vectorType, Value source, |
| 4164 | ValueRange indices, AffineMapAttr permutationMapAttr, |
| 4165 | /*optional*/ ArrayAttr inBoundsAttr) { |
| 4166 | Type elemType = llvm::cast<ShapedType>(source.getType()).getElementType(); |
| 4167 | Value padding = builder.create<arith::ConstantOp>( |
| 4168 | result.location, elemType, builder.getZeroAttr(elemType)); |
| 4169 | build(builder, result, vectorType, source, indices, permutationMapAttr, |
| 4170 | padding, /*mask=*/Value(), inBoundsAttr); |
| 4171 | } |
| 4172 | |
| 4173 | /// 2. Builder that sets padding to zero an empty mask (variant without attrs). |
| 4174 | void TransferReadOp::build(OpBuilder &builder, OperationState &result, |
| 4175 | VectorType vectorType, Value source, |
| 4176 | ValueRange indices, AffineMap permutationMap, |
| 4177 | std::optional<ArrayRef<bool>> inBounds) { |
| 4178 | auto permutationMapAttr = AffineMapAttr::get(permutationMap); |
| 4179 | auto inBoundsAttr = (inBounds && !inBounds.value().empty()) |
| 4180 | ? builder.getBoolArrayAttr(inBounds.value()) |
| 4181 | : builder.getBoolArrayAttr( |
| 4182 | SmallVector<bool>(vectorType.getRank(), false)); |
| 4183 | build(builder, result, vectorType, source, indices, permutationMapAttr, |
| 4184 | inBoundsAttr); |
| 4185 | } |
| 4186 | |
| 4187 | /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. |
| 4188 | void TransferReadOp::build(OpBuilder &builder, OperationState &result, |
| 4189 | VectorType vectorType, Value source, |
| 4190 | ValueRange indices, Value padding, |
| 4191 | std::optional<ArrayRef<bool>> inBounds) { |
| 4192 | AffineMap permutationMap = getTransferMinorIdentityMap( |
| 4193 | llvm::cast<ShapedType>(source.getType()), vectorType); |
| 4194 | auto permutationMapAttr = AffineMapAttr::get(permutationMap); |
| 4195 | auto inBoundsAttr = (inBounds && !inBounds.value().empty()) |
| 4196 | ? builder.getBoolArrayAttr(inBounds.value()) |
| 4197 | : builder.getBoolArrayAttr( |
| 4198 | SmallVector<bool>(vectorType.getRank(), false)); |
| 4199 | build(builder, result, vectorType, source, indices, permutationMapAttr, |
| 4200 | padding, |
| 4201 | /*mask=*/Value(), inBoundsAttr); |
| 4202 | } |
| 4203 | |
| 4204 | /// 4. Builder that sets padding to zero and permutation map to |
| 4205 | /// 'getMinorIdentityMap'. |
| 4206 | void TransferReadOp::build(OpBuilder &builder, OperationState &result, |
| 4207 | VectorType vectorType, Value source, |
| 4208 | ValueRange indices, |
| 4209 | std::optional<ArrayRef<bool>> inBounds) { |
| 4210 | Type elemType = llvm::cast<ShapedType>(source.getType()).getElementType(); |
| 4211 | Value padding = builder.create<arith::ConstantOp>( |
| 4212 | result.location, elemType, builder.getZeroAttr(elemType)); |
| 4213 | build(builder, result, vectorType, source, indices, padding, inBounds); |
| 4214 | } |
| 4215 | |
| 4216 | template <typename EmitFun> |
| 4217 | static LogicalResult verifyPermutationMap(AffineMap permutationMap, |
| 4218 | EmitFun emitOpError) { |
| 4219 | SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); |
| 4220 | for (auto expr : permutationMap.getResults()) { |
| 4221 | auto dim = dyn_cast<AffineDimExpr>(Val&: expr); |
| 4222 | auto zero = dyn_cast<AffineConstantExpr>(Val&: expr); |
| 4223 | if (zero) { |
| 4224 | if (zero.getValue() != 0) { |
| 4225 | return emitOpError( |
| 4226 | "requires a projected permutation_map (at most one dim or the zero " |
| 4227 | "constant can appear in each result)" ); |
| 4228 | } |
| 4229 | continue; |
| 4230 | } |
| 4231 | if (!dim) { |
| 4232 | return emitOpError("requires a projected permutation_map (at most one " |
| 4233 | "dim or the zero constant can appear in each result)" ); |
| 4234 | } |
| 4235 | if (seen[dim.getPosition()]) { |
| 4236 | return emitOpError( |
| 4237 | "requires a permutation_map that is a permutation (found one dim " |
| 4238 | "used more than once)" ); |
| 4239 | } |
| 4240 | seen[dim.getPosition()] = true; |
| 4241 | } |
| 4242 | return success(); |
| 4243 | } |
| 4244 | |
| 4245 | static LogicalResult |
| 4246 | verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, |
| 4247 | VectorType vectorType, VectorType maskType, |
| 4248 | VectorType inferredMaskType, AffineMap permutationMap, |
| 4249 | ArrayAttr inBounds) { |
| 4250 | if (op->hasAttr("masked" )) { |
| 4251 | return op->emitOpError("masked attribute has been removed. " |
| 4252 | "Use in_bounds instead." ); |
| 4253 | } |
| 4254 | |
| 4255 | if (!llvm::isa<MemRefType, RankedTensorType>(shapedType)) |
| 4256 | return op->emitOpError( |
| 4257 | "requires source to be a memref or ranked tensor type" ); |
| 4258 | |
| 4259 | auto elementType = shapedType.getElementType(); |
| 4260 | DataLayout dataLayout = DataLayout::closest(op: op); |
| 4261 | if (auto vectorElementType = llvm::dyn_cast<VectorType>(elementType)) { |
| 4262 | // Memref or tensor has vector element type. |
| 4263 | unsigned sourceVecSize = |
| 4264 | dataLayout.getTypeSizeInBits(t: vectorElementType.getElementType()) * |
| 4265 | vectorElementType.getShape().back(); |
| 4266 | unsigned resultVecSize = |
| 4267 | dataLayout.getTypeSizeInBits(t: vectorType.getElementType()) * |
| 4268 | vectorType.getShape().back(); |
| 4269 | if (resultVecSize % sourceVecSize != 0) |
| 4270 | return op->emitOpError( |
| 4271 | "requires the bitwidth of the minor 1-D vector to be an integral " |
| 4272 | "multiple of the bitwidth of the minor 1-D vector of the source" ); |
| 4273 | |
| 4274 | unsigned sourceVecEltRank = vectorElementType.getRank(); |
| 4275 | unsigned resultVecRank = vectorType.getRank(); |
| 4276 | if (sourceVecEltRank > resultVecRank) |
| 4277 | return op->emitOpError( |
| 4278 | "requires source vector element and vector result ranks to match." ); |
| 4279 | unsigned rankOffset = resultVecRank - sourceVecEltRank; |
| 4280 | // Check that permutation map results match 'rankOffset' of vector type. |
| 4281 | if (permutationMap.getNumResults() != rankOffset) |
| 4282 | return op->emitOpError("requires a permutation_map with result dims of " |
| 4283 | "the same rank as the vector type" ); |
| 4284 | |
| 4285 | if (maskType) |
| 4286 | return op->emitOpError("does not support masks with vector element type" ); |
| 4287 | } else { |
| 4288 | // Memref or tensor has scalar element type. |
| 4289 | unsigned minorSize = |
| 4290 | vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); |
| 4291 | unsigned resultVecSize = |
| 4292 | dataLayout.getTypeSizeInBits(t: vectorType.getElementType()) * minorSize; |
| 4293 | if (resultVecSize % dataLayout.getTypeSizeInBits(t: elementType) != 0) |
| 4294 | return op->emitOpError( |
| 4295 | "requires the bitwidth of the minor 1-D vector to be an integral " |
| 4296 | "multiple of the bitwidth of the source element type" ); |
| 4297 | |
| 4298 | // Check that permutation map results match rank of vector type. |
| 4299 | if (permutationMap.getNumResults() != vectorType.getRank()) |
| 4300 | return op->emitOpError("requires a permutation_map with result dims of " |
| 4301 | "the same rank as the vector type" ); |
| 4302 | } |
| 4303 | |
| 4304 | if (permutationMap.getNumSymbols() != 0) |
| 4305 | return op->emitOpError("requires permutation_map without symbols" ); |
| 4306 | |
| 4307 | if (permutationMap.getNumInputs() != shapedType.getRank()) |
| 4308 | return op->emitOpError("requires a permutation_map with input dims of the " |
| 4309 | "same rank as the source type" ); |
| 4310 | |
| 4311 | if (maskType && maskType != inferredMaskType) |
| 4312 | return op->emitOpError("inferred mask type (" ) |
| 4313 | << inferredMaskType << ") and mask operand type (" << maskType |
| 4314 | << ") don't match" ; |
| 4315 | |
| 4316 | if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) |
| 4317 | return op->emitOpError("expects the in_bounds attr of same rank " |
| 4318 | "as permutation_map results: " ) |
| 4319 | << AffineMapAttr::get(permutationMap) |
| 4320 | << " vs inBounds of size: " << inBounds.size(); |
| 4321 | |
| 4322 | return success(); |
| 4323 | } |
| 4324 | |
| 4325 | static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { |
| 4326 | SmallVector<StringRef, 3> elidedAttrs; |
| 4327 | elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); |
| 4328 | if (op.getPermutationMap().isMinorIdentity()) |
| 4329 | elidedAttrs.push_back(Elt: op.getPermutationMapAttrName()); |
| 4330 | // Elide in_bounds attribute if all dims are out-of-bounds. |
| 4331 | if (llvm::none_of(op.getInBoundsValues(), [](bool b) { return b; })) |
| 4332 | elidedAttrs.push_back(Elt: op.getInBoundsAttrName()); |
| 4333 | p.printOptionalAttrDict(attrs: op->getAttrs(), elidedAttrs); |
| 4334 | } |
| 4335 | |
| 4336 | void TransferReadOp::print(OpAsmPrinter &p) { |
| 4337 | p << " " << getBase() << "[" << getIndices() << "], " << getPadding(); |
| 4338 | if (getMask()) |
| 4339 | p << ", " << getMask(); |
| 4340 | printTransferAttrs(p, *this); |
| 4341 | p << " : " << getShapedType() << ", " << getVectorType(); |
| 4342 | } |
| 4343 | |
| 4344 | VectorType mlir::vector::inferTransferOpMaskType(VectorType vecType, |
| 4345 | AffineMap permMap) { |
| 4346 | auto i1Type = IntegerType::get(permMap.getContext(), 1); |
| 4347 | AffineMap invPermMap = inversePermutation(map: compressUnusedDims(map: permMap)); |
| 4348 | assert(invPermMap && "Inversed permutation map couldn't be computed" ); |
| 4349 | SmallVector<int64_t, 8> maskShape = invPermMap.compose(vecType.getShape()); |
| 4350 | |
| 4351 | // The MaskOp specification doesn't support 0-D vectors at the moment. Turn a |
| 4352 | // 0-D mask into a single-element 1-D mask. |
| 4353 | if (maskShape.empty()) |
| 4354 | maskShape.push_back(Elt: 1); |
| 4355 | |
| 4356 | SmallVector<bool> scalableDims = |
| 4357 | applyPermutationMap(invPermMap, vecType.getScalableDims()); |
| 4358 | |
| 4359 | return VectorType::get(maskShape, i1Type, scalableDims); |
| 4360 | } |
| 4361 | |
| 4362 | ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { |
| 4363 | auto &builder = parser.getBuilder(); |
| 4364 | SMLoc typesLoc; |
| 4365 | OpAsmParser::UnresolvedOperand sourceInfo; |
| 4366 | SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; |
| 4367 | OpAsmParser::UnresolvedOperand paddingInfo; |
| 4368 | SmallVector<Type, 2> types; |
| 4369 | OpAsmParser::UnresolvedOperand maskInfo; |
| 4370 | // Parsing with support for paddingValue. |
| 4371 | if (parser.parseOperand(sourceInfo) || |
| 4372 | parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || |
| 4373 | parser.parseComma() || parser.parseOperand(paddingInfo)) |
| 4374 | return failure(); |
| 4375 | ParseResult hasMask = parser.parseOptionalComma(); |
| 4376 | if (hasMask.succeeded()) { |
| 4377 | if (parser.parseOperand(maskInfo)) |
| 4378 | return failure(); |
| 4379 | } |
| 4380 | if (parser.parseOptionalAttrDict(result.attributes) || |
| 4381 | parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) |
| 4382 | return failure(); |
| 4383 | if (types.size() != 2) |
| 4384 | return parser.emitError(typesLoc, "requires two types" ); |
| 4385 | auto indexType = builder.getIndexType(); |
| 4386 | auto shapedType = llvm::dyn_cast<ShapedType>(types[0]); |
| 4387 | if (!shapedType || !llvm::isa<MemRefType, RankedTensorType>(shapedType)) |
| 4388 | return parser.emitError(typesLoc, "requires memref or ranked tensor type" ); |
| 4389 | VectorType vectorType = llvm::dyn_cast<VectorType>(types[1]); |
| 4390 | if (!vectorType) |
| 4391 | return parser.emitError(typesLoc, "requires vector type" ); |
| 4392 | auto permMapAttrName = TransferReadOp::getPermutationMapAttrName(result.name); |
| 4393 | Attribute permMapAttr = result.attributes.get(permMapAttrName); |
| 4394 | AffineMap permMap; |
| 4395 | if (!permMapAttr) { |
| 4396 | if (shapedType.getRank() < |
| 4397 | getEffectiveVectorRankForXferOp(shapedType, vectorType)) |
| 4398 | return parser.emitError(typesLoc, |
| 4399 | "expected a custom permutation_map when " |
| 4400 | "rank(source) != rank(destination)" ); |
| 4401 | permMap = getTransferMinorIdentityMap(shapedType, vectorType); |
| 4402 | result.attributes.set(permMapAttrName, AffineMapAttr::get(permMap)); |
| 4403 | } else { |
| 4404 | permMap = llvm::cast<AffineMapAttr>(permMapAttr).getValue(); |
| 4405 | } |
| 4406 | auto inBoundsAttrName = TransferReadOp::getInBoundsAttrName(result.name); |
| 4407 | Attribute inBoundsAttr = result.attributes.get(inBoundsAttrName); |
| 4408 | if (!inBoundsAttr) { |
| 4409 | result.addAttribute(inBoundsAttrName, |
| 4410 | builder.getBoolArrayAttr( |
| 4411 | SmallVector<bool>(permMap.getNumResults(), false))); |
| 4412 | } |
| 4413 | if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || |
| 4414 | parser.resolveOperands(indexInfo, indexType, result.operands) || |
| 4415 | parser.resolveOperand(paddingInfo, shapedType.getElementType(), |
| 4416 | result.operands)) |
| 4417 | return failure(); |
| 4418 | if (hasMask.succeeded()) { |
| 4419 | if (llvm::dyn_cast<VectorType>(shapedType.getElementType())) |
| 4420 | return parser.emitError( |
| 4421 | maskInfo.location, "does not support masks with vector element type" ); |
| 4422 | if (vectorType.getRank() != permMap.getNumResults()) { |
| 4423 | return parser.emitError(typesLoc, |
| 4424 | "expected the same rank for the vector and the " |
| 4425 | "results of the permutation map" ); |
| 4426 | } |
| 4427 | // Instead of adding the mask type as an op type, compute it based on the |
| 4428 | // vector type and the permutation map (to keep the type signature small). |
| 4429 | auto maskType = inferTransferOpMaskType(vectorType, permMap); |
| 4430 | if (parser.resolveOperand(maskInfo, maskType, result.operands)) |
| 4431 | return failure(); |
| 4432 | } |
| 4433 | result.addAttribute(TransferReadOp::getOperandSegmentSizeAttr(), |
| 4434 | builder.getDenseI32ArrayAttr( |
| 4435 | {1, static_cast<int32_t>(indexInfo.size()), 1, |
| 4436 | static_cast<int32_t>(hasMask.succeeded())})); |
| 4437 | return parser.addTypeToList(vectorType, result.types); |
| 4438 | } |
| 4439 | |
| 4440 | LogicalResult TransferReadOp::verify() { |
| 4441 | // Consistency of elemental types in source and vector. |
| 4442 | ShapedType shapedType = getShapedType(); |
| 4443 | VectorType vectorType = getVectorType(); |
| 4444 | VectorType maskType = getMaskType(); |
| 4445 | auto paddingType = getPadding().getType(); |
| 4446 | auto permutationMap = getPermutationMap(); |
| 4447 | VectorType inferredMaskType = |
| 4448 | maskType ? inferTransferOpMaskType(vectorType, permutationMap) |
| 4449 | : VectorType(); |
| 4450 | auto sourceElementType = shapedType.getElementType(); |
| 4451 | |
| 4452 | if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank()) |
| 4453 | return emitOpError("requires " ) << shapedType.getRank() << " indices" ; |
| 4454 | |
| 4455 | if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), |
| 4456 | shapedType, vectorType, maskType, |
| 4457 | inferredMaskType, permutationMap, getInBounds()))) |
| 4458 | return failure(); |
| 4459 | |
| 4460 | if (auto sourceVectorElementType = |
| 4461 | llvm::dyn_cast<VectorType>(sourceElementType)) { |
| 4462 | // Source has vector element type. |
| 4463 | // Check that 'sourceVectorElementType' and 'paddingType' types match. |
| 4464 | if (sourceVectorElementType != paddingType) |
| 4465 | return emitOpError( |
| 4466 | "requires source element type and padding type to match." ); |
| 4467 | |
| 4468 | } else { |
| 4469 | // Check that 'paddingType' is valid to store in a vector type. |
| 4470 | if (!VectorType::isValidElementType(paddingType)) |
| 4471 | return emitOpError("requires valid padding vector elemental type" ); |
| 4472 | |
| 4473 | // Check that padding type and vector element types match. |
| 4474 | if (paddingType != sourceElementType) |
| 4475 | return emitOpError( |
| 4476 | "requires formal padding and source of the same elemental type" ); |
| 4477 | } |
| 4478 | |
| 4479 | return verifyPermutationMap(permutationMap, |
| 4480 | [&](Twine t) { return emitOpError(t); }); |
| 4481 | } |
| 4482 | |
| 4483 | // MaskableOpInterface methods. |
| 4484 | |
| 4485 | /// Returns the mask type expected by this operation. Mostly used for |
| 4486 | /// verification purposes. It requires the operation to be vectorized." |
| 4487 | Type TransferReadOp::getExpectedMaskType() { |
| 4488 | return inferTransferOpMaskType(getVectorType(), getPermutationMap()); |
| 4489 | } |
| 4490 | |
| 4491 | //===----------------------------------------------------------------------===// |
| 4492 | // TransferReadOp: VectorTransferOpInterface methods. |
| 4493 | //===----------------------------------------------------------------------===// |
| 4494 | VectorType TransferReadOp::getVectorType() { |
| 4495 | return cast<VectorType>(getVector().getType()); |
