1 | //===- AffineExpr.cpp - MLIR Affine Expr Classes --------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include <utility> |
10 | |
11 | #include "AffineExprDetail.h" |
12 | #include "mlir/IR/AffineExpr.h" |
13 | #include "mlir/IR/AffineExprVisitor.h" |
14 | #include "mlir/IR/AffineMap.h" |
15 | #include "mlir/IR/IntegerSet.h" |
16 | #include "mlir/Support/MathExtras.h" |
17 | #include "mlir/Support/TypeID.h" |
18 | #include "llvm/ADT/STLExtras.h" |
19 | #include <numeric> |
20 | #include <optional> |
21 | |
22 | using namespace mlir; |
23 | using namespace mlir::detail; |
24 | |
25 | MLIRContext *AffineExpr::getContext() const { return expr->context; } |
26 | |
27 | AffineExprKind AffineExpr::getKind() const { return expr->kind; } |
28 | |
29 | /// Walk all of the AffineExprs in `e` in postorder. This is a private factory |
30 | /// method to help handle lambda walk functions. Users should use the regular |
31 | /// (non-static) `walk` method. |
32 | template <typename WalkRetTy> |
33 | WalkRetTy mlir::AffineExpr::walk(AffineExpr e, |
34 | function_ref<WalkRetTy(AffineExpr)> callback) { |
35 | struct AffineExprWalker |
36 | : public AffineExprVisitor<AffineExprWalker, WalkRetTy> { |
37 | function_ref<WalkRetTy(AffineExpr)> callback; |
38 | |
39 | AffineExprWalker(function_ref<WalkRetTy(AffineExpr)> callback) |
40 | : callback(callback) {} |
41 | |
42 | WalkRetTy visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { |
43 | return callback(expr); |
44 | } |
45 | WalkRetTy visitConstantExpr(AffineConstantExpr expr) { |
46 | return callback(expr); |
47 | } |
48 | WalkRetTy visitDimExpr(AffineDimExpr expr) { return callback(expr); } |
49 | WalkRetTy visitSymbolExpr(AffineSymbolExpr expr) { return callback(expr); } |
50 | }; |
51 | |
52 | return AffineExprWalker(callback).walkPostOrder(e); |
53 | } |
54 | // Explicitly instantiate for the two supported return types. |
55 | template void mlir::AffineExpr::walk(AffineExpr e, |
56 | function_ref<void(AffineExpr)> callback); |
57 | template WalkResult |
58 | mlir::AffineExpr::walk(AffineExpr e, |
59 | function_ref<WalkResult(AffineExpr)> callback); |
60 | |
61 | // Dispatch affine expression construction based on kind. |
62 | AffineExpr mlir::getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs, |
63 | AffineExpr rhs) { |
64 | if (kind == AffineExprKind::Add) |
65 | return lhs + rhs; |
66 | if (kind == AffineExprKind::Mul) |
67 | return lhs * rhs; |
68 | if (kind == AffineExprKind::FloorDiv) |
69 | return lhs.floorDiv(other: rhs); |
70 | if (kind == AffineExprKind::CeilDiv) |
71 | return lhs.ceilDiv(other: rhs); |
72 | if (kind == AffineExprKind::Mod) |
73 | return lhs % rhs; |
74 | |
75 | llvm_unreachable("unknown binary operation on affine expressions" ); |
76 | } |
77 | |
78 | /// This method substitutes any uses of dimensions and symbols (e.g. |
79 | /// dim#0 with dimReplacements[0]) and returns the modified expression tree. |
80 | AffineExpr |
81 | AffineExpr::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements, |
82 | ArrayRef<AffineExpr> symReplacements) const { |
83 | switch (getKind()) { |
84 | case AffineExprKind::Constant: |
85 | return *this; |
86 | case AffineExprKind::DimId: { |
87 | unsigned dimId = llvm::cast<AffineDimExpr>(Val: *this).getPosition(); |
88 | if (dimId >= dimReplacements.size()) |
89 | return *this; |
90 | return dimReplacements[dimId]; |
91 | } |
92 | case AffineExprKind::SymbolId: { |
93 | unsigned symId = llvm::cast<AffineSymbolExpr>(Val: *this).getPosition(); |
94 | if (symId >= symReplacements.size()) |
95 | return *this; |
96 | return symReplacements[symId]; |
97 | } |
98 | case AffineExprKind::Add: |
99 | case AffineExprKind::Mul: |
100 | case AffineExprKind::FloorDiv: |
101 | case AffineExprKind::CeilDiv: |
102 | case AffineExprKind::Mod: |
103 | auto binOp = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
104 | auto lhs = binOp.getLHS(), rhs = binOp.getRHS(); |
105 | auto newLHS = lhs.replaceDimsAndSymbols(dimReplacements, symReplacements); |
106 | auto newRHS = rhs.replaceDimsAndSymbols(dimReplacements, symReplacements); |
107 | if (newLHS == lhs && newRHS == rhs) |
108 | return *this; |
109 | return getAffineBinaryOpExpr(kind: getKind(), lhs: newLHS, rhs: newRHS); |
110 | } |
111 | llvm_unreachable("Unknown AffineExpr" ); |
112 | } |
113 | |
114 | AffineExpr AffineExpr::replaceDims(ArrayRef<AffineExpr> dimReplacements) const { |
115 | return replaceDimsAndSymbols(dimReplacements, symReplacements: {}); |
116 | } |
117 | |
118 | AffineExpr |
119 | AffineExpr::replaceSymbols(ArrayRef<AffineExpr> symReplacements) const { |
120 | return replaceDimsAndSymbols(dimReplacements: {}, symReplacements); |
121 | } |
122 | |
123 | /// Replace dims[offset ... numDims) |
124 | /// by dims[offset + shift ... shift + numDims). |
125 | AffineExpr AffineExpr::shiftDims(unsigned numDims, unsigned shift, |
126 | unsigned offset) const { |
127 | SmallVector<AffineExpr, 4> dims; |
128 | for (unsigned idx = 0; idx < offset; ++idx) |
129 | dims.push_back(Elt: getAffineDimExpr(position: idx, context: getContext())); |
130 | for (unsigned idx = offset; idx < numDims; ++idx) |
131 | dims.push_back(Elt: getAffineDimExpr(position: idx + shift, context: getContext())); |
132 | return replaceDimsAndSymbols(dimReplacements: dims, symReplacements: {}); |
133 | } |
134 | |
135 | /// Replace symbols[offset ... numSymbols) |
136 | /// by symbols[offset + shift ... shift + numSymbols). |
137 | AffineExpr AffineExpr::shiftSymbols(unsigned numSymbols, unsigned shift, |
138 | unsigned offset) const { |
139 | SmallVector<AffineExpr, 4> symbols; |
140 | for (unsigned idx = 0; idx < offset; ++idx) |
141 | symbols.push_back(Elt: getAffineSymbolExpr(position: idx, context: getContext())); |
142 | for (unsigned idx = offset; idx < numSymbols; ++idx) |
143 | symbols.push_back(Elt: getAffineSymbolExpr(position: idx + shift, context: getContext())); |
144 | return replaceDimsAndSymbols(dimReplacements: {}, symReplacements: symbols); |
145 | } |
146 | |
147 | /// Sparse replace method. Return the modified expression tree. |
148 | AffineExpr |
149 | AffineExpr::replace(const DenseMap<AffineExpr, AffineExpr> &map) const { |
150 | auto it = map.find(Val: *this); |
151 | if (it != map.end()) |
152 | return it->second; |
153 | switch (getKind()) { |
154 | default: |
155 | return *this; |
156 | case AffineExprKind::Add: |
157 | case AffineExprKind::Mul: |
158 | case AffineExprKind::FloorDiv: |
159 | case AffineExprKind::CeilDiv: |
160 | case AffineExprKind::Mod: |
161 | auto binOp = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
162 | auto lhs = binOp.getLHS(), rhs = binOp.getRHS(); |
163 | auto newLHS = lhs.replace(map); |
164 | auto newRHS = rhs.replace(map); |
165 | if (newLHS == lhs && newRHS == rhs) |
166 | return *this; |
167 | return getAffineBinaryOpExpr(kind: getKind(), lhs: newLHS, rhs: newRHS); |
168 | } |
169 | llvm_unreachable("Unknown AffineExpr" ); |
170 | } |
171 | |
172 | /// Sparse replace method. Return the modified expression tree. |
173 | AffineExpr AffineExpr::replace(AffineExpr expr, AffineExpr replacement) const { |
174 | DenseMap<AffineExpr, AffineExpr> map; |
175 | map.insert(KV: std::make_pair(x&: expr, y&: replacement)); |
176 | return replace(map); |
177 | } |
178 | /// Returns true if this expression is made out of only symbols and |
179 | /// constants (no dimensional identifiers). |
180 | bool AffineExpr::isSymbolicOrConstant() const { |
181 | switch (getKind()) { |
182 | case AffineExprKind::Constant: |
183 | return true; |
184 | case AffineExprKind::DimId: |
185 | return false; |
186 | case AffineExprKind::SymbolId: |
187 | return true; |
188 | |
189 | case AffineExprKind::Add: |
190 | case AffineExprKind::Mul: |
191 | case AffineExprKind::FloorDiv: |
192 | case AffineExprKind::CeilDiv: |
193 | case AffineExprKind::Mod: { |
194 | auto expr = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
195 | return expr.getLHS().isSymbolicOrConstant() && |
196 | expr.getRHS().isSymbolicOrConstant(); |
197 | } |
198 | } |
199 | llvm_unreachable("Unknown AffineExpr" ); |
200 | } |
201 | |
202 | /// Returns true if this is a pure affine expression, i.e., multiplication, |
203 | /// floordiv, ceildiv, and mod is only allowed w.r.t constants. |
204 | bool AffineExpr::isPureAffine() const { |
205 | switch (getKind()) { |
206 | case AffineExprKind::SymbolId: |
207 | case AffineExprKind::DimId: |
208 | case AffineExprKind::Constant: |
209 | return true; |
210 | case AffineExprKind::Add: { |
211 | auto op = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
212 | return op.getLHS().isPureAffine() && op.getRHS().isPureAffine(); |
213 | } |
214 | |
215 | case AffineExprKind::Mul: { |
216 | // TODO: Canonicalize the constants in binary operators to the RHS when |
217 | // possible, allowing this to merge into the next case. |
218 | auto op = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
219 | return op.getLHS().isPureAffine() && op.getRHS().isPureAffine() && |
220 | (llvm::isa<AffineConstantExpr>(Val: op.getLHS()) || |
221 | llvm::isa<AffineConstantExpr>(Val: op.getRHS())); |
222 | } |
223 | case AffineExprKind::FloorDiv: |
224 | case AffineExprKind::CeilDiv: |
225 | case AffineExprKind::Mod: { |
226 | auto op = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
227 | return op.getLHS().isPureAffine() && |
228 | llvm::isa<AffineConstantExpr>(Val: op.getRHS()); |
229 | } |
230 | } |
231 | llvm_unreachable("Unknown AffineExpr" ); |
232 | } |
233 | |
