| 1 | //===- VectorTransferSplitRewritePatterns.cpp - Transfer Split Rewrites ---===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements target-independent patterns to rewrite a vector.transfer |
| 10 | // op into a fully in-bounds part and a partial part. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include <optional> |
| 15 | #include <type_traits> |
| 16 | |
| 17 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 18 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 19 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| 20 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 21 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 22 | #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
| 23 | |
| 24 | #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" |
| 25 | #include "mlir/IR/Matchers.h" |
| 26 | #include "mlir/IR/PatternMatch.h" |
| 27 | #include "mlir/Interfaces/VectorInterfaces.h" |
| 28 | |
| 29 | #include "llvm/ADT/DenseSet.h" |
| 30 | #include "llvm/ADT/MapVector.h" |
| 31 | #include "llvm/ADT/STLExtras.h" |
| 32 | #include "llvm/Support/CommandLine.h" |
| 33 | #include "llvm/Support/Debug.h" |
| 34 | #include "llvm/Support/raw_ostream.h" |
| 35 | |
| 36 | #define DEBUG_TYPE "vector-transfer-split" |
| 37 | |
| 38 | using namespace mlir; |
| 39 | using namespace mlir::vector; |
| 40 | |
| 41 | /// Build the condition to ensure that a particular VectorTransferOpInterface |
| 42 | /// is in-bounds. |
| 43 | static Value createInBoundsCond(RewriterBase &b, |
| 44 | VectorTransferOpInterface xferOp) { |
| 45 | assert(xferOp.getPermutationMap().isMinorIdentity() && |
| 46 | "Expected minor identity map" ); |
| 47 | Value inBoundsCond; |
| 48 | xferOp.zipResultAndIndexing([&](int64_t resultIdx, int64_t indicesIdx) { |
| 49 | // Zip over the resulting vector shape and memref indices. |
| 50 | // If the dimension is known to be in-bounds, it does not participate in |
| 51 | // the construction of `inBoundsCond`. |
| 52 | if (xferOp.isDimInBounds(resultIdx)) |
| 53 | return; |
| 54 | // Fold or create the check that `index + vector_size` <= `memref_size`. |
| 55 | Location loc = xferOp.getLoc(); |
| 56 | int64_t vectorSize = xferOp.getVectorType().getDimSize(resultIdx); |
| 57 | OpFoldResult sum = affine::makeComposedFoldedAffineApply( |
| 58 | b, loc, b.getAffineDimExpr(position: 0) + b.getAffineConstantExpr(constant: vectorSize), |
| 59 | {xferOp.getIndices()[indicesIdx]}); |
| 60 | OpFoldResult dimSz = |
| 61 | memref::getMixedSize(builder&: b, loc, value: xferOp.getBase(), dim: indicesIdx); |
| 62 | auto maybeCstSum = getConstantIntValue(ofr: sum); |
| 63 | auto maybeCstDimSz = getConstantIntValue(ofr: dimSz); |
| 64 | if (maybeCstSum && maybeCstDimSz && *maybeCstSum <= *maybeCstDimSz) |
| 65 | return; |
| 66 | Value cond = |
| 67 | b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sle, |
| 68 | getValueOrCreateConstantIndexOp(b, loc, sum), |
| 69 | getValueOrCreateConstantIndexOp(b, loc, dimSz)); |
| 70 | // Conjunction over all dims for which we are in-bounds. |
| 71 | if (inBoundsCond) |
| 72 | inBoundsCond = b.create<arith::AndIOp>(loc, inBoundsCond, cond); |
| 73 | else |
| 74 | inBoundsCond = cond; |
| 75 | }); |
| 76 | return inBoundsCond; |
| 77 | } |
| 78 | |
| 79 | /// Split a vector.transfer operation into an in-bounds (i.e., no out-of-bounds |
| 80 | /// masking) fast path and a slow path. |
| 81 | /// If `ifOp` is not null and the result is `success, the `ifOp` points to the |
| 82 | /// newly created conditional upon function return. |
| 83 | /// To accommodate for the fact that the original vector.transfer indexing may |
| 84 | /// be arbitrary and the slow path indexes @[0...0] in the temporary buffer, the |
| 85 | /// scf.if op returns a view and values of type index. |
| 86 | /// At this time, only vector.transfer_read case is implemented. |
| 87 | /// |
| 88 | /// Example (a 2-D vector.transfer_read): |
| 89 | /// ``` |
| 90 | /// %1 = vector.transfer_read %0[...], %pad : memref<A...>, vector<...> |
