| 1 | //===- AffineMap.cpp - MLIR Affine Map Classes ----------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/IR/AffineMap.h" |
| 10 | #include "AffineMapDetail.h" |
| 11 | #include "mlir/IR/AffineExpr.h" |
| 12 | #include "mlir/IR/Builders.h" |
| 13 | #include "mlir/IR/BuiltinAttributes.h" |
| 14 | #include "mlir/IR/BuiltinTypes.h" |
| 15 | #include "llvm/ADT/STLExtras.h" |
| 16 | #include "llvm/ADT/SmallBitVector.h" |
| 17 | #include "llvm/ADT/SmallSet.h" |
| 18 | #include "llvm/ADT/SmallVector.h" |
| 19 | #include "llvm/ADT/StringRef.h" |
| 20 | #include "llvm/Support/MathExtras.h" |
| 21 | #include "llvm/Support/raw_ostream.h" |
| 22 | #include <iterator> |
| 23 | #include <numeric> |
| 24 | #include <optional> |
| 25 | #include <type_traits> |
| 26 | |
| 27 | using namespace mlir; |
| 28 | |
| 29 | using llvm::divideCeilSigned; |
| 30 | using llvm::divideFloorSigned; |
| 31 | using llvm::mod; |
| 32 | |
| 33 | namespace { |
| 34 | |
| 35 | // AffineExprConstantFolder evaluates an affine expression using constant |
| 36 | // operands passed in 'operandConsts'. Returns an IntegerAttr attribute |
| 37 | // representing the constant value of the affine expression evaluated on |
| 38 | // constant 'operandConsts', or nullptr if it can't be folded. |
| 39 | class AffineExprConstantFolder { |
| 40 | public: |
| 41 | AffineExprConstantFolder(unsigned numDims, ArrayRef<Attribute> operandConsts) |
| 42 | : numDims(numDims), operandConsts(operandConsts) {} |
| 43 | |
| 44 | /// Attempt to constant fold the specified affine expr, or return null on |
| 45 | /// failure. |
| 46 | IntegerAttr constantFold(AffineExpr expr) { |
| 47 | if (auto result = constantFoldImpl(expr)) |
| 48 | return IntegerAttr::get(IndexType::get(expr.getContext()), *result); |
| 49 | return nullptr; |
| 50 | } |
| 51 | |
| 52 | bool hasPoison() const { return hasPoison_; } |
| 53 | |
| 54 | private: |
| 55 | std::optional<int64_t> constantFoldImpl(AffineExpr expr) { |
| 56 | switch (expr.getKind()) { |
| 57 | case AffineExprKind::Add: |
| 58 | return constantFoldBinExpr( |
| 59 | expr, op: [](int64_t lhs, int64_t rhs) { return lhs + rhs; }); |
| 60 | case AffineExprKind::Mul: |
| 61 | return constantFoldBinExpr( |
| 62 | expr, op: [](int64_t lhs, int64_t rhs) { return lhs * rhs; }); |
| 63 | case AffineExprKind::Mod: |
| 64 | return constantFoldBinExpr( |
| 65 | expr, op: [this](int64_t lhs, int64_t rhs) -> std::optional<int64_t> { |
| 66 | if (rhs < 1) { |
| 67 | hasPoison_ = true; |
| 68 | return std::nullopt; |
| 69 | } |
| 70 | return mod(Numerator: lhs, Denominator: rhs); |
| 71 | }); |
| 72 | case AffineExprKind::FloorDiv: |
| 73 | return constantFoldBinExpr( |
| 74 | expr, op: [this](int64_t lhs, int64_t rhs) -> std::optional<int64_t> { |
| 75 | if (rhs == 0) { |
| 76 | hasPoison_ = true; |
| 77 | return std::nullopt; |
| 78 | } |
| 79 | return divideFloorSigned(Numerator: lhs, Denominator: rhs); |
| 80 | }); |
| 81 | case AffineExprKind::CeilDiv: |
| 82 | return constantFoldBinExpr( |
| 83 | expr, op: [this](int64_t lhs, int64_t rhs) -> std::optional<int64_t> { |
| 84 | if (rhs == 0) { |
| 85 | hasPoison_ = true; |
| 86 | return std::nullopt; |
| 87 | } |
| 88 | return divideCeilSigned(Numerator: lhs, Denominator: rhs); |
| 89 | }); |
| 90 | case AffineExprKind::Constant: |
| 91 | return cast<AffineConstantExpr>(Val&: expr).getValue(); |
| 92 | case AffineExprKind::DimId: |
| 93 | if (auto attr = llvm::dyn_cast_or_null<IntegerAttr>( |
| 94 | operandConsts[cast<AffineDimExpr>(expr).getPosition()])) |
| 95 | return attr.getInt(); |
| 96 | return std::nullopt; |
| 97 | case AffineExprKind::SymbolId: |
| 98 | if (auto attr = llvm::dyn_cast_or_null<IntegerAttr>( |
| 99 | operandConsts[numDims + |
| 100 | cast<AffineSymbolExpr>(expr).getPosition()])) |
| 101 | return attr.getInt(); |
| 102 | return std::nullopt; |
| 103 | } |
| 104 | llvm_unreachable("Unknown AffineExpr" ); |
| 105 | } |
| 106 | |
| 107 | // TODO: Change these to operate on APInts too. |
| 108 | std::optional<int64_t> constantFoldBinExpr( |
| 109 | AffineExpr expr, |
| 110 | llvm::function_ref<std::optional<int64_t>(int64_t, int64_t)> op) { |
| 111 | auto binOpExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
| 112 | if (auto lhs = constantFoldImpl(expr: binOpExpr.getLHS())) |
| 113 | if (auto rhs = constantFoldImpl(expr: binOpExpr.getRHS())) |
| 114 | return op(*lhs, *rhs); |
| 115 | return std::nullopt; |
| 116 | } |
| 117 | |
| 118 | // The number of dimension operands in AffineMap containing this expression. |
| 119 | unsigned numDims; |
| 120 | // The constant valued operands used to evaluate this AffineExpr. |
| 121 | ArrayRef<Attribute> operandConsts; |
| 122 | bool hasPoison_{false}; |
| 123 | }; |
| 124 | |
| 125 | } // namespace |
| 126 | |
| 127 | /// Returns a single constant result affine map. |
| 128 | AffineMap AffineMap::getConstantMap(int64_t val, MLIRContext *context) { |
| 129 | return get(/*dimCount=*/0, /*symbolCount=*/0, |
| 130 | result: {getAffineConstantExpr(constant: val, context)}); |
| 131 | } |
| 132 | |
| 133 | /// Returns an identity affine map (d0, ..., dn) -> (dp, ..., dn) on the most |
| 134 | /// minor dimensions. |
| 135 | AffineMap AffineMap::getMinorIdentityMap(unsigned dims, unsigned results, |
| 136 | MLIRContext *context) { |
| 137 | assert(dims >= results && "Dimension mismatch" ); |
| 138 | auto id = AffineMap::getMultiDimIdentityMap(numDims: dims, context); |
| 139 | return AffineMap::get(dimCount: dims, symbolCount: 0, results: id.getResults().take_back(N: results), context); |
| 140 | } |
| 141 | |
| 142 | AffineMap AffineMap::getFilteredIdentityMap( |
