| 1 | //===- BuiltinTypes.cpp - MLIR Builtin Type Classes -----------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/IR/BuiltinTypes.h" |
| 10 | #include "TypeDetail.h" |
| 11 | #include "mlir/IR/AffineExpr.h" |
| 12 | #include "mlir/IR/AffineMap.h" |
| 13 | #include "mlir/IR/BuiltinAttributes.h" |
| 14 | #include "mlir/IR/BuiltinDialect.h" |
| 15 | #include "mlir/IR/Diagnostics.h" |
| 16 | #include "mlir/IR/Dialect.h" |
| 17 | #include "mlir/IR/TensorEncoding.h" |
| 18 | #include "mlir/IR/TypeUtilities.h" |
| 19 | #include "llvm/ADT/APFloat.h" |
| 20 | #include "llvm/ADT/BitVector.h" |
| 21 | #include "llvm/ADT/Sequence.h" |
| 22 | #include "llvm/ADT/Twine.h" |
| 23 | #include "llvm/ADT/TypeSwitch.h" |
| 24 | |
| 25 | using namespace mlir; |
| 26 | using namespace mlir::detail; |
| 27 | |
| 28 | //===----------------------------------------------------------------------===// |
| 29 | /// Tablegen Type Definitions |
| 30 | //===----------------------------------------------------------------------===// |
| 31 | |
| 32 | #define GET_TYPEDEF_CLASSES |
| 33 | #include "mlir/IR/BuiltinTypes.cpp.inc" |
| 34 | |
| 35 | namespace mlir { |
| 36 | #include "mlir/IR/BuiltinTypeConstraints.cpp.inc" |
| 37 | } // namespace mlir |
| 38 | |
| 39 | //===----------------------------------------------------------------------===// |
| 40 | // BuiltinDialect |
| 41 | //===----------------------------------------------------------------------===// |
| 42 | |
| 43 | void BuiltinDialect::registerTypes() { |
| 44 | addTypes< |
| 45 | #define GET_TYPEDEF_LIST |
| 46 | #include "mlir/IR/BuiltinTypes.cpp.inc" |
| 47 | >(); |
| 48 | } |
| 49 | |
| 50 | //===----------------------------------------------------------------------===// |
| 51 | /// ComplexType |
| 52 | //===----------------------------------------------------------------------===// |
| 53 | |
| 54 | /// Verify the construction of an integer type. |
| 55 | LogicalResult ComplexType::verify(function_ref<InFlightDiagnostic()> emitError, |
| 56 | Type elementType) { |
| 57 | if (!elementType.isIntOrFloat()) |
| 58 | return emitError() << "invalid element type for complex" ; |
| 59 | return success(); |
| 60 | } |
| 61 | |
| 62 | //===----------------------------------------------------------------------===// |
| 63 | // Integer Type |
| 64 | //===----------------------------------------------------------------------===// |
| 65 | |
| 66 | /// Verify the construction of an integer type. |
| 67 | LogicalResult IntegerType::verify(function_ref<InFlightDiagnostic()> emitError, |
| 68 | unsigned width, |
| 69 | SignednessSemantics signedness) { |
| 70 | if (width > IntegerType::kMaxWidth) { |
| 71 | return emitError() << "integer bitwidth is limited to " |
| 72 | << IntegerType::kMaxWidth << " bits" ; |
| 73 | } |
| 74 | return success(); |
| 75 | } |
| 76 | |
| 77 | unsigned IntegerType::getWidth() const { return getImpl()->width; } |
| 78 | |
| 79 | IntegerType::SignednessSemantics IntegerType::getSignedness() const { |
| 80 | return getImpl()->signedness; |
| 81 | } |
| 82 | |
| 83 | IntegerType IntegerType::scaleElementBitwidth(unsigned scale) { |
| 84 | if (!scale) |
| 85 | return IntegerType(); |
| 86 | return IntegerType::get(getContext(), scale * getWidth(), getSignedness()); |
| 87 | } |
| 88 | |
| 89 | //===----------------------------------------------------------------------===// |
| 90 | // Float Types |
| 91 | //===----------------------------------------------------------------------===// |
| 92 | |
| 93 | // Mapping from MLIR FloatType to APFloat semantics. |
| 94 | #define FLOAT_TYPE_SEMANTICS(TYPE, SEM) \ |
| 95 | const llvm::fltSemantics &TYPE::getFloatSemantics() const { \ |
| 96 | return APFloat::SEM(); \ |
| 97 | } |
| 98 | FLOAT_TYPE_SEMANTICS(Float4E2M1FNType, Float4E2M1FN) |
| 99 | FLOAT_TYPE_SEMANTICS(Float6E2M3FNType, Float6E2M3FN) |
| 100 | FLOAT_TYPE_SEMANTICS(Float6E3M2FNType, Float6E3M2FN) |
| 101 | FLOAT_TYPE_SEMANTICS(Float8E5M2Type, Float8E5M2) |
| 102 | FLOAT_TYPE_SEMANTICS(Float8E4M3Type, Float8E4M3) |
| 103 | FLOAT_TYPE_SEMANTICS(Float8E4M3FNType, Float8E4M3FN) |
| 104 | FLOAT_TYPE_SEMANTICS(Float8E5M2FNUZType, Float8E5M2FNUZ) |
| 105 | FLOAT_TYPE_SEMANTICS(Float8E4M3FNUZType, Float8E4M3FNUZ) |
| 106 | FLOAT_TYPE_SEMANTICS(Float8E4M3B11FNUZType, Float8E4M3B11FNUZ) |
| 107 | FLOAT_TYPE_SEMANTICS(Float8E3M4Type, Float8E3M4) |
| 108 | FLOAT_TYPE_SEMANTICS(Float8E8M0FNUType, Float8E8M0FNU) |