| 91 | /// ``` |
| 92 | /// is transformed into: |
| 93 | /// ``` |
| 94 | /// %1:3 = scf.if (%inBounds) { |
| 95 | /// // fast path, direct cast |
| 96 | /// memref.cast %A: memref<A...> to compatibleMemRefType |
| 97 | /// scf.yield %view : compatibleMemRefType, index, index |
| 98 | /// } else { |
| 99 | /// // slow path, not in-bounds vector.transfer or linalg.copy. |
| 100 | /// memref.cast %alloc: memref<B...> to compatibleMemRefType |
| 101 | /// scf.yield %4 : compatibleMemRefType, index, index |
| 102 | // } |
| 103 | /// %0 = vector.transfer_read %1#0[%1#1, %1#2] {in_bounds = [true ... true]} |
| 104 | /// ``` |
| 105 | /// where `alloc` is a top of the function alloca'ed buffer of one vector. |
| 106 | /// |
| 107 | /// Preconditions: |
| 108 | /// 1. `xferOp.getPermutationMap()` must be a minor identity map |
| 109 | /// 2. the rank of the `xferOp.memref()` and the rank of the |
| 110 | /// `xferOp.getVector()` must be equal. This will be relaxed in the future |
| 111 | /// but requires rank-reducing subviews. |
| 112 | static LogicalResult |
| 113 | splitFullAndPartialTransferPrecondition(VectorTransferOpInterface xferOp) { |
| 114 | // TODO: support 0-d corner case. |
| 115 | if (xferOp.getTransferRank() == 0) |
| 116 | return failure(); |
| 117 | |
| 118 | // TODO: expand support to these 2 cases. |
| 119 | if (!xferOp.getPermutationMap().isMinorIdentity()) |
| 120 | return failure(); |
| 121 | // Must have some out-of-bounds dimension to be a candidate for splitting. |
| 122 | if (!xferOp.hasOutOfBoundsDim()) |
| 123 | return failure(); |
| 124 | // Don't split transfer operations directly under IfOp, this avoids applying |
| 125 | // the pattern recursively. |
| 126 | // TODO: improve the filtering condition to make it more applicable. |
| 127 | if (isa<scf::IfOp>(xferOp->getParentOp())) |
| 128 | return failure(); |
| 129 | return success(); |
| 130 | } |
| 131 | |
| 132 | /// Given two MemRefTypes `aT` and `bT`, return a MemRefType to which both can |
| 133 | /// be cast. If the MemRefTypes don't have the same rank or are not strided, |
| 134 | /// return null; otherwise: |
| 135 | /// 1. if `aT` and `bT` are cast-compatible, return `aT`. |
| 136 | /// 2. else return a new MemRefType obtained by iterating over the shape and |
| 137 | /// strides and: |
| 138 | /// a. keeping the ones that are static and equal across `aT` and `bT`. |
| 139 | /// b. using a dynamic shape and/or stride for the dimensions that don't |
| 140 | /// agree. |
| 141 | static MemRefType getCastCompatibleMemRefType(MemRefType aT, MemRefType bT) { |
| 142 | if (memref::CastOp::areCastCompatible(aT, bT)) |
| 143 | return aT; |
| 144 | if (aT.getRank() != bT.getRank()) |
| 145 | return MemRefType(); |
| 146 | int64_t aOffset, bOffset; |
| 147 | SmallVector<int64_t, 4> aStrides, bStrides; |
| 148 | if (failed(aT.getStridesAndOffset(aStrides, aOffset)) || |
| 149 | failed(bT.getStridesAndOffset(bStrides, bOffset)) || |
| 150 | aStrides.size() != bStrides.size()) |
| 151 | return MemRefType(); |
| 152 | |
| 153 | ArrayRef<int64_t> aShape = aT.getShape(), bShape = bT.getShape(); |
| 154 | int64_t resOffset; |
| 155 | SmallVector<int64_t, 4> resShape(aT.getRank(), 0), |
| 156 | resStrides(bT.getRank(), 0); |
| 157 | for (int64_t idx = 0, e = aT.getRank(); idx < e; ++idx) { |
| 158 | resShape[idx] = |
| 159 | (aShape[idx] == bShape[idx]) ? aShape[idx] : ShapedType::kDynamic; |
| 160 | resStrides[idx] = |
| 161 | (aStrides[idx] == bStrides[idx]) ? aStrides[idx] : ShapedType::kDynamic; |
| 162 | } |
| 163 | resOffset = (aOffset == bOffset) ? aOffset : ShapedType::kDynamic; |
| 164 | return MemRefType::get( |
| 165 | resShape, aT.getElementType(), |
| 166 | StridedLayoutAttr::get(aT.getContext(), resOffset, resStrides)); |
| 167 | } |
| 168 | |
| 169 | /// Casts the given memref to a compatible memref type. If the source memref has |
| 170 | /// a different address space than the target type, a `memref.memory_space_cast` |