| 143 | MLIRContext *ctx, unsigned numDims, |
| 144 | llvm::function_ref<bool(AffineDimExpr)> keepDimFilter) { |
| 145 | auto identityMap = getMultiDimIdentityMap(numDims, context: ctx); |
| 146 | |
| 147 | // Apply filter to results. |
| 148 | llvm::SmallBitVector dropDimResults(numDims); |
| 149 | for (auto [idx, resultExpr] : llvm::enumerate(First: identityMap.getResults())) |
| 150 | dropDimResults[idx] = !keepDimFilter(cast<AffineDimExpr>(Val: resultExpr)); |
| 151 | |
| 152 | return identityMap.dropResults(positions: dropDimResults); |
| 153 | } |
| 154 | |
| 155 | bool AffineMap::isMinorIdentity() const { |
| 156 | return getNumDims() >= getNumResults() && |
| 157 | *this == |
| 158 | getMinorIdentityMap(dims: getNumDims(), results: getNumResults(), context: getContext()); |
| 159 | } |
| 160 | |
| 161 | SmallVector<unsigned> AffineMap::getBroadcastDims() const { |
| 162 | SmallVector<unsigned> broadcastedDims; |
| 163 | for (const auto &[resIdx, expr] : llvm::enumerate(First: getResults())) { |
| 164 | if (auto constExpr = dyn_cast<AffineConstantExpr>(Val: expr)) { |
| 165 | if (constExpr.getValue() != 0) |
| 166 | continue; |
| 167 | broadcastedDims.push_back(Elt: resIdx); |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | return broadcastedDims; |
| 172 | } |
| 173 | |
| 174 | /// Returns true if this affine map is a minor identity up to broadcasted |
| 175 | /// dimensions which are indicated by value 0 in the result. |
| 176 | bool AffineMap::isMinorIdentityWithBroadcasting( |
| 177 | SmallVectorImpl<unsigned> *broadcastedDims) const { |
| 178 | if (broadcastedDims) |
| 179 | broadcastedDims->clear(); |
| 180 | if (getNumDims() < getNumResults()) |
| 181 | return false; |
| 182 | unsigned suffixStart = getNumDims() - getNumResults(); |
| 183 | for (const auto &idxAndExpr : llvm::enumerate(First: getResults())) { |
| 184 | unsigned resIdx = idxAndExpr.index(); |
| 185 | AffineExpr expr = idxAndExpr.value(); |
| 186 | if (auto constExpr = dyn_cast<AffineConstantExpr>(Val&: expr)) { |
| 187 | // Each result may be either a constant 0 (broadcasted dimension). |
| 188 | if (constExpr.getValue() != 0) |
| 189 | return false; |
| 190 | if (broadcastedDims) |
| 191 | broadcastedDims->push_back(Elt: resIdx); |
| 192 | } else if (auto dimExpr = dyn_cast<AffineDimExpr>(Val&: expr)) { |
| 193 | // Or it may be the input dimension corresponding to this result position. |
| 194 | if (dimExpr.getPosition() != suffixStart + resIdx) |
| 195 | return false; |
| 196 | } else { |
| 197 | return false; |
| 198 | } |
| 199 | } |
| 200 | return true; |
| 201 | } |
| 202 | |
| 203 | /// Return true if this affine map can be converted to a minor identity with |
| 204 | /// broadcast by doing a permute. Return a permutation (there may be |
| 205 | /// several) to apply to get to a minor identity with broadcasts. |
| 206 | /// Ex: |
| 207 | /// * (d0, d1, d2) -> (0, d1) maps to minor identity (d1, 0 = d2) with |
| 208 | /// perm = [1, 0] and broadcast d2 |
| 209 | /// * (d0, d1, d2) -> (d0, 0) cannot be mapped to a minor identity by |
| 210 | /// permutation + broadcast |
| 211 | /// * (d0, d1, d2, d3) -> (0, d1, d3) maps to minor identity (d1, 0 = d2, d3) |
| 212 | /// with perm = [1, 0, 2] and broadcast d2 |
| 213 | /// * (d0, d1) -> (d1, 0, 0, d0) maps to minor identity (d0, d1) with extra |
| 214 | /// leading broadcat dimensions. The map returned would be (0, 0, d0, d1) with |
| 215 | /// perm = [3, 0, 1, 2] |
| 216 | bool AffineMap::isPermutationOfMinorIdentityWithBroadcasting( |
| 217 | SmallVectorImpl<unsigned> &permutedDims) const { |
| 218 | unsigned projectionStart = |
| 219 | getNumResults() < getNumInputs() ? getNumInputs() - getNumResults() : 0; |
| 220 | permutedDims.clear(); |
| 221 | SmallVector<unsigned> broadcastDims; |
| 222 | permutedDims.resize(N: getNumResults(), NV: 0); |
| 223 | // If there are more results than input dimensions we want the new map to |
| 224 | // start with broadcast dimensions in order to be a minor identity with |
| 225 | // broadcasting. |
| 226 | unsigned leadingBroadcast = |
| 227 | getNumResults() > getNumInputs() ? getNumResults() - getNumInputs() : 0; |
| 228 | llvm::SmallBitVector dimFound(std::max(a: getNumInputs(), b: getNumResults()), |
| 229 | false); |
| 230 | for (const auto &idxAndExpr : llvm::enumerate(First: getResults())) { |
| 231 | unsigned resIdx = idxAndExpr.index(); |
| 232 | AffineExpr expr = idxAndExpr.value(); |
| 233 | // Each result may be either a constant 0 (broadcast dimension) or a |
| 234 | // dimension. |
| 235 | if (auto constExpr = dyn_cast<AffineConstantExpr>(Val&: expr)) { |
| 236 | if (constExpr.getValue() != 0) |
| 237 | return false; |
| 238 | broadcastDims.push_back(Elt: resIdx); |
| 239 | } else if (auto dimExpr = dyn_cast<AffineDimExpr>(Val&: expr)) { |
| 240 | if (dimExpr.getPosition() < projectionStart) |
| 241 | return false; |
| 242 | unsigned newPosition = |
| 243 | dimExpr.getPosition() - projectionStart + leadingBroadcast; |
| 244 | permutedDims[resIdx] = newPosition; |
| 245 | dimFound[newPosition] = true; |
| 246 | } else { |
| 247 | return false; |
| 248 | } |
| 249 | } |
| 250 | // Find a permuation for the broadcast dimension. Since they are broadcasted |
| 251 | // any valid permutation is acceptable. We just permute the dim into a slot |
| 252 | // without an existing dimension. |
| 253 | unsigned pos = 0; |
| 254 | for (auto dim : broadcastDims) { |
| 255 | while (pos < dimFound.size() && dimFound[pos]) { |
| 256 | pos++; |
| 257 | } |
| 258 | permutedDims[dim] = pos++; |
| 259 | } |
| 260 | return true; |