| 109 | FLOAT_TYPE_SEMANTICS(BFloat16Type, BFloat) |
| 110 | FLOAT_TYPE_SEMANTICS(Float16Type, IEEEhalf) |
| 111 | FLOAT_TYPE_SEMANTICS(FloatTF32Type, FloatTF32) |
| 112 | FLOAT_TYPE_SEMANTICS(Float32Type, IEEEsingle) |
| 113 | FLOAT_TYPE_SEMANTICS(Float64Type, IEEEdouble) |
| 114 | FLOAT_TYPE_SEMANTICS(Float80Type, x87DoubleExtended) |
| 115 | FLOAT_TYPE_SEMANTICS(Float128Type, IEEEquad) |
| 116 | #undef FLOAT_TYPE_SEMANTICS |
| 117 | |
| 118 | FloatType Float16Type::scaleElementBitwidth(unsigned scale) const { |
| 119 | if (scale == 2) |
| 120 | return Float32Type::get(getContext()); |
| 121 | if (scale == 4) |
| 122 | return Float64Type::get(getContext()); |
| 123 | return FloatType(); |
| 124 | } |
| 125 | |
| 126 | FloatType BFloat16Type::scaleElementBitwidth(unsigned scale) const { |
| 127 | if (scale == 2) |
| 128 | return Float32Type::get(getContext()); |
| 129 | if (scale == 4) |
| 130 | return Float64Type::get(getContext()); |
| 131 | return FloatType(); |
| 132 | } |
| 133 | |
| 134 | FloatType Float32Type::scaleElementBitwidth(unsigned scale) const { |
| 135 | if (scale == 2) |
| 136 | return Float64Type::get(getContext()); |
| 137 | return FloatType(); |
| 138 | } |
| 139 | |
| 140 | //===----------------------------------------------------------------------===// |
| 141 | // FunctionType |
| 142 | //===----------------------------------------------------------------------===// |
| 143 | |
| 144 | unsigned FunctionType::getNumInputs() const { return getImpl()->numInputs; } |
| 145 | |
| 146 | ArrayRef<Type> FunctionType::getInputs() const { |
| 147 | return getImpl()->getInputs(); |
| 148 | } |
| 149 | |
| 150 | unsigned FunctionType::getNumResults() const { return getImpl()->numResults; } |
| 151 | |
| 152 | ArrayRef<Type> FunctionType::getResults() const { |
| 153 | return getImpl()->getResults(); |
| 154 | } |
| 155 | |
| 156 | FunctionType FunctionType::clone(TypeRange inputs, TypeRange results) const { |
| 157 | return get(getContext(), inputs, results); |
| 158 | } |
| 159 | |
| 160 | /// Returns a new function type with the specified arguments and results |
| 161 | /// inserted. |
| 162 | FunctionType FunctionType::getWithArgsAndResults( |
| 163 | ArrayRef<unsigned> argIndices, TypeRange argTypes, |
| 164 | ArrayRef<unsigned> resultIndices, TypeRange resultTypes) { |
| 165 | SmallVector<Type> argStorage, resultStorage; |
| 166 | TypeRange newArgTypes = |
| 167 | insertTypesInto(getInputs(), argIndices, argTypes, argStorage); |
| 168 | TypeRange newResultTypes = |
| 169 | insertTypesInto(getResults(), resultIndices, resultTypes, resultStorage); |
| 170 | return clone(newArgTypes, newResultTypes); |
| 171 | } |
| 172 | |
| 173 | /// Returns a new function type without the specified arguments and results. |
| 174 | FunctionType |
| 175 | FunctionType::getWithoutArgsAndResults(const BitVector &argIndices, |
| 176 | const BitVector &resultIndices) { |
| 177 | SmallVector<Type> argStorage, resultStorage; |
| 178 | TypeRange newArgTypes = filterTypesOut(getInputs(), argIndices, argStorage); |
| 179 | TypeRange newResultTypes = |
| 180 | filterTypesOut(getResults(), resultIndices, resultStorage); |
| 181 | return clone(newArgTypes, newResultTypes); |
| 182 | } |
| 183 | |
| 184 | //===----------------------------------------------------------------------===// |
| 185 | // OpaqueType |
| 186 | //===----------------------------------------------------------------------===// |
| 187 | |
| 188 | /// Verify the construction of an opaque type. |
| 189 | LogicalResult OpaqueType::verify(function_ref<InFlightDiagnostic()> emitError, |
| 190 | StringAttr dialect, StringRef typeData) { |
| 191 | if (!Dialect::isValidNamespace(dialect.strref())) |
| 192 | return emitError() << "invalid dialect namespace '" << dialect << "'" ; |
| 193 | |
| 194 | // Check that the dialect is actually registered. |
| 195 | MLIRContext *context = dialect.getContext(); |
| 196 | if (!context->allowsUnregisteredDialects() && |
| 197 | !context->getLoadedDialect(dialect.strref())) { |
| 198 | return emitError() |
| 199 | << "`!" << dialect << "<\"" << typeData << "\">" |
| 200 | << "` type created with unregistered dialect. If this is " |
| 201 | "intended, please call allowUnregisteredDialects() on the " |
| 202 | "MLIRContext, or use -allow-unregistered-dialect with " |
| 203 | "the MLIR opt tool used" ; |
| 204 | } |
| 205 | |
| 206 | return success(); |
| 207 | } |
| 208 | |
