1 | //===- LowerVectorContract.cpp - Lower 'vector.contract' operation --------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements target-independent rewrites and utilities to lower the |
10 | // 'vector.contract' operation. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
15 | #include "mlir/Dialect/Arith/IR/Arith.h" |
16 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
17 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
18 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
19 | #include "mlir/Dialect/SCF/IR/SCF.h" |
20 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
21 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
22 | #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
23 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
24 | #include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h" |
25 | #include "mlir/Dialect/Vector/Utils/VectorUtils.h" |
26 | #include "mlir/IR/BuiltinAttributeInterfaces.h" |
27 | #include "mlir/IR/BuiltinTypes.h" |
28 | #include "mlir/IR/ImplicitLocOpBuilder.h" |
29 | #include "mlir/IR/Location.h" |
30 | #include "mlir/IR/Matchers.h" |
31 | #include "mlir/IR/PatternMatch.h" |
32 | #include "mlir/IR/TypeUtilities.h" |
33 | #include "mlir/Interfaces/VectorInterfaces.h" |
34 | |
35 | #define DEBUG_TYPE "vector-contract-lowering" |
36 | |
37 | using namespace mlir; |
38 | using namespace mlir::vector; |
39 | |
40 | //===----------------------------------------------------------------------===// |
41 | // Helper functions |
42 | //===----------------------------------------------------------------------===// |
43 | // Helper to find an index in an affine map. |
44 | static std::optional<int64_t> getResultIndex(AffineMap map, int64_t index) { |
45 | for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { |
46 | int64_t idx = map.getDimPosition(idx: i); |
47 | if (idx == index) |
48 | return i; |
49 | } |
50 | return std::nullopt; |
51 | } |
52 | |
53 | // Helper to construct iterator types with one index removed. |
54 | static SmallVector<Attribute> adjustIter(ArrayAttr iteratorTypes, |
55 | int64_t index) { |
56 | SmallVector<Attribute> results; |
57 | for (const auto &it : llvm::enumerate(iteratorTypes)) { |
58 | int64_t idx = it.index(); |
59 | if (idx == index) |
60 | continue; |
61 | results.push_back(it.value()); |
62 | } |
63 | return results; |
64 | } |
65 | |
66 | // Helper to construct an affine map with one index removed. |
67 | static AffineMap adjustMap(AffineMap map, int64_t index, |
68 | PatternRewriter &rewriter) { |
69 | auto *ctx = rewriter.getContext(); |
70 | SmallVector<AffineExpr> results; |
71 | for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { |
72 | int64_t idx = map.getDimPosition(idx: i); |
73 | if (idx == index) |
74 | continue; |
75 | // Re-insert remaining indices, but renamed when occurring |
76 | // after the removed index. |
77 | auto targetExpr = getAffineDimExpr(position: idx < index ? idx : idx - 1, context: ctx); |
78 | results.push_back(Elt: targetExpr); |
79 | } |
80 | return AffineMap::get(dimCount: map.getNumDims() - 1, symbolCount: 0, results, context: ctx); |
81 | } |
82 | |
83 | // Helper method to possibly drop a dimension in a load. |
84 | // TODO |
85 | static Value reshapeLoad(Location loc, Value val, VectorType type, |
86 | int64_t index, int64_t pos, |
87 | PatternRewriter &rewriter) { |
88 | if (index == -1) |
89 | return val; |
90 | |
91 | // At extraction dimension? |
92 | if (index == 0) |
93 | return rewriter.create<vector::ExtractOp>(loc, val, pos); |
94 | |
95 | // Unroll leading dimensions. |
96 | VectorType vType = VectorType::Builder(type).dropDim(0); |
97 | VectorType resType = VectorType::Builder(type).dropDim(index); |
98 | Value result = rewriter.create<arith::ConstantOp>( |
99 | loc, resType, rewriter.getZeroAttr(resType)); |
100 | for (int64_t d = 0, e = resType.getDimSize(0); d < e; d++) { |
101 | Value ext = rewriter.create<vector::ExtractOp>(loc, val, d); |
102 | Value load = reshapeLoad(loc, ext, vType, index - 1, pos, rewriter); |
103 | result = rewriter.create<vector::InsertOp>(loc, load, result, d); |
104 | } |
105 | return result; |
106 | } |
107 | |
108 | // Helper method to possibly drop a dimension in a store. |
109 | // TODO |
110 | static Value reshapeStore(Location loc, Value val, Value result, |
111 | VectorType type, int64_t index, int64_t pos, |
112 | PatternRewriter &rewriter) { |
113 | // Unmodified? |
114 | if (index == -1) |
115 | return val; |
116 | // At insertion dimension? |
117 | if (index == 0) |
118 | return rewriter.create<vector::InsertOp>(loc, val, result, pos); |
119 | |
120 | // Unroll leading dimensions. |
121 | VectorType vType = VectorType::Builder(type).dropDim(0); |
122 | for (int64_t d = 0, e = type.getDimSize(0); d < e; d++) { |
123 | Value ext = rewriter.create<vector::ExtractOp>(loc, result, d); |
124 | Value ins = rewriter.create<vector::ExtractOp>(loc, val, d); |
125 | Value sto = reshapeStore(loc, ins, ext, vType, index - 1, pos, rewriter); |
126 | result = rewriter.create<vector::InsertOp>(loc, sto, result, d); |
127 | } |
128 | return result; |
129 | } |
130 | |
131 | /// Helper to create arithmetic operation associated with a kind of contraction. |
132 | static std::optional<Value> |
133 | createContractArithOp(Location loc, Value x, Value y, Value acc, |
134 | vector::CombiningKind kind, PatternRewriter &rewriter, |
135 | bool isInt, Value mask = Value()) { |
136 | using vector::CombiningKind; |
137 | Value mul; |
138 | |
139 | if (isInt) { |
140 | if (kind == CombiningKind::MINNUMF || kind == CombiningKind::MAXNUMF || |
141 | kind == CombiningKind::MINIMUMF || kind == CombiningKind::MAXIMUMF) |
142 | // Only valid for floating point types. |
143 | return std::nullopt; |
144 | mul = rewriter.create<arith::MulIOp>(loc, x, y); |
145 | } else { |
146 | // Float case. |
147 | if (kind == CombiningKind::AND || kind == CombiningKind::MINUI || |
148 | kind == CombiningKind::MINSI || kind == CombiningKind::MAXUI || |
149 | kind == CombiningKind::MAXSI || kind == CombiningKind::OR || |
150 | kind == CombiningKind::XOR) |
151 | // Only valid for integer types. |
152 | return std::nullopt; |
153 | // Special case for fused multiply-add. |
154 | if (acc && isa<VectorType>(acc.getType()) && kind == CombiningKind::ADD) { |
155 | Value fma = rewriter.create<vector::FMAOp>(loc, x, y, acc); |
156 | if (mask) |
157 | // The fma op doesn't need explicit masking. However, fma ops used in |
158 | // reductions must preserve previous 'acc' values for masked-out lanes. |
159 | fma = selectPassthru(builder&: rewriter, mask, newValue: fma, passthru: acc); |
160 | return fma; |
161 | } |
162 | mul = rewriter.create<arith::MulFOp>(loc, x, y); |
163 | } |
164 | |
165 | if (!acc) |
166 | return std::optional<Value>(mul); |
167 | |
168 | return makeArithReduction(rewriter, loc, kind, mul, acc, |
169 | /*fastmath=*/nullptr, mask); |
170 | } |
171 | |
172 | /// Return the positions of the reductions in the given map. |
173 | static SmallVector<int64_t> getReductionIndex(AffineMap map, |
174 | ArrayAttr iteratorTypes) { |
175 | SmallVector<int64_t> dimsIdx; |
176 | for (unsigned i = 0, e = map.getNumResults(); i < e; i++) { |
177 | if (isReductionIterator(iteratorTypes[map.getDimPosition(idx: i)])) |
178 | dimsIdx.push_back(Elt: i); |
179 | } |
180 | return dimsIdx; |
181 | } |
182 | |
183 | /// Look for a given dimension in an affine map and return its position. Return |
184 | /// std::nullopt if the dimension is not in the map results. |
185 | static std::optional<unsigned> getDimPosition(AffineMap map, unsigned dim) { |
186 | for (unsigned i = 0, e = map.getNumResults(); i < e; i++) { |
187 | if (map.getDimPosition(idx: i) == dim) |
188 | return i; |
189 | } |
190 | return std::nullopt; |