| 261 | } |
| 262 | |
| 263 | /// Returns an AffineMap representing a permutation. |
| 264 | AffineMap AffineMap::getPermutationMap(ArrayRef<unsigned> permutation, |
| 265 | MLIRContext *context) { |
| 266 | assert(!permutation.empty() && |
| 267 | "Cannot create permutation map from empty permutation vector" ); |
| 268 | const auto *m = llvm::max_element(Range&: permutation); |
| 269 | auto permutationMap = getMultiDimMapWithTargets(numDims: *m + 1, targets: permutation, context); |
| 270 | assert(permutationMap.isPermutation() && "Invalid permutation vector" ); |
| 271 | return permutationMap; |
| 272 | } |
| 273 | AffineMap AffineMap::getPermutationMap(ArrayRef<int64_t> permutation, |
| 274 | MLIRContext *context) { |
| 275 | SmallVector<unsigned> perm = llvm::map_to_vector( |
| 276 | C&: permutation, F: [](int64_t i) { return static_cast<unsigned>(i); }); |
| 277 | return AffineMap::getPermutationMap(permutation: perm, context); |
| 278 | } |
| 279 | |
| 280 | AffineMap AffineMap::getMultiDimMapWithTargets(unsigned numDims, |
| 281 | ArrayRef<unsigned> targets, |
| 282 | MLIRContext *context) { |
| 283 | SmallVector<AffineExpr, 4> affExprs; |
| 284 | for (unsigned t : targets) |
| 285 | affExprs.push_back(Elt: getAffineDimExpr(position: t, context)); |
| 286 | AffineMap result = AffineMap::get(/*dimCount=*/numDims, /*symbolCount=*/0, |
| 287 | results: affExprs, context); |
| 288 | return result; |
| 289 | } |
| 290 | |
| 291 | /// Creates an affine map each for each list of AffineExpr's in `exprsList` |
| 292 | /// while inferring the right number of dimensional and symbolic inputs needed |
| 293 | /// based on the maximum dimensional and symbolic identifier appearing in the |
| 294 | /// expressions. |
| 295 | template <typename AffineExprContainer> |
| 296 | static SmallVector<AffineMap, 4> |
| 297 | inferFromExprList(ArrayRef<AffineExprContainer> exprsList, |
| 298 | MLIRContext *context) { |
| 299 | if (exprsList.empty()) |
| 300 | return {}; |
| 301 | int64_t maxDim = -1, maxSym = -1; |
| 302 | getMaxDimAndSymbol(exprsList, maxDim, maxSym); |
| 303 | SmallVector<AffineMap, 4> maps; |
| 304 | maps.reserve(N: exprsList.size()); |
| 305 | for (const auto &exprs : exprsList) |
| 306 | maps.push_back(Elt: AffineMap::get(/*dimCount=*/maxDim + 1, |
| 307 | /*symbolCount=*/maxSym + 1, exprs, context)); |
| 308 | return maps; |
| 309 | } |
| 310 | |
| 311 | SmallVector<AffineMap, 4> |
| 312 | AffineMap::inferFromExprList(ArrayRef<ArrayRef<AffineExpr>> exprsList, |
| 313 | MLIRContext *context) { |
| 314 | return ::inferFromExprList(exprsList, context); |
| 315 | } |
| 316 | |
| 317 | SmallVector<AffineMap, 4> |
| 318 | AffineMap::inferFromExprList(ArrayRef<SmallVector<AffineExpr, 4>> exprsList, |
| 319 | MLIRContext *context) { |
| 320 | return ::inferFromExprList(exprsList, context); |
| 321 | } |
| 322 | |
| 323 | uint64_t AffineMap::getLargestKnownDivisorOfMapExprs() { |
| 324 | uint64_t gcd = 0; |
| 325 | for (AffineExpr resultExpr : getResults()) { |
| 326 | uint64_t thisGcd = resultExpr.getLargestKnownDivisor(); |
| 327 | gcd = std::gcd(m: gcd, n: thisGcd); |
| 328 | } |
| 329 | if (gcd == 0) |
| 330 | gcd = std::numeric_limits<uint64_t>::max(); |
| 331 | return gcd; |
| 332 | } |
| 333 | |
| 334 | AffineMap AffineMap::getMultiDimIdentityMap(unsigned numDims, |
| 335 | MLIRContext *context) { |
| 336 | SmallVector<AffineExpr, 4> dimExprs; |
| 337 | dimExprs.reserve(N: numDims); |
| 338 | for (unsigned i = 0; i < numDims; ++i) |
| 339 | dimExprs.push_back(Elt: mlir::getAffineDimExpr(position: i, context)); |
| 340 | return get(/*dimCount=*/numDims, /*symbolCount=*/0, results: dimExprs, context); |
| 341 | } |
| 342 | |
| 343 | MLIRContext *AffineMap::getContext() const { return map->context; } |
| 344 | |
| 345 | bool AffineMap::isIdentity() const { |
| 346 | if (getNumDims() != getNumResults()) |
| 347 | return false; |
| 348 | ArrayRef<AffineExpr> results = getResults(); |
| 349 | for (unsigned i = 0, numDims = getNumDims(); i < numDims; ++i) { |
| 350 | auto expr = dyn_cast<AffineDimExpr>(Val: results[i]); |
| 351 | if (!expr || expr.getPosition() != i) |
| 352 | return false; |
| 353 | } |
| 354 | return true; |
| 355 | } |
| 356 | |
| 357 | bool AffineMap::isSymbolIdentity() const { |
| 358 | if (getNumSymbols() != getNumResults()) |
| 359 | return false; |
| 360 | ArrayRef<AffineExpr> results = getResults(); |
| 361 | for (unsigned i = 0, numSymbols = getNumSymbols(); i < numSymbols; ++i) { |
| 362 | auto expr = dyn_cast<AffineDimExpr>(Val: results[i]); |
| 363 | if (!expr || expr.getPosition() != i) |
| 364 | return false; |
| 365 | } |
| 366 | return true; |
| 367 | } |
| 368 | |
| 369 | bool AffineMap::isEmpty() const { |
| 370 | return getNumDims() == 0 && getNumSymbols() == 0 && getNumResults() == 0; |
| 371 | } |
| 372 | |
| 373 | bool AffineMap::isSingleConstant() const { |
| 374 | return getNumResults() == 1 && isa<AffineConstantExpr>(Val: getResult(idx: 0)); |
| 375 | } |
| 376 | |
| 377 | bool AffineMap::isConstant() const { |
| 378 | return llvm::all_of(Range: getResults(), P: llvm::IsaPred<AffineConstantExpr>); |
| 379 | } |
| 380 | |
| 381 | int64_t AffineMap::getSingleConstantResult() const { |
| 382 | assert(isSingleConstant() && "map must have a single constant result" ); |
| 383 | return cast<AffineConstantExpr>(Val: getResult(idx: 0)).getValue(); |
| 384 | } |
| 385 | |
| 386 | SmallVector<int64_t> AffineMap::getConstantResults() const { |
| 387 | assert(isConstant() && "map must have only constant results" ); |
| 388 | SmallVector<int64_t> result; |
| 389 | for (auto expr : getResults()) |