234 | // Returns the greatest known integral divisor of this affine expression. |
235 | int64_t AffineExpr::getLargestKnownDivisor() const { |
236 | AffineBinaryOpExpr binExpr(nullptr); |
237 | switch (getKind()) { |
238 | case AffineExprKind::DimId: |
239 | [[fallthrough]]; |
240 | case AffineExprKind::SymbolId: |
241 | return 1; |
242 | case AffineExprKind::CeilDiv: |
243 | [[fallthrough]]; |
244 | case AffineExprKind::FloorDiv: { |
245 | // If the RHS is a constant and divides the known divisor on the LHS, the |
246 | // quotient is a known divisor of the expression. |
247 | binExpr = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
248 | auto rhs = llvm::dyn_cast<AffineConstantExpr>(Val: binExpr.getRHS()); |
249 | // Leave alone undefined expressions. |
250 | if (rhs && rhs.getValue() != 0) { |
251 | int64_t lhsDiv = binExpr.getLHS().getLargestKnownDivisor(); |
252 | if (lhsDiv % rhs.getValue() == 0) |
253 | return lhsDiv / rhs.getValue(); |
254 | } |
255 | return 1; |
256 | } |
257 | case AffineExprKind::Constant: |
258 | return std::abs(i: llvm::cast<AffineConstantExpr>(Val: *this).getValue()); |
259 | case AffineExprKind::Mul: { |
260 | binExpr = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
261 | return binExpr.getLHS().getLargestKnownDivisor() * |
262 | binExpr.getRHS().getLargestKnownDivisor(); |
263 | } |
264 | case AffineExprKind::Add: |
265 | [[fallthrough]]; |
266 | case AffineExprKind::Mod: { |
267 | binExpr = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
268 | return std::gcd(m: (uint64_t)binExpr.getLHS().getLargestKnownDivisor(), |
269 | n: (uint64_t)binExpr.getRHS().getLargestKnownDivisor()); |
270 | } |
271 | } |
272 | llvm_unreachable("Unknown AffineExpr" ); |
273 | } |
274 | |
275 | bool AffineExpr::isMultipleOf(int64_t factor) const { |
276 | AffineBinaryOpExpr binExpr(nullptr); |
277 | uint64_t l, u; |
278 | switch (getKind()) { |
279 | case AffineExprKind::SymbolId: |
280 | [[fallthrough]]; |
281 | case AffineExprKind::DimId: |
282 | return factor * factor == 1; |
283 | case AffineExprKind::Constant: |
284 | return llvm::cast<AffineConstantExpr>(Val: *this).getValue() % factor == 0; |
285 | case AffineExprKind::Mul: { |
286 | binExpr = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
287 | // It's probably not worth optimizing this further (to not traverse the |
288 | // whole sub-tree under - it that would require a version of isMultipleOf |
289 | // that on a 'false' return also returns the largest known divisor). |
290 | return (l = binExpr.getLHS().getLargestKnownDivisor()) % factor == 0 || |
291 | (u = binExpr.getRHS().getLargestKnownDivisor()) % factor == 0 || |
292 | (l * u) % factor == 0; |
293 | } |
294 | case AffineExprKind::Add: |
295 | case AffineExprKind::FloorDiv: |
296 | case AffineExprKind::CeilDiv: |
297 | case AffineExprKind::Mod: { |
298 | binExpr = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
299 | return std::gcd(m: (uint64_t)binExpr.getLHS().getLargestKnownDivisor(), |
300 | n: (uint64_t)binExpr.getRHS().getLargestKnownDivisor()) % |
301 | factor == |
302 | 0; |
303 | } |
304 | } |
305 | llvm_unreachable("Unknown AffineExpr" ); |
306 | } |
307 | |
308 | bool AffineExpr::isFunctionOfDim(unsigned position) const { |
309 | if (getKind() == AffineExprKind::DimId) { |
310 | return *this == mlir::getAffineDimExpr(position, context: getContext()); |
311 | } |
312 | if (auto expr = llvm::dyn_cast<AffineBinaryOpExpr>(Val: *this)) { |
313 | return expr.getLHS().isFunctionOfDim(position) || |
314 | expr.getRHS().isFunctionOfDim(position); |
315 | } |
316 | return false; |
317 | } |
318 | |
319 | bool AffineExpr::isFunctionOfSymbol(unsigned position) const { |
320 | if (getKind() == AffineExprKind::SymbolId) { |
321 | return *this == mlir::getAffineSymbolExpr(position, context: getContext()); |
322 | } |
323 | if (auto expr = llvm::dyn_cast<AffineBinaryOpExpr>(Val: *this)) { |
324 | return expr.getLHS().isFunctionOfSymbol(position) || |
325 | expr.getRHS().isFunctionOfSymbol(position); |
326 | } |
327 | return false; |
328 | } |
329 | |
330 | AffineBinaryOpExpr::AffineBinaryOpExpr(AffineExpr::ImplType *ptr) |
331 | : AffineExpr(ptr) {} |
332 | AffineExpr AffineBinaryOpExpr::getLHS() const { |
333 | return static_cast<ImplType *>(expr)->lhs; |
334 | } |
335 | AffineExpr AffineBinaryOpExpr::getRHS() const { |
336 | return static_cast<ImplType *>(expr)->rhs; |
337 | } |
338 | |
339 | AffineDimExpr::AffineDimExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {} |
340 | unsigned AffineDimExpr::getPosition() const { |
341 | return static_cast<ImplType *>(expr)->position; |
342 | } |
343 | |
344 | /// Returns true if the expression is divisible by the given symbol with |
345 | /// position `symbolPos`. The argument `opKind` specifies here what kind of |
346 | /// division or mod operation called this division. It helps in implementing the |
347 | /// commutative property of the floordiv and ceildiv operations. If the argument |
348 | ///`exprKind` is floordiv and `expr` is also a binary expression of a floordiv |
349 | /// operation, then the commutative property can be used otherwise, the floordiv |
350 | /// operation is not divisible. The same argument holds for ceildiv operation. |
351 | static bool isDivisibleBySymbol(AffineExpr expr, unsigned symbolPos, |
352 | AffineExprKind opKind) { |
353 | // The argument `opKind` can either be Modulo, Floordiv or Ceildiv only. |
354 | assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv || |
355 | opKind == AffineExprKind::CeilDiv) && |
356 | "unexpected opKind" ); |
357 | switch (expr.getKind()) { |
358 | case AffineExprKind::Constant: |
359 | return cast<AffineConstantExpr>(Val&: expr).getValue() == 0; |
360 | case AffineExprKind::DimId: |
361 | return false; |
362 | case AffineExprKind::SymbolId: |
363 | return (cast<AffineSymbolExpr>(Val&: expr).getPosition() == symbolPos); |
364 | // Checks divisibility by the given symbol for both operands. |
365 | case AffineExprKind::Add: { |
366 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
367 | return isDivisibleBySymbol(expr: binaryExpr.getLHS(), symbolPos, opKind) && |
368 | isDivisibleBySymbol(expr: binaryExpr.getRHS(), symbolPos, opKind); |
369 | } |
370 | // Checks divisibility by the given symbol for both operands. Consider the |
371 | // expression `(((s1*s0) floordiv w) mod ((s1 * s2) floordiv p)) floordiv s1`, |
372 | // this is a division by s1 and both the operands of modulo are divisible by |
373 | // s1 but it is not divisible by s1 always. The third argument is |
374 | // `AffineExprKind::Mod` for this reason. |
375 | case AffineExprKind::Mod: { |
376 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
377 | return isDivisibleBySymbol(expr: binaryExpr.getLHS(), symbolPos, |
378 | opKind: AffineExprKind::Mod) && |
379 | isDivisibleBySymbol(expr: binaryExpr.getRHS(), symbolPos, |
380 | opKind: AffineExprKind::Mod); |
381 | } |
382 | // Checks if any of the operand divisible by the given symbol. |
383 | case AffineExprKind::Mul: { |
384 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
385 | return isDivisibleBySymbol(expr: binaryExpr.getLHS(), symbolPos, opKind) || |
386 | isDivisibleBySymbol(expr: binaryExpr.getRHS(), symbolPos, opKind); |
387 | } |
388 | // Floordiv and ceildiv are divisible by the given symbol when the first |
389 | // operand is divisible, and the affine expression kind of the argument expr |
390 | // is same as the argument `opKind`. This can be inferred from commutative |
391 | // property of floordiv and ceildiv operations and are as follow: |
392 | // (exp1 floordiv exp2) floordiv exp3 = (exp1 floordiv exp3) floordiv exp2 |
393 | // (exp1 ceildiv exp2) ceildiv exp3 = (exp1 ceildiv exp3) ceildiv expr2 |
394 | // It will fail if operations are not same. For example: |
395 | // (exps1 ceildiv exp2) floordiv exp3 can not be simplified. |
396 | case AffineExprKind::FloorDiv: |
397 | case AffineExprKind::CeilDiv: { |
398 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
399 | if (opKind != expr.getKind()) |
400 | return false; |
401 | return isDivisibleBySymbol(expr: binaryExpr.getLHS(), symbolPos, opKind: expr.getKind()); |
402 | } |
403 | } |
404 | llvm_unreachable("Unknown AffineExpr" ); |
405 | } |
406 | |
407 | /// Divides the given expression by the given symbol at position `symbolPos`. It |
408 | /// considers the divisibility condition is checked before calling itself. A |
409 | /// null expression is returned whenever the divisibility condition fails. |
410 | static AffineExpr symbolicDivide(AffineExpr expr, unsigned symbolPos, |
411 | AffineExprKind opKind) { |
412 | // THe argument `opKind` can either be Modulo, Floordiv or Ceildiv only. |
413 | assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv || |
414 | opKind == AffineExprKind::CeilDiv) && |
415 | "unexpected opKind" ); |
416 | switch (expr.getKind()) { |
417 | case AffineExprKind::Constant: |
418 | if (cast<AffineConstantExpr>(Val&: expr).getValue() != 0) |
419 | return nullptr; |
420 | return getAffineConstantExpr(constant: 0, context: expr.getContext()); |
421 | case AffineExprKind::DimId: |
422 | return nullptr; |
423 | case AffineExprKind::SymbolId: |
424 | return getAffineConstantExpr(constant: 1, context: expr.getContext()); |
425 | // Dividing both operands by the given symbol. |
426 | case AffineExprKind::Add: { |
427 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
428 | return getAffineBinaryOpExpr( |
429 | kind: expr.getKind(), lhs: symbolicDivide(expr: binaryExpr.getLHS(), symbolPos, opKind), |