| 4496 | } |
| 4497 | |
| 4498 | template <typename TransferOp> |
| 4499 | static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { |
| 4500 | // TODO: support more aggressive createOrFold on: |
| 4501 | // op.getIndices()[indicesIdx] + vectorType < dim(op.getSource(), indicesIdx) |
| 4502 | if (op.getShapedType().isDynamicDim(indicesIdx)) |
| 4503 | return false; |
| 4504 | Value index = op.getIndices()[indicesIdx]; |
| 4505 | std::optional<int64_t> cstOp = getConstantIntValue(ofr: index); |
| 4506 | if (!cstOp.has_value()) |
| 4507 | return false; |
| 4508 | |
| 4509 | int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); |
| 4510 | int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); |
| 4511 | |
| 4512 | return cstOp.value() + vectorSize <= sourceSize; |
| 4513 | } |
| 4514 | |
| 4515 | template <typename TransferOp> |
| 4516 | static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { |
| 4517 | // TODO: support 0-d corner case. |
| 4518 | // TODO: Be less conservative. |
| 4519 | if (op.getTransferRank() == 0) |
| 4520 | return failure(); |
| 4521 | AffineMap permutationMap = op.getPermutationMap(); |
| 4522 | bool changed = false; |
| 4523 | SmallVector<bool, 4> newInBounds; |
| 4524 | newInBounds.reserve(N: op.getTransferRank()); |
| 4525 | // Idxs of non-bcast dims - used when analysing bcast dims. |
| 4526 | SmallVector<unsigned> nonBcastDims; |
| 4527 | |
| 4528 | // 1. Process non-broadcast dims |
| 4529 | for (unsigned i = 0; i < op.getTransferRank(); ++i) { |
| 4530 | // 1.1. Already marked as in-bounds, nothing to see here. |
| 4531 | if (op.isDimInBounds(i)) { |
| 4532 | newInBounds.push_back(Elt: true); |
| 4533 | continue; |
| 4534 | } |
| 4535 | // 1.2. Currently out-of-bounds, check whether we can statically determine |
| 4536 | // it is inBounds. |
| 4537 | bool inBounds = false; |
| 4538 | auto dimExpr = dyn_cast<AffineDimExpr>(Val: permutationMap.getResult(idx: i)); |
| 4539 | if (dimExpr) { |
| 4540 | inBounds = isInBounds(op, /*resultIdx=*/i, |
| 4541 | /*indicesIdx=*/dimExpr.getPosition()); |
| 4542 | nonBcastDims.push_back(Elt: i); |
| 4543 | } |
| 4544 | |
| 4545 | newInBounds.push_back(Elt: inBounds); |
| 4546 | // We commit the pattern if it is "more inbounds". |
| 4547 | changed |= inBounds; |
| 4548 | } |
| 4549 | |
| 4550 | // 2. Handle broadcast dims |
| 4551 | // If all non-broadcast dims are "in bounds", then all bcast dims should be |
| 4552 | // "in bounds" as well. |
| 4553 | bool allNonBcastDimsInBounds = llvm::all_of( |
| 4554 | nonBcastDims, [&newInBounds](unsigned idx) { return newInBounds[idx]; }); |
| 4555 | if (allNonBcastDimsInBounds) { |
| 4556 | for (size_t idx : permutationMap.getBroadcastDims()) { |
| 4557 | changed |= !newInBounds[idx]; |
| 4558 | newInBounds[idx] = true; |
| 4559 | } |
| 4560 | } |
| 4561 | |
| 4562 | if (!changed) |
| 4563 | return failure(); |
| 4564 | // OpBuilder is only used as a helper to build an I64ArrayAttr. |
| 4565 | OpBuilder b(op.getContext()); |
| 4566 | op.setInBoundsAttr(b.getBoolArrayAttr(newInBounds)); |
| 4567 | return success(); |
| 4568 | } |
| 4569 | |
| 4570 | template <typename TransferOp> |
| 4571 | static LogicalResult foldTransferFullMask(TransferOp op) { |
| 4572 | auto mask = op.getMask(); |
| 4573 | if (!mask) |
| 4574 | return failure(); |
| 4575 | |
| 4576 | if (getMaskFormat(mask) != MaskFormat::AllTrue) |
| 4577 | return failure(); |
| 4578 | |
| 4579 | op.getMaskMutable().clear(); |
| 4580 | return success(); |
| 4581 | } |
| 4582 | |
| 4583 | /// ``` |
| 4584 | /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} |
| 4585 | /// : vector<1x4xf32>, tensor<4x4xf32> |
| 4586 | /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} |
| 4587 | /// : tensor<4x4xf32>, vector<1x4xf32> |
| 4588 | /// ``` |
| 4589 | /// -> Folds into |
| 4590 | /// ``` |
| 4591 | /// %v0 |
| 4592 | /// ``` |
| 4593 | static Value foldRAW(TransferReadOp readOp) { |
| 4594 | if (!llvm::isa<RankedTensorType>(readOp.getShapedType())) |
| 4595 | return {}; |
| 4596 | auto defWrite = readOp.getBase().getDefiningOp<vector::TransferWriteOp>(); |
| 4597 | while (defWrite) { |
| 4598 | if (checkSameValueRAW(defWrite, readOp)) |
| 4599 | return defWrite.getVector(); |
| 4600 | if (!isDisjointTransferIndices( |
| 4601 | cast<VectorTransferOpInterface>(defWrite.getOperation()), |
| 4602 | cast<VectorTransferOpInterface>(readOp.getOperation()))) |
| 4603 | break; |
| 4604 | defWrite = defWrite.getBase().getDefiningOp<vector::TransferWriteOp>(); |
| 4605 | } |
| 4606 | return {}; |
| 4607 | } |
| 4608 | |
| 4609 | OpFoldResult TransferReadOp::fold(FoldAdaptor) { |
| 4610 | if (Value vec = foldRAW(*this)) |
| 4611 | return vec; |
| 4612 | /// transfer_read(memrefcast) -> transfer_read |
| 4613 | if (succeeded(foldTransferInBoundsAttribute(*this))) |
| 4614 | return getResult(); |
| 4615 | if (succeeded(foldTransferFullMask(*this))) |
| 4616 | return getResult(); |
| 4617 | if (succeeded(memref::foldMemRefCast(*this))) |
| 4618 | return getResult(); |
| 4619 | if (succeeded(tensor::foldTensorCast(*this))) |
| 4620 | return getResult(); |
| 4621 | return OpFoldResult(); |
| 4622 | } |
| 4623 | |
| 4624 | std::optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { |
| 4625 | return llvm::to_vector<4>(getVectorType().getShape()); |
| 4626 | } |
| 4627 | |
| 4628 | void TransferReadOp::getEffects( |
| 4629 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| 4630 | &effects) { |
| 4631 | if (llvm::isa<MemRefType>(getShapedType())) |
| 4632 | effects.emplace_back(MemoryEffects::Read::get(), &getBaseMutable(), |
| 4633 | SideEffects::DefaultResource::get()); |
| 4634 | } |
| 4635 | |
| 4636 | Speculation::Speculatability TransferReadOp::getSpeculatability() { |
| 4637 | if (hasPureTensorSemantics()) |
| 4638 | return Speculation::Speculatable; |
| 4639 | return Speculation::NotSpeculatable; |
| 4640 | } |
| 4641 | |
| 4642 | namespace { |
| 4643 | /// Store to load forwarding for transfer operations with permuation maps. |
| 4644 | /// Even if the permutation maps are different we can still propagate the store |
| 4645 | /// into the load if the size of the dimensions read and written match. Then we |
| 4646 | /// can replace the transfer_read + transfer_write by vector.broadcast and |
| 4647 | /// vector.transpose. |
| 4648 | /// Example: |
| 4649 | /// ``` |
| 4650 | /// %w0 = vector.transfer_write %v0, %arg0[%c0, %c0, %c0] |
| 4651 | /// {in_bounds = [true, true], |
| 4652 | /// permutation_map = affine_map<(d0, d1, d2) -> (d2, d1)>} : |
| 4653 | /// vector<4x1xf32>, tensor<4x4x4xf32> |
| 4654 | /// %r = vector.transfer_read %w0[%c0, %c0, %c0], %cf0 |
| 4655 | /// {in_bounds = [true, true, true, true], |
| 4656 | /// permutation_map = affine_map<(d0, d1, d2) -> (d1, 0, d2, 0)>} : |
| 4657 | /// tensor<4x4x4xf32>, vector<1x100x4x5xf32> |
| 4658 | /// ``` |
| 4659 | /// To: |
| 4660 | /// ``` |
| 4661 | /// %0 = vector.broadcast %arg1 : vector<4x1xf32> to vector<100x5x4x1xf32> |
| 4662 | /// %r = vector.transpose %0, [3, 0, 2, 1] : |
| 4663 | /// vector<100x5x4x1xf32> to vector<1x100x4x5xf32> |
| 4664 | /// ``` |
| 4665 | struct TransferReadAfterWriteToBroadcast |
| 4666 | : public OpRewritePattern<TransferReadOp> { |
| 4667 | using OpRewritePattern::OpRewritePattern; |
| 4668 | |
| 4669 | LogicalResult matchAndRewrite(TransferReadOp readOp, |
| 4670 | PatternRewriter &rewriter) const override { |
| 4671 | if (readOp.hasOutOfBoundsDim() || |
| 4672 | !llvm::isa<RankedTensorType>(readOp.getShapedType())) |
| 4673 | return failure(); |
| 4674 | auto defWrite = readOp.getBase().getDefiningOp<vector::TransferWriteOp>(); |
| 4675 | if (!defWrite) |
| 4676 | return failure(); |
| 4677 | // TODO: If the written transfer chunk is a superset of the read transfer |
| 4678 | // chunk we could do an extract_strided_slice. |
| 4679 | if (readOp.getTransferChunkAccessed() != |
| 4680 | defWrite.getTransferChunkAccessed()) |
| 4681 | return failure(); |
| 4682 | // TODO: Support cases where a dim is explicitly written but implicitly |
| 4683 | // read (i.e., a unit dim that is rank reduced). |
| 4684 | if (getUnusedDimsBitVector({readOp.getPermutationMap()}) != |
| 4685 | getUnusedDimsBitVector({defWrite.getPermutationMap()})) |
| 4686 | return failure(); |
| 4687 | if (readOp.getIndices() != defWrite.getIndices() || |
| 4688 | readOp.getMask() != defWrite.getMask()) |
| 4689 | return failure(); |
| 4690 | Value vec = defWrite.getVector(); |
| 4691 | // TODO: loop through the chain of transfer_write if we can prove that they |
| 4692 | // don't overlap with the transfer_read. This requires improving |
| 4693 | // `isDisjointTransferIndices` helper. |
| 4694 | AffineMap readMap = compressUnusedDims(readOp.getPermutationMap()); |
| 4695 | AffineMap writeMap = compressUnusedDims(defWrite.getPermutationMap()); |
| 4696 | AffineMap map = readMap.compose(map: writeMap); |
| 4697 | if (map.getNumResults() == 0) |
| 4698 | return failure(); |
| 4699 | // Calculate the permutation to apply to go from the vector stored to the |
| 4700 | // vector read. |
| 4701 | SmallVector<unsigned> permutation; |
| 4702 | if (!map.isPermutationOfMinorIdentityWithBroadcasting(permutedDims&: permutation)) |
| 4703 | return failure(); |
| 4704 | |
| 4705 | Location loc = readOp.getLoc(); |
| 4706 | // Calculate the broadcast shape by applying the reverse permutation to the |
| 4707 | // final shape we want. |
| 4708 | ArrayRef<int64_t> destShape = readOp.getVectorType().getShape(); |
| 4709 | SmallVector<int64_t> broadcastShape(destShape.size()); |
| 4710 | SmallVector<bool> broadcastScalableFlags(destShape.size()); |
| 4711 | for (const auto &pos : llvm::enumerate(First&: permutation)) { |
| 4712 | broadcastShape[pos.value()] = destShape[pos.index()]; |
| 4713 | broadcastScalableFlags[pos.value()] = |
| 4714 | readOp.getVectorType().getScalableDims()[pos.index()]; |
| 4715 | } |
| 4716 | VectorType broadcastedType = VectorType::get( |
| 4717 | broadcastShape, defWrite.getVectorType().getElementType(), |
| 4718 | broadcastScalableFlags); |
| 4719 | vec = rewriter.create<vector::BroadcastOp>(loc, broadcastedType, vec); |
| 4720 | SmallVector<int64_t> transposePerm(permutation.begin(), permutation.end()); |
| 4721 | rewriter.replaceOpWithNewOp<vector::TransposeOp>(readOp, vec, |
| 4722 | transposePerm); |
| 4723 | return success(); |
| 4724 | } |
| 4725 | }; |
| 4726 | } // namespace |
| 4727 | |
| 4728 | void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 4729 | MLIRContext *context) { |
| 4730 | results.add<TransferReadAfterWriteToBroadcast>(context); |
| 4731 | } |
| 4732 | |
| 4733 | //===----------------------------------------------------------------------===// |
| 4734 | // TransferWriteOp |
| 4735 | //===----------------------------------------------------------------------===// |
| 4736 | |
| 4737 | /// 1. Builder with type inference. |
| 4738 | void TransferWriteOp::build(OpBuilder &builder, OperationState &result, |
| 4739 | Value vector, Value dest, ValueRange indices, |
| 4740 | AffineMapAttr permutationMapAttr, |
| 4741 | /*optional*/ Value mask, |
| 4742 | /*optional*/ ArrayAttr inBoundsAttr) { |
| 4743 | Type resultType = llvm::dyn_cast<RankedTensorType>(dest.getType()); |
| 4744 | build(builder, result, resultType, vector, dest, indices, permutationMapAttr, |
| 4745 | mask, inBoundsAttr); |
| 4746 | } |
| 4747 | |
| 4748 | /// 2. Builder with type inference that sets an empty mask (variant with attrs). |
| 4749 | void TransferWriteOp::build(OpBuilder &builder, OperationState &result, |
| 4750 | Value vector, Value dest, ValueRange indices, |
| 4751 | AffineMapAttr permutationMapAttr, |
| 4752 | /*optional*/ ArrayAttr inBoundsAttr) { |
| 4753 | build(builder, result, vector, dest, indices, permutationMapAttr, |
| 4754 | /*mask=*/Value(), inBoundsAttr); |
| 4755 | } |
| 4756 | |
| 4757 | /// 3. Builder with type inference that sets an empty mask (variant without |
| 4758 | /// attrs) |
| 4759 | void TransferWriteOp::build(OpBuilder &builder, OperationState &result, |
| 4760 | Value vector, Value dest, ValueRange indices, |
| 4761 | AffineMap permutationMap, |
| 4762 | std::optional<ArrayRef<bool>> inBounds) { |
| 4763 | auto permutationMapAttr = AffineMapAttr::get(permutationMap); |
| 4764 | auto inBoundsAttr = |
| 4765 | (inBounds && !inBounds.value().empty()) |
| 4766 | ? builder.getBoolArrayAttr(inBounds.value()) |
| 4767 | : builder.getBoolArrayAttr(SmallVector<bool>( |
| 4768 | llvm::cast<VectorType>(vector.getType()).getRank(), false)); |
| 4769 | build(builder, result, vector, dest, indices, permutationMapAttr, |
| 4770 | /*mask=*/Value(), inBoundsAttr); |
| 4771 | } |
| 4772 | |
| 4773 | /// 4. Builder with type inference that sets an empty mask and sets permutation |
| 4774 | /// map to 'getMinorIdentityMap'. |
| 4775 | void TransferWriteOp::build(OpBuilder &builder, OperationState &result, |
| 4776 | Value vector, Value dest, ValueRange indices, |
| 4777 | std::optional<ArrayRef<bool>> inBounds) { |
| 4778 | auto vectorType = llvm::cast<VectorType>(vector.getType()); |
| 4779 | AffineMap permutationMap = getTransferMinorIdentityMap( |
| 4780 | llvm::cast<ShapedType>(dest.getType()), vectorType); |
| 4781 | build(builder, result, vector, dest, indices, permutationMap, inBounds); |
| 4782 | } |
| 4783 | |
| 4784 | ParseResult TransferWriteOp::parse(OpAsmParser &parser, |
| 4785 | OperationState &result) { |
| 4786 | auto &builder = parser.getBuilder(); |
| 4787 | SMLoc typesLoc; |
| 4788 | OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; |
| 4789 | SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; |
| 4790 | SmallVector<Type, 2> types; |
| 4791 | OpAsmParser::UnresolvedOperand maskInfo; |
| 4792 | if (parser.parseOperand(vectorInfo) || parser.parseComma() || |
| 4793 | parser.parseOperand(sourceInfo) || |
| 4794 | parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) |
| 4795 | return failure(); |
| 4796 | ParseResult hasMask = parser.parseOptionalComma(); |
| 4797 | if (hasMask.succeeded() && parser.parseOperand(maskInfo)) |
| 4798 | return failure(); |
| 4799 | if (parser.parseOptionalAttrDict(result.attributes) || |
| 4800 | parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) |
| 4801 | return failure(); |
| 4802 | if (types.size() != 2) |
| 4803 | return parser.emitError(typesLoc, "requires two types" ); |
| 4804 | auto indexType = builder.getIndexType(); |
| 4805 | VectorType vectorType = llvm::dyn_cast<VectorType>(types[0]); |
| 4806 | if (!vectorType) |
| 4807 | return parser.emitError(typesLoc, "requires vector type" ); |
| 4808 | ShapedType shapedType = llvm::dyn_cast<ShapedType>(types[1]); |
| 4809 | if (!shapedType || !llvm::isa<MemRefType, RankedTensorType>(shapedType)) |
| 4810 | return parser.emitError(typesLoc, "requires memref or ranked tensor type" ); |
| 4811 | auto permMapAttrName = |
| 4812 | TransferWriteOp::getPermutationMapAttrName(result.name); |
| 4813 | auto permMapAttr = result.attributes.get(permMapAttrName); |
| 4814 | AffineMap permMap; |
| 4815 | if (!permMapAttr) { |
| 4816 | if (shapedType.getRank() < |
| 4817 | getEffectiveVectorRankForXferOp(shapedType, vectorType)) |
| 4818 | return parser.emitError(typesLoc, |
| 4819 | "expected a custom permutation_map when " |
| 4820 | "rank(source) != rank(destination)" ); |
| 4821 | permMap = getTransferMinorIdentityMap(shapedType, vectorType); |
| 4822 | result.attributes.set(permMapAttrName, AffineMapAttr::get(permMap)); |
| 4823 | } else { |
| 4824 | permMap = llvm::cast<AffineMapAttr>(permMapAttr).getValue(); |
| 4825 | } |
| 4826 | auto inBoundsAttrName = TransferWriteOp::getInBoundsAttrName(result.name); |
| 4827 | Attribute inBoundsAttr = result.attributes.get(inBoundsAttrName); |
| 4828 | if (!inBoundsAttr) { |
| 4829 | result.addAttribute(inBoundsAttrName, |
| 4830 | builder.getBoolArrayAttr( |
| 4831 | SmallVector<bool>(permMap.getNumResults(), false))); |
| 4832 | } |
| 4833 | if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || |
| 4834 | parser.resolveOperand(sourceInfo, shapedType, result.operands) || |
| 4835 | parser.resolveOperands(indexInfo, indexType, result.operands)) |
| 4836 | return failure(); |
| 4837 | if (hasMask.succeeded()) { |
| 4838 | if (llvm::dyn_cast<VectorType>(shapedType.getElementType())) |
| 4839 | return parser.emitError( |
| 4840 | maskInfo.location, "does not support masks with vector element type" ); |
| 4841 | if (vectorType.getRank() != permMap.getNumResults()) { |
| 4842 | return parser.emitError(typesLoc, |
| 4843 | "expected the same rank for the vector and the " |
| 4844 | "results of the permutation map" ); |
| 4845 | } |
| 4846 | auto maskType = inferTransferOpMaskType(vectorType, permMap); |
| 4847 | if (parser.resolveOperand(maskInfo, maskType, result.operands)) |