| 390 | result.emplace_back(Args: cast<AffineConstantExpr>(Val&: expr).getValue()); |
| 391 | return result; |
| 392 | } |
| 393 | |
| 394 | unsigned AffineMap::getNumDims() const { |
| 395 | assert(map && "uninitialized map storage" ); |
| 396 | return map->numDims; |
| 397 | } |
| 398 | unsigned AffineMap::getNumSymbols() const { |
| 399 | assert(map && "uninitialized map storage" ); |
| 400 | return map->numSymbols; |
| 401 | } |
| 402 | unsigned AffineMap::getNumResults() const { return getResults().size(); } |
| 403 | unsigned AffineMap::getNumInputs() const { |
| 404 | assert(map && "uninitialized map storage" ); |
| 405 | return map->numDims + map->numSymbols; |
| 406 | } |
| 407 | ArrayRef<AffineExpr> AffineMap::getResults() const { |
| 408 | assert(map && "uninitialized map storage" ); |
| 409 | return map->results(); |
| 410 | } |
| 411 | AffineExpr AffineMap::getResult(unsigned idx) const { |
| 412 | return getResults()[idx]; |
| 413 | } |
| 414 | |
| 415 | unsigned AffineMap::getDimPosition(unsigned idx) const { |
| 416 | return cast<AffineDimExpr>(Val: getResult(idx)).getPosition(); |
| 417 | } |
| 418 | |
| 419 | std::optional<unsigned> AffineMap::getResultPosition(AffineExpr input) const { |
| 420 | if (!isa<AffineDimExpr>(Val: input)) |
| 421 | return std::nullopt; |
| 422 | |
| 423 | for (unsigned i = 0, numResults = getNumResults(); i < numResults; i++) { |
| 424 | if (getResult(idx: i) == input) |
| 425 | return i; |
| 426 | } |
| 427 | |
| 428 | return std::nullopt; |
| 429 | } |
| 430 | |
| 431 | /// Folds the results of the application of an affine map on the provided |
| 432 | /// operands to a constant if possible. Returns false if the folding happens, |
| 433 | /// true otherwise. |
| 434 | LogicalResult AffineMap::constantFold(ArrayRef<Attribute> operandConstants, |
| 435 | SmallVectorImpl<Attribute> &results, |
| 436 | bool *hasPoison) const { |
| 437 | // Attempt partial folding. |
| 438 | SmallVector<int64_t, 2> integers; |
| 439 | partialConstantFold(operandConstants, results: &integers, hasPoison); |
| 440 | |
| 441 | // If all expressions folded to a constant, populate results with attributes |
| 442 | // containing those constants. |
| 443 | if (integers.empty()) |
| 444 | return failure(); |
| 445 | |
| 446 | auto range = llvm::map_range(C&: integers, F: [this](int64_t i) { |
| 447 | return IntegerAttr::get(IndexType::get(getContext()), i); |
| 448 | }); |
| 449 | results.append(in_start: range.begin(), in_end: range.end()); |
| 450 | return success(); |
| 451 | } |
| 452 | |
| 453 | AffineMap AffineMap::partialConstantFold(ArrayRef<Attribute> operandConstants, |
| 454 | SmallVectorImpl<int64_t> *results, |
| 455 | bool *hasPoison) const { |
| 456 | assert(getNumInputs() == operandConstants.size()); |
| 457 | |
| 458 | // Fold each of the result expressions. |
| 459 | AffineExprConstantFolder exprFolder(getNumDims(), operandConstants); |
| 460 | SmallVector<AffineExpr, 4> exprs; |
| 461 | exprs.reserve(N: getNumResults()); |
| 462 | |
| 463 | for (auto expr : getResults()) { |
| 464 | auto folded = exprFolder.constantFold(expr); |
| 465 | if (exprFolder.hasPoison() && hasPoison) { |
| 466 | *hasPoison = true; |
| 467 | return {}; |
| 468 | } |
| 469 | // If did not fold to a constant, keep the original expression, and clear |
| 470 | // the integer results vector. |
| 471 | if (folded) { |
| 472 | exprs.push_back( |
| 473 | Elt: getAffineConstantExpr(folded.getInt(), folded.getContext())); |
| 474 | if (results) |
| 475 | results->push_back(Elt: folded.getInt()); |
| 476 | } else { |
| 477 | exprs.push_back(Elt: expr); |
| 478 | if (results) { |
| 479 | results->clear(); |
| 480 | results = nullptr; |
| 481 | } |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | return get(dimCount: getNumDims(), symbolCount: getNumSymbols(), results: exprs, context: getContext()); |
| 486 | } |
| 487 | |
| 488 | /// Walk all of the AffineExpr's in this mapping. Each node in an expression |
| 489 | /// tree is visited in postorder. |
| 490 | void AffineMap::walkExprs(llvm::function_ref<void(AffineExpr)> callback) const { |
| 491 | for (auto expr : getResults()) |
| 492 | expr.walk(callback); |
| 493 | } |
| 494 | |
| 495 | /// This method substitutes any uses of dimensions and symbols (e.g. |
| 496 | /// dim#0 with dimReplacements[0]) in subexpressions and returns the modified |
| 497 | /// expression mapping. Because this can be used to eliminate dims and |
| 498 | /// symbols, the client needs to specify the number of dims and symbols in |
| 499 | /// the result. The returned map always has the same number of results. |
| 500 | AffineMap AffineMap::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements, |
| 501 | ArrayRef<AffineExpr> symReplacements, |
| 502 | unsigned numResultDims, |
| 503 | unsigned numResultSyms) const { |
| 504 | SmallVector<AffineExpr, 8> results; |
| 505 | results.reserve(N: getNumResults()); |
| 506 | for (auto expr : getResults()) |
| 507 | results.push_back( |
| 508 | Elt: expr.replaceDimsAndSymbols(dimReplacements, symReplacements)); |
| 509 | return get(dimCount: numResultDims, symbolCount: numResultSyms, results, context: getContext()); |
| 510 | } |
| 511 | |
| 512 | /// Sparse replace method. Apply AffineExpr::replace(`expr`, `replacement`) to |
| 513 | /// each of the results and return a new AffineMap with the new results and |
| 514 | /// with the specified number of dims and symbols. |
| 515 | AffineMap AffineMap::replace(AffineExpr expr, AffineExpr replacement, |
| 516 | unsigned numResultDims, |
| 517 | unsigned numResultSyms) const { |
