1 | //===- VectorTransferSplitRewritePatterns.cpp - Transfer Split Rewrites ---===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements target-independent patterns to rewrite a vector.transfer |
10 | // op into a fully in-bounds part and a partial part. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include <optional> |
15 | #include <type_traits> |
16 | |
17 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
18 | #include "mlir/Dialect/Arith/IR/Arith.h" |
19 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
20 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
21 | #include "mlir/Dialect/SCF/IR/SCF.h" |
22 | #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
23 | |
24 | #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" |
25 | #include "mlir/IR/Matchers.h" |
26 | #include "mlir/IR/PatternMatch.h" |
27 | #include "mlir/Interfaces/VectorInterfaces.h" |
28 | |
29 | #include "llvm/ADT/DenseSet.h" |
30 | #include "llvm/ADT/MapVector.h" |
31 | #include "llvm/ADT/STLExtras.h" |
32 | #include "llvm/Support/CommandLine.h" |
33 | #include "llvm/Support/Debug.h" |
34 | #include "llvm/Support/raw_ostream.h" |
35 | |
36 | #define DEBUG_TYPE "vector-transfer-split" |
37 | |
38 | using namespace mlir; |
39 | using namespace mlir::vector; |
40 | |
41 | /// Build the condition to ensure that a particular VectorTransferOpInterface |
42 | /// is in-bounds. |
43 | static Value createInBoundsCond(RewriterBase &b, |
44 | VectorTransferOpInterface xferOp) { |
45 | assert(xferOp.getPermutationMap().isMinorIdentity() && |
46 | "Expected minor identity map"); |
47 | Value inBoundsCond; |
48 | xferOp.zipResultAndIndexing([&](int64_t resultIdx, int64_t indicesIdx) { |
49 | // Zip over the resulting vector shape and memref indices. |
50 | // If the dimension is known to be in-bounds, it does not participate in |
51 | // the construction of `inBoundsCond`. |
52 | if (xferOp.isDimInBounds(resultIdx)) |
53 | return; |
54 | // Fold or create the check that `index + vector_size` <= `memref_size`. |
55 | Location loc = xferOp.getLoc(); |
56 | int64_t vectorSize = xferOp.getVectorType().getDimSize(resultIdx); |
57 | OpFoldResult sum = affine::makeComposedFoldedAffineApply( |
58 | b, loc, b.getAffineDimExpr(position: 0) + b.getAffineConstantExpr(constant: vectorSize), |
59 | {xferOp.getIndices()[indicesIdx]}); |
60 | OpFoldResult dimSz = |
61 | memref::getMixedSize(builder&: b, loc, value: xferOp.getBase(), dim: indicesIdx); |
62 | auto maybeCstSum = getConstantIntValue(ofr: sum); |
63 | auto maybeCstDimSz = getConstantIntValue(ofr: dimSz); |
64 | if (maybeCstSum && maybeCstDimSz && *maybeCstSum <= *maybeCstDimSz) |
65 | return; |
66 | Value cond = |
67 | b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sle, |
68 | getValueOrCreateConstantIndexOp(b, loc, sum), |
69 | getValueOrCreateConstantIndexOp(b, loc, dimSz)); |
70 | // Conjunction over all dims for which we are in-bounds. |
71 | if (inBoundsCond) |
72 | inBoundsCond = b.create<arith::AndIOp>(loc, inBoundsCond, cond); |
73 | else |
74 | inBoundsCond = cond; |
75 | }); |
76 | return inBoundsCond; |
77 | } |
78 | |
79 | /// Split a vector.transfer operation into an in-bounds (i.e., no out-of-bounds |
80 | /// masking) fast path and a slow path. |
81 | /// If `ifOp` is not null and the result is `success, the `ifOp` points to the |
82 | /// newly created conditional upon function return. |
83 | /// To accommodate for the fact that the original vector.transfer indexing may |
84 | /// be arbitrary and the slow path indexes @[0...0] in the temporary buffer, the |
85 | /// scf.if op returns a view and values of type index. |
86 | /// At this time, only vector.transfer_read case is implemented. |
87 | /// |
88 | /// Example (a 2-D vector.transfer_read): |
89 | /// ``` |
90 | /// %1 = vector.transfer_read %0[...], %pad : memref<A...>, vector<...> |
91 | /// ``` |
92 | /// is transformed into: |