| 171 | /// is first inserted, followed by a `memref.cast`. |
| 172 | static Value castToCompatibleMemRefType(OpBuilder &b, Value memref, |
| 173 | MemRefType compatibleMemRefType) { |
| 174 | MemRefType sourceType = cast<MemRefType>(memref.getType()); |
| 175 | Value res = memref; |
| 176 | if (sourceType.getMemorySpace() != compatibleMemRefType.getMemorySpace()) { |
| 177 | sourceType = MemRefType::get( |
| 178 | sourceType.getShape(), sourceType.getElementType(), |
| 179 | sourceType.getLayout(), compatibleMemRefType.getMemorySpace()); |
| 180 | res = b.create<memref::MemorySpaceCastOp>(memref.getLoc(), sourceType, res); |
| 181 | } |
| 182 | if (sourceType == compatibleMemRefType) |
| 183 | return res; |
| 184 | return b.create<memref::CastOp>(memref.getLoc(), compatibleMemRefType, res); |
| 185 | } |
| 186 | |
| 187 | /// Operates under a scoped context to build the intersection between the |
| 188 | /// view `xferOp.getbase()` @ `xferOp.getIndices()` and the view `alloc`. |
| 189 | // TODO: view intersection/union/differences should be a proper std op. |
| 190 | static std::pair<Value, Value> |
| 191 | createSubViewIntersection(RewriterBase &b, VectorTransferOpInterface xferOp, |
| 192 | Value alloc) { |
| 193 | Location loc = xferOp.getLoc(); |
| 194 | int64_t memrefRank = xferOp.getShapedType().getRank(); |
| 195 | // TODO: relax this precondition, will require rank-reducing subviews. |
| 196 | assert(memrefRank == cast<MemRefType>(alloc.getType()).getRank() && |
| 197 | "Expected memref rank to match the alloc rank" ); |
| 198 | ValueRange leadingIndices = |
| 199 | xferOp.getIndices().take_front(xferOp.getLeadingShapedRank()); |
| 200 | SmallVector<OpFoldResult, 4> sizes; |
| 201 | sizes.append(in_start: leadingIndices.begin(), in_end: leadingIndices.end()); |
| 202 | auto isaWrite = isa<vector::TransferWriteOp>(xferOp); |
| 203 | xferOp.zipResultAndIndexing([&](int64_t resultIdx, int64_t indicesIdx) { |
| 204 | using MapList = ArrayRef<ArrayRef<AffineExpr>>; |
| 205 | Value dimMemRef = |
| 206 | b.create<memref::DimOp>(xferOp.getLoc(), xferOp.getBase(), indicesIdx); |
| 207 | Value dimAlloc = b.create<memref::DimOp>(loc, alloc, resultIdx); |
| 208 | Value index = xferOp.getIndices()[indicesIdx]; |
| 209 | AffineExpr i, j, k; |
| 210 | bindDims(xferOp.getContext(), i, j, k); |
| 211 | SmallVector<AffineMap, 4> maps = |
| 212 | AffineMap::inferFromExprList(exprsList: MapList{{i - j, k}}, context: b.getContext()); |
| 213 | // affine_min(%dimMemRef - %index, %dimAlloc) |
| 214 | Value affineMin = b.create<affine::AffineMinOp>( |
| 215 | loc, index.getType(), maps[0], ValueRange{dimMemRef, index, dimAlloc}); |
| 216 | sizes.push_back(Elt: affineMin); |
| 217 | }); |
| 218 | |
| 219 | SmallVector<OpFoldResult> srcIndices = llvm::to_vector<4>(llvm::map_range( |
| 220 | xferOp.getIndices(), [](Value idx) -> OpFoldResult { return idx; })); |
| 221 | SmallVector<OpFoldResult> destIndices(memrefRank, b.getIndexAttr(0)); |
| 222 | SmallVector<OpFoldResult> strides(memrefRank, b.getIndexAttr(1)); |
| 223 | auto copySrc = b.create<memref::SubViewOp>( |
| 224 | loc, isaWrite ? alloc : xferOp.getBase(), srcIndices, sizes, strides); |
| 225 | auto copyDest = b.create<memref::SubViewOp>( |
| 226 | loc, isaWrite ? xferOp.getBase() : alloc, destIndices, sizes, strides); |
| 227 | return std::make_pair(copySrc, copyDest); |
| 228 | } |
| 229 | |
| 230 | /// Given an `xferOp` for which: |
| 231 | /// 1. `inBoundsCond` and a `compatibleMemRefType` have been computed. |
| 232 | /// 2. a memref of single vector `alloc` has been allocated. |
| 233 | /// Produce IR resembling: |
| 234 | /// ``` |
| 235 | /// %1:3 = scf.if (%inBounds) { |
| 236 | /// (memref.memory_space_cast %A: memref<A..., addr_space> to memref<A...>) |
| 237 | /// %view = memref.cast %A: memref<A...> to compatibleMemRefType |
| 238 | /// scf.yield %view, ... : compatibleMemRefType, index, index |
| 239 | /// } else { |
| 240 | /// %2 = linalg.fill(%pad, %alloc) |