430 | rhs: symbolicDivide(expr: binaryExpr.getRHS(), symbolPos, opKind)); |
431 | } |
432 | // Dividing both operands by the given symbol. |
433 | case AffineExprKind::Mod: { |
434 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
435 | return getAffineBinaryOpExpr( |
436 | kind: expr.getKind(), |
437 | lhs: symbolicDivide(expr: binaryExpr.getLHS(), symbolPos, opKind: expr.getKind()), |
438 | rhs: symbolicDivide(expr: binaryExpr.getRHS(), symbolPos, opKind: expr.getKind())); |
439 | } |
440 | // Dividing any of the operand by the given symbol. |
441 | case AffineExprKind::Mul: { |
442 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
443 | if (!isDivisibleBySymbol(expr: binaryExpr.getLHS(), symbolPos, opKind)) |
444 | return binaryExpr.getLHS() * |
445 | symbolicDivide(expr: binaryExpr.getRHS(), symbolPos, opKind); |
446 | return symbolicDivide(expr: binaryExpr.getLHS(), symbolPos, opKind) * |
447 | binaryExpr.getRHS(); |
448 | } |
449 | // Dividing first operand only by the given symbol. |
450 | case AffineExprKind::FloorDiv: |
451 | case AffineExprKind::CeilDiv: { |
452 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
453 | return getAffineBinaryOpExpr( |
454 | kind: expr.getKind(), |
455 | lhs: symbolicDivide(expr: binaryExpr.getLHS(), symbolPos, opKind: expr.getKind()), |
456 | rhs: binaryExpr.getRHS()); |
457 | } |
458 | } |
459 | llvm_unreachable("Unknown AffineExpr" ); |
460 | } |
461 | |
462 | /// Populate `result` with all summand operands of given (potentially nested) |
463 | /// addition. If the given expression is not an addition, just populate the |
464 | /// expression itself. |
465 | /// Example: Add(Add(7, 8), Mul(9, 10)) will return [7, 8, Mul(9, 10)]. |
466 | static void getSummandExprs(AffineExpr expr, SmallVector<AffineExpr> &result) { |
467 | auto addExpr = dyn_cast<AffineBinaryOpExpr>(Val&: expr); |
468 | if (!addExpr || addExpr.getKind() != AffineExprKind::Add) { |
469 | result.push_back(Elt: expr); |
470 | return; |
471 | } |
472 | getSummandExprs(expr: addExpr.getLHS(), result); |
473 | getSummandExprs(expr: addExpr.getRHS(), result); |
474 | } |
475 | |
476 | /// Return "true" if `candidate` is a negated expression, i.e., Mul(-1, expr). |
477 | /// If so, also return the non-negated expression via `expr`. |
478 | static bool isNegatedAffineExpr(AffineExpr candidate, AffineExpr &expr) { |
479 | auto mulExpr = dyn_cast<AffineBinaryOpExpr>(Val&: candidate); |
480 | if (!mulExpr || mulExpr.getKind() != AffineExprKind::Mul) |
481 | return false; |
482 | if (auto lhs = dyn_cast<AffineConstantExpr>(Val: mulExpr.getLHS())) { |
483 | if (lhs.getValue() == -1) { |
484 | expr = mulExpr.getRHS(); |
485 | return true; |
486 | } |
487 | } |
488 | if (auto rhs = dyn_cast<AffineConstantExpr>(Val: mulExpr.getRHS())) { |
489 | if (rhs.getValue() == -1) { |
490 | expr = mulExpr.getLHS(); |
491 | return true; |
492 | } |
493 | } |
494 | return false; |
495 | } |
496 | |
497 | /// Return "true" if `lhs` % `rhs` is guaranteed to evaluate to zero based on |
498 | /// the fact that `lhs` contains another modulo expression that ensures that |
499 | /// `lhs` is divisible by `rhs`. This is a common pattern in the resulting IR |
500 | /// after loop peeling. |
501 | /// |
502 | /// Example: lhs = ub - ub % step |
503 | /// rhs = step |
504 | /// => (ub - ub % step) % step is guaranteed to evaluate to 0. |
505 | static bool isModOfModSubtraction(AffineExpr lhs, AffineExpr rhs, |
506 | unsigned numDims, unsigned numSymbols) { |
507 | // TODO: Try to unify this function with `getBoundForAffineExpr`. |
508 | // Collect all summands in lhs. |
509 | SmallVector<AffineExpr> summands; |
510 | getSummandExprs(expr: lhs, result&: summands); |
511 | // Look for Mul(-1, Mod(x, rhs)) among the summands. If x matches the |
512 | // remaining summands, then lhs % rhs is guaranteed to evaluate to 0. |
513 | for (int64_t i = 0, e = summands.size(); i < e; ++i) { |
514 | AffineExpr current = summands[i]; |
515 | AffineExpr beforeNegation; |
516 | if (!isNegatedAffineExpr(candidate: current, expr&: beforeNegation)) |
517 | continue; |
518 | AffineBinaryOpExpr innerMod = dyn_cast<AffineBinaryOpExpr>(Val&: beforeNegation); |
519 | if (!innerMod || innerMod.getKind() != AffineExprKind::Mod) |
520 | continue; |
521 | if (innerMod.getRHS() != rhs) |
522 | continue; |
523 | // Sum all remaining summands and subtract x. If that expression can be |
524 | // simplified to zero, then the remaining summands and x are equal. |
525 | AffineExpr diff = getAffineConstantExpr(constant: 0, context: lhs.getContext()); |
526 | for (int64_t j = 0; j < e; ++j) |
527 | if (i != j) |
528 | diff = diff + summands[j]; |
529 | diff = diff - innerMod.getLHS(); |
530 | diff = simplifyAffineExpr(expr: diff, numDims, numSymbols); |
531 | auto constExpr = dyn_cast<AffineConstantExpr>(Val&: diff); |
532 | if (constExpr && constExpr.getValue() == 0) |
533 | return true; |
534 | } |
535 | return false; |
536 | } |
537 | |
538 | /// Simplify a semi-affine expression by handling modulo, floordiv, or ceildiv |
539 | /// operations when the second operand simplifies to a symbol and the first |
540 | /// operand is divisible by that symbol. It can be applied to any semi-affine |
541 | /// expression. Returned expression can either be a semi-affine or pure affine |
542 | /// expression. |
543 | static AffineExpr simplifySemiAffine(AffineExpr expr, unsigned numDims, |
544 | unsigned numSymbols) { |
545 | switch (expr.getKind()) { |
546 | case AffineExprKind::Constant: |
547 | case AffineExprKind::DimId: |
548 | case AffineExprKind::SymbolId: |
549 | return expr; |
550 | case AffineExprKind::Add: |
551 | case AffineExprKind::Mul: { |
552 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
553 | return getAffineBinaryOpExpr( |
554 | kind: expr.getKind(), |
555 | lhs: simplifySemiAffine(expr: binaryExpr.getLHS(), numDims, numSymbols), |
556 | rhs: simplifySemiAffine(expr: binaryExpr.getRHS(), numDims, numSymbols)); |
557 | } |
558 | // Check if the simplification of the second operand is a symbol, and the |
559 | // first operand is divisible by it. If the operation is a modulo, a constant |
560 | // zero expression is returned. In the case of floordiv and ceildiv, the |
561 | // symbol from the simplification of the second operand divides the first |
562 | // operand. Otherwise, simplification is not possible. |
563 | case AffineExprKind::FloorDiv: |
564 | case AffineExprKind::CeilDiv: |
565 | case AffineExprKind::Mod: { |
566 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
567 | AffineExpr sLHS = |
568 | simplifySemiAffine(expr: binaryExpr.getLHS(), numDims, numSymbols); |
569 | AffineExpr sRHS = |
570 | simplifySemiAffine(expr: binaryExpr.getRHS(), numDims, numSymbols); |
571 | if (isModOfModSubtraction(lhs: sLHS, rhs: sRHS, numDims, numSymbols)) |
572 | return getAffineConstantExpr(constant: 0, context: expr.getContext()); |
573 | AffineSymbolExpr symbolExpr = dyn_cast<AffineSymbolExpr>( |
574 | Val: simplifySemiAffine(expr: binaryExpr.getRHS(), numDims, numSymbols)); |
575 | if (!symbolExpr) |
576 | return getAffineBinaryOpExpr(kind: expr.getKind(), lhs: sLHS, rhs: sRHS); |
577 | unsigned symbolPos = symbolExpr.getPosition(); |
578 | if (!isDivisibleBySymbol(expr: binaryExpr.getLHS(), symbolPos, opKind: expr.getKind())) |
579 | return getAffineBinaryOpExpr(kind: expr.getKind(), lhs: sLHS, rhs: sRHS); |
580 | if (expr.getKind() == AffineExprKind::Mod) |
581 | return getAffineConstantExpr(constant: 0, context: expr.getContext()); |
582 | return symbolicDivide(expr: sLHS, symbolPos, opKind: expr.getKind()); |
583 | } |
584 | } |
585 | llvm_unreachable("Unknown AffineExpr" ); |
586 | } |
587 | |
588 | static AffineExpr getAffineDimOrSymbol(AffineExprKind kind, unsigned position, |
589 | MLIRContext *context) { |
590 | auto assignCtx = [context](AffineDimExprStorage *storage) { |
591 | storage->context = context; |
592 | }; |
593 | |
594 | StorageUniquer &uniquer = context->getAffineUniquer(); |
595 | return uniquer.get<AffineDimExprStorage>( |
596 | initFn: assignCtx, args: static_cast<unsigned>(kind), args&: position); |
597 | } |
598 | |
599 | AffineExpr mlir::getAffineDimExpr(unsigned position, MLIRContext *context) { |
600 | return getAffineDimOrSymbol(kind: AffineExprKind::DimId, position, context); |
601 | } |
602 | |
603 | AffineSymbolExpr::AffineSymbolExpr(AffineExpr::ImplType *ptr) |
604 | : AffineExpr(ptr) {} |
605 | unsigned AffineSymbolExpr::getPosition() const { |
606 | return static_cast<ImplType *>(expr)->position; |
607 | } |
608 | |
609 | AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) { |
610 | return getAffineDimOrSymbol(kind: AffineExprKind::SymbolId, position, context); |
611 | } |
612 | |
613 | AffineConstantExpr::AffineConstantExpr(AffineExpr::ImplType *ptr) |
614 | : AffineExpr(ptr) {} |
615 | int64_t AffineConstantExpr::getValue() const { |
616 | return static_cast<ImplType *>(expr)->constant; |
617 | } |
618 | |
619 | bool AffineExpr::operator==(int64_t v) const { |
620 | return *this == getAffineConstantExpr(constant: v, context: getContext()); |
621 | } |
622 | |
623 | AffineExpr mlir::getAffineConstantExpr(int64_t constant, MLIRContext *context) { |
624 | auto assignCtx = [context](AffineConstantExprStorage *storage) { |
625 | storage->context = context; |
626 | }; |
627 | |
628 | StorageUniquer &uniquer = context->getAffineUniquer(); |
629 | return uniquer.get<AffineConstantExprStorage>(initFn: assignCtx, args&: constant); |
630 | } |
631 | |
