1 | //===- RemoveDeadValues.cpp - Remove Dead Values --------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // The goal of this pass is optimization (reducing runtime) by removing |
10 | // unnecessary instructions. Unlike other passes that rely on local information |
11 | // gathered from patterns to accomplish optimization, this pass uses a full |
12 | // analysis of the IR, specifically, liveness analysis, and is thus more |
13 | // powerful. |
14 | // |
15 | // Currently, this pass performs the following optimizations: |
16 | // (A) Removes function arguments that are not live, |
17 | // (B) Removes function return values that are not live across all callers of |
18 | // the function, |
19 | // (C) Removes unneccesary operands, results, region arguments, and region |
20 | // terminator operands of region branch ops, and, |
21 | // (D) Removes simple and region branch ops that have all non-live results and |
22 | // don't affect memory in any way, |
23 | // |
24 | // iff |
25 | // |
26 | // the IR doesn't have any non-function symbol ops, non-call symbol user ops and |
27 | // branch ops. |
28 | // |
29 | // Here, a "simple op" refers to an op that isn't a symbol op, symbol-user op, |
30 | // region branch op, branch op, region branch terminator op, or return-like. |
31 | // |
32 | //===----------------------------------------------------------------------===// |
33 | |
34 | #include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h" |
35 | #include "mlir/Analysis/DataFlow/LivenessAnalysis.h" |
36 | #include "mlir/IR/Attributes.h" |
37 | #include "mlir/IR/Builders.h" |
38 | #include "mlir/IR/BuiltinAttributes.h" |
39 | #include "mlir/IR/Dialect.h" |
40 | #include "mlir/IR/IRMapping.h" |
41 | #include "mlir/IR/OperationSupport.h" |
42 | #include "mlir/IR/SymbolTable.h" |
43 | #include "mlir/IR/Value.h" |
44 | #include "mlir/IR/ValueRange.h" |
45 | #include "mlir/IR/Visitors.h" |
46 | #include "mlir/Interfaces/CallInterfaces.h" |
47 | #include "mlir/Interfaces/ControlFlowInterfaces.h" |
48 | #include "mlir/Interfaces/FunctionInterfaces.h" |
49 | #include "mlir/Interfaces/SideEffectInterfaces.h" |
50 | #include "mlir/Pass/Pass.h" |
51 | #include "mlir/Support/LLVM.h" |
52 | #include "mlir/Transforms/FoldUtils.h" |
53 | #include "mlir/Transforms/Passes.h" |
54 | #include "llvm/ADT/STLExtras.h" |
55 | #include <cassert> |
56 | #include <cstddef> |
57 | #include <memory> |
58 | #include <optional> |
59 | #include <vector> |
60 | |
61 | namespace mlir { |
62 | #define GEN_PASS_DEF_REMOVEDEADVALUES |
63 | #include "mlir/Transforms/Passes.h.inc" |
64 | } // namespace mlir |
65 | |
66 | using namespace mlir; |
67 | using namespace mlir::dataflow; |
68 | |
69 | //===----------------------------------------------------------------------===// |
70 | // RemoveDeadValues Pass |
71 | //===----------------------------------------------------------------------===// |
72 | |
73 | namespace { |
74 | |
75 | // Some helper functions... |
76 | |
77 | /// Return true iff at least one value in `values` is live, given the liveness |
78 | /// information in `la`. |
79 | static bool hasLive(ValueRange values, RunLivenessAnalysis &la) { |
80 | for (Value value : values) { |
81 | // If there is a null value, it implies that it was dropped during the |
82 | // execution of this pass, implying that it was non-live. |
83 | if (!value) |
84 | continue; |
85 | |
86 | const Liveness *liveness = la.getLiveness(val: value); |
