| 1 | //===- AffineExpr.cpp - MLIR Affine Expr Classes --------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include <cmath> |
| 10 | #include <cstdint> |
| 11 | #include <limits> |
| 12 | #include <utility> |
| 13 | |
| 14 | #include "AffineExprDetail.h" |
| 15 | #include "mlir/IR/AffineExpr.h" |
| 16 | #include "mlir/IR/AffineExprVisitor.h" |
| 17 | #include "mlir/IR/AffineMap.h" |
| 18 | #include "mlir/IR/IntegerSet.h" |
| 19 | #include "mlir/Support/TypeID.h" |
| 20 | #include "llvm/ADT/STLExtras.h" |
| 21 | #include "llvm/Support/MathExtras.h" |
| 22 | #include <numeric> |
| 23 | #include <optional> |
| 24 | |
| 25 | using namespace mlir; |
| 26 | using namespace mlir::detail; |
| 27 | |
| 28 | using llvm::divideCeilSigned; |
| 29 | using llvm::divideFloorSigned; |
| 30 | using llvm::divideSignedWouldOverflow; |
| 31 | using llvm::mod; |
| 32 | |
| 33 | MLIRContext *AffineExpr::getContext() const { return expr->context; } |
| 34 | |
| 35 | AffineExprKind AffineExpr::getKind() const { return expr->kind; } |
| 36 | |
| 37 | /// Walk all of the AffineExprs in `e` in postorder. This is a private factory |
| 38 | /// method to help handle lambda walk functions. Users should use the regular |
| 39 | /// (non-static) `walk` method. |
| 40 | template <typename WalkRetTy> |
| 41 | WalkRetTy mlir::AffineExpr::walk(AffineExpr e, |
| 42 | function_ref<WalkRetTy(AffineExpr)> callback) { |
| 43 | struct AffineExprWalker |
| 44 | : public AffineExprVisitor<AffineExprWalker, WalkRetTy> { |
| 45 | function_ref<WalkRetTy(AffineExpr)> callback; |
| 46 | |
| 47 | AffineExprWalker(function_ref<WalkRetTy(AffineExpr)> callback) |
| 48 | : callback(callback) {} |
| 49 | |
| 50 | WalkRetTy visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { |
| 51 | return callback(expr); |
| 52 | } |
| 53 | WalkRetTy visitConstantExpr(AffineConstantExpr expr) { |
| 54 | return callback(expr); |
| 55 | } |
| 56 | WalkRetTy visitDimExpr(AffineDimExpr expr) { return callback(expr); } |
| 57 | WalkRetTy visitSymbolExpr(AffineSymbolExpr expr) { return callback(expr); } |
| 58 | }; |
| 59 | |
| 60 | return AffineExprWalker(callback).walkPostOrder(e); |
| 61 | } |
| 62 | // Explicitly instantiate for the two supported return types. |
| 63 | template void mlir::AffineExpr::walk(AffineExpr e, |
| 64 | function_ref<void(AffineExpr)> callback); |
| 65 | template WalkResult |
| 66 | mlir::AffineExpr::walk(AffineExpr e, |
| 67 | function_ref<WalkResult(AffineExpr)> callback); |
| 68 | |
| 69 | // Dispatch affine expression construction based on kind. |
| 70 | AffineExpr mlir::getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs, |
| 71 | AffineExpr rhs) { |
| 72 | if (kind == AffineExprKind::Add) |
| 73 | return lhs + rhs; |
| 74 | if (kind == AffineExprKind::Mul) |
| 75 | return lhs * rhs; |
| 76 | if (kind == AffineExprKind::FloorDiv) |
| 77 | return lhs.floorDiv(other: rhs); |
| 78 | if (kind == AffineExprKind::CeilDiv) |
| 79 | return lhs.ceilDiv(other: rhs); |
| 80 | if (kind == AffineExprKind::Mod) |
| 81 | return lhs % rhs; |
| 82 | |
| 83 | llvm_unreachable("unknown binary operation on affine expressions" ); |
| 84 | } |
| 85 | |
| 86 | /// This method substitutes any uses of dimensions and symbols (e.g. |
| 87 | /// dim#0 with dimReplacements[0]) and returns the modified expression tree. |
| 88 | AffineExpr |
| 89 | AffineExpr::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements, |
| 90 | ArrayRef<AffineExpr> symReplacements) const { |
| 91 | switch (getKind()) { |
| 92 | case AffineExprKind::Constant: |
| 93 | return *this; |
| 94 | case AffineExprKind::DimId: { |
| 95 | unsigned dimId = llvm::cast<AffineDimExpr>(Val: *this).getPosition(); |
| 96 | if (dimId >= dimReplacements.size()) |
| 97 | return *this; |
| 98 | return dimReplacements[dimId]; |
| 99 | } |
| 100 | case AffineExprKind::SymbolId: { |
| 101 | unsigned symId = llvm::cast<AffineSymbolExpr>(Val: *this).getPosition(); |
| 102 | if (symId >= symReplacements.size()) |
| 103 | return *this; |
| 104 | return symReplacements[symId]; |
| 105 | } |
| 106 | case AffineExprKind::Add: |
| 107 | case AffineExprKind::Mul: |
| 108 | case AffineExprKind::FloorDiv: |
| 109 | case AffineExprKind::CeilDiv: |
| 110 | case AffineExprKind::Mod: |
| 111 | auto binOp = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
| 112 | auto lhs = binOp.getLHS(), rhs = binOp.getRHS(); |
| 113 | auto newLHS = lhs.replaceDimsAndSymbols(dimReplacements, symReplacements); |
| 114 | auto newRHS = rhs.replaceDimsAndSymbols(dimReplacements, symReplacements); |
| 115 | if (newLHS == lhs && newRHS == rhs) |
| 116 | return *this; |
| 117 | return getAffineBinaryOpExpr(kind: getKind(), lhs: newLHS, rhs: newRHS); |
| 118 | } |
| 119 | llvm_unreachable("Unknown AffineExpr" ); |
| 120 | } |
| 121 | |
| 122 | AffineExpr AffineExpr::replaceDims(ArrayRef<AffineExpr> dimReplacements) const { |
| 123 | return replaceDimsAndSymbols(dimReplacements, symReplacements: {}); |
| 124 | } |
| 125 | |
| 126 | AffineExpr |
| 127 | AffineExpr::replaceSymbols(ArrayRef<AffineExpr> symReplacements) const { |
| 128 | return replaceDimsAndSymbols(dimReplacements: {}, symReplacements); |
| 129 | } |
| 130 | |
| 131 | /// Replace dims[offset ... numDims) |
| 132 | /// by dims[offset + shift ... shift + numDims). |
| 133 | AffineExpr AffineExpr::shiftDims(unsigned numDims, unsigned shift, |
| 134 | unsigned offset) const { |
| 135 | SmallVector<AffineExpr, 4> dims; |
| 136 | for (unsigned idx = 0; idx < offset; ++idx) |
| 137 | dims.push_back(Elt: getAffineDimExpr(position: idx, context: getContext())); |
| 138 | for (unsigned idx = offset; idx < numDims; ++idx) |
| 139 | dims.push_back(Elt: getAffineDimExpr(position: idx + shift, context: getContext())); |
| 140 | return replaceDimsAndSymbols(dimReplacements: dims, symReplacements: {}); |
| 141 | } |
| 142 | |
| 143 | /// Replace symbols[offset ... numSymbols) |
| 144 | /// by symbols[offset + shift ... shift + numSymbols). |
| 145 | AffineExpr AffineExpr::shiftSymbols(unsigned numSymbols, unsigned shift, |
| 146 | unsigned offset) const { |
| 147 | SmallVector<AffineExpr, 4> symbols; |
| 148 | for (unsigned idx = 0; idx < offset; ++idx) |
| 149 | symbols.push_back(Elt: getAffineSymbolExpr(position: idx, context: getContext())); |
| 150 | for (unsigned idx = offset; idx < numSymbols; ++idx) |
| 151 | symbols.push_back(Elt: getAffineSymbolExpr(position: idx + shift, context: getContext())); |
| 152 | return replaceDimsAndSymbols(dimReplacements: {}, symReplacements: symbols); |
| 153 | } |
| 154 | |
| 155 | /// Sparse replace method. Return the modified expression tree. |
| 156 | AffineExpr |
| 157 | AffineExpr::replace(const DenseMap<AffineExpr, AffineExpr> &map) const { |
| 158 | auto it = map.find(Val: *this); |
| 159 | if (it != map.end()) |
| 160 | return it->second; |
| 161 | switch (getKind()) { |
| 162 | default: |
| 163 | return *this; |
| 164 | case AffineExprKind::Add: |
| 165 | case AffineExprKind::Mul: |
| 166 | case AffineExprKind::FloorDiv: |
| 167 | case AffineExprKind::CeilDiv: |
| 168 | case AffineExprKind::Mod: |
| 169 | auto binOp = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
| 170 | auto lhs = binOp.getLHS(), rhs = binOp.getRHS(); |
| 171 | auto newLHS = lhs.replace(map); |
| 172 | auto newRHS = rhs.replace(map); |
| 173 | if (newLHS == lhs && newRHS == rhs) |
| 174 | return *this; |
| 175 | return getAffineBinaryOpExpr(kind: getKind(), lhs: newLHS, rhs: newRHS); |
| 176 | } |
| 177 | llvm_unreachable("Unknown AffineExpr" ); |
| 178 | } |
| 179 | |
| 180 | /// Sparse replace method. Return the modified expression tree. |
| 181 | AffineExpr AffineExpr::replace(AffineExpr expr, AffineExpr replacement) const { |
| 182 | DenseMap<AffineExpr, AffineExpr> map; |
| 183 | map.insert(KV: std::make_pair(x&: expr, y&: replacement)); |
| 184 | return replace(map); |
| 185 | } |
| 186 | /// Returns true if this expression is made out of only symbols and |
| 187 | /// constants (no dimensional identifiers). |
| 188 | bool AffineExpr::isSymbolicOrConstant() const { |
| 189 | switch (getKind()) { |
| 190 | case AffineExprKind::Constant: |
| 191 | return true; |
| 192 | case AffineExprKind::DimId: |
| 193 | return false; |
| 194 | case AffineExprKind::SymbolId: |
| 195 | return true; |
| 196 | |
| 197 | case AffineExprKind::Add: |
| 198 | case AffineExprKind::Mul: |
| 199 | case AffineExprKind::FloorDiv: |
| 200 | case AffineExprKind::CeilDiv: |
| 201 | case AffineExprKind::Mod: { |
| 202 | auto expr = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
| 203 | return expr.getLHS().isSymbolicOrConstant() && |
| 204 | expr.getRHS().isSymbolicOrConstant(); |
| 205 | } |
| 206 | } |
| 207 | llvm_unreachable("Unknown AffineExpr" ); |
| 208 | } |
| 209 | |
| 210 | /// Returns true if this is a pure affine expression, i.e., multiplication, |
| 211 | /// floordiv, ceildiv, and mod is only allowed w.r.t constants. |
| 212 | bool AffineExpr::isPureAffine() const { |
| 213 | switch (getKind()) { |
| 214 | case AffineExprKind::SymbolId: |
| 215 | case AffineExprKind::DimId: |
| 216 | case AffineExprKind::Constant: |
| 217 | return true; |
| 218 | case AffineExprKind::Add: { |
| 219 | auto op = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
| 220 | return op.getLHS().isPureAffine() && op.getRHS().isPureAffine(); |
| 221 | } |
| 222 | |
| 223 | case AffineExprKind::Mul: { |
| 224 | // TODO: Canonicalize the constants in binary operators to the RHS when |
| 225 | // possible, allowing this to merge into the next case. |
| 226 | auto op = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
| 227 | return op.getLHS().isPureAffine() && op.getRHS().isPureAffine() && |
| 228 | (llvm::isa<AffineConstantExpr>(Val: op.getLHS()) || |
| 229 | llvm::isa<AffineConstantExpr>(Val: op.getRHS())); |
| 230 | } |
| 231 | case AffineExprKind::FloorDiv: |
| 232 | case AffineExprKind::CeilDiv: |
| 233 | case AffineExprKind::Mod: { |
| 234 | auto op = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
| 235 | return op.getLHS().isPureAffine() && |
| 236 | llvm::isa<AffineConstantExpr>(Val: op.getRHS()); |
| 237 | } |
| 238 | } |
| 239 | llvm_unreachable("Unknown AffineExpr" ); |
| 240 | } |
| 241 | |