632 | SmallVector<AffineExpr> |
633 | mlir::getAffineConstantExprs(ArrayRef<int64_t> constants, |
634 | MLIRContext *context) { |
635 | return llvm::to_vector(Range: llvm::map_range(C&: constants, F: [&](int64_t constant) { |
636 | return getAffineConstantExpr(constant, context); |
637 | })); |
638 | } |
639 | |
640 | /// Simplify add expression. Return nullptr if it can't be simplified. |
641 | static AffineExpr simplifyAdd(AffineExpr lhs, AffineExpr rhs) { |
642 | auto lhsConst = dyn_cast<AffineConstantExpr>(Val&: lhs); |
643 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val&: rhs); |
644 | // Fold if both LHS, RHS are a constant. |
645 | if (lhsConst && rhsConst) |
646 | return getAffineConstantExpr(constant: lhsConst.getValue() + rhsConst.getValue(), |
647 | context: lhs.getContext()); |
648 | |
649 | // Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4). |
650 | // If only one of them is a symbolic expressions, make it the RHS. |
651 | if (isa<AffineConstantExpr>(Val: lhs) || |
652 | (lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())) { |
653 | return rhs + lhs; |
654 | } |
655 | |
656 | // At this point, if there was a constant, it would be on the right. |
657 | |
658 | // Addition with a zero is a noop, return the other input. |
659 | if (rhsConst) { |
660 | if (rhsConst.getValue() == 0) |
661 | return lhs; |
662 | } |
663 | // Fold successive additions like (d0 + 2) + 3 into d0 + 5. |
664 | auto lBin = dyn_cast<AffineBinaryOpExpr>(Val&: lhs); |
665 | if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Add) { |
666 | if (auto lrhs = dyn_cast<AffineConstantExpr>(Val: lBin.getRHS())) |
667 | return lBin.getLHS() + (lrhs.getValue() + rhsConst.getValue()); |
668 | } |
669 | |
670 | // Detect "c1 * expr + c_2 * expr" as "(c1 + c2) * expr". |
671 | // c1 is rRhsConst, c2 is rLhsConst; firstExpr, secondExpr are their |
672 | // respective multiplicands. |
673 | std::optional<int64_t> rLhsConst, rRhsConst; |
674 | AffineExpr firstExpr, secondExpr; |
675 | AffineConstantExpr rLhsConstExpr; |
676 | auto lBinOpExpr = dyn_cast<AffineBinaryOpExpr>(Val&: lhs); |
677 | if (lBinOpExpr && lBinOpExpr.getKind() == AffineExprKind::Mul && |
678 | (rLhsConstExpr = dyn_cast<AffineConstantExpr>(Val: lBinOpExpr.getRHS()))) { |
679 | rLhsConst = rLhsConstExpr.getValue(); |
680 | firstExpr = lBinOpExpr.getLHS(); |
681 | } else { |
682 | rLhsConst = 1; |
683 | firstExpr = lhs; |
684 | } |
685 | |
686 | auto rBinOpExpr = dyn_cast<AffineBinaryOpExpr>(Val&: rhs); |
687 | AffineConstantExpr rRhsConstExpr; |
688 | if (rBinOpExpr && rBinOpExpr.getKind() == AffineExprKind::Mul && |
689 | (rRhsConstExpr = dyn_cast<AffineConstantExpr>(Val: rBinOpExpr.getRHS()))) { |
690 | rRhsConst = rRhsConstExpr.getValue(); |
691 | secondExpr = rBinOpExpr.getLHS(); |
692 | } else { |
693 | rRhsConst = 1; |
694 | secondExpr = rhs; |
695 | } |
696 | |
697 | if (rLhsConst && rRhsConst && firstExpr == secondExpr) |
698 | return getAffineBinaryOpExpr( |
699 | kind: AffineExprKind::Mul, lhs: firstExpr, |
700 | rhs: getAffineConstantExpr(constant: *rLhsConst + *rRhsConst, context: lhs.getContext())); |
701 | |
702 | // When doing successive additions, bring constant to the right: turn (d0 + 2) |
703 | // + d1 into (d0 + d1) + 2. |
704 | if (lBin && lBin.getKind() == AffineExprKind::Add) { |
705 | if (auto lrhs = dyn_cast<AffineConstantExpr>(Val: lBin.getRHS())) { |
706 | return lBin.getLHS() + rhs + lrhs; |
707 | } |
708 | } |
709 | |
710 | // Detect and transform "expr - q * (expr floordiv q)" to "expr mod q", where |
711 | // q may be a constant or symbolic expression. This leads to a much more |
712 | // efficient form when 'c' is a power of two, and in general a more compact |
713 | // and readable form. |
714 | |
715 | // Process '(expr floordiv c) * (-c)'. |
716 | if (!rBinOpExpr) |
717 | return nullptr; |
718 | |
719 | auto lrhs = rBinOpExpr.getLHS(); |
720 | auto rrhs = rBinOpExpr.getRHS(); |
721 | |
722 | AffineExpr llrhs, rlrhs; |
723 | |
724 | // Check if lrhsBinOpExpr is of the form (expr floordiv q) * q, where q is a |
725 | // symbolic expression. |
726 | auto lrhsBinOpExpr = dyn_cast<AffineBinaryOpExpr>(Val&: lrhs); |
727 | // Check rrhsConstOpExpr = -1. |
728 | auto rrhsConstOpExpr = dyn_cast<AffineConstantExpr>(Val&: rrhs); |
729 | if (rrhsConstOpExpr && rrhsConstOpExpr.getValue() == -1 && lrhsBinOpExpr && |
730 | lrhsBinOpExpr.getKind() == AffineExprKind::Mul) { |
731 | // Check llrhs = expr floordiv q. |
732 | llrhs = lrhsBinOpExpr.getLHS(); |
733 | // Check rlrhs = q. |
734 | rlrhs = lrhsBinOpExpr.getRHS(); |
735 | auto llrhsBinOpExpr = dyn_cast<AffineBinaryOpExpr>(Val&: llrhs); |
736 | if (!llrhsBinOpExpr || llrhsBinOpExpr.getKind() != AffineExprKind::FloorDiv) |
737 | return nullptr; |
738 | if (llrhsBinOpExpr.getRHS() == rlrhs && lhs == llrhsBinOpExpr.getLHS()) |
739 | return lhs % rlrhs; |
740 | } |
741 | |
742 | // Process lrhs, which is 'expr floordiv c'. |
743 | AffineBinaryOpExpr lrBinOpExpr = dyn_cast<AffineBinaryOpExpr>(Val&: lrhs); |
744 | if (!lrBinOpExpr || lrBinOpExpr.getKind() != AffineExprKind::FloorDiv) |
745 | return nullptr; |
746 | |
747 | llrhs = lrBinOpExpr.getLHS(); |
748 | rlrhs = lrBinOpExpr.getRHS(); |
749 | |
750 | if (lhs == llrhs && rlrhs == -rrhs) { |
751 | return lhs % rlrhs; |
752 | } |
753 | return nullptr; |
754 | } |
755 | |
756 | AffineExpr AffineExpr::operator+(int64_t v) const { |
757 | return *this + getAffineConstantExpr(constant: v, context: getContext()); |
758 | } |
759 | AffineExpr AffineExpr::operator+(AffineExpr other) const { |
760 | if (auto simplified = simplifyAdd(lhs: *this, rhs: other)) |
761 | return simplified; |
762 | |
763 | StorageUniquer &uniquer = getContext()->getAffineUniquer(); |
764 | return uniquer.get<AffineBinaryOpExprStorage>( |
765 | /*initFn=*/{}, args: static_cast<unsigned>(AffineExprKind::Add), args: *this, args&: other); |
766 | } |
767 | |
768 | /// Simplify a multiply expression. Return nullptr if it can't be simplified. |
769 | static AffineExpr simplifyMul(AffineExpr lhs, AffineExpr rhs) { |
770 | auto lhsConst = dyn_cast<AffineConstantExpr>(Val&: lhs); |
771 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val&: rhs); |
772 | |
773 | if (lhsConst && rhsConst) |
774 | return getAffineConstantExpr(constant: lhsConst.getValue() * rhsConst.getValue(), |
775 | context: lhs.getContext()); |
776 | |
777 | if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) |
778 | return nullptr; |
779 | |
780 | // Canonicalize the mul expression so that the constant/symbolic term is the |
781 | // RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a |
782 | // constant. (Note that a constant is trivially symbolic). |
783 | if (!rhs.isSymbolicOrConstant() || isa<AffineConstantExpr>(Val: lhs)) { |
784 | // At least one of them has to be symbolic. |
785 | return rhs * lhs; |
786 | } |
787 | |
788 | // At this point, if there was a constant, it would be on the right. |
789 | |
790 | // Multiplication with a one is a noop, return the other input. |
791 | if (rhsConst) { |
792 | if (rhsConst.getValue() == 1) |
793 | return lhs; |
794 | // Multiplication with zero. |
795 | if (rhsConst.getValue() == 0) |
796 | return rhsConst; |
797 | } |
798 | |
799 | // Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6. |
800 | auto lBin = dyn_cast<AffineBinaryOpExpr>(Val&: lhs); |
801 | if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Mul) { |
802 | if (auto lrhs = dyn_cast<AffineConstantExpr>(Val: lBin.getRHS())) |
803 | return lBin.getLHS() * (lrhs.getValue() * rhsConst.getValue()); |
804 | } |
805 | |
806 | // When doing successive multiplication, bring constant to the right: turn (d0 |
807 | // * 2) * d1 into (d0 * d1) * 2. |
808 | if (lBin && lBin.getKind() == AffineExprKind::Mul) { |
809 | if (auto lrhs = dyn_cast<AffineConstantExpr>(Val: lBin.getRHS())) { |
810 | return (lBin.getLHS() * rhs) * lrhs; |
811 | } |
812 | } |
813 | |
814 | return nullptr; |
815 | } |
816 | |
817 | AffineExpr AffineExpr::operator*(int64_t v) const { |
818 | return *this * getAffineConstantExpr(constant: v, context: getContext()); |
819 | } |
820 | AffineExpr AffineExpr::operator*(AffineExpr other) const { |
821 | if (auto simplified = simplifyMul(lhs: *this, rhs: other)) |
822 | return simplified; |
823 | |
824 | StorageUniquer &uniquer = getContext()->getAffineUniquer(); |
825 | return uniquer.get<AffineBinaryOpExprStorage>( |
826 | /*initFn=*/{}, args: static_cast<unsigned>(AffineExprKind::Mul), args: *this, args&: other); |
827 | } |
828 | |
829 | // Unary minus, delegate to operator*. |
830 | AffineExpr AffineExpr::operator-() const { |
831 | return *this * getAffineConstantExpr(constant: -1, context: getContext()); |
832 | } |
833 | |
834 | // Delegate to operator+. |
835 | AffineExpr AffineExpr::operator-(int64_t v) const { return *this + (-v); } |
836 | AffineExpr AffineExpr::operator-(AffineExpr other) const { |
837 | return *this + (-other); |
838 | } |
839 | |
840 | static AffineExpr simplifyFloorDiv(AffineExpr lhs, AffineExpr rhs) { |
841 | auto lhsConst = dyn_cast<AffineConstantExpr>(Val&: lhs); |
842 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val&: rhs); |
843 | |
844 | // mlir floordiv by zero or negative numbers is undefined and preserved as is. |
845 | if (!rhsConst || rhsConst.getValue() < 1) |
846 | return nullptr; |
847 | |
848 | if (lhsConst) |
849 | return getAffineConstantExpr( |
850 | constant: floorDiv(lhs: lhsConst.getValue(), rhs: rhsConst.getValue()), context: lhs.getContext()); |
851 | |