87 | if (!liveness || liveness->isLive) |
88 | return true; |
89 | } |
90 | return false; |
91 | } |
92 | |
93 | /// Return a BitVector of size `values.size()` where its i-th bit is 1 iff the |
94 | /// i-th value in `values` is live, given the liveness information in `la`. |
95 | static BitVector markLives(ValueRange values, RunLivenessAnalysis &la) { |
96 | BitVector lives(values.size(), true); |
97 | |
98 | for (auto [index, value] : llvm::enumerate(values)) { |
99 | if (!value) { |
100 | lives.reset(index); |
101 | continue; |
102 | } |
103 | |
104 | const Liveness *liveness = la.getLiveness(value); |
105 | // It is important to note that when `liveness` is null, we can't tell if |
106 | // `value` is live or not. So, the safe option is to consider it live. Also, |
107 | // the execution of this pass might create new SSA values when erasing some |
108 | // of the results of an op and we know that these new values are live |
109 | // (because they weren't erased) and also their liveness is null because |
110 | // liveness analysis ran before their creation. |
111 | if (liveness && !liveness->isLive) |
112 | lives.reset(index); |
113 | } |
114 | |
115 | return lives; |
116 | } |
117 | |
118 | /// Drop the uses of the i-th result of `op` and then erase it iff toErase[i] |
119 | /// is 1. |
120 | static void dropUsesAndEraseResults(Operation *op, BitVector toErase) { |
121 | assert(op->getNumResults() == toErase.size() && |
122 | "expected the number of results in `op` and the size of `toErase` to " |
123 | "be the same" ); |
124 | |
125 | std::vector<Type> newResultTypes; |
126 | for (OpResult result : op->getResults()) |
127 | if (!toErase[result.getResultNumber()]) |
128 | newResultTypes.push_back(result.getType()); |
129 | OpBuilder builder(op); |
130 | builder.setInsertionPointAfter(op); |
131 | OperationState state(op->getLoc(), op->getName().getStringRef(), |
132 | op->getOperands(), newResultTypes, op->getAttrs()); |
133 | for (unsigned i = 0, e = op->getNumRegions(); i < e; ++i) |
134 | state.addRegion(); |
135 | Operation *newOp = builder.create(state); |
136 | for (const auto &[index, region] : llvm::enumerate(op->getRegions())) { |
137 | Region &newRegion = newOp->getRegion(index); |
138 | // Move all blocks of `region` into `newRegion`. |
139 | Block *temp = new Block(); |
140 | newRegion.push_back(temp); |
141 | while (!region.empty()) |
142 | region.front().moveBefore(temp); |
143 | temp->erase(); |
144 | } |
145 | |
146 | unsigned indexOfNextNewCallOpResultToReplace = 0; |
147 | for (auto [index, result] : llvm::enumerate(op->getResults())) { |
148 | assert(result && "expected result to be non-null" ); |
149 | if (toErase[index]) { |
150 | result.dropAllUses(); |
151 | } else { |
152 | result.replaceAllUsesWith( |
153 | newOp->getResult(indexOfNextNewCallOpResultToReplace++)); |
154 | } |
155 | } |
156 | op->erase(); |
157 | } |
158 | |
159 | /// Convert a list of `Operand`s to a list of `OpOperand`s. |
160 | static SmallVector<OpOperand *> operandsToOpOperands(OperandRange operands) { |
161 | OpOperand *values = operands.getBase(); |
162 | SmallVector<OpOperand *> opOperands; |
163 | for (unsigned i = 0, e = operands.size(); i < e; i++) |
164 | opOperands.push_back(&values[i]); |
165 | return opOperands; |
166 | } |
167 | |
168 | /// Clean a simple op `op`, given the liveness analysis information in `la`. |
169 | /// Here, cleaning means: |
