| 1 | //===- LowerVectorContract.cpp - Lower 'vector.contract' operation --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements target-independent rewrites and utilities to lower the |
| 10 | // 'vector.contract' operation. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 15 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 16 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
| 17 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| 18 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 19 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 20 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 21 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
| 22 | #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
| 23 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| 24 | #include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h" |
| 25 | #include "mlir/Dialect/Vector/Utils/VectorUtils.h" |
| 26 | #include "mlir/IR/BuiltinAttributeInterfaces.h" |
| 27 | #include "mlir/IR/BuiltinTypes.h" |
| 28 | #include "mlir/IR/ImplicitLocOpBuilder.h" |
| 29 | #include "mlir/IR/Location.h" |
| 30 | #include "mlir/IR/Matchers.h" |
| 31 | #include "mlir/IR/PatternMatch.h" |
| 32 | #include "mlir/IR/TypeUtilities.h" |
| 33 | #include "mlir/Interfaces/VectorInterfaces.h" |
| 34 | |
| 35 | #define DEBUG_TYPE "vector-contract-lowering" |
| 36 | |
| 37 | using namespace mlir; |
| 38 | using namespace mlir::vector; |
| 39 | |
| 40 | //===----------------------------------------------------------------------===// |
| 41 | // Helper functions |
| 42 | //===----------------------------------------------------------------------===// |
| 43 | // Helper to find an index in an affine map. |
| 44 | static std::optional<int64_t> getResultIndex(AffineMap map, int64_t index) { |
| 45 | for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { |
| 46 | int64_t idx = map.getDimPosition(idx: i); |
| 47 | if (idx == index) |
| 48 | return i; |
| 49 | } |
| 50 | return std::nullopt; |
| 51 | } |
| 52 | |
| 53 | // Helper to construct iterator types with one index removed. |
| 54 | static SmallVector<Attribute> adjustIter(ArrayAttr iteratorTypes, |
| 55 | int64_t index) { |
| 56 | SmallVector<Attribute> results; |
| 57 | for (const auto &it : llvm::enumerate(iteratorTypes)) { |
| 58 | int64_t idx = it.index(); |
| 59 | if (idx == index) |
| 60 | continue; |
| 61 | results.push_back(it.value()); |
| 62 | } |
| 63 | return results; |
| 64 | } |
| 65 | |
| 66 | // Helper to construct an affine map with one index removed. |
| 67 | static AffineMap adjustMap(AffineMap map, int64_t index, |
| 68 | PatternRewriter &rewriter) { |
| 69 | auto *ctx = rewriter.getContext(); |
| 70 | SmallVector<AffineExpr> results; |
| 71 | for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { |
| 72 | int64_t idx = map.getDimPosition(idx: i); |
| 73 | if (idx == index) |
| 74 | continue; |
| 75 | // Re-insert remaining indices, but renamed when occurring |
| 76 | // after the removed index. |
| 77 | auto targetExpr = getAffineDimExpr(position: idx < index ? idx : idx - 1, context: ctx); |
| 78 | results.push_back(Elt: targetExpr); |
| 79 | } |
| 80 | return AffineMap::get(dimCount: map.getNumDims() - 1, symbolCount: 0, results, context: ctx); |
| 81 | } |
| 82 | |
| 83 | // Helper method to possibly drop a dimension in a load. |
| 84 | // TODO |
| 85 | static Value reshapeLoad(Location loc, Value val, VectorType type, |
| 86 | int64_t index, int64_t pos, |
| 87 | PatternRewriter &rewriter) { |
| 88 | if (index == -1) |
| 89 | return val; |
| 90 | |
| 91 | // At extraction dimension? |
| 92 | if (index == 0) |
| 93 | return rewriter.create<vector::ExtractOp>(loc, val, pos); |
| 94 | |
| 95 | // Unroll leading dimensions. |
| 96 | VectorType vType = VectorType::Builder(type).dropDim(0); |
| 97 | VectorType resType = VectorType::Builder(type).dropDim(index); |
| 98 | Value result = rewriter.create<arith::ConstantOp>( |
| 99 | loc, resType, rewriter.getZeroAttr(resType)); |
| 100 | for (int64_t d = 0, e = resType.getDimSize(0); d < e; d++) { |
| 101 | Value ext = rewriter.create<vector::ExtractOp>(loc, val, d); |
| 102 | Value load = reshapeLoad(loc, ext, vType, index - 1, pos, rewriter); |
| 103 | result = rewriter.create<vector::InsertOp>(loc, load, result, d); |
| 104 | } |
| 105 | return result; |
| 106 | } |
| 107 | |
| 108 | // Helper method to possibly drop a dimension in a store. |
| 109 | // TODO |
| 110 | static Value reshapeStore(Location loc, Value val, Value result, |
| 111 | VectorType type, int64_t index, int64_t pos, |
| 112 | PatternRewriter &rewriter) { |
| 113 | // Unmodified? |
| 114 | if (index == -1) |
| 115 | return val; |
| 116 | // At insertion dimension? |
| 117 | if (index == 0) |
| 118 | return rewriter.create<vector::InsertOp>(loc, val, result, pos); |
| 119 | |
| 120 | // Unroll leading dimensions. |
| 121 | VectorType vType = VectorType::Builder(type).dropDim(0); |
| 122 | for (int64_t d = 0, e = type.getDimSize(0); d < e; d++) { |
| 123 | Value ext = rewriter.create<vector::ExtractOp>(loc, result, d); |
| 124 | Value ins = rewriter.create<vector::ExtractOp>(loc, val, d); |
| 125 | Value sto = reshapeStore(loc, ins, ext, vType, index - 1, pos, rewriter); |
| 126 | result = rewriter.create<vector::InsertOp>(loc, sto, result, d); |
| 127 | } |
| 128 | return result; |
| 129 | } |
| 130 | |
| 131 | /// Helper to create arithmetic operation associated with a kind of contraction. |
| 132 | static std::optional<Value> |
| 133 | createContractArithOp(Location loc, Value x, Value y, Value acc, |
| 134 | vector::CombiningKind kind, PatternRewriter &rewriter, |
| 135 | bool isInt, Value mask = Value()) { |
| 136 | using vector::CombiningKind; |
| 137 | Value mul; |
| 138 | |
| 139 | if (isInt) { |
| 140 | if (kind == CombiningKind::MINNUMF || kind == CombiningKind::MAXNUMF || |
| 141 | kind == CombiningKind::MINIMUMF || kind == CombiningKind::MAXIMUMF) |
| 142 | // Only valid for floating point types. |
| 143 | return std::nullopt; |
| 144 | mul = rewriter.create<arith::MulIOp>(loc, x, y); |
| 145 | } else { |
| 146 | // Float case. |
| 147 | if (kind == CombiningKind::AND || kind == CombiningKind::MINUI || |
| 148 | kind == CombiningKind::MINSI || kind == CombiningKind::MAXUI || |
| 149 | kind == CombiningKind::MAXSI || kind == CombiningKind::OR || |
| 150 | kind == CombiningKind::XOR) |
| 151 | // Only valid for integer types. |
| 152 | return std::nullopt; |
| 153 | // Special case for fused multiply-add. |
| 154 | if (acc && isa<VectorType>(acc.getType()) && kind == CombiningKind::ADD) { |
| 155 | Value fma = rewriter.create<vector::FMAOp>(loc, x, y, acc); |
| 156 | if (mask) |
| 157 | // The fma op doesn't need explicit masking. However, fma ops used in |
| 158 | // reductions must preserve previous 'acc' values for masked-out lanes. |
| 159 | fma = selectPassthru(builder&: rewriter, mask, newValue: fma, passthru: acc); |
| 160 | return fma; |
| 161 | } |
| 162 | mul = rewriter.create<arith::MulFOp>(loc, x, y); |
| 163 | } |
| 164 | |
| 165 | if (!acc) |
| 166 | return std::optional<Value>(mul); |
| 167 | |
| 168 | return makeArithReduction(rewriter, loc, kind, mul, acc, |
| 169 | /*fastmath=*/nullptr, mask); |
| 170 | } |
| 171 | |
| 172 | /// Return the positions of the reductions in the given map. |
| 173 | static SmallVector<int64_t> getReductionIndex(AffineMap map, |
| 174 | ArrayAttr iteratorTypes) { |
| 175 | SmallVector<int64_t> dimsIdx; |
| 176 | for (unsigned i = 0, e = map.getNumResults(); i < e; i++) { |
| 177 | if (isReductionIterator(iteratorTypes[map.getDimPosition(idx: i)])) |
| 178 | dimsIdx.push_back(Elt: i); |
| 179 | } |
| 180 | return dimsIdx; |
| 181 | } |
| 182 | |
| 183 | /// Look for a given dimension in an affine map and return its position. Return |
| 184 | /// std::nullopt if the dimension is not in the map results. |
| 185 | static std::optional<unsigned> getDimPosition(AffineMap map, unsigned dim) { |