852 | // Fold floordiv of a multiply with a constant that is a multiple of the |
853 | // divisor. Eg: (i * 128) floordiv 64 = i * 2. |
854 | if (rhsConst == 1) |
855 | return lhs; |
856 | |
857 | // Simplify (expr * const) floordiv divConst when expr is known to be a |
858 | // multiple of divConst. |
859 | auto lBin = dyn_cast<AffineBinaryOpExpr>(Val&: lhs); |
860 | if (lBin && lBin.getKind() == AffineExprKind::Mul) { |
861 | if (auto lrhs = dyn_cast<AffineConstantExpr>(Val: lBin.getRHS())) { |
862 | // rhsConst is known to be a positive constant. |
863 | if (lrhs.getValue() % rhsConst.getValue() == 0) |
864 | return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue()); |
865 | } |
866 | } |
867 | |
868 | // Simplify (expr1 + expr2) floordiv divConst when either expr1 or expr2 is |
869 | // known to be a multiple of divConst. |
870 | if (lBin && lBin.getKind() == AffineExprKind::Add) { |
871 | int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor(); |
872 | int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor(); |
873 | // rhsConst is known to be a positive constant. |
874 | if (llhsDiv % rhsConst.getValue() == 0 || |
875 | lrhsDiv % rhsConst.getValue() == 0) |
876 | return lBin.getLHS().floorDiv(v: rhsConst.getValue()) + |
877 | lBin.getRHS().floorDiv(v: rhsConst.getValue()); |
878 | } |
879 | |
880 | return nullptr; |
881 | } |
882 | |
883 | AffineExpr AffineExpr::floorDiv(uint64_t v) const { |
884 | return floorDiv(other: getAffineConstantExpr(constant: v, context: getContext())); |
885 | } |
886 | AffineExpr AffineExpr::floorDiv(AffineExpr other) const { |
887 | if (auto simplified = simplifyFloorDiv(lhs: *this, rhs: other)) |
888 | return simplified; |
889 | |
890 | StorageUniquer &uniquer = getContext()->getAffineUniquer(); |
891 | return uniquer.get<AffineBinaryOpExprStorage>( |
892 | /*initFn=*/{}, args: static_cast<unsigned>(AffineExprKind::FloorDiv), args: *this, |
893 | args&: other); |
894 | } |
895 | |
896 | static AffineExpr simplifyCeilDiv(AffineExpr lhs, AffineExpr rhs) { |
897 | auto lhsConst = dyn_cast<AffineConstantExpr>(Val&: lhs); |
898 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val&: rhs); |
899 | |
900 | if (!rhsConst || rhsConst.getValue() < 1) |
901 | return nullptr; |
902 | |
903 | if (lhsConst) |
904 | return getAffineConstantExpr( |
905 | constant: ceilDiv(lhs: lhsConst.getValue(), rhs: rhsConst.getValue()), context: lhs.getContext()); |
906 | |
907 | // Fold ceildiv of a multiply with a constant that is a multiple of the |
908 | // divisor. Eg: (i * 128) ceildiv 64 = i * 2. |
909 | if (rhsConst.getValue() == 1) |
910 | return lhs; |
911 | |
912 | // Simplify (expr * const) ceildiv divConst when const is known to be a |
913 | // multiple of divConst. |
914 | auto lBin = dyn_cast<AffineBinaryOpExpr>(Val&: lhs); |
915 | if (lBin && lBin.getKind() == AffineExprKind::Mul) { |
916 | if (auto lrhs = dyn_cast<AffineConstantExpr>(Val: lBin.getRHS())) { |
917 | // rhsConst is known to be a positive constant. |
918 | if (lrhs.getValue() % rhsConst.getValue() == 0) |
919 | return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue()); |
920 | } |
921 | } |
922 | |
923 | return nullptr; |
924 | } |
925 | |
926 | AffineExpr AffineExpr::ceilDiv(uint64_t v) const { |
927 | return ceilDiv(other: getAffineConstantExpr(constant: v, context: getContext())); |
928 | } |
929 | AffineExpr AffineExpr::ceilDiv(AffineExpr other) const { |
930 | if (auto simplified = simplifyCeilDiv(lhs: *this, rhs: other)) |
931 | return simplified; |
932 | |
933 | StorageUniquer &uniquer = getContext()->getAffineUniquer(); |
934 | return uniquer.get<AffineBinaryOpExprStorage>( |
935 | /*initFn=*/{}, args: static_cast<unsigned>(AffineExprKind::CeilDiv), args: *this, |
936 | args&: other); |
937 | } |
938 | |
939 | static AffineExpr simplifyMod(AffineExpr lhs, AffineExpr rhs) { |
940 | auto lhsConst = dyn_cast<AffineConstantExpr>(Val&: lhs); |
941 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val&: rhs); |
942 | |
943 | // mod w.r.t zero or negative numbers is undefined and preserved as is. |
944 | if (!rhsConst || rhsConst.getValue() < 1) |
945 | return nullptr; |
946 | |
947 | if (lhsConst) |
948 | return getAffineConstantExpr(constant: mod(lhs: lhsConst.getValue(), rhs: rhsConst.getValue()), |
949 | context: lhs.getContext()); |
950 | |
951 | // Fold modulo of an expression that is known to be a multiple of a constant |
952 | // to zero if that constant is a multiple of the modulo factor. Eg: (i * 128) |
953 | // mod 64 is folded to 0, and less trivially, (i*(j*4*(k*32))) mod 128 = 0. |
954 | if (lhs.getLargestKnownDivisor() % rhsConst.getValue() == 0) |
955 | return getAffineConstantExpr(constant: 0, context: lhs.getContext()); |
956 | |
957 | // Simplify (expr1 + expr2) mod divConst when either expr1 or expr2 is |
958 | // known to be a multiple of divConst. |
959 | auto lBin = dyn_cast<AffineBinaryOpExpr>(Val&: lhs); |
960 | if (lBin && lBin.getKind() == AffineExprKind::Add) { |
961 | int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor(); |
962 | int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor(); |
963 | // rhsConst is known to be a positive constant. |
964 | if (llhsDiv % rhsConst.getValue() == 0) |
965 | return lBin.getRHS() % rhsConst.getValue(); |
966 | if (lrhsDiv % rhsConst.getValue() == 0) |
967 | return lBin.getLHS() % rhsConst.getValue(); |
968 | } |
969 | |
970 | // Simplify (e % a) % b to e % b when b evenly divides a |
971 | if (lBin && lBin.getKind() == AffineExprKind::Mod) { |
972 | auto intermediate = dyn_cast<AffineConstantExpr>(Val: lBin.getRHS()); |
973 | if (intermediate && intermediate.getValue() >= 1 && |
974 | mod(lhs: intermediate.getValue(), rhs: rhsConst.getValue()) == 0) { |
975 | return lBin.getLHS() % rhsConst.getValue(); |
976 | } |
977 | } |
978 | |
979 | return nullptr; |
980 | } |
981 | |
982 | AffineExpr AffineExpr::operator%(uint64_t v) const { |
983 | return *this % getAffineConstantExpr(constant: v, context: getContext()); |
984 | } |
985 | AffineExpr AffineExpr::operator%(AffineExpr other) const { |
986 | if (auto simplified = simplifyMod(lhs: *this, rhs: other)) |
987 | return simplified; |
988 | |
989 | StorageUniquer &uniquer = getContext()->getAffineUniquer(); |
990 | return uniquer.get<AffineBinaryOpExprStorage>( |
991 | /*initFn=*/{}, args: static_cast<unsigned>(AffineExprKind::Mod), args: *this, args&: other); |
992 | } |
993 | |
994 | AffineExpr AffineExpr::compose(AffineMap map) const { |
995 | SmallVector<AffineExpr, 8> dimReplacements(map.getResults().begin(), |
996 | map.getResults().end()); |
997 | return replaceDimsAndSymbols(dimReplacements, symReplacements: {}); |
998 | } |
999 | raw_ostream &mlir::operator<<(raw_ostream &os, AffineExpr expr) { |
1000 | expr.print(os); |
1001 | return os; |
1002 | } |
1003 | |
1004 | /// Constructs an affine expression from a flat ArrayRef. If there are local |
1005 | /// identifiers (neither dimensional nor symbolic) that appear in the sum of |
1006 | /// products expression, `localExprs` is expected to have the AffineExpr |
1007 | /// for it, and is substituted into. The ArrayRef `flatExprs` is expected to be |
1008 | /// in the format [dims, symbols, locals, constant term]. |
1009 | AffineExpr mlir::getAffineExprFromFlatForm(ArrayRef<int64_t> flatExprs, |
1010 | unsigned numDims, |
1011 | unsigned numSymbols, |
1012 | ArrayRef<AffineExpr> localExprs, |
1013 | MLIRContext *context) { |
1014 | // Assert expected numLocals = flatExprs.size() - numDims - numSymbols - 1. |
1015 | assert(flatExprs.size() - numDims - numSymbols - 1 == localExprs.size() && |
1016 | "unexpected number of local expressions" ); |
1017 | |
1018 | auto expr = getAffineConstantExpr(constant: 0, context); |
1019 | // Dimensions and symbols. |
1020 | for (unsigned j = 0; j < numDims + numSymbols; j++) { |
1021 | if (flatExprs[j] == 0) |
1022 | continue; |
1023 | auto id = j < numDims ? getAffineDimExpr(position: j, context) |
1024 | : getAffineSymbolExpr(position: j - numDims, context); |
1025 | expr = expr + id * flatExprs[j]; |
1026 | } |
1027 | |
1028 | // Local identifiers. |
1029 | for (unsigned j = numDims + numSymbols, e = flatExprs.size() - 1; j < e; |
1030 | j++) { |
1031 | if (flatExprs[j] == 0) |
1032 | continue; |
1033 | auto term = localExprs[j - numDims - numSymbols] * flatExprs[j]; |
1034 | expr = expr + term; |
1035 | } |
1036 | |
1037 | // Constant term. |
1038 | int64_t constTerm = flatExprs[flatExprs.size() - 1]; |
1039 | if (constTerm != 0) |
1040 | expr = expr + constTerm; |
1041 | return expr; |
1042 | } |
1043 | |
1044 | /// Constructs a semi-affine expression from a flat ArrayRef. If there are |
1045 | /// local identifiers (neither dimensional nor symbolic) that appear in the sum |
1046 | /// of products expression, `localExprs` is expected to have the AffineExprs for |
1047 | /// it, and is substituted into. The ArrayRef `flatExprs` is expected to be in |
1048 | /// the format [dims, symbols, locals, constant term]. The semi-affine |
1049 | /// expression is constructed in the sorted order of dimension and symbol |
1050 | /// position numbers. Note: local expressions/ids are used for mod, div as well |
1051 | /// as symbolic RHS terms for terms that are not pure affine. |
1052 | static AffineExpr getSemiAffineExprFromFlatForm(ArrayRef<int64_t> flatExprs, |
1053 | unsigned numDims, |
1054 | unsigned numSymbols, |
1055 | ArrayRef<AffineExpr> localExprs, |
1056 | MLIRContext *context) { |
1057 | assert(!flatExprs.empty() && "flatExprs cannot be empty" ); |