191 | } |
192 | |
193 | /// Creates an AddIOp if `isInt` is true otherwise create an arith::AddFOp using |
194 | /// operands `x` and `y`. |
195 | static Value createAdd(Location loc, Value x, Value y, bool isInt, |
196 | PatternRewriter &rewriter) { |
197 | if (isInt) |
198 | return rewriter.create<arith::AddIOp>(loc, x, y); |
199 | return rewriter.create<arith::AddFOp>(loc, x, y); |
200 | } |
201 | |
202 | /// Creates a MulIOp if `isInt` is true otherwise create an MulFOp using |
203 | /// operands `x and `y`. |
204 | static Value createMul(Location loc, Value x, Value y, bool isInt, |
205 | PatternRewriter &rewriter) { |
206 | if (isInt) |
207 | return rewriter.create<arith::MulIOp>(loc, x, y); |
208 | return rewriter.create<arith::MulFOp>(loc, x, y); |
209 | } |
210 | |
211 | namespace { |
212 | |
213 | /// Progressive lowering of a `vector.contract %a, %b, %c` with row-major matmul |
214 | /// semantics to: |
215 | /// ``` |
216 | /// %flattened_a = vector.shape_cast %a |
217 | /// %flattened_b = vector.shape_cast %b |
218 | /// %flattened_d = vector.matrix_multiply %flattened_a, %flattened_b |
219 | /// %d = vector.shape_cast %%flattened_d |
220 | /// %e = add %c, %d |
221 | /// ``` |
222 | /// `vector.matrix_multiply` later lowers to `llvm.matrix.multiply`. |
223 | // |
224 | /// This only kicks in when vectorContractLowering is set to Matmul and |
225 | /// the vector.contract op is a row-major matrix multiply. |
226 | class ContractionOpToMatmulOpLowering |
227 | : public vector::MaskableOpRewritePattern<vector::ContractionOp> { |
228 | public: |
229 | using MaskableOpRewritePattern::MaskableOpRewritePattern; |
230 | |
231 | using FilterConstraintType = |
232 | std::function<LogicalResult(vector::ContractionOp op)>; |
233 | |
234 | static LogicalResult defaultFilter(vector::ContractionOp op) { |
235 | return success(); |
236 | } |
237 | |
238 | ContractionOpToMatmulOpLowering( |
239 | vector::VectorContractLowering vectorContractLowering, |
240 | MLIRContext *context, PatternBenefit benefit = 1, |
241 | FilterConstraintType constraint = defaultFilter) |
242 | : MaskableOpRewritePattern<vector::ContractionOp>(context, benefit), |
243 | vectorContractLowering(vectorContractLowering), |
244 | filter(std::move(constraint)) {} |
245 | |
246 | FailureOr<Value> |
247 | matchAndRewriteMaskableOp(vector::ContractionOp op, MaskingOpInterface maskOp, |
248 | PatternRewriter &rewriter) const override; |
249 | |
250 | private: |
251 | /// Options to control the vector patterns. |
252 | vector::VectorContractLowering vectorContractLowering; |
253 | FilterConstraintType filter; |
254 | }; |
255 | |
256 | /// Progressive lowering of a `vector.contract %a, %b, %c` with row-major matmul |
257 | /// semantics to a reduction_size-unrolled sequence: |
258 | /// ``` |
259 | /// %at = vector.transpose %a, [1, 0] |
260 | /// %bRow0 = vector.extract %b[0] |
261 | /// %atRow0 = vector.extract %at[0] |
262 | /// %c0 = vector.outerproduct %atRow0, %bRow0, %c |
263 | /// ... |
264 | /// %bRowK = vector.extract %b[K] |
265 | /// %atRowK = vector.extract %at[K] |
266 | /// %cK = vector.outerproduct %atRowK, %bRowK, %cK-1 |
267 | /// ``` |
268 | /// |
269 | /// This only kicks in when vectorContractLowering is set to OuterProduct and |
270 | /// the vector.contract op is a row-major matrix multiply. |
271 | class ContractionOpToOuterProductOpLowering |
272 | : public MaskableOpRewritePattern<vector::ContractionOp> { |
273 | public: |
274 | using MaskableOpRewritePattern::MaskableOpRewritePattern; |
275 | |
276 | using FilterConstraintType = |
277 | std::function<LogicalResult(vector::ContractionOp op)>; |
278 | |
279 | static LogicalResult defaultFilter(vector::ContractionOp op) { |
280 | return success(); |
281 | } |
282 | |
283 | ContractionOpToOuterProductOpLowering( |
284 | vector::VectorContractLowering vectorContractLowering, |
285 | MLIRContext *context, PatternBenefit benefit = 1, |
286 | FilterConstraintType constraint = defaultFilter) |
287 | : MaskableOpRewritePattern<vector::ContractionOp>(context, benefit), |
288 | vectorContractLowering(vectorContractLowering), |
289 | filter(std::move(constraint)) {} |
290 | |
291 | FailureOr<Value> |
292 | matchAndRewriteMaskableOp(vector::ContractionOp op, MaskingOpInterface maskOp, |
293 | PatternRewriter &rewriter) const override; |
294 | |
295 | private: |
296 | /// Options to control the vector patterns. |
297 | vector::VectorContractLowering vectorContractLowering; |
298 | FilterConstraintType filter; |
299 | }; |
300 | |
301 | /// Progressive lowering of a `vector.contract %a, %b, %c` with row-major matmul |
302 | /// semantics to an output-size-unrolled sequence: |
303 | /// ``` |
304 | /// %out = arith.constant ... : vector<MxNxelt_type> |
305 | /// %bt = vector.transpose %b, [1, 0] |
306 | /// %aRow0 = vector.extract %a[0] |
307 | /// %btRow0 = vector.extract %bt[0] |
308 | /// %c00 = vector.reduce %atRow0, %bRow0 |
309 | /// %out00 = vector.insert %c00, %out[0, 0] |
310 | /// ... |
311 | /// %aRowLast = vector.extract %at[M-1] |
312 | /// %btRowLast = vector.extract %b[N-1] |
313 | /// %cLastLast = vector.reduce %atRowLast, %bRowLast |
314 | /// %outcLastLast = vector.insert %cLastLast, %out[M-1, N-1] |
315 | /// ``` |
316 | /// |
317 | /// This only kicks in when VectorTransformsOptions is set to Dot and |
318 | /// the vector.contract op is a row-major matmul or matvec. |
319 | class ContractionOpToDotLowering |
320 | : public MaskableOpRewritePattern<vector::ContractionOp> { |
321 | public: |
322 | using MaskableOpRewritePattern::MaskableOpRewritePattern; |
323 | |
324 | using FilterConstraintType = |
325 | std::function<LogicalResult(vector::ContractionOp op)>; |
326 | |
327 | static LogicalResult defaultFilter(vector::ContractionOp op) { |
328 | return success(); |
329 | } |
330 | |
331 | ContractionOpToDotLowering( |
332 | vector::VectorContractLowering vectorContractLowering, |
333 | MLIRContext *context, PatternBenefit benefit = 1, |
334 | const FilterConstraintType &constraint = defaultFilter) |
335 | : MaskableOpRewritePattern<vector::ContractionOp>(context, benefit), |
336 | vectorContractLowering(vectorContractLowering), filter(defaultFilter) {} |
337 | |
338 | FailureOr<Value> |
339 | matchAndRewriteMaskableOp(vector::ContractionOp op, MaskingOpInterface maskOp, |
340 | PatternRewriter &rewriter) const override; |
341 | |
342 | private: |
343 | /// Options to control the vector patterns. |
344 | vector::VectorContractLowering vectorContractLowering; |
345 | FilterConstraintType filter; |
346 | }; |
347 | |
348 | /// Progressive lowering of ContractionOp. |
349 | /// |
350 | /// One: |
351 | /// %x = vector.contract with at least one free/batch dimension |
352 | /// is replaced by: |
353 | /// %a = vector.contract with one less free/batch dimension |
354 | /// %b = vector.contract with one less free/batch dimension |
355 | /// .. |
356 | /// %x = combine %a %b .. |
357 | /// until a pure contraction is reached (no free/batch dimensions), |
358 | /// which is replaced by a dot-product. |
359 | /// |
360 | /// This only kicks in when either VectorTransformsOptions is set |
361 | /// to Dot or when other contraction patterns fail. |
362 | class ContractionOpLowering |
363 | : public MaskableOpRewritePattern<vector::ContractionOp> { |
364 | public: |
365 | using MaskableOpRewritePattern::MaskableOpRewritePattern; |
366 | using FilterConstraintType = |
367 | std::function<LogicalResult(vector::ContractionOp op)>; |
368 | |
369 | static LogicalResult defaultFilter(vector::ContractionOp op) { |
370 | return success(); |
371 | } |
372 | |
373 | ContractionOpLowering( |
374 | vector::VectorContractLowering vectorContractLoweringOption, |
375 | MLIRContext *context, PatternBenefit benefit = 1, |