| 4848 | return failure(); |
| 4849 | } |
| 4850 | result.addAttribute(TransferWriteOp::getOperandSegmentSizeAttr(), |
| 4851 | builder.getDenseI32ArrayAttr( |
| 4852 | {1, 1, static_cast<int32_t>(indexInfo.size()), |
| 4853 | static_cast<int32_t>(hasMask.succeeded())})); |
| 4854 | return failure(llvm::isa<RankedTensorType>(shapedType) && |
| 4855 | parser.addTypeToList(shapedType, result.types)); |
| 4856 | } |
| 4857 | |
| 4858 | void TransferWriteOp::print(OpAsmPrinter &p) { |
| 4859 | p << " " << getVector() << ", " << getBase() << "[" << getIndices() << "]" ; |
| 4860 | if (getMask()) |
| 4861 | p << ", " << getMask(); |
| 4862 | printTransferAttrs(p, *this); |
| 4863 | p << " : " << getVectorType() << ", " << getShapedType(); |
| 4864 | } |
| 4865 | |
| 4866 | LogicalResult TransferWriteOp::verify() { |
| 4867 | // Consistency of elemental types in shape and vector. |
| 4868 | ShapedType shapedType = getShapedType(); |
| 4869 | VectorType vectorType = getVectorType(); |
| 4870 | VectorType maskType = getMaskType(); |
| 4871 | auto permutationMap = getPermutationMap(); |
| 4872 | VectorType inferredMaskType = |
| 4873 | maskType ? inferTransferOpMaskType(vectorType, permutationMap) |
| 4874 | : VectorType(); |
| 4875 | |
| 4876 | if (llvm::size(getIndices()) != shapedType.getRank()) |
| 4877 | return emitOpError("requires " ) << shapedType.getRank() << " indices" ; |
| 4878 | |
| 4879 | // We do not allow broadcast dimensions on TransferWriteOps for the moment, |
| 4880 | // as the semantics is unclear. This can be revisited later if necessary. |
| 4881 | if (hasBroadcastDim()) |
| 4882 | return emitOpError("should not have broadcast dimensions" ); |
| 4883 | |
| 4884 | if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), |
| 4885 | shapedType, vectorType, maskType, |
| 4886 | inferredMaskType, permutationMap, getInBounds()))) |
| 4887 | return failure(); |
| 4888 | |
| 4889 | return verifyPermutationMap(permutationMap, |
| 4890 | [&](Twine t) { return emitOpError(t); }); |
| 4891 | } |
| 4892 | |
| 4893 | //===----------------------------------------------------------------------===// |
| 4894 | // TransferWriteOp: MaskableOpInterface methods. |
| 4895 | //===----------------------------------------------------------------------===// |
| 4896 | |
| 4897 | /// Returns the mask type expected by this operation. Mostly used for |
| 4898 | /// verification purposes. |
| 4899 | Type TransferWriteOp::getExpectedMaskType() { |
| 4900 | return inferTransferOpMaskType(getVectorType(), getPermutationMap()); |
| 4901 | } |
| 4902 | |
| 4903 | //===----------------------------------------------------------------------===// |
| 4904 | // TransferWriteOp: VectorTransferOpInterface methods. |
| 4905 | //===----------------------------------------------------------------------===// |
| 4906 | Value TransferWriteOp::getVector() { return getOperand(0); } |
| 4907 | VectorType TransferWriteOp::getVectorType() { |
| 4908 | return cast<VectorType>(getValueToStore().getType()); |
| 4909 | } |
| 4910 | |
| 4911 | //===----------------------------------------------------------------------===// |
| 4912 | // TransferWriteOp: fold methods. |
| 4913 | //===----------------------------------------------------------------------===// |
| 4914 | /// Fold: |
| 4915 | /// ``` |
| 4916 | /// %t1 = ... |
| 4917 | /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : |
| 4918 | /// tensor<static_sizesxf32>, vector<static_sizesxf32> |
| 4919 | /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : |
| 4920 | /// vector<static_sizesxf32>, tensor<static_sizesxf32> |
| 4921 | /// ``` |
| 4922 | /// |
| 4923 | /// into: |
| 4924 | /// |
| 4925 | /// ``` |
| 4926 | /// %t0 |
| 4927 | /// ``` |
| 4928 | /// |
| 4929 | /// The producer of t1 may or may not be DCE'd depending on whether it is a |
| 4930 | /// block argument or has side effects. |
| 4931 | static LogicalResult foldReadInitWrite(TransferWriteOp write, |
| 4932 | ArrayRef<Attribute>, |
| 4933 | SmallVectorImpl<OpFoldResult> &results) { |
| 4934 | // TODO: support 0-d corner case. |
| 4935 | if (write.getTransferRank() == 0) |
| 4936 | return failure(); |
| 4937 | auto rankedTensorType = |
| 4938 | llvm::dyn_cast<RankedTensorType>(write.getBase().getType()); |
| 4939 | // If not operating on tensors, bail. |
| 4940 | if (!rankedTensorType) |
| 4941 | return failure(); |
| 4942 | // If no read, bail. |
| 4943 | auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); |
| 4944 | if (!read) |
| 4945 | return failure(); |
| 4946 | // TODO: support 0-d corner case. |
| 4947 | if (read.getTransferRank() == 0) |
| 4948 | return failure(); |
| 4949 | // For now, only accept minor identity. Future: composition is minor identity. |
| 4950 | if (!read.getPermutationMap().isMinorIdentity() || |
| 4951 | !write.getPermutationMap().isMinorIdentity()) |
| 4952 | return failure(); |
| 4953 | // Bail on mismatching ranks. |
| 4954 | if (read.getTransferRank() != write.getTransferRank()) |
| 4955 | return failure(); |
| 4956 | // Bail on potential out-of-bounds accesses. |
| 4957 | if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) |
| 4958 | return failure(); |
| 4959 | // Tensor types must be the same. |
| 4960 | if (read.getBase().getType() != rankedTensorType) |
| 4961 | return failure(); |
| 4962 | // Vector types must be the same. |
| 4963 | if (read.getVectorType() != write.getVectorType()) |
| 4964 | return failure(); |
| 4965 | // Vector and Tensor shapes must match. |
| 4966 | if (read.getVectorType().getShape() != rankedTensorType.getShape()) |
| 4967 | return failure(); |
| 4968 | // If any index is nonzero. |
| 4969 | auto isNotConstantZero = [](Value v) { |
| 4970 | auto cstOp = getConstantIntValue(ofr: v); |
| 4971 | return !cstOp.has_value() || cstOp.value() != 0; |
| 4972 | }; |
| 4973 | if (llvm::any_of(read.getIndices(), isNotConstantZero) || |
| 4974 | llvm::any_of(write.getIndices(), isNotConstantZero)) |
| 4975 | return failure(); |
| 4976 | // Success. |
| 4977 | results.push_back(Elt: read.getBase()); |
| 4978 | return success(); |
| 4979 | } |
| 4980 | |
| 4981 | static bool checkSameValueWAR(vector::TransferReadOp read, |
| 4982 | vector::TransferWriteOp write) { |
| 4983 | return read.getBase() == write.getBase() && |
| 4984 | read.getIndices() == write.getIndices() && |
| 4985 | read.getPermutationMap() == write.getPermutationMap() && |
| 4986 | read.getVectorType() == write.getVectorType() && !read.getMask() && |
| 4987 | !write.getMask(); |
| 4988 | } |
| 4989 | /// Fold transfer_write write after read: |
| 4990 | /// ``` |
| 4991 | /// %t0 = ... |
| 4992 | /// %v = vector.transfer_read %t0[%c0...] : |
| 4993 | /// tensor<static_sizesxf32>, vector<static_sizesxf32> |
| 4994 | /// %t1 = vector.transfer_write %v, %t0[%c0...] : |
| 4995 | /// vector<static_sizesxf32>, tensor<static_sizesxf32> |
| 4996 | /// ``` |
| 4997 | /// |
| 4998 | /// into: |
| 4999 | /// |
| 5000 | /// ``` |
| 5001 | /// %t0 |
| 5002 | /// ``` |
| 5003 | static LogicalResult foldWAR(TransferWriteOp write, |
| 5004 | SmallVectorImpl<OpFoldResult> &results) { |
| 5005 | if (!llvm::isa<RankedTensorType>(write.getBase().getType())) |
| 5006 | return failure(); |
| 5007 | auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); |
| 5008 | if (!read) |
| 5009 | return failure(); |
| 5010 | |
| 5011 | if (!checkSameValueWAR(read, write)) |
| 5012 | return failure(); |
| 5013 | results.push_back(Elt: read.getBase()); |
| 5014 | return success(); |
| 5015 | } |
| 5016 | |
| 5017 | LogicalResult TransferWriteOp::fold(FoldAdaptor adaptor, |
| 5018 | SmallVectorImpl<OpFoldResult> &results) { |
| 5019 | if (succeeded(foldReadInitWrite(*this, adaptor.getOperands(), results))) |
| 5020 | return success(); |
| 5021 | if (succeeded(foldWAR(*this, results))) |
| 5022 | return success(); |
| 5023 | if (succeeded(foldTransferInBoundsAttribute(*this))) |
| 5024 | return success(); |
| 5025 | if (succeeded(foldTransferFullMask(*this))) |
| 5026 | return success(); |
| 5027 | return memref::foldMemRefCast(*this); |
| 5028 | } |
| 5029 | |
| 5030 | //===----------------------------------------------------------------------===// |
| 5031 | // TransferWriteOp: other methods. |
| 5032 | //===----------------------------------------------------------------------===// |
| 5033 | std::optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { |
| 5034 | return llvm::to_vector<4>(getVectorType().getShape()); |
| 5035 | } |
| 5036 | |
| 5037 | void TransferWriteOp::getEffects( |
| 5038 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| 5039 | &effects) { |
| 5040 | if (llvm::isa<MemRefType>(getShapedType())) |
| 5041 | effects.emplace_back(MemoryEffects::Write::get(), &getBaseMutable(), |
| 5042 | SideEffects::DefaultResource::get()); |
| 5043 | } |
| 5044 | |
| 5045 | Speculation::Speculatability TransferWriteOp::getSpeculatability() { |
| 5046 | if (hasPureTensorSemantics()) |
| 5047 | return Speculation::Speculatable; |
| 5048 | return Speculation::NotSpeculatable; |
| 5049 | } |
| 5050 | |
| 5051 | namespace { |
| 5052 | /// Remove dead transfer write from the SSA chain so that it an be eliminated by |
| 5053 | /// DCE |
| 5054 | /// ``` |
| 5055 | /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} |
| 5056 | /// : vector<1x4xf32>, tensor<4x4xf32> |
| 5057 | /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} |
| 5058 | /// : vector<1x4xf32>, tensor<4x4xf32> |
| 5059 | /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} |
| 5060 | /// : vector<1x4xf32>, tensor<4x4xf32> |
| 5061 | /// ``` |
| 5062 | /// |
| 5063 | /// into: |
| 5064 | /// |
| 5065 | /// ``` |
| 5066 | /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} |
| 5067 | /// : vector<1x4xf32>, tensor<4x4xf32> |
| 5068 | /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} |
| 5069 | /// : vector<1x4xf32>, tensor<4x4xf32> |
| 5070 | /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} |
| 5071 | /// : vector<1x4xf32>, tensor<4x4xf32> |
| 5072 | /// ``` |
| 5073 | /// |
| 5074 | /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have |
| 5075 | /// any other uses. |
| 5076 | class FoldWaw final : public OpRewritePattern<TransferWriteOp> { |
| 5077 | public: |
| 5078 | using OpRewritePattern::OpRewritePattern; |
| 5079 | LogicalResult matchAndRewrite(TransferWriteOp writeOp, |
| 5080 | PatternRewriter &rewriter) const override { |
| 5081 | if (!llvm::isa<RankedTensorType>(writeOp.getShapedType())) |
| 5082 | return failure(); |
| 5083 | vector::TransferWriteOp writeToModify = writeOp; |
| 5084 | |
| 5085 | auto defWrite = writeOp.getBase().getDefiningOp<vector::TransferWriteOp>(); |
| 5086 | while (defWrite) { |
| 5087 | if (checkSameValueWAW(writeOp, defWrite)) { |
| 5088 | rewriter.modifyOpInPlace(writeToModify, [&]() { |
| 5089 | writeToModify.getBaseMutable().assign(defWrite.getBase()); |
| 5090 | }); |
| 5091 | return success(); |
| 5092 | } |
| 5093 | if (!isDisjointTransferIndices( |
| 5094 | cast<VectorTransferOpInterface>(defWrite.getOperation()), |
| 5095 | cast<VectorTransferOpInterface>(writeOp.getOperation()))) |
| 5096 | break; |
| 5097 | // If the previous write op doesn't have any other use we an safely look |
| 5098 | // at the previous store to see if it can be removed. |
| 5099 | if (!defWrite->hasOneUse()) |
| 5100 | break; |
| 5101 | writeToModify = defWrite; |
| 5102 | defWrite = defWrite.getBase().getDefiningOp<vector::TransferWriteOp>(); |
| 5103 | } |
| 5104 | return failure(); |
| 5105 | } |
| 5106 | }; |
| 5107 | |
| 5108 | /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to |
| 5109 | /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is |
| 5110 | /// overwritten and inserted into another tensor. After this rewrite, the |
| 5111 | /// operations bufferize in-place since all of them work on the same slice. |
| 5112 | /// |
| 5113 | /// For example: |
| 5114 | /// ```mlir |
| 5115 | /// %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0] |
| 5116 | /// : vector<8x16xf32>, tensor<8x16xf32> |
| 5117 | /// %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1] |
| 5118 | /// : tensor<8x16xf32> to tensor<?x?xf32> |
| 5119 | /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] |
| 5120 | /// : tensor<?x?xf32> into tensor<27x37xf32> |
| 5121 | /// ``` |
| 5122 | /// folds to |
| 5123 | /// ```mlir |
| 5124 | /// %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] |
| 5125 | /// : tensor<27x37xf32> to tensor<?x?xf32> |
| 5126 | /// %1 = vector.transfer_write %vec, %0[%c0, %c0] |
| 5127 | /// : vector<8x16xf32>, tensor<?x?xf32> |
| 5128 | /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] |
| 5129 | /// : tensor<?x?xf32> into tensor<27x37xf32> |
| 5130 | /// ``` |
| 5131 | struct |
| 5132 | : public OpRewritePattern<tensor::InsertSliceOp> { |
| 5133 | public: |
| 5134 | using OpRewritePattern::OpRewritePattern; |
| 5135 | |
| 5136 | LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, |
| 5137 | PatternRewriter &rewriter) const override { |
| 5138 | if (!insertOp.hasUnitStride()) |
| 5139 | return failure(); |
| 5140 | auto = |
| 5141 | insertOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); |
| 5142 | if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse()) |
| 5143 | return failure(); |
| 5144 | auto transferOp = extractOp.getSource().getDefiningOp<TransferWriteOp>(); |
| 5145 | if (!transferOp || !transferOp->hasOneUse()) |
| 5146 | return failure(); |
| 5147 | |
| 5148 | // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is |
| 5149 | // rank-reducing. |
| 5150 | if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) { |
| 5151 | return rewriter.notifyMatchFailure(insertOp, |
| 5152 | "use-def chain is rank-reducing" ); |
| 5153 | } |
| 5154 | |
| 5155 | // Fail if tensor::ExtractSliceOp has non-zero offset. |
| 5156 | if (!extractOp.hasZeroOffset()) { |
| 5157 | return rewriter.notifyMatchFailure(insertOp, |
| 5158 | "ExtractSliceOp has non-zero offset" ); |
| 5159 | } |
| 5160 | |
| 5161 | // Fail if tensor::TransferWriteOp has non-zero offset. |
| 5162 | if (!llvm::all_of(transferOp.getIndices(), [](Value value) { |
| 5163 | return getConstantIntValue(ofr: value) == static_cast<int64_t>(0); |
| 5164 | })) { |
| 5165 | return rewriter.notifyMatchFailure(insertOp, |
| 5166 | "TranferWriteOp has non-zero offset" ); |
| 5167 | } |
| 5168 | |
| 5169 | // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ. |
| 5170 | if (insertOp.getMixedSizes().size() != extractOp.getMixedSizes().size()) { |
| 5171 | return rewriter.notifyMatchFailure( |
| 5172 | insertOp, "InsertSliceOp and ExtractSliceOp ranks differ" ); |
| 5173 | } |
| 5174 | |
| 5175 | for (auto [insertSize, extractSize] : |
| 5176 | llvm::zip_equal(insertOp.getMixedSizes(), extractOp.getMixedSizes())) { |
| 5177 | if (!isEqualConstantIntOrValue(insertSize, extractSize)) { |
| 5178 | return rewriter.notifyMatchFailure( |
| 5179 | insertOp, "InsertSliceOp and ExtractSliceOp sizes differ" ); |
| 5180 | } |
| 5181 | } |
| 5182 | |
| 5183 | // Fail if the vector::TransferWriteOp may not overwrite the full tensor. |
| 5184 | assert(transferOp.getVectorType().hasStaticShape() && |
| 5185 | "expected vector to have a static shape" ); |
| 5186 | ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape(); |
| 5187 | SmallVector<int64_t> resultShape = applyPermutationMap( |
| 5188 | transferOp.getPermutationMap(), transferOp.getShapedType().getShape()); |
| 5189 | if (transferOp.getMask() || !vectorShape.equals(RHS: resultShape)) { |
| 5190 | return rewriter.notifyMatchFailure( |
| 5191 | insertOp, "TransferWriteOp may not write the full tensor." ); |
| 5192 | } |
| 5193 | |
| 5194 | // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp. |
| 5195 | // Set all in_bounds to false and let the folder infer them. |
| 5196 | SmallVector<bool> newInBounds(vectorShape.size(), false); |
| 5197 | auto = rewriter.create<tensor::ExtractSliceOp>( |
| 5198 | extractOp.getLoc(), insertOp.getSourceType(), insertOp.getDest(), |
| 5199 | insertOp.getMixedOffsets(), insertOp.getMixedSizes(), |
| 5200 | insertOp.getMixedStrides()); |
| 5201 | auto newTransferWriteOp = rewriter.create<TransferWriteOp>( |
| 5202 | transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(), |
| 5203 | transferOp.getIndices(), transferOp.getPermutationMapAttr(), |
| 5204 | rewriter.getBoolArrayAttr(newInBounds)); |
| 5205 | rewriter.modifyOpInPlace(insertOp, [&]() { |
| 5206 | insertOp.getSourceMutable().assign(newTransferWriteOp.getResult()); |
| 5207 | }); |
| 5208 | return success(); |
| 5209 | } |
| 5210 | }; |
| 5211 | |
| 5212 | } // namespace |
| 5213 | |
| 5214 | void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 5215 | MLIRContext *context) { |
