| 1 | //===- LowerVectorGather.cpp - Lower 'vector.gather' operation ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements target-independent rewrites and utilities to lower the |
| 10 | // 'vector.gather' operation. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 15 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 16 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
| 17 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| 18 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 19 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 20 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 21 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
| 22 | #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
| 23 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| 24 | #include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h" |
| 25 | #include "mlir/Dialect/Vector/Utils/VectorUtils.h" |
| 26 | #include "mlir/IR/BuiltinAttributeInterfaces.h" |
| 27 | #include "mlir/IR/BuiltinTypes.h" |
| 28 | #include "mlir/IR/ImplicitLocOpBuilder.h" |
| 29 | #include "mlir/IR/Location.h" |
| 30 | #include "mlir/IR/Matchers.h" |
| 31 | #include "mlir/IR/PatternMatch.h" |
| 32 | #include "mlir/IR/TypeUtilities.h" |
| 33 | #include "mlir/Interfaces/VectorInterfaces.h" |
| 34 | |
| 35 | #define DEBUG_TYPE "vector-broadcast-lowering" |
| 36 | |
| 37 | using namespace mlir; |
| 38 | using namespace mlir::vector; |
| 39 | |
| 40 | namespace { |
| 41 | /// Unrolls 2 or more dimensional `vector.gather` ops by unrolling the |
| 42 | /// outermost dimension. For example: |
| 43 | /// ``` |
| 44 | /// %g = vector.gather %base[%c0][%v], %mask, %pass_thru : |
| 45 | /// ... into vector<2x3xf32> |
| 46 | /// |
| 47 | /// ==> |
| 48 | /// |
| 49 | /// %0 = arith.constant dense<0.0> : vector<2x3xf32> |
| 50 | /// %g0 = vector.gather %base[%c0][%v0], %mask0, %pass_thru0 : ... |
| 51 | /// %1 = vector.insert %g0, %0 [0] : vector<3xf32> into vector<2x3xf32> |
| 52 | /// %g1 = vector.gather %base[%c0][%v1], %mask1, %pass_thru1 : ... |
| 53 | /// %g = vector.insert %g1, %1 [1] : vector<3xf32> into vector<2x3xf32> |
| 54 | /// ``` |
| 55 | /// |
| 56 | /// When applied exhaustively, this will produce a sequence of 1-d gather ops. |
| 57 | /// |
| 58 | /// Supports vector types with a fixed leading dimension. |
| 59 | struct UnrollGather : OpRewritePattern<vector::GatherOp> { |
| 60 | using OpRewritePattern::OpRewritePattern; |
| 61 | |
| 62 | LogicalResult matchAndRewrite(vector::GatherOp op, |
| 63 | PatternRewriter &rewriter) const override { |
| 64 | VectorType resultTy = op.getType(); |
| 65 | if (resultTy.getRank() < 2) |
| 66 | return rewriter.notifyMatchFailure(op, "already 1-D" ); |
| 67 | |
| 68 | // Unrolling doesn't take vscale into account. Pattern is disabled for |
| 69 | // vectors with leading scalable dim(s). |
| 70 | if (resultTy.getScalableDims().front()) |
| 71 | return rewriter.notifyMatchFailure(op, "cannot unroll scalable dim" ); |
| 72 | |
| 73 | Location loc = op.getLoc(); |
| 74 | Value indexVec = op.getIndexVec(); |
| 75 | Value maskVec = op.getMask(); |
| 76 | Value passThruVec = op.getPassThru(); |
| 77 | |
| 78 | Value result = rewriter.create<arith::ConstantOp>( |
| 79 | loc, resultTy, rewriter.getZeroAttr(resultTy)); |
| 80 | |
| 81 | VectorType subTy = VectorType::Builder(resultTy).dropDim(0); |
| 82 | |
| 83 | for (int64_t i = 0, e = resultTy.getShape().front(); i < e; ++i) { |
| 84 | int64_t thisIdx[1] = {i}; |
| 85 | |
| 86 | Value indexSubVec = |
| 87 | rewriter.create<vector::ExtractOp>(loc, indexVec, thisIdx); |
| 88 | Value maskSubVec = |
| 89 | rewriter.create<vector::ExtractOp>(loc, maskVec, thisIdx); |
| 90 | Value passThruSubVec = |
| 91 | rewriter.create<vector::ExtractOp>(loc, passThruVec, thisIdx); |
| 92 | Value subGather = rewriter.create<vector::GatherOp>( |
| 93 | loc, subTy, op.getBase(), op.getIndices(), indexSubVec, maskSubVec, |
| 94 | passThruSubVec); |