| 186 | for (unsigned i = 0, e = map.getNumResults(); i < e; i++) { |
| 187 | if (map.getDimPosition(idx: i) == dim) |
| 188 | return i; |
| 189 | } |
| 190 | return std::nullopt; |
| 191 | } |
| 192 | |
| 193 | /// Creates an AddIOp if `isInt` is true otherwise create an arith::AddFOp using |
| 194 | /// operands `x` and `y`. |
| 195 | static Value createAdd(Location loc, Value x, Value y, bool isInt, |
| 196 | PatternRewriter &rewriter) { |
| 197 | if (isInt) |
| 198 | return rewriter.create<arith::AddIOp>(loc, x, y); |
| 199 | return rewriter.create<arith::AddFOp>(loc, x, y); |
| 200 | } |
| 201 | |
| 202 | /// Creates a MulIOp if `isInt` is true otherwise create an MulFOp using |
| 203 | /// operands `x and `y`. |
| 204 | static Value createMul(Location loc, Value x, Value y, bool isInt, |
| 205 | PatternRewriter &rewriter) { |
| 206 | if (isInt) |
| 207 | return rewriter.create<arith::MulIOp>(loc, x, y); |
| 208 | return rewriter.create<arith::MulFOp>(loc, x, y); |
| 209 | } |
| 210 | |
| 211 | namespace { |
| 212 | |
| 213 | /// Progressive lowering of a `vector.contract %a, %b, %c` with row-major matmul |
| 214 | /// semantics to: |
| 215 | /// ``` |
| 216 | /// %flattened_a = vector.shape_cast %a |
| 217 | /// %flattened_b = vector.shape_cast %b |
| 218 | /// %flattened_d = vector.matrix_multiply %flattened_a, %flattened_b |
| 219 | /// %d = vector.shape_cast %%flattened_d |
| 220 | /// %e = add %c, %d |
| 221 | /// ``` |
| 222 | /// `vector.matrix_multiply` later lowers to `llvm.matrix.multiply`. |
| 223 | // |
| 224 | /// This only kicks in when vectorContractLowering is set to Matmul and |
| 225 | /// the vector.contract op is a row-major matrix multiply. |
| 226 | class ContractionOpToMatmulOpLowering |
| 227 | : public vector::MaskableOpRewritePattern<vector::ContractionOp> { |
| 228 | public: |
| 229 | using MaskableOpRewritePattern::MaskableOpRewritePattern; |
| 230 | |
| 231 | using FilterConstraintType = |
| 232 | std::function<LogicalResult(vector::ContractionOp op)>; |
| 233 | |
| 234 | static LogicalResult defaultFilter(vector::ContractionOp op) { |
| 235 | return success(); |
| 236 | } |
| 237 | |
| 238 | ContractionOpToMatmulOpLowering( |
| 239 | vector::VectorContractLowering vectorContractLowering, |
| 240 | MLIRContext *context, PatternBenefit benefit = 1, |
| 241 | FilterConstraintType constraint = defaultFilter) |
| 242 | : MaskableOpRewritePattern<vector::ContractionOp>(context, benefit), |
| 243 | vectorContractLowering(vectorContractLowering), |
| 244 | filter(std::move(constraint)) {} |
| 245 | |
| 246 | FailureOr<Value> |
| 247 | matchAndRewriteMaskableOp(vector::ContractionOp op, MaskingOpInterface maskOp, |
| 248 | PatternRewriter &rewriter) const override; |
| 249 | |
| 250 | private: |
| 251 | /// Options to control the vector patterns. |
| 252 | vector::VectorContractLowering vectorContractLowering; |
| 253 | FilterConstraintType filter; |
| 254 | }; |
| 255 | |
| 256 | /// Progressive lowering of a `vector.contract %a, %b, %c` with row-major matmul |
| 257 | /// semantics to a reduction_size-unrolled sequence: |
| 258 | /// ``` |
| 259 | /// %at = vector.transpose %a, [1, 0] |
| 260 | /// %bRow0 = vector.extract %b[0] |
| 261 | /// %atRow0 = vector.extract %at[0] |
| 262 | /// %c0 = vector.outerproduct %atRow0, %bRow0, %c |
| 263 | /// ... |
| 264 | /// %bRowK = vector.extract %b[K] |
| 265 | /// %atRowK = vector.extract %at[K] |
| 266 | /// %cK = vector.outerproduct %atRowK, %bRowK, %cK-1 |
| 267 | /// ``` |
| 268 | /// |
| 269 | /// This only kicks in when vectorContractLowering is set to OuterProduct and |
| 270 | /// the vector.contract op is a row-major matrix multiply. |
| 271 | class ContractionOpToOuterProductOpLowering |
| 272 | : public MaskableOpRewritePattern<vector::ContractionOp> { |
| 273 | public: |
| 274 | using MaskableOpRewritePattern::MaskableOpRewritePattern; |
| 275 | |
| 276 | using FilterConstraintType = |
| 277 | std::function<LogicalResult(vector::ContractionOp op)>; |
| 278 | |
| 279 | static LogicalResult defaultFilter(vector::ContractionOp op) { |
| 280 | return success(); |
| 281 | } |
| 282 | |
| 283 | ContractionOpToOuterProductOpLowering( |
| 284 | vector::VectorContractLowering vectorContractLowering, |
| 285 | MLIRContext *context, PatternBenefit benefit = 1, |
| 286 | FilterConstraintType constraint = defaultFilter) |
| 287 | : MaskableOpRewritePattern<vector::ContractionOp>(context, benefit), |
| 288 | vectorContractLowering(vectorContractLowering), |
| 289 | filter(std::move(constraint)) {} |
| 290 | |
| 291 | FailureOr<Value> |
| 292 | matchAndRewriteMaskableOp(vector::ContractionOp op, MaskingOpInterface maskOp, |
| 293 | PatternRewriter &rewriter) const override; |
| 294 | |
| 295 | private: |
| 296 | /// Options to control the vector patterns. |
| 297 | vector::VectorContractLowering vectorContractLowering; |
| 298 | FilterConstraintType filter; |
| 299 | }; |
| 300 | |
| 301 | /// Progressive lowering of a `vector.contract %a, %b, %c` with row-major matmul |
| 302 | /// semantics to an output-size-unrolled sequence: |
| 303 | /// ``` |
| 304 | /// %out = arith.constant ... : vector<MxNxelt_type> |
| 305 | /// %bt = vector.transpose %b, [1, 0] |
| 306 | /// %aRow0 = vector.extract %a[0] |
| 307 | /// %btRow0 = vector.extract %bt[0] |
| 308 | /// %c00 = vector.reduce %atRow0, %bRow0 |
| 309 | /// %out00 = vector.insert %c00, %out[0, 0] |
| 310 | /// ... |
| 311 | /// %aRowLast = vector.extract %at[M-1] |
| 312 | /// %btRowLast = vector.extract %b[N-1] |
| 313 | /// %cLastLast = vector.reduce %atRowLast, %bRowLast |
| 314 | /// %outcLastLast = vector.insert %cLastLast, %out[M-1, N-1] |
| 315 | /// ``` |
| 316 | /// |
| 317 | /// This only kicks in when VectorTransformsOptions is set to Dot and |
| 318 | /// the vector.contract op is a row-major matmul or matvec. |
| 319 | class ContractionOpToDotLowering |
| 320 | : public MaskableOpRewritePattern<vector::ContractionOp> { |
| 321 | public: |
| 322 | using MaskableOpRewritePattern::MaskableOpRewritePattern; |
| 323 | |
| 324 | using FilterConstraintType = |
| 325 | std::function<LogicalResult(vector::ContractionOp op)>; |
| 326 | |
| 327 | static LogicalResult defaultFilter(vector::ContractionOp op) { |
| 328 | return success(); |
| 329 | } |
| 330 | |
| 331 | ContractionOpToDotLowering( |
| 332 | vector::VectorContractLowering vectorContractLowering, |
| 333 | MLIRContext *context, PatternBenefit benefit = 1, |
| 334 | const FilterConstraintType &constraint = defaultFilter) |
| 335 | : MaskableOpRewritePattern<vector::ContractionOp>(context, benefit), |
| 336 | vectorContractLowering(vectorContractLowering), filter(defaultFilter) {} |
| 337 | |
| 338 | FailureOr<Value> |
| 339 | matchAndRewriteMaskableOp(vector::ContractionOp op, MaskingOpInterface maskOp, |
| 340 | PatternRewriter &rewriter) const override; |
| 341 | |
| 342 | private: |
| 343 | /// Options to control the vector patterns. |
| 344 | vector::VectorContractLowering vectorContractLowering; |
| 345 | FilterConstraintType filter; |
| 346 | }; |
| 347 | |
| 348 | /// Progressive lowering of ContractionOp. |
| 349 | /// |
| 350 | /// One: |
| 351 | /// %x = vector.contract with at least one free/batch dimension |
| 352 | /// is replaced by: |
| 353 | /// %a = vector.contract with one less free/batch dimension |
| 354 | /// %b = vector.contract with one less free/batch dimension |
| 355 | /// .. |
| 356 | /// %x = combine %a %b .. |
| 357 | /// until a pure contraction is reached (no free/batch dimensions), |
| 358 | /// which is replaced by a dot-product. |
| 359 | /// |
| 360 | /// This only kicks in when either VectorTransformsOptions is set |
| 361 | /// to Dot or when other contraction patterns fail. |
| 362 | class ContractionOpLowering |
| 363 | : public MaskableOpRewritePattern<vector::ContractionOp> { |
| 364 | public: |
| 365 | using MaskableOpRewritePattern::MaskableOpRewritePattern; |
| 366 | using FilterConstraintType = |
| 367 | std::function<LogicalResult(vector::ContractionOp op)>; |