| 209 | //===----------------------------------------------------------------------===// |
| 210 | // VectorType |
| 211 | //===----------------------------------------------------------------------===// |
| 212 | |
| 213 | bool VectorType::isValidElementType(Type t) { |
| 214 | return isValidVectorTypeElementType(t); |
| 215 | } |
| 216 | |
| 217 | LogicalResult VectorType::verify(function_ref<InFlightDiagnostic()> emitError, |
| 218 | ArrayRef<int64_t> shape, Type elementType, |
| 219 | ArrayRef<bool> scalableDims) { |
| 220 | if (!isValidElementType(elementType)) |
| 221 | return emitError() |
| 222 | << "vector elements must be int/index/float type but got " |
| 223 | << elementType; |
| 224 | |
| 225 | if (any_of(shape, [](int64_t i) { return i <= 0; })) |
| 226 | return emitError() |
| 227 | << "vector types must have positive constant sizes but got " |
| 228 | << shape; |
| 229 | |
| 230 | if (scalableDims.size() != shape.size()) |
| 231 | return emitError() << "number of dims must match, got " |
| 232 | << scalableDims.size() << " and " << shape.size(); |
| 233 | |
| 234 | return success(); |
| 235 | } |
| 236 | |
| 237 | VectorType VectorType::scaleElementBitwidth(unsigned scale) { |
| 238 | if (!scale) |
| 239 | return VectorType(); |
| 240 | if (auto et = llvm::dyn_cast<IntegerType>(getElementType())) |
| 241 | if (auto scaledEt = et.scaleElementBitwidth(scale)) |
| 242 | return VectorType::get(getShape(), scaledEt, getScalableDims()); |
| 243 | if (auto et = llvm::dyn_cast<FloatType>(getElementType())) |
| 244 | if (auto scaledEt = et.scaleElementBitwidth(scale)) |
| 245 | return VectorType::get(getShape(), scaledEt, getScalableDims()); |
| 246 | return VectorType(); |
| 247 | } |
| 248 | |
| 249 | VectorType VectorType::cloneWith(std::optional<ArrayRef<int64_t>> shape, |
| 250 | Type elementType) const { |
| 251 | return VectorType::get(shape.value_or(getShape()), elementType, |
| 252 | getScalableDims()); |
| 253 | } |
| 254 | |
| 255 | //===----------------------------------------------------------------------===// |
| 256 | // TensorType |
| 257 | //===----------------------------------------------------------------------===// |
| 258 | |
| 259 | Type TensorType::getElementType() const { |
| 260 | return llvm::TypeSwitch<TensorType, Type>(*this) |
| 261 | .Case<RankedTensorType, UnrankedTensorType>( |
| 262 | [](auto type) { return type.getElementType(); }); |
| 263 | } |
| 264 | |
| 265 | bool TensorType::hasRank() const { |
| 266 | return !llvm::isa<UnrankedTensorType>(Val: *this); |
| 267 | } |
| 268 | |
| 269 | ArrayRef<int64_t> TensorType::getShape() const { |
| 270 | return llvm::cast<RankedTensorType>(*this).getShape(); |
| 271 | } |
| 272 | |
| 273 | TensorType TensorType::cloneWith(std::optional<ArrayRef<int64_t>> shape, |
| 274 | Type elementType) const { |
| 275 | if (llvm::dyn_cast<UnrankedTensorType>(*this)) { |
| 276 | if (shape) |
| 277 | return RankedTensorType::get(*shape, elementType); |
| 278 | return UnrankedTensorType::get(elementType); |
| 279 | } |
| 280 | |
| 281 | auto rankedTy = llvm::cast<RankedTensorType>(*this); |
| 282 | if (!shape) |
| 283 | return RankedTensorType::get(rankedTy.getShape(), elementType, |
| 284 | rankedTy.getEncoding()); |
| 285 | return RankedTensorType::get(shape.value_or(rankedTy.getShape()), elementType, |
| 286 | rankedTy.getEncoding()); |
| 287 | } |
| 288 | |
| 289 | RankedTensorType TensorType::clone(::llvm::ArrayRef<int64_t> shape, |
| 290 | Type elementType) const { |
| 291 | return ::llvm::cast<RankedTensorType>(cloneWith(shape, elementType)); |
| 292 | } |
| 293 | |
| 294 | RankedTensorType TensorType::clone(::llvm::ArrayRef<int64_t> shape) const { |
| 295 | return ::llvm::cast<RankedTensorType>(cloneWith(shape, elementType: getElementType())); |
| 296 | } |
| 297 | |
| 298 | // Check if "elementType" can be an element type of a tensor. |
| 299 | static LogicalResult |
| 300 | checkTensorElementType(function_ref<InFlightDiagnostic()> emitError, |
| 301 | Type elementType) { |
| 302 | if (!TensorType::isValidElementType(type: elementType)) |
| 303 | return emitError() << "invalid tensor element type: " << elementType; |
| 304 | return success(); |
| 305 | } |
| 306 | |
| 307 | /// Return true if the specified element type is ok in a tensor. |
| 308 | bool TensorType::isValidElementType(Type type) { |
| 309 | // Note: Non standard/builtin types are allowed to exist within tensor |