| 242 | // Returns the greatest known integral divisor of this affine expression. |
| 243 | int64_t AffineExpr::getLargestKnownDivisor() const { |
| 244 | AffineBinaryOpExpr binExpr(nullptr); |
| 245 | switch (getKind()) { |
| 246 | case AffineExprKind::DimId: |
| 247 | [[fallthrough]]; |
| 248 | case AffineExprKind::SymbolId: |
| 249 | return 1; |
| 250 | case AffineExprKind::CeilDiv: |
| 251 | [[fallthrough]]; |
| 252 | case AffineExprKind::FloorDiv: { |
| 253 | // If the RHS is a constant and divides the known divisor on the LHS, the |
| 254 | // quotient is a known divisor of the expression. |
| 255 | binExpr = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
| 256 | auto rhs = llvm::dyn_cast<AffineConstantExpr>(Val: binExpr.getRHS()); |
| 257 | // Leave alone undefined expressions. |
| 258 | if (rhs && rhs.getValue() != 0) { |
| 259 | int64_t lhsDiv = binExpr.getLHS().getLargestKnownDivisor(); |
| 260 | if (lhsDiv % rhs.getValue() == 0) |
| 261 | return std::abs(i: lhsDiv / rhs.getValue()); |
| 262 | } |
| 263 | return 1; |
| 264 | } |
| 265 | case AffineExprKind::Constant: |
| 266 | return std::abs(i: llvm::cast<AffineConstantExpr>(Val: *this).getValue()); |
| 267 | case AffineExprKind::Mul: { |
| 268 | binExpr = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
| 269 | return binExpr.getLHS().getLargestKnownDivisor() * |
| 270 | binExpr.getRHS().getLargestKnownDivisor(); |
| 271 | } |
| 272 | case AffineExprKind::Add: |
| 273 | [[fallthrough]]; |
| 274 | case AffineExprKind::Mod: { |
| 275 | binExpr = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
| 276 | return std::gcd(m: (uint64_t)binExpr.getLHS().getLargestKnownDivisor(), |
| 277 | n: (uint64_t)binExpr.getRHS().getLargestKnownDivisor()); |
| 278 | } |
| 279 | } |
| 280 | llvm_unreachable("Unknown AffineExpr" ); |
| 281 | } |
| 282 | |
| 283 | bool AffineExpr::isMultipleOf(int64_t factor) const { |
| 284 | AffineBinaryOpExpr binExpr(nullptr); |
| 285 | uint64_t l, u; |
| 286 | switch (getKind()) { |
| 287 | case AffineExprKind::SymbolId: |
| 288 | [[fallthrough]]; |
| 289 | case AffineExprKind::DimId: |
| 290 | return factor * factor == 1; |
| 291 | case AffineExprKind::Constant: |
| 292 | return llvm::cast<AffineConstantExpr>(Val: *this).getValue() % factor == 0; |
| 293 | case AffineExprKind::Mul: { |
| 294 | binExpr = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
| 295 | // It's probably not worth optimizing this further (to not traverse the |
| 296 | // whole sub-tree under - it that would require a version of isMultipleOf |
| 297 | // that on a 'false' return also returns the largest known divisor). |
| 298 | return (l = binExpr.getLHS().getLargestKnownDivisor()) % factor == 0 || |
| 299 | (u = binExpr.getRHS().getLargestKnownDivisor()) % factor == 0 || |
| 300 | (l * u) % factor == 0; |
| 301 | } |
| 302 | case AffineExprKind::Add: |
| 303 | case AffineExprKind::FloorDiv: |
| 304 | case AffineExprKind::CeilDiv: |
| 305 | case AffineExprKind::Mod: { |
| 306 | binExpr = llvm::cast<AffineBinaryOpExpr>(Val: *this); |
| 307 | return std::gcd(m: (uint64_t)binExpr.getLHS().getLargestKnownDivisor(), |
| 308 | n: (uint64_t)binExpr.getRHS().getLargestKnownDivisor()) % |
| 309 | factor == |
| 310 | 0; |
| 311 | } |
| 312 | } |
| 313 | llvm_unreachable("Unknown AffineExpr" ); |
| 314 | } |
| 315 | |
| 316 | bool AffineExpr::isFunctionOfDim(unsigned position) const { |
| 317 | if (getKind() == AffineExprKind::DimId) { |
| 318 | return *this == mlir::getAffineDimExpr(position, context: getContext()); |
| 319 | } |
| 320 | if (auto expr = llvm::dyn_cast<AffineBinaryOpExpr>(Val: *this)) { |
| 321 | return expr.getLHS().isFunctionOfDim(position) || |
| 322 | expr.getRHS().isFunctionOfDim(position); |
| 323 | } |
| 324 | return false; |
| 325 | } |
| 326 | |
| 327 | bool AffineExpr::isFunctionOfSymbol(unsigned position) const { |
| 328 | if (getKind() == AffineExprKind::SymbolId) { |
| 329 | return *this == mlir::getAffineSymbolExpr(position, context: getContext()); |
| 330 | } |
| 331 | if (auto expr = llvm::dyn_cast<AffineBinaryOpExpr>(Val: *this)) { |
| 332 | return expr.getLHS().isFunctionOfSymbol(position) || |
| 333 | expr.getRHS().isFunctionOfSymbol(position); |
| 334 | } |
| 335 | return false; |
| 336 | } |
| 337 | |
| 338 | AffineBinaryOpExpr::AffineBinaryOpExpr(AffineExpr::ImplType *ptr) |
| 339 | : AffineExpr(ptr) {} |
| 340 | AffineExpr AffineBinaryOpExpr::getLHS() const { |
| 341 | return static_cast<ImplType *>(expr)->lhs; |
| 342 | } |
| 343 | AffineExpr AffineBinaryOpExpr::getRHS() const { |
| 344 | return static_cast<ImplType *>(expr)->rhs; |
| 345 | } |
| 346 | |
| 347 | AffineDimExpr::AffineDimExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {} |
| 348 | unsigned AffineDimExpr::getPosition() const { |
| 349 | return static_cast<ImplType *>(expr)->position; |
| 350 | } |
| 351 | |
| 352 | /// Returns true if the expression is divisible by the given symbol with |
| 353 | /// position `symbolPos`. The argument `opKind` specifies here what kind of |
| 354 | /// division or mod operation called this division. It helps in implementing the |
| 355 | /// commutative property of the floordiv and ceildiv operations. If the argument |
| 356 | ///`exprKind` is floordiv and `expr` is also a binary expression of a floordiv |
| 357 | /// operation, then the commutative property can be used otherwise, the floordiv |
| 358 | /// operation is not divisible. The same argument holds for ceildiv operation. |
| 359 | static bool canSimplifyDivisionBySymbol(AffineExpr expr, unsigned symbolPos, |
| 360 | AffineExprKind opKind, |
| 361 | bool fromMul = false) { |
| 362 | // The argument `opKind` can either be Modulo, Floordiv or Ceildiv only. |
| 363 | assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv || |
| 364 | opKind == AffineExprKind::CeilDiv) && |
| 365 | "unexpected opKind" ); |
| 366 | switch (expr.getKind()) { |
| 367 | case AffineExprKind::Constant: |
| 368 | return cast<AffineConstantExpr>(Val&: expr).getValue() == 0; |
| 369 | case AffineExprKind::DimId: |
| 370 | return false; |
| 371 | case AffineExprKind::SymbolId: |
| 372 | return (cast<AffineSymbolExpr>(Val&: expr).getPosition() == symbolPos); |
| 373 | // Checks divisibility by the given symbol for both operands. |
| 374 | case AffineExprKind::Add: { |
| 375 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
| 376 | return canSimplifyDivisionBySymbol(expr: binaryExpr.getLHS(), symbolPos, |
| 377 | opKind) && |
| 378 | canSimplifyDivisionBySymbol(expr: binaryExpr.getRHS(), symbolPos, opKind); |
| 379 | } |
| 380 | // Checks divisibility by the given symbol for both operands. Consider the |
| 381 | // expression `(((s1*s0) floordiv w) mod ((s1 * s2) floordiv p)) floordiv s1`, |
| 382 | // this is a division by s1 and both the operands of modulo are divisible by |
| 383 | // s1 but it is not divisible by s1 always. The third argument is |
| 384 | // `AffineExprKind::Mod` for this reason. |
| 385 | case AffineExprKind::Mod: { |
| 386 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
| 387 | return canSimplifyDivisionBySymbol(expr: binaryExpr.getLHS(), symbolPos, |
| 388 | opKind: AffineExprKind::Mod) && |
| 389 | canSimplifyDivisionBySymbol(expr: binaryExpr.getRHS(), symbolPos, |
| 390 | opKind: AffineExprKind::Mod); |
| 391 | } |
| 392 | // Checks if any of the operand divisible by the given symbol. |
| 393 | case AffineExprKind::Mul: { |
| 394 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
| 395 | return canSimplifyDivisionBySymbol(expr: binaryExpr.getLHS(), symbolPos, opKind, |
| 396 | fromMul: true) || |
| 397 | canSimplifyDivisionBySymbol(expr: binaryExpr.getRHS(), symbolPos, opKind, |
| 398 | fromMul: true); |
| 399 | } |
| 400 | // Floordiv and ceildiv are divisible by the given symbol when the first |
| 401 | // operand is divisible, and the affine expression kind of the argument expr |
| 402 | // is same as the argument `opKind`. This can be inferred from commutative |
| 403 | // property of floordiv and ceildiv operations and are as follow: |
| 404 | // (exp1 floordiv exp2) floordiv exp3 = (exp1 floordiv exp3) floordiv exp2 |
| 405 | // (exp1 ceildiv exp2) ceildiv exp3 = (exp1 ceildiv exp3) ceildiv expr2 |
| 406 | // It will fail 1.if operations are not same. For example: |
| 407 | // (exps1 ceildiv exp2) floordiv exp3 can not be simplified. 2.if there is a |
| 408 | // multiplication operation in the expression. For example: |
| 409 | // (exps1 ceildiv exp2) mul exp3 ceildiv exp4 can not be simplified. |
| 410 | case AffineExprKind::FloorDiv: |
| 411 | case AffineExprKind::CeilDiv: { |
| 412 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
| 413 | if (opKind != expr.getKind()) |
| 414 | return false; |
| 415 | if (fromMul) |
| 416 | return false; |
| 417 | return canSimplifyDivisionBySymbol(expr: binaryExpr.getLHS(), symbolPos, |
| 418 | opKind: expr.getKind()); |
| 419 | } |
| 420 | } |
| 421 | llvm_unreachable("Unknown AffineExpr" ); |
| 422 | } |
| 423 | |
| 424 | /// Divides the given expression by the given symbol at position `symbolPos`. It |
| 425 | /// considers the divisibility condition is checked before calling itself. A |
| 426 | /// null expression is returned whenever the divisibility condition fails. |
| 427 | static AffineExpr symbolicDivide(AffineExpr expr, unsigned symbolPos, |
| 428 | AffineExprKind opKind) { |
| 429 | // THe argument `opKind` can either be Modulo, Floordiv or Ceildiv only. |
| 430 | assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv || |
| 431 | opKind == AffineExprKind::CeilDiv) && |
| 432 | "unexpected opKind" ); |
| 433 | switch (expr.getKind()) { |
| 434 | case AffineExprKind::Constant: |
| 435 | if (cast<AffineConstantExpr>(Val&: expr).getValue() != 0) |
| 436 | return nullptr; |
| 437 | return getAffineConstantExpr(constant: 0, context: expr.getContext()); |
| 438 | case AffineExprKind::DimId: |
| 439 | return nullptr; |
| 440 | case AffineExprKind::SymbolId: |
| 441 | return getAffineConstantExpr(constant: 1, context: expr.getContext()); |
| 442 | // Dividing both operands by the given symbol. |
| 443 | case AffineExprKind::Add: { |
| 444 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
| 445 | return getAffineBinaryOpExpr( |