| 368 | |
| 369 | static LogicalResult defaultFilter(vector::ContractionOp op) { |
| 370 | return success(); |
| 371 | } |
| 372 | |
| 373 | ContractionOpLowering( |
| 374 | vector::VectorContractLowering vectorContractLoweringOption, |
| 375 | MLIRContext *context, PatternBenefit benefit = 1, |
| 376 | FilterConstraintType constraint = defaultFilter) |
| 377 | : MaskableOpRewritePattern<vector::ContractionOp>(context, benefit), |
| 378 | vectorContractLoweringOption(vectorContractLoweringOption), |
| 379 | filter(std::move(constraint)) {} |
| 380 | |
| 381 | FailureOr<Value> |
| 382 | matchAndRewriteMaskableOp(vector::ContractionOp op, MaskingOpInterface maskOp, |
| 383 | PatternRewriter &rewriter) const override; |
| 384 | |
| 385 | private: |
| 386 | /// Options to control the vector patterns. |
| 387 | vector::VectorContractLowering vectorContractLoweringOption; |
| 388 | FilterConstraintType filter; |
| 389 | // Lower one parallel dimension. |
| 390 | FailureOr<Value> lowerParallel(PatternRewriter &rewriter, |
| 391 | vector::ContractionOp op, int64_t lhsIndex, |
| 392 | int64_t rhsIndex, Value mask) const; |
| 393 | // Lower one reduction dimension. |
| 394 | FailureOr<Value> lowerReduction(PatternRewriter &rewriter, |
| 395 | vector::ContractionOp op, Value mask) const; |
| 396 | }; |
| 397 | |
| 398 | /// Generate a vector implementation for matmat, matvec and tmatvec. |
| 399 | /// This unrolls outer-products along the reduction dimension. |
| 400 | struct UnrolledOuterProductGenerator |
| 401 | : public StructuredGenerator<vector::ContractionOp, vector::IteratorType> { |
| 402 | UnrolledOuterProductGenerator(RewriterBase &b, vector::ContractionOp op) |
| 403 | : StructuredGenerator<vector::ContractionOp, vector::IteratorType>(b, op), |
| 404 | kind(op.getKind()), lhs(op.getLhs()), rhs(op.getRhs()), |
| 405 | res(op.getAcc()), lhsType(op.getLhsType()) { |
| 406 | auto maskableOp = cast<MaskableOpInterface>(op.getOperation()); |
| 407 | if (maskableOp.isMasked()) |
| 408 | mask = maskableOp.getMaskingOp().getMask(); |
| 409 | } |
| 410 | |
| 411 | Value t(Value v, ArrayRef<int64_t> perm = {1, 0}) { |
| 412 | if (!v) |
| 413 | return v; |
| 414 | return rewriter.create<vector::TransposeOp>(loc, v, perm); |
| 415 | } |
| 416 | |
| 417 | Value promote(Value v, Type dstElementType) { |
| 418 | Type elementType = v.getType(); |
| 419 | auto vecType = dyn_cast<VectorType>(elementType); |
| 420 | if (vecType) |
| 421 | elementType = vecType.getElementType(); |
| 422 | if (elementType == dstElementType) |
| 423 | return v; |
| 424 | Type promotedType = dstElementType; |
| 425 | if (vecType) |
| 426 | promotedType = vecType.clone(promotedType); |
| 427 | if (isa<FloatType>(dstElementType)) |
| 428 | return rewriter.create<arith::ExtFOp>(loc, promotedType, v); |
| 429 | return rewriter.create<arith::ExtSIOp>(loc, promotedType, v); |
| 430 | } |
| 431 | |
| 432 | FailureOr<Value> outerProd(Value lhs, Value rhs, Value res, |
| 433 | VectorType lhsType, int reductionSize, |
| 434 | std::optional<Value> maybeMask = std::nullopt) { |
| 435 | // Incremental support for masking. |
| 436 | if (mask && !maybeMask.has_value()) |
| 437 | return failure(); |
| 438 | |
| 439 | Type resElementType = cast<VectorType>(res.getType()).getElementType(); |
| 440 | for (int64_t k = 0; k < reductionSize; ++k) { |
| 441 | Value = rewriter.create<vector::ExtractOp>(loc, lhs, k); |
| 442 | Value = rewriter.create<vector::ExtractOp>(loc, rhs, k); |
| 443 | extractA = promote(v: extractA, dstElementType: resElementType); |
| 444 | extractB = promote(v: extractB, dstElementType: resElementType); |
| 445 | Value ; |
| 446 | if (maybeMask.has_value() && maybeMask.value()) |
| 447 | extractMask = |
| 448 | rewriter.create<vector::ExtractOp>(loc, maybeMask.value(), k); |
| 449 | |
| 450 | Operation *outerProdOp = rewriter.create<vector::OuterProductOp>( |
| 451 | loc, res.getType(), extractA, extractB, res, kind); |
| 452 | res = maskOperation(rewriter, outerProdOp, extractMask)->getResult(0); |
| 453 | } |
| 454 | return res; |
| 455 | } |
| 456 | |
| 457 | /// Helper function for `matmat`, `matvec`, `tmatvec`. Returns the size of |
| 458 | /// dimension `reductionDim`. If the dimension is a scalable dimension, |
| 459 | /// returns "nullopt". |
| 460 | std::optional<int64_t> getReductionSize(VectorType vecType, |
| 461 | int64_t reductionDim) { |
| 462 | // Cannot unroll scalable dimension. |
| 463 | if (vecType.getScalableDims()[reductionDim]) |
| 464 | return std::nullopt; |
| 465 | int64_t reductionSize = vecType.getDimSize(reductionDim); |
| 466 | assert(reductionSize > 0 && |
| 467 | "Reduction dim must be a known static size to allow unrolling" ); |
| 468 | return reductionSize; |
| 469 | } |
| 470 | |
| 471 | /// Two outer parallel, one inner reduction (matmat flavor). |
| 472 | FailureOr<Value> matmat() { |
| 473 | if (!iters({Par(), Par(), Red()})) |
| 474 | return failure(); |
| 475 | // Set up the parallel/reduction structure in the right form. |
| 476 | AffineExpr m, n, k; |
| 477 | bindDims(rewriter.getContext(), m, n, k); |
| 478 | |
| 479 | // Classical row-major matmul: Just permute the lhs. |
| 480 | if (layout({{m, k}, {k, n}, {m, n}})) { |
| 481 | if (auto reductionSize = getReductionSize(lhsType, 1)) { |
| 482 | // Note: `t` creates new IR. It must be nested within this `if` check |
| 483 | // so that no IR is created when then pattern returns "failure". |
| 484 | Value tLhs = t(v: lhs); |
| 485 | Value tMask = t(v: mask, perm: {2, 0, 1}); |
| 486 | return outerProd(tLhs, rhs, res, lhsType, *reductionSize, tMask); |
| 487 | } |
| 488 | } |
| 489 | // TODO: may be better to fail and use some vector<k> -> scalar reduction. |
| 490 | if (layout({{m, k}, {n, k}, {m, n}})) { |
| 491 | if (auto reductionSize = getReductionSize(lhsType, 1)) { |
| 492 | Value tLhs = t(v: lhs); |
| 493 | Value tRhs = t(v: rhs); |
| 494 | Value tMask = t(v: mask, perm: {2, 0, 1}); |
| 495 | return outerProd(tLhs, tRhs, res, lhsType, *reductionSize, tMask); |
| 496 | } |
| 497 | } |
| 498 | // No need to permute anything. |
| 499 | if (layout({{k, m}, {k, n}, {m, n}})) { |
| 500 | if (auto reductionSize = getReductionSize(lhsType, 0)) { |
| 501 | Value tMask = t(v: mask, perm: {2, 0, 1}); |
| 502 | return outerProd(lhs, rhs, res, lhsType, *reductionSize, tMask); |
| 503 | } |
| 504 | } |
| 505 | // Just permute the rhs. |
| 506 | if (layout({{k, m}, {n, k}, {m, n}})) { |
| 507 | if (auto reductionSize = getReductionSize(lhsType, 0)) { |
| 508 | Value tRhs = t(v: rhs); |
| 509 | Value tMask = t(v: mask, perm: {2, 0, 1}); |
| 510 | return outerProd(lhs, tRhs, res, lhsType, *reductionSize, tMask); |
| 511 | } |
| 512 | } |
| 513 | // Transposed output: swap RHS and LHS. |
| 514 | // Classical row-major matmul: permute the lhs. |
| 515 | if (layout({{m, k}, {k, n}, {n, m}})) { |
| 516 | if (auto reductionSize = getReductionSize(lhsType, 1)) { |
| 517 | Value tLhs = t(v: lhs); |
| 518 | Value tMask = t(v: mask, perm: {2, 0, 1}); |
| 519 | return outerProd(rhs, tLhs, res, lhsType, *reductionSize, tMask); |
| 520 | } |
| 521 | } |
| 522 | // TODO: may be better to fail and use some vector<k> -> scalar reduction. |
| 523 | if (layout({{m, k}, {n, k}, {n, m}})) { |
| 524 | if (auto reductionSize = getReductionSize(lhsType, 1)) { |
| 525 | Value tRhs = t(v: rhs); |
| 526 | Value tLhs = t(v: lhs); |
| 527 | Value tMask = t(v: mask, perm: {2, 0, 1}); |
| 528 | return outerProd(tRhs, tLhs, res, lhsType, *reductionSize, tMask); |
| 529 | } |
| 530 | } |
| 531 | if (layout({{k, m}, {k, n}, {n, m}})) { |
| 532 | if (auto reductionSize = getReductionSize(lhsType, 0)) { |
| 533 | Value tMask = t(v: mask, perm: {2, 0, 1}); |
| 534 | return outerProd(rhs, lhs, res, lhsType, *reductionSize, tMask); |
| 535 | } |
| 536 | } |
| 537 | if (layout({{k, m}, {n, k}, {n, m}})) { |
| 538 | if (auto reductionSize = getReductionSize(lhsType, 0)) { |
| 539 | Value tRhs = t(v: rhs); |
| 540 | Value tMask = t(v: mask, perm: {2, 0, 1}); |