93 | /// ``` |
94 | /// %1:3 = scf.if (%inBounds) { |
95 | /// // fast path, direct cast |
96 | /// memref.cast %A: memref<A...> to compatibleMemRefType |
97 | /// scf.yield %view : compatibleMemRefType, index, index |
98 | /// } else { |
99 | /// // slow path, not in-bounds vector.transfer or linalg.copy. |
100 | /// memref.cast %alloc: memref<B...> to compatibleMemRefType |
101 | /// scf.yield %4 : compatibleMemRefType, index, index |
102 | // } |
103 | /// %0 = vector.transfer_read %1#0[%1#1, %1#2] {in_bounds = [true ... true]} |
104 | /// ``` |
105 | /// where `alloc` is a top of the function alloca'ed buffer of one vector. |
106 | /// |
107 | /// Preconditions: |
108 | /// 1. `xferOp.getPermutationMap()` must be a minor identity map |
109 | /// 2. the rank of the `xferOp.memref()` and the rank of the |
110 | /// `xferOp.getVector()` must be equal. This will be relaxed in the future |
111 | /// but requires rank-reducing subviews. |
112 | static LogicalResult |
113 | splitFullAndPartialTransferPrecondition(VectorTransferOpInterface xferOp) { |
114 | // TODO: support 0-d corner case. |
115 | if (xferOp.getTransferRank() == 0) |
116 | return failure(); |
117 | |
118 | // TODO: expand support to these 2 cases. |
119 | if (!xferOp.getPermutationMap().isMinorIdentity()) |
120 | return failure(); |
121 | // Must have some out-of-bounds dimension to be a candidate for splitting. |
122 | if (!xferOp.hasOutOfBoundsDim()) |
123 | return failure(); |
124 | // Don't split transfer operations directly under IfOp, this avoids applying |
125 | // the pattern recursively. |
126 | // TODO: improve the filtering condition to make it more applicable. |
127 | if (isa<scf::IfOp>(xferOp->getParentOp())) |
128 | return failure(); |
129 | return success(); |
130 | } |
131 | |
132 | /// Given two MemRefTypes `aT` and `bT`, return a MemRefType to which both can |
133 | /// be cast. If the MemRefTypes don't have the same rank or are not strided, |
134 | /// return null; otherwise: |
135 | /// 1. if `aT` and `bT` are cast-compatible, return `aT`. |
136 | /// 2. else return a new MemRefType obtained by iterating over the shape and |
137 | /// strides and: |
138 | /// a. keeping the ones that are static and equal across `aT` and `bT`. |
139 | /// b. using a dynamic shape and/or stride for the dimensions that don't |
140 | /// agree. |
141 | static MemRefType getCastCompatibleMemRefType(MemRefType aT, MemRefType bT) { |
142 | if (memref::CastOp::areCastCompatible(aT, bT)) |
143 | return aT; |
144 | if (aT.getRank() != bT.getRank()) |
145 | return MemRefType(); |
146 | int64_t aOffset, bOffset; |
147 | SmallVector<int64_t, 4> aStrides, bStrides; |
148 | if (failed(aT.getStridesAndOffset(aStrides, aOffset)) || |
149 | failed(bT.getStridesAndOffset(bStrides, bOffset)) || |
150 | aStrides.size() != bStrides.size()) |
151 | return MemRefType(); |
152 | |
153 | ArrayRef<int64_t> aShape = aT.getShape(), bShape = bT.getShape(); |
154 | int64_t resOffset; |
155 | SmallVector<int64_t, 4> resShape(aT.getRank(), 0), |
156 | resStrides(bT.getRank(), 0); |
157 | for (int64_t idx = 0, e = aT.getRank(); idx < e; ++idx) { |
158 | resShape[idx] = |
159 | (aShape[idx] == bShape[idx]) ? aShape[idx] : ShapedType::kDynamic; |
160 | resStrides[idx] = |
161 | (aStrides[idx] == bStrides[idx]) ? aStrides[idx] : ShapedType::kDynamic; |
162 | } |
163 | resOffset = (aOffset == bOffset) ? aOffset : ShapedType::kDynamic; |
164 | return MemRefType::get( |
165 | resShape, aT.getElementType(), |
166 | StridedLayoutAttr::get(aT.getContext(), resOffset, resStrides)); |
167 | } |
168 | |
169 | /// Casts the given memref to a compatible memref type. If the source memref has |
170 | /// a different address space than the target type, a `memref.memory_space_cast` |
171 | /// is first inserted, followed by a `memref.cast`. |
172 | static Value castToCompatibleMemRefType(OpBuilder &b, Value memref, |