170 | /// (1) Dropping all its uses, AND |
171 | /// (2) Erasing it |
172 | /// iff it has no memory effects and none of its results are live. |
173 | /// |
174 | /// It is assumed that `op` is simple. Here, a simple op is one which isn't a |
175 | /// symbol op, a symbol-user op, a region branch op, a branch op, a region |
176 | /// branch terminator op, or return-like. |
177 | static void cleanSimpleOp(Operation *op, RunLivenessAnalysis &la) { |
178 | if (!isMemoryEffectFree(op) || hasLive(values: op->getResults(), la)) |
179 | return; |
180 | |
181 | op->dropAllUses(); |
182 | op->erase(); |
183 | } |
184 | |
185 | /// Clean a function-like op `funcOp`, given the liveness information in `la` |
186 | /// and the IR in `module`. Here, cleaning means: |
187 | /// (1) Dropping the uses of its unnecessary (non-live) arguments, |
188 | /// (2) Erasing these arguments, |
189 | /// (3) Erasing their corresponding operands from its callers, |
190 | /// (4) Erasing its unnecessary terminator operands (return values that are |
191 | /// non-live across all callers), |
192 | /// (5) Dropping the uses of these return values from its callers, AND |
193 | /// (6) Erasing these return values |
194 | /// iff it is not public. |
195 | static void cleanFuncOp(FunctionOpInterface funcOp, Operation *module, |
196 | RunLivenessAnalysis &la) { |
197 | if (funcOp.isPublic()) |
198 | return; |
199 | |
200 | // Get the list of unnecessary (non-live) arguments in `nonLiveArgs`. |
201 | SmallVector<Value> arguments(funcOp.getArguments()); |
202 | BitVector nonLiveArgs = markLives(arguments, la); |
203 | nonLiveArgs = nonLiveArgs.flip(); |
204 | |
205 | // Do (1). |
206 | for (auto [index, arg] : llvm::enumerate(arguments)) |
207 | if (arg && nonLiveArgs[index]) |
208 | arg.dropAllUses(); |
209 | |
210 | // Do (2). |
211 | funcOp.eraseArguments(nonLiveArgs); |
212 | |
213 | // Do (3). |
214 | SymbolTable::UseRange uses = *funcOp.getSymbolUses(module); |
215 | for (SymbolTable::SymbolUse use : uses) { |
216 | Operation *callOp = use.getUser(); |
217 | assert(isa<CallOpInterface>(callOp) && "expected a call-like user" ); |
218 | // The number of operands in the call op may not match the number of |
219 | // arguments in the func op. |
220 | BitVector nonLiveCallOperands(callOp->getNumOperands(), false); |
221 | SmallVector<OpOperand *> callOpOperands = |
222 | operandsToOpOperands(cast<CallOpInterface>(callOp).getArgOperands()); |
223 | for (int index : nonLiveArgs.set_bits()) |
224 | nonLiveCallOperands.set(callOpOperands[index]->getOperandNumber()); |
225 | callOp->eraseOperands(nonLiveCallOperands); |
226 | } |
227 | |
228 | // Get the list of unnecessary terminator operands (return values that are |
229 | // non-live across all callers) in `nonLiveRets`. There is a very important |
230 | // subtlety here. Unnecessary terminator operands are NOT the operands of the |
231 | // terminator that are non-live. Instead, these are the return values of the |
232 | // callers such that a given return value is non-live across all callers. Such |
233 | // corresponding operands in the terminator could be live. An example to |
234 | // demonstrate this: |
235 | // func.func private @f(%arg0: memref<i32>) -> (i32, i32) { |
236 | // %c0_i32 = arith.constant 0 : i32 |
237 | // %0 = arith.addi %c0_i32, %c0_i32 : i32 |
238 | // memref.store %0, %arg0[] : memref<i32> |
239 | // return %c0_i32, %0 : i32, i32 |
240 | // } |