376 | FilterConstraintType constraint = defaultFilter) |
377 | : MaskableOpRewritePattern<vector::ContractionOp>(context, benefit), |
378 | vectorContractLoweringOption(vectorContractLoweringOption), |
379 | filter(std::move(constraint)) {} |
380 | |
381 | FailureOr<Value> |
382 | matchAndRewriteMaskableOp(vector::ContractionOp op, MaskingOpInterface maskOp, |
383 | PatternRewriter &rewriter) const override; |
384 | |
385 | private: |
386 | /// Options to control the vector patterns. |
387 | vector::VectorContractLowering vectorContractLoweringOption; |
388 | FilterConstraintType filter; |
389 | // Lower one parallel dimension. |
390 | FailureOr<Value> lowerParallel(PatternRewriter &rewriter, |
391 | vector::ContractionOp op, int64_t lhsIndex, |
392 | int64_t rhsIndex, Value mask) const; |
393 | // Lower one reduction dimension. |
394 | FailureOr<Value> lowerReduction(PatternRewriter &rewriter, |
395 | vector::ContractionOp op, Value mask) const; |
396 | }; |
397 | |
398 | /// Generate a vector implementation for matmat, matvec and tmatvec. |
399 | /// This unrolls outer-products along the reduction dimension. |
400 | struct UnrolledOuterProductGenerator |
401 | : public StructuredGenerator<vector::ContractionOp, vector::IteratorType> { |
402 | UnrolledOuterProductGenerator(RewriterBase &b, vector::ContractionOp op) |
403 | : StructuredGenerator<vector::ContractionOp, vector::IteratorType>(b, op), |
404 | kind(op.getKind()), lhs(op.getLhs()), rhs(op.getRhs()), |
405 | res(op.getAcc()), lhsType(op.getLhsType()) { |
406 | auto maskableOp = cast<MaskableOpInterface>(op.getOperation()); |
407 | if (maskableOp.isMasked()) |
408 | mask = maskableOp.getMaskingOp().getMask(); |
409 | } |
410 | |
411 | Value t(Value v, ArrayRef<int64_t> perm = {1, 0}) { |
412 | if (!v) |
413 | return v; |
414 | return rewriter.create<vector::TransposeOp>(loc, v, perm); |
415 | } |
416 | |
417 | Value promote(Value v, Type dstElementType) { |
418 | Type elementType = v.getType(); |
419 | auto vecType = dyn_cast<VectorType>(elementType); |
420 | if (vecType) |
421 | elementType = vecType.getElementType(); |
422 | if (elementType == dstElementType) |
423 | return v; |
424 | Type promotedType = dstElementType; |
425 | if (vecType) |
426 | promotedType = vecType.clone(promotedType); |
427 | if (isa<FloatType>(dstElementType)) |
428 | return rewriter.create<arith::ExtFOp>(loc, promotedType, v); |
429 | return rewriter.create<arith::ExtSIOp>(loc, promotedType, v); |
430 | } |
431 | |
432 | FailureOr<Value> outerProd(Value lhs, Value rhs, Value res, |
433 | VectorType lhsType, int reductionSize, |
434 | std::optional<Value> maybeMask = std::nullopt) { |
435 | // Incremental support for masking. |
436 | if (mask && !maybeMask.has_value()) |
437 | return failure(); |
438 | |
439 | Type resElementType = cast<VectorType>(res.getType()).getElementType(); |
440 | for (int64_t k = 0; k < reductionSize; ++k) { |
441 | Value extractA = rewriter.create<vector::ExtractOp>(loc, lhs, k); |
442 | Value extractB = rewriter.create<vector::ExtractOp>(loc, rhs, k); |
443 | extractA = promote(v: extractA, dstElementType: resElementType); |
444 | extractB = promote(v: extractB, dstElementType: resElementType); |
445 | Value extractMask; |
446 | if (maybeMask.has_value() && maybeMask.value()) |
447 | extractMask = |
448 | rewriter.create<vector::ExtractOp>(loc, maybeMask.value(), k); |
449 | |
450 | Operation *outerProdOp = rewriter.create<vector::OuterProductOp>( |
451 | loc, res.getType(), extractA, extractB, res, kind); |
452 | res = maskOperation(rewriter, outerProdOp, extractMask)->getResult(0); |
453 | } |
454 | return res; |
455 | } |
456 | |
457 | /// Helper function for `matmat`, `matvec`, `tmatvec`. Returns the size of |
458 | /// dimension `reductionDim`. If the dimension is a scalable dimension, |
459 | /// returns "nullopt". |
460 | std::optional<int64_t> getReductionSize(VectorType vecType, |
461 | int64_t reductionDim) { |
462 | // Cannot unroll scalable dimension. |
463 | if (vecType.getScalableDims()[reductionDim]) |
464 | return std::nullopt; |
465 | int64_t reductionSize = vecType.getDimSize(reductionDim); |
466 | assert(reductionSize > 0 && |
467 | "Reduction dim must be a known static size to allow unrolling"); |
468 | return reductionSize; |
469 | } |
470 | |
471 | /// Two outer parallel, one inner reduction (matmat flavor). |
472 | FailureOr<Value> matmat() { |
473 | if (!iters({Par(), Par(), Red()})) |
474 | return failure(); |
475 | // Set up the parallel/reduction structure in the right form. |
476 | AffineExpr m, n, k; |
477 | bindDims(rewriter.getContext(), m, n, k); |
478 | |
479 | // Classical row-major matmul: Just permute the lhs. |
480 | if (layout({{m, k}, {k, n}, {m, n}})) { |
481 | if (auto reductionSize = getReductionSize(lhsType, 1)) { |
482 | // Note: `t` creates new IR. It must be nested within this `if` check |
483 | // so that no IR is created when then pattern returns "failure". |
484 | Value tLhs = t(v: lhs); |
485 | Value tMask = t(v: mask, perm: {2, 0, 1}); |
486 | return outerProd(tLhs, rhs, res, lhsType, *reductionSize, tMask); |
487 | } |
488 | } |
489 | // TODO: may be better to fail and use some vector<k> -> scalar reduction. |
490 | if (layout({{m, k}, {n, k}, {m, n}})) { |
491 | if (auto reductionSize = getReductionSize(lhsType, 1)) { |
492 | Value tLhs = t(v: lhs); |
493 | Value tRhs = t(v: rhs); |
494 | Value tMask = t(v: mask, perm: {2, 0, 1}); |
495 | return outerProd(tLhs, tRhs, res, lhsType, *reductionSize, tMask); |
496 | } |
497 | } |
498 | // No need to permute anything. |
499 | if (layout({{k, m}, {k, n}, {m, n}})) { |
500 | if (auto reductionSize = getReductionSize(lhsType, 0)) { |
501 | Value tMask = t(v: mask, perm: {2, 0, 1}); |
502 | return outerProd(lhs, rhs, res, lhsType, *reductionSize, tMask); |
503 | } |
504 | } |
505 | // Just permute the rhs. |
506 | if (layout({{k, m}, {n, k}, {m, n}})) { |
507 | if (auto reductionSize = getReductionSize(lhsType, 0)) { |
508 | Value tRhs = t(v: rhs); |
509 | Value tMask = t(v: mask, perm: {2, 0, 1}); |
510 | return outerProd(lhs, tRhs, res, lhsType, *reductionSize, tMask); |
511 | } |
512 | } |
513 | // Transposed output: swap RHS and LHS. |
514 | // Classical row-major matmul: permute the lhs. |
515 | if (layout({{m, k}, {k, n}, {n, m}})) { |
516 | if (auto reductionSize = getReductionSize(lhsType, 1)) { |
517 | Value tLhs = t(v: lhs); |
518 | Value tMask = t(v: mask, perm: {2, 0, 1}); |
519 | return outerProd(rhs, tLhs, res, lhsType, *reductionSize, tMask); |
520 | } |
521 | } |
522 | // TODO: may be better to fail and use some vector<k> -> scalar reduction. |
523 | if (layout({{m, k}, {n, k}, {n, m}})) { |
524 | if (auto reductionSize = getReductionSize(lhsType, 1)) { |
525 | Value tRhs = t(v: rhs); |
526 | Value tLhs = t(v: lhs); |
527 | Value tMask = t(v: mask, perm: {2, 0, 1}); |
528 | return outerProd(tRhs, tLhs, res, lhsType, *reductionSize, tMask); |
529 | } |
530 | } |
531 | if (layout({{k, m}, {k, n}, {n, m}})) { |
532 | if (auto reductionSize = getReductionSize(lhsType, 0)) { |
533 | Value tMask = t(v: mask, perm: {2, 0, 1}); |
534 | return outerProd(rhs, lhs, res, lhsType, *reductionSize, tMask); |
535 | } |
536 | } |
537 | if (layout({{k, m}, {n, k}, {n, m}})) { |
538 | if (auto reductionSize = getReductionSize(lhsType, 0)) { |
539 | Value tRhs = t(v: rhs); |
540 | Value tMask = t(v: mask, perm: {2, 0, 1}); |
541 | return outerProd(tRhs, lhs, res, lhsType, *reductionSize, tMask); |
542 | } |
543 | } |
544 | return failure(); |
545 | } |
546 | |
547 | // |
548 | // One outer parallel, one inner reduction (matvec flavor). |
549 | // Mask needs to be transposed everywhere to turn the reduction dimension |
550 | // outermost as required by outerproduct. |
551 | // |