173 | MemRefType compatibleMemRefType) { |
174 | MemRefType sourceType = cast<MemRefType>(memref.getType()); |
175 | Value res = memref; |
176 | if (sourceType.getMemorySpace() != compatibleMemRefType.getMemorySpace()) { |
177 | sourceType = MemRefType::get( |
178 | sourceType.getShape(), sourceType.getElementType(), |
179 | sourceType.getLayout(), compatibleMemRefType.getMemorySpace()); |
180 | res = b.create<memref::MemorySpaceCastOp>(memref.getLoc(), sourceType, res); |
181 | } |
182 | if (sourceType == compatibleMemRefType) |
183 | return res; |
184 | return b.create<memref::CastOp>(memref.getLoc(), compatibleMemRefType, res); |
185 | } |
186 | |
187 | /// Operates under a scoped context to build the intersection between the |
188 | /// view `xferOp.getbase()` @ `xferOp.getIndices()` and the view `alloc`. |
189 | // TODO: view intersection/union/differences should be a proper std op. |
190 | static std::pair<Value, Value> |
191 | createSubViewIntersection(RewriterBase &b, VectorTransferOpInterface xferOp, |
192 | Value alloc) { |
193 | Location loc = xferOp.getLoc(); |
194 | int64_t memrefRank = xferOp.getShapedType().getRank(); |
195 | // TODO: relax this precondition, will require rank-reducing subviews. |
196 | assert(memrefRank == cast<MemRefType>(alloc.getType()).getRank() && |
197 | "Expected memref rank to match the alloc rank"); |
198 | ValueRange leadingIndices = |
199 | xferOp.getIndices().take_front(xferOp.getLeadingShapedRank()); |
200 | SmallVector<OpFoldResult, 4> sizes; |
201 | sizes.append(in_start: leadingIndices.begin(), in_end: leadingIndices.end()); |
202 | auto isaWrite = isa<vector::TransferWriteOp>(xferOp); |
203 | xferOp.zipResultAndIndexing([&](int64_t resultIdx, int64_t indicesIdx) { |
204 | using MapList = ArrayRef<ArrayRef<AffineExpr>>; |
205 | Value dimMemRef = |
206 | b.create<memref::DimOp>(xferOp.getLoc(), xferOp.getBase(), indicesIdx); |
207 | Value dimAlloc = b.create<memref::DimOp>(loc, alloc, resultIdx); |
208 | Value index = xferOp.getIndices()[indicesIdx]; |
209 | AffineExpr i, j, k; |
210 | bindDims(xferOp.getContext(), i, j, k); |
211 | SmallVector<AffineMap, 4> maps = |
212 | AffineMap::inferFromExprList(exprsList: MapList{{i - j, k}}, context: b.getContext()); |
213 | // affine_min(%dimMemRef - %index, %dimAlloc) |
214 | Value affineMin = b.create<affine::AffineMinOp>( |
215 | loc, index.getType(), maps[0], ValueRange{dimMemRef, index, dimAlloc}); |
216 | sizes.push_back(Elt: affineMin); |
217 | }); |
218 | |
219 | SmallVector<OpFoldResult> srcIndices = llvm::to_vector<4>(llvm::map_range( |
220 | xferOp.getIndices(), [](Value idx) -> OpFoldResult { return idx; })); |
221 | SmallVector<OpFoldResult> destIndices(memrefRank, b.getIndexAttr(0)); |
222 | SmallVector<OpFoldResult> strides(memrefRank, b.getIndexAttr(1)); |
223 | auto copySrc = b.create<memref::SubViewOp>( |
224 | loc, isaWrite ? alloc : xferOp.getBase(), srcIndices, sizes, strides); |
225 | auto copyDest = b.create<memref::SubViewOp>( |
226 | loc, isaWrite ? xferOp.getBase() : alloc, destIndices, sizes, strides); |
227 | return std::make_pair(copySrc, copyDest); |
228 | } |
229 | |
230 | /// Given an `xferOp` for which: |
231 | /// 1. `inBoundsCond` and a `compatibleMemRefType` have been computed. |
232 | /// 2. a memref of single vector `alloc` has been allocated. |
233 | /// Produce IR resembling: |
234 | /// ``` |
235 | /// %1:3 = scf.if (%inBounds) { |
236 | /// (memref.memory_space_cast %A: memref<A..., addr_space> to memref<A...>) |
237 | /// %view = memref.cast %A: memref<A...> to compatibleMemRefType |
238 | /// scf.yield %view, ... : compatibleMemRefType, index, index |
239 | /// } else { |
240 | /// %2 = linalg.fill(%pad, %alloc) |
241 | /// %3 = subview %view [...][...][...] |
242 | /// %4 = subview %alloc [0, 0] [...] [...] |
243 | /// linalg.copy(%3, %4) |
244 | /// %5 = memref.cast %alloc: memref<B...> to compatibleMemRefType |