| 446 | kind: expr.getKind(), lhs: symbolicDivide(expr: binaryExpr.getLHS(), symbolPos, opKind), |
| 447 | rhs: symbolicDivide(expr: binaryExpr.getRHS(), symbolPos, opKind)); |
| 448 | } |
| 449 | // Dividing both operands by the given symbol. |
| 450 | case AffineExprKind::Mod: { |
| 451 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
| 452 | return getAffineBinaryOpExpr( |
| 453 | kind: expr.getKind(), |
| 454 | lhs: symbolicDivide(expr: binaryExpr.getLHS(), symbolPos, opKind: expr.getKind()), |
| 455 | rhs: symbolicDivide(expr: binaryExpr.getRHS(), symbolPos, opKind: expr.getKind())); |
| 456 | } |
| 457 | // Dividing any of the operand by the given symbol. |
| 458 | case AffineExprKind::Mul: { |
| 459 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
| 460 | if (!canSimplifyDivisionBySymbol(expr: binaryExpr.getLHS(), symbolPos, opKind)) |
| 461 | return binaryExpr.getLHS() * |
| 462 | symbolicDivide(expr: binaryExpr.getRHS(), symbolPos, opKind); |
| 463 | return symbolicDivide(expr: binaryExpr.getLHS(), symbolPos, opKind) * |
| 464 | binaryExpr.getRHS(); |
| 465 | } |
| 466 | // Dividing first operand only by the given symbol. |
| 467 | case AffineExprKind::FloorDiv: |
| 468 | case AffineExprKind::CeilDiv: { |
| 469 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
| 470 | return getAffineBinaryOpExpr( |
| 471 | kind: expr.getKind(), |
| 472 | lhs: symbolicDivide(expr: binaryExpr.getLHS(), symbolPos, opKind: expr.getKind()), |
| 473 | rhs: binaryExpr.getRHS()); |
| 474 | } |
| 475 | } |
| 476 | llvm_unreachable("Unknown AffineExpr" ); |
| 477 | } |
| 478 | |
| 479 | /// Populate `result` with all summand operands of given (potentially nested) |
| 480 | /// addition. If the given expression is not an addition, just populate the |
| 481 | /// expression itself. |
| 482 | /// Example: Add(Add(7, 8), Mul(9, 10)) will return [7, 8, Mul(9, 10)]. |
| 483 | static void getSummandExprs(AffineExpr expr, SmallVector<AffineExpr> &result) { |
| 484 | auto addExpr = dyn_cast<AffineBinaryOpExpr>(Val&: expr); |
| 485 | if (!addExpr || addExpr.getKind() != AffineExprKind::Add) { |
| 486 | result.push_back(Elt: expr); |
| 487 | return; |
| 488 | } |
| 489 | getSummandExprs(expr: addExpr.getLHS(), result); |
| 490 | getSummandExprs(expr: addExpr.getRHS(), result); |
| 491 | } |
| 492 | |
| 493 | /// Return "true" if `candidate` is a negated expression, i.e., Mul(-1, expr). |
| 494 | /// If so, also return the non-negated expression via `expr`. |
| 495 | static bool isNegatedAffineExpr(AffineExpr candidate, AffineExpr &expr) { |
| 496 | auto mulExpr = dyn_cast<AffineBinaryOpExpr>(Val&: candidate); |
| 497 | if (!mulExpr || mulExpr.getKind() != AffineExprKind::Mul) |
| 498 | return false; |
| 499 | if (auto lhs = dyn_cast<AffineConstantExpr>(Val: mulExpr.getLHS())) { |
| 500 | if (lhs.getValue() == -1) { |
| 501 | expr = mulExpr.getRHS(); |
| 502 | return true; |
| 503 | } |
| 504 | } |
| 505 | if (auto rhs = dyn_cast<AffineConstantExpr>(Val: mulExpr.getRHS())) { |
| 506 | if (rhs.getValue() == -1) { |
| 507 | expr = mulExpr.getLHS(); |
| 508 | return true; |
| 509 | } |
| 510 | } |
| 511 | return false; |
| 512 | } |
| 513 | |
| 514 | /// Return "true" if `lhs` % `rhs` is guaranteed to evaluate to zero based on |
| 515 | /// the fact that `lhs` contains another modulo expression that ensures that |
| 516 | /// `lhs` is divisible by `rhs`. This is a common pattern in the resulting IR |
| 517 | /// after loop peeling. |
| 518 | /// |
| 519 | /// Example: lhs = ub - ub % step |
| 520 | /// rhs = step |
| 521 | /// => (ub - ub % step) % step is guaranteed to evaluate to 0. |
| 522 | static bool isModOfModSubtraction(AffineExpr lhs, AffineExpr rhs, |
| 523 | unsigned numDims, unsigned numSymbols) { |
| 524 | // TODO: Try to unify this function with `getBoundForAffineExpr`. |
| 525 | // Collect all summands in lhs. |
| 526 | SmallVector<AffineExpr> summands; |
| 527 | getSummandExprs(expr: lhs, result&: summands); |
| 528 | // Look for Mul(-1, Mod(x, rhs)) among the summands. If x matches the |
| 529 | // remaining summands, then lhs % rhs is guaranteed to evaluate to 0. |
| 530 | for (int64_t i = 0, e = summands.size(); i < e; ++i) { |
| 531 | AffineExpr current = summands[i]; |
| 532 | AffineExpr beforeNegation; |
| 533 | if (!isNegatedAffineExpr(candidate: current, expr&: beforeNegation)) |
| 534 | continue; |
| 535 | AffineBinaryOpExpr innerMod = dyn_cast<AffineBinaryOpExpr>(Val&: beforeNegation); |
| 536 | if (!innerMod || innerMod.getKind() != AffineExprKind::Mod) |
| 537 | continue; |
| 538 | if (innerMod.getRHS() != rhs) |
| 539 | continue; |
| 540 | // Sum all remaining summands and subtract x. If that expression can be |
| 541 | // simplified to zero, then the remaining summands and x are equal. |
| 542 | AffineExpr diff = getAffineConstantExpr(constant: 0, context: lhs.getContext()); |
| 543 | for (int64_t j = 0; j < e; ++j) |
| 544 | if (i != j) |
| 545 | diff = diff + summands[j]; |
| 546 | diff = diff - innerMod.getLHS(); |
| 547 | diff = simplifyAffineExpr(expr: diff, numDims, numSymbols); |
| 548 | auto constExpr = dyn_cast<AffineConstantExpr>(Val&: diff); |
| 549 | if (constExpr && constExpr.getValue() == 0) |
| 550 | return true; |
| 551 | } |
| 552 | return false; |
| 553 | } |
| 554 | |
| 555 | /// Simplify a semi-affine expression by handling modulo, floordiv, or ceildiv |
| 556 | /// operations when the second operand simplifies to a symbol and the first |
| 557 | /// operand is divisible by that symbol. It can be applied to any semi-affine |
| 558 | /// expression. Returned expression can either be a semi-affine or pure affine |
| 559 | /// expression. |
| 560 | static AffineExpr simplifySemiAffine(AffineExpr expr, unsigned numDims, |
| 561 | unsigned numSymbols) { |
| 562 | switch (expr.getKind()) { |
| 563 | case AffineExprKind::Constant: |
| 564 | case AffineExprKind::DimId: |
| 565 | case AffineExprKind::SymbolId: |
| 566 | return expr; |
| 567 | case AffineExprKind::Add: |
| 568 | case AffineExprKind::Mul: { |
| 569 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
| 570 | return getAffineBinaryOpExpr( |
| 571 | kind: expr.getKind(), |
| 572 | lhs: simplifySemiAffine(expr: binaryExpr.getLHS(), numDims, numSymbols), |
| 573 | rhs: simplifySemiAffine(expr: binaryExpr.getRHS(), numDims, numSymbols)); |
| 574 | } |
| 575 | // Check if the simplification of the second operand is a symbol, and the |
| 576 | // first operand is divisible by it. If the operation is a modulo, a constant |
| 577 | // zero expression is returned. In the case of floordiv and ceildiv, the |
| 578 | // symbol from the simplification of the second operand divides the first |
| 579 | // operand. Otherwise, simplification is not possible. |
| 580 | case AffineExprKind::FloorDiv: |
| 581 | case AffineExprKind::CeilDiv: |
| 582 | case AffineExprKind::Mod: { |
| 583 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
| 584 | AffineExpr sLHS = |
| 585 | simplifySemiAffine(expr: binaryExpr.getLHS(), numDims, numSymbols); |
| 586 | AffineExpr sRHS = |
| 587 | simplifySemiAffine(expr: binaryExpr.getRHS(), numDims, numSymbols); |
| 588 | if (isModOfModSubtraction(lhs: sLHS, rhs: sRHS, numDims, numSymbols)) |
| 589 | return getAffineConstantExpr(constant: 0, context: expr.getContext()); |
| 590 | AffineSymbolExpr symbolExpr = dyn_cast<AffineSymbolExpr>( |
| 591 | Val: simplifySemiAffine(expr: binaryExpr.getRHS(), numDims, numSymbols)); |
| 592 | if (!symbolExpr) |
| 593 | return getAffineBinaryOpExpr(kind: expr.getKind(), lhs: sLHS, rhs: sRHS); |
| 594 | unsigned symbolPos = symbolExpr.getPosition(); |
| 595 | if (!canSimplifyDivisionBySymbol(expr: binaryExpr.getLHS(), symbolPos, |
| 596 | opKind: expr.getKind())) |
| 597 | return getAffineBinaryOpExpr(kind: expr.getKind(), lhs: sLHS, rhs: sRHS); |
| 598 | if (expr.getKind() == AffineExprKind::Mod) |
| 599 | return getAffineConstantExpr(constant: 0, context: expr.getContext()); |
| 600 | AffineExpr simplifiedQuotient = |
| 601 | symbolicDivide(expr: sLHS, symbolPos, opKind: expr.getKind()); |
| 602 | return simplifiedQuotient |
| 603 | ? simplifiedQuotient |
| 604 | : getAffineBinaryOpExpr(kind: expr.getKind(), lhs: sLHS, rhs: sRHS); |
| 605 | } |
| 606 | } |
| 607 | llvm_unreachable("Unknown AffineExpr" ); |
| 608 | } |
| 609 | |
| 610 | static AffineExpr getAffineDimOrSymbol(AffineExprKind kind, unsigned position, |
| 611 | MLIRContext *context) { |
| 612 | auto assignCtx = [context](AffineDimExprStorage *storage) { |
| 613 | storage->context = context; |
| 614 | }; |
| 615 | |
| 616 | StorageUniquer &uniquer = context->getAffineUniquer(); |
| 617 | return uniquer.get<AffineDimExprStorage>( |
| 618 | initFn: assignCtx, args: static_cast<unsigned>(kind), args&: position); |
| 619 | } |
| 620 | |
| 621 | AffineExpr mlir::getAffineDimExpr(unsigned position, MLIRContext *context) { |
| 622 | return getAffineDimOrSymbol(kind: AffineExprKind::DimId, position, context); |
| 623 | } |
| 624 | |
| 625 | AffineSymbolExpr::AffineSymbolExpr(AffineExpr::ImplType *ptr) |
| 626 | : AffineExpr(ptr) {} |
| 627 | unsigned AffineSymbolExpr::getPosition() const { |
| 628 | return static_cast<ImplType *>(expr)->position; |
| 629 | } |
| 630 | |
| 631 | AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) { |
| 632 | return getAffineDimOrSymbol(kind: AffineExprKind::SymbolId, position, context); |
| 633 | } |
| 634 | |
| 635 | AffineConstantExpr::AffineConstantExpr(AffineExpr::ImplType *ptr) |
| 636 | : AffineExpr(ptr) {} |
| 637 | int64_t AffineConstantExpr::getValue() const { |
| 638 | return static_cast<ImplType *>(expr)->constant; |
| 639 | } |
| 640 | |
| 641 | bool AffineExpr::operator==(int64_t v) const { |
| 642 | return *this == getAffineConstantExpr(constant: v, context: getContext()); |
| 643 | } |
| 644 | |
| 645 | AffineExpr mlir::getAffineConstantExpr(int64_t constant, MLIRContext *context) { |
| 646 | auto assignCtx = [context](AffineConstantExprStorage *storage) { |
| 647 | storage->context = context; |
| 648 | }; |
| 649 | |
| 650 | StorageUniquer &uniquer = context->getAffineUniquer(); |
| 651 | return uniquer.get<AffineConstantExprStorage>(initFn: assignCtx, args&: constant); |
| 652 | } |
| 653 | |
| 654 | SmallVector<AffineExpr> |