241 | // func.func @main(%arg0: i32, %arg1: memref<i32>) -> (i32) { |
242 | // %1:2 = call @f(%arg1) : (memref<i32>) -> i32 |
243 | // return %1#0 : i32 |
244 | // } |
245 | // Here, we can see that %1#1 is never used. It is non-live. Thus, @f doesn't |
246 | // need to return %0. But, %0 is live. And, still, we want to stop it from |
247 | // being returned, in order to optimize our IR. So, this demonstrates how we |
248 | // can make our optimization strong by even removing a live return value (%0), |
249 | // since it forwards only to non-live value(s) (%1#1). |
250 | Operation *lastReturnOp = funcOp.back().getTerminator(); |
251 | size_t numReturns = lastReturnOp->getNumOperands(); |
252 | BitVector nonLiveRets(numReturns, true); |
253 | for (SymbolTable::SymbolUse use : uses) { |
254 | Operation *callOp = use.getUser(); |
255 | assert(isa<CallOpInterface>(callOp) && "expected a call-like user" ); |
256 | BitVector liveCallRets = markLives(callOp->getResults(), la); |
257 | nonLiveRets &= liveCallRets.flip(); |
258 | } |
259 | |
260 | // Do (4). |
261 | // Note that in the absence of control flow ops forcing the control to go from |
262 | // the entry (first) block to the other blocks, the control never reaches any |
263 | // block other than the entry block, because every block has a terminator. |
264 | for (Block &block : funcOp.getBlocks()) { |
265 | Operation *returnOp = block.getTerminator(); |
266 | if (returnOp && returnOp->getNumOperands() == numReturns) |
267 | returnOp->eraseOperands(nonLiveRets); |
268 | } |
269 | funcOp.eraseResults(nonLiveRets); |
270 | |
271 | // Do (5) and (6). |
272 | for (SymbolTable::SymbolUse use : uses) { |
273 | Operation *callOp = use.getUser(); |
274 | assert(isa<CallOpInterface>(callOp) && "expected a call-like user" ); |
275 | dropUsesAndEraseResults(callOp, nonLiveRets); |
276 | } |
277 | } |
278 | |
279 | /// Clean a region branch op `regionBranchOp`, given the liveness information in |
280 | /// `la`. Here, cleaning means: |
281 | /// (1') Dropping all its uses, AND |
282 | /// (2') Erasing it |
283 | /// if it has no memory effects and none of its results are live, AND |
284 | /// (1) Erasing its unnecessary operands (operands that are forwarded to |
285 | /// unneccesary results and arguments), |
286 | /// (2) Cleaning each of its regions, |
287 | /// (3) Dropping the uses of its unnecessary results (results that are |
288 | /// forwarded from unnecessary operands and terminator operands), AND |
289 | /// (4) Erasing these results |
290 | /// otherwise. |
291 | /// Note that here, cleaning a region means: |
292 | /// (2.a) Dropping the uses of its unnecessary arguments (arguments that are |
293 | /// forwarded from unneccesary operands and terminator operands), |
294 | /// (2.b) Erasing these arguments, AND |
295 | /// (2.c) Erasing its unnecessary terminator operands (terminator operands |
296 | /// that are forwarded to unneccesary results and arguments). |
297 | /// It is important to note that values in this op flow from operands and |
298 | /// terminator operands (successor operands) to arguments and results (successor |
299 | /// inputs). |
300 | static void cleanRegionBranchOp(RegionBranchOpInterface regionBranchOp, |
301 | RunLivenessAnalysis &la) { |
302 | // Mark live results of `regionBranchOp` in `liveResults`. |
303 | auto markLiveResults = [&](BitVector &liveResults) { |
304 | liveResults = markLives(regionBranchOp->getResults(), la); |
305 | }; |