| 541 | return outerProd(tRhs, lhs, res, lhsType, *reductionSize, tMask); |
| 542 | } |
| 543 | } |
| 544 | return failure(); |
| 545 | } |
| 546 | |
| 547 | // |
| 548 | // One outer parallel, one inner reduction (matvec flavor). |
| 549 | // Mask needs to be transposed everywhere to turn the reduction dimension |
| 550 | // outermost as required by outerproduct. |
| 551 | // |
| 552 | FailureOr<Value> matvec() { |
| 553 | if (!iters({Par(), Red()})) |
| 554 | return failure(); |
| 555 | AffineExpr m, k; |
| 556 | bindDims(rewriter.getContext(), m, k); |
| 557 | |
| 558 | // Case mat-vec: transpose. |
| 559 | if (layout({{m, k}, {k}, {m}})) { |
| 560 | if (auto reductionSize = getReductionSize(lhsType, 1)) { |
| 561 | Value tLhs = t(v: lhs); |
| 562 | Value tMask = t(v: mask); |
| 563 | return outerProd(tLhs, rhs, res, lhsType, *reductionSize, tMask); |
| 564 | } |
| 565 | } |
| 566 | // Case mat-trans-vec: ready to go. |
| 567 | if (layout({{k, m}, {k}, {m}})) { |
| 568 | if (auto reductionSize = getReductionSize(lhsType, 0)) { |
| 569 | Value tMask = t(v: mask); |
| 570 | return outerProd(lhs, rhs, res, lhsType, *reductionSize, tMask); |
| 571 | } |
| 572 | } |
| 573 | // Case vec-mat: swap and transpose. |
| 574 | if (layout({{k}, {m, k}, {m}})) { |
| 575 | if (auto reductionSize = getReductionSize(lhsType, 0)) { |
| 576 | Value tRhs = t(v: rhs); |
| 577 | Value tMask = t(v: mask); |
| 578 | return outerProd(tRhs, lhs, res, lhsType, *reductionSize, tMask); |
| 579 | } |
| 580 | } |
| 581 | // Case vec-mat-trans: swap and ready to go. |
| 582 | if (layout({{k}, {k, m}, {m}})) { |
| 583 | if (auto reductionSize = getReductionSize(lhsType, 0)) { |
| 584 | Value tMask = t(v: mask); |
| 585 | return outerProd(rhs, lhs, res, lhsType, *reductionSize, tMask); |
| 586 | } |
| 587 | } |
| 588 | return failure(); |
| 589 | } |
| 590 | |
| 591 | // |
| 592 | // One outer reduction, one inner parallel (tmatvec flavor). |
| 593 | // Mask already has the shape of the outer product. |
| 594 | // |
| 595 | FailureOr<Value> tmatvec() { |
| 596 | if (!iters({Red(), Par()})) |
| 597 | return failure(); |
| 598 | AffineExpr k, m; |
| 599 | bindDims(rewriter.getContext(), k, m); |
| 600 | |
| 601 | // Case mat-vec: transpose. |
| 602 | if (layout({{m, k}, {k}, {m}})) |
| 603 | if (auto reductionSize = getReductionSize(lhsType, 1)) |
| 604 | return outerProd(t(lhs), rhs, res, lhsType, *reductionSize, mask); |
| 605 | // Case mat-trans-vec: ready to go. |
| 606 | if (layout({{k, m}, {k}, {m}})) |
| 607 | if (auto reductionSize = getReductionSize(lhsType, 0)) |
| 608 | return outerProd(lhs, rhs, res, lhsType, *reductionSize, mask); |
| 609 | // Case vec-mat: swap and transpose. |
| 610 | if (layout({{k}, {m, k}, {m}})) |
| 611 | if (auto reductionSize = getReductionSize(lhsType, 0)) |
| 612 | return outerProd(t(rhs), lhs, res, lhsType, *reductionSize, mask); |
| 613 | // Case vec-mat-trans: swap and ready to go. |
| 614 | if (layout({{k}, {k, m}, {m}})) |
| 615 | if (auto reductionSize = getReductionSize(lhsType, 0)) |
| 616 | return outerProd(rhs, lhs, res, lhsType, *reductionSize, mask); |
| 617 | return failure(); |
| 618 | } |
| 619 | |
| 620 | private: |
| 621 | vector::CombiningKind kind; |
| 622 | Value lhs, rhs, res, mask; |
| 623 | VectorType lhsType; |
| 624 | }; |
| 625 | |
| 626 | /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul |
| 627 | /// semantics to a reduction_size-unrolled sequence: |
| 628 | /// ``` |
| 629 | /// %at = vector.transpose %a, [1, 0] |
| 630 | /// %bRow0 = vector.extract %b[0] |
| 631 | /// %atRow0 = vector.extract %at[0] |
| 632 | /// %c0 = vector.outerproduct %atRow0, %bRow0, %c |
| 633 | /// ... |
| 634 | /// %bRowK = vector.extract %b[K] |
| 635 | /// %atRowK = vector.extract %at[K] |
| 636 | /// %cK = vector.outerproduct %atRowK, %bRowK, %cK-1 |
| 637 | /// ``` |
| 638 | /// |
| 639 | /// This only kicks in when vectorContractLowering is set to OuterProduct but |
| 640 | /// otherwise supports any layout permutation of the matrix-multiply. |
| 641 | FailureOr<Value> |
| 642 | ContractionOpToOuterProductOpLowering::matchAndRewriteMaskableOp( |
| 643 | vector::ContractionOp op, MaskingOpInterface maskOp, |
| 644 | PatternRewriter &rewriter) const { |
| 645 | if (vectorContractLowering != vector::VectorContractLowering::OuterProduct) |
| 646 | return failure(); |
| 647 | |
| 648 | if (failed(filter(op))) |
| 649 | return failure(); |
| 650 | |
| 651 | UnrolledOuterProductGenerator e(rewriter, op); |
| 652 | FailureOr<Value> matmatRes = e.matmat(); |
| 653 | if (succeeded(Result: matmatRes)) { |
| 654 | return matmatRes; |
| 655 | } |
| 656 | FailureOr<Value> matvecRes = e.matvec(); |
| 657 | if (succeeded(Result: matvecRes)) { |
| 658 | return matvecRes; |
| 659 | } |
| 660 | |
| 661 | FailureOr<Value> tmatvecRes = e.tmatvec(); |
| 662 | return tmatvecRes; |
| 663 | } |
| 664 | |
| 665 | FailureOr<Value> ContractionOpToDotLowering::matchAndRewriteMaskableOp( |
| 666 | vector::ContractionOp op, MaskingOpInterface maskOp, |
| 667 | PatternRewriter &rewriter) const { |
| 668 | // TODO: Support vector.mask. |
| 669 | if (maskOp) |
| 670 | return failure(); |
| 671 | |
| 672 | if (failed(filter(op))) |
| 673 | return failure(); |
| 674 | |
| 675 | if (vectorContractLowering != vector::VectorContractLowering::Dot) |
| 676 | return failure(); |
| 677 | |
| 678 | auto iteratorTypes = op.getIteratorTypes().getValue(); |
| 679 | static constexpr std::array<int64_t, 2> perm = {1, 0}; |
| 680 | Location loc = op.getLoc(); |
| 681 | Value lhs = op.getLhs(), rhs = op.getRhs(); |
| 682 | |
| 683 | using MapList = ArrayRef<ArrayRef<AffineExpr>>; |
| 684 | auto infer = [&](MapList m) { |
| 685 | return AffineMap::inferFromExprList(m, op.getContext()); |
| 686 | }; |
| 687 | AffineExpr m, n, k; |
| 688 | bindDims(ctx: rewriter.getContext(), exprs&: m, exprs&: n, exprs&: k); |
| 689 | SmallVector<AffineMap> maps = op.getIndexingMapsArray(); |
| 690 | // |
| 691 | // In the following we wish to make the reduction dimension innermost so we |
| 692 | // can load vectors and just fmul + reduce into a scalar. |
| 693 | // |
| 694 | if (isParallelIterator(iteratorTypes[0]) && |
| 695 | isParallelIterator(iteratorTypes[1]) && |
| 696 | isReductionIterator(iteratorTypes[2])) { |
| 697 | // |
| 698 | // Two outer parallel, one inner reduction (matmat flavor). |
| 699 | // |
| 700 | if (maps == infer({{m, k}, {k, n}, {m, n}})) { |
| 701 | rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); |
| 702 | } else if (maps == infer({{m, k}, {n, k}, {m, n}})) { |
| 703 | // No need to permute anything. |
| 704 | } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { |
| 705 | lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
| 706 | rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); |
| 707 | } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { |
| 708 | lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
| 709 | } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { |
| 710 | // This is the classical row-major matmul. Just permute the lhs. |
| 711 | Value tmp = lhs; |
| 712 | lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); |
| 713 | rhs = tmp; |
| 714 | } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { |
| 715 | std::swap(a&: lhs, b&: rhs); |
| 716 | } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { |
| 717 | Value tmp = lhs; |
| 718 | lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); |
| 719 | rhs = rewriter.create<vector::TransposeOp>(loc, tmp, perm); |
| 720 | } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { |
| 721 | Value tmp = rhs; |
| 722 | rhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
| 723 | lhs = tmp; |
| 724 | } else { |
| 725 | return failure(); |
| 726 | } |
| 727 | } else if (isParallelIterator(iteratorTypes[0]) && |
| 728 | isReductionIterator(iteratorTypes[1])) { |
| 729 | // |
| 730 | // One outer parallel, one inner reduction (matvec flavor) |
| 731 | // |