| 241 | /// %3 = subview %view [...][...][...] |
| 242 | /// %4 = subview %alloc [0, 0] [...] [...] |
| 243 | /// linalg.copy(%3, %4) |
| 244 | /// %5 = memref.cast %alloc: memref<B...> to compatibleMemRefType |
| 245 | /// scf.yield %5, ... : compatibleMemRefType, index, index |
| 246 | /// } |
| 247 | /// ``` |
| 248 | /// Return the produced scf::IfOp. |
| 249 | static scf::IfOp |
| 250 | createFullPartialLinalgCopy(RewriterBase &b, vector::TransferReadOp xferOp, |
| 251 | TypeRange returnTypes, Value inBoundsCond, |
| 252 | MemRefType compatibleMemRefType, Value alloc) { |
| 253 | Location loc = xferOp.getLoc(); |
| 254 | Value zero = b.create<arith::ConstantIndexOp>(location: loc, args: 0); |
| 255 | Value memref = xferOp.getBase(); |
| 256 | return b.create<scf::IfOp>( |
| 257 | loc, inBoundsCond, |
| 258 | [&](OpBuilder &b, Location loc) { |
| 259 | Value res = castToCompatibleMemRefType(b, memref, compatibleMemRefType); |
| 260 | scf::ValueVector viewAndIndices{res}; |
| 261 | llvm::append_range(viewAndIndices, xferOp.getIndices()); |
| 262 | b.create<scf::YieldOp>(loc, viewAndIndices); |
| 263 | }, |
| 264 | [&](OpBuilder &b, Location loc) { |
| 265 | b.create<linalg::FillOp>(loc, ValueRange{xferOp.getPadding()}, |
| 266 | ValueRange{alloc}); |
| 267 | // Take partial subview of memref which guarantees no dimension |
| 268 | // overflows. |
| 269 | IRRewriter rewriter(b); |
| 270 | std::pair<Value, Value> copyArgs = createSubViewIntersection( |
| 271 | rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()), |
| 272 | alloc); |
| 273 | b.create<memref::CopyOp>(loc, copyArgs.first, copyArgs.second); |
| 274 | Value casted = |
| 275 | castToCompatibleMemRefType(b, alloc, compatibleMemRefType); |
| 276 | scf::ValueVector viewAndIndices{casted}; |
| 277 | viewAndIndices.insert(viewAndIndices.end(), xferOp.getTransferRank(), |
| 278 | zero); |
| 279 | b.create<scf::YieldOp>(loc, viewAndIndices); |
| 280 | }); |
| 281 | } |
| 282 | |
| 283 | /// Given an `xferOp` for which: |
| 284 | /// 1. `inBoundsCond` and a `compatibleMemRefType` have been computed. |
| 285 | /// 2. a memref of single vector `alloc` has been allocated. |
| 286 | /// Produce IR resembling: |
| 287 | /// ``` |
| 288 | /// %1:3 = scf.if (%inBounds) { |
| 289 | /// (memref.memory_space_cast %A: memref<A..., addr_space> to memref<A...>) |
| 290 | /// memref.cast %A: memref<A...> to compatibleMemRefType |
| 291 | /// scf.yield %view, ... : compatibleMemRefType, index, index |
| 292 | /// } else { |
| 293 | /// %2 = vector.transfer_read %view[...], %pad : memref<A...>, vector<...> |
| 294 | /// %3 = vector.type_cast %extra_alloc : |
| 295 | /// memref<...> to memref<vector<...>> |
| 296 | /// store %2, %3[] : memref<vector<...>> |
| 297 | /// %4 = memref.cast %alloc: memref<B...> to compatibleMemRefType |
| 298 | /// scf.yield %4, ... : compatibleMemRefType, index, index |
| 299 | /// } |
| 300 | /// ``` |
| 301 | /// Return the produced scf::IfOp. |
| 302 | static scf::IfOp createFullPartialVectorTransferRead( |
| 303 | RewriterBase &b, vector::TransferReadOp xferOp, TypeRange returnTypes, |
| 304 | Value inBoundsCond, MemRefType compatibleMemRefType, Value alloc) { |
| 305 | Location loc = xferOp.getLoc(); |
| 306 | scf::IfOp fullPartialIfOp; |
| 307 | Value zero = b.create<arith::ConstantIndexOp>(location: loc, args: 0); |
| 308 | Value memref = xferOp.getBase(); |
| 309 | return b.create<scf::IfOp>( |
| 310 | loc, inBoundsCond, |
| 311 | [&](OpBuilder &b, Location loc) { |
| 312 | Value res = castToCompatibleMemRefType(b, memref, compatibleMemRefType); |
| 313 | scf::ValueVector viewAndIndices{res}; |
| 314 | llvm::append_range(viewAndIndices, xferOp.getIndices()); |
| 315 | b.create<scf::YieldOp>(loc, viewAndIndices); |
| 316 | }, |
| 317 | [&](OpBuilder &b, Location loc) { |
| 318 | Operation *newXfer = b.clone(*xferOp.getOperation()); |
| 319 | Value vector = cast<VectorTransferOpInterface>(newXfer).getVector(); |
| 320 | b.create<memref::StoreOp>( |
| 321 | loc, vector, |