306 | |
307 | // Mark live arguments in the regions of `regionBranchOp` in `liveArgs`. |
308 | auto markLiveArgs = [&](DenseMap<Region *, BitVector> &liveArgs) { |
309 | for (Region ®ion : regionBranchOp->getRegions()) { |
310 | SmallVector<Value> arguments(region.front().getArguments()); |
311 | BitVector regionLiveArgs = markLives(arguments, la); |
312 | liveArgs[®ion] = regionLiveArgs; |
313 | } |
314 | }; |
315 | |
316 | // Return the successors of `region` if the latter is not null. Else return |
317 | // the successors of `regionBranchOp`. |
318 | auto getSuccessors = [&](Region *region = nullptr) { |
319 | auto point = region ? region : RegionBranchPoint::parent(); |
320 | SmallVector<Attribute> operandAttributes(regionBranchOp->getNumOperands(), |
321 | nullptr); |
322 | SmallVector<RegionSuccessor> successors; |
323 | regionBranchOp.getSuccessorRegions(point, successors); |
324 | return successors; |
325 | }; |
326 | |
327 | // Return the operands of `terminator` that are forwarded to `successor` if |
328 | // the former is not null. Else return the operands of `regionBranchOp` |
329 | // forwarded to `successor`. |
330 | auto getForwardedOpOperands = [&](const RegionSuccessor &successor, |
331 | Operation *terminator = nullptr) { |
332 | OperandRange operands = |
333 | terminator ? cast<RegionBranchTerminatorOpInterface>(terminator) |
334 | .getSuccessorOperands(successor) |
335 | : regionBranchOp.getEntrySuccessorOperands(successor); |
336 | SmallVector<OpOperand *> opOperands = operandsToOpOperands(operands); |
337 | return opOperands; |
338 | }; |
339 | |
340 | // Mark the non-forwarded operands of `regionBranchOp` in |
341 | // `nonForwardedOperands`. |
342 | auto markNonForwardedOperands = [&](BitVector &nonForwardedOperands) { |
343 | nonForwardedOperands.resize(N: regionBranchOp->getNumOperands(), t: true); |
344 | for (const RegionSuccessor &successor : getSuccessors()) { |
345 | for (OpOperand *opOperand : getForwardedOpOperands(successor)) |
346 | nonForwardedOperands.reset(opOperand->getOperandNumber()); |
347 | } |
348 | }; |
349 | |
350 | // Mark the non-forwarded terminator operands of the various regions of |
351 | // `regionBranchOp` in `nonForwardedRets`. |
352 | auto markNonForwardedReturnValues = |
353 | [&](DenseMap<Operation *, BitVector> &nonForwardedRets) { |
354 | for (Region ®ion : regionBranchOp->getRegions()) { |
355 | Operation *terminator = region.front().getTerminator(); |
356 | nonForwardedRets[terminator] = |
357 | BitVector(terminator->getNumOperands(), true); |
358 | for (const RegionSuccessor &successor : getSuccessors(®ion)) { |
359 | for (OpOperand *opOperand : |
360 | getForwardedOpOperands(successor, terminator)) |
361 | nonForwardedRets[terminator].reset(opOperand->getOperandNumber()); |
362 | } |
363 | } |
364 | }; |
365 | |
366 | // Update `valuesToKeep` (which is expected to correspond to operands or |
367 | // terminator operands) based on `resultsToKeep` and `argsToKeep`, given |
368 | // `region`. When `valuesToKeep` correspond to operands, `region` is null. |
369 | // Else, `region` is the parent region of the terminator. |
370 | auto updateOperandsOrTerminatorOperandsToKeep = |
371 | [&](BitVector &valuesToKeep, BitVector &resultsToKeep, |
372 | DenseMap<Region *, BitVector> &argsToKeep, Region *region = nullptr) { |
373 | Operation *terminator = |
374 | region ? region->front().getTerminator() : nullptr; |
375 | |