| 655 | mlir::getAffineConstantExprs(ArrayRef<int64_t> constants, |
| 656 | MLIRContext *context) { |
| 657 | return llvm::to_vector(Range: llvm::map_range(C&: constants, F: [&](int64_t constant) { |
| 658 | return getAffineConstantExpr(constant, context); |
| 659 | })); |
| 660 | } |
| 661 | |
| 662 | /// Simplify add expression. Return nullptr if it can't be simplified. |
| 663 | static AffineExpr simplifyAdd(AffineExpr lhs, AffineExpr rhs) { |
| 664 | auto lhsConst = dyn_cast<AffineConstantExpr>(Val&: lhs); |
| 665 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val&: rhs); |
| 666 | // Fold if both LHS, RHS are a constant and the sum does not overflow. |
| 667 | if (lhsConst && rhsConst) { |
| 668 | int64_t sum; |
| 669 | if (llvm::AddOverflow(X: lhsConst.getValue(), Y: rhsConst.getValue(), Result&: sum)) { |
| 670 | return nullptr; |
| 671 | } |
| 672 | return getAffineConstantExpr(constant: sum, context: lhs.getContext()); |
| 673 | } |
| 674 | |
| 675 | // Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4). |
| 676 | // If only one of them is a symbolic expressions, make it the RHS. |
| 677 | if (isa<AffineConstantExpr>(Val: lhs) || |
| 678 | (lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())) { |
| 679 | return rhs + lhs; |
| 680 | } |
| 681 | |
| 682 | // At this point, if there was a constant, it would be on the right. |
| 683 | |
| 684 | // Addition with a zero is a noop, return the other input. |
| 685 | if (rhsConst) { |
| 686 | if (rhsConst.getValue() == 0) |
| 687 | return lhs; |
| 688 | } |
| 689 | // Fold successive additions like (d0 + 2) + 3 into d0 + 5. |
| 690 | auto lBin = dyn_cast<AffineBinaryOpExpr>(Val&: lhs); |
| 691 | if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Add) { |
| 692 | if (auto lrhs = dyn_cast<AffineConstantExpr>(Val: lBin.getRHS())) |
| 693 | return lBin.getLHS() + (lrhs.getValue() + rhsConst.getValue()); |
| 694 | } |
| 695 | |
| 696 | // Detect "c1 * expr + c_2 * expr" as "(c1 + c2) * expr". |
| 697 | // c1 is rRhsConst, c2 is rLhsConst; firstExpr, secondExpr are their |
| 698 | // respective multiplicands. |
| 699 | std::optional<int64_t> rLhsConst, rRhsConst; |
| 700 | AffineExpr firstExpr, secondExpr; |
| 701 | AffineConstantExpr rLhsConstExpr; |
| 702 | auto lBinOpExpr = dyn_cast<AffineBinaryOpExpr>(Val&: lhs); |
| 703 | if (lBinOpExpr && lBinOpExpr.getKind() == AffineExprKind::Mul && |
| 704 | (rLhsConstExpr = dyn_cast<AffineConstantExpr>(Val: lBinOpExpr.getRHS()))) { |
| 705 | rLhsConst = rLhsConstExpr.getValue(); |
| 706 | firstExpr = lBinOpExpr.getLHS(); |
| 707 | } else { |
| 708 | rLhsConst = 1; |
| 709 | firstExpr = lhs; |
| 710 | } |
| 711 | |
| 712 | auto rBinOpExpr = dyn_cast<AffineBinaryOpExpr>(Val&: rhs); |
| 713 | AffineConstantExpr rRhsConstExpr; |
| 714 | if (rBinOpExpr && rBinOpExpr.getKind() == AffineExprKind::Mul && |
| 715 | (rRhsConstExpr = dyn_cast<AffineConstantExpr>(Val: rBinOpExpr.getRHS()))) { |
| 716 | rRhsConst = rRhsConstExpr.getValue(); |
| 717 | secondExpr = rBinOpExpr.getLHS(); |
| 718 | } else { |
| 719 | rRhsConst = 1; |
| 720 | secondExpr = rhs; |
| 721 | } |
| 722 | |
| 723 | if (rLhsConst && rRhsConst && firstExpr == secondExpr) |
| 724 | return getAffineBinaryOpExpr( |
| 725 | kind: AffineExprKind::Mul, lhs: firstExpr, |
| 726 | rhs: getAffineConstantExpr(constant: *rLhsConst + *rRhsConst, context: lhs.getContext())); |
| 727 | |
| 728 | // When doing successive additions, bring constant to the right: turn (d0 + 2) |
| 729 | // + d1 into (d0 + d1) + 2. |
| 730 | if (lBin && lBin.getKind() == AffineExprKind::Add) { |
| 731 | if (auto lrhs = dyn_cast<AffineConstantExpr>(Val: lBin.getRHS())) { |
| 732 | return lBin.getLHS() + rhs + lrhs; |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | // Detect and transform "expr - q * (expr floordiv q)" to "expr mod q", where |
| 737 | // q may be a constant or symbolic expression. This leads to a much more |
| 738 | // efficient form when 'c' is a power of two, and in general a more compact |
| 739 | // and readable form. |
| 740 | |
| 741 | // Process '(expr floordiv c) * (-c)'. |
| 742 | if (!rBinOpExpr) |
| 743 | return nullptr; |
| 744 | |
| 745 | auto lrhs = rBinOpExpr.getLHS(); |
| 746 | auto rrhs = rBinOpExpr.getRHS(); |
| 747 | |
| 748 | AffineExpr llrhs, rlrhs; |
| 749 | |
| 750 | // Check if lrhsBinOpExpr is of the form (expr floordiv q) * q, where q is a |
| 751 | // symbolic expression. |
| 752 | auto lrhsBinOpExpr = dyn_cast<AffineBinaryOpExpr>(Val&: lrhs); |
| 753 | // Check rrhsConstOpExpr = -1. |
| 754 | auto rrhsConstOpExpr = dyn_cast<AffineConstantExpr>(Val&: rrhs); |
| 755 | if (rrhsConstOpExpr && rrhsConstOpExpr.getValue() == -1 && lrhsBinOpExpr && |
| 756 | lrhsBinOpExpr.getKind() == AffineExprKind::Mul) { |
| 757 | // Check llrhs = expr floordiv q. |
| 758 | llrhs = lrhsBinOpExpr.getLHS(); |
| 759 | // Check rlrhs = q. |
| 760 | rlrhs = lrhsBinOpExpr.getRHS(); |
| 761 | auto llrhsBinOpExpr = dyn_cast<AffineBinaryOpExpr>(Val&: llrhs); |
| 762 | if (!llrhsBinOpExpr || llrhsBinOpExpr.getKind() != AffineExprKind::FloorDiv) |
| 763 | return nullptr; |
| 764 | if (llrhsBinOpExpr.getRHS() == rlrhs && lhs == llrhsBinOpExpr.getLHS()) |
| 765 | return lhs % rlrhs; |
| 766 | } |
| 767 | |
| 768 | // Process lrhs, which is 'expr floordiv c'. |
| 769 | // expr + (expr // c * -c) = expr % c |
| 770 | AffineBinaryOpExpr lrBinOpExpr = dyn_cast<AffineBinaryOpExpr>(Val&: lrhs); |
| 771 | if (!lrBinOpExpr || rhs.getKind() != AffineExprKind::Mul || |
| 772 | lrBinOpExpr.getKind() != AffineExprKind::FloorDiv) |
| 773 | return nullptr; |
| 774 | |
| 775 | llrhs = lrBinOpExpr.getLHS(); |
| 776 | rlrhs = lrBinOpExpr.getRHS(); |
| 777 | auto rlrhsConstOpExpr = dyn_cast<AffineConstantExpr>(Val&: rlrhs); |
| 778 | // We don't support modulo with a negative RHS. |
| 779 | bool isPositiveRhs = rlrhsConstOpExpr && rlrhsConstOpExpr.getValue() > 0; |
| 780 | |
| 781 | if (isPositiveRhs && lhs == llrhs && rlrhs == -rrhs) { |
| 782 | return lhs % rlrhs; |
| 783 | } |
| 784 | return nullptr; |
| 785 | } |
| 786 | |
| 787 | AffineExpr AffineExpr::operator+(int64_t v) const { |
| 788 | return *this + getAffineConstantExpr(constant: v, context: getContext()); |
| 789 | } |
| 790 | AffineExpr AffineExpr::operator+(AffineExpr other) const { |
| 791 | if (auto simplified = simplifyAdd(lhs: *this, rhs: other)) |
| 792 | return simplified; |
| 793 | |
| 794 | StorageUniquer &uniquer = getContext()->getAffineUniquer(); |
| 795 | return uniquer.get<AffineBinaryOpExprStorage>( |
| 796 | /*initFn=*/{}, args: static_cast<unsigned>(AffineExprKind::Add), args: *this, args&: other); |
| 797 | } |
| 798 | |
| 799 | /// Simplify a multiply expression. Return nullptr if it can't be simplified. |
| 800 | static AffineExpr simplifyMul(AffineExpr lhs, AffineExpr rhs) { |
| 801 | auto lhsConst = dyn_cast<AffineConstantExpr>(Val&: lhs); |
| 802 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val&: rhs); |
| 803 | |
| 804 | if (lhsConst && rhsConst) { |
| 805 | int64_t product; |
| 806 | if (llvm::MulOverflow(X: lhsConst.getValue(), Y: rhsConst.getValue(), Result&: product)) { |
| 807 | return nullptr; |
| 808 | } |
| 809 | return getAffineConstantExpr(constant: product, context: lhs.getContext()); |
| 810 | } |
| 811 | |
| 812 | if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) |
| 813 | return nullptr; |
| 814 | |
| 815 | // Canonicalize the mul expression so that the constant/symbolic term is the |
| 816 | // RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a |
| 817 | // constant. (Note that a constant is trivially symbolic). |
| 818 | if (!rhs.isSymbolicOrConstant() || isa<AffineConstantExpr>(Val: lhs)) { |
| 819 | // At least one of them has to be symbolic. |
| 820 | return rhs * lhs; |
| 821 | } |
| 822 | |
| 823 | // At this point, if there was a constant, it would be on the right. |
| 824 | |
| 825 | // Multiplication with a one is a noop, return the other input. |
| 826 | if (rhsConst) { |
| 827 | if (rhsConst.getValue() == 1) |
| 828 | return lhs; |
| 829 | // Multiplication with zero. |
| 830 | if (rhsConst.getValue() == 0) |
| 831 | return rhsConst; |
| 832 | } |
| 833 | |
| 834 | // Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6. |
| 835 | auto lBin = dyn_cast<AffineBinaryOpExpr>(Val&: lhs); |
| 836 | if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Mul) { |
| 837 | if (auto lrhs = dyn_cast<AffineConstantExpr>(Val: lBin.getRHS())) |
| 838 | return lBin.getLHS() * (lrhs.getValue() * rhsConst.getValue()); |
| 839 | } |
| 840 | |
| 841 | // When doing successive multiplication, bring constant to the right: turn (d0 |
| 842 | // * 2) * d1 into (d0 * d1) * 2. |
| 843 | if (lBin && lBin.getKind() == AffineExprKind::Mul) { |
| 844 | if (auto lrhs = dyn_cast<AffineConstantExpr>(Val: lBin.getRHS())) { |
| 845 | return (lBin.getLHS() * rhs) * lrhs; |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | return nullptr; |
| 850 | } |
| 851 | |
| 852 | AffineExpr AffineExpr::operator*(int64_t v) const { |
| 853 | return *this * getAffineConstantExpr(constant: v, context: getContext()); |
| 854 | } |
| 855 | AffineExpr AffineExpr::operator*(AffineExpr other) const { |
| 856 | if (auto simplified = simplifyMul(lhs: *this, rhs: other)) |
| 857 | return simplified; |
| 858 | |
| 859 | StorageUniquer &uniquer = getContext()->getAffineUniquer(); |
| 860 | return uniquer.get<AffineBinaryOpExprStorage>( |
| 861 | /*initFn=*/{}, args: static_cast<unsigned>(AffineExprKind::Mul), args: *this, args&: other); |
| 862 | } |
| 863 | |
| 864 | // Unary minus, delegate to operator*. |
| 865 | AffineExpr AffineExpr::operator-() const { |
| 866 | return *this * getAffineConstantExpr(constant: -1, context: getContext()); |
| 867 | } |
| 868 | |
| 869 | // Delegate to operator+. |
| 870 | AffineExpr AffineExpr::operator-(int64_t v) const { return *this + (-v); } |
| 871 | AffineExpr AffineExpr::operator-(AffineExpr other) const { |
| 872 | return *this + (-other); |
| 873 | } |
| 874 | |
| 875 | static AffineExpr simplifyFloorDiv(AffineExpr lhs, AffineExpr rhs) { |
| 876 | auto lhsConst = dyn_cast<AffineConstantExpr>(Val&: lhs); |
| 877 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val&: rhs); |
| 878 | |
| 879 | if (!rhsConst || rhsConst.getValue() == 0) |