| 732 | if (maps == infer({{m, n}, {n}, {m}})) { |
| 733 | // No need to permute anything. |
| 734 | } else if (maps == infer({{n, m}, {n}, {m}})) { |
| 735 | lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
| 736 | } else if (maps == infer({{n}, {m, n}, {m}})) { |
| 737 | std::swap(a&: lhs, b&: rhs); |
| 738 | } else if (maps == infer({{n}, {n, m}, {m}})) { |
| 739 | std::swap(a&: lhs, b&: rhs); |
| 740 | lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
| 741 | } else { |
| 742 | return failure(); |
| 743 | } |
| 744 | } else { |
| 745 | return failure(); |
| 746 | } |
| 747 | |
| 748 | VectorType dstType = cast<VectorType>(op.getResultType()); |
| 749 | assert(dstType.getRank() >= 1 && dstType.getRank() <= 2 && |
| 750 | "Expected dst type of rank 1 or 2" ); |
| 751 | |
| 752 | unsigned rank = dstType.getRank(); |
| 753 | unsigned dstRows = dstType.getShape()[0]; |
| 754 | unsigned dstColumns = rank == 1 ? 1 : dstType.getShape()[1]; |
| 755 | |
| 756 | // ExtractOp does not allow dynamic indexing, we must unroll explicitly. |
| 757 | Value res = rewriter.create<arith::ConstantOp>(loc, dstType, |
| 758 | rewriter.getZeroAttr(dstType)); |
| 759 | bool isInt = isa<IntegerType>(dstType.getElementType()); |
| 760 | llvm::SmallVector<Value> ; |
| 761 | extractedCols.reserve(N: dstColumns); |
| 762 | for (unsigned r = 0; r < dstRows; ++r) { |
| 763 | Value rowLhs = rewriter.create<vector::ExtractOp>(op.getLoc(), lhs, r); |
| 764 | for (unsigned c = 0; c < dstColumns; ++c) { |
| 765 | // Extract each respective row and column of the LHS and RHS once to |
| 766 | // avoid having duplicate SSA values pointing to the same rows/columns. |
| 767 | if (r == 0) { |
| 768 | Value colRhs = |
| 769 | rank == 1 ? rhs |
| 770 | : rewriter.create<vector::ExtractOp>(op.getLoc(), rhs, c); |
| 771 | extractedCols.push_back(Elt: colRhs); |
| 772 | } |
| 773 | Value = extractedCols[c]; |
| 774 | Value product = |
| 775 | createMul(op.getLoc(), rowLhs, extractedColRhs, isInt, rewriter); |
| 776 | Value sum = rewriter.create<vector::ReductionOp>( |
| 777 | op.getLoc(), vector::CombiningKind::ADD, product); |
| 778 | |
| 779 | SmallVector<int64_t, 2> pos = rank == 1 ? SmallVector<int64_t, 2>{r} |
| 780 | : SmallVector<int64_t, 2>{r, c}; |
| 781 | res = rewriter.create<vector::InsertOp>(op.getLoc(), sum, res, pos); |
| 782 | } |
| 783 | } |
| 784 | if (auto acc = op.getAcc()) |
| 785 | res = createAdd(op.getLoc(), res, acc, isInt, rewriter); |
| 786 | return res; |
| 787 | } |
| 788 | |
| 789 | /// Lower vector.contract with all size one reduction dimensions to |
| 790 | /// elementwise ops when possible. |
| 791 | struct ContractOpToElementwise |
| 792 | : public MaskableOpRewritePattern<vector::ContractionOp> { |
| 793 | using MaskableOpRewritePattern::MaskableOpRewritePattern; |
| 794 | using FilterConstraintType = |
| 795 | std::function<LogicalResult(vector::ContractionOp op)>; |
| 796 | static LogicalResult defaultFilter(vector::ContractionOp op) { |
| 797 | return success(); |
| 798 | } |
| 799 | ContractOpToElementwise( |
| 800 | vector::VectorContractLowering vectorContractLowering, |
| 801 | MLIRContext *context, PatternBenefit benefit = 1, |
| 802 | const FilterConstraintType &constraint = defaultFilter) |
| 803 | : MaskableOpRewritePattern<vector::ContractionOp>(context, benefit), |
| 804 | vectorContractLowering(vectorContractLowering), filter(defaultFilter) {} |
| 805 | |
| 806 | FailureOr<Value> |
| 807 | matchAndRewriteMaskableOp(vector::ContractionOp contractOp, |
| 808 | MaskingOpInterface maskOp, |
| 809 | PatternRewriter &rewriter) const override { |
| 810 | // TODO: Support vector.mask. |
| 811 | if (maskOp) |
| 812 | return failure(); |
| 813 | |
| 814 | if (failed(filter(contractOp))) |
| 815 | return failure(); |
| 816 | |
| 817 | if (vectorContractLowering != vector::VectorContractLowering::ParallelArith) |
| 818 | return failure(); |
| 819 | |
| 820 | ArrayRef<int64_t> lhsShape = contractOp.getLhsType().getShape(); |
| 821 | ArrayRef<int64_t> rhsShape = contractOp.getRhsType().getShape(); |
| 822 | AffineMap lhsMap = contractOp.getIndexingMapsArray()[0]; |
| 823 | AffineMap rhsMap = contractOp.getIndexingMapsArray()[1]; |
| 824 | SmallVector<int64_t> lhsReductionDims = |
| 825 | getReductionIndex(lhsMap, contractOp.getIteratorTypes()); |
| 826 | SmallVector<int64_t> rhsReductionDims = |
| 827 | getReductionIndex(rhsMap, contractOp.getIteratorTypes()); |
| 828 | // All the reduction dimensions must be a size 1. |
| 829 | for (int64_t dim : lhsReductionDims) { |
| 830 | if (lhsShape[dim] != 1) |
| 831 | return failure(); |
| 832 | } |
| 833 | for (int64_t dim : rhsReductionDims) { |
| 834 | if (rhsShape[dim] != 1) |
| 835 | return failure(); |
| 836 | } |
| 837 | AffineMap accMap = contractOp.getIndexingMapsArray()[2]; |
| 838 | unsigned numParallelDims = accMap.getNumResults(); |
| 839 | unsigned numLhsDimToBroadcast = |
| 840 | numParallelDims - (lhsMap.getNumResults() - lhsReductionDims.size()); |
| 841 | unsigned numRhsDimToBroadcast = |
| 842 | numParallelDims - (rhsMap.getNumResults() - rhsReductionDims.size()); |
| 843 | SmallVector<int64_t> lhsDims; |
| 844 | SmallVector<int64_t> lhsTranspose; |
| 845 | SmallVector<int64_t> rhsDims; |
| 846 | SmallVector<int64_t> rhsTranspose; |
| 847 | for (int64_t dim : lhsReductionDims) |
| 848 | lhsTranspose.push_back(numLhsDimToBroadcast + dim); |
| 849 | for (int64_t dim : rhsReductionDims) |
| 850 | rhsTranspose.push_back(numRhsDimToBroadcast + dim); |
| 851 | // Loop through the parallel dimensions to calculate the dimensions to |
| 852 | // broadcast and to permute in order to extract only parallel dimensions. |
| 853 | for (unsigned i = 0; i < numParallelDims; i++) { |
| 854 | std::optional<unsigned> lhsDim = |
| 855 | getDimPosition(map: lhsMap, dim: accMap.getDimPosition(idx: i)); |
| 856 | if (lhsDim) { |
| 857 | lhsTranspose.push_back(Elt: numLhsDimToBroadcast + *lhsDim); |
| 858 | } else { |
| 859 | // If the parallel dimension doesn't exist we will have to broadcast it. |
| 860 | lhsDims.push_back( |
| 861 | Elt: cast<VectorType>(contractOp.getResultType()).getDimSize(i)); |
| 862 | lhsTranspose.push_back(Elt: lhsDims.size() - 1); |
| 863 | } |
| 864 | std::optional<unsigned> rhsDim = |
| 865 | getDimPosition(map: rhsMap, dim: accMap.getDimPosition(idx: i)); |
| 866 | if (rhsDim) { |
| 867 | rhsTranspose.push_back(Elt: numRhsDimToBroadcast + *rhsDim); |
| 868 | } else { |
| 869 | // If the parallel dimension doesn't exist we will have to broadcast it. |
| 870 | rhsDims.push_back( |
| 871 | Elt: cast<VectorType>(contractOp.getResultType()).getDimSize(i)); |
| 872 | rhsTranspose.push_back(Elt: rhsDims.size() - 1); |
| 873 | } |
| 874 | } |
| 875 | Value newLhs = contractOp.getLhs(); |
| 876 | Value newRhs = contractOp.getRhs(); |
| 877 | Location loc = contractOp.getLoc(); |
| 878 | if (!lhsDims.empty()) { |
| 879 | lhsDims.append(in_start: lhsShape.begin(), in_end: lhsShape.end()); |
| 880 | auto expandedType = |
| 881 | VectorType::get(lhsDims, contractOp.getLhsType().getElementType()); |
| 882 | newLhs = rewriter.create<vector::BroadcastOp>(loc, expandedType, newLhs); |
| 883 | } |
| 884 | if (!rhsDims.empty()) { |
| 885 | rhsDims.append(in_start: rhsShape.begin(), in_end: rhsShape.end()); |
| 886 | auto expandedType = |
| 887 | VectorType::get(rhsDims, contractOp.getRhsType().getElementType()); |
| 888 | newRhs = rewriter.create<vector::BroadcastOp>(loc, expandedType, newRhs); |
| 889 | } |
| 890 | bool isInt = contractOp.getLhsType().getElementType().isIntOrIndex(); |
| 891 | newLhs = rewriter.create<vector::TransposeOp>(loc, newLhs, lhsTranspose); |
| 892 | newRhs = rewriter.create<vector::TransposeOp>(loc, newRhs, rhsTranspose); |
| 893 | SmallVector<int64_t> lhsOffsets(lhsReductionDims.size(), 0); |
| 894 | SmallVector<int64_t> rhsOffsets(rhsReductionDims.size(), 0); |
| 895 | newLhs = rewriter.create<vector::ExtractOp>(loc, newLhs, lhsOffsets); |
| 896 | newRhs = rewriter.create<vector::ExtractOp>(loc, newRhs, rhsOffsets); |