| 322 | b.create<vector::TypeCastOp>( |
| 323 | loc, MemRefType::get({}, vector.getType()), alloc)); |
| 324 | |
| 325 | Value casted = |
| 326 | castToCompatibleMemRefType(b, alloc, compatibleMemRefType); |
| 327 | scf::ValueVector viewAndIndices{casted}; |
| 328 | viewAndIndices.insert(viewAndIndices.end(), xferOp.getTransferRank(), |
| 329 | zero); |
| 330 | b.create<scf::YieldOp>(loc, viewAndIndices); |
| 331 | }); |
| 332 | } |
| 333 | |
| 334 | /// Given an `xferOp` for which: |
| 335 | /// 1. `inBoundsCond` and a `compatibleMemRefType` have been computed. |
| 336 | /// 2. a memref of single vector `alloc` has been allocated. |
| 337 | /// Produce IR resembling: |
| 338 | /// ``` |
| 339 | /// %1:3 = scf.if (%inBounds) { |
| 340 | /// memref.cast %A: memref<A...> to compatibleMemRefType |
| 341 | /// scf.yield %view, ... : compatibleMemRefType, index, index |
| 342 | /// } else { |
| 343 | /// %3 = vector.type_cast %extra_alloc : |
| 344 | /// memref<...> to memref<vector<...>> |
| 345 | /// %4 = memref.cast %alloc: memref<B...> to compatibleMemRefType |
| 346 | /// scf.yield %4, ... : compatibleMemRefType, index, index |
| 347 | /// } |
| 348 | /// ``` |
| 349 | static ValueRange |
| 350 | getLocationToWriteFullVec(RewriterBase &b, vector::TransferWriteOp xferOp, |
| 351 | TypeRange returnTypes, Value inBoundsCond, |
| 352 | MemRefType compatibleMemRefType, Value alloc) { |
| 353 | Location loc = xferOp.getLoc(); |
| 354 | Value zero = b.create<arith::ConstantIndexOp>(location: loc, args: 0); |
| 355 | Value memref = xferOp.getBase(); |
| 356 | return b |
| 357 | .create<scf::IfOp>( |
| 358 | loc, inBoundsCond, |
| 359 | [&](OpBuilder &b, Location loc) { |
| 360 | Value res = |
| 361 | castToCompatibleMemRefType(b, memref, compatibleMemRefType); |
| 362 | scf::ValueVector viewAndIndices{res}; |
| 363 | llvm::append_range(viewAndIndices, xferOp.getIndices()); |
| 364 | b.create<scf::YieldOp>(loc, viewAndIndices); |
| 365 | }, |
| 366 | [&](OpBuilder &b, Location loc) { |
| 367 | Value casted = |
| 368 | castToCompatibleMemRefType(b, alloc, compatibleMemRefType); |
| 369 | scf::ValueVector viewAndIndices{casted}; |
| 370 | viewAndIndices.insert(viewAndIndices.end(), |
| 371 | xferOp.getTransferRank(), zero); |
| 372 | b.create<scf::YieldOp>(loc, viewAndIndices); |
| 373 | }) |
| 374 | ->getResults(); |
| 375 | } |
| 376 | |
| 377 | /// Given an `xferOp` for which: |
| 378 | /// 1. `inBoundsCond` has been computed. |
| 379 | /// 2. a memref of single vector `alloc` has been allocated. |
| 380 | /// 3. it originally wrote to %view |
| 381 | /// Produce IR resembling: |
| 382 | /// ``` |
| 383 | /// %notInBounds = arith.xori %inBounds, %true |
| 384 | /// scf.if (%notInBounds) { |
| 385 | /// %3 = subview %alloc [...][...][...] |
| 386 | /// %4 = subview %view [0, 0][...][...] |
| 387 | /// linalg.copy(%3, %4) |
| 388 | /// } |
| 389 | /// ``` |
| 390 | static void createFullPartialLinalgCopy(RewriterBase &b, |
| 391 | vector::TransferWriteOp xferOp, |
| 392 | Value inBoundsCond, Value alloc) { |
| 393 | Location loc = xferOp.getLoc(); |
| 394 | auto notInBounds = b.create<arith::XOrIOp>( |
| 395 | loc, inBoundsCond, b.create<arith::ConstantIntOp>(loc, true, 1)); |
| 396 | b.create<scf::IfOp>(loc, notInBounds, [&](OpBuilder &b, Location loc) { |
| 397 | IRRewriter rewriter(b); |
| 398 | std::pair<Value, Value> copyArgs = createSubViewIntersection( |
| 399 | rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()), |
| 400 | alloc); |
| 401 | b.create<memref::CopyOp>(loc, copyArgs.first, copyArgs.second); |
| 402 | b.create<scf::YieldOp>(loc, ValueRange{}); |
| 403 | }); |
| 404 | } |
| 405 | |
| 406 | /// Given an `xferOp` for which: |
| 407 | /// 1. `inBoundsCond` has been computed. |
| 408 | /// 2. a memref of single vector `alloc` has been allocated. |
| 409 | /// 3. it originally wrote to %view |
| 410 | /// Produce IR resembling: |
| 411 | /// ``` |
| 412 | /// %notInBounds = arith.xori %inBounds, %true |