| 518 | SmallVector<AffineExpr, 4> newResults; |
| 519 | newResults.reserve(N: getNumResults()); |
| 520 | for (AffineExpr e : getResults()) |
| 521 | newResults.push_back(Elt: e.replace(expr, replacement)); |
| 522 | return AffineMap::get(dimCount: numResultDims, symbolCount: numResultSyms, results: newResults, context: getContext()); |
| 523 | } |
| 524 | |
| 525 | /// Sparse replace method. Apply AffineExpr::replace(`map`) to each of the |
| 526 | /// results and return a new AffineMap with the new results and with the |
| 527 | /// specified number of dims and symbols. |
| 528 | AffineMap AffineMap::replace(const DenseMap<AffineExpr, AffineExpr> &map, |
| 529 | unsigned numResultDims, |
| 530 | unsigned numResultSyms) const { |
| 531 | SmallVector<AffineExpr, 4> newResults; |
| 532 | newResults.reserve(N: getNumResults()); |
| 533 | for (AffineExpr e : getResults()) |
| 534 | newResults.push_back(Elt: e.replace(map)); |
| 535 | return AffineMap::get(dimCount: numResultDims, symbolCount: numResultSyms, results: newResults, context: getContext()); |
| 536 | } |
| 537 | |
| 538 | AffineMap |
| 539 | AffineMap::replace(const DenseMap<AffineExpr, AffineExpr> &map) const { |
| 540 | SmallVector<AffineExpr, 4> newResults; |
| 541 | newResults.reserve(N: getNumResults()); |
| 542 | for (AffineExpr e : getResults()) |
| 543 | newResults.push_back(Elt: e.replace(map)); |
| 544 | return AffineMap::inferFromExprList(exprsList: newResults, context: getContext()).front(); |
| 545 | } |
| 546 | |
| 547 | AffineMap AffineMap::dropResults(const llvm::SmallBitVector &positions) const { |
| 548 | auto exprs = llvm::to_vector<4>(Range: getResults()); |
| 549 | // TODO: this is a pretty terrible API .. is there anything better? |
| 550 | for (auto pos = positions.find_last(); pos != -1; |
| 551 | pos = positions.find_prev(PriorTo: pos)) |
| 552 | exprs.erase(CI: exprs.begin() + pos); |
| 553 | return AffineMap::get(dimCount: getNumDims(), symbolCount: getNumSymbols(), results: exprs, context: getContext()); |
| 554 | } |
| 555 | |
| 556 | AffineMap AffineMap::compose(AffineMap map) const { |
| 557 | assert(getNumDims() == map.getNumResults() && "Number of results mismatch" ); |
| 558 | // Prepare `map` by concatenating the symbols and rewriting its exprs. |
| 559 | unsigned numDims = map.getNumDims(); |
| 560 | unsigned numSymbolsThisMap = getNumSymbols(); |
| 561 | unsigned numSymbols = numSymbolsThisMap + map.getNumSymbols(); |
| 562 | SmallVector<AffineExpr, 8> newDims(numDims); |
| 563 | for (unsigned idx = 0; idx < numDims; ++idx) { |
| 564 | newDims[idx] = getAffineDimExpr(position: idx, context: getContext()); |
| 565 | } |
| 566 | SmallVector<AffineExpr, 8> newSymbols(numSymbols - numSymbolsThisMap); |
| 567 | for (unsigned idx = numSymbolsThisMap; idx < numSymbols; ++idx) { |
| 568 | newSymbols[idx - numSymbolsThisMap] = |
| 569 | getAffineSymbolExpr(position: idx, context: getContext()); |
| 570 | } |
| 571 | auto newMap = |
| 572 | map.replaceDimsAndSymbols(dimReplacements: newDims, symReplacements: newSymbols, numResultDims: numDims, numResultSyms: numSymbols); |
| 573 | SmallVector<AffineExpr, 8> exprs; |
| 574 | exprs.reserve(N: getResults().size()); |
| 575 | for (auto expr : getResults()) |
| 576 | exprs.push_back(Elt: expr.compose(map: newMap)); |
| 577 | return AffineMap::get(dimCount: numDims, symbolCount: numSymbols, results: exprs, context: map.getContext()); |
| 578 | } |
| 579 | |
| 580 | SmallVector<int64_t, 4> AffineMap::compose(ArrayRef<int64_t> values) const { |
| 581 | assert(getNumSymbols() == 0 && "Expected symbol-less map" ); |
| 582 | SmallVector<AffineExpr, 4> exprs; |
| 583 | MLIRContext *ctx = getContext(); |
| 584 | for (int64_t value : values) |
| 585 | exprs.push_back(Elt: getAffineConstantExpr(constant: value, context: ctx)); |
| 586 | SmallVector<int64_t, 4> res; |
| 587 | res.reserve(N: getNumResults()); |
| 588 | for (auto e : getResults()) |
| 589 | res.push_back(Elt: cast<AffineConstantExpr>(Val: e.replaceDims(dimReplacements: exprs)).getValue()); |
| 590 | return res; |
| 591 | } |
| 592 | |
| 593 | size_t AffineMap::getNumOfZeroResults() const { |
| 594 | size_t res = 0; |
| 595 | for (auto expr : getResults()) { |
| 596 | auto constExpr = dyn_cast<AffineConstantExpr>(Val&: expr); |
| 597 | if (constExpr && constExpr.getValue() == 0) |
| 598 | res++; |
| 599 | } |
| 600 | |
| 601 | return res; |
| 602 | } |
| 603 | |
| 604 | AffineMap AffineMap::dropZeroResults() { |
| 605 | SmallVector<AffineExpr> newExprs; |
| 606 | |
| 607 | for (auto expr : getResults()) { |
| 608 | auto constExpr = dyn_cast<AffineConstantExpr>(Val&: expr); |
| 609 | if (!constExpr || constExpr.getValue() != 0) |
| 610 | newExprs.push_back(Elt: expr); |
| 611 | } |
| 612 | return AffineMap::get(dimCount: getNumDims(), symbolCount: getNumSymbols(), results: newExprs, context: getContext()); |
| 613 | } |
| 614 | |
| 615 | bool AffineMap::isProjectedPermutation(bool allowZeroInResults) const { |
| 616 | if (getNumSymbols() > 0) |
| 617 | return false; |
| 618 | |
| 619 | // Having more results than inputs means that results have duplicated dims or |
| 620 | // zeros that can't be mapped to input dims. |
| 621 | if (getNumResults() > getNumInputs()) |
| 622 | return false; |
| 623 | |
| 624 | SmallVector<bool, 8> seen(getNumInputs(), false); |
| 625 | // A projected permutation can have, at most, only one instance of each input |
| 626 | // dimension in the result expressions. Zeros are allowed as long as the |
| 627 | // number of result expressions is lower or equal than the number of input |
| 628 | // expressions. |