| 897 | std::optional<Value> result = |
| 898 | createContractArithOp(loc, newLhs, newRhs, contractOp.getAcc(), |
| 899 | contractOp.getKind(), rewriter, isInt); |
| 900 | if (result) |
| 901 | return *result; |
| 902 | |
| 903 | return failure(); |
| 904 | } |
| 905 | |
| 906 | private: |
| 907 | /// Options to control the vector patterns. |
| 908 | vector::VectorContractLowering vectorContractLowering; |
| 909 | FilterConstraintType filter; |
| 910 | }; |
| 911 | |
| 912 | /// Progressive lowering of ContractionOp. |
| 913 | /// One: |
| 914 | /// %x = vector.contract with at least one free/batch dimension |
| 915 | /// is replaced by: |
| 916 | /// %a = vector.contract with one less free/batch dimension |
| 917 | /// %b = vector.contract with one less free/batch dimension |
| 918 | /// .. |
| 919 | /// %x = combine %a %b .. |
| 920 | /// until a pure contraction is reached (no free/batch dimensions), |
| 921 | /// which is replaced by a dot-product. |
| 922 | /// |
| 923 | /// This only kicks in when either vectorContractLoweringOption is set |
| 924 | /// to DOT or when other contraction patterns fail. |
| 925 | // |
| 926 | // TODO: break down into transpose/reshape/cast ops |
| 927 | // when they become available to avoid code dup |
| 928 | // TODO: investigate lowering order impact on performance |
| 929 | FailureOr<Value> ContractionOpLowering::matchAndRewriteMaskableOp( |
| 930 | vector::ContractionOp op, MaskingOpInterface maskOp, |
| 931 | PatternRewriter &rewriter) const { |
| 932 | if (failed(filter(op))) |
| 933 | return failure(); |
| 934 | |
| 935 | // TODO: support mixed mode contract lowering. |
| 936 | if (op.getLhsType().getElementType() != |
| 937 | getElementTypeOrSelf(op.getAccType()) || |
| 938 | op.getRhsType().getElementType() != getElementTypeOrSelf(op.getAccType())) |
| 939 | return failure(); |
| 940 | |
| 941 | // TODO: the code below assumes the default contraction, make sure it supports |
| 942 | // other kinds before enabling this lowering. |
| 943 | if (op.getKind() != vector::CombiningKind::ADD) { |
| 944 | return rewriter.notifyMatchFailure( |
| 945 | op, "contractions other than 'add' not supported" ); |
| 946 | } |
| 947 | |
| 948 | // TODO: implement benefits, cost models. |
| 949 | MLIRContext *ctx = op.getContext(); |
| 950 | |
| 951 | ContractionOpToMatmulOpLowering pat1(vectorContractLoweringOption, ctx); |
| 952 | FailureOr<Value> newVal1 = |
| 953 | pat1.matchAndRewriteMaskableOp(op, maskOp, rewriter); |
| 954 | if (!failed(Result: newVal1)) |
| 955 | return newVal1; |
| 956 | |
| 957 | ContractionOpToOuterProductOpLowering pat2(vectorContractLoweringOption, ctx); |
| 958 | FailureOr<Value> newVal2 = |
| 959 | pat2.matchAndRewriteMaskableOp(op, maskOp, rewriter); |
| 960 | if (!failed(Result: newVal2)) |
| 961 | return newVal2; |
| 962 | |
| 963 | ContractionOpToDotLowering pat3(vectorContractLoweringOption, ctx); |
| 964 | FailureOr<Value> newVal3 = |
| 965 | pat3.matchAndRewriteMaskableOp(op, maskOp, rewriter); |
| 966 | if (!failed(Result: newVal3)) |
| 967 | return newVal3; |
| 968 | |
| 969 | ContractOpToElementwise pat4(vectorContractLoweringOption, ctx); |
| 970 | FailureOr<Value> newVal4 = |
| 971 | pat4.matchAndRewriteMaskableOp(op, maskOp, rewriter); |
| 972 | if (!failed(Result: newVal4)) |
| 973 | return newVal4; |
| 974 | |
| 975 | // Vector mask setup. |
| 976 | |
| 977 | Value mask; |
| 978 | if (maskOp) |
| 979 | mask = maskOp.getMask(); |
| 980 | // Find first batch dimension in LHS/RHS, and lower when found. |
| 981 | std::vector<std::pair<int64_t, int64_t>> batchDimMap = op.getBatchDimMap(); |
| 982 | if (!batchDimMap.empty()) { |
| 983 | int64_t lhsIndex = batchDimMap[0].first; |
| 984 | int64_t rhsIndex = batchDimMap[0].second; |
| 985 | auto newOp = lowerParallel(rewriter, op: op, lhsIndex, rhsIndex, mask); |
| 986 | if (failed(newOp)) |
| 987 | return failure(); |
| 988 | return newOp; |
| 989 | } |
| 990 | |
| 991 | // Collect contracting dimensions. |
| 992 | std::vector<std::pair<int64_t, int64_t>> contractingDimMap = |
| 993 | op.getContractingDimMap(); |
| 994 | DenseSet<int64_t> lhsContractingDimSet; |
| 995 | DenseSet<int64_t> rhsContractingDimSet; |
| 996 | for (auto &dimPair : contractingDimMap) { |
| 997 | lhsContractingDimSet.insert(dimPair.first); |
| 998 | rhsContractingDimSet.insert(dimPair.second); |
| 999 | } |
| 1000 | |
| 1001 | // Find first free dimension in LHS, and lower when found. |
| 1002 | VectorType lhsType = op.getLhsType(); |
| 1003 | for (int64_t lhsIndex = 0, e = lhsType.getRank(); lhsIndex < e; ++lhsIndex) { |
| 1004 | if (lhsContractingDimSet.count(V: lhsIndex) == 0) { |
| 1005 | auto newOp = lowerParallel(rewriter, op: op, lhsIndex, /*rhsIndex=*/-1, mask); |
| 1006 | if (failed(newOp)) |
| 1007 | return failure(); |
| 1008 | return newOp; |
| 1009 | } |
| 1010 | } |
| 1011 | |
| 1012 | // Find first free dimension in RHS, and lower when found. |
| 1013 | VectorType rhsType = op.getRhsType(); |
| 1014 | for (int64_t rhsIndex = 0, e = rhsType.getRank(); rhsIndex < e; ++rhsIndex) { |
| 1015 | if (rhsContractingDimSet.count(V: rhsIndex) == 0) { |
| 1016 | auto newOp = lowerParallel(rewriter, op: op, /*lhsIndex=*/-1, rhsIndex, mask); |
| 1017 | if (failed(newOp)) |
| 1018 | return failure(); |
| 1019 | return newOp; |
| 1020 | } |
| 1021 | } |
| 1022 | |
| 1023 | // Lower the first remaining reduction dimension. |
| 1024 | if (!contractingDimMap.empty()) { |
| 1025 | auto newOp = lowerReduction(rewriter, op: op, mask); |
| 1026 | if (failed(newOp)) |
| 1027 | return failure(); |
| 1028 | return newOp; |
| 1029 | } |
| 1030 | |
| 1031 | return failure(); |
| 1032 | } |
| 1033 | |
| 1034 | // Lower one parallel dimension. |
| 1035 | // Incidentally also tolerates unit-size (hence trivial) reduction dimensions. |
| 1036 | // TODO: consider reusing existing contract unrolling |
| 1037 | FailureOr<Value> ContractionOpLowering::lowerParallel(PatternRewriter &rewriter, |
| 1038 | vector::ContractionOp op, |
| 1039 | int64_t lhsIndex, |
| 1040 | int64_t rhsIndex, |
| 1041 | Value mask) const { |
| 1042 | VectorType lhsType = op.getLhsType(); |
| 1043 | VectorType rhsType = op.getRhsType(); |
| 1044 | VectorType resType = cast<VectorType>(op.getResultType()); |
| 1045 | // Find the iterator type index and result index. |
| 1046 | SmallVector<AffineMap> iMap = op.getIndexingMapsArray(); |
| 1047 | int64_t iterIndex = -1; |
| 1048 | int64_t dimSize = -1; |
| 1049 | if (lhsIndex >= 0) { |
| 1050 | iterIndex = iMap[0].getDimPosition(idx: lhsIndex); |
| 1051 | if (rhsIndex >= 0 && iterIndex != iMap[1].getDimPosition(idx: rhsIndex)) |
| 1052 | return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { |
| 1053 | diag << "expected lhsIndex=" << lhsIndex << " and rhsIndex=" << rhsIndex |
| 1054 | << " to map to the same dimension" ; |
| 1055 | }); |
| 1056 | if (lhsType.getScalableDims()[lhsIndex]) |
| 1057 | return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { |
| 1058 | diag << "Unrolling scalable dimension (lhsIndex=" << lhsIndex |
| 1059 | << ") is not supported yet" ; |
| 1060 | }); |
| 1061 | dimSize = lhsType.getDimSize(lhsIndex); |
| 1062 | } else if (rhsIndex >= 0) { |
| 1063 | iterIndex = iMap[1].getDimPosition(idx: rhsIndex); |
| 1064 | if (rhsType.getScalableDims()[rhsIndex]) |
| 1065 | return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { |
| 1066 | diag << "Unrolling scalable dimension (rhsIndex=" << rhsIndex |
| 1067 | << ") is not supported yet" ; |
| 1068 | }); |
| 1069 | dimSize = rhsType.getDimSize(rhsIndex); |
| 1070 | } |
| 1071 | if (iterIndex < 0) |
| 1072 | return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { |
| 1073 | diag << "expected either lhsIndex=" << lhsIndex |
| 1074 | << " or rhsIndex=" << rhsIndex << " to be nonnegative" ; |
| 1075 | }); |
| 1076 | // value_or(-1) means that we tolerate a dimension not appearing |
| 1077 | // in the result map. That can't happen for actual parallel iterators, but |