| 5216 | results.add<FoldWaw, SwapExtractSliceOfTransferWrite>(context); |
| 5217 | } |
| 5218 | |
| 5219 | //===----------------------------------------------------------------------===// |
| 5220 | // LoadOp |
| 5221 | //===----------------------------------------------------------------------===// |
| 5222 | |
| 5223 | static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, |
| 5224 | VectorType vecTy, |
| 5225 | MemRefType memRefTy) { |
| 5226 | // If rank==0 or size==1 it's equivalent to scalar load/store, so we don't |
| 5227 | // need any strides limitations. |
| 5228 | if (!vecTy.isScalable() && |
| 5229 | (vecTy.getRank() == 0 || vecTy.getNumElements() == 1)) |
| 5230 | return success(); |
| 5231 | |
| 5232 | if (!memRefTy.isLastDimUnitStride()) |
| 5233 | return op->emitOpError(message: "most minor memref dim must have unit stride" ); |
| 5234 | return success(); |
| 5235 | } |
| 5236 | |
| 5237 | LogicalResult vector::LoadOp::verify() { |
| 5238 | VectorType resVecTy = getVectorType(); |
| 5239 | MemRefType memRefTy = getMemRefType(); |
| 5240 | |
| 5241 | if (failed(verifyLoadStoreMemRefLayout(*this, resVecTy, memRefTy))) |
| 5242 | return failure(); |
| 5243 | |
| 5244 | if (memRefTy.getRank() < resVecTy.getRank()) |
| 5245 | return emitOpError( |
| 5246 | "destination memref has lower rank than the result vector" ); |
| 5247 | |
| 5248 | // Checks for vector memrefs. |
| 5249 | Type memElemTy = memRefTy.getElementType(); |
| 5250 | if (auto memVecTy = llvm::dyn_cast<VectorType>(memElemTy)) { |
| 5251 | if (memVecTy != resVecTy) |
| 5252 | return emitOpError("base memref and result vector types should match" ); |
| 5253 | memElemTy = memVecTy.getElementType(); |
| 5254 | } |
| 5255 | |
| 5256 | if (resVecTy.getElementType() != memElemTy) |
| 5257 | return emitOpError("base and result element types should match" ); |
| 5258 | if (llvm::size(getIndices()) != memRefTy.getRank()) |
| 5259 | return emitOpError("requires " ) << memRefTy.getRank() << " indices" ; |
| 5260 | return success(); |
| 5261 | } |
| 5262 | |
| 5263 | OpFoldResult LoadOp::fold(FoldAdaptor) { |
| 5264 | if (succeeded(memref::foldMemRefCast(*this))) |
| 5265 | return getResult(); |
| 5266 | return OpFoldResult(); |
| 5267 | } |
| 5268 | |
| 5269 | //===----------------------------------------------------------------------===// |
| 5270 | // StoreOp |
| 5271 | //===----------------------------------------------------------------------===// |
| 5272 | |
| 5273 | LogicalResult vector::StoreOp::verify() { |
| 5274 | VectorType valueVecTy = getVectorType(); |
| 5275 | MemRefType memRefTy = getMemRefType(); |
| 5276 | |
| 5277 | if (failed(verifyLoadStoreMemRefLayout(*this, valueVecTy, memRefTy))) |
| 5278 | return failure(); |
| 5279 | |
| 5280 | if (memRefTy.getRank() < valueVecTy.getRank()) |
| 5281 | return emitOpError("source memref has lower rank than the vector to store" ); |
| 5282 | |
| 5283 | // Checks for vector memrefs. |
| 5284 | Type memElemTy = memRefTy.getElementType(); |
| 5285 | if (auto memVecTy = llvm::dyn_cast<VectorType>(memElemTy)) { |
| 5286 | if (memVecTy != valueVecTy) |
| 5287 | return emitOpError( |
| 5288 | "base memref and valueToStore vector types should match" ); |
| 5289 | memElemTy = memVecTy.getElementType(); |
| 5290 | } |
| 5291 | |
| 5292 | if (valueVecTy.getElementType() != memElemTy) |
| 5293 | return emitOpError("base and valueToStore element type should match" ); |
| 5294 | if (llvm::size(getIndices()) != memRefTy.getRank()) |
| 5295 | return emitOpError("requires " ) << memRefTy.getRank() << " indices" ; |
| 5296 | return success(); |
| 5297 | } |
| 5298 | |
| 5299 | LogicalResult StoreOp::fold(FoldAdaptor adaptor, |
| 5300 | SmallVectorImpl<OpFoldResult> &results) { |
| 5301 | return memref::foldMemRefCast(*this); |
| 5302 | } |
| 5303 | |
| 5304 | //===----------------------------------------------------------------------===// |
| 5305 | // MaskedLoadOp |
| 5306 | //===----------------------------------------------------------------------===// |
| 5307 | |
| 5308 | LogicalResult MaskedLoadOp::verify() { |
| 5309 | VectorType maskVType = getMaskVectorType(); |
| 5310 | VectorType passVType = getPassThruVectorType(); |
| 5311 | VectorType resVType = getVectorType(); |
| 5312 | MemRefType memType = getMemRefType(); |
| 5313 | |
| 5314 | if (resVType.getElementType() != memType.getElementType()) |
| 5315 | return emitOpError("base and result element type should match" ); |
| 5316 | if (llvm::size(getIndices()) != memType.getRank()) |
| 5317 | return emitOpError("requires " ) << memType.getRank() << " indices" ; |
| 5318 | if (resVType.getShape() != maskVType.getShape()) |
| 5319 | return emitOpError("expected result shape to match mask shape" ); |
| 5320 | if (resVType != passVType) |
| 5321 | return emitOpError("expected pass_thru of same type as result type" ); |
| 5322 | return success(); |
| 5323 | } |
| 5324 | |
| 5325 | namespace { |
| 5326 | class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { |
| 5327 | public: |
| 5328 | using OpRewritePattern::OpRewritePattern; |
| 5329 | LogicalResult matchAndRewrite(MaskedLoadOp load, |
| 5330 | PatternRewriter &rewriter) const override { |
| 5331 | switch (getMaskFormat(load.getMask())) { |
| 5332 | case MaskFormat::AllTrue: |
| 5333 | rewriter.replaceOpWithNewOp<vector::LoadOp>( |
| 5334 | load, load.getType(), load.getBase(), load.getIndices()); |
| 5335 | return success(); |
| 5336 | case MaskFormat::AllFalse: |
| 5337 | rewriter.replaceOp(load, load.getPassThru()); |
| 5338 | return success(); |
| 5339 | case MaskFormat::Unknown: |
| 5340 | return failure(); |
| 5341 | } |
| 5342 | llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad" ); |
| 5343 | } |
| 5344 | }; |
| 5345 | } // namespace |
| 5346 | |
| 5347 | void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 5348 | MLIRContext *context) { |
| 5349 | results.add<MaskedLoadFolder>(context); |
| 5350 | } |
| 5351 | |
| 5352 | OpFoldResult MaskedLoadOp::fold(FoldAdaptor) { |
| 5353 | if (succeeded(memref::foldMemRefCast(*this))) |
| 5354 | return getResult(); |
| 5355 | return OpFoldResult(); |
| 5356 | } |
| 5357 | |
| 5358 | //===----------------------------------------------------------------------===// |
| 5359 | // MaskedStoreOp |
| 5360 | //===----------------------------------------------------------------------===// |
| 5361 | |
| 5362 | LogicalResult MaskedStoreOp::verify() { |
| 5363 | VectorType maskVType = getMaskVectorType(); |
| 5364 | VectorType valueVType = getVectorType(); |
| 5365 | MemRefType memType = getMemRefType(); |
| 5366 | |
| 5367 | if (valueVType.getElementType() != memType.getElementType()) |
| 5368 | return emitOpError("base and valueToStore element type should match" ); |
| 5369 | if (llvm::size(getIndices()) != memType.getRank()) |
| 5370 | return emitOpError("requires " ) << memType.getRank() << " indices" ; |
| 5371 | if (valueVType.getShape() != maskVType.getShape()) |
| 5372 | return emitOpError("expected valueToStore shape to match mask shape" ); |
| 5373 | return success(); |
| 5374 | } |
| 5375 | |
| 5376 | namespace { |
| 5377 | class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { |
| 5378 | public: |
| 5379 | using OpRewritePattern::OpRewritePattern; |
| 5380 | LogicalResult matchAndRewrite(MaskedStoreOp store, |
| 5381 | PatternRewriter &rewriter) const override { |
| 5382 | switch (getMaskFormat(store.getMask())) { |
| 5383 | case MaskFormat::AllTrue: |
| 5384 | rewriter.replaceOpWithNewOp<vector::StoreOp>( |
| 5385 | store, store.getValueToStore(), store.getBase(), store.getIndices()); |
| 5386 | return success(); |
| 5387 | case MaskFormat::AllFalse: |
| 5388 | rewriter.eraseOp(op: store); |
| 5389 | return success(); |
| 5390 | case MaskFormat::Unknown: |
| 5391 | return failure(); |
| 5392 | } |
| 5393 | llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore" ); |
| 5394 | } |
| 5395 | }; |
| 5396 | } // namespace |
| 5397 | |
| 5398 | void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 5399 | MLIRContext *context) { |
| 5400 | results.add<MaskedStoreFolder>(context); |
| 5401 | } |
| 5402 | |
| 5403 | LogicalResult MaskedStoreOp::fold(FoldAdaptor adaptor, |
| 5404 | SmallVectorImpl<OpFoldResult> &results) { |
| 5405 | return memref::foldMemRefCast(*this); |
| 5406 | } |
| 5407 | |
| 5408 | //===----------------------------------------------------------------------===// |
| 5409 | // GatherOp |
| 5410 | //===----------------------------------------------------------------------===// |
| 5411 | |
| 5412 | LogicalResult GatherOp::verify() { |
| 5413 | VectorType indVType = getIndexVectorType(); |
| 5414 | VectorType maskVType = getMaskVectorType(); |
| 5415 | VectorType resVType = getVectorType(); |
| 5416 | ShapedType baseType = getBaseType(); |
| 5417 | |
| 5418 | if (!llvm::isa<MemRefType, RankedTensorType>(baseType)) |
| 5419 | return emitOpError("requires base to be a memref or ranked tensor type" ); |
| 5420 | |
| 5421 | if (resVType.getElementType() != baseType.getElementType()) |
| 5422 | return emitOpError("base and result element type should match" ); |
| 5423 | if (llvm::size(getIndices()) != baseType.getRank()) |
| 5424 | return emitOpError("requires " ) << baseType.getRank() << " indices" ; |
| 5425 | if (resVType.getShape() != indVType.getShape()) |
| 5426 | return emitOpError("expected result dim to match indices dim" ); |
| 5427 | if (resVType.getShape() != maskVType.getShape()) |
| 5428 | return emitOpError("expected result dim to match mask dim" ); |
| 5429 | if (resVType != getPassThruVectorType()) |
| 5430 | return emitOpError("expected pass_thru of same type as result type" ); |
| 5431 | return success(); |
| 5432 | } |
| 5433 | |
| 5434 | // MaskableOpInterface methods. |
| 5435 | |
| 5436 | /// Returns the mask type expected by this operation. Mostly used for |
| 5437 | /// verification purposes. It requires the operation to be vectorized." |
| 5438 | Type GatherOp::getExpectedMaskType() { |
| 5439 | auto vecType = this->getIndexVectorType(); |
| 5440 | return VectorType::get(vecType.getShape(), |
| 5441 | IntegerType::get(vecType.getContext(), /*width=*/1), |
| 5442 | vecType.getScalableDims()); |
| 5443 | } |
| 5444 | |
| 5445 | std::optional<SmallVector<int64_t, 4>> GatherOp::getShapeForUnroll() { |
| 5446 | return llvm::to_vector<4>(getVectorType().getShape()); |
| 5447 | } |
| 5448 | |
| 5449 | /// Cheeck if `indexVec` is constant 1D vec of consecutive values [0, 1, 2, ...] |
| 5450 | static LogicalResult isZeroBasedContiguousSeq(Value indexVec) { |
| 5451 | auto vecType = dyn_cast<VectorType>(indexVec.getType()); |
| 5452 | if (!vecType || vecType.getRank() != 1 || vecType.isScalable()) |
| 5453 | return failure(); |
| 5454 | |
| 5455 | if (indexVec.getDefiningOp<StepOp>()) |
| 5456 | return success(); |
| 5457 | |
| 5458 | DenseIntElementsAttr elements; |
| 5459 | if (!matchPattern(value: indexVec, pattern: m_Constant(bind_value: &elements))) |
| 5460 | return failure(); |
| 5461 | |
| 5462 | return success( |
| 5463 | llvm::equal(elements, llvm::seq<int64_t>(0, vecType.getNumElements()))); |
| 5464 | } |
| 5465 | |
| 5466 | namespace { |
| 5467 | class GatherFolder final : public OpRewritePattern<GatherOp> { |
| 5468 | public: |
| 5469 | using OpRewritePattern::OpRewritePattern; |
| 5470 | LogicalResult matchAndRewrite(GatherOp gather, |
| 5471 | PatternRewriter &rewriter) const override { |
| 5472 | switch (getMaskFormat(gather.getMask())) { |
| 5473 | case MaskFormat::AllTrue: |
| 5474 | return failure(); // no unmasked equivalent |
| 5475 | case MaskFormat::AllFalse: |
| 5476 | rewriter.replaceOp(gather, gather.getPassThru()); |
| 5477 | return success(); |
| 5478 | case MaskFormat::Unknown: |
| 5479 | return failure(); |
| 5480 | } |
| 5481 | llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder" ); |
| 5482 | } |
| 5483 | }; |
| 5484 | |
| 5485 | /// Fold gathers with consecutive offsets [0, 1, 2, ...] into contiguous |
| 5486 | /// maskedload. Only 1D fixed vectors are supported for now. |
| 5487 | class FoldContiguousGather final : public OpRewritePattern<GatherOp> { |
| 5488 | public: |
| 5489 | using OpRewritePattern::OpRewritePattern; |
| 5490 | LogicalResult matchAndRewrite(GatherOp op, |
| 5491 | PatternRewriter &rewriter) const override { |
| 5492 | if (!isa<MemRefType>(op.getBase().getType())) |
| 5493 | return rewriter.notifyMatchFailure(op, "base must be of memref type" ); |
| 5494 | |
| 5495 | if (failed(isZeroBasedContiguousSeq(op.getIndexVec()))) |
| 5496 | return failure(); |
| 5497 | |
| 5498 | rewriter.replaceOpWithNewOp<MaskedLoadOp>(op, op.getType(), op.getBase(), |
| 5499 | op.getIndices(), op.getMask(), |
| 5500 | op.getPassThru()); |
| 5501 | return success(); |
| 5502 | } |
| 5503 | }; |
| 5504 | } // namespace |
| 5505 | |
| 5506 | void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 5507 | MLIRContext *context) { |
| 5508 | results.add<GatherFolder, FoldContiguousGather>(context); |
| 5509 | } |
| 5510 | |
| 5511 | //===----------------------------------------------------------------------===// |
| 5512 | // ScatterOp |
| 5513 | //===----------------------------------------------------------------------===// |
| 5514 | |
| 5515 | LogicalResult ScatterOp::verify() { |
| 5516 | VectorType indVType = getIndexVectorType(); |
| 5517 | VectorType maskVType = getMaskVectorType(); |
| 5518 | VectorType valueVType = getVectorType(); |
| 5519 | MemRefType memType = getMemRefType(); |
| 5520 | |
| 5521 | if (valueVType.getElementType() != memType.getElementType()) |
| 5522 | return emitOpError("base and valueToStore element type should match" ); |
| 5523 | if (llvm::size(getIndices()) != memType.getRank()) |
| 5524 | return emitOpError("requires " ) << memType.getRank() << " indices" ; |
| 5525 | if (valueVType.getShape() != indVType.getShape()) |
| 5526 | return emitOpError("expected valueToStore dim to match indices dim" ); |
| 5527 | if (valueVType.getShape() != maskVType.getShape()) |
| 5528 | return emitOpError("expected valueToStore dim to match mask dim" ); |
| 5529 | return success(); |
| 5530 | } |
| 5531 | |
| 5532 | namespace { |
| 5533 | class ScatterFolder final : public OpRewritePattern<ScatterOp> { |
| 5534 | public: |
| 5535 | using OpRewritePattern::OpRewritePattern; |
| 5536 | LogicalResult matchAndRewrite(ScatterOp scatter, |
| 5537 | PatternRewriter &rewriter) const override { |
| 5538 | switch (getMaskFormat(scatter.getMask())) { |
| 5539 | case MaskFormat::AllTrue: |
| 5540 | return failure(); // no unmasked equivalent |
| 5541 | case MaskFormat::AllFalse: |
| 5542 | rewriter.eraseOp(op: scatter); |
| 5543 | return success(); |
| 5544 | case MaskFormat::Unknown: |
| 5545 | return failure(); |
| 5546 | } |
| 5547 | llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder" ); |
| 5548 | } |
| 5549 | }; |
| 5550 | |
| 5551 | /// Fold scatters with consecutive offsets [0, 1, 2, ...] into contiguous |
| 5552 | /// maskedstore. Only 1D fixed vectors are supported for now. |
| 5553 | class FoldContiguousScatter final : public OpRewritePattern<ScatterOp> { |
| 5554 | public: |
| 5555 | using OpRewritePattern::OpRewritePattern; |
| 5556 | LogicalResult matchAndRewrite(ScatterOp op, |
| 5557 | PatternRewriter &rewriter) const override { |
| 5558 | if (failed(isZeroBasedContiguousSeq(op.getIndexVec()))) |
| 5559 | return failure(); |
| 5560 | |
| 5561 | rewriter.replaceOpWithNewOp<MaskedStoreOp>( |
| 5562 | op, op.getBase(), op.getIndices(), op.getMask(), op.getValueToStore()); |
| 5563 | return success(); |
| 5564 | } |
| 5565 | }; |
| 5566 | } // namespace |
| 5567 | |
| 5568 | void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 5569 | MLIRContext *context) { |
| 5570 | results.add<ScatterFolder, FoldContiguousScatter>(context); |
| 5571 | } |
| 5572 | |
| 5573 | //===----------------------------------------------------------------------===// |
| 5574 | // ExpandLoadOp |
| 5575 | //===----------------------------------------------------------------------===// |
| 5576 | |
| 5577 | LogicalResult ExpandLoadOp::verify() { |
| 5578 | VectorType maskVType = getMaskVectorType(); |
| 5579 | VectorType passVType = getPassThruVectorType(); |
| 5580 | VectorType resVType = getVectorType(); |
| 5581 | MemRefType memType = getMemRefType(); |
| 5582 | |
| 5583 | if (resVType.getElementType() != memType.getElementType()) |
| 5584 | return emitOpError("base and result element type should match" ); |
| 5585 | if (llvm::size(getIndices()) != memType.getRank()) |
| 5586 | return emitOpError("requires " ) << memType.getRank() << " indices" ; |
| 5587 | if (resVType.getDimSize(0) != maskVType.getDimSize(0)) |
| 5588 | return emitOpError("expected result dim to match mask dim" ); |
| 5589 | if (resVType != passVType) |