552 | FailureOr<Value> matvec() { |
553 | if (!iters({Par(), Red()})) |
554 | return failure(); |
555 | AffineExpr m, k; |
556 | bindDims(rewriter.getContext(), m, k); |
557 | |
558 | // Case mat-vec: transpose. |
559 | if (layout({{m, k}, {k}, {m}})) { |
560 | if (auto reductionSize = getReductionSize(lhsType, 1)) { |
561 | Value tLhs = t(v: lhs); |
562 | Value tMask = t(v: mask); |
563 | return outerProd(tLhs, rhs, res, lhsType, *reductionSize, tMask); |
564 | } |
565 | } |
566 | // Case mat-trans-vec: ready to go. |
567 | if (layout({{k, m}, {k}, {m}})) { |
568 | if (auto reductionSize = getReductionSize(lhsType, 0)) { |
569 | Value tMask = t(v: mask); |
570 | return outerProd(lhs, rhs, res, lhsType, *reductionSize, tMask); |
571 | } |
572 | } |
573 | // Case vec-mat: swap and transpose. |
574 | if (layout({{k}, {m, k}, {m}})) { |
575 | if (auto reductionSize = getReductionSize(lhsType, 0)) { |
576 | Value tRhs = t(v: rhs); |
577 | Value tMask = t(v: mask); |
578 | return outerProd(tRhs, lhs, res, lhsType, *reductionSize, tMask); |
579 | } |
580 | } |
581 | // Case vec-mat-trans: swap and ready to go. |
582 | if (layout({{k}, {k, m}, {m}})) { |
583 | if (auto reductionSize = getReductionSize(lhsType, 0)) { |
584 | Value tMask = t(v: mask); |
585 | return outerProd(rhs, lhs, res, lhsType, *reductionSize, tMask); |
586 | } |
587 | } |
588 | return failure(); |
589 | } |
590 | |
591 | // |
592 | // One outer reduction, one inner parallel (tmatvec flavor). |
593 | // Mask already has the shape of the outer product. |
594 | // |
595 | FailureOr<Value> tmatvec() { |
596 | if (!iters({Red(), Par()})) |
597 | return failure(); |
598 | AffineExpr k, m; |
599 | bindDims(rewriter.getContext(), k, m); |
600 | |
601 | // Case mat-vec: transpose. |
602 | if (layout({{m, k}, {k}, {m}})) |
603 | if (auto reductionSize = getReductionSize(lhsType, 1)) |
604 | return outerProd(t(lhs), rhs, res, lhsType, *reductionSize, mask); |
605 | // Case mat-trans-vec: ready to go. |
606 | if (layout({{k, m}, {k}, {m}})) |
607 | if (auto reductionSize = getReductionSize(lhsType, 0)) |
608 | return outerProd(lhs, rhs, res, lhsType, *reductionSize, mask); |
609 | // Case vec-mat: swap and transpose. |
610 | if (layout({{k}, {m, k}, {m}})) |
611 | if (auto reductionSize = getReductionSize(lhsType, 0)) |
612 | return outerProd(t(rhs), lhs, res, lhsType, *reductionSize, mask); |
613 | // Case vec-mat-trans: swap and ready to go. |
614 | if (layout({{k}, {k, m}, {m}})) |
615 | if (auto reductionSize = getReductionSize(lhsType, 0)) |
616 | return outerProd(rhs, lhs, res, lhsType, *reductionSize, mask); |
617 | return failure(); |
618 | } |
619 | |
620 | private: |
621 | vector::CombiningKind kind; |
622 | Value lhs, rhs, res, mask; |
623 | VectorType lhsType; |
624 | }; |
625 | |
626 | /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul |
627 | /// semantics to a reduction_size-unrolled sequence: |
628 | /// ``` |
629 | /// %at = vector.transpose %a, [1, 0] |
630 | /// %bRow0 = vector.extract %b[0] |
631 | /// %atRow0 = vector.extract %at[0] |
632 | /// %c0 = vector.outerproduct %atRow0, %bRow0, %c |
633 | /// ... |
634 | /// %bRowK = vector.extract %b[K] |
635 | /// %atRowK = vector.extract %at[K] |
636 | /// %cK = vector.outerproduct %atRowK, %bRowK, %cK-1 |
637 | /// ``` |
638 | /// |
639 | /// This only kicks in when vectorContractLowering is set to OuterProduct but |
640 | /// otherwise supports any layout permutation of the matrix-multiply. |
641 | FailureOr<Value> |
642 | ContractionOpToOuterProductOpLowering::matchAndRewriteMaskableOp( |
643 | vector::ContractionOp op, MaskingOpInterface maskOp, |
644 | PatternRewriter &rewriter) const { |
645 | if (vectorContractLowering != vector::VectorContractLowering::OuterProduct) |
646 | return failure(); |
647 | |
648 | if (failed(filter(op))) |
649 | return failure(); |
650 | |
651 | UnrolledOuterProductGenerator e(rewriter, op); |
652 | FailureOr<Value> matmatRes = e.matmat(); |
653 | if (succeeded(Result: matmatRes)) { |
654 | return matmatRes; |
655 | } |
656 | FailureOr<Value> matvecRes = e.matvec(); |
657 | if (succeeded(Result: matvecRes)) { |
658 | return matvecRes; |
659 | } |
660 | |
661 | FailureOr<Value> tmatvecRes = e.tmatvec(); |
662 | return tmatvecRes; |
663 | } |
664 | |
665 | FailureOr<Value> ContractionOpToDotLowering::matchAndRewriteMaskableOp( |
666 | vector::ContractionOp op, MaskingOpInterface maskOp, |
667 | PatternRewriter &rewriter) const { |
668 | // TODO: Support vector.mask. |
669 | if (maskOp) |
670 | return failure(); |
671 | |
672 | if (failed(filter(op))) |
673 | return failure(); |
674 | |
675 | if (vectorContractLowering != vector::VectorContractLowering::Dot) |
676 | return failure(); |
677 | |
678 | auto iteratorTypes = op.getIteratorTypes().getValue(); |
679 | static constexpr std::array<int64_t, 2> perm = {1, 0}; |
680 | Location loc = op.getLoc(); |
681 | Value lhs = op.getLhs(), rhs = op.getRhs(); |
682 | |
683 | using MapList = ArrayRef<ArrayRef<AffineExpr>>; |
684 | auto infer = [&](MapList m) { |
685 | return AffineMap::inferFromExprList(m, op.getContext()); |
686 | }; |
687 | AffineExpr m, n, k; |
688 | bindDims(ctx: rewriter.getContext(), exprs&: m, exprs&: n, exprs&: k); |
689 | SmallVector<AffineMap> maps = op.getIndexingMapsArray(); |
690 | // |
691 | // In the following we wish to make the reduction dimension innermost so we |
692 | // can load vectors and just fmul + reduce into a scalar. |
693 | // |
694 | if (isParallelIterator(iteratorTypes[0]) && |
695 | isParallelIterator(iteratorTypes[1]) && |
696 | isReductionIterator(iteratorTypes[2])) { |
697 | // |
698 | // Two outer parallel, one inner reduction (matmat flavor). |
699 | // |
700 | if (maps == infer({{m, k}, {k, n}, {m, n}})) { |
701 | rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); |
702 | } else if (maps == infer({{m, k}, {n, k}, {m, n}})) { |
703 | // No need to permute anything. |
704 | } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { |
705 | lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
706 | rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); |
707 | } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { |
708 | lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
709 | } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { |
710 | // This is the classical row-major matmul. Just permute the lhs. |
711 | Value tmp = lhs; |
712 | lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); |
713 | rhs = tmp; |
714 | } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { |
715 | std::swap(a&: lhs, b&: rhs); |
716 | } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { |
717 | Value tmp = lhs; |
718 | lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); |
719 | rhs = rewriter.create<vector::TransposeOp>(loc, tmp, perm); |
720 | } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { |
721 | Value tmp = rhs; |
722 | rhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
723 | lhs = tmp; |
724 | } else { |
725 | return failure(); |
726 | } |
727 | } else if (isParallelIterator(iteratorTypes[0]) && |
728 | isReductionIterator(iteratorTypes[1])) { |
729 | // |
730 | // One outer parallel, one inner reduction (matvec flavor) |
731 | // |
732 | if (maps == infer({{m, n}, {n}, {m}})) { |
733 | // No need to permute anything. |
734 | } else if (maps == infer({{n, m}, {n}, {m}})) { |
735 | lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
736 | } else if (maps == infer({{n}, {m, n}, {m}})) { |
737 | std::swap(a&: lhs, b&: rhs); |
738 | } else if (maps == infer({{n}, {n, m}, {m}})) { |
739 | std::swap(a&: lhs, b&: rhs); |
740 | lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
741 | } else { |
742 | return failure(); |
743 | } |
744 | } else { |
745 | return failure(); |
746 | } |