| 1078 | // the caller ContractionOpLowering::matchAndRewrite is currently calling |
| 1079 | // lowerParallel also for the case of unit-size reduction dims appearing only |
| 1080 | // on one of LHS or RHS, not both. At the moment, such cases are created by |
| 1081 | // CastAwayContractionLeadingOneDim, so we need to either support that or |
| 1082 | // modify that pattern. |
| 1083 | int64_t resIndex = getResultIndex(map: iMap[2], index: iterIndex).value_or(u: -1); |
| 1084 | if (resIndex == -1 && dimSize != 1) |
| 1085 | return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { |
| 1086 | diag << "expected the dimension for iterIndex=" << iterIndex |
| 1087 | << " to either appear in the result map, or to be a unit dimension" ; |
| 1088 | }); |
| 1089 | |
| 1090 | // Construct new iterator types and affine map array attribute. |
| 1091 | std::array<AffineMap, 3> lowIndexingMaps = { |
| 1092 | adjustMap(map: iMap[0], index: iterIndex, rewriter), |
| 1093 | adjustMap(map: iMap[1], index: iterIndex, rewriter), |
| 1094 | adjustMap(map: iMap[2], index: iterIndex, rewriter)}; |
| 1095 | auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps); |
| 1096 | auto lowIter = |
| 1097 | rewriter.getArrayAttr(value: adjustIter(op.getIteratorTypes(), iterIndex)); |
| 1098 | // Unroll into a series of lower dimensional vector.contract ops. |
| 1099 | Location loc = op.getLoc(); |
| 1100 | Value result = rewriter.create<arith::ConstantOp>( |
| 1101 | loc, resType, rewriter.getZeroAttr(resType)); |
| 1102 | |
| 1103 | for (int64_t d = 0; d < dimSize; ++d) { |
| 1104 | auto lhs = reshapeLoad(loc, op.getLhs(), lhsType, lhsIndex, d, rewriter); |
| 1105 | auto rhs = reshapeLoad(loc, op.getRhs(), rhsType, rhsIndex, d, rewriter); |
| 1106 | auto acc = reshapeLoad(loc, op.getAcc(), resType, resIndex, d, rewriter); |
| 1107 | |
| 1108 | Value lowMask; |
| 1109 | if (mask) |
| 1110 | lowMask = reshapeLoad(loc, mask, cast<VectorType>(mask.getType()), |
| 1111 | iterIndex, d, rewriter); |
| 1112 | |
| 1113 | Operation *lowContract = rewriter.create<vector::ContractionOp>( |
| 1114 | loc, lhs, rhs, acc, lowAffine, lowIter); |
| 1115 | lowContract = maskOperation(builder&: rewriter, maskableOp: lowContract, mask: lowMask); |
| 1116 | result = reshapeStore(loc, lowContract->getResult(idx: 0), result, resType, |
| 1117 | resIndex, d, rewriter); |
| 1118 | } |
| 1119 | return result; |
| 1120 | } |
| 1121 | |
| 1122 | // Lower one reduction dimension. |
| 1123 | FailureOr<Value> ContractionOpLowering::lowerReduction( |
| 1124 | PatternRewriter &rewriter, vector::ContractionOp op, Value mask) const { |
| 1125 | auto loc = op.getLoc(); |
| 1126 | VectorType lhsType = op.getLhsType(); |
| 1127 | VectorType rhsType = op.getRhsType(); |
| 1128 | Type resType = op.getResultType(); |
| 1129 | if (isa<VectorType>(Val: resType)) |
| 1130 | return rewriter.notifyMatchFailure(op, |
| 1131 | "did not expect a VectorType result" ); |
| 1132 | bool isInt = isa<IntegerType>(Val: resType); |
| 1133 | // Use iterator index 0. |
| 1134 | int64_t iterIndex = 0; |
| 1135 | SmallVector<AffineMap> iMap = op.getIndexingMapsArray(); |
| 1136 | std::optional<int64_t> lookupLhs = getResultIndex(map: iMap[0], index: iterIndex); |
| 1137 | std::optional<int64_t> lookupRhs = getResultIndex(map: iMap[1], index: iterIndex); |
| 1138 | if (!lookupLhs.has_value()) |
| 1139 | return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { |
| 1140 | diag << "expected iterIndex=" << iterIndex << "to map to a LHS dimension" ; |
| 1141 | }); |
| 1142 | if (!lookupRhs.has_value()) |
| 1143 | return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { |
| 1144 | diag << "expected iterIndex=" << iterIndex << "to map to a RHS dimension" ; |
| 1145 | }); |
| 1146 | int64_t lhsIndex = *lookupLhs; |
| 1147 | int64_t rhsIndex = *lookupRhs; |
| 1148 | int64_t dimSize = lhsType.getDimSize(lhsIndex); |
| 1149 | if (dimSize != rhsType.getDimSize(rhsIndex)) |
| 1150 | return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { |
| 1151 | diag << "expect LHS dimension " << lhsIndex |
| 1152 | << " to have the same size as RHS dimension " << rhsIndex; |
| 1153 | }); |
| 1154 | // Base case. |
| 1155 | if (lhsType.getRank() == 1) { |
| 1156 | if (rhsType.getRank() != 1) |
| 1157 | return rewriter.notifyMatchFailure( |
| 1158 | op, "When LHS has rank 1, expected also RHS to have rank 1" ); |
| 1159 | Value m = createMul(loc, op.getLhs(), op.getRhs(), isInt, rewriter); |
| 1160 | auto kind = vector::CombiningKind::ADD; |
| 1161 | |
| 1162 | Value acc = op.getAcc(); |
| 1163 | Operation *reductionOp = |
| 1164 | acc ? rewriter.create<vector::ReductionOp>(loc, kind, m, acc) |
| 1165 | : rewriter.create<vector::ReductionOp>(loc, kind, m); |
| 1166 | return maskOperation(builder&: rewriter, maskableOp: reductionOp, mask)->getResult(idx: 0); |
| 1167 | } |
| 1168 | // Construct new iterator types and affine map array attribute. |
| 1169 | std::array<AffineMap, 3> lowIndexingMaps = { |
| 1170 | adjustMap(map: iMap[0], index: iterIndex, rewriter), |
| 1171 | adjustMap(map: iMap[1], index: iterIndex, rewriter), |
| 1172 | adjustMap(map: iMap[2], index: iterIndex, rewriter)}; |
| 1173 | auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps); |
| 1174 | auto lowIter = |
| 1175 | rewriter.getArrayAttr(value: adjustIter(op.getIteratorTypes(), iterIndex)); |
| 1176 | // Unroll into a series of lower dimensional vector.contract ops. |
| 1177 | // By feeding the initial accumulator into the first contraction, |
| 1178 | // and the result of each contraction into the next, eventually |
| 1179 | // the sum of all reductions is computed. |
| 1180 | Value result = op.getAcc(); |
| 1181 | for (int64_t d = 0; d < dimSize; ++d) { |
| 1182 | auto lhs = reshapeLoad(loc, op.getLhs(), lhsType, lhsIndex, d, rewriter); |
| 1183 | auto rhs = reshapeLoad(loc, op.getRhs(), rhsType, rhsIndex, d, rewriter); |
| 1184 | Value newMask; |
| 1185 | if (mask) |
| 1186 | newMask = reshapeLoad(loc, mask, cast<VectorType>(mask.getType()), |
| 1187 | iterIndex, d, rewriter); |
| 1188 | |
| 1189 | Operation *newContract = rewriter.create<vector::ContractionOp>( |
| 1190 | loc, lhs, rhs, result, lowAffine, lowIter); |
| 1191 | result = maskOperation(builder&: rewriter, maskableOp: newContract, mask: newMask)->getResult(idx: 0); |
| 1192 | } |
| 1193 | return result; |
| 1194 | } |
| 1195 | |
| 1196 | /// Progressive lowering of OuterProductOp. |
| 1197 | /// One: |
| 1198 | /// %x = vector.outerproduct %lhs, %rhs, %acc |
| 1199 | /// is replaced by: |
| 1200 | /// %z = zero-result |
| 1201 | /// %0 = vector.extract %lhs[0] |
| 1202 | /// %1 = vector.broadcast %0 |
| 1203 | /// %2 = vector.extract %acc[0] |
| 1204 | /// %3 = vector.fma %1, %rhs, %2 |
| 1205 | /// %4 = vector.insert %3, %z[0] |
| 1206 | /// .. |
| 1207 | /// %x = vector.insert %.., %..[N-1] |
| 1208 | /// |
| 1209 | class OuterProductOpLowering : public OpRewritePattern<vector::OuterProductOp> { |
| 1210 | public: |
| 1211 | using OpRewritePattern::OpRewritePattern; |
| 1212 | |
| 1213 | LogicalResult matchAndRewrite(vector::OuterProductOp op, |
| 1214 | PatternRewriter &rewriter) const override { |
| 1215 | VectorType resType = op.getResultVectorType(); |
| 1216 | if ((resType.getShape().size() >= 2) && resType.allDimsScalable()) |
| 1217 | return failure(); |
| 1218 | |
| 1219 | auto loc = op.getLoc(); |
| 1220 | |
| 1221 | VectorType lhsType = op.getOperandVectorTypeLHS(); |
| 1222 | VectorType rhsType = dyn_cast<VectorType>(op.getOperandTypeRHS()); |
| 1223 | Type eltType = resType.getElementType(); |
| 1224 | bool isInt = isa<IntegerType, IndexType>(Val: eltType); |
| 1225 | Value acc = op.getAcc(); |
| 1226 | vector::CombiningKind kind = op.getKind(); |
| 1227 | |
| 1228 | // Vector mask setup. |
| 1229 | OpBuilder::InsertionGuard guard(rewriter); |
| 1230 | auto maskableOp = cast<vector::MaskableOpInterface>(op.getOperation()); |
| 1231 | Operation *rootOp; |
| 1232 | Value mask; |
| 1233 | if (maskableOp.isMasked()) { |