| 95 | result = |
| 96 | rewriter.create<vector::InsertOp>(loc, subGather, result, thisIdx); |
| 97 | } |
| 98 | |
| 99 | rewriter.replaceOp(op, result); |
| 100 | return success(); |
| 101 | } |
| 102 | }; |
| 103 | |
| 104 | /// Rewrites a vector.gather of a strided MemRef as a gather of a non-strided |
| 105 | /// MemRef with updated indices that model the strided access. |
| 106 | /// |
| 107 | /// ```mlir |
| 108 | /// %subview = memref.subview %M (...) |
| 109 | /// : memref<100x3xf32> to memref<100xf32, strided<[3]>> |
| 110 | /// %gather = vector.gather %subview[%idxs] (...) |
| 111 | /// : memref<100xf32, strided<[3]>> |
| 112 | /// ``` |
| 113 | /// ==> |
| 114 | /// ```mlir |
| 115 | /// %collapse_shape = memref.collapse_shape %M (...) |
| 116 | /// : memref<100x3xf32> into memref<300xf32> |
| 117 | /// %new_idxs = arith.muli %idxs, %c3 : vector<4xindex> |
| 118 | /// %gather = vector.gather %collapse_shape[%new_idxs] (...) |
| 119 | /// : memref<300xf32> (...) |
| 120 | /// ``` |
| 121 | /// |
| 122 | /// ATM this is effectively limited to reading a 1D Vector from a 2D MemRef, |
| 123 | /// but should be fairly straightforward to extend beyond that. |
| 124 | struct RemoveStrideFromGatherSource : OpRewritePattern<vector::GatherOp> { |
| 125 | using OpRewritePattern::OpRewritePattern; |
| 126 | |
| 127 | LogicalResult matchAndRewrite(vector::GatherOp op, |
| 128 | PatternRewriter &rewriter) const override { |
| 129 | Value base = op.getBase(); |
| 130 | |
| 131 | // TODO: Strided accesses might be coming from other ops as well |
| 132 | auto subview = base.getDefiningOp<memref::SubViewOp>(); |
| 133 | if (!subview) |
| 134 | return failure(); |
| 135 | |
| 136 | auto sourceType = subview.getSource().getType(); |
| 137 | |
| 138 | // TODO: Allow ranks > 2. |
| 139 | if (sourceType.getRank() != 2) |
| 140 | return failure(); |
| 141 | |
| 142 | // Get strides |
| 143 | auto layout = subview.getResult().getType().getLayout(); |
| 144 | auto stridedLayoutAttr = llvm::dyn_cast<StridedLayoutAttr>(layout); |
| 145 | if (!stridedLayoutAttr) |
| 146 | return failure(); |
| 147 | |
| 148 | // TODO: Allow the access to be strided in multiple dimensions. |
| 149 | if (stridedLayoutAttr.getStrides().size() != 1) |
| 150 | return failure(); |
| 151 | |
| 152 | int64_t srcTrailingDim = sourceType.getShape().back(); |
| 153 | |
| 154 | // Assume that the stride matches the trailing dimension of the source |
| 155 | // memref. |
| 156 | // TODO: Relax this assumption. |
| 157 | if (stridedLayoutAttr.getStrides()[0] != srcTrailingDim) |
| 158 | return failure(); |
| 159 | |
| 160 | // 1. Collapse the input memref so that it's "flat". |
| 161 | SmallVector<ReassociationIndices> reassoc = {{0, 1}}; |
| 162 | Value collapsed = rewriter.create<memref::CollapseShapeOp>( |
| 163 | op.getLoc(), subview.getSource(), reassoc); |
| 164 | |
| 165 | // 2. Generate new gather indices that will model the |
| 166 | // strided access. |
| 167 | IntegerAttr stride = rewriter.getIndexAttr(srcTrailingDim); |
| 168 | VectorType vType = op.getIndexVec().getType(); |
| 169 | Value mulCst = rewriter.create<arith::ConstantOp>( |
| 170 | op.getLoc(), vType, DenseElementsAttr::get(vType, stride)); |
| 171 | |
| 172 | Value newIdxs = |
| 173 | rewriter.create<arith::MulIOp>(op.getLoc(), op.getIndexVec(), mulCst); |
| 174 | |
| 175 | // 3. Create an updated gather op with the collapsed input memref and the |
| 176 | // updated indices. |
| 177 | Value newGather = rewriter.create<vector::GatherOp>( |
| 178 | op.getLoc(), op.getResult().getType(), collapsed, op.getIndices(), |
| 179 | newIdxs, op.getMask(), op.getPassThru()); |
| 180 | rewriter.replaceOp(op, newGather); |
| 181 | |
| 182 | return success(); |
| 183 | } |
| 184 | }; |
| 185 | |
| 186 | /// Turns 1-d `vector.gather` into a scalarized sequence of `vector.loads` or |
| 187 | /// `tensor.extract`s. To avoid out-of-bounds memory accesses, these |