747 | |
748 | VectorType dstType = cast<VectorType>(op.getResultType()); |
749 | assert(dstType.getRank() >= 1 && dstType.getRank() <= 2 && |
750 | "Expected dst type of rank 1 or 2"); |
751 | |
752 | unsigned rank = dstType.getRank(); |
753 | unsigned dstRows = dstType.getShape()[0]; |
754 | unsigned dstColumns = rank == 1 ? 1 : dstType.getShape()[1]; |
755 | |
756 | // ExtractOp does not allow dynamic indexing, we must unroll explicitly. |
757 | Value res = rewriter.create<arith::ConstantOp>(loc, dstType, |
758 | rewriter.getZeroAttr(dstType)); |
759 | bool isInt = isa<IntegerType>(dstType.getElementType()); |
760 | llvm::SmallVector<Value> extractedCols; |
761 | extractedCols.reserve(N: dstColumns); |
762 | for (unsigned r = 0; r < dstRows; ++r) { |
763 | Value rowLhs = rewriter.create<vector::ExtractOp>(op.getLoc(), lhs, r); |
764 | for (unsigned c = 0; c < dstColumns; ++c) { |
765 | // Extract each respective row and column of the LHS and RHS once to |
766 | // avoid having duplicate SSA values pointing to the same rows/columns. |
767 | if (r == 0) { |
768 | Value colRhs = |
769 | rank == 1 ? rhs |
770 | : rewriter.create<vector::ExtractOp>(op.getLoc(), rhs, c); |
771 | extractedCols.push_back(Elt: colRhs); |
772 | } |
773 | Value extractedColRhs = extractedCols[c]; |
774 | Value product = |
775 | createMul(op.getLoc(), rowLhs, extractedColRhs, isInt, rewriter); |
776 | Value sum = rewriter.create<vector::ReductionOp>( |
777 | op.getLoc(), vector::CombiningKind::ADD, product); |
778 | |
779 | SmallVector<int64_t, 2> pos = rank == 1 ? SmallVector<int64_t, 2>{r} |
780 | : SmallVector<int64_t, 2>{r, c}; |
781 | res = rewriter.create<vector::InsertOp>(op.getLoc(), sum, res, pos); |
782 | } |
783 | } |
784 | if (auto acc = op.getAcc()) |
785 | res = createAdd(op.getLoc(), res, acc, isInt, rewriter); |
786 | return res; |
787 | } |
788 | |
789 | /// Lower vector.contract with all size one reduction dimensions to |
790 | /// elementwise ops when possible. |
791 | struct ContractOpToElementwise |
792 | : public MaskableOpRewritePattern<vector::ContractionOp> { |
793 | using MaskableOpRewritePattern::MaskableOpRewritePattern; |
794 | using FilterConstraintType = |
795 | std::function<LogicalResult(vector::ContractionOp op)>; |
796 | static LogicalResult defaultFilter(vector::ContractionOp op) { |
797 | return success(); |
798 | } |
799 | ContractOpToElementwise( |
800 | vector::VectorContractLowering vectorContractLowering, |
801 | MLIRContext *context, PatternBenefit benefit = 1, |
802 | const FilterConstraintType &constraint = defaultFilter) |
803 | : MaskableOpRewritePattern<vector::ContractionOp>(context, benefit), |
804 | vectorContractLowering(vectorContractLowering), filter(defaultFilter) {} |
805 | |
806 | FailureOr<Value> |
807 | matchAndRewriteMaskableOp(vector::ContractionOp contractOp, |
808 | MaskingOpInterface maskOp, |
809 | PatternRewriter &rewriter) const override { |
810 | // TODO: Support vector.mask. |
811 | if (maskOp) |
812 | return failure(); |
813 | |
814 | if (failed(filter(contractOp))) |
815 | return failure(); |
816 | |
817 | if (vectorContractLowering != vector::VectorContractLowering::ParallelArith) |
818 | return failure(); |
819 | |
820 | ArrayRef<int64_t> lhsShape = contractOp.getLhsType().getShape(); |
821 | ArrayRef<int64_t> rhsShape = contractOp.getRhsType().getShape(); |
822 | AffineMap lhsMap = contractOp.getIndexingMapsArray()[0]; |
823 | AffineMap rhsMap = contractOp.getIndexingMapsArray()[1]; |
824 | SmallVector<int64_t> lhsReductionDims = |
825 | getReductionIndex(lhsMap, contractOp.getIteratorTypes()); |
826 | SmallVector<int64_t> rhsReductionDims = |
827 | getReductionIndex(rhsMap, contractOp.getIteratorTypes()); |
828 | // All the reduction dimensions must be a size 1. |
829 | for (int64_t dim : lhsReductionDims) { |
830 | if (lhsShape[dim] != 1) |
831 | return failure(); |
832 | } |
833 | for (int64_t dim : rhsReductionDims) { |
834 | if (rhsShape[dim] != 1) |
835 | return failure(); |
836 | } |
837 | AffineMap accMap = contractOp.getIndexingMapsArray()[2]; |
838 | unsigned numParallelDims = accMap.getNumResults(); |
839 | unsigned numLhsDimToBroadcast = |
840 | numParallelDims - (lhsMap.getNumResults() - lhsReductionDims.size()); |
841 | unsigned numRhsDimToBroadcast = |
842 | numParallelDims - (rhsMap.getNumResults() - rhsReductionDims.size()); |
843 | SmallVector<int64_t> lhsDims; |
844 | SmallVector<int64_t> lhsTranspose; |
845 | SmallVector<int64_t> rhsDims; |
846 | SmallVector<int64_t> rhsTranspose; |
847 | for (int64_t dim : lhsReductionDims) |
848 | lhsTranspose.push_back(numLhsDimToBroadcast + dim); |
849 | for (int64_t dim : rhsReductionDims) |
850 | rhsTranspose.push_back(numRhsDimToBroadcast + dim); |
851 | // Loop through the parallel dimensions to calculate the dimensions to |
852 | // broadcast and to permute in order to extract only parallel dimensions. |
853 | for (unsigned i = 0; i < numParallelDims; i++) { |
854 | std::optional<unsigned> lhsDim = |
855 | getDimPosition(map: lhsMap, dim: accMap.getDimPosition(idx: i)); |
856 | if (lhsDim) { |
857 | lhsTranspose.push_back(Elt: numLhsDimToBroadcast + *lhsDim); |
858 | } else { |
859 | // If the parallel dimension doesn't exist we will have to broadcast it. |
860 | lhsDims.push_back( |
861 | Elt: cast<VectorType>(contractOp.getResultType()).getDimSize(i)); |
862 | lhsTranspose.push_back(Elt: lhsDims.size() - 1); |
863 | } |
864 | std::optional<unsigned> rhsDim = |
865 | getDimPosition(map: rhsMap, dim: accMap.getDimPosition(idx: i)); |
866 | if (rhsDim) { |
867 | rhsTranspose.push_back(Elt: numRhsDimToBroadcast + *rhsDim); |
868 | } else { |
869 | // If the parallel dimension doesn't exist we will have to broadcast it. |
870 | rhsDims.push_back( |
871 | Elt: cast<VectorType>(contractOp.getResultType()).getDimSize(i)); |
872 | rhsTranspose.push_back(Elt: rhsDims.size() - 1); |
873 | } |
874 | } |
875 | Value newLhs = contractOp.getLhs(); |
876 | Value newRhs = contractOp.getRhs(); |
877 | Location loc = contractOp.getLoc(); |
878 | if (!lhsDims.empty()) { |
879 | lhsDims.append(in_start: lhsShape.begin(), in_end: lhsShape.end()); |
880 | auto expandedType = |
881 | VectorType::get(lhsDims, contractOp.getLhsType().getElementType()); |
882 | newLhs = rewriter.create<vector::BroadcastOp>(loc, expandedType, newLhs); |
883 | } |
884 | if (!rhsDims.empty()) { |
885 | rhsDims.append(in_start: rhsShape.begin(), in_end: rhsShape.end()); |
886 | auto expandedType = |
887 | VectorType::get(rhsDims, contractOp.getRhsType().getElementType()); |
888 | newRhs = rewriter.create<vector::BroadcastOp>(loc, expandedType, newRhs); |
889 | } |
890 | bool isInt = contractOp.getLhsType().getElementType().isIntOrIndex(); |
891 | newLhs = rewriter.create<vector::TransposeOp>(loc, newLhs, lhsTranspose); |
892 | newRhs = rewriter.create<vector::TransposeOp>(loc, newRhs, rhsTranspose); |
893 | SmallVector<int64_t> lhsOffsets(lhsReductionDims.size(), 0); |
894 | SmallVector<int64_t> rhsOffsets(rhsReductionDims.size(), 0); |
895 | newLhs = rewriter.create<vector::ExtractOp>(loc, newLhs, lhsOffsets); |
896 | newRhs = rewriter.create<vector::ExtractOp>(loc, newRhs, rhsOffsets); |
897 | std::optional<Value> result = |
898 | createContractArithOp(loc, newLhs, newRhs, contractOp.getAcc(), |
899 | contractOp.getKind(), rewriter, isInt); |
900 | if (result) |
901 | return *result; |
902 | |
903 | return failure(); |
904 | } |
905 | |
906 | private: |
907 | /// Options to control the vector patterns. |
908 | vector::VectorContractLowering vectorContractLowering; |
909 | FilterConstraintType filter; |
910 | }; |
911 | |
912 | /// Progressive lowering of ContractionOp. |
913 | /// One: |
914 | /// %x = vector.contract with at least one free/batch dimension |
915 | /// is replaced by: |