245 | /// scf.yield %5, ... : compatibleMemRefType, index, index |
246 | /// } |
247 | /// ``` |
248 | /// Return the produced scf::IfOp. |
249 | static scf::IfOp |
250 | createFullPartialLinalgCopy(RewriterBase &b, vector::TransferReadOp xferOp, |
251 | TypeRange returnTypes, Value inBoundsCond, |
252 | MemRefType compatibleMemRefType, Value alloc) { |
253 | Location loc = xferOp.getLoc(); |
254 | Value zero = b.create<arith::ConstantIndexOp>(location: loc, args: 0); |
255 | Value memref = xferOp.getBase(); |
256 | return b.create<scf::IfOp>( |
257 | loc, inBoundsCond, |
258 | [&](OpBuilder &b, Location loc) { |
259 | Value res = castToCompatibleMemRefType(b, memref, compatibleMemRefType); |
260 | scf::ValueVector viewAndIndices{res}; |
261 | llvm::append_range(viewAndIndices, xferOp.getIndices()); |
262 | b.create<scf::YieldOp>(loc, viewAndIndices); |
263 | }, |
264 | [&](OpBuilder &b, Location loc) { |
265 | b.create<linalg::FillOp>(loc, ValueRange{xferOp.getPadding()}, |
266 | ValueRange{alloc}); |
267 | // Take partial subview of memref which guarantees no dimension |
268 | // overflows. |
269 | IRRewriter rewriter(b); |
270 | std::pair<Value, Value> copyArgs = createSubViewIntersection( |
271 | rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()), |
272 | alloc); |
273 | b.create<memref::CopyOp>(loc, copyArgs.first, copyArgs.second); |
274 | Value casted = |
275 | castToCompatibleMemRefType(b, alloc, compatibleMemRefType); |
276 | scf::ValueVector viewAndIndices{casted}; |
277 | viewAndIndices.insert(viewAndIndices.end(), xferOp.getTransferRank(), |
278 | zero); |
279 | b.create<scf::YieldOp>(loc, viewAndIndices); |
280 | }); |
281 | } |
282 | |
283 | /// Given an `xferOp` for which: |
284 | /// 1. `inBoundsCond` and a `compatibleMemRefType` have been computed. |
285 | /// 2. a memref of single vector `alloc` has been allocated. |
286 | /// Produce IR resembling: |
287 | /// ``` |
288 | /// %1:3 = scf.if (%inBounds) { |
289 | /// (memref.memory_space_cast %A: memref<A..., addr_space> to memref<A...>) |
290 | /// memref.cast %A: memref<A...> to compatibleMemRefType |
291 | /// scf.yield %view, ... : compatibleMemRefType, index, index |
292 | /// } else { |
293 | /// %2 = vector.transfer_read %view[...], %pad : memref<A...>, vector<...> |
294 | /// %3 = vector.type_cast %extra_alloc : |
295 | /// memref<...> to memref<vector<...>> |
296 | /// store %2, %3[] : memref<vector<...>> |
297 | /// %4 = memref.cast %alloc: memref<B...> to compatibleMemRefType |
298 | /// scf.yield %4, ... : compatibleMemRefType, index, index |
299 | /// } |
300 | /// ``` |
301 | /// Return the produced scf::IfOp. |
302 | static scf::IfOp createFullPartialVectorTransferRead( |
303 | RewriterBase &b, vector::TransferReadOp xferOp, TypeRange returnTypes, |
304 | Value inBoundsCond, MemRefType compatibleMemRefType, Value alloc) { |
305 | Location loc = xferOp.getLoc(); |
306 | scf::IfOp fullPartialIfOp; |
307 | Value zero = b.create<arith::ConstantIndexOp>(location: loc, args: 0); |
308 | Value memref = xferOp.getBase(); |
309 | return b.create<scf::IfOp>( |
310 | loc, inBoundsCond, |
311 | [&](OpBuilder &b, Location loc) { |
312 | Value res = castToCompatibleMemRefType(b, memref, compatibleMemRefType); |
313 | scf::ValueVector viewAndIndices{res}; |
314 | llvm::append_range(viewAndIndices, xferOp.getIndices()); |
315 | b.create<scf::YieldOp>(loc, viewAndIndices); |
316 | }, |
317 | [&](OpBuilder &b, Location loc) { |
318 | Operation *newXfer = b.clone(*xferOp.getOperation()); |
319 | Value vector = cast<VectorTransferOpInterface>(newXfer).getVector(); |
320 | b.create<memref::StoreOp>( |
321 | loc, vector, |
322 | b.create<vector::TypeCastOp>( |
323 | loc, MemRefType::get({}, vector.getType()), alloc)); |
324 | |
325 | Value casted = |
326 | castToCompatibleMemRefType(b, alloc, compatibleMemRefType); |
327 | scf::ValueVector viewAndIndices{casted}; |
