| 1 | //===- RemoveDeadValues.cpp - Remove Dead Values --------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // The goal of this pass is optimization (reducing runtime) by removing |
| 10 | // unnecessary instructions. Unlike other passes that rely on local information |
| 11 | // gathered from patterns to accomplish optimization, this pass uses a full |
| 12 | // analysis of the IR, specifically, liveness analysis, and is thus more |
| 13 | // powerful. |
| 14 | // |
| 15 | // Currently, this pass performs the following optimizations: |
| 16 | // (A) Removes function arguments that are not live, |
| 17 | // (B) Removes function return values that are not live across all callers of |
| 18 | // the function, |
| 19 | // (C) Removes unneccesary operands, results, region arguments, and region |
| 20 | // terminator operands of region branch ops, and, |
| 21 | // (D) Removes simple and region branch ops that have all non-live results and |
| 22 | // don't affect memory in any way, |
| 23 | // |
| 24 | // iff |
| 25 | // |
| 26 | // the IR doesn't have any non-function symbol ops, non-call symbol user ops and |
| 27 | // branch ops. |
| 28 | // |
| 29 | // Here, a "simple op" refers to an op that isn't a symbol op, symbol-user op, |
| 30 | // region branch op, branch op, region branch terminator op, or return-like. |
| 31 | // |
| 32 | //===----------------------------------------------------------------------===// |
| 33 | |
| 34 | #include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h" |
| 35 | #include "mlir/Analysis/DataFlow/LivenessAnalysis.h" |
| 36 | #include "mlir/IR/Attributes.h" |
| 37 | #include "mlir/IR/Builders.h" |
| 38 | #include "mlir/IR/BuiltinAttributes.h" |
| 39 | #include "mlir/IR/Dialect.h" |
| 40 | #include "mlir/IR/IRMapping.h" |
| 41 | #include "mlir/IR/OperationSupport.h" |
| 42 | #include "mlir/IR/SymbolTable.h" |
| 43 | #include "mlir/IR/Value.h" |
| 44 | #include "mlir/IR/ValueRange.h" |
| 45 | #include "mlir/IR/Visitors.h" |
| 46 | #include "mlir/Interfaces/CallInterfaces.h" |
| 47 | #include "mlir/Interfaces/ControlFlowInterfaces.h" |
| 48 | #include "mlir/Interfaces/FunctionInterfaces.h" |
| 49 | #include "mlir/Interfaces/SideEffectInterfaces.h" |
| 50 | #include "mlir/Pass/Pass.h" |
| 51 | #include "mlir/Support/LLVM.h" |
| 52 | #include "mlir/Transforms/FoldUtils.h" |
| 53 | #include "mlir/Transforms/Passes.h" |
| 54 | #include "llvm/ADT/STLExtras.h" |
| 55 | #include <cassert> |
| 56 | #include <cstddef> |
| 57 | #include <memory> |
| 58 | #include <optional> |
| 59 | #include <vector> |
| 60 | |
| 61 | namespace mlir { |
| 62 | #define GEN_PASS_DEF_REMOVEDEADVALUES |
| 63 | #include "mlir/Transforms/Passes.h.inc" |
| 64 | } // namespace mlir |
| 65 | |
| 66 | using namespace mlir; |
| 67 | using namespace mlir::dataflow; |
| 68 | |
| 69 | //===----------------------------------------------------------------------===// |
| 70 | // RemoveDeadValues Pass |
| 71 | //===----------------------------------------------------------------------===// |
| 72 | |
| 73 | namespace { |
| 74 | |
| 75 | // Set of structures below to be filled with operations and arguments to erase. |
| 76 | // This is done to separate analysis and tree modification phases, |
| 77 | // otherwise analysis is operating on half-deleted tree which is incorrect. |
| 78 | |
| 79 | struct FunctionToCleanUp { |
| 80 | FunctionOpInterface funcOp; |
| 81 | BitVector nonLiveArgs; |
| 82 | BitVector nonLiveRets; |
| 83 | }; |
| 84 | |
| 85 | struct OperationToCleanup { |
| 86 | Operation *op; |
| 87 | BitVector nonLive; |
| 88 | }; |
| 89 | |
| 90 | struct BlockArgsToCleanup { |
| 91 | Block *b; |