1058 | |
1059 | // Assert expected numLocals = flatExprs.size() - numDims - numSymbols - 1. |
1060 | assert(flatExprs.size() - numDims - numSymbols - 1 == localExprs.size() && |
1061 | "unexpected number of local expressions" ); |
1062 | |
1063 | AffineExpr expr = getAffineConstantExpr(constant: 0, context); |
1064 | |
1065 | // We design indices as a pair which help us present the semi-affine map as |
1066 | // sum of product where terms are sorted based on dimension or symbol |
1067 | // position: <keyA, keyB> for expressions of the form dimension * symbol, |
1068 | // where keyA is the position number of the dimension and keyB is the |
1069 | // position number of the symbol. For dimensional expressions we set the index |
1070 | // as (position number of the dimension, -1), as we want dimensional |
1071 | // expressions to appear before symbolic and product of dimensional and |
1072 | // symbolic expressions having the dimension with the same position number. |
1073 | // For symbolic expression set the index as (position number of the symbol, |
1074 | // maximum of last dimension and symbol position) number. For example, we want |
1075 | // the expression we are constructing to look something like: d0 + d0 * s0 + |
1076 | // s0 + d1*s1 + s1. |
1077 | |
1078 | // Stores the affine expression corresponding to a given index. |
1079 | DenseMap<std::pair<unsigned, signed>, AffineExpr> indexToExprMap; |
1080 | // Stores the constant coefficient value corresponding to a given |
1081 | // dimension, symbol or a non-pure affine expression stored in `localExprs`. |
1082 | DenseMap<std::pair<unsigned, signed>, int64_t> coefficients; |
1083 | // Stores the indices as defined above, and later sorted to produce |
1084 | // the semi-affine expression in the desired form. |
1085 | SmallVector<std::pair<unsigned, signed>, 8> indices; |
1086 | |
1087 | // Example: expression = d0 + d0 * s0 + 2 * s0. |
1088 | // indices = [{0,-1}, {0, 0}, {0, 1}] |
1089 | // coefficients = [{{0, -1}, 1}, {{0, 0}, 1}, {{0, 1}, 2}] |
1090 | // indexToExprMap = [{{0, -1}, d0}, {{0, 0}, d0 * s0}, {{0, 1}, s0}] |
1091 | |
1092 | // Adds entries to `indexToExprMap`, `coefficients` and `indices`. |
1093 | auto addEntry = [&](std::pair<unsigned, signed> index, int64_t coefficient, |
1094 | AffineExpr expr) { |
1095 | assert(!llvm::is_contained(indices, index) && |
1096 | "Key is already present in indices vector and overwriting will " |
1097 | "happen in `indexToExprMap` and `coefficients`!" ); |
1098 | |
1099 | indices.push_back(Elt: index); |
1100 | coefficients.insert(KV: {index, coefficient}); |
1101 | indexToExprMap.insert(KV: {index, expr}); |
1102 | }; |
1103 | |
1104 | // Design indices for dimensional or symbolic terms, and store the indices, |
1105 | // constant coefficient corresponding to the indices in `coefficients` map, |
1106 | // and affine expression corresponding to indices in `indexToExprMap` map. |
1107 | |
1108 | // Ensure we do not have duplicate keys in `indexToExpr` map. |
1109 | unsigned offsetSym = 0; |
1110 | signed offsetDim = -1; |
1111 | for (unsigned j = numDims; j < numDims + numSymbols; ++j) { |
1112 | if (flatExprs[j] == 0) |
1113 | continue; |
1114 | // For symbolic expression set the index as <position number |
1115 | // of the symbol, max(dimCount, symCount)> number, |
1116 | // as we want symbolic expressions with the same positional number to |
1117 | // appear after dimensional expressions having the same positional number. |
1118 | std::pair<unsigned, signed> indexEntry( |
1119 | j - numDims, std::max(a: numDims, b: numSymbols) + offsetSym++); |
1120 | addEntry(indexEntry, flatExprs[j], |
1121 | getAffineSymbolExpr(position: j - numDims, context)); |
1122 | } |
1123 | |
1124 | // Denotes semi-affine product, modulo or division terms, which has been added |
1125 | // to the `indexToExpr` map. |
1126 | SmallVector<bool, 4> addedToMap(flatExprs.size() - numDims - numSymbols - 1, |
1127 | false); |
1128 | unsigned lhsPos, rhsPos; |
1129 | // Construct indices for product terms involving dimension, symbol or constant |
1130 | // as lhs/rhs, and store the indices, constant coefficient corresponding to |
1131 | // the indices in `coefficients` map, and affine expression corresponding to |
1132 | // in indices in `indexToExprMap` map. |
1133 | for (const auto &it : llvm::enumerate(First&: localExprs)) { |
1134 | AffineExpr expr = it.value(); |
1135 | if (flatExprs[numDims + numSymbols + it.index()] == 0) |
1136 | continue; |
1137 | AffineExpr lhs = cast<AffineBinaryOpExpr>(Val&: expr).getLHS(); |
1138 | AffineExpr rhs = cast<AffineBinaryOpExpr>(Val&: expr).getRHS(); |
1139 | if (!((isa<AffineDimExpr>(Val: lhs) || isa<AffineSymbolExpr>(Val: lhs)) && |
1140 | (isa<AffineDimExpr>(Val: rhs) || isa<AffineSymbolExpr>(Val: rhs) || |
1141 | isa<AffineConstantExpr>(Val: rhs)))) { |
1142 | continue; |
1143 | } |
1144 | if (isa<AffineConstantExpr>(Val: rhs)) { |
1145 | // For product/modulo/division expressions, when rhs of modulo/division |
1146 | // expression is constant, we put 0 in place of keyB, because we want |
1147 | // them to appear earlier in the semi-affine expression we are |
1148 | // constructing. When rhs is constant, we place 0 in place of keyB. |
1149 | if (isa<AffineDimExpr>(Val: lhs)) { |
1150 | lhsPos = cast<AffineDimExpr>(Val&: lhs).getPosition(); |
1151 | std::pair<unsigned, signed> indexEntry(lhsPos, offsetDim--); |
1152 | addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], |
1153 | expr); |
1154 | } else { |
1155 | lhsPos = cast<AffineSymbolExpr>(Val&: lhs).getPosition(); |
1156 | std::pair<unsigned, signed> indexEntry( |
1157 | lhsPos, std::max(a: numDims, b: numSymbols) + offsetSym++); |
1158 | addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], |
1159 | expr); |
1160 | } |
1161 | } else if (isa<AffineDimExpr>(Val: lhs)) { |
1162 | // For product/modulo/division expressions having lhs as dimension and rhs |
1163 | // as symbol, we order the terms in the semi-affine expression based on |
1164 | // the pair: <keyA, keyB> for expressions of the form dimension * symbol, |
1165 | // where keyA is the position number of the dimension and keyB is the |
1166 | // position number of the symbol. |
1167 | lhsPos = cast<AffineDimExpr>(Val&: lhs).getPosition(); |
1168 | rhsPos = cast<AffineSymbolExpr>(Val&: rhs).getPosition(); |
1169 | std::pair<unsigned, signed> indexEntry(lhsPos, rhsPos); |
1170 | addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], expr); |
1171 | } else { |
1172 | // For product/modulo/division expressions having both lhs and rhs as |
1173 | // symbol, we design indices as a pair: <keyA, keyB> for expressions |
1174 | // of the form dimension * symbol, where keyA is the position number of |
1175 | // the dimension and keyB is the position number of the symbol. |
1176 | lhsPos = cast<AffineSymbolExpr>(Val&: lhs).getPosition(); |
1177 | rhsPos = cast<AffineSymbolExpr>(Val&: rhs).getPosition(); |
1178 | std::pair<unsigned, signed> indexEntry( |
1179 | lhsPos, std::max(a: numDims, b: numSymbols) + offsetSym++); |
1180 | addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], expr); |
1181 | } |
1182 | addedToMap[it.index()] = true; |
1183 | } |
1184 | |
1185 | for (unsigned j = 0; j < numDims; ++j) { |
1186 | if (flatExprs[j] == 0) |
1187 | continue; |
1188 | // For dimensional expressions we set the index as <position number of the |
1189 | // dimension, 0>, as we want dimensional expressions to appear before |
1190 | // symbolic ones and products of dimensional and symbolic expressions |
1191 | // having the dimension with the same position number. |
1192 | std::pair<unsigned, signed> indexEntry(j, offsetDim--); |
1193 | addEntry(indexEntry, flatExprs[j], getAffineDimExpr(position: j, context)); |
1194 | } |
1195 | |
1196 | // Constructing the simplified semi-affine sum of product/division/mod |
1197 | // expression from the flattened form in the desired sorted order of indices |
1198 | // of the various individual product/division/mod expressions. |
1199 | llvm::sort(C&: indices); |
1200 | for (const std::pair<unsigned, unsigned> index : indices) { |
1201 | assert(indexToExprMap.lookup(index) && |
1202 | "cannot find key in `indexToExprMap` map" ); |
1203 | expr = expr + indexToExprMap.lookup(Val: index) * coefficients.lookup(Val: index); |
1204 | } |
1205 | |
1206 | // Local identifiers. |
1207 | for (unsigned j = numDims + numSymbols, e = flatExprs.size() - 1; j < e; |
1208 | j++) { |
1209 | // If the coefficient of the local expression is 0, continue as we need not |
1210 | // add it in out final expression. |
1211 | if (flatExprs[j] == 0 || addedToMap[j - numDims - numSymbols]) |
1212 | continue; |
1213 | auto term = localExprs[j - numDims - numSymbols] * flatExprs[j]; |
1214 | expr = expr + term; |
1215 | } |
1216 | |
1217 | // Constant term. |
1218 | int64_t constTerm = flatExprs.back(); |
1219 | if (constTerm != 0) |
1220 | expr = expr + constTerm; |
1221 | return expr; |
1222 | } |
1223 | |
1224 | SimpleAffineExprFlattener::SimpleAffineExprFlattener(unsigned numDims, |
1225 | unsigned numSymbols) |
1226 | : numDims(numDims), numSymbols(numSymbols), numLocals(0) { |
1227 | operandExprStack.reserve(n: 8); |
1228 | } |
1229 | |
1230 | // In pure affine t = expr * c, we multiply each coefficient of lhs with c. |
1231 | // |
1232 | // In case of semi affine multiplication expressions, t = expr * symbolic_expr, |
1233 | // introduce a local variable p (= expr * symbolic_expr), and the affine |