| 413 | /// scf.if (%notInBounds) { |
| 414 | /// %2 = load %alloc : memref<vector<...>> |
| 415 | /// vector.transfer_write %2, %view[...] : memref<A...>, vector<...> |
| 416 | /// } |
| 417 | /// ``` |
| 418 | static void createFullPartialVectorTransferWrite(RewriterBase &b, |
| 419 | vector::TransferWriteOp xferOp, |
| 420 | Value inBoundsCond, |
| 421 | Value alloc) { |
| 422 | Location loc = xferOp.getLoc(); |
| 423 | auto notInBounds = b.create<arith::XOrIOp>( |
| 424 | loc, inBoundsCond, b.create<arith::ConstantIntOp>(loc, true, 1)); |
| 425 | b.create<scf::IfOp>(loc, notInBounds, [&](OpBuilder &b, Location loc) { |
| 426 | IRMapping mapping; |
| 427 | Value load = b.create<memref::LoadOp>( |
| 428 | loc, |
| 429 | b.create<vector::TypeCastOp>( |
| 430 | loc, MemRefType::get({}, xferOp.getVector().getType()), alloc), |
| 431 | ValueRange()); |
| 432 | mapping.map(xferOp.getVector(), load); |
| 433 | b.clone(*xferOp.getOperation(), mapping); |
| 434 | b.create<scf::YieldOp>(loc, ValueRange{}); |
| 435 | }); |
| 436 | } |
| 437 | |
| 438 | // TODO: Parallelism and threadlocal considerations with a ParallelScope trait. |
| 439 | static Operation *getAutomaticAllocationScope(Operation *op) { |
| 440 | // Find the closest surrounding allocation scope that is not a known looping |
| 441 | // construct (putting alloca's in loops doesn't always lower to deallocation |
| 442 | // until the end of the loop). |
| 443 | Operation *scope = nullptr; |
| 444 | for (Operation *parent = op->getParentOp(); parent != nullptr; |
| 445 | parent = parent->getParentOp()) { |
| 446 | if (parent->hasTrait<OpTrait::AutomaticAllocationScope>()) |
| 447 | scope = parent; |
| 448 | if (!isa<scf::ForOp, affine::AffineForOp>(parent)) |
| 449 | break; |
| 450 | } |
| 451 | assert(scope && "Expected op to be inside automatic allocation scope" ); |
| 452 | return scope; |
| 453 | } |
| 454 | |
| 455 | /// Split a vector.transfer operation into an in-bounds (i.e., no out-of-bounds |
| 456 | /// masking) fastpath and a slowpath. |
| 457 | /// |
| 458 | /// For vector.transfer_read: |
| 459 | /// If `ifOp` is not null and the result is `success, the `ifOp` points to the |
| 460 | /// newly created conditional upon function return. |
| 461 | /// To accomodate for the fact that the original vector.transfer indexing may be |
| 462 | /// arbitrary and the slow path indexes @[0...0] in the temporary buffer, the |
| 463 | /// scf.if op returns a view and values of type index. |
| 464 | /// |
| 465 | /// Example (a 2-D vector.transfer_read): |
| 466 | /// ``` |
| 467 | /// %1 = vector.transfer_read %0[...], %pad : memref<A...>, vector<...> |
| 468 | /// ``` |
| 469 | /// is transformed into: |
| 470 | /// ``` |
| 471 | /// %1:3 = scf.if (%inBounds) { |
| 472 | /// // fastpath, direct cast |
| 473 | /// memref.cast %A: memref<A...> to compatibleMemRefType |
| 474 | /// scf.yield %view : compatibleMemRefType, index, index |
| 475 | /// } else { |
| 476 | /// // slowpath, not in-bounds vector.transfer or linalg.copy. |
| 477 | /// memref.cast %alloc: memref<B...> to compatibleMemRefType |
| 478 | /// scf.yield %4 : compatibleMemRefType, index, index |
| 479 | // } |
| 480 | /// %0 = vector.transfer_read %1#0[%1#1, %1#2] {in_bounds = [true ... true]} |
| 481 | /// ``` |
| 482 | /// where `alloc` is a top of the function alloca'ed buffer of one vector. |
| 483 | /// |
| 484 | /// For vector.transfer_write: |
| 485 | /// There are 2 conditional blocks. First a block to decide which memref and |
| 486 | /// indices to use for an unmasked, inbounds write. Then a conditional block to |
| 487 | /// further copy a partial buffer into the final result in the slow path case. |
| 488 | /// |
| 489 | /// Example (a 2-D vector.transfer_write): |
| 490 | /// ``` |
| 491 | /// vector.transfer_write %arg, %0[...], %pad : memref<A...>, vector<...> |
| 492 | /// ``` |
| 493 | /// is transformed into: |
| 494 | /// ``` |
| 495 | /// %1:3 = scf.if (%inBounds) { |
| 496 | /// memref.cast %A: memref<A...> to compatibleMemRefType |