| 92 | BitVector nonLiveArgs; |
| 93 | }; |
| 94 | |
| 95 | struct SuccessorOperandsToCleanup { |
| 96 | BranchOpInterface branch; |
| 97 | unsigned successorIndex; |
| 98 | BitVector nonLiveOperands; |
| 99 | }; |
| 100 | |
| 101 | struct RDVFinalCleanupList { |
| 102 | SmallVector<Operation *> operations; |
| 103 | SmallVector<Value> values; |
| 104 | SmallVector<FunctionToCleanUp> functions; |
| 105 | SmallVector<OperationToCleanup> operands; |
| 106 | SmallVector<OperationToCleanup> results; |
| 107 | SmallVector<BlockArgsToCleanup> blocks; |
| 108 | SmallVector<SuccessorOperandsToCleanup> successorOperands; |
| 109 | }; |
| 110 | |
| 111 | // Some helper functions... |
| 112 | |
| 113 | /// Return true iff at least one value in `values` is live, given the liveness |
| 114 | /// information in `la`. |
| 115 | static bool hasLive(ValueRange values, const DenseSet<Value> &nonLiveSet, |
| 116 | RunLivenessAnalysis &la) { |
| 117 | for (Value value : values) { |
| 118 | if (nonLiveSet.contains(value)) |
| 119 | continue; |
| 120 | |
| 121 | const Liveness *liveness = la.getLiveness(val: value); |
| 122 | if (!liveness || liveness->isLive) |
| 123 | return true; |
| 124 | } |
| 125 | return false; |
| 126 | } |
| 127 | |
| 128 | /// Return a BitVector of size `values.size()` where its i-th bit is 1 iff the |
| 129 | /// i-th value in `values` is live, given the liveness information in `la`. |
| 130 | static BitVector markLives(ValueRange values, const DenseSet<Value> &nonLiveSet, |
| 131 | RunLivenessAnalysis &la) { |
| 132 | BitVector lives(values.size(), true); |
| 133 | |
| 134 | for (auto [index, value] : llvm::enumerate(values)) { |
| 135 | if (nonLiveSet.contains(value)) { |
| 136 | lives.reset(index); |
| 137 | continue; |
| 138 | } |
| 139 | |
| 140 | const Liveness *liveness = la.getLiveness(value); |
| 141 | // It is important to note that when `liveness` is null, we can't tell if |
| 142 | // `value` is live or not. So, the safe option is to consider it live. Also, |
| 143 | // the execution of this pass might create new SSA values when erasing some |
| 144 | // of the results of an op and we know that these new values are live |
| 145 | // (because they weren't erased) and also their liveness is null because |
| 146 | // liveness analysis ran before their creation. |
| 147 | if (liveness && !liveness->isLive) |
| 148 | lives.reset(index); |
| 149 | } |
| 150 | |
| 151 | return lives; |
| 152 | } |
| 153 | |
| 154 | /// Collects values marked as "non-live" in the provided range and inserts them |
| 155 | /// into the nonLiveSet. A value is considered "non-live" if the corresponding |
| 156 | /// index in the `nonLive` bit vector is set. |
| 157 | static void collectNonLiveValues(DenseSet<Value> &nonLiveSet, ValueRange range, |
| 158 | const BitVector &nonLive) { |
| 159 | for (auto [index, result] : llvm::enumerate(range)) { |
| 160 | if (!nonLive[index]) |
| 161 | continue; |
| 162 | nonLiveSet.insert(result); |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | /// Drop the uses of the i-th result of `op` and then erase it iff toErase[i] |
| 167 | /// is 1. |
| 168 | static void dropUsesAndEraseResults(Operation *op, BitVector toErase) { |
| 169 | assert(op->getNumResults() == toErase.size() && |
| 170 | "expected the number of results in `op` and the size of `toErase` to " |
| 171 | "be the same" ); |
| 172 | |
| 173 | std::vector<Type> newResultTypes; |
| 174 | for (OpResult result : op->getResults()) |
| 175 | if (!toErase[result.getResultNumber()]) |
| 176 | newResultTypes.push_back(result.getType()); |
| 177 | OpBuilder builder(op); |
| 178 | builder.setInsertionPointAfter(op); |