1234 | // expression expr * symbolic_expr is added to `localExprs`. |
1235 | LogicalResult SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) { |
1236 | assert(operandExprStack.size() >= 2); |
1237 | SmallVector<int64_t, 8> rhs = operandExprStack.back(); |
1238 | operandExprStack.pop_back(); |
1239 | SmallVector<int64_t, 8> &lhs = operandExprStack.back(); |
1240 | |
1241 | // Flatten semi-affine multiplication expressions by introducing a local |
1242 | // variable in place of the product; the affine expression |
1243 | // corresponding to the quantifier is added to `localExprs`. |
1244 | if (!isa<AffineConstantExpr>(Val: expr.getRHS())) { |
1245 | MLIRContext *context = expr.getContext(); |
1246 | AffineExpr a = getAffineExprFromFlatForm(flatExprs: lhs, numDims, numSymbols, |
1247 | localExprs, context); |
1248 | AffineExpr b = getAffineExprFromFlatForm(flatExprs: rhs, numDims, numSymbols, |
1249 | localExprs, context); |
1250 | addLocalVariableSemiAffine(expr: a * b, result&: lhs, resultSize: lhs.size()); |
1251 | return success(); |
1252 | } |
1253 | |
1254 | // Get the RHS constant. |
1255 | int64_t rhsConst = rhs[getConstantIndex()]; |
1256 | for (int64_t &lhsElt : lhs) |
1257 | lhsElt *= rhsConst; |
1258 | |
1259 | return success(); |
1260 | } |
1261 | |
1262 | LogicalResult SimpleAffineExprFlattener::visitAddExpr(AffineBinaryOpExpr expr) { |
1263 | assert(operandExprStack.size() >= 2); |
1264 | const auto &rhs = operandExprStack.back(); |
1265 | auto &lhs = operandExprStack[operandExprStack.size() - 2]; |
1266 | assert(lhs.size() == rhs.size()); |
1267 | // Update the LHS in place. |
1268 | for (unsigned i = 0, e = rhs.size(); i < e; i++) { |
1269 | lhs[i] += rhs[i]; |
1270 | } |
1271 | // Pop off the RHS. |
1272 | operandExprStack.pop_back(); |
1273 | return success(); |
1274 | } |
1275 | |
1276 | // |
1277 | // t = expr mod c <=> t = expr - c*q and c*q <= expr <= c*q + c - 1 |
1278 | // |
1279 | // A mod expression "expr mod c" is thus flattened by introducing a new local |
1280 | // variable q (= expr floordiv c), such that expr mod c is replaced with |
1281 | // 'expr - c * q' and c * q <= expr <= c * q + c - 1 are added to localVarCst. |
1282 | // |
1283 | // In case of semi-affine modulo expressions, t = expr mod symbolic_expr, |
1284 | // introduce a local variable m (= expr mod symbolic_expr), and the affine |
1285 | // expression expr mod symbolic_expr is added to `localExprs`. |
1286 | LogicalResult SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) { |
1287 | assert(operandExprStack.size() >= 2); |
1288 | |
1289 | SmallVector<int64_t, 8> rhs = operandExprStack.back(); |
1290 | operandExprStack.pop_back(); |
1291 | SmallVector<int64_t, 8> &lhs = operandExprStack.back(); |
1292 | MLIRContext *context = expr.getContext(); |
1293 | |
1294 | // Flatten semi affine modulo expressions by introducing a local |
1295 | // variable in place of the modulo value, and the affine expression |
1296 | // corresponding to the quantifier is added to `localExprs`. |
1297 | if (!isa<AffineConstantExpr>(Val: expr.getRHS())) { |
1298 | AffineExpr dividendExpr = getAffineExprFromFlatForm( |
1299 | flatExprs: lhs, numDims, numSymbols, localExprs, context); |
1300 | AffineExpr divisorExpr = getAffineExprFromFlatForm(flatExprs: rhs, numDims, numSymbols, |
1301 | localExprs, context); |
1302 | AffineExpr modExpr = dividendExpr % divisorExpr; |
1303 | addLocalVariableSemiAffine(expr: modExpr, result&: lhs, resultSize: lhs.size()); |
1304 | return success(); |
1305 | } |
1306 | |
1307 | int64_t rhsConst = rhs[getConstantIndex()]; |
1308 | if (rhsConst <= 0) |
1309 | return failure(); |
1310 | |
1311 | // Check if the LHS expression is a multiple of modulo factor. |
1312 | unsigned i, e; |
1313 | for (i = 0, e = lhs.size(); i < e; i++) |
1314 | if (lhs[i] % rhsConst != 0) |
1315 | break; |
1316 | // If yes, modulo expression here simplifies to zero. |
1317 | if (i == lhs.size()) { |
1318 | std::fill(first: lhs.begin(), last: lhs.end(), value: 0); |
1319 | return success(); |
1320 | } |
1321 | |
1322 | // Add a local variable for the quotient, i.e., expr % c is replaced by |
1323 | // (expr - q * c) where q = expr floordiv c. Do this while canceling out |
1324 | // the GCD of expr and c. |
1325 | SmallVector<int64_t, 8> floorDividend(lhs); |
1326 | uint64_t gcd = rhsConst; |
1327 | for (int64_t lhsElt : lhs) |
1328 | gcd = std::gcd(m: gcd, n: (uint64_t)std::abs(i: lhsElt)); |
1329 | // Simplify the numerator and the denominator. |
1330 | if (gcd != 1) { |
1331 | for (int64_t &floorDividendElt : floorDividend) |
1332 | floorDividendElt = floorDividendElt / static_cast<int64_t>(gcd); |
1333 | } |
1334 | int64_t floorDivisor = rhsConst / static_cast<int64_t>(gcd); |
1335 | |
1336 | // Construct the AffineExpr form of the floordiv to store in localExprs. |
1337 | |
1338 | AffineExpr dividendExpr = getAffineExprFromFlatForm( |
1339 | flatExprs: floorDividend, numDims, numSymbols, localExprs, context); |
1340 | AffineExpr divisorExpr = getAffineConstantExpr(constant: floorDivisor, context); |
1341 | AffineExpr floorDivExpr = dividendExpr.floorDiv(other: divisorExpr); |
1342 | int loc; |
1343 | if ((loc = findLocalId(localExpr: floorDivExpr)) == -1) { |
1344 | addLocalFloorDivId(dividend: floorDividend, divisor: floorDivisor, localExpr: floorDivExpr); |
1345 | // Set result at top of stack to "lhs - rhsConst * q". |
1346 | lhs[getLocalVarStartIndex() + numLocals - 1] = -rhsConst; |
1347 | } else { |
1348 | // Reuse the existing local id. |
1349 | lhs[getLocalVarStartIndex() + loc] = -rhsConst; |
1350 | } |
1351 | return success(); |
1352 | } |
1353 | |
1354 | LogicalResult |
1355 | SimpleAffineExprFlattener::visitCeilDivExpr(AffineBinaryOpExpr expr) { |
1356 | return visitDivExpr(expr, /*isCeil=*/true); |
1357 | } |
1358 | LogicalResult |
1359 | SimpleAffineExprFlattener::visitFloorDivExpr(AffineBinaryOpExpr expr) { |
1360 | return visitDivExpr(expr, /*isCeil=*/false); |
1361 | } |
1362 | |
1363 | LogicalResult SimpleAffineExprFlattener::visitDimExpr(AffineDimExpr expr) { |
1364 | operandExprStack.emplace_back(args: SmallVector<int64_t, 32>(getNumCols(), 0)); |
1365 | auto &eq = operandExprStack.back(); |
1366 | assert(expr.getPosition() < numDims && "Inconsistent number of dims" ); |
1367 | eq[getDimStartIndex() + expr.getPosition()] = 1; |
1368 | return success(); |
1369 | } |
1370 | |
1371 | LogicalResult |
1372 | SimpleAffineExprFlattener::visitSymbolExpr(AffineSymbolExpr expr) { |
1373 | operandExprStack.emplace_back(args: SmallVector<int64_t, 32>(getNumCols(), 0)); |
1374 | auto &eq = operandExprStack.back(); |
1375 | assert(expr.getPosition() < numSymbols && "inconsistent number of symbols" ); |
1376 | eq[getSymbolStartIndex() + expr.getPosition()] = 1; |
1377 | return success(); |
1378 | } |
1379 | |
1380 | LogicalResult |
1381 | SimpleAffineExprFlattener::visitConstantExpr(AffineConstantExpr expr) { |
1382 | operandExprStack.emplace_back(args: SmallVector<int64_t, 32>(getNumCols(), 0)); |
1383 | auto &eq = operandExprStack.back(); |
1384 | eq[getConstantIndex()] = expr.getValue(); |
1385 | return success(); |
1386 | } |
1387 | |
1388 | void SimpleAffineExprFlattener::addLocalVariableSemiAffine( |
1389 | AffineExpr expr, SmallVectorImpl<int64_t> &result, |
1390 | unsigned long resultSize) { |
1391 | assert(result.size() == resultSize && |
1392 | "`result` vector passed is not of correct size" ); |
1393 | int loc; |
1394 | if ((loc = findLocalId(localExpr: expr)) == -1) |
1395 | addLocalIdSemiAffine(localExpr: expr); |
1396 | std::fill(first: result.begin(), last: result.end(), value: 0); |
1397 | if (loc == -1) |
1398 | result[getLocalVarStartIndex() + numLocals - 1] = 1; |
1399 | else |
1400 | result[getLocalVarStartIndex() + loc] = 1; |
1401 | } |
1402 | |
1403 | // t = expr floordiv c <=> t = q, c * q <= expr <= c * q + c - 1 |
1404 | // A floordiv is thus flattened by introducing a new local variable q, and |
1405 | // replacing that expression with 'q' while adding the constraints |
1406 | // c * q <= expr <= c * q + c - 1 to localVarCst (done by |
1407 | // IntegerRelation::addLocalFloorDiv). |
1408 | // |
1409 | // A ceildiv is similarly flattened: |
1410 | // t = expr ceildiv c <=> t = (expr + c - 1) floordiv c |
1411 | // |
1412 | // In case of semi affine division expressions, t = expr floordiv symbolic_expr |
1413 | // or t = expr ceildiv symbolic_expr, introduce a local variable q (= expr |
1414 | // floordiv/ceildiv symbolic_expr), and the affine floordiv/ceildiv is added to |
1415 | // `localExprs`. |
1416 | LogicalResult SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr, |
1417 | bool isCeil) { |
1418 | assert(operandExprStack.size() >= 2); |
1419 | |
1420 | MLIRContext *context = expr.getContext(); |
1421 | SmallVector<int64_t, 8> rhs = operandExprStack.back(); |
1422 | operandExprStack.pop_back(); |
1423 | SmallVector<int64_t, 8> &lhs = operandExprStack.back(); |
1424 | |
1425 | // Flatten semi affine division expressions by introducing a local |
1426 | // variable in place of the quotient, and the affine expression corresponding |
1427 | // to the quantifier is added to `localExprs`. |
1428 | if (!isa<AffineConstantExpr>(Val: expr.getRHS())) { |
1429 | AffineExpr a = getAffineExprFromFlatForm(flatExprs: lhs, numDims, numSymbols, |
1430 | localExprs, context); |
1431 | AffineExpr b = getAffineExprFromFlatForm(flatExprs: rhs, numDims, numSymbols, |
1432 | localExprs, context); |
1433 | AffineExpr divExpr = isCeil ? a.ceilDiv(other: b) : a.floorDiv(other: b); |