| 497 | /// scf.yield %view : compatibleMemRefType, index, index |
| 498 | /// } else { |
| 499 | /// memref.cast %alloc: memref<B...> to compatibleMemRefType |
| 500 | /// scf.yield %4 : compatibleMemRefType, index, index |
| 501 | /// } |
| 502 | /// %0 = vector.transfer_write %arg, %1#0[%1#1, %1#2] {in_bounds = [true ... |
| 503 | /// true]} |
| 504 | /// scf.if (%notInBounds) { |
| 505 | /// // slowpath: not in-bounds vector.transfer or linalg.copy. |
| 506 | /// } |
| 507 | /// ``` |
| 508 | /// where `alloc` is a top of the function alloca'ed buffer of one vector. |
| 509 | /// |
| 510 | /// Preconditions: |
| 511 | /// 1. `xferOp.getPermutationMap()` must be a minor identity map |
| 512 | /// 2. the rank of the `xferOp.getBase()` and the rank of the |
| 513 | /// `xferOp.getVector()` must be equal. This will be relaxed in the future |
| 514 | /// but requires rank-reducing subviews. |
| 515 | LogicalResult mlir::vector::splitFullAndPartialTransfer( |
| 516 | RewriterBase &b, VectorTransferOpInterface xferOp, |
| 517 | VectorTransformsOptions options, scf::IfOp *ifOp) { |
| 518 | if (options.vectorTransferSplit == VectorTransferSplit::None) |
| 519 | return failure(); |
| 520 | |
| 521 | SmallVector<bool, 4> bools(xferOp.getTransferRank(), true); |
| 522 | auto inBoundsAttr = b.getBoolArrayAttr(bools); |
| 523 | if (options.vectorTransferSplit == VectorTransferSplit::ForceInBounds) { |
| 524 | b.modifyOpInPlace(xferOp, [&]() { |
| 525 | xferOp->setAttr(xferOp.getInBoundsAttrName(), inBoundsAttr); |
| 526 | }); |
| 527 | return success(); |
| 528 | } |
| 529 | |
| 530 | // Assert preconditions. Additionally, keep the variables in an inner scope to |
| 531 | // ensure they aren't used in the wrong scopes further down. |
| 532 | { |
| 533 | assert(succeeded(splitFullAndPartialTransferPrecondition(xferOp)) && |
| 534 | "Expected splitFullAndPartialTransferPrecondition to hold" ); |
| 535 | |
| 536 | auto xferReadOp = dyn_cast<vector::TransferReadOp>(xferOp.getOperation()); |
| 537 | auto xferWriteOp = dyn_cast<vector::TransferWriteOp>(xferOp.getOperation()); |
| 538 | |
| 539 | if (!(xferReadOp || xferWriteOp)) |
| 540 | return failure(); |
| 541 | if (xferWriteOp && xferWriteOp.getMask()) |
| 542 | return failure(); |
| 543 | if (xferReadOp && xferReadOp.getMask()) |
| 544 | return failure(); |
| 545 | } |
| 546 | |
| 547 | RewriterBase::InsertionGuard guard(b); |
| 548 | b.setInsertionPoint(xferOp); |
| 549 | Value inBoundsCond = createInBoundsCond( |
| 550 | b, cast<VectorTransferOpInterface>(xferOp.getOperation())); |
| 551 | if (!inBoundsCond) |
| 552 | return failure(); |
| 553 | |
| 554 | // Top of the function `alloc` for transient storage. |
| 555 | Value alloc; |
| 556 | { |
| 557 | RewriterBase::InsertionGuard guard(b); |
| 558 | Operation *scope = getAutomaticAllocationScope(xferOp); |
| 559 | assert(scope->getNumRegions() == 1 && |
| 560 | "AutomaticAllocationScope with >1 regions" ); |
| 561 | b.setInsertionPointToStart(&scope->getRegion(index: 0).front()); |
| 562 | auto shape = xferOp.getVectorType().getShape(); |
| 563 | Type elementType = xferOp.getVectorType().getElementType(); |
| 564 | alloc = b.create<memref::AllocaOp>(scope->getLoc(), |
| 565 | MemRefType::get(shape, elementType), |
| 566 | ValueRange{}, b.getI64IntegerAttr(32)); |
| 567 | } |
| 568 | |
| 569 | MemRefType compatibleMemRefType = |
| 570 | getCastCompatibleMemRefType(cast<MemRefType>(xferOp.getShapedType()), |
| 571 | cast<MemRefType>(alloc.getType())); |
| 572 | if (!compatibleMemRefType) |
| 573 | return failure(); |
| 574 | |
| 575 | SmallVector<Type, 4> returnTypes(1 + xferOp.getTransferRank(), |
| 576 | b.getIndexType()); |
| 577 | returnTypes[0] = compatibleMemRefType; |
| 578 | |
| 579 | if (auto xferReadOp = |
| 580 | dyn_cast<vector::TransferReadOp>(xferOp.getOperation())) { |
| 581 | // Read case: full fill + partial copy -> in-bounds vector.xfer_read. |
| 582 | scf::IfOp fullPartialIfOp = |