| 310 | // types. Dialects are expected to verify that tensor types have a valid |
| 311 | // element type within that dialect. |
| 312 | return llvm::isa<ComplexType, FloatType, IntegerType, OpaqueType, VectorType, |
| 313 | IndexType>(type) || |
| 314 | !llvm::isa<BuiltinDialect>(type.getDialect()); |
| 315 | } |
| 316 | |
| 317 | //===----------------------------------------------------------------------===// |
| 318 | // RankedTensorType |
| 319 | //===----------------------------------------------------------------------===// |
| 320 | |
| 321 | LogicalResult |
| 322 | RankedTensorType::verify(function_ref<InFlightDiagnostic()> emitError, |
| 323 | ArrayRef<int64_t> shape, Type elementType, |
| 324 | Attribute encoding) { |
| 325 | for (int64_t s : shape) |
| 326 | if (s < 0 && !ShapedType::isDynamic(s)) |
| 327 | return emitError() << "invalid tensor dimension size" ; |
| 328 | if (auto v = llvm::dyn_cast_or_null<VerifiableTensorEncoding>(encoding)) |
| 329 | if (failed(v.verifyEncoding(shape, elementType, emitError))) |
| 330 | return failure(); |
| 331 | return checkTensorElementType(emitError, elementType); |
| 332 | } |
| 333 | |
| 334 | //===----------------------------------------------------------------------===// |
| 335 | // UnrankedTensorType |
| 336 | //===----------------------------------------------------------------------===// |
| 337 | |
| 338 | LogicalResult |
| 339 | UnrankedTensorType::verify(function_ref<InFlightDiagnostic()> emitError, |
| 340 | Type elementType) { |
| 341 | return checkTensorElementType(emitError, elementType); |
| 342 | } |
| 343 | |
| 344 | //===----------------------------------------------------------------------===// |
| 345 | // BaseMemRefType |
| 346 | //===----------------------------------------------------------------------===// |
| 347 | |
| 348 | Type BaseMemRefType::getElementType() const { |
| 349 | return llvm::TypeSwitch<BaseMemRefType, Type>(*this) |
| 350 | .Case<MemRefType, UnrankedMemRefType>( |
| 351 | [](auto type) { return type.getElementType(); }); |
| 352 | } |
| 353 | |
| 354 | bool BaseMemRefType::hasRank() const { |
| 355 | return !llvm::isa<UnrankedMemRefType>(*this); |
| 356 | } |
| 357 | |
| 358 | ArrayRef<int64_t> BaseMemRefType::getShape() const { |
| 359 | return llvm::cast<MemRefType>(*this).getShape(); |
| 360 | } |
| 361 | |
| 362 | BaseMemRefType BaseMemRefType::cloneWith(std::optional<ArrayRef<int64_t>> shape, |
| 363 | Type elementType) const { |
| 364 | if (llvm::dyn_cast<UnrankedMemRefType>(*this)) { |
| 365 | if (!shape) |
| 366 | return UnrankedMemRefType::get(elementType, getMemorySpace()); |
| 367 | MemRefType::Builder builder(*shape, elementType); |
| 368 | builder.setMemorySpace(getMemorySpace()); |
| 369 | return builder; |
| 370 | } |
| 371 | |
| 372 | MemRefType::Builder builder(llvm::cast<MemRefType>(*this)); |
| 373 | if (shape) |
| 374 | builder.setShape(*shape); |
| 375 | builder.setElementType(elementType); |
| 376 | return builder; |
| 377 | } |
| 378 | |
| 379 | MemRefType BaseMemRefType::clone(::llvm::ArrayRef<int64_t> shape, |
| 380 | Type elementType) const { |
| 381 | return ::llvm::cast<MemRefType>(cloneWith(shape, elementType)); |
| 382 | } |
| 383 | |
| 384 | MemRefType BaseMemRefType::clone(::llvm::ArrayRef<int64_t> shape) const { |
| 385 | return ::llvm::cast<MemRefType>(cloneWith(shape, elementType: getElementType())); |
| 386 | } |
| 387 | |
| 388 | Attribute BaseMemRefType::getMemorySpace() const { |
| 389 | if (auto rankedMemRefTy = llvm::dyn_cast<MemRefType>(*this)) |
| 390 | return rankedMemRefTy.getMemorySpace(); |
| 391 | return llvm::cast<UnrankedMemRefType>(*this).getMemorySpace(); |
| 392 | } |
| 393 | |
| 394 | unsigned BaseMemRefType::getMemorySpaceAsInt() const { |
| 395 | if (auto rankedMemRefTy = llvm::dyn_cast<MemRefType>(*this)) |
| 396 | return rankedMemRefTy.getMemorySpaceAsInt(); |
| 397 | return llvm::cast<UnrankedMemRefType>(*this).getMemorySpaceAsInt(); |
| 398 | } |
| 399 | |
| 400 | //===----------------------------------------------------------------------===// |
| 401 | // MemRefType |
| 402 | //===----------------------------------------------------------------------===// |
| 403 | |
| 404 | std::optional<llvm::SmallDenseSet<unsigned>> |
| 405 | mlir::computeRankReductionMask(ArrayRef<int64_t> originalShape, |
| 406 | ArrayRef<int64_t> reducedShape, |
| 407 | bool matchDynamic) { |
| 408 | size_t originalRank = originalShape.size(), reducedRank = reducedShape.size(); |