| 179 | OperationState state(op->getLoc(), op->getName().getStringRef(), |
| 180 | op->getOperands(), newResultTypes, op->getAttrs()); |
| 181 | for (unsigned i = 0, e = op->getNumRegions(); i < e; ++i) |
| 182 | state.addRegion(); |
| 183 | Operation *newOp = builder.create(state); |
| 184 | for (const auto &[index, region] : llvm::enumerate(op->getRegions())) { |
| 185 | Region &newRegion = newOp->getRegion(index); |
| 186 | // Move all blocks of `region` into `newRegion`. |
| 187 | Block *temp = new Block(); |
| 188 | newRegion.push_back(temp); |
| 189 | while (!region.empty()) |
| 190 | region.front().moveBefore(temp); |
| 191 | temp->erase(); |
| 192 | } |
| 193 | |
| 194 | unsigned indexOfNextNewCallOpResultToReplace = 0; |
| 195 | for (auto [index, result] : llvm::enumerate(op->getResults())) { |
| 196 | assert(result && "expected result to be non-null" ); |
| 197 | if (toErase[index]) { |
| 198 | result.dropAllUses(); |
| 199 | } else { |
| 200 | result.replaceAllUsesWith( |
| 201 | newOp->getResult(indexOfNextNewCallOpResultToReplace++)); |
| 202 | } |
| 203 | } |
| 204 | op->erase(); |
| 205 | } |
| 206 | |
| 207 | /// Convert a list of `Operand`s to a list of `OpOperand`s. |
| 208 | static SmallVector<OpOperand *> operandsToOpOperands(OperandRange operands) { |
| 209 | OpOperand *values = operands.getBase(); |
| 210 | SmallVector<OpOperand *> opOperands; |
| 211 | for (unsigned i = 0, e = operands.size(); i < e; i++) |
| 212 | opOperands.push_back(&values[i]); |
| 213 | return opOperands; |
| 214 | } |
| 215 | |
| 216 | /// Process a simple operation `op` using the liveness analysis `la`. |
| 217 | /// If the operation has no memory effects and none of its results are live: |
| 218 | /// 1. Add the operation to a list for future removal, and |
| 219 | /// 2. Mark all its results as non-live values |
| 220 | /// |
| 221 | /// The operation `op` is assumed to be simple. A simple operation is one that |
| 222 | /// is NOT: |
| 223 | /// - Function-like |
| 224 | /// - Call-like |
| 225 | /// - A region branch operation |
| 226 | /// - A branch operation |
| 227 | /// - A region branch terminator |
| 228 | /// - Return-like |
| 229 | static void processSimpleOp(Operation *op, RunLivenessAnalysis &la, |
| 230 | DenseSet<Value> &nonLiveSet, |
| 231 | RDVFinalCleanupList &cl) { |
| 232 | if (!isMemoryEffectFree(op) || hasLive(op->getResults(), nonLiveSet, la)) |
| 233 | return; |
| 234 | |
| 235 | cl.operations.push_back(op); |
| 236 | collectNonLiveValues(nonLiveSet, op->getResults(), |
| 237 | BitVector(op->getNumResults(), true)); |
| 238 | } |
| 239 | |
| 240 | /// Process a function-like operation `funcOp` using the liveness analysis `la` |
| 241 | /// and the IR in `module`. If it is not public or external: |
| 242 | /// (1) Adding its non-live arguments to a list for future removal. |
| 243 | /// (2) Marking their corresponding operands in its callers for removal. |
| 244 | /// (3) Identifying and enqueueing unnecessary terminator operands |
| 245 | /// (return values that are non-live across all callers) for removal. |
| 246 | /// (4) Enqueueing the non-live arguments and return values for removal. |
| 247 | /// (5) Collecting the uses of these return values in its callers for future |
| 248 | /// removal. |
| 249 | /// (6) Marking all its results as non-live values. |
| 250 | static void processFuncOp(FunctionOpInterface funcOp, Operation *module, |
| 251 | RunLivenessAnalysis &la, DenseSet<Value> &nonLiveSet, |
| 252 | RDVFinalCleanupList &cl) { |
| 253 | if (funcOp.isPublic() || funcOp.isExternal()) |
| 254 | return; |
| 255 | |