| 880 | return nullptr; |
| 881 | |
| 882 | if (lhsConst) { |
| 883 | if (divideSignedWouldOverflow(Numerator: lhsConst.getValue(), Denominator: rhsConst.getValue())) |
| 884 | return nullptr; |
| 885 | return getAffineConstantExpr( |
| 886 | constant: divideFloorSigned(Numerator: lhsConst.getValue(), Denominator: rhsConst.getValue()), |
| 887 | context: lhs.getContext()); |
| 888 | } |
| 889 | |
| 890 | // Fold floordiv of a multiply with a constant that is a multiple of the |
| 891 | // divisor. Eg: (i * 128) floordiv 64 = i * 2. |
| 892 | if (rhsConst == 1) |
| 893 | return lhs; |
| 894 | |
| 895 | // Simplify `(expr * lrhs) floordiv rhsConst` when `lrhs` is known to be a |
| 896 | // multiple of `rhsConst`. |
| 897 | auto lBin = dyn_cast<AffineBinaryOpExpr>(Val&: lhs); |
| 898 | if (lBin && lBin.getKind() == AffineExprKind::Mul) { |
| 899 | if (auto lrhs = dyn_cast<AffineConstantExpr>(Val: lBin.getRHS())) { |
| 900 | // `rhsConst` is known to be a nonzero constant. |
| 901 | if (lrhs.getValue() % rhsConst.getValue() == 0) |
| 902 | return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue()); |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | // Simplify (expr1 + expr2) floordiv divConst when either expr1 or expr2 is |
| 907 | // known to be a multiple of divConst. |
| 908 | if (lBin && lBin.getKind() == AffineExprKind::Add) { |
| 909 | int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor(); |
| 910 | int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor(); |
| 911 | // rhsConst is known to be a nonzero constant. |
| 912 | if (llhsDiv % rhsConst.getValue() == 0 || |
| 913 | lrhsDiv % rhsConst.getValue() == 0) |
| 914 | return lBin.getLHS().floorDiv(v: rhsConst.getValue()) + |
| 915 | lBin.getRHS().floorDiv(v: rhsConst.getValue()); |
| 916 | } |
| 917 | |
| 918 | return nullptr; |
| 919 | } |
| 920 | |
| 921 | AffineExpr AffineExpr::floorDiv(uint64_t v) const { |
| 922 | return floorDiv(other: getAffineConstantExpr(constant: v, context: getContext())); |
| 923 | } |
| 924 | AffineExpr AffineExpr::floorDiv(AffineExpr other) const { |
| 925 | if (auto simplified = simplifyFloorDiv(lhs: *this, rhs: other)) |
| 926 | return simplified; |
| 927 | |
| 928 | StorageUniquer &uniquer = getContext()->getAffineUniquer(); |
| 929 | return uniquer.get<AffineBinaryOpExprStorage>( |
| 930 | /*initFn=*/{}, args: static_cast<unsigned>(AffineExprKind::FloorDiv), args: *this, |
| 931 | args&: other); |
| 932 | } |
| 933 | |
| 934 | static AffineExpr simplifyCeilDiv(AffineExpr lhs, AffineExpr rhs) { |
| 935 | auto lhsConst = dyn_cast<AffineConstantExpr>(Val&: lhs); |
| 936 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val&: rhs); |
| 937 | |
| 938 | if (!rhsConst || rhsConst.getValue() == 0) |
| 939 | return nullptr; |
| 940 | |
| 941 | if (lhsConst) { |
| 942 | if (divideSignedWouldOverflow(Numerator: lhsConst.getValue(), Denominator: rhsConst.getValue())) |
| 943 | return nullptr; |
| 944 | return getAffineConstantExpr( |
| 945 | constant: divideCeilSigned(Numerator: lhsConst.getValue(), Denominator: rhsConst.getValue()), |
| 946 | context: lhs.getContext()); |
| 947 | } |
| 948 | |
| 949 | // Fold ceildiv of a multiply with a constant that is a multiple of the |
| 950 | // divisor. Eg: (i * 128) ceildiv 64 = i * 2. |
| 951 | if (rhsConst.getValue() == 1) |
| 952 | return lhs; |
| 953 | |
| 954 | // Simplify `(expr * lrhs) ceildiv rhsConst` when `lrhs` is known to be a |
| 955 | // multiple of `rhsConst`. |
| 956 | auto lBin = dyn_cast<AffineBinaryOpExpr>(Val&: lhs); |
| 957 | if (lBin && lBin.getKind() == AffineExprKind::Mul) { |
| 958 | if (auto lrhs = dyn_cast<AffineConstantExpr>(Val: lBin.getRHS())) { |
| 959 | // `rhsConst` is known to be a nonzero constant. |
| 960 | if (lrhs.getValue() % rhsConst.getValue() == 0) |
| 961 | return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue()); |
| 962 | } |
| 963 | } |
| 964 | |
| 965 | return nullptr; |
| 966 | } |
| 967 | |
| 968 | AffineExpr AffineExpr::ceilDiv(uint64_t v) const { |
| 969 | return ceilDiv(other: getAffineConstantExpr(constant: v, context: getContext())); |
| 970 | } |
| 971 | AffineExpr AffineExpr::ceilDiv(AffineExpr other) const { |
| 972 | if (auto simplified = simplifyCeilDiv(lhs: *this, rhs: other)) |
| 973 | return simplified; |
| 974 | |
| 975 | StorageUniquer &uniquer = getContext()->getAffineUniquer(); |
| 976 | return uniquer.get<AffineBinaryOpExprStorage>( |
| 977 | /*initFn=*/{}, args: static_cast<unsigned>(AffineExprKind::CeilDiv), args: *this, |
| 978 | args&: other); |
| 979 | } |
| 980 | |
| 981 | static AffineExpr simplifyMod(AffineExpr lhs, AffineExpr rhs) { |
| 982 | auto lhsConst = dyn_cast<AffineConstantExpr>(Val&: lhs); |
| 983 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val&: rhs); |
| 984 | |
| 985 | // mod w.r.t zero or negative numbers is undefined and preserved as is. |
| 986 | if (!rhsConst || rhsConst.getValue() < 1) |
| 987 | return nullptr; |
| 988 | |
| 989 | if (lhsConst) { |
| 990 | // mod never overflows. |
| 991 | return getAffineConstantExpr(constant: mod(Numerator: lhsConst.getValue(), Denominator: rhsConst.getValue()), |
| 992 | context: lhs.getContext()); |
| 993 | } |
| 994 | |
| 995 | // Fold modulo of an expression that is known to be a multiple of a constant |
| 996 | // to zero if that constant is a multiple of the modulo factor. Eg: (i * 128) |
| 997 | // mod 64 is folded to 0, and less trivially, (i*(j*4*(k*32))) mod 128 = 0. |
| 998 | if (lhs.getLargestKnownDivisor() % rhsConst.getValue() == 0) |
| 999 | return getAffineConstantExpr(constant: 0, context: lhs.getContext()); |
| 1000 | |
| 1001 | // Simplify (expr1 + expr2) mod divConst when either expr1 or expr2 is |
| 1002 | // known to be a multiple of divConst. |
| 1003 | auto lBin = dyn_cast<AffineBinaryOpExpr>(Val&: lhs); |
| 1004 | if (lBin && lBin.getKind() == AffineExprKind::Add) { |
| 1005 | int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor(); |
| 1006 | int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor(); |
| 1007 | // rhsConst is known to be a positive constant. |
| 1008 | if (llhsDiv % rhsConst.getValue() == 0) |
| 1009 | return lBin.getRHS() % rhsConst.getValue(); |
| 1010 | if (lrhsDiv % rhsConst.getValue() == 0) |
| 1011 | return lBin.getLHS() % rhsConst.getValue(); |
| 1012 | } |
| 1013 | |
| 1014 | // Simplify (e % a) % b to e % b when b evenly divides a |
| 1015 | if (lBin && lBin.getKind() == AffineExprKind::Mod) { |
| 1016 | auto intermediate = dyn_cast<AffineConstantExpr>(Val: lBin.getRHS()); |
| 1017 | if (intermediate && intermediate.getValue() >= 1 && |
| 1018 | mod(Numerator: intermediate.getValue(), Denominator: rhsConst.getValue()) == 0) { |
| 1019 | return lBin.getLHS() % rhsConst.getValue(); |
| 1020 | } |
| 1021 | } |
| 1022 | |
| 1023 | return nullptr; |
| 1024 | } |
| 1025 | |
| 1026 | AffineExpr AffineExpr::operator%(uint64_t v) const { |
| 1027 | return *this % getAffineConstantExpr(constant: v, context: getContext()); |
| 1028 | } |
| 1029 | AffineExpr AffineExpr::operator%(AffineExpr other) const { |
| 1030 | if (auto simplified = simplifyMod(lhs: *this, rhs: other)) |
| 1031 | return simplified; |
| 1032 | |
| 1033 | StorageUniquer &uniquer = getContext()->getAffineUniquer(); |
| 1034 | return uniquer.get<AffineBinaryOpExprStorage>( |
| 1035 | /*initFn=*/{}, args: static_cast<unsigned>(AffineExprKind::Mod), args: *this, args&: other); |
| 1036 | } |
| 1037 | |
| 1038 | AffineExpr AffineExpr::compose(AffineMap map) const { |
| 1039 | SmallVector<AffineExpr, 8> dimReplacements(map.getResults()); |
| 1040 | return replaceDimsAndSymbols(dimReplacements, symReplacements: {}); |
| 1041 | } |
| 1042 | raw_ostream &mlir::operator<<(raw_ostream &os, AffineExpr expr) { |
| 1043 | expr.print(os); |
| 1044 | return os; |
| 1045 | } |
| 1046 | |
| 1047 | /// Constructs an affine expression from a flat ArrayRef. If there are local |
| 1048 | /// identifiers (neither dimensional nor symbolic) that appear in the sum of |
| 1049 | /// products expression, `localExprs` is expected to have the AffineExpr |
| 1050 | /// for it, and is substituted into. The ArrayRef `flatExprs` is expected to be |
| 1051 | /// in the format [dims, symbols, locals, constant term]. |
| 1052 | AffineExpr mlir::getAffineExprFromFlatForm(ArrayRef<int64_t> flatExprs, |
| 1053 | unsigned numDims, |
| 1054 | unsigned numSymbols, |
| 1055 | ArrayRef<AffineExpr> localExprs, |
| 1056 | MLIRContext *context) { |
| 1057 | // Assert expected numLocals = flatExprs.size() - numDims - numSymbols - 1. |
| 1058 | assert(flatExprs.size() - numDims - numSymbols - 1 == localExprs.size() && |
| 1059 | "unexpected number of local expressions" ); |
| 1060 | |
| 1061 | auto expr = getAffineConstantExpr(constant: 0, context); |
| 1062 | // Dimensions and symbols. |
| 1063 | for (unsigned j = 0; j < numDims + numSymbols; j++) { |
| 1064 | if (flatExprs[j] == 0) |
| 1065 | continue; |
| 1066 | auto id = j < numDims ? getAffineDimExpr(position: j, context) |
| 1067 | : getAffineSymbolExpr(position: j - numDims, context); |
| 1068 | expr = expr + id * flatExprs[j]; |
| 1069 | } |
| 1070 | |
| 1071 | // Local identifiers. |
| 1072 | for (unsigned j = numDims + numSymbols, e = flatExprs.size() - 1; j < e; |
| 1073 | j++) { |
| 1074 | if (flatExprs[j] == 0) |
| 1075 | continue; |
| 1076 | auto term = localExprs[j - numDims - numSymbols] * flatExprs[j]; |
| 1077 | expr = expr + term; |
| 1078 | } |
| 1079 | |
| 1080 | // Constant term. |
| 1081 | int64_t constTerm = flatExprs[flatExprs.size() - 1]; |
| 1082 | if (constTerm != 0) |
| 1083 | expr = expr + constTerm; |
| 1084 | return expr; |
| 1085 | } |
| 1086 | |
| 1087 | /// Constructs a semi-affine expression from a flat ArrayRef. If there are |
| 1088 | /// local identifiers (neither dimensional nor symbolic) that appear in the sum |
| 1089 | /// of products expression, `localExprs` is expected to have the AffineExprs for |
| 1090 | /// it, and is substituted into. The ArrayRef `flatExprs` is expected to be in |
| 1091 | /// the format [dims, symbols, locals, constant term]. The semi-affine |
| 1092 | /// expression is constructed in the sorted order of dimension and symbol |