| 409 | llvm::SmallDenseSet<unsigned> unusedDims; |
| 410 | unsigned reducedIdx = 0; |
| 411 | for (unsigned originalIdx = 0; originalIdx < originalRank; ++originalIdx) { |
| 412 | // Greedily insert `originalIdx` if match. |
| 413 | int64_t origSize = originalShape[originalIdx]; |
| 414 | // if `matchDynamic`, count dynamic dims as a match, unless `origSize` is 1. |
| 415 | if (matchDynamic && reducedIdx < reducedRank && origSize != 1 && |
| 416 | (ShapedType::isDynamic(reducedShape[reducedIdx]) || |
| 417 | ShapedType::isDynamic(origSize))) { |
| 418 | reducedIdx++; |
| 419 | continue; |
| 420 | } |
| 421 | if (reducedIdx < reducedRank && origSize == reducedShape[reducedIdx]) { |
| 422 | reducedIdx++; |
| 423 | continue; |
| 424 | } |
| 425 | |
| 426 | unusedDims.insert(V: originalIdx); |
| 427 | // If no match on `originalIdx`, the `originalShape` at this dimension |
| 428 | // must be 1, otherwise we bail. |
| 429 | if (origSize != 1) |
| 430 | return std::nullopt; |
| 431 | } |
| 432 | // The whole reducedShape must be scanned, otherwise we bail. |
| 433 | if (reducedIdx != reducedRank) |
| 434 | return std::nullopt; |
| 435 | return unusedDims; |
| 436 | } |
| 437 | |
| 438 | SliceVerificationResult |
| 439 | mlir::isRankReducedType(ShapedType originalType, |
| 440 | ShapedType candidateReducedType) { |
| 441 | if (originalType == candidateReducedType) |
| 442 | return SliceVerificationResult::Success; |
| 443 | |
| 444 | ShapedType originalShapedType = llvm::cast<ShapedType>(originalType); |
| 445 | ShapedType candidateReducedShapedType = |
| 446 | llvm::cast<ShapedType>(candidateReducedType); |
| 447 | |
| 448 | // Rank and size logic is valid for all ShapedTypes. |
| 449 | ArrayRef<int64_t> originalShape = originalShapedType.getShape(); |
| 450 | ArrayRef<int64_t> candidateReducedShape = |
| 451 | candidateReducedShapedType.getShape(); |
| 452 | unsigned originalRank = originalShape.size(), |
| 453 | candidateReducedRank = candidateReducedShape.size(); |
| 454 | if (candidateReducedRank > originalRank) |
| 455 | return SliceVerificationResult::RankTooLarge; |
| 456 | |
| 457 | auto optionalUnusedDimsMask = |
| 458 | computeRankReductionMask(originalShape, candidateReducedShape); |
| 459 | |
| 460 | // Sizes cannot be matched in case empty vector is returned. |
| 461 | if (!optionalUnusedDimsMask) |
| 462 | return SliceVerificationResult::SizeMismatch; |
| 463 | |
| 464 | if (originalShapedType.getElementType() != |
| 465 | candidateReducedShapedType.getElementType()) |
| 466 | return SliceVerificationResult::ElemTypeMismatch; |
| 467 | |
| 468 | return SliceVerificationResult::Success; |
| 469 | } |
| 470 | |
| 471 | bool mlir::detail::isSupportedMemorySpace(Attribute memorySpace) { |
| 472 | // Empty attribute is allowed as default memory space. |
| 473 | if (!memorySpace) |
| 474 | return true; |
| 475 | |
| 476 | // Supported built-in attributes. |
| 477 | if (llvm::isa<IntegerAttr, StringAttr, DictionaryAttr>(memorySpace)) |
| 478 | return true; |
| 479 | |
| 480 | // Allow custom dialect attributes. |
| 481 | if (!isa<BuiltinDialect>(Val: memorySpace.getDialect())) |
| 482 | return true; |
| 483 | |
| 484 | return false; |
| 485 | } |
| 486 | |
| 487 | Attribute mlir::detail::wrapIntegerMemorySpace(unsigned memorySpace, |
| 488 | MLIRContext *ctx) { |
| 489 | if (memorySpace == 0) |
| 490 | return nullptr; |
| 491 | |
| 492 | return IntegerAttr::get(IntegerType::get(ctx, 64), memorySpace); |
| 493 | } |
| 494 | |
| 495 | Attribute mlir::detail::skipDefaultMemorySpace(Attribute memorySpace) { |
| 496 | IntegerAttr intMemorySpace = llvm::dyn_cast_or_null<IntegerAttr>(memorySpace); |
| 497 | if (intMemorySpace && intMemorySpace.getValue() == 0) |
| 498 | return nullptr; |
| 499 | |
| 500 | return memorySpace; |
| 501 | } |
| 502 | |
| 503 | unsigned mlir::detail::getMemorySpaceAsInt(Attribute memorySpace) { |
| 504 | if (!memorySpace) |
| 505 | return 0; |
| 506 | |
| 507 | assert(llvm::isa<IntegerAttr>(memorySpace) && |
| 508 | "Using `getMemorySpaceInteger` with non-Integer attribute" ); |
| 509 | |
| 510 | return static_cast<unsigned>(llvm::cast<IntegerAttr>(memorySpace).getInt()); |
| 511 | } |
| 512 | |
| 513 | unsigned MemRefType::getMemorySpaceAsInt() const { |
| 514 | return detail::getMemorySpaceAsInt(getMemorySpace()); |
| 515 | } |
| 516 | |
| 517 | MemRefType MemRefType::get(ArrayRef<int64_t> shape, Type elementType, |