| 629 | for (auto expr : getResults()) { |
| 630 | if (auto dim = dyn_cast<AffineDimExpr>(Val&: expr)) { |
| 631 | if (seen[dim.getPosition()]) |
| 632 | return false; |
| 633 | seen[dim.getPosition()] = true; |
| 634 | } else { |
| 635 | auto constExpr = dyn_cast<AffineConstantExpr>(Val&: expr); |
| 636 | if (!allowZeroInResults || !constExpr || constExpr.getValue() != 0) |
| 637 | return false; |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | // Results are either dims or zeros and zeros can be mapped to input dims. |
| 642 | return true; |
| 643 | } |
| 644 | |
| 645 | bool AffineMap::isPermutation() const { |
| 646 | if (getNumDims() != getNumResults()) |
| 647 | return false; |
| 648 | return isProjectedPermutation(); |
| 649 | } |
| 650 | |
| 651 | AffineMap AffineMap::getSubMap(ArrayRef<unsigned> resultPos) const { |
| 652 | SmallVector<AffineExpr, 4> exprs; |
| 653 | exprs.reserve(N: resultPos.size()); |
| 654 | for (auto idx : resultPos) |
| 655 | exprs.push_back(Elt: getResult(idx)); |
| 656 | return AffineMap::get(dimCount: getNumDims(), symbolCount: getNumSymbols(), results: exprs, context: getContext()); |
| 657 | } |
| 658 | |
| 659 | AffineMap AffineMap::getSliceMap(unsigned start, unsigned length) const { |
| 660 | return AffineMap::get(dimCount: getNumDims(), symbolCount: getNumSymbols(), |
| 661 | results: getResults().slice(N: start, M: length), context: getContext()); |
| 662 | } |
| 663 | |
| 664 | AffineMap AffineMap::getMajorSubMap(unsigned numResults) const { |
| 665 | if (numResults == 0) |
| 666 | return AffineMap(); |
| 667 | if (numResults > getNumResults()) |
| 668 | return *this; |
| 669 | return getSliceMap(start: 0, length: numResults); |
| 670 | } |
| 671 | |
| 672 | AffineMap AffineMap::getMinorSubMap(unsigned numResults) const { |
| 673 | if (numResults == 0) |
| 674 | return AffineMap(); |
| 675 | if (numResults > getNumResults()) |
| 676 | return *this; |
| 677 | return getSliceMap(start: getNumResults() - numResults, length: numResults); |
| 678 | } |
| 679 | |
| 680 | /// Implementation detail to compress multiple affine maps with a compressionFun |
| 681 | /// that is expected to be either compressUnusedDims or compressUnusedSymbols. |
| 682 | /// The implementation keeps track of num dims and symbols across the different |
| 683 | /// affine maps. |
| 684 | static SmallVector<AffineMap> compressUnusedListImpl( |
| 685 | ArrayRef<AffineMap> maps, |
| 686 | llvm::function_ref<AffineMap(AffineMap)> compressionFun) { |
| 687 | if (maps.empty()) |
| 688 | return SmallVector<AffineMap>(); |
| 689 | SmallVector<AffineExpr> allExprs; |
| 690 | allExprs.reserve(N: maps.size() * maps.front().getNumResults()); |
| 691 | unsigned numDims = maps.front().getNumDims(), |
| 692 | numSymbols = maps.front().getNumSymbols(); |
| 693 | for (auto m : maps) { |
| 694 | assert(numDims == m.getNumDims() && numSymbols == m.getNumSymbols() && |
| 695 | "expected maps with same num dims and symbols" ); |
| 696 | llvm::append_range(C&: allExprs, R: m.getResults()); |
| 697 | } |
| 698 | AffineMap unifiedMap = compressionFun( |
| 699 | AffineMap::get(dimCount: numDims, symbolCount: numSymbols, results: allExprs, context: maps.front().getContext())); |
| 700 | unsigned unifiedNumDims = unifiedMap.getNumDims(), |
| 701 | unifiedNumSymbols = unifiedMap.getNumSymbols(); |
| 702 | ArrayRef<AffineExpr> unifiedResults = unifiedMap.getResults(); |
| 703 | SmallVector<AffineMap> res; |
| 704 | res.reserve(N: maps.size()); |
| 705 | for (auto m : maps) { |
| 706 | res.push_back(Elt: AffineMap::get(dimCount: unifiedNumDims, symbolCount: unifiedNumSymbols, |
| 707 | results: unifiedResults.take_front(N: m.getNumResults()), |
| 708 | context: m.getContext())); |
| 709 | unifiedResults = unifiedResults.drop_front(N: m.getNumResults()); |
| 710 | } |
| 711 | return res; |
| 712 | } |
| 713 | |
| 714 | AffineMap mlir::compressDims(AffineMap map, |
| 715 | const llvm::SmallBitVector &unusedDims) { |
| 716 | return projectDims(map, projectedDimensions: unusedDims, /*compressDimsFlag=*/true); |
| 717 | } |
| 718 | |
| 719 | AffineMap mlir::compressUnusedDims(AffineMap map) { |
| 720 | return compressDims(map, unusedDims: getUnusedDimsBitVector(maps: {map})); |
| 721 | } |
| 722 | |
| 723 | SmallVector<AffineMap> mlir::compressUnusedDims(ArrayRef<AffineMap> maps) { |
| 724 | return compressUnusedListImpl( |
| 725 | maps, compressionFun: [](AffineMap m) { return compressUnusedDims(map: m); }); |
| 726 | } |
| 727 | |
| 728 | AffineMap mlir::compressSymbols(AffineMap map, |
| 729 | const llvm::SmallBitVector &unusedSymbols) { |
| 730 | return projectSymbols(map, projectedSymbols: unusedSymbols, /*compressSymbolsFlag=*/true); |
| 731 | } |
| 732 | |
| 733 | AffineMap mlir::compressUnusedSymbols(AffineMap map) { |
| 734 | return compressSymbols(map, unusedSymbols: getUnusedSymbolsBitVector(maps: {map})); |
| 735 | } |
| 736 | |
| 737 | SmallVector<AffineMap> mlir::compressUnusedSymbols(ArrayRef<AffineMap> maps) { |
| 738 | return compressUnusedListImpl( |
| 739 | maps, compressionFun: [](AffineMap m) { return compressUnusedSymbols(map: m); }); |
| 740 | } |
| 741 | |
| 742 | AffineMap mlir::foldAttributesIntoMap(Builder &b, AffineMap map, |
| 743 | ArrayRef<OpFoldResult> operands, |
| 744 | SmallVector<Value> &remainingValues) { |
| 745 | SmallVector<AffineExpr> dimReplacements, symReplacements; |
| 746 | int64_t numDims = 0; |
| 747 | for (int64_t i = 0; i < map.getNumDims(); ++i) { |
| 748 | if (auto attr = dyn_cast<Attribute>(Val: operands[i])) { |
| 749 | dimReplacements.push_back( |
| 750 | Elt: b.getAffineConstantExpr(constant: cast<IntegerAttr>(attr).getInt())); |