| 583 | options.vectorTransferSplit == VectorTransferSplit::VectorTransfer |
| 584 | ? createFullPartialVectorTransferRead(b, xferReadOp, returnTypes, |
| 585 | inBoundsCond, |
| 586 | compatibleMemRefType, alloc) |
| 587 | : createFullPartialLinalgCopy(b, xferReadOp, returnTypes, |
| 588 | inBoundsCond, compatibleMemRefType, |
| 589 | alloc); |
| 590 | if (ifOp) |
| 591 | *ifOp = fullPartialIfOp; |
| 592 | |
| 593 | // Set existing read op to in-bounds, it always reads from a full buffer. |
| 594 | for (unsigned i = 0, e = returnTypes.size(); i != e; ++i) |
| 595 | xferReadOp.setOperand(i, fullPartialIfOp.getResult(i)); |
| 596 | |
| 597 | b.modifyOpInPlace(xferOp, [&]() { |
| 598 | xferOp->setAttr(xferOp.getInBoundsAttrName(), inBoundsAttr); |
| 599 | }); |
| 600 | |
| 601 | return success(); |
| 602 | } |
| 603 | |
| 604 | auto xferWriteOp = cast<vector::TransferWriteOp>(xferOp.getOperation()); |
| 605 | |
| 606 | // Decide which location to write the entire vector to. |
| 607 | auto memrefAndIndices = getLocationToWriteFullVec( |
| 608 | b, xferWriteOp, returnTypes, inBoundsCond, compatibleMemRefType, alloc); |
| 609 | |
| 610 | // Do an in bounds write to either the output or the extra allocated buffer. |
| 611 | // The operation is cloned to prevent deleting information needed for the |
| 612 | // later IR creation. |
| 613 | IRMapping mapping; |
| 614 | mapping.map(xferWriteOp.getBase(), memrefAndIndices.front()); |
| 615 | mapping.map(xferWriteOp.getIndices(), memrefAndIndices.drop_front()); |
| 616 | auto *clone = b.clone(*xferWriteOp, mapping); |
| 617 | clone->setAttr(xferWriteOp.getInBoundsAttrName(), inBoundsAttr); |
| 618 | |
| 619 | // Create a potential copy from the allocated buffer to the final output in |
| 620 | // the slow path case. |
| 621 | if (options.vectorTransferSplit == VectorTransferSplit::VectorTransfer) |
| 622 | createFullPartialVectorTransferWrite(b, xferWriteOp, inBoundsCond, alloc); |
| 623 | else |
| 624 | createFullPartialLinalgCopy(b, xferWriteOp, inBoundsCond, alloc); |
| 625 | |
| 626 | b.eraseOp(op: xferOp); |
| 627 | |
| 628 | return success(); |
| 629 | } |
| 630 | |
| 631 | namespace { |
| 632 | /// Apply `splitFullAndPartialTransfer` selectively via a pattern. This pattern |
| 633 | /// may take an extra filter to perform selection at a finer granularity. |
| 634 | struct VectorTransferFullPartialRewriter : public RewritePattern { |
| 635 | using FilterConstraintType = |
| 636 | std::function<LogicalResult(VectorTransferOpInterface op)>; |
| 637 | |
| 638 | explicit VectorTransferFullPartialRewriter( |
| 639 | MLIRContext *context, |
| 640 | VectorTransformsOptions options = VectorTransformsOptions(), |
| 641 | FilterConstraintType filter = |
| 642 | [](VectorTransferOpInterface op) { return success(); }, |
| 643 | PatternBenefit benefit = 1) |
| 644 | : RewritePattern(MatchAnyOpTypeTag(), benefit, context), options(options), |
| 645 | filter(std::move(filter)) {} |
| 646 | |
| 647 | /// Performs the rewrite. |
| 648 | LogicalResult matchAndRewrite(Operation *op, |
| 649 | PatternRewriter &rewriter) const override; |
| 650 | |
| 651 | private: |
| 652 | VectorTransformsOptions options; |
| 653 | FilterConstraintType filter; |
| 654 | }; |
| 655 | |
| 656 | } // namespace |
| 657 | |
| 658 | LogicalResult VectorTransferFullPartialRewriter::matchAndRewrite( |
| 659 | Operation *op, PatternRewriter &rewriter) const { |
| 660 | auto xferOp = dyn_cast<VectorTransferOpInterface>(op); |
| 661 | if (!xferOp || failed(splitFullAndPartialTransferPrecondition(xferOp)) || |
| 662 | failed(filter(xferOp))) |
| 663 | return failure(); |
| 664 | return splitFullAndPartialTransfer(rewriter, xferOp, options); |
| 665 | } |
| 666 | |
| 667 | void mlir::vector::populateVectorTransferFullPartialPatterns( |
| 668 | RewritePatternSet &patterns, const VectorTransformsOptions &options) { |
| 669 | patterns.add<VectorTransferFullPartialRewriter>(arg: patterns.getContext(), |
| 670 | args: options); |
| 671 | } |
| 672 | |