| 518 | MemRefLayoutAttrInterface layout, |
| 519 | Attribute memorySpace) { |
| 520 | // Use default layout for empty attribute. |
| 521 | if (!layout) |
| 522 | layout = AffineMapAttr::get(AffineMap::getMultiDimIdentityMap( |
| 523 | shape.size(), elementType.getContext())); |
| 524 | |
| 525 | // Drop default memory space value and replace it with empty attribute. |
| 526 | memorySpace = skipDefaultMemorySpace(memorySpace); |
| 527 | |
| 528 | return Base::get(elementType.getContext(), shape, elementType, layout, |
| 529 | memorySpace); |
| 530 | } |
| 531 | |
| 532 | MemRefType MemRefType::getChecked( |
| 533 | function_ref<InFlightDiagnostic()> emitErrorFn, ArrayRef<int64_t> shape, |
| 534 | Type elementType, MemRefLayoutAttrInterface layout, Attribute memorySpace) { |
| 535 | |
| 536 | // Use default layout for empty attribute. |
| 537 | if (!layout) |
| 538 | layout = AffineMapAttr::get(AffineMap::getMultiDimIdentityMap( |
| 539 | shape.size(), elementType.getContext())); |
| 540 | |
| 541 | // Drop default memory space value and replace it with empty attribute. |
| 542 | memorySpace = skipDefaultMemorySpace(memorySpace); |
| 543 | |
| 544 | return Base::getChecked(emitErrorFn, elementType.getContext(), shape, |
| 545 | elementType, layout, memorySpace); |
| 546 | } |
| 547 | |
| 548 | MemRefType MemRefType::get(ArrayRef<int64_t> shape, Type elementType, |
| 549 | AffineMap map, Attribute memorySpace) { |
| 550 | |
| 551 | // Use default layout for empty map. |
| 552 | if (!map) |
| 553 | map = AffineMap::getMultiDimIdentityMap(shape.size(), |
| 554 | elementType.getContext()); |
| 555 | |
| 556 | // Wrap AffineMap into Attribute. |
| 557 | auto layout = AffineMapAttr::get(map); |
| 558 | |
| 559 | // Drop default memory space value and replace it with empty attribute. |
| 560 | memorySpace = skipDefaultMemorySpace(memorySpace); |
| 561 | |
| 562 | return Base::get(elementType.getContext(), shape, elementType, layout, |
| 563 | memorySpace); |
| 564 | } |
| 565 | |
| 566 | MemRefType |
| 567 | MemRefType::getChecked(function_ref<InFlightDiagnostic()> emitErrorFn, |
| 568 | ArrayRef<int64_t> shape, Type elementType, AffineMap map, |
| 569 | Attribute memorySpace) { |
| 570 | |
| 571 | // Use default layout for empty map. |
| 572 | if (!map) |
| 573 | map = AffineMap::getMultiDimIdentityMap(shape.size(), |
| 574 | elementType.getContext()); |
| 575 | |
| 576 | // Wrap AffineMap into Attribute. |
| 577 | auto layout = AffineMapAttr::get(map); |
| 578 | |
| 579 | // Drop default memory space value and replace it with empty attribute. |
| 580 | memorySpace = skipDefaultMemorySpace(memorySpace); |
| 581 | |
| 582 | return Base::getChecked(emitErrorFn, elementType.getContext(), shape, |
| 583 | elementType, layout, memorySpace); |
| 584 | } |
| 585 | |
| 586 | MemRefType MemRefType::get(ArrayRef<int64_t> shape, Type elementType, |
| 587 | AffineMap map, unsigned memorySpaceInd) { |
| 588 | |
| 589 | // Use default layout for empty map. |
| 590 | if (!map) |
| 591 | map = AffineMap::getMultiDimIdentityMap(shape.size(), |
| 592 | elementType.getContext()); |
| 593 | |
| 594 | // Wrap AffineMap into Attribute. |
| 595 | auto layout = AffineMapAttr::get(map); |
| 596 | |
| 597 | // Convert deprecated integer-like memory space to Attribute. |
| 598 | Attribute memorySpace = |
| 599 | wrapIntegerMemorySpace(memorySpaceInd, elementType.getContext()); |
| 600 | |
| 601 | return Base::get(elementType.getContext(), shape, elementType, layout, |
| 602 | memorySpace); |
| 603 | } |
| 604 | |
| 605 | MemRefType |
| 606 | MemRefType::getChecked(function_ref<InFlightDiagnostic()> emitErrorFn, |
| 607 | ArrayRef<int64_t> shape, Type elementType, AffineMap map, |
| 608 | unsigned memorySpaceInd) { |
| 609 | |
| 610 | // Use default layout for empty map. |
| 611 | if (!map) |
| 612 | map = AffineMap::getMultiDimIdentityMap(shape.size(), |
| 613 | elementType.getContext()); |
| 614 | |
| 615 | // Wrap AffineMap into Attribute. |
| 616 | auto layout = AffineMapAttr::get(map); |
| 617 | |
| 618 | // Convert deprecated integer-like memory space to Attribute. |
| 619 | Attribute memorySpace = |
| 620 | wrapIntegerMemorySpace(memorySpaceInd, elementType.getContext()); |
| 621 | |
| 622 | return Base::getChecked(emitErrorFn, elementType.getContext(), shape, |
| 623 | elementType, layout, memorySpace); |
| 624 | } |
| 625 | |
| 626 | LogicalResult MemRefType::verify(function_ref<InFlightDiagnostic()> emitError, |