| 751 | } else { |
| 752 | dimReplacements.push_back(Elt: b.getAffineDimExpr(position: numDims++)); |
| 753 | remainingValues.push_back(Elt: cast<Value>(Val: operands[i])); |
| 754 | } |
| 755 | } |
| 756 | int64_t numSymbols = 0; |
| 757 | for (int64_t i = 0; i < map.getNumSymbols(); ++i) { |
| 758 | if (auto attr = dyn_cast<Attribute>(Val: operands[i + map.getNumDims()])) { |
| 759 | symReplacements.push_back( |
| 760 | Elt: b.getAffineConstantExpr(constant: cast<IntegerAttr>(attr).getInt())); |
| 761 | } else { |
| 762 | symReplacements.push_back(Elt: b.getAffineSymbolExpr(position: numSymbols++)); |
| 763 | remainingValues.push_back(Elt: cast<Value>(Val: operands[i + map.getNumDims()])); |
| 764 | } |
| 765 | } |
| 766 | return map.replaceDimsAndSymbols(dimReplacements, symReplacements, numResultDims: numDims, |
| 767 | numResultSyms: numSymbols); |
| 768 | } |
| 769 | |
| 770 | AffineMap mlir::simplifyAffineMap(AffineMap map) { |
| 771 | SmallVector<AffineExpr, 8> exprs; |
| 772 | for (auto e : map.getResults()) { |
| 773 | exprs.push_back( |
| 774 | Elt: simplifyAffineExpr(expr: e, numDims: map.getNumDims(), numSymbols: map.getNumSymbols())); |
| 775 | } |
| 776 | return AffineMap::get(dimCount: map.getNumDims(), symbolCount: map.getNumSymbols(), results: exprs, |
| 777 | context: map.getContext()); |
| 778 | } |
| 779 | |
| 780 | AffineMap mlir::removeDuplicateExprs(AffineMap map) { |
| 781 | auto results = map.getResults(); |
| 782 | SmallVector<AffineExpr, 4> uniqueExprs(results); |
| 783 | uniqueExprs.erase(CS: llvm::unique(R&: uniqueExprs), CE: uniqueExprs.end()); |
| 784 | return AffineMap::get(dimCount: map.getNumDims(), symbolCount: map.getNumSymbols(), results: uniqueExprs, |
| 785 | context: map.getContext()); |
| 786 | } |
| 787 | |
| 788 | AffineMap mlir::inversePermutation(AffineMap map) { |
| 789 | if (map.isEmpty()) |
| 790 | return map; |
| 791 | assert(map.getNumSymbols() == 0 && "expected map without symbols" ); |
| 792 | SmallVector<AffineExpr, 4> exprs(map.getNumDims()); |
| 793 | for (const auto &en : llvm::enumerate(First: map.getResults())) { |
| 794 | auto expr = en.value(); |
| 795 | // Skip non-permutations. |
| 796 | if (auto d = dyn_cast<AffineDimExpr>(Val&: expr)) { |
| 797 | if (exprs[d.getPosition()]) |
| 798 | continue; |
| 799 | exprs[d.getPosition()] = getAffineDimExpr(position: en.index(), context: d.getContext()); |
| 800 | } |
| 801 | } |
| 802 | SmallVector<AffineExpr, 4> seenExprs; |
| 803 | seenExprs.reserve(N: map.getNumDims()); |
| 804 | for (auto expr : exprs) |
| 805 | if (expr) |
| 806 | seenExprs.push_back(Elt: expr); |
| 807 | if (seenExprs.size() != map.getNumInputs()) |
| 808 | return AffineMap(); |
| 809 | return AffineMap::get(dimCount: map.getNumResults(), symbolCount: 0, results: seenExprs, context: map.getContext()); |
| 810 | } |
| 811 | |
| 812 | AffineMap mlir::inverseAndBroadcastProjectedPermutation(AffineMap map) { |
| 813 | assert(map.isProjectedPermutation(/*allowZeroInResults=*/true)); |
| 814 | MLIRContext *context = map.getContext(); |
| 815 | AffineExpr zero = mlir::getAffineConstantExpr(constant: 0, context); |
| 816 | // Start with all the results as 0. |
| 817 | SmallVector<AffineExpr, 4> exprs(map.getNumInputs(), zero); |
| 818 | for (unsigned i : llvm::seq(Begin: unsigned(0), End: map.getNumResults())) { |
| 819 | // Skip zeros from input map. 'exprs' is already initialized to zero. |
| 820 | if (auto constExpr = dyn_cast<AffineConstantExpr>(Val: map.getResult(idx: i))) { |
| 821 | assert(constExpr.getValue() == 0 && |
| 822 | "Unexpected constant in projected permutation" ); |
| 823 | (void)constExpr; |
| 824 | continue; |
| 825 | } |
| 826 | |
| 827 | // Reverse each dimension existing in the original map result. |
| 828 | exprs[map.getDimPosition(idx: i)] = getAffineDimExpr(position: i, context); |
| 829 | } |
| 830 | return AffineMap::get(dimCount: map.getNumResults(), /*symbolCount=*/0, results: exprs, context); |
| 831 | } |
| 832 | |
| 833 | AffineMap mlir::concatAffineMaps(ArrayRef<AffineMap> maps, |
| 834 | MLIRContext *context) { |
| 835 | if (maps.empty()) |
| 836 | return AffineMap::get(context); |
| 837 | unsigned numResults = 0, numDims = 0, numSymbols = 0; |
| 838 | for (auto m : maps) |
| 839 | numResults += m.getNumResults(); |
| 840 | SmallVector<AffineExpr, 8> results; |
| 841 | results.reserve(N: numResults); |
| 842 | for (auto m : maps) { |
| 843 | for (auto res : m.getResults()) |
| 844 | results.push_back(Elt: res.shiftSymbols(numSymbols: m.getNumSymbols(), shift: numSymbols)); |
| 845 | |
| 846 | numSymbols += m.getNumSymbols(); |
| 847 | numDims = std::max(a: m.getNumDims(), b: numDims); |
| 848 | } |
| 849 | return AffineMap::get(dimCount: numDims, symbolCount: numSymbols, results, context); |
| 850 | } |
| 851 | |
| 852 | /// Common implementation to project out dimensions or symbols from an affine |
| 853 | /// map based on the template type. |
| 854 | /// Additionally, if 'compress' is true, the projected out dimensions or symbols |
| 855 | /// are also dropped from the resulting map. |
| 856 | template <typename AffineDimOrSymExpr> |
| 857 | static AffineMap projectCommonImpl(AffineMap map, |
| 858 | const llvm::SmallBitVector &toProject, |
| 859 | bool compress) { |
| 860 | static_assert(llvm::is_one_of<AffineDimOrSymExpr, AffineDimExpr, |
| 861 | AffineSymbolExpr>::value, |
| 862 | "expected AffineDimExpr or AffineSymbolExpr" ); |
| 863 | |
| 864 | constexpr bool isDim = std::is_same<AffineDimOrSymExpr, AffineDimExpr>::value; |
| 865 | int64_t numDimOrSym = (isDim) ? map.getNumDims() : map.getNumSymbols(); |