376 | for (const RegionSuccessor &successor : getSuccessors(region)) { |
377 | Region *successorRegion = successor.getSuccessor(); |
378 | for (auto [opOperand, input] : |
379 | llvm::zip(getForwardedOpOperands(successor, terminator), |
380 | successor.getSuccessorInputs())) { |
381 | size_t operandNum = opOperand->getOperandNumber(); |
382 | bool updateBasedOn = |
383 | successorRegion |
384 | ? argsToKeep[successorRegion] |
385 | [cast<BlockArgument>(input).getArgNumber()] |
386 | : resultsToKeep[cast<OpResult>(input).getResultNumber()]; |
387 | valuesToKeep[operandNum] = valuesToKeep[operandNum] | updateBasedOn; |
388 | } |
389 | } |
390 | }; |
391 | |
392 | // Recompute `resultsToKeep` and `argsToKeep` based on `operandsToKeep` and |
393 | // `terminatorOperandsToKeep`. Store true in `resultsOrArgsToKeepChanged` if a |
394 | // value is modified, else, false. |
395 | auto recomputeResultsAndArgsToKeep = |
396 | [&](BitVector &resultsToKeep, DenseMap<Region *, BitVector> &argsToKeep, |
397 | BitVector &operandsToKeep, |
398 | DenseMap<Operation *, BitVector> &terminatorOperandsToKeep, |
399 | bool &resultsOrArgsToKeepChanged) { |
400 | resultsOrArgsToKeepChanged = false; |
401 | |
402 | // Recompute `resultsToKeep` and `argsToKeep` based on `operandsToKeep`. |
403 | for (const RegionSuccessor &successor : getSuccessors()) { |
404 | Region *successorRegion = successor.getSuccessor(); |
405 | for (auto [opOperand, input] : |
406 | llvm::zip(getForwardedOpOperands(successor), |
407 | successor.getSuccessorInputs())) { |
408 | bool recomputeBasedOn = |
409 | operandsToKeep[opOperand->getOperandNumber()]; |
410 | bool toRecompute = |
411 | successorRegion |
412 | ? argsToKeep[successorRegion] |
413 | [cast<BlockArgument>(input).getArgNumber()] |
414 | : resultsToKeep[cast<OpResult>(input).getResultNumber()]; |
415 | if (!toRecompute && recomputeBasedOn) |
416 | resultsOrArgsToKeepChanged = true; |
417 | if (successorRegion) { |
418 | argsToKeep[successorRegion][cast<BlockArgument>(input) |
419 | .getArgNumber()] = |
420 | argsToKeep[successorRegion] |
421 | [cast<BlockArgument>(input).getArgNumber()] | |
422 | recomputeBasedOn; |
423 | } else { |
424 | resultsToKeep[cast<OpResult>(input).getResultNumber()] = |
425 | resultsToKeep[cast<OpResult>(input).getResultNumber()] | |
426 | recomputeBasedOn; |
427 | } |
428 | } |
429 | } |
430 | |
431 | // Recompute `resultsToKeep` and `argsToKeep` based on |
432 | // `terminatorOperandsToKeep`. |
433 | for (Region ®ion : regionBranchOp->getRegions()) { |
434 | Operation *terminator = region.front().getTerminator(); |
435 | for (const RegionSuccessor &successor : getSuccessors(®ion)) { |
436 | Region *successorRegion = successor.getSuccessor(); |
437 | for (auto [opOperand, input] : |
438 | llvm::zip(getForwardedOpOperands(successor, terminator), |
439 | successor.getSuccessorInputs())) { |
440 | bool recomputeBasedOn = |
441 | terminatorOperandsToKeep[region.back().getTerminator()] |
442 | [opOperand->getOperandNumber()]; |
443 | bool toRecompute = |
444 | successorRegion |
445 | ? argsToKeep[successorRegion] |
446 | [cast<BlockArgument>(input).getArgNumber()] |
447 | : resultsToKeep[cast<OpResult>(input).getResultNumber()]; |
448 | if (!toRecompute && recomputeBasedOn) |
449 | resultsOrArgsToKeepChanged = true; |
450 | if (successorRegion) { |
451 | argsToKeep[successorRegion][cast<BlockArgument>(input) |
452 | .getArgNumber()] = |
453 | argsToKeep[successorRegion] |