| 627 | ArrayRef<int64_t> shape, Type elementType, |
| 628 | MemRefLayoutAttrInterface layout, |
| 629 | Attribute memorySpace) { |
| 630 | if (!BaseMemRefType::isValidElementType(elementType)) |
| 631 | return emitError() << "invalid memref element type" ; |
| 632 | |
| 633 | // Negative sizes are not allowed except for `kDynamic`. |
| 634 | for (int64_t s : shape) |
| 635 | if (s < 0 && !ShapedType::isDynamic(s)) |
| 636 | return emitError() << "invalid memref size" ; |
| 637 | |
| 638 | assert(layout && "missing layout specification" ); |
| 639 | if (failed(layout.verifyLayout(shape, emitError))) |
| 640 | return failure(); |
| 641 | |
| 642 | if (!isSupportedMemorySpace(memorySpace)) |
| 643 | return emitError() << "unsupported memory space Attribute" ; |
| 644 | |
| 645 | return success(); |
| 646 | } |
| 647 | |
| 648 | bool MemRefType::areTrailingDimsContiguous(int64_t n) { |
| 649 | if (!isLastDimUnitStride()) |
| 650 | return false; |
| 651 | |
| 652 | auto memrefShape = getShape().take_back(n); |
| 653 | if (ShapedType::isDynamicShape(memrefShape)) |
| 654 | return false; |
| 655 | |
| 656 | if (getLayout().isIdentity()) |
| 657 | return true; |
| 658 | |
| 659 | int64_t offset; |
| 660 | SmallVector<int64_t> stridesFull; |
| 661 | if (!succeeded(getStridesAndOffset(stridesFull, offset))) |
| 662 | return false; |
| 663 | auto strides = ArrayRef<int64_t>(stridesFull).take_back(n); |
| 664 | |
| 665 | if (strides.empty()) |
| 666 | return true; |
| 667 | |
| 668 | // Check whether strides match "flattened" dims. |
| 669 | SmallVector<int64_t> flattenedDims; |
| 670 | auto dimProduct = 1; |
| 671 | for (auto dim : llvm::reverse(memrefShape.drop_front(1))) { |
| 672 | dimProduct *= dim; |
| 673 | flattenedDims.push_back(dimProduct); |
| 674 | } |
| 675 | |
| 676 | strides = strides.drop_back(1); |
| 677 | return llvm::equal(strides, llvm::reverse(flattenedDims)); |
| 678 | } |
| 679 | |
| 680 | MemRefType MemRefType::canonicalizeStridedLayout() { |
| 681 | AffineMap m = getLayout().getAffineMap(); |
| 682 | |
| 683 | // Already in canonical form. |
| 684 | if (m.isIdentity()) |
| 685 | return *this; |
| 686 | |
| 687 | // Can't reduce to canonical identity form, return in canonical form. |
| 688 | if (m.getNumResults() > 1) |
| 689 | return *this; |
| 690 | |
| 691 | // Corner-case for 0-D affine maps. |
| 692 | if (m.getNumDims() == 0 && m.getNumSymbols() == 0) { |
| 693 | if (auto cst = llvm::dyn_cast<AffineConstantExpr>(m.getResult(0))) |
| 694 | if (cst.getValue() == 0) |
| 695 | return MemRefType::Builder(*this).setLayout({}); |
| 696 | return *this; |
| 697 | } |
| 698 | |
| 699 | // 0-D corner case for empty shape that still have an affine map. Example: |
| 700 | // `memref<f32, affine_map<()[s0] -> (s0)>>`. This is a 1 element memref whose |
| 701 | // offset needs to remain, just return t. |
| 702 | if (getShape().empty()) |
| 703 | return *this; |
| 704 | |
| 705 | // If the canonical strided layout for the sizes of `t` is equal to the |
| 706 | // simplified layout of `t` we can just return an empty layout. Otherwise, |
| 707 | // just simplify the existing layout. |
| 708 | AffineExpr expr = makeCanonicalStridedLayoutExpr(getShape(), getContext()); |
| 709 | auto simplifiedLayoutExpr = |
| 710 | simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols()); |
| 711 | if (expr != simplifiedLayoutExpr) |
| 712 | return MemRefType::Builder(*this).setLayout( |
| 713 | AffineMapAttr::get(AffineMap::get(m.getNumDims(), m.getNumSymbols(), |
| 714 | simplifiedLayoutExpr))); |
| 715 | return MemRefType::Builder(*this).setLayout({}); |
| 716 | } |
| 717 | |
| 718 | LogicalResult MemRefType::getStridesAndOffset(SmallVectorImpl<int64_t> &strides, |
| 719 | int64_t &offset) { |
| 720 | return getLayout().getStridesAndOffset(getShape(), strides, offset); |
| 721 | } |
| 722 | |
| 723 | std::pair<SmallVector<int64_t>, int64_t> MemRefType::getStridesAndOffset() { |
| 724 | SmallVector<int64_t> strides; |
| 725 | int64_t offset; |
| 726 | LogicalResult status = getStridesAndOffset(strides, offset); |
| 727 | (void)status; |
| 728 | assert(succeeded(status) && "Invalid use of check-free getStridesAndOffset" ); |
| 729 | return {strides, offset}; |
| 730 | } |
| 731 | |
| 732 | bool MemRefType::isStrided() { |
| 733 | int64_t offset; |
| 734 | SmallVector<int64_t, 4> strides; |
| 735 | auto res = getStridesAndOffset(strides, offset); |