| 256 | // Get the list of unnecessary (non-live) arguments in `nonLiveArgs`. |
| 257 | SmallVector<Value> arguments(funcOp.getArguments()); |
| 258 | BitVector nonLiveArgs = markLives(arguments, nonLiveSet, la); |
| 259 | nonLiveArgs = nonLiveArgs.flip(); |
| 260 | |
| 261 | // Do (1). |
| 262 | for (auto [index, arg] : llvm::enumerate(arguments)) |
| 263 | if (arg && nonLiveArgs[index]) { |
| 264 | cl.values.push_back(arg); |
| 265 | nonLiveSet.insert(arg); |
| 266 | } |
| 267 | |
| 268 | // Do (2). |
| 269 | SymbolTable::UseRange uses = *funcOp.getSymbolUses(module); |
| 270 | for (SymbolTable::SymbolUse use : uses) { |
| 271 | Operation *callOp = use.getUser(); |
| 272 | assert(isa<CallOpInterface>(callOp) && "expected a call-like user" ); |
| 273 | // The number of operands in the call op may not match the number of |
| 274 | // arguments in the func op. |
| 275 | BitVector nonLiveCallOperands(callOp->getNumOperands(), false); |
| 276 | SmallVector<OpOperand *> callOpOperands = |
| 277 | operandsToOpOperands(cast<CallOpInterface>(callOp).getArgOperands()); |
| 278 | for (int index : nonLiveArgs.set_bits()) |
| 279 | nonLiveCallOperands.set(callOpOperands[index]->getOperandNumber()); |
| 280 | cl.operands.push_back({callOp, nonLiveCallOperands}); |
| 281 | } |
| 282 | |
| 283 | // Do (3). |
| 284 | // Get the list of unnecessary terminator operands (return values that are |
| 285 | // non-live across all callers) in `nonLiveRets`. There is a very important |
| 286 | // subtlety here. Unnecessary terminator operands are NOT the operands of the |
| 287 | // terminator that are non-live. Instead, these are the return values of the |
| 288 | // callers such that a given return value is non-live across all callers. Such |
| 289 | // corresponding operands in the terminator could be live. An example to |
| 290 | // demonstrate this: |
| 291 | // func.func private @f(%arg0: memref<i32>) -> (i32, i32) { |
| 292 | // %c0_i32 = arith.constant 0 : i32 |
| 293 | // %0 = arith.addi %c0_i32, %c0_i32 : i32 |
| 294 | // memref.store %0, %arg0[] : memref<i32> |
| 295 | // return %c0_i32, %0 : i32, i32 |
| 296 | // } |
| 297 | // func.func @main(%arg0: i32, %arg1: memref<i32>) -> (i32) { |
| 298 | // %1:2 = call @f(%arg1) : (memref<i32>) -> i32 |
| 299 | // return %1#0 : i32 |
| 300 | // } |
| 301 | // Here, we can see that %1#1 is never used. It is non-live. Thus, @f doesn't |
| 302 | // need to return %0. But, %0 is live. And, still, we want to stop it from |
| 303 | // being returned, in order to optimize our IR. So, this demonstrates how we |
| 304 | // can make our optimization strong by even removing a live return value (%0), |
| 305 | // since it forwards only to non-live value(s) (%1#1). |
| 306 | Operation *lastReturnOp = funcOp.back().getTerminator(); |
| 307 | size_t numReturns = lastReturnOp->getNumOperands(); |
| 308 | if (numReturns == 0) |
| 309 | return; |
| 310 | BitVector nonLiveRets(numReturns, true); |
| 311 | for (SymbolTable::SymbolUse use : uses) { |
| 312 | Operation *callOp = use.getUser(); |
| 313 | assert(isa<CallOpInterface>(callOp) && "expected a call-like user" ); |
| 314 | BitVector liveCallRets = markLives(callOp->getResults(), nonLiveSet, la); |
| 315 | nonLiveRets &= liveCallRets.flip(); |
| 316 | } |
| 317 | |
| 318 | // Note that in the absence of control flow ops forcing the control to go from |
| 319 | // the entry (first) block to the other blocks, the control never reaches any |
| 320 | // block other than the entry block, because every block has a terminator. |
| 321 | for (Block &block : funcOp.getBlocks()) { |
| 322 | Operation *returnOp = block.getTerminator(); |