| 1093 | /// position numbers. Note: local expressions/ids are used for mod, div as well |
| 1094 | /// as symbolic RHS terms for terms that are not pure affine. |
| 1095 | static AffineExpr getSemiAffineExprFromFlatForm(ArrayRef<int64_t> flatExprs, |
| 1096 | unsigned numDims, |
| 1097 | unsigned numSymbols, |
| 1098 | ArrayRef<AffineExpr> localExprs, |
| 1099 | MLIRContext *context) { |
| 1100 | assert(!flatExprs.empty() && "flatExprs cannot be empty" ); |
| 1101 | |
| 1102 | // Assert expected numLocals = flatExprs.size() - numDims - numSymbols - 1. |
| 1103 | assert(flatExprs.size() - numDims - numSymbols - 1 == localExprs.size() && |
| 1104 | "unexpected number of local expressions" ); |
| 1105 | |
| 1106 | AffineExpr expr = getAffineConstantExpr(constant: 0, context); |
| 1107 | |
| 1108 | // We design indices as a pair which help us present the semi-affine map as |
| 1109 | // sum of product where terms are sorted based on dimension or symbol |
| 1110 | // position: <keyA, keyB> for expressions of the form dimension * symbol, |
| 1111 | // where keyA is the position number of the dimension and keyB is the |
| 1112 | // position number of the symbol. For dimensional expressions we set the index |
| 1113 | // as (position number of the dimension, -1), as we want dimensional |
| 1114 | // expressions to appear before symbolic and product of dimensional and |
| 1115 | // symbolic expressions having the dimension with the same position number. |
| 1116 | // For symbolic expression set the index as (position number of the symbol, |
| 1117 | // maximum of last dimension and symbol position) number. For example, we want |
| 1118 | // the expression we are constructing to look something like: d0 + d0 * s0 + |
| 1119 | // s0 + d1*s1 + s1. |
| 1120 | |
| 1121 | // Stores the affine expression corresponding to a given index. |
| 1122 | DenseMap<std::pair<unsigned, signed>, AffineExpr> indexToExprMap; |
| 1123 | // Stores the constant coefficient value corresponding to a given |
| 1124 | // dimension, symbol or a non-pure affine expression stored in `localExprs`. |
| 1125 | DenseMap<std::pair<unsigned, signed>, int64_t> coefficients; |
| 1126 | // Stores the indices as defined above, and later sorted to produce |
| 1127 | // the semi-affine expression in the desired form. |
| 1128 | SmallVector<std::pair<unsigned, signed>, 8> indices; |
| 1129 | |
| 1130 | // Example: expression = d0 + d0 * s0 + 2 * s0. |
| 1131 | // indices = [{0,-1}, {0, 0}, {0, 1}] |
| 1132 | // coefficients = [{{0, -1}, 1}, {{0, 0}, 1}, {{0, 1}, 2}] |
| 1133 | // indexToExprMap = [{{0, -1}, d0}, {{0, 0}, d0 * s0}, {{0, 1}, s0}] |
| 1134 | |
| 1135 | // Adds entries to `indexToExprMap`, `coefficients` and `indices`. |
| 1136 | auto addEntry = [&](std::pair<unsigned, signed> index, int64_t coefficient, |
| 1137 | AffineExpr expr) { |
| 1138 | assert(!llvm::is_contained(indices, index) && |
| 1139 | "Key is already present in indices vector and overwriting will " |
| 1140 | "happen in `indexToExprMap` and `coefficients`!" ); |
| 1141 | |
| 1142 | indices.push_back(Elt: index); |
| 1143 | coefficients.insert(KV: {index, coefficient}); |
| 1144 | indexToExprMap.insert(KV: {index, expr}); |
| 1145 | }; |
| 1146 | |
| 1147 | // Design indices for dimensional or symbolic terms, and store the indices, |
| 1148 | // constant coefficient corresponding to the indices in `coefficients` map, |
| 1149 | // and affine expression corresponding to indices in `indexToExprMap` map. |
| 1150 | |
| 1151 | // Ensure we do not have duplicate keys in `indexToExpr` map. |
| 1152 | unsigned offsetSym = 0; |
| 1153 | signed offsetDim = -1; |
| 1154 | for (unsigned j = numDims; j < numDims + numSymbols; ++j) { |
| 1155 | if (flatExprs[j] == 0) |
| 1156 | continue; |
| 1157 | // For symbolic expression set the index as <position number |
| 1158 | // of the symbol, max(dimCount, symCount)> number, |
| 1159 | // as we want symbolic expressions with the same positional number to |
| 1160 | // appear after dimensional expressions having the same positional number. |
| 1161 | std::pair<unsigned, signed> indexEntry( |
| 1162 | j - numDims, std::max(a: numDims, b: numSymbols) + offsetSym++); |
| 1163 | addEntry(indexEntry, flatExprs[j], |
| 1164 | getAffineSymbolExpr(position: j - numDims, context)); |
| 1165 | } |
| 1166 | |
| 1167 | // Denotes semi-affine product, modulo or division terms, which has been added |
| 1168 | // to the `indexToExpr` map. |
| 1169 | SmallVector<bool, 4> addedToMap(flatExprs.size() - numDims - numSymbols - 1, |
| 1170 | false); |
| 1171 | unsigned lhsPos, rhsPos; |
| 1172 | // Construct indices for product terms involving dimension, symbol or constant |
| 1173 | // as lhs/rhs, and store the indices, constant coefficient corresponding to |
| 1174 | // the indices in `coefficients` map, and affine expression corresponding to |
| 1175 | // in indices in `indexToExprMap` map. |
| 1176 | for (const auto &it : llvm::enumerate(First&: localExprs)) { |
| 1177 | AffineExpr expr = it.value(); |
| 1178 | if (flatExprs[numDims + numSymbols + it.index()] == 0) |
| 1179 | continue; |
| 1180 | AffineExpr lhs = cast<AffineBinaryOpExpr>(Val&: expr).getLHS(); |
| 1181 | AffineExpr rhs = cast<AffineBinaryOpExpr>(Val&: expr).getRHS(); |
| 1182 | if (!((isa<AffineDimExpr>(Val: lhs) || isa<AffineSymbolExpr>(Val: lhs)) && |
| 1183 | (isa<AffineDimExpr>(Val: rhs) || isa<AffineSymbolExpr>(Val: rhs) || |
| 1184 | isa<AffineConstantExpr>(Val: rhs)))) { |
| 1185 | continue; |
| 1186 | } |
| 1187 | if (isa<AffineConstantExpr>(Val: rhs)) { |
| 1188 | // For product/modulo/division expressions, when rhs of modulo/division |
| 1189 | // expression is constant, we put 0 in place of keyB, because we want |
| 1190 | // them to appear earlier in the semi-affine expression we are |
| 1191 | // constructing. When rhs is constant, we place 0 in place of keyB. |
| 1192 | if (isa<AffineDimExpr>(Val: lhs)) { |
| 1193 | lhsPos = cast<AffineDimExpr>(Val&: lhs).getPosition(); |
| 1194 | std::pair<unsigned, signed> indexEntry(lhsPos, offsetDim--); |
| 1195 | addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], |
| 1196 | expr); |
| 1197 | } else { |
| 1198 | lhsPos = cast<AffineSymbolExpr>(Val&: lhs).getPosition(); |
| 1199 | std::pair<unsigned, signed> indexEntry( |
| 1200 | lhsPos, std::max(a: numDims, b: numSymbols) + offsetSym++); |
| 1201 | addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], |
| 1202 | expr); |
| 1203 | } |
| 1204 | } else if (isa<AffineDimExpr>(Val: lhs)) { |
| 1205 | // For product/modulo/division expressions having lhs as dimension and rhs |
| 1206 | // as symbol, we order the terms in the semi-affine expression based on |
| 1207 | // the pair: <keyA, keyB> for expressions of the form dimension * symbol, |
| 1208 | // where keyA is the position number of the dimension and keyB is the |
| 1209 | // position number of the symbol. |
| 1210 | lhsPos = cast<AffineDimExpr>(Val&: lhs).getPosition(); |
| 1211 | rhsPos = cast<AffineSymbolExpr>(Val&: rhs).getPosition(); |
| 1212 | std::pair<unsigned, signed> indexEntry(lhsPos, rhsPos); |
| 1213 | addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], expr); |
| 1214 | } else { |
| 1215 | // For product/modulo/division expressions having both lhs and rhs as |
| 1216 | // symbol, we design indices as a pair: <keyA, keyB> for expressions |
| 1217 | // of the form dimension * symbol, where keyA is the position number of |
| 1218 | // the dimension and keyB is the position number of the symbol. |
| 1219 | lhsPos = cast<AffineSymbolExpr>(Val&: lhs).getPosition(); |
| 1220 | rhsPos = cast<AffineSymbolExpr>(Val&: rhs).getPosition(); |
| 1221 | std::pair<unsigned, signed> indexEntry( |
| 1222 | lhsPos, std::max(a: numDims, b: numSymbols) + offsetSym++); |
| 1223 | addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], expr); |
| 1224 | } |
| 1225 | addedToMap[it.index()] = true; |
| 1226 | } |
| 1227 | |
| 1228 | for (unsigned j = 0; j < numDims; ++j) { |
| 1229 | if (flatExprs[j] == 0) |
| 1230 | continue; |
| 1231 | // For dimensional expressions we set the index as <position number of the |
| 1232 | // dimension, 0>, as we want dimensional expressions to appear before |
| 1233 | // symbolic ones and products of dimensional and symbolic expressions |
| 1234 | // having the dimension with the same position number. |
| 1235 | std::pair<unsigned, signed> indexEntry(j, offsetDim--); |
| 1236 | addEntry(indexEntry, flatExprs[j], getAffineDimExpr(position: j, context)); |
| 1237 | } |
| 1238 | |
| 1239 | // Constructing the simplified semi-affine sum of product/division/mod |
| 1240 | // expression from the flattened form in the desired sorted order of indices |
| 1241 | // of the various individual product/division/mod expressions. |
| 1242 | llvm::sort(C&: indices); |
| 1243 | for (const std::pair<unsigned, unsigned> index : indices) { |
| 1244 | assert(indexToExprMap.lookup(index) && |
| 1245 | "cannot find key in `indexToExprMap` map" ); |
| 1246 | expr = expr + indexToExprMap.lookup(Val: index) * coefficients.lookup(Val: index); |
| 1247 | } |
| 1248 | |
| 1249 | // Local identifiers. |
| 1250 | for (unsigned j = numDims + numSymbols, e = flatExprs.size() - 1; j < e; |
| 1251 | j++) { |
| 1252 | // If the coefficient of the local expression is 0, continue as we need not |
| 1253 | // add it in out final expression. |
| 1254 | if (flatExprs[j] == 0 || addedToMap[j - numDims - numSymbols]) |
| 1255 | continue; |
| 1256 | auto term = localExprs[j - numDims - numSymbols] * flatExprs[j]; |
| 1257 | expr = expr + term; |
| 1258 | } |
| 1259 | |
| 1260 | // Constant term. |
| 1261 | int64_t constTerm = flatExprs.back(); |
| 1262 | if (constTerm != 0) |
| 1263 | expr = expr + constTerm; |
| 1264 | return expr; |
| 1265 | } |
| 1266 | |
| 1267 | SimpleAffineExprFlattener::SimpleAffineExprFlattener(unsigned numDims, |
| 1268 | unsigned numSymbols) |
| 1269 | : numDims(numDims), numSymbols(numSymbols), numLocals(0) { |
| 1270 | operandExprStack.reserve(n: 8); |
| 1271 | } |
| 1272 | |
| 1273 | // In pure affine t = expr * c, we multiply each coefficient of lhs with c. |
| 1274 | // |
| 1275 | // In case of semi affine multiplication expressions, t = expr * symbolic_expr, |