454 | [cast<BlockArgument>(input).getArgNumber()] | |
455 | recomputeBasedOn; |
456 | } else { |
457 | resultsToKeep[cast<OpResult>(input).getResultNumber()] = |
458 | resultsToKeep[cast<OpResult>(input).getResultNumber()] | |
459 | recomputeBasedOn; |
460 | } |
461 | } |
462 | } |
463 | } |
464 | }; |
465 | |
466 | // Mark the values that we want to keep in `resultsToKeep`, `argsToKeep`, |
467 | // `operandsToKeep`, and `terminatorOperandsToKeep`. |
468 | auto markValuesToKeep = |
469 | [&](BitVector &resultsToKeep, DenseMap<Region *, BitVector> &argsToKeep, |
470 | BitVector &operandsToKeep, |
471 | DenseMap<Operation *, BitVector> &terminatorOperandsToKeep) { |
472 | bool resultsOrArgsToKeepChanged = true; |
473 | // We keep updating and recomputing the values until we reach a point |
474 | // where they stop changing. |
475 | while (resultsOrArgsToKeepChanged) { |
476 | // Update the operands that need to be kept. |
477 | updateOperandsOrTerminatorOperandsToKeep(operandsToKeep, |
478 | resultsToKeep, argsToKeep); |
479 | |
480 | // Update the terminator operands that need to be kept. |
481 | for (Region ®ion : regionBranchOp->getRegions()) { |
482 | updateOperandsOrTerminatorOperandsToKeep( |
483 | terminatorOperandsToKeep[region.back().getTerminator()], |
484 | resultsToKeep, argsToKeep, ®ion); |
485 | } |
486 | |
487 | // Recompute the results and arguments that need to be kept. |
488 | recomputeResultsAndArgsToKeep( |
489 | resultsToKeep, argsToKeep, operandsToKeep, |
490 | terminatorOperandsToKeep, resultsOrArgsToKeepChanged); |
491 | } |
492 | }; |
493 | |
494 | // Do (1') and (2'). This is the only case where the entire `regionBranchOp` |
495 | // is removed. It will not happen in any other scenario. Note that in this |
496 | // case, a non-forwarded operand of `regionBranchOp` could be live/non-live. |
497 | // It could never be live because of this op but its liveness could have been |
498 | // attributed to something else. |
499 | if (isMemoryEffectFree(regionBranchOp.getOperation()) && |
500 | !hasLive(regionBranchOp->getResults(), la)) { |
501 | regionBranchOp->dropAllUses(); |
502 | regionBranchOp->erase(); |
503 | return; |
504 | } |
505 | |
506 | // At this point, we know that every non-forwarded operand of `regionBranchOp` |
507 | // is live. |
508 | |
509 | // Stores the results of `regionBranchOp` that we want to keep. |
510 | BitVector resultsToKeep; |
511 | // Stores the mapping from regions of `regionBranchOp` to their arguments that |
512 | // we want to keep. |
513 | DenseMap<Region *, BitVector> argsToKeep; |
514 | // Stores the operands of `regionBranchOp` that we want to keep. |
515 | BitVector operandsToKeep; |
516 | // Stores the mapping from region terminators in `regionBranchOp` to their |
517 | // operands that we want to keep. |
518 | DenseMap<Operation *, BitVector> terminatorOperandsToKeep; |
519 | |
520 | // Initializing the above variables... |
521 | |
522 | // The live results of `regionBranchOp` definitely need to be kept. |
523 | markLiveResults(resultsToKeep); |
524 | // Similarly, the live arguments of the regions in `regionBranchOp` definitely |
525 | // need to be kept. |
526 | markLiveArgs(argsToKeep); |
527 | // The non-forwarded operands of `regionBranchOp` definitely need to be kept. |
528 | // A live forwarded operand can be removed but no non-forwarded operand can be |
529 | // removed since it "controls" the flow of data in this control flow op. |