| 866 | SmallVector<AffineExpr> replacements; |
| 867 | replacements.reserve(N: numDimOrSym); |
| 868 | |
| 869 | auto createNewDimOrSym = (isDim) ? getAffineDimExpr : getAffineSymbolExpr; |
| 870 | |
| 871 | using replace_fn_ty = |
| 872 | std::function<AffineExpr(AffineExpr, ArrayRef<AffineExpr>)>; |
| 873 | replace_fn_ty replaceDims = [](AffineExpr e, |
| 874 | ArrayRef<AffineExpr> replacements) { |
| 875 | return e.replaceDims(dimReplacements: replacements); |
| 876 | }; |
| 877 | replace_fn_ty replaceSymbols = [](AffineExpr e, |
| 878 | ArrayRef<AffineExpr> replacements) { |
| 879 | return e.replaceSymbols(symReplacements: replacements); |
| 880 | }; |
| 881 | replace_fn_ty replaceNewDimOrSym = (isDim) ? replaceDims : replaceSymbols; |
| 882 | |
| 883 | MLIRContext *context = map.getContext(); |
| 884 | int64_t newNumDimOrSym = 0; |
| 885 | for (unsigned dimOrSym = 0; dimOrSym < numDimOrSym; ++dimOrSym) { |
| 886 | if (toProject.test(Idx: dimOrSym)) { |
| 887 | replacements.push_back(Elt: getAffineConstantExpr(constant: 0, context)); |
| 888 | continue; |
| 889 | } |
| 890 | int64_t newPos = compress ? newNumDimOrSym++ : dimOrSym; |
| 891 | replacements.push_back(Elt: createNewDimOrSym(newPos, context)); |
| 892 | } |
| 893 | SmallVector<AffineExpr> resultExprs; |
| 894 | resultExprs.reserve(N: map.getNumResults()); |
| 895 | for (auto e : map.getResults()) |
| 896 | resultExprs.push_back(Elt: replaceNewDimOrSym(e, replacements)); |
| 897 | |
| 898 | int64_t numDims = (compress && isDim) ? newNumDimOrSym : map.getNumDims(); |
| 899 | int64_t numSyms = (compress && !isDim) ? newNumDimOrSym : map.getNumSymbols(); |
| 900 | return AffineMap::get(dimCount: numDims, symbolCount: numSyms, results: resultExprs, context); |
| 901 | } |
| 902 | |
| 903 | AffineMap mlir::projectDims(AffineMap map, |
| 904 | const llvm::SmallBitVector &projectedDimensions, |
| 905 | bool compressDimsFlag) { |
| 906 | return projectCommonImpl<AffineDimExpr>(map, toProject: projectedDimensions, |
| 907 | compress: compressDimsFlag); |
| 908 | } |
| 909 | |
| 910 | AffineMap mlir::projectSymbols(AffineMap map, |
| 911 | const llvm::SmallBitVector &projectedSymbols, |
| 912 | bool compressSymbolsFlag) { |
| 913 | return projectCommonImpl<AffineSymbolExpr>(map, toProject: projectedSymbols, |
| 914 | compress: compressSymbolsFlag); |
| 915 | } |
| 916 | |
| 917 | AffineMap mlir::getProjectedMap(AffineMap map, |
| 918 | const llvm::SmallBitVector &projectedDimensions, |
| 919 | bool compressDimsFlag, |
| 920 | bool compressSymbolsFlag) { |
| 921 | map = projectDims(map, projectedDimensions, compressDimsFlag); |
| 922 | if (compressSymbolsFlag) |
| 923 | map = compressUnusedSymbols(map); |
| 924 | return map; |
| 925 | } |
| 926 | |
| 927 | llvm::SmallBitVector mlir::getUnusedDimsBitVector(ArrayRef<AffineMap> maps) { |
| 928 | unsigned numDims = maps[0].getNumDims(); |
| 929 | llvm::SmallBitVector numDimsBitVector(numDims, true); |
| 930 | for (AffineMap m : maps) { |
| 931 | for (unsigned i = 0; i < numDims; ++i) { |
| 932 | if (m.isFunctionOfDim(position: i)) |
| 933 | numDimsBitVector.reset(Idx: i); |
| 934 | } |
| 935 | } |
| 936 | return numDimsBitVector; |
| 937 | } |
| 938 | |
| 939 | llvm::SmallBitVector mlir::getUnusedSymbolsBitVector(ArrayRef<AffineMap> maps) { |
| 940 | unsigned numSymbols = maps[0].getNumSymbols(); |
| 941 | llvm::SmallBitVector numSymbolsBitVector(numSymbols, true); |
| 942 | for (AffineMap m : maps) { |
| 943 | for (unsigned i = 0; i < numSymbols; ++i) { |
| 944 | if (m.isFunctionOfSymbol(position: i)) |
| 945 | numSymbolsBitVector.reset(Idx: i); |
| 946 | } |
| 947 | } |
| 948 | return numSymbolsBitVector; |
| 949 | } |
| 950 | |
| 951 | AffineMap |
| 952 | mlir::expandDimsToRank(AffineMap map, int64_t rank, |
| 953 | const llvm::SmallBitVector &projectedDimensions) { |
| 954 | auto id = AffineMap::getMultiDimIdentityMap(numDims: rank, context: map.getContext()); |
| 955 | AffineMap proj = id.dropResults(positions: projectedDimensions); |
| 956 | return map.compose(map: proj); |
| 957 | } |
| 958 | |
| 959 | //===----------------------------------------------------------------------===// |
| 960 | // MutableAffineMap. |
| 961 | //===----------------------------------------------------------------------===// |
| 962 | |
| 963 | MutableAffineMap::MutableAffineMap(AffineMap map) |
| 964 | : results(map.getResults()), numDims(map.getNumDims()), |
| 965 | numSymbols(map.getNumSymbols()), context(map.getContext()) {} |
| 966 | |
| 967 | void MutableAffineMap::reset(AffineMap map) { |
| 968 | results.clear(); |
| 969 | numDims = map.getNumDims(); |
| 970 | numSymbols = map.getNumSymbols(); |
| 971 | context = map.getContext(); |
| 972 | llvm::append_range(C&: results, R: map.getResults()); |
| 973 | } |
| 974 | |
| 975 | bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const { |
| 976 | return results[idx].isMultipleOf(factor); |
| 977 | } |
| 978 | |
| 979 | // Simplifies the result affine expressions of this map. The expressions |
| 980 | // have to be pure for the simplification implemented. |
| 981 | void MutableAffineMap::simplify() { |
| 982 | // Simplify each of the results if possible. |
| 983 | // TODO: functional-style map |
| 984 | for (unsigned i = 0, e = getNumResults(); i < e; i++) { |
| 985 | results[i] = simplifyAffineExpr(expr: getResult(idx: i), numDims, numSymbols); |
| 986 | } |
| 987 | } |
| 988 | |
| 989 | AffineMap MutableAffineMap::getAffineMap() const { |
| 990 | return AffineMap::get(dimCount: numDims, symbolCount: numSymbols, results, context); |
| 991 | } |
| 992 | |