916 | /// %a = vector.contract with one less free/batch dimension |
917 | /// %b = vector.contract with one less free/batch dimension |
918 | /// .. |
919 | /// %x = combine %a %b .. |
920 | /// until a pure contraction is reached (no free/batch dimensions), |
921 | /// which is replaced by a dot-product. |
922 | /// |
923 | /// This only kicks in when either vectorContractLoweringOption is set |
924 | /// to DOT or when other contraction patterns fail. |
925 | // |
926 | // TODO: break down into transpose/reshape/cast ops |
927 | // when they become available to avoid code dup |
928 | // TODO: investigate lowering order impact on performance |
929 | FailureOr<Value> ContractionOpLowering::matchAndRewriteMaskableOp( |
930 | vector::ContractionOp op, MaskingOpInterface maskOp, |
931 | PatternRewriter &rewriter) const { |
932 | if (failed(filter(op))) |
933 | return failure(); |
934 | |
935 | // TODO: support mixed mode contract lowering. |
936 | if (op.getLhsType().getElementType() != |
937 | getElementTypeOrSelf(op.getAccType()) || |
938 | op.getRhsType().getElementType() != getElementTypeOrSelf(op.getAccType())) |
939 | return failure(); |
940 | |
941 | // TODO: the code below assumes the default contraction, make sure it supports |
942 | // other kinds before enabling this lowering. |
943 | if (op.getKind() != vector::CombiningKind::ADD) { |
944 | return rewriter.notifyMatchFailure( |
945 | op, "contractions other than 'add' not supported"); |
946 | } |
947 | |
948 | // TODO: implement benefits, cost models. |
949 | MLIRContext *ctx = op.getContext(); |
950 | |
951 | ContractionOpToMatmulOpLowering pat1(vectorContractLoweringOption, ctx); |
952 | FailureOr<Value> newVal1 = |
953 | pat1.matchAndRewriteMaskableOp(op, maskOp, rewriter); |
954 | if (!failed(Result: newVal1)) |
955 | return newVal1; |
956 | |
957 | ContractionOpToOuterProductOpLowering pat2(vectorContractLoweringOption, ctx); |
958 | FailureOr<Value> newVal2 = |
959 | pat2.matchAndRewriteMaskableOp(op, maskOp, rewriter); |
960 | if (!failed(Result: newVal2)) |
961 | return newVal2; |
962 | |
963 | ContractionOpToDotLowering pat3(vectorContractLoweringOption, ctx); |
964 | FailureOr<Value> newVal3 = |
965 | pat3.matchAndRewriteMaskableOp(op, maskOp, rewriter); |
966 | if (!failed(Result: newVal3)) |
967 | return newVal3; |
968 | |
969 | ContractOpToElementwise pat4(vectorContractLoweringOption, ctx); |
970 | FailureOr<Value> newVal4 = |
971 | pat4.matchAndRewriteMaskableOp(op, maskOp, rewriter); |
972 | if (!failed(Result: newVal4)) |
973 | return newVal4; |
974 | |
975 | // Vector mask setup. |
976 | |
977 | Value mask; |
978 | if (maskOp) |
979 | mask = maskOp.getMask(); |
980 | // Find first batch dimension in LHS/RHS, and lower when found. |
981 | std::vector<std::pair<int64_t, int64_t>> batchDimMap = op.getBatchDimMap(); |
982 | if (!batchDimMap.empty()) { |
983 | int64_t lhsIndex = batchDimMap[0].first; |
984 | int64_t rhsIndex = batchDimMap[0].second; |
985 | auto newOp = lowerParallel(rewriter, op: op, lhsIndex, rhsIndex, mask); |
986 | if (failed(newOp)) |
987 | return failure(); |
988 | return newOp; |
989 | } |
990 | |
991 | // Collect contracting dimensions. |
992 | std::vector<std::pair<int64_t, int64_t>> contractingDimMap = |
993 | op.getContractingDimMap(); |
994 | DenseSet<int64_t> lhsContractingDimSet; |
995 | DenseSet<int64_t> rhsContractingDimSet; |
996 | for (auto &dimPair : contractingDimMap) { |
997 | lhsContractingDimSet.insert(dimPair.first); |
998 | rhsContractingDimSet.insert(dimPair.second); |
999 | } |
1000 | |
1001 | // Find first free dimension in LHS, and lower when found. |
1002 | VectorType lhsType = op.getLhsType(); |
1003 | for (int64_t lhsIndex = 0, e = lhsType.getRank(); lhsIndex < e; ++lhsIndex) { |
1004 | if (lhsContractingDimSet.count(V: lhsIndex) == 0) { |
1005 | auto newOp = lowerParallel(rewriter, op: op, lhsIndex, /*rhsIndex=*/-1, mask); |
1006 | if (failed(newOp)) |
1007 | return failure(); |
1008 | return newOp; |
1009 | } |
1010 | } |
1011 | |
1012 | // Find first free dimension in RHS, and lower when found. |
1013 | VectorType rhsType = op.getRhsType(); |
1014 | for (int64_t rhsIndex = 0, e = rhsType.getRank(); rhsIndex < e; ++rhsIndex) { |
1015 | if (rhsContractingDimSet.count(V: rhsIndex) == 0) { |
1016 | auto newOp = lowerParallel(rewriter, op: op, /*lhsIndex=*/-1, rhsIndex, mask); |
1017 | if (failed(newOp)) |
1018 | return failure(); |
1019 | return newOp; |
1020 | } |
1021 | } |
1022 | |
1023 | // Lower the first remaining reduction dimension. |
1024 | if (!contractingDimMap.empty()) { |
1025 | auto newOp = lowerReduction(rewriter, op: op, mask); |
1026 | if (failed(newOp)) |
1027 | return failure(); |
1028 | return newOp; |
1029 | } |
1030 | |
1031 | return failure(); |
1032 | } |
1033 | |
1034 | // Lower one parallel dimension. |
1035 | // Incidentally also tolerates unit-size (hence trivial) reduction dimensions. |
1036 | // TODO: consider reusing existing contract unrolling |
1037 | FailureOr<Value> ContractionOpLowering::lowerParallel(PatternRewriter &rewriter, |
1038 | vector::ContractionOp op, |
1039 | int64_t lhsIndex, |
1040 | int64_t rhsIndex, |
1041 | Value mask) const { |
1042 | VectorType lhsType = op.getLhsType(); |
1043 | VectorType rhsType = op.getRhsType(); |
1044 | VectorType resType = cast<VectorType>(op.getResultType()); |
1045 | // Find the iterator type index and result index. |
1046 | SmallVector<AffineMap> iMap = op.getIndexingMapsArray(); |
1047 | int64_t iterIndex = -1; |
1048 | int64_t dimSize = -1; |
1049 | if (lhsIndex >= 0) { |
1050 | iterIndex = iMap[0].getDimPosition(idx: lhsIndex); |
1051 | if (rhsIndex >= 0 && iterIndex != iMap[1].getDimPosition(idx: rhsIndex)) |
1052 | return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { |
1053 | diag << "expected lhsIndex="<< lhsIndex << " and rhsIndex="<< rhsIndex |
1054 | << " to map to the same dimension"; |
1055 | }); |
1056 | if (lhsType.getScalableDims()[lhsIndex]) |
1057 | return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { |
1058 | diag << "Unrolling scalable dimension (lhsIndex="<< lhsIndex |
1059 | << ") is not supported yet"; |
1060 | }); |
1061 | dimSize = lhsType.getDimSize(lhsIndex); |
1062 | } else if (rhsIndex >= 0) { |
1063 | iterIndex = iMap[1].getDimPosition(idx: rhsIndex); |
1064 | if (rhsType.getScalableDims()[rhsIndex]) |
1065 | return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { |
1066 | diag << "Unrolling scalable dimension (rhsIndex="<< rhsIndex |
1067 | << ") is not supported yet"; |
1068 | }); |
1069 | dimSize = rhsType.getDimSize(rhsIndex); |
1070 | } |
1071 | if (iterIndex < 0) |
1072 | return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { |
1073 | diag << "expected either lhsIndex="<< lhsIndex |
1074 | << " or rhsIndex="<< rhsIndex << " to be nonnegative"; |
1075 | }); |
1076 | // value_or(-1) means that we tolerate a dimension not appearing |
1077 | // in the result map. That can't happen for actual parallel iterators, but |
1078 | // the caller ContractionOpLowering::matchAndRewrite is currently calling |
1079 | // lowerParallel also for the case of unit-size reduction dims appearing only |
1080 | // on one of LHS or RHS, not both. At the moment, such cases are created by |
1081 | // CastAwayContractionLeadingOneDim, so we need to either support that or |
1082 | // modify that pattern. |
1083 | int64_t resIndex = getResultIndex(map: iMap[2], index: iterIndex).value_or(u: -1); |
1084 | if (resIndex == -1 && dimSize != 1) |
1085 | return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { |
1086 | diag << "expected the dimension for iterIndex="<< iterIndex |
1087 | << " to either appear in the result map, or to be a unit dimension"; |
1088 | }); |
1089 | |