| 1276 | // introduce a local variable p (= expr * symbolic_expr), and the affine |
| 1277 | // expression expr * symbolic_expr is added to `localExprs`. |
| 1278 | LogicalResult SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) { |
| 1279 | assert(operandExprStack.size() >= 2); |
| 1280 | SmallVector<int64_t, 8> rhs = operandExprStack.back(); |
| 1281 | operandExprStack.pop_back(); |
| 1282 | SmallVector<int64_t, 8> &lhs = operandExprStack.back(); |
| 1283 | |
| 1284 | // Flatten semi-affine multiplication expressions by introducing a local |
| 1285 | // variable in place of the product; the affine expression |
| 1286 | // corresponding to the quantifier is added to `localExprs`. |
| 1287 | if (!isa<AffineConstantExpr>(Val: expr.getRHS())) { |
| 1288 | SmallVector<int64_t, 8> mulLhs(lhs); |
| 1289 | MLIRContext *context = expr.getContext(); |
| 1290 | AffineExpr a = getAffineExprFromFlatForm(flatExprs: lhs, numDims, numSymbols, |
| 1291 | localExprs, context); |
| 1292 | AffineExpr b = getAffineExprFromFlatForm(flatExprs: rhs, numDims, numSymbols, |
| 1293 | localExprs, context); |
| 1294 | return addLocalVariableSemiAffine(lhs: mulLhs, rhs, localExpr: a * b, result&: lhs, resultSize: lhs.size()); |
| 1295 | } |
| 1296 | |
| 1297 | // Get the RHS constant. |
| 1298 | int64_t rhsConst = rhs[getConstantIndex()]; |
| 1299 | for (int64_t &lhsElt : lhs) |
| 1300 | lhsElt *= rhsConst; |
| 1301 | |
| 1302 | return success(); |
| 1303 | } |
| 1304 | |
| 1305 | LogicalResult SimpleAffineExprFlattener::visitAddExpr(AffineBinaryOpExpr expr) { |
| 1306 | assert(operandExprStack.size() >= 2); |
| 1307 | const auto &rhs = operandExprStack.back(); |
| 1308 | auto &lhs = operandExprStack[operandExprStack.size() - 2]; |
| 1309 | assert(lhs.size() == rhs.size()); |
| 1310 | // Update the LHS in place. |
| 1311 | for (unsigned i = 0, e = rhs.size(); i < e; i++) { |
| 1312 | lhs[i] += rhs[i]; |
| 1313 | } |
| 1314 | // Pop off the RHS. |
| 1315 | operandExprStack.pop_back(); |
| 1316 | return success(); |
| 1317 | } |
| 1318 | |
| 1319 | // |
| 1320 | // t = expr mod c <=> t = expr - c*q and c*q <= expr <= c*q + c - 1 |
| 1321 | // |
| 1322 | // A mod expression "expr mod c" is thus flattened by introducing a new local |
| 1323 | // variable q (= expr floordiv c), such that expr mod c is replaced with |
| 1324 | // 'expr - c * q' and c * q <= expr <= c * q + c - 1 are added to localVarCst. |
| 1325 | // |
| 1326 | // In case of semi-affine modulo expressions, t = expr mod symbolic_expr, |
| 1327 | // introduce a local variable m (= expr mod symbolic_expr), and the affine |
| 1328 | // expression expr mod symbolic_expr is added to `localExprs`. |
| 1329 | LogicalResult SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) { |
| 1330 | assert(operandExprStack.size() >= 2); |
| 1331 | |
| 1332 | SmallVector<int64_t, 8> rhs = operandExprStack.back(); |
| 1333 | operandExprStack.pop_back(); |
| 1334 | SmallVector<int64_t, 8> &lhs = operandExprStack.back(); |
| 1335 | MLIRContext *context = expr.getContext(); |
| 1336 | |
| 1337 | // Flatten semi affine modulo expressions by introducing a local |
| 1338 | // variable in place of the modulo value, and the affine expression |
| 1339 | // corresponding to the quantifier is added to `localExprs`. |
| 1340 | if (!isa<AffineConstantExpr>(Val: expr.getRHS())) { |
| 1341 | SmallVector<int64_t, 8> modLhs(lhs); |
| 1342 | AffineExpr dividendExpr = getAffineExprFromFlatForm( |
| 1343 | flatExprs: lhs, numDims, numSymbols, localExprs, context); |
| 1344 | AffineExpr divisorExpr = getAffineExprFromFlatForm(flatExprs: rhs, numDims, numSymbols, |
| 1345 | localExprs, context); |
| 1346 | AffineExpr modExpr = dividendExpr % divisorExpr; |
| 1347 | return addLocalVariableSemiAffine(lhs: modLhs, rhs, localExpr: modExpr, result&: lhs, resultSize: lhs.size()); |
| 1348 | } |
| 1349 | |
| 1350 | int64_t rhsConst = rhs[getConstantIndex()]; |
| 1351 | if (rhsConst <= 0) |
| 1352 | return failure(); |
| 1353 | |
| 1354 | // Check if the LHS expression is a multiple of modulo factor. |
| 1355 | unsigned i, e; |
| 1356 | for (i = 0, e = lhs.size(); i < e; i++) |
| 1357 | if (lhs[i] % rhsConst != 0) |
| 1358 | break; |
| 1359 | // If yes, modulo expression here simplifies to zero. |
| 1360 | if (i == lhs.size()) { |
| 1361 | std::fill(first: lhs.begin(), last: lhs.end(), value: 0); |
| 1362 | return success(); |
| 1363 | } |
| 1364 | |
| 1365 | // Add a local variable for the quotient, i.e., expr % c is replaced by |
| 1366 | // (expr - q * c) where q = expr floordiv c. Do this while canceling out |
| 1367 | // the GCD of expr and c. |
| 1368 | SmallVector<int64_t, 8> floorDividend(lhs); |
| 1369 | uint64_t gcd = rhsConst; |
| 1370 | for (int64_t lhsElt : lhs) |
| 1371 | gcd = std::gcd(m: gcd, n: (uint64_t)std::abs(i: lhsElt)); |
| 1372 | // Simplify the numerator and the denominator. |
| 1373 | if (gcd != 1) { |
| 1374 | for (int64_t &floorDividendElt : floorDividend) |
| 1375 | floorDividendElt = floorDividendElt / static_cast<int64_t>(gcd); |
| 1376 | } |
| 1377 | int64_t floorDivisor = rhsConst / static_cast<int64_t>(gcd); |
| 1378 | |
| 1379 | // Construct the AffineExpr form of the floordiv to store in localExprs. |
| 1380 | |
| 1381 | AffineExpr dividendExpr = getAffineExprFromFlatForm( |
| 1382 | flatExprs: floorDividend, numDims, numSymbols, localExprs, context); |
| 1383 | AffineExpr divisorExpr = getAffineConstantExpr(constant: floorDivisor, context); |
| 1384 | AffineExpr floorDivExpr = dividendExpr.floorDiv(other: divisorExpr); |
| 1385 | int loc; |
| 1386 | if ((loc = findLocalId(localExpr: floorDivExpr)) == -1) { |
| 1387 | addLocalFloorDivId(dividend: floorDividend, divisor: floorDivisor, localExpr: floorDivExpr); |
| 1388 | // Set result at top of stack to "lhs - rhsConst * q". |
| 1389 | lhs[getLocalVarStartIndex() + numLocals - 1] = -rhsConst; |
| 1390 | } else { |
| 1391 | // Reuse the existing local id. |
| 1392 | lhs[getLocalVarStartIndex() + loc] -= rhsConst; |
| 1393 | } |
| 1394 | return success(); |
| 1395 | } |
| 1396 | |
| 1397 | LogicalResult |
| 1398 | SimpleAffineExprFlattener::visitCeilDivExpr(AffineBinaryOpExpr expr) { |
| 1399 | return visitDivExpr(expr, /*isCeil=*/true); |
| 1400 | } |
| 1401 | LogicalResult |
| 1402 | SimpleAffineExprFlattener::visitFloorDivExpr(AffineBinaryOpExpr expr) { |
| 1403 | return visitDivExpr(expr, /*isCeil=*/false); |
| 1404 | } |
| 1405 | |
| 1406 | LogicalResult SimpleAffineExprFlattener::visitDimExpr(AffineDimExpr expr) { |
| 1407 | operandExprStack.emplace_back(args: SmallVector<int64_t, 32>(getNumCols(), 0)); |
| 1408 | auto &eq = operandExprStack.back(); |
| 1409 | assert(expr.getPosition() < numDims && "Inconsistent number of dims" ); |
| 1410 | eq[getDimStartIndex() + expr.getPosition()] = 1; |
| 1411 | return success(); |
| 1412 | } |
| 1413 | |
| 1414 | LogicalResult |
| 1415 | SimpleAffineExprFlattener::visitSymbolExpr(AffineSymbolExpr expr) { |
| 1416 | operandExprStack.emplace_back(args: SmallVector<int64_t, 32>(getNumCols(), 0)); |
| 1417 | auto &eq = operandExprStack.back(); |
| 1418 | assert(expr.getPosition() < numSymbols && "inconsistent number of symbols" ); |
| 1419 | eq[getSymbolStartIndex() + expr.getPosition()] = 1; |
| 1420 | return success(); |
| 1421 | } |
| 1422 | |
| 1423 | LogicalResult |
| 1424 | SimpleAffineExprFlattener::visitConstantExpr(AffineConstantExpr expr) { |
| 1425 | operandExprStack.emplace_back(args: SmallVector<int64_t, 32>(getNumCols(), 0)); |
| 1426 | auto &eq = operandExprStack.back(); |
| 1427 | eq[getConstantIndex()] = expr.getValue(); |
| 1428 | return success(); |
| 1429 | } |
| 1430 | |
| 1431 | LogicalResult SimpleAffineExprFlattener::addLocalVariableSemiAffine( |
| 1432 | ArrayRef<int64_t> lhs, ArrayRef<int64_t> rhs, AffineExpr localExpr, |
| 1433 | SmallVectorImpl<int64_t> &result, unsigned long resultSize) { |
| 1434 | assert(result.size() == resultSize && |
| 1435 | "`result` vector passed is not of correct size" ); |
| 1436 | int loc; |
| 1437 | if ((loc = findLocalId(localExpr)) == -1) { |
| 1438 | if (failed(Result: addLocalIdSemiAffine(lhs, rhs, localExpr))) |
| 1439 | return failure(); |
| 1440 | } |
| 1441 | std::fill(first: result.begin(), last: result.end(), value: 0); |
| 1442 | if (loc == -1) |
| 1443 | result[getLocalVarStartIndex() + numLocals - 1] = 1; |
| 1444 | else |
| 1445 | result[getLocalVarStartIndex() + loc] = 1; |
| 1446 | return success(); |
| 1447 | } |
| 1448 | |
| 1449 | // t = expr floordiv c <=> t = q, c * q <= expr <= c * q + c - 1 |
| 1450 | // A floordiv is thus flattened by introducing a new local variable q, and |
| 1451 | // replacing that expression with 'q' while adding the constraints |
| 1452 | // c * q <= expr <= c * q + c - 1 to localVarCst (done by |
| 1453 | // IntegerRelation::addLocalFloorDiv). |
| 1454 | // |
| 1455 | // A ceildiv is similarly flattened: |
| 1456 | // t = expr ceildiv c <=> t = (expr + c - 1) floordiv c |
| 1457 | // |
| 1458 | // In case of semi affine division expressions, t = expr floordiv symbolic_expr |
| 1459 | // or t = expr ceildiv symbolic_expr, introduce a local variable q (= expr |
| 1460 | // floordiv/ceildiv symbolic_expr), and the affine floordiv/ceildiv is added to |
| 1461 | // `localExprs`. |
| 1462 | LogicalResult SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr, |
| 1463 | bool isCeil) { |
| 1464 | assert(operandExprStack.size() >= 2); |
| 1465 | |
| 1466 | MLIRContext *context = expr.getContext(); |
| 1467 | SmallVector<int64_t, 8> rhs = operandExprStack.back(); |
| 1468 | operandExprStack.pop_back(); |
| 1469 | SmallVector<int64_t, 8> &lhs = operandExprStack.back(); |
| 1470 | |
| 1471 | // Flatten semi affine division expressions by introducing a local |
| 1472 | // variable in place of the quotient, and the affine expression corresponding |
| 1473 | // to the quantifier is added to `localExprs`. |
| 1474 | if (!isa<AffineConstantExpr>(Val: expr.getRHS())) { |
| 1475 | SmallVector<int64_t, 8> divLhs(lhs); |
| 1476 | AffineExpr a = getAffineExprFromFlatForm(flatExprs: lhs, numDims, numSymbols, |
| 1477 | localExprs, context); |
| 1478 | AffineExpr b = getAffineExprFromFlatForm(flatExprs: rhs, numDims, numSymbols, |
| 1479 | localExprs, context); |