| 188 | /// loads/extracts are made conditional using `scf.if` ops. |
| 189 | struct Gather1DToConditionalLoads : OpRewritePattern<vector::GatherOp> { |
| 190 | using OpRewritePattern::OpRewritePattern; |
| 191 | |
| 192 | LogicalResult matchAndRewrite(vector::GatherOp op, |
| 193 | PatternRewriter &rewriter) const override { |
| 194 | VectorType resultTy = op.getType(); |
| 195 | if (resultTy.getRank() != 1) |
| 196 | return rewriter.notifyMatchFailure(op, "unsupported rank" ); |
| 197 | |
| 198 | if (resultTy.isScalable()) |
| 199 | return rewriter.notifyMatchFailure(op, "not a fixed-width vector" ); |
| 200 | |
| 201 | Location loc = op.getLoc(); |
| 202 | Type elemTy = resultTy.getElementType(); |
| 203 | // Vector type with a single element. Used to generate `vector.loads`. |
| 204 | VectorType elemVecTy = VectorType::get({1}, elemTy); |
| 205 | |
| 206 | Value condMask = op.getMask(); |
| 207 | Value base = op.getBase(); |
| 208 | |
| 209 | // vector.load requires the most minor memref dim to have unit stride |
| 210 | // (unless reading exactly 1 element) |
| 211 | if (auto memType = dyn_cast<MemRefType>(base.getType())) { |
| 212 | if (auto stridesAttr = |
| 213 | dyn_cast_if_present<StridedLayoutAttr>(memType.getLayout())) { |
| 214 | if (stridesAttr.getStrides().back() != 1 && |
| 215 | resultTy.getNumElements() != 1) |
| 216 | return failure(); |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | Value indexVec = rewriter.createOrFold<arith::IndexCastOp>( |
| 221 | loc, op.getIndexVectorType().clone(rewriter.getIndexType()), |
| 222 | op.getIndexVec()); |
| 223 | auto baseOffsets = llvm::to_vector(op.getIndices()); |
| 224 | Value lastBaseOffset = baseOffsets.back(); |
| 225 | |
| 226 | Value result = op.getPassThru(); |
| 227 | |
| 228 | // Emit a conditional access for each vector element. |
| 229 | for (int64_t i = 0, e = resultTy.getNumElements(); i < e; ++i) { |
| 230 | int64_t thisIdx[1] = {i}; |
| 231 | Value condition = |
| 232 | rewriter.create<vector::ExtractOp>(loc, condMask, thisIdx); |
| 233 | Value index = rewriter.create<vector::ExtractOp>(loc, indexVec, thisIdx); |
| 234 | baseOffsets.back() = |
| 235 | rewriter.createOrFold<arith::AddIOp>(loc, lastBaseOffset, index); |
| 236 | |
| 237 | auto loadBuilder = [&](OpBuilder &b, Location loc) { |
| 238 | Value ; |
| 239 | if (isa<MemRefType>(Val: base.getType())) { |
| 240 | // `vector.load` does not support scalar result; emit a vector load |
| 241 | // and extract the single result instead. |
| 242 | Value load = |
| 243 | b.create<vector::LoadOp>(loc, elemVecTy, base, baseOffsets); |
| 244 | int64_t zeroIdx[1] = {0}; |
| 245 | extracted = b.create<vector::ExtractOp>(loc, load, zeroIdx); |
| 246 | } else { |
| 247 | extracted = b.create<tensor::ExtractOp>(loc, base, baseOffsets); |
| 248 | } |
| 249 | |
| 250 | Value newResult = |
| 251 | b.create<vector::InsertOp>(loc, extracted, result, thisIdx); |
| 252 | b.create<scf::YieldOp>(loc, newResult); |
| 253 | }; |
| 254 | auto passThruBuilder = [result](OpBuilder &b, Location loc) { |
| 255 | b.create<scf::YieldOp>(loc, result); |
| 256 | }; |
| 257 | |
| 258 | result = |
| 259 | rewriter |
| 260 | .create<scf::IfOp>(loc, condition, /*thenBuilder=*/loadBuilder, |
| 261 | /*elseBuilder=*/passThruBuilder) |
| 262 | .getResult(0); |
| 263 | } |
| 264 | |
| 265 | rewriter.replaceOp(op, result); |
| 266 | return success(); |
| 267 | } |
| 268 | }; |
| 269 | } // namespace |
| 270 | |
| 271 | void mlir::vector::populateVectorGatherLoweringPatterns( |
| 272 | RewritePatternSet &patterns, PatternBenefit benefit) { |
| 273 | patterns.add<UnrollGather>(arg: patterns.getContext(), args&: benefit); |
| 274 | } |
| 275 | |
| 276 | void mlir::vector::populateVectorGatherToConditionalLoadPatterns( |
| 277 | RewritePatternSet &patterns, PatternBenefit benefit) { |
| 278 | patterns.add<RemoveStrideFromGatherSource, Gather1DToConditionalLoads>( |
| 279 | arg: patterns.getContext(), args&: benefit); |
| 280 | } |
| 281 | |