| 5590 | return emitOpError("expected pass_thru of same type as result type" ); |
| 5591 | return success(); |
| 5592 | } |
| 5593 | |
| 5594 | namespace { |
| 5595 | class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { |
| 5596 | public: |
| 5597 | using OpRewritePattern::OpRewritePattern; |
| 5598 | LogicalResult matchAndRewrite(ExpandLoadOp expand, |
| 5599 | PatternRewriter &rewriter) const override { |
| 5600 | switch (getMaskFormat(expand.getMask())) { |
| 5601 | case MaskFormat::AllTrue: |
| 5602 | rewriter.replaceOpWithNewOp<vector::LoadOp>( |
| 5603 | expand, expand.getType(), expand.getBase(), expand.getIndices()); |
| 5604 | return success(); |
| 5605 | case MaskFormat::AllFalse: |
| 5606 | rewriter.replaceOp(expand, expand.getPassThru()); |
| 5607 | return success(); |
| 5608 | case MaskFormat::Unknown: |
| 5609 | return failure(); |
| 5610 | } |
| 5611 | llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder" ); |
| 5612 | } |
| 5613 | }; |
| 5614 | } // namespace |
| 5615 | |
| 5616 | void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 5617 | MLIRContext *context) { |
| 5618 | results.add<ExpandLoadFolder>(context); |
| 5619 | } |
| 5620 | |
| 5621 | //===----------------------------------------------------------------------===// |
| 5622 | // CompressStoreOp |
| 5623 | //===----------------------------------------------------------------------===// |
| 5624 | |
| 5625 | LogicalResult CompressStoreOp::verify() { |
| 5626 | VectorType maskVType = getMaskVectorType(); |
| 5627 | VectorType valueVType = getVectorType(); |
| 5628 | MemRefType memType = getMemRefType(); |
| 5629 | |
| 5630 | if (valueVType.getElementType() != memType.getElementType()) |
| 5631 | return emitOpError("base and valueToStore element type should match" ); |
| 5632 | if (llvm::size(getIndices()) != memType.getRank()) |
| 5633 | return emitOpError("requires " ) << memType.getRank() << " indices" ; |
| 5634 | if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) |
| 5635 | return emitOpError("expected valueToStore dim to match mask dim" ); |
| 5636 | return success(); |
| 5637 | } |
| 5638 | |
| 5639 | namespace { |
| 5640 | class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { |
| 5641 | public: |
| 5642 | using OpRewritePattern::OpRewritePattern; |
| 5643 | LogicalResult matchAndRewrite(CompressStoreOp compress, |
| 5644 | PatternRewriter &rewriter) const override { |
| 5645 | switch (getMaskFormat(compress.getMask())) { |
| 5646 | case MaskFormat::AllTrue: |
| 5647 | rewriter.replaceOpWithNewOp<vector::StoreOp>( |
| 5648 | compress, compress.getValueToStore(), compress.getBase(), |
| 5649 | compress.getIndices()); |
| 5650 | return success(); |
| 5651 | case MaskFormat::AllFalse: |
| 5652 | rewriter.eraseOp(op: compress); |
| 5653 | return success(); |
| 5654 | case MaskFormat::Unknown: |
| 5655 | return failure(); |
| 5656 | } |
| 5657 | llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder" ); |
| 5658 | } |
| 5659 | }; |
| 5660 | } // namespace |
| 5661 | |
| 5662 | void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 5663 | MLIRContext *context) { |
| 5664 | results.add<CompressStoreFolder>(context); |
| 5665 | } |
| 5666 | |
| 5667 | //===----------------------------------------------------------------------===// |
| 5668 | // ShapeCastOp |
| 5669 | //===----------------------------------------------------------------------===// |
| 5670 | |
| 5671 | void ShapeCastOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges, |
| 5672 | SetIntRangeFn setResultRanges) { |
| 5673 | setResultRanges(getResult(), argRanges.front()); |
| 5674 | } |
| 5675 | |
| 5676 | LogicalResult ShapeCastOp::verify() { |
| 5677 | |
| 5678 | VectorType sourceType = getSourceVectorType(); |
| 5679 | VectorType resultType = getResultVectorType(); |
| 5680 | |
| 5681 | // Check that element type is preserved |
| 5682 | if (sourceType.getElementType() != resultType.getElementType()) |
| 5683 | return emitOpError("has different source and result element types" ); |
| 5684 | |
| 5685 | // Check that number of elements is preserved |
| 5686 | int64_t sourceNElms = sourceType.getNumElements(); |
| 5687 | int64_t resultNElms = resultType.getNumElements(); |
| 5688 | if (sourceNElms != resultNElms) { |
| 5689 | return emitOpError() << "has different number of elements at source (" |
| 5690 | << sourceNElms << ") and result (" << resultNElms |
| 5691 | << ")" ; |
| 5692 | } |
| 5693 | |
| 5694 | // Check that (non-)scalability is preserved |
| 5695 | int64_t sourceNScalableDims = sourceType.getNumScalableDims(); |
| 5696 | int64_t resultNScalableDims = resultType.getNumScalableDims(); |
| 5697 | if (sourceNScalableDims != resultNScalableDims) |
| 5698 | return emitOpError() << "has different number of scalable dims at source (" |
| 5699 | << sourceNScalableDims << ") and result (" |
| 5700 | << resultNScalableDims << ")" ; |
| 5701 | |
| 5702 | return success(); |
| 5703 | } |
| 5704 | |
| 5705 | /// Return true if `transpose` does not permute a pair of non-unit dims. |
| 5706 | /// By `order preserving` we mean that the flattened versions of the input and |
| 5707 | /// output vectors are (numerically) identical. In other words `transpose` is |
| 5708 | /// effectively a shape cast. |
| 5709 | static bool isOrderPreserving(TransposeOp transpose) { |
| 5710 | ArrayRef<int64_t> permutation = transpose.getPermutation(); |
| 5711 | VectorType sourceType = transpose.getSourceVectorType(); |
| 5712 | ArrayRef<int64_t> inShape = sourceType.getShape(); |
| 5713 | ArrayRef<bool> inDimIsScalable = sourceType.getScalableDims(); |
| 5714 | auto isNonScalableUnitDim = [&](int64_t dim) { |
| 5715 | return inShape[dim] == 1 && !inDimIsScalable[dim]; |
| 5716 | }; |
| 5717 | int64_t current = 0; |
| 5718 | for (auto p : permutation) { |
| 5719 | if (!isNonScalableUnitDim(p)) { |
| 5720 | if (p < current) { |
| 5721 | return false; |
| 5722 | } |
| 5723 | current = p; |
| 5724 | } |
| 5725 | } |
| 5726 | return true; |
| 5727 | } |
| 5728 | |
| 5729 | OpFoldResult ShapeCastOp::fold(FoldAdaptor adaptor) { |
| 5730 | |
| 5731 | VectorType resultType = getType(); |
| 5732 | |
| 5733 | // No-op shape cast. |
| 5734 | if (getSource().getType() == resultType) |
| 5735 | return getSource(); |
| 5736 | |
| 5737 | // shape_cast(shape_cast(x)) -> shape_cast(x) |
| 5738 | if (auto precedingShapeCast = getSource().getDefiningOp<ShapeCastOp>()) { |
| 5739 | setOperand(precedingShapeCast.getSource()); |
| 5740 | return getResult(); |
| 5741 | } |
| 5742 | |
| 5743 | // shape_cast(transpose(x)) -> shape_cast(x) |
| 5744 | if (auto transpose = getSource().getDefiningOp<TransposeOp>()) { |
| 5745 | // This folder does |
| 5746 | // shape_cast(transpose) -> shape_cast |
| 5747 | // But another pattern, ConvertIllegalShapeCastOpsToTransposes, does |
| 5748 | // shape_cast -> shape_cast(transpose) |
| 5749 | // i.e. the complete opposite. When paired, these 2 patterns can cause |
| 5750 | // infinite cycles in pattern rewriting. |
| 5751 | // ConvertIllegalShapeCastOpsToTransposes only matches on scalable |
| 5752 | // vectors, so by disabling this folder for scalable vectors the |
| 5753 | // cycle is avoided. |
| 5754 | // TODO: Check if ConvertIllegalShapeCastOpsToTransposes is |
| 5755 | // still needed. If it's not, then we can fold here. |
| 5756 | if (!transpose.getType().isScalable() && isOrderPreserving(transpose)) { |
| 5757 | setOperand(transpose.getVector()); |
| 5758 | return getResult(); |
| 5759 | } |
| 5760 | return {}; |
| 5761 | } |
| 5762 | |
| 5763 | // Y = shape_cast(broadcast(X)) |
| 5764 | // -> X, if X and Y have same type |
| 5765 | if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) { |
| 5766 | if (bcastOp.getSourceType() == resultType) |
| 5767 | return bcastOp.getSource(); |
| 5768 | } |
| 5769 | |
| 5770 | // shape_cast(constant) -> constant |
| 5771 | if (auto splatAttr = |
| 5772 | llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getSource())) |
| 5773 | return splatAttr.reshape(getType()); |
| 5774 | |
| 5775 | // shape_cast(poison) -> poison |
| 5776 | if (llvm::dyn_cast_if_present<ub::PoisonAttr>(adaptor.getSource())) { |
| 5777 | return ub::PoisonAttr::get(getContext()); |
| 5778 | } |
| 5779 | |
| 5780 | return {}; |
| 5781 | } |
| 5782 | |
| 5783 | namespace { |
| 5784 | |
| 5785 | /// Helper function that computes a new vector type based on the input vector |
| 5786 | /// type by removing the trailing one dims: |
| 5787 | /// |
| 5788 | /// vector<4x1x1xi1> --> vector<4x1xi1> |
| 5789 | /// |
| 5790 | static VectorType trimTrailingOneDims(VectorType oldType) { |
| 5791 | ArrayRef<int64_t> oldShape = oldType.getShape(); |
| 5792 | ArrayRef<int64_t> newShape = oldShape; |
| 5793 | |
| 5794 | ArrayRef<bool> oldScalableDims = oldType.getScalableDims(); |
| 5795 | ArrayRef<bool> newScalableDims = oldScalableDims; |
| 5796 | |
| 5797 | while (!newShape.empty() && newShape.back() == 1 && !newScalableDims.back()) { |
| 5798 | newShape = newShape.drop_back(N: 1); |
| 5799 | newScalableDims = newScalableDims.drop_back(N: 1); |
| 5800 | } |
| 5801 | |
| 5802 | // Make sure we have at least 1 dimension. |
| 5803 | // TODO: Add support for 0-D vectors. |
| 5804 | if (newShape.empty()) { |
| 5805 | newShape = oldShape.take_back(); |
| 5806 | newScalableDims = oldScalableDims.take_back(); |
| 5807 | } |
| 5808 | |
| 5809 | return VectorType::get(newShape, oldType.getElementType(), newScalableDims); |
| 5810 | } |
| 5811 | |
| 5812 | /// Folds qualifying shape_cast(create_mask) into a new create_mask |
| 5813 | /// |
| 5814 | /// Looks at `vector.shape_cast` Ops that simply "drop" the trailing unit |
| 5815 | /// dimension. If the input vector comes from `vector.create_mask` for which |
| 5816 | /// the corresponding mask input value is 1 (e.g. `%c1` below), then it is safe |
| 5817 | /// to fold shape_cast into create_mask. |
| 5818 | /// |
| 5819 | /// BEFORE: |
| 5820 | /// %1 = vector.create_mask %c1, %dim, %c1, %c1 : vector<1x[4]x1x1xi1> |
| 5821 | /// %2 = vector.shape_cast %1 : vector<1x[4]x1x1xi1> to vector<1x[4]xi1> |
| 5822 | /// AFTER: |
| 5823 | /// %0 = vector.create_mask %c1, %dim : vector<1x[4]xi1> |
| 5824 | class ShapeCastCreateMaskFolderTrailingOneDim final |
| 5825 | : public OpRewritePattern<ShapeCastOp> { |
| 5826 | public: |
| 5827 | using OpRewritePattern::OpRewritePattern; |
| 5828 | |
| 5829 | LogicalResult matchAndRewrite(ShapeCastOp shapeOp, |
| 5830 | PatternRewriter &rewriter) const override { |
| 5831 | Value shapeOpSrc = shapeOp->getOperand(0); |
| 5832 | auto createMaskOp = shapeOpSrc.getDefiningOp<vector::CreateMaskOp>(); |
| 5833 | auto constantMaskOp = shapeOpSrc.getDefiningOp<vector::ConstantMaskOp>(); |
| 5834 | if (!createMaskOp && !constantMaskOp) |
| 5835 | return failure(); |
| 5836 | |
| 5837 | VectorType shapeOpResTy = shapeOp.getResultVectorType(); |
| 5838 | VectorType shapeOpSrcTy = shapeOp.getSourceVectorType(); |
| 5839 | |
| 5840 | VectorType newVecType = trimTrailingOneDims(shapeOpSrcTy); |
| 5841 | if (newVecType != shapeOpResTy) |
| 5842 | return failure(); |
| 5843 | |
| 5844 | auto numDimsToDrop = |
| 5845 | shapeOpSrcTy.getShape().size() - shapeOpResTy.getShape().size(); |
| 5846 | |
| 5847 | // No unit dims to drop |
| 5848 | if (!numDimsToDrop) |
| 5849 | return failure(); |
| 5850 | |
| 5851 | if (createMaskOp) { |
| 5852 | auto maskOperands = createMaskOp.getOperands(); |
| 5853 | auto numMaskOperands = maskOperands.size(); |
| 5854 | |
| 5855 | // Check every mask dim size to see whether it can be dropped |
| 5856 | for (size_t i = numMaskOperands - 1; i >= numMaskOperands - numDimsToDrop; |
| 5857 | --i) { |
| 5858 | auto constant = maskOperands[i].getDefiningOp<arith::ConstantIndexOp>(); |
| 5859 | if (!constant || (constant.value() != 1)) |
| 5860 | return failure(); |
| 5861 | } |
| 5862 | SmallVector<Value> newMaskOperands = |
| 5863 | maskOperands.drop_back(numDimsToDrop); |
| 5864 | |
| 5865 | rewriter.replaceOpWithNewOp<vector::CreateMaskOp>(shapeOp, shapeOpResTy, |
| 5866 | newMaskOperands); |
| 5867 | return success(); |
| 5868 | } |
| 5869 | |
| 5870 | if (constantMaskOp) { |
| 5871 | auto maskDimSizes = constantMaskOp.getMaskDimSizes(); |
| 5872 | auto numMaskOperands = maskDimSizes.size(); |
| 5873 | |
| 5874 | // Check every mask dim size to see whether it can be dropped |
| 5875 | for (size_t i = numMaskOperands - 1; i >= numMaskOperands - numDimsToDrop; |
| 5876 | --i) { |
| 5877 | if (maskDimSizes[i] != 1) |
| 5878 | return failure(); |
| 5879 | } |
| 5880 | |
| 5881 | auto newMaskOperands = maskDimSizes.drop_back(numDimsToDrop); |
| 5882 | rewriter.replaceOpWithNewOp<vector::ConstantMaskOp>(shapeOp, shapeOpResTy, |
| 5883 | newMaskOperands); |
| 5884 | return success(); |
| 5885 | } |
| 5886 | |
| 5887 | return failure(); |
| 5888 | } |
| 5889 | }; |
| 5890 | |
| 5891 | /// Pattern to rewrite Y = ShapeCast(Broadcast(X)) as either |
| 5892 | /// i) Y = ShapeCast(X), or |
| 5893 | /// ii) Y = Broadcast(X) |
| 5894 | /// If both (i) and (ii) are possible, (i) is chosen. |
| 5895 | class ShapeCastBroadcastFolder final : public OpRewritePattern<ShapeCastOp> { |
| 5896 | public: |
| 5897 | using OpRewritePattern::OpRewritePattern; |
| 5898 | |
| 5899 | LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, |
| 5900 | PatternRewriter &rewriter) const override { |
| 5901 | auto broadcastOp = |
| 5902 | shapeCastOp.getSource().getDefiningOp<vector::BroadcastOp>(); |
| 5903 | if (!broadcastOp) |
| 5904 | return failure(); |
| 5905 | |
| 5906 | auto srcVectorType = dyn_cast<VectorType>(broadcastOp.getSourceType()); |
| 5907 | bool srcIsScalar = !srcVectorType; |
| 5908 | |
| 5909 | // Replace Y = ShapeCast(Broadcast(X)) with Y = ShapeCast(X). |
| 5910 | // Example: |
| 5911 | // %0 = vector.broadcast %in : vector<3x4xf32> to vector<1x3x4xf32> |
| 5912 | // %1 = vector.shape_cast %0 : vector<1x3x4xf32> to vector<12xf32> |
| 5913 | // to |
| 5914 | // %1 = vector.shape_cast %in : vector<3x4xf32> to vector<12xf32> |
| 5915 | if (srcVectorType) { |
| 5916 | if (srcVectorType.getNumElements() == |
| 5917 | shapeCastOp.getResultVectorType().getNumElements()) { |
| 5918 | rewriter.replaceOpWithNewOp<vector::ShapeCastOp>( |
| 5919 | shapeCastOp, shapeCastOp.getResultVectorType(), |
| 5920 | broadcastOp.getSource()); |
| 5921 | return success(); |
| 5922 | } |
| 5923 | } |
| 5924 | |
| 5925 | // Replace Y = ShapeCast(Broadcast(X)) with Y = Broadcast(X) |
| 5926 | // Example |
| 5927 | // %0 = vector.broadcast %in : vector<3xf32> to vector<2x4x3xf32> |
| 5928 | // %1 = vector.shape_cast %0 : vector<2x4x3xf32> to vector<8x3xf32> |
| 5929 | // to |
| 5930 | // %1 = vector.broadcast %in : vector<3xf32> to vector<8x3xf32> |
| 5931 | VectorType dstVectorType = shapeCastOp.getResultVectorType(); |
| 5932 | if (srcIsScalar || isBroadcastableTo(srcVectorType, dstVectorType) == |
| 5933 | BroadcastableToResult::Success) { |
| 5934 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>( |
| 5935 | shapeCastOp, dstVectorType, broadcastOp.getSource()); |
| 5936 | return success(); |
| 5937 | } |
| 5938 | return failure(); |
| 5939 | } |
| 5940 | }; |
| 5941 | |
| 5942 | } // namespace |
| 5943 | |
| 5944 | void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 5945 | MLIRContext *context) { |
| 5946 | results |
| 5947 | .add<ShapeCastCreateMaskFolderTrailingOneDim, ShapeCastBroadcastFolder>( |
| 5948 | context); |
| 5949 | } |
| 5950 | |
| 5951 | //===----------------------------------------------------------------------===// |
| 5952 | // VectorBitCastOp |
| 5953 | //===----------------------------------------------------------------------===// |
| 5954 | |
| 5955 | LogicalResult BitCastOp::verify() { |
| 5956 | auto sourceVectorType = getSourceVectorType(); |
| 5957 | auto resultVectorType = getResultVectorType(); |
| 5958 | |
| 5959 | for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { |
| 5960 | if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) |
| 5961 | return emitOpError("dimension size mismatch at: " ) << i; |
| 5962 | } |
| 5963 | |
| 5964 | DataLayout dataLayout = DataLayout::closest(*this); |
| 5965 | auto sourceElementBits = |
| 5966 | dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); |
| 5967 | auto resultElementBits = |
| 5968 | dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); |
| 5969 | |
| 5970 | if (sourceVectorType.getRank() == 0) { |
| 5971 | if (sourceElementBits != resultElementBits) |
| 5972 | return emitOpError("source/result bitwidth of the 0-D vector element " |
| 5973 | "types must be equal" ); |
| 5974 | } else if (sourceElementBits * sourceVectorType.getShape().back() != |
| 5975 | resultElementBits * resultVectorType.getShape().back()) { |