530 | markNonForwardedOperands(operandsToKeep); |
531 | // Similarly, the non-forwarded terminator operands of the regions in |
532 | // `regionBranchOp` definitely need to be kept. |
533 | markNonForwardedReturnValues(terminatorOperandsToKeep); |
534 | |
535 | // Mark the values (results, arguments, operands, and terminator operands) |
536 | // that we want to keep. |
537 | markValuesToKeep(resultsToKeep, argsToKeep, operandsToKeep, |
538 | terminatorOperandsToKeep); |
539 | |
540 | // Do (1). |
541 | regionBranchOp->eraseOperands(operandsToKeep.flip()); |
542 | |
543 | // Do (2.a) and (2.b). |
544 | for (Region ®ion : regionBranchOp->getRegions()) { |
545 | assert(!region.empty() && "expected a non-empty region in an op " |
546 | "implementing `RegionBranchOpInterface`" ); |
547 | for (auto [index, arg] : llvm::enumerate(region.front().getArguments())) { |
548 | if (argsToKeep[®ion][index]) |
549 | continue; |
550 | if (arg) |
551 | arg.dropAllUses(); |
552 | } |
553 | region.front().eraseArguments(argsToKeep[®ion].flip()); |
554 | } |
555 | |
556 | // Do (2.c). |
557 | for (Region ®ion : regionBranchOp->getRegions()) { |
558 | Operation *terminator = region.front().getTerminator(); |
559 | terminator->eraseOperands(terminatorOperandsToKeep[terminator].flip()); |
560 | } |
561 | |
562 | // Do (3) and (4). |
563 | dropUsesAndEraseResults(regionBranchOp.getOperation(), resultsToKeep.flip()); |
564 | } |
565 | |
566 | struct RemoveDeadValues : public impl::RemoveDeadValuesBase<RemoveDeadValues> { |
567 | void runOnOperation() override; |
568 | }; |
569 | } // namespace |
570 | |
571 | void RemoveDeadValues::runOnOperation() { |
572 | auto &la = getAnalysis<RunLivenessAnalysis>(); |
573 | Operation *module = getOperation(); |
574 | |
575 | // The removal of non-live values is performed iff there are no branch ops, |
576 | // all symbol ops present in the IR are function-like, and all symbol user ops |
577 | // present in the IR are call-like. |
578 | WalkResult acceptableIR = module->walk(callback: [&](Operation *op) { |
579 | if (isa<BranchOpInterface>(op) || |
580 | (isa<SymbolOpInterface>(op) && !isa<FunctionOpInterface>(op)) || |
581 | (isa<SymbolUserOpInterface>(op) && !isa<CallOpInterface>(op))) { |
582 | op->emitError() << "cannot optimize an IR with non-function symbol ops, " |
583 | "non-call symbol user ops or branch ops\n" ; |
584 | return WalkResult::interrupt(); |
585 | } |
586 | return WalkResult::advance(); |
587 | }); |
588 | |
589 | if (acceptableIR.wasInterrupted()) |
590 | return; |
591 | |
592 | module->walk(callback: [&](Operation *op) { |
593 | if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) { |
594 | cleanFuncOp(funcOp, module, la); |
595 | } else if (auto regionBranchOp = dyn_cast<RegionBranchOpInterface>(op)) { |
596 | cleanRegionBranchOp(regionBranchOp, la); |
597 | } else if (op->hasTrait<::mlir::OpTrait::IsTerminator>()) { |
598 | // Nothing to do here because this is a terminator op and it should be |
599 | // honored with respect to its parent |
600 | } else if (isa<CallOpInterface>(Val: op)) { |
601 | // Nothing to do because this op is associated with a function op and gets |
602 | // cleaned when the latter is cleaned. |
603 | } else { |
604 | cleanSimpleOp(op, la); |
605 | } |
606 | }); |
607 | } |
608 | |
609 | std::unique_ptr<Pass> mlir::createRemoveDeadValuesPass() { |
610 | return std::make_unique<RemoveDeadValues>(); |
611 | } |
612 | |