| 1234 | rewriter.setInsertionPoint(maskableOp.getMaskingOp()); |
| 1235 | rootOp = maskableOp.getMaskingOp(); |
| 1236 | mask = maskableOp.getMaskingOp().getMask(); |
| 1237 | } else { |
| 1238 | rootOp = op; |
| 1239 | } |
| 1240 | |
| 1241 | if (!rhsType) { |
| 1242 | // Special case: AXPY operation. |
| 1243 | Value b = rewriter.create<vector::BroadcastOp>(loc, lhsType, op.getRhs()); |
| 1244 | std::optional<Value> mult = createContractArithOp( |
| 1245 | loc, op.getLhs(), b, acc, kind, rewriter, isInt, mask); |
| 1246 | if (!mult.has_value()) |
| 1247 | return failure(); |
| 1248 | rewriter.replaceOp(op: rootOp, newValues: *mult); |
| 1249 | return success(); |
| 1250 | } |
| 1251 | |
| 1252 | Value result = rewriter.create<arith::ConstantOp>( |
| 1253 | loc, resType, rewriter.getZeroAttr(resType)); |
| 1254 | for (int64_t d = 0, e = resType.getDimSize(0); d < e; ++d) { |
| 1255 | Value x = rewriter.create<vector::ExtractOp>(loc, op.getLhs(), d); |
| 1256 | Value a = rewriter.create<vector::BroadcastOp>(loc, rhsType, x); |
| 1257 | Value r = nullptr; |
| 1258 | if (acc) |
| 1259 | r = rewriter.create<vector::ExtractOp>(loc, acc, d); |
| 1260 | Value extrMask; |
| 1261 | if (mask) |
| 1262 | extrMask = rewriter.create<vector::ExtractOp>(loc, mask, d); |
| 1263 | |
| 1264 | std::optional<Value> m = createContractArithOp( |
| 1265 | loc, a, op.getRhs(), r, kind, rewriter, isInt, extrMask); |
| 1266 | if (!m.has_value()) |
| 1267 | return failure(); |
| 1268 | result = rewriter.create<vector::InsertOp>(loc, *m, result, d); |
| 1269 | } |
| 1270 | |
| 1271 | rewriter.replaceOp(op: rootOp, newValues: result); |
| 1272 | return success(); |
| 1273 | } |
| 1274 | }; |
| 1275 | |
| 1276 | /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul |
| 1277 | /// semantics to: |
| 1278 | /// ``` |
| 1279 | /// %mta = maybe_transpose |
| 1280 | /// %mtb = maybe_transpose |
| 1281 | /// %flattened_a = vector.shape_cast %mta |
| 1282 | /// %flattened_b = vector.shape_cast %mtb |
| 1283 | /// %flattened_d = vector.matrix_multiply %flattened_a, %flattened_b |
| 1284 | /// %mtd = vector.shape_cast %flattened_d |
| 1285 | /// %d = maybe_untranspose %mtd |
| 1286 | /// %e = add %c, %d |
| 1287 | /// ``` |
| 1288 | /// `vector.matrix_multiply` later lowers to `llvm.matrix.multiply`. |
| 1289 | // |
| 1290 | /// This only kicks in when vectorContractLowering is set to `Matmul`. |
| 1291 | /// vector.transpose operations are inserted if the vector.contract op is not a |
| 1292 | /// row-major matrix multiply. |
| 1293 | /// |
| 1294 | /// Scalable vectors are not supported. |
| 1295 | FailureOr<Value> ContractionOpToMatmulOpLowering::matchAndRewriteMaskableOp( |
| 1296 | vector::ContractionOp op, MaskingOpInterface maskOp, |
| 1297 | PatternRewriter &rew) const { |
| 1298 | // TODO: Support vector.mask. |
| 1299 | if (maskOp) |
| 1300 | return failure(); |
| 1301 | |
| 1302 | if (vectorContractLowering != vector::VectorContractLowering::Matmul) |
| 1303 | return failure(); |
| 1304 | if (failed(filter(op))) |
| 1305 | return failure(); |
| 1306 | |
| 1307 | auto iteratorTypes = op.getIteratorTypes().getValue(); |
| 1308 | if (!isParallelIterator(iteratorTypes[0]) || |
| 1309 | !isParallelIterator(iteratorTypes[1]) || |
| 1310 | !isReductionIterator(iteratorTypes[2])) |
| 1311 | return failure(); |
| 1312 | |
| 1313 | Type opResType = op.getType(); |
| 1314 | VectorType vecType = dyn_cast<VectorType>(opResType); |
| 1315 | if (vecType && vecType.isScalable()) { |
| 1316 | // Note - this is sufficient to reject all cases with scalable vectors. |
| 1317 | return failure(); |
| 1318 | } |
| 1319 | |
| 1320 | Type elementType = op.getLhsType().getElementType(); |
| 1321 | if (!elementType.isIntOrFloat()) |
| 1322 | return failure(); |
| 1323 | |
| 1324 | Type dstElementType = vecType ? vecType.getElementType() : opResType; |
| 1325 | if (elementType != dstElementType) |
| 1326 | return failure(); |
| 1327 | |
| 1328 | // Perform lhs + rhs transpositions to conform to matmul row-major semantics. |
| 1329 | // Bail out if the contraction cannot be put in this form. |
| 1330 | MLIRContext *ctx = op.getContext(); |
| 1331 | Location loc = op.getLoc(); |
| 1332 | AffineExpr m, n, k; |
| 1333 | bindDims(ctx: rew.getContext(), exprs&: m, exprs&: n, exprs&: k); |
| 1334 | // LHS must be A(m, k) or A(k, m). |
| 1335 | Value lhs = op.getLhs(); |
| 1336 | auto lhsMap = op.getIndexingMapsArray()[0]; |
| 1337 | if (lhsMap == AffineMap::get(dimCount: 3, symbolCount: 0, results: {k, m}, context: ctx)) |
| 1338 | lhs = rew.create<vector::TransposeOp>(loc, lhs, ArrayRef<int64_t>{1, 0}); |
| 1339 | else if (lhsMap != AffineMap::get(dimCount: 3, symbolCount: 0, results: {m, k}, context: ctx)) |
| 1340 | return failure(); |
| 1341 | |
| 1342 | // RHS must be B(k, n) or B(n, k). |
| 1343 | Value rhs = op.getRhs(); |
| 1344 | auto rhsMap = op.getIndexingMapsArray()[1]; |
| 1345 | if (rhsMap == AffineMap::get(dimCount: 3, symbolCount: 0, results: {n, k}, context: ctx)) |
| 1346 | rhs = rew.create<vector::TransposeOp>(loc, rhs, ArrayRef<int64_t>{1, 0}); |
| 1347 | else if (rhsMap != AffineMap::get(dimCount: 3, symbolCount: 0, results: {k, n}, context: ctx)) |
| 1348 | return failure(); |
| 1349 | |
| 1350 | // At this point lhs and rhs are in row-major. |
| 1351 | VectorType lhsType = cast<VectorType>(lhs.getType()); |
| 1352 | VectorType rhsType = cast<VectorType>(rhs.getType()); |
| 1353 | int64_t lhsRows = lhsType.getDimSize(0); |
| 1354 | int64_t lhsColumns = lhsType.getDimSize(1); |
| 1355 | int64_t rhsColumns = rhsType.getDimSize(1); |
| 1356 | |
| 1357 | Type flattenedLHSType = |
| 1358 | VectorType::get(lhsType.getNumElements(), lhsType.getElementType()); |
| 1359 | lhs = rew.create<vector::ShapeCastOp>(loc, flattenedLHSType, lhs); |
| 1360 | |
| 1361 | Type flattenedRHSType = |
| 1362 | VectorType::get(rhsType.getNumElements(), rhsType.getElementType()); |
| 1363 | rhs = rew.create<vector::ShapeCastOp>(loc, flattenedRHSType, rhs); |
| 1364 | |
| 1365 | Value mul = rew.create<vector::MatmulOp>(loc, lhs, rhs, lhsRows, lhsColumns, |
| 1366 | rhsColumns); |
| 1367 | mul = rew.create<vector::ShapeCastOp>( |
| 1368 | loc, |
| 1369 | VectorType::get({lhsRows, rhsColumns}, |
| 1370 | getElementTypeOrSelf(op.getAcc().getType())), |
| 1371 | mul); |
| 1372 | |
| 1373 | // ACC must be C(m, n) or C(n, m). |
| 1374 | auto accMap = op.getIndexingMapsArray()[2]; |
| 1375 | if (accMap == AffineMap::get(dimCount: 3, symbolCount: 0, results: {n, m}, context: ctx)) |
| 1376 | mul = rew.create<vector::TransposeOp>(loc, mul, ArrayRef<int64_t>{1, 0}); |
| 1377 | else if (accMap != AffineMap::get(dimCount: 3, symbolCount: 0, results: {m, n}, context: ctx)) |
| 1378 | llvm_unreachable("invalid contraction semantics" ); |
| 1379 | |
| 1380 | Value res = |
| 1381 | isa<IntegerType>(elementType) |
| 1382 | ? static_cast<Value>(rew.create<arith::AddIOp>(loc, op.getAcc(), mul)) |
| 1383 | : static_cast<Value>( |
| 1384 | rew.create<arith::AddFOp>(loc, op.getAcc(), mul)); |
| 1385 | |
| 1386 | return res; |
| 1387 | } |
| 1388 | } // namespace |
| 1389 | |
| 1390 | void mlir::vector::populateVectorContractLoweringPatterns( |
| 1391 | RewritePatternSet &patterns, |
| 1392 | VectorContractLowering vectorContractLoweringOption, PatternBenefit benefit, |
| 1393 | bool disableOuterProductLowering) { |
| 1394 | if (!disableOuterProductLowering) |
| 1395 | patterns.add<OuterProductOpLowering>(arg: patterns.getContext(), args&: benefit); |
| 1396 | patterns.add<ContractionOpLowering, ContractionOpToMatmulOpLowering, |
| 1397 | ContractionOpToOuterProductOpLowering>( |
| 1398 | vectorContractLoweringOption, patterns.getContext(), benefit); |
| 1399 | } |
| 1400 | |
| 1401 | void mlir::vector::populateVectorOuterProductLoweringPatterns( |
| 1402 | RewritePatternSet &patterns, PatternBenefit benefit) { |
| 1403 | patterns.add<OuterProductOpLowering>(arg: patterns.getContext(), args&: benefit); |
| 1404 | } |
| 1405 | |