| 5976 | return emitOpError( |
| 5977 | "source/result bitwidth of the minor 1-D vectors must be equal" ); |
| 5978 | } |
| 5979 | |
| 5980 | return success(); |
| 5981 | } |
| 5982 | |
| 5983 | OpFoldResult BitCastOp::fold(FoldAdaptor adaptor) { |
| 5984 | // Nop cast. |
| 5985 | if (getSource().getType() == getResult().getType()) |
| 5986 | return getSource(); |
| 5987 | |
| 5988 | // Canceling bitcasts. |
| 5989 | if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) { |
| 5990 | if (getResult().getType() == otherOp.getSource().getType()) |
| 5991 | return otherOp.getSource(); |
| 5992 | |
| 5993 | setOperand(otherOp.getSource()); |
| 5994 | return getResult(); |
| 5995 | } |
| 5996 | |
| 5997 | Attribute sourceConstant = adaptor.getSource(); |
| 5998 | if (!sourceConstant) |
| 5999 | return {}; |
| 6000 | |
| 6001 | Type srcElemType = getSourceVectorType().getElementType(); |
| 6002 | Type dstElemType = getResultVectorType().getElementType(); |
| 6003 | |
| 6004 | if (auto floatPack = llvm::dyn_cast<DenseFPElementsAttr>(sourceConstant)) { |
| 6005 | if (floatPack.isSplat()) { |
| 6006 | auto splat = floatPack.getSplatValue<FloatAttr>(); |
| 6007 | |
| 6008 | // Casting fp16 into fp32. |
| 6009 | if (srcElemType.isF16() && dstElemType.isF32()) { |
| 6010 | uint32_t bits = static_cast<uint32_t>( |
| 6011 | splat.getValue().bitcastToAPInt().getZExtValue()); |
| 6012 | // Duplicate the 16-bit pattern. |
| 6013 | bits = (bits << 16) | (bits & 0xffff); |
| 6014 | APInt intBits(32, bits); |
| 6015 | APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); |
| 6016 | return DenseElementsAttr::get(getResultVectorType(), floatBits); |
| 6017 | } |
| 6018 | } |
| 6019 | } |
| 6020 | |
| 6021 | if (auto intPack = llvm::dyn_cast<DenseIntElementsAttr>(sourceConstant)) { |
| 6022 | if (intPack.isSplat()) { |
| 6023 | auto splat = intPack.getSplatValue<IntegerAttr>(); |
| 6024 | |
| 6025 | if (llvm::isa<IntegerType>(dstElemType)) { |
| 6026 | uint64_t srcBitWidth = srcElemType.getIntOrFloatBitWidth(); |
| 6027 | uint64_t dstBitWidth = dstElemType.getIntOrFloatBitWidth(); |
| 6028 | |
| 6029 | // Casting to a larger integer bit width. |
| 6030 | if (dstBitWidth > srcBitWidth && dstBitWidth % srcBitWidth == 0) { |
| 6031 | APInt intBits = splat.getValue().zext(dstBitWidth); |
| 6032 | |
| 6033 | // Duplicate the lower width element. |
| 6034 | for (uint64_t i = 0; i < dstBitWidth / srcBitWidth - 1; i++) |
| 6035 | intBits = (intBits << srcBitWidth) | intBits; |
| 6036 | return DenseElementsAttr::get(getResultVectorType(), intBits); |
| 6037 | } |
| 6038 | } |
| 6039 | } |
| 6040 | } |
| 6041 | |
| 6042 | return {}; |
| 6043 | } |
| 6044 | |
| 6045 | //===----------------------------------------------------------------------===// |
| 6046 | // TypeCastOp |
| 6047 | //===----------------------------------------------------------------------===// |
| 6048 | |
| 6049 | static SmallVector<int64_t, 8> (MemRefType memRefType) { |
| 6050 | auto vectorType = llvm::dyn_cast<VectorType>(memRefType.getElementType()); |
| 6051 | SmallVector<int64_t, 8> res(memRefType.getShape()); |
| 6052 | if (vectorType) |
| 6053 | res.append(vectorType.getShape().begin(), vectorType.getShape().end()); |
| 6054 | return res; |
| 6055 | } |
| 6056 | |
| 6057 | /// Build the canonical memRefType with a single vector. |
| 6058 | /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. |
| 6059 | void TypeCastOp::build(OpBuilder &builder, OperationState &result, |
| 6060 | Value source) { |
| 6061 | result.addOperands(source); |
| 6062 | MemRefType memRefType = llvm::cast<MemRefType>(source.getType()); |
| 6063 | VectorType vectorType = |
| 6064 | VectorType::get(extractShape(memRefType), |
| 6065 | getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); |
| 6066 | result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), |
| 6067 | memRefType.getMemorySpace())); |
| 6068 | } |
| 6069 | |
| 6070 | LogicalResult TypeCastOp::verify() { |
| 6071 | MemRefType canonicalType = getMemRefType().canonicalizeStridedLayout(); |
| 6072 | if (!canonicalType.getLayout().isIdentity()) |
| 6073 | return emitOpError("expects operand to be a memref with identity layout" ); |
| 6074 | if (!getResultMemRefType().getLayout().isIdentity()) |
| 6075 | return emitOpError("expects result to be a memref with identity layout" ); |
| 6076 | if (getResultMemRefType().getMemorySpace() != |
| 6077 | getMemRefType().getMemorySpace()) |
| 6078 | return emitOpError("expects result in same memory space" ); |
| 6079 | |
| 6080 | auto sourceType = getMemRefType(); |
| 6081 | auto resultType = getResultMemRefType(); |
| 6082 | if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != |
| 6083 | getElementTypeOrSelf(getElementTypeOrSelf(resultType))) |
| 6084 | return emitOpError( |
| 6085 | "expects result and operand with same underlying scalar type: " ) |
| 6086 | << resultType; |
| 6087 | if (extractShape(sourceType) != extractShape(resultType)) |
| 6088 | return emitOpError( |
| 6089 | "expects concatenated result and operand shapes to be equal: " ) |
| 6090 | << resultType; |
| 6091 | return success(); |
| 6092 | } |
| 6093 | |
| 6094 | //===----------------------------------------------------------------------===// |
| 6095 | // TransposeOp |
| 6096 | //===----------------------------------------------------------------------===// |
| 6097 | |
| 6098 | void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, |
| 6099 | Value vector, ArrayRef<int64_t> permutation) { |
| 6100 | VectorType vt = llvm::cast<VectorType>(vector.getType()); |
| 6101 | SmallVector<int64_t, 4> transposedShape(vt.getRank()); |
| 6102 | SmallVector<bool, 4> transposedScalableDims(vt.getRank()); |
| 6103 | for (unsigned i = 0; i < permutation.size(); ++i) { |
| 6104 | transposedShape[i] = vt.getShape()[permutation[i]]; |
| 6105 | transposedScalableDims[i] = vt.getScalableDims()[permutation[i]]; |
| 6106 | } |
| 6107 | |
| 6108 | result.addOperands(vector); |
| 6109 | result.addTypes(VectorType::get(transposedShape, vt.getElementType(), |
| 6110 | transposedScalableDims)); |
| 6111 | result.addAttribute(TransposeOp::getPermutationAttrName(result.name), |
| 6112 | builder.getDenseI64ArrayAttr(permutation)); |
| 6113 | } |
| 6114 | |
| 6115 | OpFoldResult vector::TransposeOp::fold(FoldAdaptor adaptor) { |
| 6116 | // Eliminate splat constant transpose ops. |
| 6117 | if (auto splat = |
| 6118 | llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getVector())) |
| 6119 | return splat.reshape(getResultVectorType()); |
| 6120 | |
| 6121 | // Eliminate poison transpose ops. |
| 6122 | if (llvm::dyn_cast_if_present<ub::PoisonAttr>(adaptor.getVector())) |
| 6123 | return ub::PoisonAttr::get(getContext()); |
| 6124 | |
| 6125 | // Eliminate identity transposes, and more generally any transposes that |
| 6126 | // preserves the shape without permuting elements. |
| 6127 | // |
| 6128 | // Examples of what to fold: |
| 6129 | // %0 = vector.transpose %arg, [0, 1] : vector<1x1xi8> to vector<1x1xi8> |
| 6130 | // %0 = vector.transpose %arg, [0, 1] : vector<2x2xi8> to vector<2x2xi8> |
| 6131 | // %0 = vector.transpose %arg, [1, 0] : vector<1x1xi8> to vector<1x1xi8> |
| 6132 | // |
| 6133 | // Example of what NOT to fold: |
| 6134 | // %0 = vector.transpose %arg, [1, 0] : vector<2x2xi8> to vector<2x2xi8> |
| 6135 | // |
| 6136 | if (getSourceVectorType() == getResultVectorType() && |
| 6137 | isOrderPreserving(*this)) |
| 6138 | return getVector(); |
| 6139 | |
| 6140 | return {}; |
| 6141 | } |
| 6142 | |
| 6143 | LogicalResult vector::TransposeOp::verify() { |
| 6144 | VectorType vectorType = getSourceVectorType(); |
| 6145 | VectorType resultType = getResultVectorType(); |
| 6146 | int64_t rank = resultType.getRank(); |
| 6147 | if (vectorType.getRank() != rank) |
| 6148 | return emitOpError("vector result rank mismatch: " ) << rank; |
| 6149 | // Verify transposition array. |
| 6150 | ArrayRef<int64_t> perm = getPermutation(); |
| 6151 | int64_t size = perm.size(); |
| 6152 | if (rank != size) |
| 6153 | return emitOpError("transposition length mismatch: " ) << size; |
| 6154 | SmallVector<bool, 8> seen(rank, false); |
| 6155 | for (const auto &ta : llvm::enumerate(perm)) { |
| 6156 | if (ta.value() < 0 || ta.value() >= rank) |
| 6157 | return emitOpError("transposition index out of range: " ) << ta.value(); |
| 6158 | if (seen[ta.value()]) |
| 6159 | return emitOpError("duplicate position index: " ) << ta.value(); |
| 6160 | seen[ta.value()] = true; |
| 6161 | if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(ta.value())) |
| 6162 | return emitOpError("dimension size mismatch at: " ) << ta.value(); |
| 6163 | } |
| 6164 | return success(); |
| 6165 | } |
| 6166 | |
| 6167 | std::optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() { |
| 6168 | return llvm::to_vector<4>(getResultVectorType().getShape()); |
| 6169 | } |
| 6170 | |
| 6171 | namespace { |
| 6172 | |
| 6173 | // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. |
| 6174 | class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { |
| 6175 | public: |
| 6176 | using OpRewritePattern::OpRewritePattern; |
| 6177 | |
| 6178 | LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, |
| 6179 | PatternRewriter &rewriter) const override { |
| 6180 | // Composes two permutations: result[i] = permutation1[permutation2[i]]. |
| 6181 | auto composePermutations = [](ArrayRef<int64_t> permutation1, |
| 6182 | ArrayRef<int64_t> permutation2) { |
| 6183 | SmallVector<int64_t, 4> result; |
| 6184 | for (auto index : permutation2) |
| 6185 | result.push_back(Elt: permutation1[index]); |
| 6186 | return result; |
| 6187 | }; |
| 6188 | |
| 6189 | // Return if the input of 'transposeOp' is not defined by another transpose. |
| 6190 | vector::TransposeOp parentTransposeOp = |
| 6191 | transposeOp.getVector().getDefiningOp<vector::TransposeOp>(); |
| 6192 | if (!parentTransposeOp) |
| 6193 | return failure(); |
| 6194 | |
| 6195 | SmallVector<int64_t, 4> permutation = composePermutations( |
| 6196 | parentTransposeOp.getPermutation(), transposeOp.getPermutation()); |
| 6197 | // Replace 'transposeOp' with a new transpose operation. |
| 6198 | rewriter.replaceOpWithNewOp<vector::TransposeOp>( |
| 6199 | transposeOp, transposeOp.getResult().getType(), |
| 6200 | parentTransposeOp.getVector(), permutation); |
| 6201 | return success(); |
| 6202 | } |
| 6203 | }; |
| 6204 | |
| 6205 | // Folds transpose(splat x : src_type) : res_type into splat x : res_type. |
| 6206 | class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> { |
| 6207 | public: |
| 6208 | using OpRewritePattern::OpRewritePattern; |
| 6209 | |
| 6210 | LogicalResult matchAndRewrite(TransposeOp transposeOp, |
| 6211 | PatternRewriter &rewriter) const override { |
| 6212 | auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>(); |
| 6213 | if (!splatOp) |
| 6214 | return failure(); |
| 6215 | |
| 6216 | rewriter.replaceOpWithNewOp<vector::SplatOp>( |
| 6217 | transposeOp, transposeOp.getResultVectorType(), splatOp.getInput()); |
| 6218 | return success(); |
| 6219 | } |
| 6220 | }; |
| 6221 | |
| 6222 | /// Folds transpose(create_mask) into a new transposed create_mask. |
| 6223 | class FoldTransposeCreateMask final : public OpRewritePattern<TransposeOp> { |
| 6224 | public: |
| 6225 | using OpRewritePattern::OpRewritePattern; |
| 6226 | |
| 6227 | LogicalResult matchAndRewrite(TransposeOp transpOp, |
| 6228 | PatternRewriter &rewriter) const override { |
| 6229 | Value transposeSrc = transpOp.getVector(); |
| 6230 | auto createMaskOp = transposeSrc.getDefiningOp<vector::CreateMaskOp>(); |
| 6231 | auto constantMaskOp = transposeSrc.getDefiningOp<vector::ConstantMaskOp>(); |
| 6232 | if (!createMaskOp && !constantMaskOp) |
| 6233 | return failure(); |
| 6234 | |
| 6235 | // Get the transpose permutation and apply it to the vector.create_mask or |
| 6236 | // vector.constant_mask operands. |
| 6237 | ArrayRef<int64_t> permutation = transpOp.getPermutation(); |
| 6238 | |
| 6239 | if (createMaskOp) { |
| 6240 | auto maskOperands = createMaskOp.getOperands(); |
| 6241 | SmallVector<Value> newOperands(maskOperands.begin(), maskOperands.end()); |
| 6242 | applyPermutationToVector(inVec&: newOperands, permutation); |
| 6243 | |
| 6244 | rewriter.replaceOpWithNewOp<vector::CreateMaskOp>( |
| 6245 | transpOp, transpOp.getResultVectorType(), newOperands); |
| 6246 | return success(); |
| 6247 | } |
| 6248 | |
| 6249 | // ConstantMaskOp case. |
| 6250 | auto maskDimSizes = constantMaskOp.getMaskDimSizes(); |
| 6251 | auto newMaskDimSizes = applyPermutation(maskDimSizes, permutation); |
| 6252 | |
| 6253 | rewriter.replaceOpWithNewOp<vector::ConstantMaskOp>( |
| 6254 | transpOp, transpOp.getResultVectorType(), newMaskDimSizes); |
| 6255 | return success(); |
| 6256 | } |
| 6257 | }; |
| 6258 | |
| 6259 | /// Folds transpose(shape_cast) into a new shape_cast. |
| 6260 | class FoldTransposeShapeCast final : public OpRewritePattern<TransposeOp> { |
| 6261 | public: |
| 6262 | using OpRewritePattern::OpRewritePattern; |
| 6263 | |
| 6264 | LogicalResult matchAndRewrite(TransposeOp transposeOp, |
| 6265 | PatternRewriter &rewriter) const override { |
| 6266 | auto shapeCastOp = |
| 6267 | transposeOp.getVector().getDefiningOp<vector::ShapeCastOp>(); |
| 6268 | if (!shapeCastOp) |
| 6269 | return failure(); |
| 6270 | if (!isOrderPreserving(transposeOp)) |
| 6271 | return failure(); |
| 6272 | |
| 6273 | VectorType resultType = transposeOp.getType(); |
| 6274 | |
| 6275 | // We don't need to check isValidShapeCast at this point, because it is |
| 6276 | // guaranteed that merging the transpose into the the shape_cast is a valid |
| 6277 | // shape_cast, because the transpose just inserts/removes ones. |
| 6278 | |
| 6279 | rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(transposeOp, resultType, |
| 6280 | shapeCastOp.getSource()); |
| 6281 | return success(); |
| 6282 | } |
| 6283 | }; |
| 6284 | |
| 6285 | /// Folds transpose(broadcast(x)) to broadcast(x) if the transpose is |
| 6286 | /// 'order preserving', where 'order preserving' means the flattened |
| 6287 | /// inputs and outputs of the transpose have identical (numerical) values. |
| 6288 | /// |
| 6289 | /// Example: |
| 6290 | /// ``` |
| 6291 | /// %0 = vector.broadcast %input : vector<1x1xi32> to vector<1x8xi32> |
| 6292 | /// %1 = vector.transpose %0, [1, 0] : vector<1x8xi32> |
| 6293 | /// to vector<8x1xi32> |
| 6294 | /// ``` |
| 6295 | /// can be rewritten as the equivalent |
| 6296 | /// ``` |
| 6297 | /// %0 = vector.broadcast %input : vector<1x1xi32> to vector<8x1xi32>. |
| 6298 | /// ``` |
| 6299 | /// The algorithm works by partitioning dimensions into groups that can be |
| 6300 | /// locally permuted while preserving order, and checks that the transpose |
| 6301 | /// only permutes within these groups. |
| 6302 | /// |
| 6303 | /// Groups are either contiguous sequences of 1s, or non-1s (1-element groups). |
| 6304 | /// Consider broadcasting 4x1x1x7 to 2x3x4x5x6x7. This is equivalent to |
| 6305 | /// broadcasting from 1x1x4x1x1x7. |
| 6306 | /// ^^^ ^ ^^^ ^ |
| 6307 | /// groups: 0 1 2 3 |
| 6308 | /// Order preserving permutations for this example are ones that only permute |
| 6309 | /// within the groups [0,1] and [3,4], like (1 0 2 4 3 5 6). |
| 6310 | class FoldTransposeBroadcast : public OpRewritePattern<vector::TransposeOp> { |
| 6311 | public: |
| 6312 | using OpRewritePattern::OpRewritePattern; |
| 6313 | FoldTransposeBroadcast(MLIRContext *context, PatternBenefit benefit = 1) |
| 6314 | : OpRewritePattern<vector::TransposeOp>(context, benefit) {} |
| 6315 | |
| 6316 | LogicalResult matchAndRewrite(vector::TransposeOp transpose, |
| 6317 | PatternRewriter &rewriter) const override { |
| 6318 | |
| 6319 | vector::BroadcastOp broadcast = |
| 6320 | transpose.getVector().getDefiningOp<vector::BroadcastOp>(); |
| 6321 | if (!broadcast) { |
| 6322 | return rewriter.notifyMatchFailure(transpose, |
| 6323 | "not preceded by a broadcast" ); |
| 6324 | } |
| 6325 | |
| 6326 | auto inputType = dyn_cast<VectorType>(broadcast.getSourceType()); |
| 6327 | VectorType outputType = transpose.getResultVectorType(); |
| 6328 | |
| 6329 | // transpose(broadcast(scalar)) -> broadcast(scalar) is always valid |
| 6330 | bool inputIsScalar = !inputType; |
| 6331 | if (inputIsScalar) { |
| 6332 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>(transpose, outputType, |
| 6333 | broadcast.getSource()); |
| 6334 | return success(); |
| 6335 | } |
| 6336 | |
| 6337 | ArrayRef<int64_t> permutation = transpose.getPermutation(); |
| 6338 | ArrayRef<int64_t> inputShape = inputType.getShape(); |
| 6339 | int64_t inputRank = inputType.getRank(); |
| 6340 | int64_t outputRank = transpose.getType().getRank(); |