328 | viewAndIndices.insert(viewAndIndices.end(), xferOp.getTransferRank(), |
329 | zero); |
330 | b.create<scf::YieldOp>(loc, viewAndIndices); |
331 | }); |
332 | } |
333 | |
334 | /// Given an `xferOp` for which: |
335 | /// 1. `inBoundsCond` and a `compatibleMemRefType` have been computed. |
336 | /// 2. a memref of single vector `alloc` has been allocated. |
337 | /// Produce IR resembling: |
338 | /// ``` |
339 | /// %1:3 = scf.if (%inBounds) { |
340 | /// memref.cast %A: memref<A...> to compatibleMemRefType |
341 | /// scf.yield %view, ... : compatibleMemRefType, index, index |
342 | /// } else { |
343 | /// %3 = vector.type_cast %extra_alloc : |
344 | /// memref<...> to memref<vector<...>> |
345 | /// %4 = memref.cast %alloc: memref<B...> to compatibleMemRefType |
346 | /// scf.yield %4, ... : compatibleMemRefType, index, index |
347 | /// } |
348 | /// ``` |
349 | static ValueRange |
350 | getLocationToWriteFullVec(RewriterBase &b, vector::TransferWriteOp xferOp, |
351 | TypeRange returnTypes, Value inBoundsCond, |
352 | MemRefType compatibleMemRefType, Value alloc) { |
353 | Location loc = xferOp.getLoc(); |
354 | Value zero = b.create<arith::ConstantIndexOp>(location: loc, args: 0); |
355 | Value memref = xferOp.getBase(); |
356 | return b |
357 | .create<scf::IfOp>( |
358 | loc, inBoundsCond, |
359 | [&](OpBuilder &b, Location loc) { |
360 | Value res = |
361 | castToCompatibleMemRefType(b, memref, compatibleMemRefType); |
362 | scf::ValueVector viewAndIndices{res}; |
363 | llvm::append_range(viewAndIndices, xferOp.getIndices()); |
364 | b.create<scf::YieldOp>(loc, viewAndIndices); |
365 | }, |
366 | [&](OpBuilder &b, Location loc) { |
367 | Value casted = |
368 | castToCompatibleMemRefType(b, alloc, compatibleMemRefType); |
369 | scf::ValueVector viewAndIndices{casted}; |
370 | viewAndIndices.insert(viewAndIndices.end(), |
371 | xferOp.getTransferRank(), zero); |
372 | b.create<scf::YieldOp>(loc, viewAndIndices); |
373 | }) |
374 | ->getResults(); |
375 | } |
376 | |
377 | /// Given an `xferOp` for which: |
378 | /// 1. `inBoundsCond` has been computed. |
379 | /// 2. a memref of single vector `alloc` has been allocated. |
380 | /// 3. it originally wrote to %view |
381 | /// Produce IR resembling: |
382 | /// ``` |
383 | /// %notInBounds = arith.xori %inBounds, %true |
384 | /// scf.if (%notInBounds) { |
385 | /// %3 = subview %alloc [...][...][...] |
386 | /// %4 = subview %view [0, 0][...][...] |
387 | /// linalg.copy(%3, %4) |
388 | /// } |
389 | /// ``` |
390 | static void createFullPartialLinalgCopy(RewriterBase &b, |
391 | vector::TransferWriteOp xferOp, |
392 | Value inBoundsCond, Value alloc) { |
393 | Location loc = xferOp.getLoc(); |
394 | auto notInBounds = b.create<arith::XOrIOp>( |
395 | loc, inBoundsCond, b.create<arith::ConstantIntOp>(loc, true, 1)); |
396 | b.create<scf::IfOp>(loc, notInBounds, [&](OpBuilder &b, Location loc) { |
397 | IRRewriter rewriter(b); |
398 | std::pair<Value, Value> copyArgs = createSubViewIntersection( |
399 | rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()), |
400 | alloc); |
401 | b.create<memref::CopyOp>(loc, copyArgs.first, copyArgs.second); |
402 | b.create<scf::YieldOp>(loc, ValueRange{}); |
403 | }); |
404 | } |
405 | |
406 | /// Given an `xferOp` for which: |
407 | /// 1. `inBoundsCond` has been computed. |
408 | /// 2. a memref of single vector `alloc` has been allocated. |
409 | /// 3. it originally wrote to %view |
410 | /// Produce IR resembling: |
411 | /// ``` |
412 | /// %notInBounds = arith.xori %inBounds, %true |
413 | /// scf.if (%notInBounds) { |
414 | /// %2 = load %alloc : memref<vector<...>> |
415 | /// vector.transfer_write %2, %view[...] : memref<A...>, vector<...> |
416 | /// } |
417 | /// ``` |
418 | static void createFullPartialVectorTransferWrite(RewriterBase &b, |
419 | vector::TransferWriteOp xferOp, |
420 | Value inBoundsCond, |