1090 | // Construct new iterator types and affine map array attribute. |
1091 | std::array<AffineMap, 3> lowIndexingMaps = { |
1092 | adjustMap(map: iMap[0], index: iterIndex, rewriter), |
1093 | adjustMap(map: iMap[1], index: iterIndex, rewriter), |
1094 | adjustMap(map: iMap[2], index: iterIndex, rewriter)}; |
1095 | auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps); |
1096 | auto lowIter = |
1097 | rewriter.getArrayAttr(value: adjustIter(op.getIteratorTypes(), iterIndex)); |
1098 | // Unroll into a series of lower dimensional vector.contract ops. |
1099 | Location loc = op.getLoc(); |
1100 | Value result = rewriter.create<arith::ConstantOp>( |
1101 | loc, resType, rewriter.getZeroAttr(resType)); |
1102 | |
1103 | for (int64_t d = 0; d < dimSize; ++d) { |
1104 | auto lhs = reshapeLoad(loc, op.getLhs(), lhsType, lhsIndex, d, rewriter); |
1105 | auto rhs = reshapeLoad(loc, op.getRhs(), rhsType, rhsIndex, d, rewriter); |
1106 | auto acc = reshapeLoad(loc, op.getAcc(), resType, resIndex, d, rewriter); |
1107 | |
1108 | Value lowMask; |
1109 | if (mask) |
1110 | lowMask = reshapeLoad(loc, mask, cast<VectorType>(mask.getType()), |
1111 | iterIndex, d, rewriter); |
1112 | |
1113 | Operation *lowContract = rewriter.create<vector::ContractionOp>( |
1114 | loc, lhs, rhs, acc, lowAffine, lowIter); |
1115 | lowContract = maskOperation(builder&: rewriter, maskableOp: lowContract, mask: lowMask); |
1116 | result = reshapeStore(loc, lowContract->getResult(idx: 0), result, resType, |
1117 | resIndex, d, rewriter); |
1118 | } |
1119 | return result; |
1120 | } |
1121 | |
1122 | // Lower one reduction dimension. |
1123 | FailureOr<Value> ContractionOpLowering::lowerReduction( |
1124 | PatternRewriter &rewriter, vector::ContractionOp op, Value mask) const { |
1125 | auto loc = op.getLoc(); |
1126 | VectorType lhsType = op.getLhsType(); |
1127 | VectorType rhsType = op.getRhsType(); |
1128 | Type resType = op.getResultType(); |
1129 | if (isa<VectorType>(Val: resType)) |
1130 | return rewriter.notifyMatchFailure(op, |
1131 | "did not expect a VectorType result"); |
1132 | bool isInt = isa<IntegerType>(Val: resType); |
1133 | // Use iterator index 0. |
1134 | int64_t iterIndex = 0; |
1135 | SmallVector<AffineMap> iMap = op.getIndexingMapsArray(); |
1136 | std::optional<int64_t> lookupLhs = getResultIndex(map: iMap[0], index: iterIndex); |
1137 | std::optional<int64_t> lookupRhs = getResultIndex(map: iMap[1], index: iterIndex); |
1138 | if (!lookupLhs.has_value()) |
1139 | return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { |
1140 | diag << "expected iterIndex="<< iterIndex << "to map to a LHS dimension"; |
1141 | }); |
1142 | if (!lookupRhs.has_value()) |
1143 | return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { |
1144 | diag << "expected iterIndex="<< iterIndex << "to map to a RHS dimension"; |
1145 | }); |
1146 | int64_t lhsIndex = *lookupLhs; |
1147 | int64_t rhsIndex = *lookupRhs; |
1148 | int64_t dimSize = lhsType.getDimSize(lhsIndex); |
1149 | if (dimSize != rhsType.getDimSize(rhsIndex)) |
1150 | return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { |
1151 | diag << "expect LHS dimension "<< lhsIndex |
1152 | << " to have the same size as RHS dimension "<< rhsIndex; |
1153 | }); |
1154 | // Base case. |
1155 | if (lhsType.getRank() == 1) { |
1156 | if (rhsType.getRank() != 1) |
1157 | return rewriter.notifyMatchFailure( |
1158 | op, "When LHS has rank 1, expected also RHS to have rank 1"); |
1159 | Value m = createMul(loc, op.getLhs(), op.getRhs(), isInt, rewriter); |
1160 | auto kind = vector::CombiningKind::ADD; |
1161 | |
1162 | Value acc = op.getAcc(); |
1163 | Operation *reductionOp = |
1164 | acc ? rewriter.create<vector::ReductionOp>(loc, kind, m, acc) |
1165 | : rewriter.create<vector::ReductionOp>(loc, kind, m); |
1166 | return maskOperation(builder&: rewriter, maskableOp: reductionOp, mask)->getResult(idx: 0); |
1167 | } |
1168 | // Construct new iterator types and affine map array attribute. |
1169 | std::array<AffineMap, 3> lowIndexingMaps = { |
1170 | adjustMap(map: iMap[0], index: iterIndex, rewriter), |
1171 | adjustMap(map: iMap[1], index: iterIndex, rewriter), |
1172 | adjustMap(map: iMap[2], index: iterIndex, rewriter)}; |
1173 | auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps); |
1174 | auto lowIter = |
1175 | rewriter.getArrayAttr(value: adjustIter(op.getIteratorTypes(), iterIndex)); |
1176 | // Unroll into a series of lower dimensional vector.contract ops. |
1177 | // By feeding the initial accumulator into the first contraction, |
1178 | // and the result of each contraction into the next, eventually |
1179 | // the sum of all reductions is computed. |
1180 | Value result = op.getAcc(); |
1181 | for (int64_t d = 0; d < dimSize; ++d) { |
1182 | auto lhs = reshapeLoad(loc, op.getLhs(), lhsType, lhsIndex, d, rewriter); |
1183 | auto rhs = reshapeLoad(loc, op.getRhs(), rhsType, rhsIndex, d, rewriter); |
1184 | Value newMask; |
1185 | if (mask) |
1186 | newMask = reshapeLoad(loc, mask, cast<VectorType>(mask.getType()), |
1187 | iterIndex, d, rewriter); |
1188 | |
1189 | Operation *newContract = rewriter.create<vector::ContractionOp>( |
1190 | loc, lhs, rhs, result, lowAffine, lowIter); |
1191 | result = maskOperation(builder&: rewriter, maskableOp: newContract, mask: newMask)->getResult(idx: 0); |
1192 | } |
1193 | return result; |
1194 | } |
1195 | |
1196 | /// Progressive lowering of OuterProductOp. |
1197 | /// One: |
1198 | /// %x = vector.outerproduct %lhs, %rhs, %acc |
1199 | /// is replaced by: |
1200 | /// %z = zero-result |
1201 | /// %0 = vector.extract %lhs[0] |
1202 | /// %1 = vector.broadcast %0 |
1203 | /// %2 = vector.extract %acc[0] |
1204 | /// %3 = vector.fma %1, %rhs, %2 |
1205 | /// %4 = vector.insert %3, %z[0] |
1206 | /// .. |
1207 | /// %x = vector.insert %.., %..[N-1] |
1208 | /// |
1209 | class OuterProductOpLowering : public OpRewritePattern<vector::OuterProductOp> { |
1210 | public: |
1211 | using OpRewritePattern::OpRewritePattern; |
1212 | |
1213 | LogicalResult matchAndRewrite(vector::OuterProductOp op, |
1214 | PatternRewriter &rewriter) const override { |
1215 | VectorType resType = op.getResultVectorType(); |
1216 | if ((resType.getShape().size() >= 2) && resType.allDimsScalable()) |
1217 | return failure(); |
1218 | |
1219 | auto loc = op.getLoc(); |
1220 | |
1221 | VectorType lhsType = op.getOperandVectorTypeLHS(); |
1222 | VectorType rhsType = dyn_cast<VectorType>(op.getOperandTypeRHS()); |
1223 | Type eltType = resType.getElementType(); |
1224 | bool isInt = isa<IntegerType, IndexType>(Val: eltType); |
1225 | Value acc = op.getAcc(); |
1226 | vector::CombiningKind kind = op.getKind(); |
1227 | |
1228 | // Vector mask setup. |
1229 | OpBuilder::InsertionGuard guard(rewriter); |
1230 | auto maskableOp = cast<vector::MaskableOpInterface>(op.getOperation()); |
1231 | Operation *rootOp; |
1232 | Value mask; |
1233 | if (maskableOp.isMasked()) { |
1234 | rewriter.setInsertionPoint(maskableOp.getMaskingOp()); |
1235 | rootOp = maskableOp.getMaskingOp(); |
1236 | mask = maskableOp.getMaskingOp().getMask(); |
1237 | } else { |
1238 | rootOp = op; |
1239 | } |
1240 | |
1241 | if (!rhsType) { |
1242 | // Special case: AXPY operation. |
1243 | Value b = rewriter.create<vector::BroadcastOp>(loc, lhsType, op.getRhs()); |
1244 | std::optional<Value> mult = createContractArithOp( |
1245 | loc, op.getLhs(), b, acc, kind, rewriter, isInt, mask); |
1246 | if (!mult.has_value()) |
1247 | return failure(); |
1248 | rewriter.replaceOp(op: rootOp, newValues: *mult); |
1249 | return success(); |
1250 | } |
1251 | |
1252 | Value result = rewriter.create<arith::ConstantOp>( |
1253 | loc, resType, rewriter.getZeroAttr(resType)); |
1254 | for (int64_t d = 0, e = resType.getDimSize(0); d < e; ++d) { |