| 6341 | int64_t deltaRank = outputRank - inputRank; |
| 6342 | |
| 6343 | int low = 0; |
| 6344 | for (int inputIndex = 0; inputIndex < inputRank; ++inputIndex) { |
| 6345 | bool notOne = inputShape[inputIndex] != 1; |
| 6346 | bool prevNotOne = (inputIndex != 0 && inputShape[inputIndex - 1] != 1); |
| 6347 | bool groupEndFound = notOne || prevNotOne; |
| 6348 | if (groupEndFound) { |
| 6349 | int high = inputIndex + deltaRank; |
| 6350 | // Return failure if not all permutation destinations for indices in |
| 6351 | // [low, high) are in [low, high), i.e. the permutation is not local to |
| 6352 | // the group. |
| 6353 | for (int i = low; i < high; ++i) { |
| 6354 | if (permutation[i] < low || permutation[i] >= high) { |
| 6355 | return rewriter.notifyMatchFailure( |
| 6356 | transpose, "permutation not local to group" ); |
| 6357 | } |
| 6358 | } |
| 6359 | low = high; |
| 6360 | } |
| 6361 | } |
| 6362 | |
| 6363 | // We don't need to check the final group [low, outputRank) because if it is |
| 6364 | // not locally bound, there must be a preceding group that already failed |
| 6365 | // the check (impossible to have just 1 non-locally bound group). |
| 6366 | |
| 6367 | // The preceding logic also ensures that at this point, the output of the |
| 6368 | // transpose is definitely broadcastable from the input shape, assert so: |
| 6369 | assert(vector::isBroadcastableTo(inputType, outputType) == |
| 6370 | vector::BroadcastableToResult::Success && |
| 6371 | "not broadcastable directly to transpose output" ); |
| 6372 | |
| 6373 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>(transpose, outputType, |
| 6374 | broadcast.getSource()); |
| 6375 | |
| 6376 | return success(); |
| 6377 | } |
| 6378 | }; |
| 6379 | |
| 6380 | } // namespace |
| 6381 | |
| 6382 | void vector::TransposeOp::getCanonicalizationPatterns( |
| 6383 | RewritePatternSet &results, MLIRContext *context) { |
| 6384 | results.add<FoldTransposeCreateMask, FoldTransposeShapeCast, TransposeFolder, |
| 6385 | FoldTransposeSplat, FoldTransposeBroadcast>(context); |
| 6386 | } |
| 6387 | |
| 6388 | //===----------------------------------------------------------------------===// |
| 6389 | // ConstantMaskOp |
| 6390 | //===----------------------------------------------------------------------===// |
| 6391 | |
| 6392 | void ConstantMaskOp::build(OpBuilder &builder, OperationState &result, |
| 6393 | VectorType type, ConstantMaskKind kind) { |
| 6394 | assert(kind == ConstantMaskKind::AllTrue || |
| 6395 | kind == ConstantMaskKind::AllFalse); |
| 6396 | build(builder, result, type, |
| 6397 | kind == ConstantMaskKind::AllTrue |
| 6398 | ? type.getShape() |
| 6399 | : SmallVector<int64_t>(type.getRank(), 0)); |
| 6400 | } |
| 6401 | |
| 6402 | LogicalResult ConstantMaskOp::verify() { |
| 6403 | auto resultType = llvm::cast<VectorType>(getResult().getType()); |
| 6404 | // Check the corner case of 0-D vectors first. |
| 6405 | if (resultType.getRank() == 0) { |
| 6406 | if (getMaskDimSizes().size() != 1) |
| 6407 | return emitError("array attr must have length 1 for 0-D vectors" ); |
| 6408 | auto dim = getMaskDimSizes()[0]; |
| 6409 | if (dim != 0 && dim != 1) |
| 6410 | return emitError("mask dim size must be either 0 or 1 for 0-D vectors" ); |
| 6411 | return success(); |
| 6412 | } |
| 6413 | |
| 6414 | // Verify that array attr size matches the rank of the vector result. |
| 6415 | if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank()) |
| 6416 | return emitOpError( |
| 6417 | "must specify array attr of size equal vector result rank" ); |
| 6418 | // Verify that each array attr element is in bounds of corresponding vector |
| 6419 | // result dimension size. |
| 6420 | auto resultShape = resultType.getShape(); |
| 6421 | auto resultScalableDims = resultType.getScalableDims(); |
| 6422 | ArrayRef<int64_t> maskDimSizes = getMaskDimSizes(); |
| 6423 | for (const auto [index, maskDimSize] : llvm::enumerate(maskDimSizes)) { |
| 6424 | if (maskDimSize < 0 || maskDimSize > resultShape[index]) |
| 6425 | return emitOpError( |
| 6426 | "array attr of size out of bounds of vector result dimension size" ); |
| 6427 | if (resultScalableDims[index] && maskDimSize != 0 && |
| 6428 | maskDimSize != resultShape[index]) |
| 6429 | return emitOpError( |
| 6430 | "only supports 'none set' or 'all set' scalable dimensions" ); |
| 6431 | } |
| 6432 | // Verify that if one mask dim size is zero, they all should be zero (because |
| 6433 | // the mask region is a conjunction of each mask dimension interval). |
| 6434 | bool anyZeros = llvm::is_contained(maskDimSizes, 0); |
| 6435 | bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); |
| 6436 | if (anyZeros && !allZeros) |
| 6437 | return emitOpError("expected all mask dim sizes to be zeros, " |
| 6438 | "as a result of conjunction with zero mask dim" ); |
| 6439 | return success(); |
| 6440 | } |
| 6441 | |
| 6442 | bool ConstantMaskOp::isAllOnesMask() { |
| 6443 | auto resultType = getVectorType(); |
| 6444 | // Check the corner case of 0-D vectors first. |
| 6445 | if (resultType.getRank() == 0) { |
| 6446 | assert(getMaskDimSizes().size() == 1 && "invalid sizes for zero rank mask" ); |
| 6447 | return getMaskDimSizes()[0] == 1; |
| 6448 | } |
| 6449 | for (const auto [resultSize, maskDimSize] : |
| 6450 | llvm::zip_equal(resultType.getShape(), getMaskDimSizes())) { |
| 6451 | if (maskDimSize < resultSize) |
| 6452 | return false; |
| 6453 | } |
| 6454 | return true; |
| 6455 | } |
| 6456 | |
| 6457 | //===----------------------------------------------------------------------===// |
| 6458 | // CreateMaskOp |
| 6459 | //===----------------------------------------------------------------------===// |
| 6460 | |
| 6461 | void CreateMaskOp::build(OpBuilder &builder, OperationState &result, |
| 6462 | VectorType type, |
| 6463 | ArrayRef<OpFoldResult> mixedOperands) { |
| 6464 | SmallVector<Value> operands = |
| 6465 | getValueOrCreateConstantIndexOp(builder, result.location, mixedOperands); |
| 6466 | build(builder, result, type, operands); |
| 6467 | } |
| 6468 | |
| 6469 | LogicalResult CreateMaskOp::verify() { |
| 6470 | auto vectorType = llvm::cast<VectorType>(getResult().getType()); |
| 6471 | // Verify that an operand was specified for each result vector each dimension. |
| 6472 | if (vectorType.getRank() == 0) { |
| 6473 | if (getNumOperands() != 1) |
| 6474 | return emitOpError( |
| 6475 | "must specify exactly one operand for 0-D create_mask" ); |
| 6476 | } else if (getNumOperands() != |
| 6477 | llvm::cast<VectorType>(getResult().getType()).getRank()) { |
| 6478 | return emitOpError( |
| 6479 | "must specify an operand for each result vector dimension" ); |
| 6480 | } |
| 6481 | return success(); |
| 6482 | } |
| 6483 | |
| 6484 | namespace { |
| 6485 | |
| 6486 | /// Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. |
| 6487 | /// |
| 6488 | /// Ex 1: |
| 6489 | /// %c2 = arith.constant 2 : index |
| 6490 | /// %c3 = arith.constant 3 : index |
| 6491 | /// %0 = vector.create_mask %c3, %c2 : vector<4x3xi1> |
| 6492 | /// Becomes: |
| 6493 | /// vector.constant_mask [3, 2] : vector<4x3xi1> |
| 6494 | /// |
| 6495 | /// Ex 2: |
| 6496 | /// %c_neg_1 = arith.constant -1 : index |
| 6497 | /// %0 = vector.create_mask %c_neg_1 : vector<[8]xi1> |
| 6498 | /// becomes: |
| 6499 | /// vector.constant_mask [0] : vector<[8]xi1> |
| 6500 | /// |
| 6501 | /// Ex 3: |
| 6502 | /// %c8 = arith.constant 8 : index |
| 6503 | /// %c16 = arith.constant 16 : index |
| 6504 | /// %0 = vector.vscale |
| 6505 | /// %1 = arith.muli %0, %c16 : index |
| 6506 | /// %10 = vector.create_mask %c8, %1 : vector<8x[16]xi1> |
| 6507 | /// becomes: |
| 6508 | /// %0 = vector.constant_mask [8, 16] : vector<8x[16]xi1> |
| 6509 | class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { |
| 6510 | public: |
| 6511 | using OpRewritePattern::OpRewritePattern; |
| 6512 | |
| 6513 | LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, |
| 6514 | PatternRewriter &rewriter) const override { |
| 6515 | VectorType maskType = createMaskOp.getVectorType(); |
| 6516 | ArrayRef<int64_t> maskTypeDimSizes = maskType.getShape(); |
| 6517 | ArrayRef<bool> maskTypeDimScalableFlags = maskType.getScalableDims(); |
| 6518 | |
| 6519 | // Special case: Rank zero shape. |
| 6520 | constexpr std::array<int64_t, 1> rankZeroShape{1}; |
| 6521 | constexpr std::array<bool, 1> rankZeroScalableDims{false}; |
| 6522 | if (maskType.getRank() == 0) { |
| 6523 | maskTypeDimSizes = rankZeroShape; |
| 6524 | maskTypeDimScalableFlags = rankZeroScalableDims; |
| 6525 | } |
| 6526 | |
| 6527 | // Determine if this CreateMaskOp can be folded to a ConstantMaskOp and |
| 6528 | // collect the `constantDims` (for the ConstantMaskOp). |
| 6529 | SmallVector<int64_t, 4> constantDims; |
| 6530 | for (auto [i, dimSize] : llvm::enumerate(createMaskOp.getOperands())) { |
| 6531 | if (auto intSize = getConstantIntValue(dimSize)) { |
| 6532 | // Constant value. |
| 6533 | // If the mask dim is non-scalable this can be any value. |
| 6534 | // If the mask dim is scalable only zero (all-false) is supported. |
| 6535 | if (maskTypeDimScalableFlags[i] && intSize >= 0) |
| 6536 | return failure(); |
| 6537 | constantDims.push_back(*intSize); |
| 6538 | } else if (auto vscaleMultiplier = getConstantVscaleMultiplier(dimSize)) { |
| 6539 | // Constant vscale multiple (e.g. 4 x vscale). |
| 6540 | // Must be all-true to fold to a ConstantMask. |
| 6541 | if (vscaleMultiplier < maskTypeDimSizes[i]) |
| 6542 | return failure(); |
| 6543 | constantDims.push_back(*vscaleMultiplier); |
| 6544 | } else { |
| 6545 | return failure(); |
| 6546 | } |
| 6547 | } |
| 6548 | |
| 6549 | // Clamp values to constant_mask bounds. |
| 6550 | for (auto [value, maskDimSize] : llvm::zip(constantDims, maskTypeDimSizes)) |
| 6551 | value = std::clamp<int64_t>(value, 0, maskDimSize); |
| 6552 | |
| 6553 | // If one of dim sizes is zero, set all dims to zero. |
| 6554 | if (llvm::is_contained(Range&: constantDims, Element: 0)) |
| 6555 | constantDims.assign(NumElts: constantDims.size(), Elt: 0); |
| 6556 | |
| 6557 | // Replace 'createMaskOp' with ConstantMaskOp. |
| 6558 | rewriter.replaceOpWithNewOp<ConstantMaskOp>(createMaskOp, maskType, |
| 6559 | constantDims); |
| 6560 | return success(); |
| 6561 | } |
| 6562 | }; |
| 6563 | |
| 6564 | } // namespace |
| 6565 | |
| 6566 | void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 6567 | MLIRContext *context) { |
| 6568 | results.add<CreateMaskFolder>(context); |
| 6569 | } |
| 6570 | |
| 6571 | //===----------------------------------------------------------------------===// |
| 6572 | // MaskOp |
| 6573 | //===----------------------------------------------------------------------===// |
| 6574 | |
| 6575 | void MaskOp::build( |
| 6576 | OpBuilder &builder, OperationState &result, Value mask, |
| 6577 | Operation *maskableOp, |
| 6578 | function_ref<void(OpBuilder &, Operation *)> maskRegionBuilder) { |
| 6579 | assert(maskRegionBuilder && |
| 6580 | "builder callback for 'maskRegion' must be present" ); |
| 6581 | |
| 6582 | result.addOperands(mask); |
| 6583 | OpBuilder::InsertionGuard guard(builder); |
| 6584 | Region *maskRegion = result.addRegion(); |
| 6585 | builder.createBlock(maskRegion); |
| 6586 | maskRegionBuilder(builder, maskableOp); |
| 6587 | } |
| 6588 | |
| 6589 | void MaskOp::build( |
| 6590 | OpBuilder &builder, OperationState &result, TypeRange resultTypes, |
| 6591 | Value mask, Operation *maskableOp, |
| 6592 | function_ref<void(OpBuilder &, Operation *)> maskRegionBuilder) { |
| 6593 | build(builder, result, resultTypes, mask, /*passthru=*/Value(), maskableOp, |
| 6594 | maskRegionBuilder); |
| 6595 | } |
| 6596 | |
| 6597 | void MaskOp::build( |
| 6598 | OpBuilder &builder, OperationState &result, TypeRange resultTypes, |
| 6599 | Value mask, Value passthru, Operation *maskableOp, |
| 6600 | function_ref<void(OpBuilder &, Operation *)> maskRegionBuilder) { |
| 6601 | build(builder, result, mask, maskableOp, maskRegionBuilder); |
| 6602 | if (passthru) |
| 6603 | result.addOperands(passthru); |
| 6604 | result.addTypes(resultTypes); |
| 6605 | } |
| 6606 | |
| 6607 | ParseResult MaskOp::parse(OpAsmParser &parser, OperationState &result) { |
| 6608 | // Create the op region. |
| 6609 | result.regions.reserve(1); |
| 6610 | Region &maskRegion = *result.addRegion(); |
| 6611 | |
| 6612 | auto &builder = parser.getBuilder(); |
| 6613 | |
| 6614 | // Parse all the operands. |
| 6615 | OpAsmParser::UnresolvedOperand mask; |
| 6616 | if (parser.parseOperand(mask)) |
| 6617 | return failure(); |
| 6618 | |
| 6619 | // Optional passthru operand. |
| 6620 | OpAsmParser::UnresolvedOperand passthru; |
| 6621 | ParseResult parsePassthru = parser.parseOptionalComma(); |
| 6622 | if (parsePassthru.succeeded() && parser.parseOperand(passthru)) |
| 6623 | return failure(); |
| 6624 | |
| 6625 | // Parse op region. |
| 6626 | if (parser.parseRegion(maskRegion, /*arguments=*/{}, /*argTypes=*/{})) |
| 6627 | return failure(); |
| 6628 | |
| 6629 | MaskOp::ensureTerminator(maskRegion, builder, result.location); |
| 6630 | |
| 6631 | // Parse the optional attribute list. |
| 6632 | if (parser.parseOptionalAttrDict(result.attributes)) |
| 6633 | return failure(); |
| 6634 | |
| 6635 | // Parse all the types. |
| 6636 | Type maskType; |
| 6637 | if (parser.parseColonType(maskType)) |
| 6638 | return failure(); |
| 6639 | |
| 6640 | SmallVector<Type> resultTypes; |
| 6641 | if (parser.parseOptionalArrowTypeList(resultTypes)) |
| 6642 | return failure(); |
| 6643 | result.types.append(resultTypes); |
| 6644 | |
| 6645 | // Resolve operands. |
| 6646 | if (parser.resolveOperand(mask, maskType, result.operands)) |
| 6647 | return failure(); |
| 6648 | |
| 6649 | if (parsePassthru.succeeded()) { |
| 6650 | if (resultTypes.empty()) |
| 6651 | return parser.emitError( |
| 6652 | parser.getNameLoc(), |
| 6653 | "expects a result if passthru operand is provided" ); |
| 6654 | |
| 6655 | if (parser.resolveOperand(passthru, resultTypes[0], result.operands)) |
| 6656 | return failure(); |
| 6657 | } |
| 6658 | |
| 6659 | return success(); |
| 6660 | } |
| 6661 | |
| 6662 | void mlir::vector::MaskOp::print(OpAsmPrinter &p) { |
| 6663 | p << " " << getMask(); |
| 6664 | if (getPassthru()) |
| 6665 | p << ", " << getPassthru(); |
| 6666 | |
| 6667 | // Print single masked operation and skip terminator. |
| 6668 | p << " { " ; |
| 6669 | Block *singleBlock = &getMaskRegion().getBlocks().front(); |
| 6670 | if (singleBlock && !singleBlock->getOperations().empty()) |
| 6671 | p.printCustomOrGenericOp(&singleBlock->front()); |
| 6672 | p << " }" ; |
| 6673 | |
| 6674 | p.printOptionalAttrDict(getOperation()->getAttrs()); |
| 6675 | |
| 6676 | p << " : " << getMask().getType(); |
| 6677 | if (getNumResults() > 0) |
| 6678 | p << " -> " << getResultTypes(); |
| 6679 | } |
| 6680 | |
| 6681 | void MaskOp::ensureTerminator(Region ®ion, Builder &builder, Location loc) { |
| 6682 | // 1. For an empty `vector.mask`, create a default terminator. |
| 6683 | if (region.empty() || region.front().empty()) { |
| 6684 | OpTrait::SingleBlockImplicitTerminator<vector::YieldOp>::Impl< |
| 6685 | MaskOp>::ensureTerminator(region, builder, loc); |
| 6686 | return; |
| 6687 | } |
| 6688 | |
| 6689 | // 2. For a non-empty `vector.mask` with an explicit terminator, do nothing. |
| 6690 | Block &block = region.front(); |
| 6691 | if (isa<vector::YieldOp>(block.back())) |
| 6692 | return; |
| 6693 | |
| 6694 | // 3. For a non-empty `vector.mask` without an explicit terminator: |
| 6695 | |
| 6696 | // Create default terminator if the number of masked operations is not |
| 6697 | // one. This case will trigger a verification failure. |
| 6698 | if (block.getOperations().size() != 1) { |
| 6699 | OpTrait::SingleBlockImplicitTerminator<vector::YieldOp>::Impl< |
| 6700 | MaskOp>::ensureTerminator(region, builder, loc); |
| 6701 | return; |
| 6702 | } |
| 6703 | |
| 6704 | // Create a terminator that yields the results from the masked operation. |
| 6705 | OpBuilder opBuilder(builder.getContext()); |
| 6706 | Operation *maskedOp = &block.front(); |
| 6707 | opBuilder.setInsertionPointToEnd(&block); |
| 6708 | opBuilder.create<vector::YieldOp>(loc, maskedOp->getResults()); |
| 6709 | } |
| 6710 | |
| 6711 | LogicalResult MaskOp::verify() { |
| 6712 | // Structural checks. |
| 6713 | Block &block = getMaskRegion().getBlocks().front(); |
| 6714 | if (block.getOperations().empty()) |
| 6715 | return emitOpError("expects a terminator within the mask region" ); |
| 6716 | |
| 6717 | unsigned numMaskRegionOps = block.getOperations().size(); |
| 6718 | if (numMaskRegionOps > 2) |
| 6719 | return emitOpError("expects only one operation to mask" ); |