421 | Value alloc) { |
422 | Location loc = xferOp.getLoc(); |
423 | auto notInBounds = b.create<arith::XOrIOp>( |
424 | loc, inBoundsCond, b.create<arith::ConstantIntOp>(loc, true, 1)); |
425 | b.create<scf::IfOp>(loc, notInBounds, [&](OpBuilder &b, Location loc) { |
426 | IRMapping mapping; |
427 | Value load = b.create<memref::LoadOp>( |
428 | loc, |
429 | b.create<vector::TypeCastOp>( |
430 | loc, MemRefType::get({}, xferOp.getVector().getType()), alloc), |
431 | ValueRange()); |
432 | mapping.map(xferOp.getVector(), load); |
433 | b.clone(*xferOp.getOperation(), mapping); |
434 | b.create<scf::YieldOp>(loc, ValueRange{}); |
435 | }); |
436 | } |
437 | |
438 | // TODO: Parallelism and threadlocal considerations with a ParallelScope trait. |
439 | static Operation *getAutomaticAllocationScope(Operation *op) { |
440 | // Find the closest surrounding allocation scope that is not a known looping |
441 | // construct (putting alloca's in loops doesn't always lower to deallocation |
442 | // until the end of the loop). |
443 | Operation *scope = nullptr; |
444 | for (Operation *parent = op->getParentOp(); parent != nullptr; |
445 | parent = parent->getParentOp()) { |
446 | if (parent->hasTrait<OpTrait::AutomaticAllocationScope>()) |
447 | scope = parent; |
448 | if (!isa<scf::ForOp, affine::AffineForOp>(parent)) |
449 | break; |
450 | } |
451 | assert(scope && "Expected op to be inside automatic allocation scope"); |
452 | return scope; |
453 | } |
454 | |
455 | /// Split a vector.transfer operation into an in-bounds (i.e., no out-of-bounds |
456 | /// masking) fastpath and a slowpath. |
457 | /// |
458 | /// For vector.transfer_read: |
459 | /// If `ifOp` is not null and the result is `success, the `ifOp` points to the |
460 | /// newly created conditional upon function return. |
461 | /// To accomodate for the fact that the original vector.transfer indexing may be |
462 | /// arbitrary and the slow path indexes @[0...0] in the temporary buffer, the |
463 | /// scf.if op returns a view and values of type index. |
464 | /// |
465 | /// Example (a 2-D vector.transfer_read): |
466 | /// ``` |
467 | /// %1 = vector.transfer_read %0[...], %pad : memref<A...>, vector<...> |
468 | /// ``` |
469 | /// is transformed into: |
470 | /// ``` |
471 | /// %1:3 = scf.if (%inBounds) { |
472 | /// // fastpath, direct cast |
473 | /// memref.cast %A: memref<A...> to compatibleMemRefType |
474 | /// scf.yield %view : compatibleMemRefType, index, index |
475 | /// } else { |
476 | /// // slowpath, not in-bounds vector.transfer or linalg.copy. |
477 | /// memref.cast %alloc: memref<B...> to compatibleMemRefType |
478 | /// scf.yield %4 : compatibleMemRefType, index, index |
479 | // } |
480 | /// %0 = vector.transfer_read %1#0[%1#1, %1#2] {in_bounds = [true ... true]} |
481 | /// ``` |
482 | /// where `alloc` is a top of the function alloca'ed buffer of one vector. |
483 | /// |
484 | /// For vector.transfer_write: |
485 | /// There are 2 conditional blocks. First a block to decide which memref and |
486 | /// indices to use for an unmasked, inbounds write. Then a conditional block to |
487 | /// further copy a partial buffer into the final result in the slow path case. |
488 | /// |
489 | /// Example (a 2-D vector.transfer_write): |
490 | /// ``` |
491 | /// vector.transfer_write %arg, %0[...], %pad : memref<A...>, vector<...> |
492 | /// ``` |
493 | /// is transformed into: |
494 | /// ``` |
495 | /// %1:3 = scf.if (%inBounds) { |
496 | /// memref.cast %A: memref<A...> to compatibleMemRefType |
497 | /// scf.yield %view : compatibleMemRefType, index, index |
498 | /// } else { |
499 | /// memref.cast %alloc: memref<B...> to compatibleMemRefType |
500 | /// scf.yield %4 : compatibleMemRefType, index, index |
501 | /// } |
502 | /// %0 = vector.transfer_write %arg, %1#0[%1#1, %1#2] {in_bounds = [true ... |
503 | /// true]} |