1255 | Value x = rewriter.create<vector::ExtractOp>(loc, op.getLhs(), d); |
1256 | Value a = rewriter.create<vector::BroadcastOp>(loc, rhsType, x); |
1257 | Value r = nullptr; |
1258 | if (acc) |
1259 | r = rewriter.create<vector::ExtractOp>(loc, acc, d); |
1260 | Value extrMask; |
1261 | if (mask) |
1262 | extrMask = rewriter.create<vector::ExtractOp>(loc, mask, d); |
1263 | |
1264 | std::optional<Value> m = createContractArithOp( |
1265 | loc, a, op.getRhs(), r, kind, rewriter, isInt, extrMask); |
1266 | if (!m.has_value()) |
1267 | return failure(); |
1268 | result = rewriter.create<vector::InsertOp>(loc, *m, result, d); |
1269 | } |
1270 | |
1271 | rewriter.replaceOp(op: rootOp, newValues: result); |
1272 | return success(); |
1273 | } |
1274 | }; |
1275 | |
1276 | /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul |
1277 | /// semantics to: |
1278 | /// ``` |
1279 | /// %mta = maybe_transpose |
1280 | /// %mtb = maybe_transpose |
1281 | /// %flattened_a = vector.shape_cast %mta |
1282 | /// %flattened_b = vector.shape_cast %mtb |
1283 | /// %flattened_d = vector.matrix_multiply %flattened_a, %flattened_b |
1284 | /// %mtd = vector.shape_cast %flattened_d |
1285 | /// %d = maybe_untranspose %mtd |
1286 | /// %e = add %c, %d |
1287 | /// ``` |
1288 | /// `vector.matrix_multiply` later lowers to `llvm.matrix.multiply`. |
1289 | // |
1290 | /// This only kicks in when vectorContractLowering is set to `Matmul`. |
1291 | /// vector.transpose operations are inserted if the vector.contract op is not a |
1292 | /// row-major matrix multiply. |
1293 | /// |
1294 | /// Scalable vectors are not supported. |
1295 | FailureOr<Value> ContractionOpToMatmulOpLowering::matchAndRewriteMaskableOp( |
1296 | vector::ContractionOp op, MaskingOpInterface maskOp, |
1297 | PatternRewriter &rew) const { |
1298 | // TODO: Support vector.mask. |
1299 | if (maskOp) |
1300 | return failure(); |
1301 | |
1302 | if (vectorContractLowering != vector::VectorContractLowering::Matmul) |
1303 | return failure(); |
1304 | if (failed(filter(op))) |
1305 | return failure(); |
1306 | |
1307 | auto iteratorTypes = op.getIteratorTypes().getValue(); |
1308 | if (!isParallelIterator(iteratorTypes[0]) || |
1309 | !isParallelIterator(iteratorTypes[1]) || |
1310 | !isReductionIterator(iteratorTypes[2])) |
1311 | return failure(); |
1312 | |
1313 | Type opResType = op.getType(); |
1314 | VectorType vecType = dyn_cast<VectorType>(opResType); |
1315 | if (vecType && vecType.isScalable()) { |
1316 | // Note - this is sufficient to reject all cases with scalable vectors. |
1317 | return failure(); |
1318 | } |
1319 | |
1320 | Type elementType = op.getLhsType().getElementType(); |
1321 | if (!elementType.isIntOrFloat()) |
1322 | return failure(); |
1323 | |
1324 | Type dstElementType = vecType ? vecType.getElementType() : opResType; |
1325 | if (elementType != dstElementType) |
1326 | return failure(); |
1327 | |
1328 | // Perform lhs + rhs transpositions to conform to matmul row-major semantics. |
1329 | // Bail out if the contraction cannot be put in this form. |
1330 | MLIRContext *ctx = op.getContext(); |
1331 | Location loc = op.getLoc(); |
1332 | AffineExpr m, n, k; |
1333 | bindDims(ctx: rew.getContext(), exprs&: m, exprs&: n, exprs&: k); |
1334 | // LHS must be A(m, k) or A(k, m). |
1335 | Value lhs = op.getLhs(); |
1336 | auto lhsMap = op.getIndexingMapsArray()[0]; |
1337 | if (lhsMap == AffineMap::get(dimCount: 3, symbolCount: 0, results: {k, m}, context: ctx)) |
1338 | lhs = rew.create<vector::TransposeOp>(loc, lhs, ArrayRef<int64_t>{1, 0}); |
1339 | else if (lhsMap != AffineMap::get(dimCount: 3, symbolCount: 0, results: {m, k}, context: ctx)) |
1340 | return failure(); |
1341 | |
1342 | // RHS must be B(k, n) or B(n, k). |
1343 | Value rhs = op.getRhs(); |
1344 | auto rhsMap = op.getIndexingMapsArray()[1]; |
1345 | if (rhsMap == AffineMap::get(dimCount: 3, symbolCount: 0, results: {n, k}, context: ctx)) |
1346 | rhs = rew.create<vector::TransposeOp>(loc, rhs, ArrayRef<int64_t>{1, 0}); |
1347 | else if (rhsMap != AffineMap::get(dimCount: 3, symbolCount: 0, results: {k, n}, context: ctx)) |
1348 | return failure(); |
1349 | |
1350 | // At this point lhs and rhs are in row-major. |
1351 | VectorType lhsType = cast<VectorType>(lhs.getType()); |
1352 | VectorType rhsType = cast<VectorType>(rhs.getType()); |
1353 | int64_t lhsRows = lhsType.getDimSize(0); |
1354 | int64_t lhsColumns = lhsType.getDimSize(1); |
1355 | int64_t rhsColumns = rhsType.getDimSize(1); |
1356 | |
1357 | Type flattenedLHSType = |
1358 | VectorType::get(lhsType.getNumElements(), lhsType.getElementType()); |
1359 | lhs = rew.create<vector::ShapeCastOp>(loc, flattenedLHSType, lhs); |
1360 | |
1361 | Type flattenedRHSType = |
1362 | VectorType::get(rhsType.getNumElements(), rhsType.getElementType()); |
1363 | rhs = rew.create<vector::ShapeCastOp>(loc, flattenedRHSType, rhs); |
1364 | |
1365 | Value mul = rew.create<vector::MatmulOp>(loc, lhs, rhs, lhsRows, lhsColumns, |
1366 | rhsColumns); |
1367 | mul = rew.create<vector::ShapeCastOp>( |
1368 | loc, |
1369 | VectorType::get({lhsRows, rhsColumns}, |
1370 | getElementTypeOrSelf(op.getAcc().getType())), |
1371 | mul); |
1372 | |
1373 | // ACC must be C(m, n) or C(n, m). |
1374 | auto accMap = op.getIndexingMapsArray()[2]; |
1375 | if (accMap == AffineMap::get(dimCount: 3, symbolCount: 0, results: {n, m}, context: ctx)) |
1376 | mul = rew.create<vector::TransposeOp>(loc, mul, ArrayRef<int64_t>{1, 0}); |
1377 | else if (accMap != AffineMap::get(dimCount: 3, symbolCount: 0, results: {m, n}, context: ctx)) |
1378 | llvm_unreachable("invalid contraction semantics"); |
1379 | |
1380 | Value res = |
1381 | isa<IntegerType>(elementType) |
1382 | ? static_cast<Value>(rew.create<arith::AddIOp>(loc, op.getAcc(), mul)) |
1383 | : static_cast<Value>( |
1384 | rew.create<arith::AddFOp>(loc, op.getAcc(), mul)); |
1385 | |
1386 | return res; |
1387 | } |
1388 | } // namespace |
1389 | |
1390 | void mlir::vector::populateVectorContractLoweringPatterns( |
1391 | RewritePatternSet &patterns, |
1392 | VectorContractLowering vectorContractLoweringOption, PatternBenefit benefit, |
1393 | bool disableOuterProductLowering) { |
1394 | if (!disableOuterProductLowering) |
1395 | patterns.add<OuterProductOpLowering>(arg: patterns.getContext(), args&: benefit); |
1396 | patterns.add<ContractionOpLowering, ContractionOpToMatmulOpLowering, |
1397 | ContractionOpToOuterProductOpLowering>( |
1398 | vectorContractLoweringOption, patterns.getContext(), benefit); |
1399 | } |
1400 | |
1401 | void mlir::vector::populateVectorOuterProductLoweringPatterns( |
1402 | RewritePatternSet &patterns, PatternBenefit benefit) { |
1403 | patterns.add<OuterProductOpLowering>(arg: patterns.getContext(), args&: benefit); |
1404 | } |
1405 |
Definitions
- getResultIndex
- adjustIter
- adjustMap
- reshapeLoad
- reshapeStore
- createContractArithOp
- getReductionIndex
- getDimPosition
- createAdd
- createMul
- ContractionOpToMatmulOpLowering
- defaultFilter
- ContractionOpToMatmulOpLowering
- ContractionOpToOuterProductOpLowering
- defaultFilter
- ContractionOpToOuterProductOpLowering
- ContractionOpToDotLowering
- defaultFilter
- ContractionOpToDotLowering
- ContractionOpLowering
- defaultFilter
- ContractionOpLowering
- UnrolledOuterProductGenerator
- UnrolledOuterProductGenerator
- t
- promote
- outerProd
- getReductionSize
- matmat
- matvec
- tmatvec
- matchAndRewriteMaskableOp
- matchAndRewriteMaskableOp
- ContractOpToElementwise
- defaultFilter
- ContractOpToElementwise
- matchAndRewriteMaskableOp
- matchAndRewriteMaskableOp
- lowerParallel
- lowerReduction
- OuterProductOpLowering
- matchAndRewrite
- matchAndRewriteMaskableOp
- populateVectorContractLoweringPatterns
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more