| 1480 | AffineExpr divExpr = isCeil ? a.ceilDiv(other: b) : a.floorDiv(other: b); |
| 1481 | return addLocalVariableSemiAffine(lhs: divLhs, rhs, localExpr: divExpr, result&: lhs, resultSize: lhs.size()); |
| 1482 | } |
| 1483 | |
| 1484 | // This is a pure affine expr; the RHS is a positive constant. |
| 1485 | int64_t rhsConst = rhs[getConstantIndex()]; |
| 1486 | if (rhsConst <= 0) |
| 1487 | return failure(); |
| 1488 | |
| 1489 | // Simplify the floordiv, ceildiv if possible by canceling out the greatest |
| 1490 | // common divisors of the numerator and denominator. |
| 1491 | uint64_t gcd = std::abs(i: rhsConst); |
| 1492 | for (int64_t lhsElt : lhs) |
| 1493 | gcd = std::gcd(m: gcd, n: (uint64_t)std::abs(i: lhsElt)); |
| 1494 | // Simplify the numerator and the denominator. |
| 1495 | if (gcd != 1) { |
| 1496 | for (int64_t &lhsElt : lhs) |
| 1497 | lhsElt = lhsElt / static_cast<int64_t>(gcd); |
| 1498 | } |
| 1499 | int64_t divisor = rhsConst / static_cast<int64_t>(gcd); |
| 1500 | // If the divisor becomes 1, the updated LHS is the result. (The |
| 1501 | // divisor can't be negative since rhsConst is positive). |
| 1502 | if (divisor == 1) |
| 1503 | return success(); |
| 1504 | |
| 1505 | // If the divisor cannot be simplified to one, we will have to retain |
| 1506 | // the ceil/floor expr (simplified up until here). Add an existential |
| 1507 | // quantifier to express its result, i.e., expr1 div expr2 is replaced |
| 1508 | // by a new identifier, q. |
| 1509 | AffineExpr a = |
| 1510 | getAffineExprFromFlatForm(flatExprs: lhs, numDims, numSymbols, localExprs, context); |
| 1511 | AffineExpr b = getAffineConstantExpr(constant: divisor, context); |
| 1512 | |
| 1513 | int loc; |
| 1514 | AffineExpr divExpr = isCeil ? a.ceilDiv(other: b) : a.floorDiv(other: b); |
| 1515 | if ((loc = findLocalId(localExpr: divExpr)) == -1) { |
| 1516 | if (!isCeil) { |
| 1517 | SmallVector<int64_t, 8> dividend(lhs); |
| 1518 | addLocalFloorDivId(dividend, divisor, localExpr: divExpr); |
| 1519 | } else { |
| 1520 | // lhs ceildiv c <=> (lhs + c - 1) floordiv c |
| 1521 | SmallVector<int64_t, 8> dividend(lhs); |
| 1522 | dividend.back() += divisor - 1; |
| 1523 | addLocalFloorDivId(dividend, divisor, localExpr: divExpr); |
| 1524 | } |
| 1525 | } |
| 1526 | // Set the expression on stack to the local var introduced to capture the |
| 1527 | // result of the division (floor or ceil). |
| 1528 | std::fill(first: lhs.begin(), last: lhs.end(), value: 0); |
| 1529 | if (loc == -1) |
| 1530 | lhs[getLocalVarStartIndex() + numLocals - 1] = 1; |
| 1531 | else |
| 1532 | lhs[getLocalVarStartIndex() + loc] = 1; |
| 1533 | return success(); |
| 1534 | } |
| 1535 | |
| 1536 | // Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr). |
| 1537 | // The local identifier added is always a floordiv of a pure add/mul affine |
| 1538 | // function of other identifiers, coefficients of which are specified in |
| 1539 | // dividend and with respect to a positive constant divisor. localExpr is the |
| 1540 | // simplified tree expression (AffineExpr) corresponding to the quantifier. |
| 1541 | void SimpleAffineExprFlattener::addLocalFloorDivId(ArrayRef<int64_t> dividend, |
| 1542 | int64_t divisor, |
| 1543 | AffineExpr localExpr) { |
| 1544 | assert(divisor > 0 && "positive constant divisor expected" ); |
| 1545 | for (SmallVector<int64_t, 8> &subExpr : operandExprStack) |
| 1546 | subExpr.insert(I: subExpr.begin() + getLocalVarStartIndex() + numLocals, Elt: 0); |
| 1547 | localExprs.push_back(Elt: localExpr); |
| 1548 | numLocals++; |
| 1549 | // dividend and divisor are not used here; an override of this method uses it. |
| 1550 | } |
| 1551 | |
| 1552 | LogicalResult SimpleAffineExprFlattener::addLocalIdSemiAffine( |
| 1553 | ArrayRef<int64_t> lhs, ArrayRef<int64_t> rhs, AffineExpr localExpr) { |
| 1554 | for (SmallVector<int64_t, 8> &subExpr : operandExprStack) |
| 1555 | subExpr.insert(I: subExpr.begin() + getLocalVarStartIndex() + numLocals, Elt: 0); |
| 1556 | localExprs.push_back(Elt: localExpr); |
| 1557 | ++numLocals; |
| 1558 | // lhs and rhs are not used here; an override of this method uses them. |
| 1559 | return success(); |
| 1560 | } |
| 1561 | |
| 1562 | int SimpleAffineExprFlattener::findLocalId(AffineExpr localExpr) { |
| 1563 | SmallVectorImpl<AffineExpr>::iterator it; |
| 1564 | if ((it = llvm::find(Range&: localExprs, Val: localExpr)) == localExprs.end()) |
| 1565 | return -1; |
| 1566 | return it - localExprs.begin(); |
| 1567 | } |
| 1568 | |
| 1569 | /// Simplify the affine expression by flattening it and reconstructing it. |
| 1570 | AffineExpr mlir::simplifyAffineExpr(AffineExpr expr, unsigned numDims, |
| 1571 | unsigned numSymbols) { |
| 1572 | // Simplify semi-affine expressions separately. |
| 1573 | if (!expr.isPureAffine()) |
| 1574 | expr = simplifySemiAffine(expr, numDims, numSymbols); |
| 1575 | |
| 1576 | SimpleAffineExprFlattener flattener(numDims, numSymbols); |
| 1577 | // has poison expression |
| 1578 | if (failed(Result: flattener.walkPostOrder(expr))) |
| 1579 | return expr; |
| 1580 | ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back(); |
| 1581 | if (!expr.isPureAffine() && |
| 1582 | expr == getAffineExprFromFlatForm(flatExprs: flattenedExpr, numDims, numSymbols, |
| 1583 | localExprs: flattener.localExprs, |
| 1584 | context: expr.getContext())) |
| 1585 | return expr; |
| 1586 | AffineExpr simplifiedExpr = |
| 1587 | expr.isPureAffine() |
| 1588 | ? getAffineExprFromFlatForm(flatExprs: flattenedExpr, numDims, numSymbols, |
| 1589 | localExprs: flattener.localExprs, context: expr.getContext()) |
| 1590 | : getSemiAffineExprFromFlatForm(flatExprs: flattenedExpr, numDims, numSymbols, |
| 1591 | localExprs: flattener.localExprs, |
| 1592 | context: expr.getContext()); |
| 1593 | |
| 1594 | flattener.operandExprStack.pop_back(); |
| 1595 | assert(flattener.operandExprStack.empty()); |
| 1596 | return simplifiedExpr; |
| 1597 | } |
| 1598 | |
| 1599 | std::optional<int64_t> mlir::getBoundForAffineExpr( |
| 1600 | AffineExpr expr, unsigned numDims, unsigned numSymbols, |
| 1601 | ArrayRef<std::optional<int64_t>> constLowerBounds, |
| 1602 | ArrayRef<std::optional<int64_t>> constUpperBounds, bool isUpper) { |
| 1603 | // Handle divs and mods. |
| 1604 | if (auto binOpExpr = dyn_cast<AffineBinaryOpExpr>(Val&: expr)) { |
| 1605 | // If the LHS of a floor or ceil is bounded and the RHS is a constant, we |
| 1606 | // can compute an upper bound. |
| 1607 | if (binOpExpr.getKind() == AffineExprKind::FloorDiv) { |
| 1608 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val: binOpExpr.getRHS()); |
| 1609 | if (!rhsConst || rhsConst.getValue() < 1) |
| 1610 | return std::nullopt; |
| 1611 | auto bound = |
| 1612 | getBoundForAffineExpr(expr: binOpExpr.getLHS(), numDims, numSymbols, |
| 1613 | constLowerBounds, constUpperBounds, isUpper); |
| 1614 | if (!bound) |
| 1615 | return std::nullopt; |
| 1616 | return divideFloorSigned(Numerator: *bound, Denominator: rhsConst.getValue()); |
| 1617 | } |
| 1618 | if (binOpExpr.getKind() == AffineExprKind::CeilDiv) { |
| 1619 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val: binOpExpr.getRHS()); |
| 1620 | if (rhsConst && rhsConst.getValue() >= 1) { |
| 1621 | auto bound = |
| 1622 | getBoundForAffineExpr(expr: binOpExpr.getLHS(), numDims, numSymbols, |
| 1623 | constLowerBounds, constUpperBounds, isUpper); |
| 1624 | if (!bound) |
| 1625 | return std::nullopt; |
| 1626 | return divideCeilSigned(Numerator: *bound, Denominator: rhsConst.getValue()); |
| 1627 | } |
| 1628 | return std::nullopt; |
| 1629 | } |
| 1630 | if (binOpExpr.getKind() == AffineExprKind::Mod) { |
| 1631 | // lhs mod c is always <= c - 1 and non-negative. In addition, if `lhs` is |
| 1632 | // bounded such that lb <= lhs <= ub and lb floordiv c == ub floordiv c |
| 1633 | // (same "interval"), then lb mod c <= lhs mod c <= ub mod c. |
| 1634 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val: binOpExpr.getRHS()); |
| 1635 | if (rhsConst && rhsConst.getValue() >= 1) { |
| 1636 | int64_t rhsConstVal = rhsConst.getValue(); |
| 1637 | auto lb = getBoundForAffineExpr(expr: binOpExpr.getLHS(), numDims, numSymbols, |
| 1638 | constLowerBounds, constUpperBounds, |
| 1639 | /*isUpper=*/false); |
| 1640 | auto ub = |
| 1641 | getBoundForAffineExpr(expr: binOpExpr.getLHS(), numDims, numSymbols, |
| 1642 | constLowerBounds, constUpperBounds, isUpper); |
| 1643 | if (ub && lb && |
| 1644 | divideFloorSigned(Numerator: *lb, Denominator: rhsConstVal) == |
| 1645 | divideFloorSigned(Numerator: *ub, Denominator: rhsConstVal)) |
| 1646 | return isUpper ? mod(Numerator: *ub, Denominator: rhsConstVal) : mod(Numerator: *lb, Denominator: rhsConstVal); |
| 1647 | return isUpper ? rhsConstVal - 1 : 0; |
| 1648 | } |
| 1649 | } |
| 1650 | } |
| 1651 | // Flatten the expression. |
| 1652 | SimpleAffineExprFlattener flattener(numDims, numSymbols); |
| 1653 | auto simpleResult = flattener.walkPostOrder(expr); |
| 1654 | // has poison expression |
| 1655 | if (failed(Result: simpleResult)) |
| 1656 | return std::nullopt; |
| 1657 | ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back(); |
| 1658 | // TODO: Handle local variables. We can get hold of flattener.localExprs and |
| 1659 | // get bound on the local expr recursively. |
| 1660 | if (flattener.numLocals > 0) |
| 1661 | return std::nullopt; |
| 1662 | int64_t bound = 0; |
| 1663 | // Substitute the constant lower or upper bound for the dimensional or |
| 1664 | // symbolic input depending on `isUpper` to determine the bound. |
| 1665 | for (unsigned i = 0, e = numDims + numSymbols; i < e; ++i) { |
| 1666 | if (flattenedExpr[i] > 0) { |
| 1667 | auto &constBound = isUpper ? constUpperBounds[i] : constLowerBounds[i]; |
| 1668 | if (!constBound) |
| 1669 | return std::nullopt; |
| 1670 | bound += *constBound * flattenedExpr[i]; |
| 1671 | } else if (flattenedExpr[i] < 0) { |
| 1672 | auto &constBound = isUpper ? constLowerBounds[i] : constUpperBounds[i]; |
| 1673 | if (!constBound) |
| 1674 | return std::nullopt; |
| 1675 | bound += *constBound * flattenedExpr[i]; |
| 1676 | } |
| 1677 | } |
| 1678 | // Constant term. |
| 1679 | bound += flattenedExpr.back(); |
| 1680 | return bound; |
| 1681 | } |
| 1682 | |