504 | /// scf.if (%notInBounds) { |
505 | /// // slowpath: not in-bounds vector.transfer or linalg.copy. |
506 | /// } |
507 | /// ``` |
508 | /// where `alloc` is a top of the function alloca'ed buffer of one vector. |
509 | /// |
510 | /// Preconditions: |
511 | /// 1. `xferOp.getPermutationMap()` must be a minor identity map |
512 | /// 2. the rank of the `xferOp.getBase()` and the rank of the |
513 | /// `xferOp.getVector()` must be equal. This will be relaxed in the future |
514 | /// but requires rank-reducing subviews. |
515 | LogicalResult mlir::vector::splitFullAndPartialTransfer( |
516 | RewriterBase &b, VectorTransferOpInterface xferOp, |
517 | VectorTransformsOptions options, scf::IfOp *ifOp) { |
518 | if (options.vectorTransferSplit == VectorTransferSplit::None) |
519 | return failure(); |
520 | |
521 | SmallVector<bool, 4> bools(xferOp.getTransferRank(), true); |
522 | auto inBoundsAttr = b.getBoolArrayAttr(bools); |
523 | if (options.vectorTransferSplit == VectorTransferSplit::ForceInBounds) { |
524 | b.modifyOpInPlace(xferOp, [&]() { |
525 | xferOp->setAttr(xferOp.getInBoundsAttrName(), inBoundsAttr); |
526 | }); |
527 | return success(); |
528 | } |
529 | |
530 | // Assert preconditions. Additionally, keep the variables in an inner scope to |
531 | // ensure they aren't used in the wrong scopes further down. |
532 | { |
533 | assert(succeeded(splitFullAndPartialTransferPrecondition(xferOp)) && |
534 | "Expected splitFullAndPartialTransferPrecondition to hold"); |
535 | |
536 | auto xferReadOp = dyn_cast<vector::TransferReadOp>(xferOp.getOperation()); |
537 | auto xferWriteOp = dyn_cast<vector::TransferWriteOp>(xferOp.getOperation()); |
538 | |
539 | if (!(xferReadOp || xferWriteOp)) |
540 | return failure(); |
541 | if (xferWriteOp && xferWriteOp.getMask()) |
542 | return failure(); |
543 | if (xferReadOp && xferReadOp.getMask()) |
544 | return failure(); |
545 | } |
546 | |
547 | RewriterBase::InsertionGuard guard(b); |
548 | b.setInsertionPoint(xferOp); |
549 | Value inBoundsCond = createInBoundsCond( |
550 | b, cast<VectorTransferOpInterface>(xferOp.getOperation())); |
551 | if (!inBoundsCond) |
552 | return failure(); |
553 | |
554 | // Top of the function `alloc` for transient storage. |
555 | Value alloc; |
556 | { |
557 | RewriterBase::InsertionGuard guard(b); |
558 | Operation *scope = getAutomaticAllocationScope(xferOp); |
559 | assert(scope->getNumRegions() == 1 && |
560 | "AutomaticAllocationScope with >1 regions"); |
561 | b.setInsertionPointToStart(&scope->getRegion(index: 0).front()); |
562 | auto shape = xferOp.getVectorType().getShape(); |
563 | Type elementType = xferOp.getVectorType().getElementType(); |
564 | alloc = b.create<memref::AllocaOp>(scope->getLoc(), |
565 | MemRefType::get(shape, elementType), |
566 | ValueRange{}, b.getI64IntegerAttr(32)); |
567 | } |
568 | |
569 | MemRefType compatibleMemRefType = |
570 | getCastCompatibleMemRefType(cast<MemRefType>(xferOp.getShapedType()), |
571 | cast<MemRefType>(alloc.getType())); |
572 | if (!compatibleMemRefType) |
573 | return failure(); |
574 | |
575 | SmallVector<Type, 4> returnTypes(1 + xferOp.getTransferRank(), |
576 | b.getIndexType()); |
577 | returnTypes[0] = compatibleMemRefType; |
578 | |
579 | if (auto xferReadOp = |
580 | dyn_cast<vector::TransferReadOp>(xferOp.getOperation())) { |
581 | // Read case: full fill + partial copy -> in-bounds vector.xfer_read. |
582 | scf::IfOp fullPartialIfOp = |
583 | options.vectorTransferSplit == VectorTransferSplit::VectorTransfer |
584 | ? createFullPartialVectorTransferRead(b, xferReadOp, returnTypes, |
585 | inBoundsCond, |
586 | compatibleMemRefType, alloc) |
587 | : createFullPartialLinalgCopy(b, xferReadOp, returnTypes, |
588 | inBoundsCond, compatibleMemRefType, |
589 | alloc); |
590 | if (ifOp) |
591 | *ifOp = fullPartialIfOp; |
592 | |
593 | // Set existing read op to in-bounds, it always reads from a full buffer. |