| 736 | return succeeded(res); |
| 737 | } |
| 738 | |
| 739 | bool MemRefType::isLastDimUnitStride() { |
| 740 | int64_t offset; |
| 741 | SmallVector<int64_t> strides; |
| 742 | auto successStrides = getStridesAndOffset(strides, offset); |
| 743 | return succeeded(successStrides) && (strides.empty() || strides.back() == 1); |
| 744 | } |
| 745 | |
| 746 | //===----------------------------------------------------------------------===// |
| 747 | // UnrankedMemRefType |
| 748 | //===----------------------------------------------------------------------===// |
| 749 | |
| 750 | unsigned UnrankedMemRefType::getMemorySpaceAsInt() const { |
| 751 | return detail::getMemorySpaceAsInt(getMemorySpace()); |
| 752 | } |
| 753 | |
| 754 | LogicalResult |
| 755 | UnrankedMemRefType::verify(function_ref<InFlightDiagnostic()> emitError, |
| 756 | Type elementType, Attribute memorySpace) { |
| 757 | if (!BaseMemRefType::isValidElementType(elementType)) |
| 758 | return emitError() << "invalid memref element type" ; |
| 759 | |
| 760 | if (!isSupportedMemorySpace(memorySpace)) |
| 761 | return emitError() << "unsupported memory space Attribute" ; |
| 762 | |
| 763 | return success(); |
| 764 | } |
| 765 | |
| 766 | //===----------------------------------------------------------------------===// |
| 767 | /// TupleType |
| 768 | //===----------------------------------------------------------------------===// |
| 769 | |
| 770 | /// Return the elements types for this tuple. |
| 771 | ArrayRef<Type> TupleType::getTypes() const { return getImpl()->getTypes(); } |
| 772 | |
| 773 | /// Accumulate the types contained in this tuple and tuples nested within it. |
| 774 | /// Note that this only flattens nested tuples, not any other container type, |
| 775 | /// e.g. a tuple<i32, tensor<i32>, tuple<f32, tuple<i64>>> is flattened to |
| 776 | /// (i32, tensor<i32>, f32, i64) |
| 777 | void TupleType::getFlattenedTypes(SmallVectorImpl<Type> &types) { |
| 778 | for (Type type : getTypes()) { |
| 779 | if (auto nestedTuple = llvm::dyn_cast<TupleType>(type)) |
| 780 | nestedTuple.getFlattenedTypes(types); |
| 781 | else |
| 782 | types.push_back(type); |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | /// Return the number of element types. |
| 787 | size_t TupleType::size() const { return getImpl()->size(); } |
| 788 | |
| 789 | //===----------------------------------------------------------------------===// |
| 790 | // Type Utilities |
| 791 | //===----------------------------------------------------------------------===// |
| 792 | |
| 793 | AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes, |
| 794 | ArrayRef<AffineExpr> exprs, |
| 795 | MLIRContext *context) { |
| 796 | // Size 0 corner case is useful for canonicalizations. |
| 797 | if (sizes.empty()) |
| 798 | return getAffineConstantExpr(constant: 0, context); |
| 799 | |
| 800 | assert(!exprs.empty() && "expected exprs" ); |
| 801 | auto maps = AffineMap::inferFromExprList(exprsList: exprs, context); |
| 802 | assert(!maps.empty() && "Expected one non-empty map" ); |
| 803 | unsigned numDims = maps[0].getNumDims(), nSymbols = maps[0].getNumSymbols(); |
| 804 | |
| 805 | AffineExpr expr; |
| 806 | bool dynamicPoisonBit = false; |
| 807 | int64_t runningSize = 1; |
| 808 | for (auto en : llvm::zip(t: llvm::reverse(C&: exprs), u: llvm::reverse(C&: sizes))) { |
| 809 | int64_t size = std::get<1>(t&: en); |
| 810 | AffineExpr dimExpr = std::get<0>(t&: en); |
| 811 | AffineExpr stride = dynamicPoisonBit |
| 812 | ? getAffineSymbolExpr(position: nSymbols++, context) |
| 813 | : getAffineConstantExpr(constant: runningSize, context); |
| 814 | expr = expr ? expr + dimExpr * stride : dimExpr * stride; |
| 815 | if (size > 0) { |
| 816 | runningSize *= size; |
| 817 | assert(runningSize > 0 && "integer overflow in size computation" ); |
| 818 | } else { |
| 819 | dynamicPoisonBit = true; |
| 820 | } |
| 821 | } |
| 822 | return simplifyAffineExpr(expr, numDims, numSymbols: nSymbols); |
| 823 | } |
| 824 | |
| 825 | AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes, |
| 826 | MLIRContext *context) { |
| 827 | SmallVector<AffineExpr, 4> exprs; |
| 828 | exprs.reserve(N: sizes.size()); |
| 829 | for (auto dim : llvm::seq<unsigned>(Begin: 0, End: sizes.size())) |
| 830 | exprs.push_back(Elt: getAffineDimExpr(position: dim, context)); |
| 831 | return makeCanonicalStridedLayoutExpr(sizes, exprs, context); |
| 832 | } |
| 833 | |