| 6720 | |
| 6721 | // Terminator checks. |
| 6722 | auto terminator = dyn_cast<vector::YieldOp>(block.back()); |
| 6723 | if (!terminator) |
| 6724 | return emitOpError("expects a terminator within the mask region" ); |
| 6725 | |
| 6726 | if (terminator->getNumOperands() != getNumResults()) |
| 6727 | return emitOpError( |
| 6728 | "expects number of results to match mask region yielded values" ); |
| 6729 | |
| 6730 | // Empty vector.mask. Nothing else to check. |
| 6731 | if (numMaskRegionOps == 1) |
| 6732 | return success(); |
| 6733 | |
| 6734 | auto maskableOp = dyn_cast<MaskableOpInterface>(block.front()); |
| 6735 | if (!maskableOp) |
| 6736 | return emitOpError("expects a MaskableOpInterface within the mask region" ); |
| 6737 | |
| 6738 | // Result checks. |
| 6739 | if (maskableOp->getNumResults() != getNumResults()) |
| 6740 | return emitOpError("expects number of results to match maskable operation " |
| 6741 | "number of results" ); |
| 6742 | |
| 6743 | if (!llvm::equal(maskableOp->getResults(), terminator.getOperands())) |
| 6744 | return emitOpError("expects all the results from the MaskableOpInterface " |
| 6745 | "to match all the values returned by the terminator" ); |
| 6746 | |
| 6747 | if (!llvm::equal(maskableOp->getResultTypes(), getResultTypes())) |
| 6748 | return emitOpError( |
| 6749 | "expects result type to match maskable operation result type" ); |
| 6750 | |
| 6751 | if (llvm::count_if(maskableOp->getResultTypes(), |
| 6752 | [](Type t) { return llvm::isa<VectorType>(t); }) > 1) |
| 6753 | return emitOpError("multiple vector results not supported" ); |
| 6754 | |
| 6755 | // Mask checks. |
| 6756 | Type expectedMaskType = maskableOp.getExpectedMaskType(); |
| 6757 | if (getMask().getType() != expectedMaskType) |
| 6758 | return emitOpError("expects a " ) |
| 6759 | << expectedMaskType << " mask for the maskable operation" ; |
| 6760 | |
| 6761 | // Passthru checks. |
| 6762 | Value passthru = getPassthru(); |
| 6763 | if (passthru) { |
| 6764 | if (!maskableOp.supportsPassthru()) |
| 6765 | return emitOpError( |
| 6766 | "doesn't expect a passthru argument for this maskable operation" ); |
| 6767 | |
| 6768 | if (maskableOp->getNumResults() != 1) |
| 6769 | return emitOpError("expects result when passthru argument is provided" ); |
| 6770 | |
| 6771 | if (passthru.getType() != maskableOp->getResultTypes()[0]) |
| 6772 | return emitOpError("expects passthru type to match result type" ); |
| 6773 | } |
| 6774 | |
| 6775 | return success(); |
| 6776 | } |
| 6777 | |
| 6778 | /// Folds empty `vector.mask` with no passthru operand and with or without |
| 6779 | /// return values. For example: |
| 6780 | /// |
| 6781 | /// %0 = vector.mask %mask { vector.yield %a : vector<8xf32> } : |
| 6782 | /// vector<8xi1> -> vector<8xf32> |
| 6783 | /// %1 = user_op %0 : vector<8xf32> |
| 6784 | /// |
| 6785 | /// becomes: |
| 6786 | /// |
| 6787 | /// %0 = user_op %a : vector<8xf32> |
| 6788 | /// |
| 6789 | /// Empty `vector.mask` with passthru operand are handled by the canonicalizer |
| 6790 | /// as it requires creating new operations. |
| 6791 | |
| 6792 | static LogicalResult foldEmptyMaskOp(MaskOp maskOp, MaskOp::FoldAdaptor adaptor, |
| 6793 | SmallVectorImpl<OpFoldResult> &results) { |
| 6794 | if (!maskOp.isEmpty() || maskOp.hasPassthru()) |
| 6795 | return failure(); |
| 6796 | |
| 6797 | Block *block = maskOp.getMaskBlock(); |
| 6798 | auto terminator = cast<vector::YieldOp>(block->front()); |
| 6799 | if (terminator.getNumOperands() == 0) { |
| 6800 | // `vector.mask` has no results, just remove the `vector.mask`. |
| 6801 | return success(); |
| 6802 | } |
| 6803 | |
| 6804 | // `vector.mask` has results, propagate the results. |
| 6805 | llvm::append_range(results, terminator.getOperands()); |
| 6806 | return success(); |
| 6807 | } |
| 6808 | |
| 6809 | LogicalResult MaskOp::fold(FoldAdaptor adaptor, |
| 6810 | SmallVectorImpl<OpFoldResult> &results) { |
| 6811 | if (succeeded(foldEmptyMaskOp(*this, adaptor, results))) |
| 6812 | return success(); |
| 6813 | |
| 6814 | MaskFormat maskFormat = getMaskFormat(getMask()); |
| 6815 | if (maskFormat != MaskFormat::AllTrue) |
| 6816 | return failure(); |
| 6817 | |
| 6818 | // Move maskable operation outside of the `vector.mask` region. |
| 6819 | Operation *maskableOp = getMaskableOp(); |
| 6820 | maskableOp->dropAllUses(); |
| 6821 | maskableOp->moveBefore(getOperation()); |
| 6822 | |
| 6823 | llvm::append_range(results, maskableOp->getResults()); |
| 6824 | return success(); |
| 6825 | } |
| 6826 | |
| 6827 | /// Canonialize empty `vector.mask` operations that can't be handled in |
| 6828 | /// `VectorMask::fold` as they require creating new operations. |
| 6829 | /// |
| 6830 | /// Example 1: Empty `vector.mask` with passthru operand. |
| 6831 | /// |
| 6832 | /// %0 = vector.mask %mask, %passthru { vector.yield %a : vector<8xf32> } : |
| 6833 | /// vector<8xi1> -> vector<8xf32> |
| 6834 | /// |
| 6835 | /// becomes: |
| 6836 | /// |
| 6837 | /// %0 = arith.select %mask, %a, %passthru : vector<8xf32> |
| 6838 | /// |
| 6839 | class CanonializeEmptyMaskOp : public OpRewritePattern<MaskOp> { |
| 6840 | using OpRewritePattern::OpRewritePattern; |
| 6841 | |
| 6842 | LogicalResult matchAndRewrite(MaskOp maskOp, |
| 6843 | PatternRewriter &rewriter) const override { |
| 6844 | if (!maskOp.isEmpty()) |
| 6845 | return failure(); |
| 6846 | |
| 6847 | if (!maskOp.hasPassthru()) |
| 6848 | return failure(); |
| 6849 | |
| 6850 | Block *block = maskOp.getMaskBlock(); |
| 6851 | auto terminator = cast<vector::YieldOp>(block->front()); |
| 6852 | assert(terminator.getNumOperands() == 1 && |
| 6853 | "expected one result when passthru is provided" ); |
| 6854 | |
| 6855 | rewriter.replaceOpWithNewOp<arith::SelectOp>( |
| 6856 | maskOp, maskOp.getResultTypes(), maskOp.getMask(), |
| 6857 | terminator.getOperand(0), maskOp.getPassthru()); |
| 6858 | |
| 6859 | return success(); |
| 6860 | } |
| 6861 | }; |
| 6862 | |
| 6863 | void MaskOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 6864 | MLIRContext *context) { |
| 6865 | results.add<CanonializeEmptyMaskOp>(context); |
| 6866 | } |
| 6867 | |
| 6868 | // MaskingOpInterface definitions. |
| 6869 | |
| 6870 | /// Returns the operation masked by this 'vector.mask'. |
| 6871 | Operation *MaskOp::getMaskableOp() { |
| 6872 | Block *block = getMaskBlock(); |
| 6873 | if (block->getOperations().size() < 2) |
| 6874 | return nullptr; |
| 6875 | |
| 6876 | return &block->front(); |
| 6877 | } |
| 6878 | |
| 6879 | /// Returns true if 'vector.mask' has a passthru value. |
| 6880 | bool MaskOp::hasPassthru() { return getPassthru() != Value(); } |
| 6881 | |
| 6882 | //===----------------------------------------------------------------------===// |
| 6883 | // ScanOp |
| 6884 | //===----------------------------------------------------------------------===// |
| 6885 | |
| 6886 | LogicalResult ScanOp::verify() { |
| 6887 | VectorType srcType = getSourceType(); |
| 6888 | VectorType initialType = getInitialValueType(); |
| 6889 | // Check reduction dimension < rank. |
| 6890 | int64_t srcRank = srcType.getRank(); |
| 6891 | int64_t reductionDim = getReductionDim(); |
| 6892 | if (reductionDim >= srcRank) |
| 6893 | return emitOpError("reduction dimension " ) |
| 6894 | << reductionDim << " has to be less than " << srcRank; |
| 6895 | |
| 6896 | // Check that rank(initial_value) = rank(src) - 1. |
| 6897 | int64_t initialValueRank = initialType.getRank(); |
| 6898 | if (initialValueRank != srcRank - 1) |
| 6899 | return emitOpError("initial value rank " ) |
| 6900 | << initialValueRank << " has to be equal to " << srcRank - 1; |
| 6901 | |
| 6902 | // Check shapes of initial value and src. |
| 6903 | ArrayRef<int64_t> srcShape = srcType.getShape(); |
| 6904 | ArrayRef<int64_t> initialValueShapes = initialType.getShape(); |
| 6905 | SmallVector<int64_t> expectedShape; |
| 6906 | for (int i = 0; i < srcRank; i++) { |
| 6907 | if (i != reductionDim) |
| 6908 | expectedShape.push_back(srcShape[i]); |
| 6909 | } |
| 6910 | if (!llvm::equal(initialValueShapes, expectedShape)) { |
| 6911 | return emitOpError("incompatible input/initial value shapes" ); |
| 6912 | } |
| 6913 | |
| 6914 | // Verify supported reduction kind. |
| 6915 | Type eltType = getDestType().getElementType(); |
| 6916 | if (!isSupportedCombiningKind(getKind(), eltType)) |
| 6917 | return emitOpError("unsupported reduction type " ) |
| 6918 | << eltType << " for kind '" << stringifyCombiningKind(getKind()) |
| 6919 | << "'" ; |
| 6920 | |
| 6921 | return success(); |
| 6922 | } |
| 6923 | |
| 6924 | void mlir::vector::populateVectorToVectorCanonicalizationPatterns( |
| 6925 | RewritePatternSet &patterns, PatternBenefit benefit) { |
| 6926 | patterns |
| 6927 | .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, |
| 6928 | ScatterFolder, ExpandLoadFolder, CompressStoreFolder, |
| 6929 | StridedSliceConstantMaskFolder, TransposeFolder>( |
| 6930 | arg: patterns.getContext(), args&: benefit); |
| 6931 | } |
| 6932 | |
| 6933 | //===----------------------------------------------------------------------===// |
| 6934 | // SplatOp |
| 6935 | //===----------------------------------------------------------------------===// |
| 6936 | |
| 6937 | OpFoldResult SplatOp::fold(FoldAdaptor adaptor) { |
| 6938 | auto constOperand = adaptor.getInput(); |
| 6939 | if (!isa_and_nonnull<IntegerAttr, FloatAttr>(constOperand)) |
| 6940 | return {}; |
| 6941 | |
| 6942 | // SplatElementsAttr::get treats single value for second arg as being a splat. |
| 6943 | return SplatElementsAttr::get(getType(), {constOperand}); |
| 6944 | } |
| 6945 | |
| 6946 | void SplatOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges, |
| 6947 | SetIntRangeFn setResultRanges) { |
| 6948 | setResultRanges(getResult(), argRanges.front()); |
| 6949 | } |
| 6950 | |
| 6951 | Value mlir::vector::makeArithReduction(OpBuilder &b, Location loc, |
| 6952 | CombiningKind kind, Value v1, Value acc, |
| 6953 | arith::FastMathFlagsAttr fastmath, |
| 6954 | Value mask) { |
| 6955 | Type t1 = getElementTypeOrSelf(type: v1.getType()); |
| 6956 | Type tAcc = getElementTypeOrSelf(type: acc.getType()); |
| 6957 | Value result; |
| 6958 | |
| 6959 | switch (kind) { |
| 6960 | case CombiningKind::ADD: |
| 6961 | if (t1.isIntOrIndex() && tAcc.isIntOrIndex()) |
| 6962 | result = b.createOrFold<arith::AddIOp>(loc, v1, acc); |
| 6963 | else if (llvm::isa<FloatType>(Val: t1) && llvm::isa<FloatType>(Val: tAcc)) |
| 6964 | result = b.createOrFold<arith::AddFOp>(loc, v1, acc, fastmath); |
| 6965 | else |
| 6966 | llvm_unreachable("invalid value types for ADD reduction" ); |
| 6967 | break; |
| 6968 | case CombiningKind::AND: |
| 6969 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values" ); |
| 6970 | result = b.createOrFold<arith::AndIOp>(loc, v1, acc); |
| 6971 | break; |
| 6972 | case CombiningKind::MAXNUMF: |
| 6973 | assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) && |
| 6974 | "expected float values" ); |
| 6975 | result = b.createOrFold<arith::MaxNumFOp>(loc, v1, acc, fastmath); |
| 6976 | break; |
| 6977 | case CombiningKind::MAXIMUMF: |
| 6978 | assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) && |
| 6979 | "expected float values" ); |
| 6980 | result = b.createOrFold<arith::MaximumFOp>(loc, v1, acc, fastmath); |
| 6981 | break; |
| 6982 | case CombiningKind::MINNUMF: |
| 6983 | assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) && |
| 6984 | "expected float values" ); |
| 6985 | result = b.createOrFold<arith::MinNumFOp>(loc, v1, acc, fastmath); |
| 6986 | break; |
| 6987 | case CombiningKind::MINIMUMF: |
| 6988 | assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) && |
| 6989 | "expected float values" ); |
| 6990 | result = b.createOrFold<arith::MinimumFOp>(loc, v1, acc, fastmath); |
| 6991 | break; |
| 6992 | case CombiningKind::MAXSI: |
| 6993 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values" ); |
| 6994 | result = b.createOrFold<arith::MaxSIOp>(loc, v1, acc); |
| 6995 | break; |
| 6996 | case CombiningKind::MINSI: |
| 6997 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values" ); |
| 6998 | result = b.createOrFold<arith::MinSIOp>(loc, v1, acc); |
| 6999 | break; |
| 7000 | case CombiningKind::MAXUI: |
| 7001 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values" ); |
| 7002 | result = b.createOrFold<arith::MaxUIOp>(loc, v1, acc); |
| 7003 | break; |
| 7004 | case CombiningKind::MINUI: |
| 7005 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values" ); |
| 7006 | result = b.createOrFold<arith::MinUIOp>(loc, v1, acc); |
| 7007 | break; |
| 7008 | case CombiningKind::MUL: |
| 7009 | if (t1.isIntOrIndex() && tAcc.isIntOrIndex()) |
| 7010 | result = b.createOrFold<arith::MulIOp>(loc, v1, acc); |
| 7011 | else if (llvm::isa<FloatType>(Val: t1) && llvm::isa<FloatType>(Val: tAcc)) |
| 7012 | result = b.createOrFold<arith::MulFOp>(loc, v1, acc, fastmath); |
| 7013 | else |
| 7014 | llvm_unreachable("invalid value types for MUL reduction" ); |
| 7015 | break; |
| 7016 | case CombiningKind::OR: |
| 7017 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values" ); |
| 7018 | result = b.createOrFold<arith::OrIOp>(loc, v1, acc); |
| 7019 | break; |
| 7020 | case CombiningKind::XOR: |
| 7021 | assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values" ); |
| 7022 | result = b.createOrFold<arith::XOrIOp>(loc, v1, acc); |
| 7023 | break; |
| 7024 | }; |
| 7025 | |
| 7026 | assert(result && "unknown CombiningKind" ); |
| 7027 | return selectPassthru(builder&: b, mask, newValue: result, passthru: acc); |
| 7028 | } |
| 7029 | |
| 7030 | //===----------------------------------------------------------------------===// |
| 7031 | // Vector Masking Utilities |
| 7032 | //===----------------------------------------------------------------------===// |
| 7033 | |
| 7034 | /// Create the vector.yield-ended region of a vector.mask op with `maskableOp` |
| 7035 | /// as masked operation. |
| 7036 | void mlir::vector::createMaskOpRegion(OpBuilder &builder, |
| 7037 | Operation *maskableOp) { |
| 7038 | assert(maskableOp->getBlock() && "MaskableOp must be inserted into a block" ); |
| 7039 | Block *insBlock = builder.getInsertionBlock(); |
| 7040 | // Create a block and move the op to that block. |
| 7041 | insBlock->getOperations().splice( |
| 7042 | where: insBlock->begin(), L2&: maskableOp->getBlock()->getOperations(), N: maskableOp); |
| 7043 | builder.create<YieldOp>(maskableOp->getLoc(), maskableOp->getResults()); |
| 7044 | } |
| 7045 | |
| 7046 | /// Creates a vector.mask operation around a maskable operation. Returns the |
| 7047 | /// vector.mask operation if the mask provided is valid. Otherwise, returns |
| 7048 | /// the maskable operation itself. |
| 7049 | Operation *mlir::vector::maskOperation(OpBuilder &builder, |
| 7050 | Operation *maskableOp, Value mask, |
| 7051 | Value passthru) { |
| 7052 | if (!mask) |
| 7053 | return maskableOp; |
| 7054 | if (passthru) |
| 7055 | return builder.create<MaskOp>(maskableOp->getLoc(), |
| 7056 | maskableOp->getResultTypes(), mask, passthru, |
| 7057 | maskableOp, createMaskOpRegion); |
| 7058 | return builder.create<MaskOp>(maskableOp->getLoc(), |
| 7059 | maskableOp->getResultTypes(), mask, maskableOp, |
| 7060 | createMaskOpRegion); |
| 7061 | } |
| 7062 | |
| 7063 | /// Creates a vector select operation that picks values from `newValue` or |
| 7064 | /// `passthru` for each result vector lane based on `mask`. This utility is used |
| 7065 | /// to propagate the pass-thru value of vector.mask or for cases where only the |
| 7066 | /// pass-thru value propagation is needed. VP intrinsics do not support |
| 7067 | /// pass-thru values and every mask-out lane is set to poison. LLVM backends are |
| 7068 | /// usually able to match op + select patterns and fold them into a native |
| 7069 | /// target instructions. |
| 7070 | Value mlir::vector::selectPassthru(OpBuilder &builder, Value mask, |
| 7071 | Value newValue, Value passthru) { |
| 7072 | if (!mask) |
| 7073 | return newValue; |
| 7074 | |
| 7075 | return builder.create<arith::SelectOp>(newValue.getLoc(), newValue.getType(), |
| 7076 | mask, newValue, passthru); |
| 7077 | } |
| 7078 | |
| 7079 | //===----------------------------------------------------------------------===// |
| 7080 | // TableGen'd op method definitions |
| 7081 | //===----------------------------------------------------------------------===// |
| 7082 | |
| 7083 | #define GET_ATTRDEF_CLASSES |
| 7084 | #include "mlir/Dialect/Vector/IR/VectorAttributes.cpp.inc" |
| 7085 | |
| 7086 | #define GET_OP_CLASSES |
| 7087 | #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" |
| 7088 | |