594 | for (unsigned i = 0, e = returnTypes.size(); i != e; ++i) |
595 | xferReadOp.setOperand(i, fullPartialIfOp.getResult(i)); |
596 | |
597 | b.modifyOpInPlace(xferOp, [&]() { |
598 | xferOp->setAttr(xferOp.getInBoundsAttrName(), inBoundsAttr); |
599 | }); |
600 | |
601 | return success(); |
602 | } |
603 | |
604 | auto xferWriteOp = cast<vector::TransferWriteOp>(xferOp.getOperation()); |
605 | |
606 | // Decide which location to write the entire vector to. |
607 | auto memrefAndIndices = getLocationToWriteFullVec( |
608 | b, xferWriteOp, returnTypes, inBoundsCond, compatibleMemRefType, alloc); |
609 | |
610 | // Do an in bounds write to either the output or the extra allocated buffer. |
611 | // The operation is cloned to prevent deleting information needed for the |
612 | // later IR creation. |
613 | IRMapping mapping; |
614 | mapping.map(xferWriteOp.getBase(), memrefAndIndices.front()); |
615 | mapping.map(xferWriteOp.getIndices(), memrefAndIndices.drop_front()); |
616 | auto *clone = b.clone(*xferWriteOp, mapping); |
617 | clone->setAttr(xferWriteOp.getInBoundsAttrName(), inBoundsAttr); |
618 | |
619 | // Create a potential copy from the allocated buffer to the final output in |
620 | // the slow path case. |
621 | if (options.vectorTransferSplit == VectorTransferSplit::VectorTransfer) |
622 | createFullPartialVectorTransferWrite(b, xferWriteOp, inBoundsCond, alloc); |
623 | else |
624 | createFullPartialLinalgCopy(b, xferWriteOp, inBoundsCond, alloc); |
625 | |
626 | b.eraseOp(op: xferOp); |
627 | |
628 | return success(); |
629 | } |
630 | |
631 | namespace { |
632 | /// Apply `splitFullAndPartialTransfer` selectively via a pattern. This pattern |
633 | /// may take an extra filter to perform selection at a finer granularity. |
634 | struct VectorTransferFullPartialRewriter : public RewritePattern { |
635 | using FilterConstraintType = |
636 | std::function<LogicalResult(VectorTransferOpInterface op)>; |
637 | |
638 | explicit VectorTransferFullPartialRewriter( |
639 | MLIRContext *context, |
640 | VectorTransformsOptions options = VectorTransformsOptions(), |
641 | FilterConstraintType filter = |
642 | [](VectorTransferOpInterface op) { return success(); }, |
643 | PatternBenefit benefit = 1) |
644 | : RewritePattern(MatchAnyOpTypeTag(), benefit, context), options(options), |
645 | filter(std::move(filter)) {} |
646 | |
647 | /// Performs the rewrite. |
648 | LogicalResult matchAndRewrite(Operation *op, |
649 | PatternRewriter &rewriter) const override; |
650 | |
651 | private: |
652 | VectorTransformsOptions options; |
653 | FilterConstraintType filter; |
654 | }; |
655 | |
656 | } // namespace |
657 | |
658 | LogicalResult VectorTransferFullPartialRewriter::matchAndRewrite( |
659 | Operation *op, PatternRewriter &rewriter) const { |
660 | auto xferOp = dyn_cast<VectorTransferOpInterface>(op); |
661 | if (!xferOp || failed(splitFullAndPartialTransferPrecondition(xferOp)) || |
662 | failed(filter(xferOp))) |
663 | return failure(); |
664 | return splitFullAndPartialTransfer(rewriter, xferOp, options); |
665 | } |
666 | |
667 | void mlir::vector::populateVectorTransferFullPartialPatterns( |
668 | RewritePatternSet &patterns, const VectorTransformsOptions &options) { |
669 | patterns.add<VectorTransferFullPartialRewriter>(arg: patterns.getContext(), |
670 | args: options); |
671 | } |
672 |
Definitions
- createInBoundsCond
- splitFullAndPartialTransferPrecondition
- getCastCompatibleMemRefType
- castToCompatibleMemRefType
- createSubViewIntersection
- createFullPartialLinalgCopy
- createFullPartialVectorTransferRead
- getLocationToWriteFullVec
- createFullPartialLinalgCopy
- createFullPartialVectorTransferWrite
- getAutomaticAllocationScope
- splitFullAndPartialTransfer
- VectorTransferFullPartialRewriter
- VectorTransferFullPartialRewriter
- matchAndRewrite
Improve your Profiling and Debugging skills
Find out more