1434 | addLocalVariableSemiAffine(expr: divExpr, result&: lhs, resultSize: lhs.size()); |
1435 | return success(); |
1436 | } |
1437 | |
1438 | // This is a pure affine expr; the RHS is a positive constant. |
1439 | int64_t rhsConst = rhs[getConstantIndex()]; |
1440 | if (rhsConst <= 0) |
1441 | return failure(); |
1442 | |
1443 | // Simplify the floordiv, ceildiv if possible by canceling out the greatest |
1444 | // common divisors of the numerator and denominator. |
1445 | uint64_t gcd = std::abs(i: rhsConst); |
1446 | for (int64_t lhsElt : lhs) |
1447 | gcd = std::gcd(m: gcd, n: (uint64_t)std::abs(i: lhsElt)); |
1448 | // Simplify the numerator and the denominator. |
1449 | if (gcd != 1) { |
1450 | for (int64_t &lhsElt : lhs) |
1451 | lhsElt = lhsElt / static_cast<int64_t>(gcd); |
1452 | } |
1453 | int64_t divisor = rhsConst / static_cast<int64_t>(gcd); |
1454 | // If the divisor becomes 1, the updated LHS is the result. (The |
1455 | // divisor can't be negative since rhsConst is positive). |
1456 | if (divisor == 1) |
1457 | return success(); |
1458 | |
1459 | // If the divisor cannot be simplified to one, we will have to retain |
1460 | // the ceil/floor expr (simplified up until here). Add an existential |
1461 | // quantifier to express its result, i.e., expr1 div expr2 is replaced |
1462 | // by a new identifier, q. |
1463 | AffineExpr a = |
1464 | getAffineExprFromFlatForm(flatExprs: lhs, numDims, numSymbols, localExprs, context); |
1465 | AffineExpr b = getAffineConstantExpr(constant: divisor, context); |
1466 | |
1467 | int loc; |
1468 | AffineExpr divExpr = isCeil ? a.ceilDiv(other: b) : a.floorDiv(other: b); |
1469 | if ((loc = findLocalId(localExpr: divExpr)) == -1) { |
1470 | if (!isCeil) { |
1471 | SmallVector<int64_t, 8> dividend(lhs); |
1472 | addLocalFloorDivId(dividend, divisor, localExpr: divExpr); |
1473 | } else { |
1474 | // lhs ceildiv c <=> (lhs + c - 1) floordiv c |
1475 | SmallVector<int64_t, 8> dividend(lhs); |
1476 | dividend.back() += divisor - 1; |
1477 | addLocalFloorDivId(dividend, divisor, localExpr: divExpr); |
1478 | } |
1479 | } |
1480 | // Set the expression on stack to the local var introduced to capture the |
1481 | // result of the division (floor or ceil). |
1482 | std::fill(first: lhs.begin(), last: lhs.end(), value: 0); |
1483 | if (loc == -1) |
1484 | lhs[getLocalVarStartIndex() + numLocals - 1] = 1; |
1485 | else |
1486 | lhs[getLocalVarStartIndex() + loc] = 1; |
1487 | return success(); |
1488 | } |
1489 | |
1490 | // Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr). |
1491 | // The local identifier added is always a floordiv of a pure add/mul affine |
1492 | // function of other identifiers, coefficients of which are specified in |
1493 | // dividend and with respect to a positive constant divisor. localExpr is the |
1494 | // simplified tree expression (AffineExpr) corresponding to the quantifier. |
1495 | void SimpleAffineExprFlattener::addLocalFloorDivId(ArrayRef<int64_t> dividend, |
1496 | int64_t divisor, |
1497 | AffineExpr localExpr) { |
1498 | assert(divisor > 0 && "positive constant divisor expected" ); |
1499 | for (SmallVector<int64_t, 8> &subExpr : operandExprStack) |
1500 | subExpr.insert(I: subExpr.begin() + getLocalVarStartIndex() + numLocals, Elt: 0); |
1501 | localExprs.push_back(Elt: localExpr); |
1502 | numLocals++; |
1503 | // dividend and divisor are not used here; an override of this method uses it. |
1504 | } |
1505 | |
1506 | void SimpleAffineExprFlattener::addLocalIdSemiAffine(AffineExpr localExpr) { |
1507 | for (SmallVector<int64_t, 8> &subExpr : operandExprStack) |
1508 | subExpr.insert(I: subExpr.begin() + getLocalVarStartIndex() + numLocals, Elt: 0); |
1509 | localExprs.push_back(Elt: localExpr); |
1510 | ++numLocals; |
1511 | } |
1512 | |
1513 | int SimpleAffineExprFlattener::findLocalId(AffineExpr localExpr) { |
1514 | SmallVectorImpl<AffineExpr>::iterator it; |
1515 | if ((it = llvm::find(Range&: localExprs, Val: localExpr)) == localExprs.end()) |
1516 | return -1; |
1517 | return it - localExprs.begin(); |
1518 | } |
1519 | |
1520 | /// Simplify the affine expression by flattening it and reconstructing it. |
1521 | AffineExpr mlir::simplifyAffineExpr(AffineExpr expr, unsigned numDims, |
1522 | unsigned numSymbols) { |
1523 | // Simplify semi-affine expressions separately. |
1524 | if (!expr.isPureAffine()) |
1525 | expr = simplifySemiAffine(expr, numDims, numSymbols); |
1526 | |
1527 | SimpleAffineExprFlattener flattener(numDims, numSymbols); |
1528 | // has poison expression |
1529 | if (failed(result: flattener.walkPostOrder(expr))) |
1530 | return expr; |
1531 | ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back(); |
1532 | if (!expr.isPureAffine() && |
1533 | expr == getAffineExprFromFlatForm(flatExprs: flattenedExpr, numDims, numSymbols, |
1534 | localExprs: flattener.localExprs, |
1535 | context: expr.getContext())) |
1536 | return expr; |
1537 | AffineExpr simplifiedExpr = |
1538 | expr.isPureAffine() |
1539 | ? getAffineExprFromFlatForm(flatExprs: flattenedExpr, numDims, numSymbols, |
1540 | localExprs: flattener.localExprs, context: expr.getContext()) |
1541 | : getSemiAffineExprFromFlatForm(flatExprs: flattenedExpr, numDims, numSymbols, |
1542 | localExprs: flattener.localExprs, |
1543 | context: expr.getContext()); |
1544 | |
1545 | flattener.operandExprStack.pop_back(); |
1546 | assert(flattener.operandExprStack.empty()); |
1547 | return simplifiedExpr; |
1548 | } |
1549 | |
1550 | std::optional<int64_t> mlir::getBoundForAffineExpr( |
1551 | AffineExpr expr, unsigned numDims, unsigned numSymbols, |
1552 | ArrayRef<std::optional<int64_t>> constLowerBounds, |
1553 | ArrayRef<std::optional<int64_t>> constUpperBounds, bool isUpper) { |
1554 | // Handle divs and mods. |
1555 | if (auto binOpExpr = dyn_cast<AffineBinaryOpExpr>(Val&: expr)) { |
1556 | // If the LHS of a floor or ceil is bounded and the RHS is a constant, we |
1557 | // can compute an upper bound. |
1558 | if (binOpExpr.getKind() == AffineExprKind::FloorDiv) { |
1559 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val: binOpExpr.getRHS()); |
1560 | if (!rhsConst || rhsConst.getValue() < 1) |
1561 | return std::nullopt; |
1562 | auto bound = |
1563 | getBoundForAffineExpr(expr: binOpExpr.getLHS(), numDims, numSymbols, |
1564 | constLowerBounds, constUpperBounds, isUpper); |
1565 | if (!bound) |
1566 | return std::nullopt; |
1567 | return mlir::floorDiv(lhs: *bound, rhs: rhsConst.getValue()); |
1568 | } |
1569 | if (binOpExpr.getKind() == AffineExprKind::CeilDiv) { |
1570 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val: binOpExpr.getRHS()); |
1571 | if (rhsConst && rhsConst.getValue() >= 1) { |
1572 | auto bound = |
1573 | getBoundForAffineExpr(expr: binOpExpr.getLHS(), numDims, numSymbols, |
1574 | constLowerBounds, constUpperBounds, isUpper); |
1575 | if (!bound) |
1576 | return std::nullopt; |
1577 | return mlir::ceilDiv(lhs: *bound, rhs: rhsConst.getValue()); |
1578 | } |
1579 | return std::nullopt; |
1580 | } |
1581 | if (binOpExpr.getKind() == AffineExprKind::Mod) { |
1582 | // lhs mod c is always <= c - 1 and non-negative. In addition, if `lhs` is |
1583 | // bounded such that lb <= lhs <= ub and lb floordiv c == ub floordiv c |
1584 | // (same "interval"), then lb mod c <= lhs mod c <= ub mod c. |
1585 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val: binOpExpr.getRHS()); |
1586 | if (rhsConst && rhsConst.getValue() >= 1) { |
1587 | int64_t rhsConstVal = rhsConst.getValue(); |
1588 | auto lb = getBoundForAffineExpr(expr: binOpExpr.getLHS(), numDims, numSymbols, |
1589 | constLowerBounds, constUpperBounds, |
1590 | /*isUpper=*/false); |
1591 | auto ub = |
1592 | getBoundForAffineExpr(expr: binOpExpr.getLHS(), numDims, numSymbols, |
1593 | constLowerBounds, constUpperBounds, isUpper); |
1594 | if (ub && lb && |
1595 | floorDiv(lhs: *lb, rhs: rhsConstVal) == floorDiv(lhs: *ub, rhs: rhsConstVal)) |
1596 | return isUpper ? mod(lhs: *ub, rhs: rhsConstVal) : mod(lhs: *lb, rhs: rhsConstVal); |
1597 | return isUpper ? rhsConstVal - 1 : 0; |
1598 | } |
1599 | } |
1600 | } |
1601 | // Flatten the expression. |
1602 | SimpleAffineExprFlattener flattener(numDims, numSymbols); |
1603 | auto simpleResult = flattener.walkPostOrder(expr); |
1604 | // has poison expression |
1605 | if (failed(result: simpleResult)) |
1606 | return std::nullopt; |
1607 | ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back(); |
1608 | // TODO: Handle local variables. We can get hold of flattener.localExprs and |
1609 | // get bound on the local expr recursively. |
1610 | if (flattener.numLocals > 0) |
1611 | return std::nullopt; |
1612 | int64_t bound = 0; |
1613 | // Substitute the constant lower or upper bound for the dimensional or |
1614 | // symbolic input depending on `isUpper` to determine the bound. |
1615 | for (unsigned i = 0, e = numDims + numSymbols; i < e; ++i) { |
1616 | if (flattenedExpr[i] > 0) { |
1617 | auto &constBound = isUpper ? constUpperBounds[i] : constLowerBounds[i]; |
1618 | if (!constBound) |
1619 | return std::nullopt; |
1620 | bound += *constBound * flattenedExpr[i]; |
1621 | } else if (flattenedExpr[i] < 0) { |
1622 | auto &constBound = isUpper ? constLowerBounds[i] : constUpperBounds[i]; |
1623 | if (!constBound) |
1624 | return std::nullopt; |
1625 | bound += *constBound * flattenedExpr[i]; |
1626 | } |
1627 | } |
1628 | // Constant term. |
1629 | bound += flattenedExpr.back(); |
1630 | return bound; |
1631 | } |
1632 | |