| 323 | if (returnOp && returnOp->getNumOperands() == numReturns) |
| 324 | cl.operands.push_back({returnOp, nonLiveRets}); |
| 325 | } |
| 326 | |
| 327 | // Do (4). |
| 328 | cl.functions.push_back({funcOp, nonLiveArgs, nonLiveRets}); |
| 329 | |
| 330 | // Do (5) and (6). |
| 331 | for (SymbolTable::SymbolUse use : uses) { |
| 332 | Operation *callOp = use.getUser(); |
| 333 | assert(isa<CallOpInterface>(callOp) && "expected a call-like user" ); |
| 334 | cl.results.push_back({callOp, nonLiveRets}); |
| 335 | collectNonLiveValues(nonLiveSet, callOp->getResults(), nonLiveRets); |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | /// Process a region branch operation `regionBranchOp` using the liveness |
| 340 | /// information in `la`. The processing involves two scenarios: |
| 341 | /// |
| 342 | /// Scenario 1: If the operation has no memory effects and none of its results |
| 343 | /// are live: |
| 344 | /// (1') Enqueue all its uses for deletion. |
| 345 | /// (2') Enqueue the branch itself for deletion. |
| 346 | /// |
| 347 | /// Scenario 2: Otherwise: |
| 348 | /// (1) Collect its unnecessary operands (operands forwarded to unnecessary |
| 349 | /// results or arguments). |
| 350 | /// (2) Process each of its regions. |
| 351 | /// (3) Collect the uses of its unnecessary results (results forwarded from |
| 352 | /// unnecessary operands |
| 353 | /// or terminator operands). |
| 354 | /// (4) Add these results to the deletion list. |
| 355 | /// |
| 356 | /// Processing a region includes: |
| 357 | /// (a) Collecting the uses of its unnecessary arguments (arguments forwarded |
| 358 | /// from unnecessary operands |
| 359 | /// or terminator operands). |
| 360 | /// (b) Collecting these unnecessary arguments. |
| 361 | /// (c) Collecting its unnecessary terminator operands (terminator operands |
| 362 | /// forwarded to unnecessary results |
| 363 | /// or arguments). |
| 364 | /// |
| 365 | /// Value Flow Note: In this operation, values flow as follows: |
| 366 | /// - From operands and terminator operands (successor operands) |
| 367 | /// - To arguments and results (successor inputs). |
| 368 | static void processRegionBranchOp(RegionBranchOpInterface regionBranchOp, |
| 369 | RunLivenessAnalysis &la, |
| 370 | DenseSet<Value> &nonLiveSet, |
| 371 | RDVFinalCleanupList &cl) { |
| 372 | // Mark live results of `regionBranchOp` in `liveResults`. |
| 373 | auto markLiveResults = [&](BitVector &liveResults) { |
| 374 | liveResults = markLives(regionBranchOp->getResults(), nonLiveSet, la); |
| 375 | }; |
| 376 | |
| 377 | // Mark live arguments in the regions of `regionBranchOp` in `liveArgs`. |
| 378 | auto markLiveArgs = [&](DenseMap<Region *, BitVector> &liveArgs) { |
| 379 | for (Region ®ion : regionBranchOp->getRegions()) { |
| 380 | if (region.empty()) |
| 381 | continue; |
| 382 | SmallVector<Value> arguments(region.front().getArguments()); |
| 383 | BitVector regionLiveArgs = markLives(arguments, nonLiveSet, la); |
| 384 | liveArgs[®ion] = regionLiveArgs; |
| 385 | } |
| 386 | }; |
| 387 | |
| 388 | // Return the successors of `region` if the latter is not null. Else return |
| 389 | // the successors of `regionBranchOp`. |
| 390 | auto getSuccessors = [&](Region *region = nullptr) { |
| 391 | auto point = region ? region : RegionBranchPoint::parent(); |
| 392 | SmallVector<RegionSuccessor> successors; |
| 393 | regionBranchOp.getSuccessorRegions(point, successors); |
| 394 | return successors; |
| 395 | }; |
| 396 | |
| 397 | // Return the operands of `terminator` that are forwarded to `successor` if |
| 398 | // the former is not null. Else return the operands of `regionBranchOp` |
| 399 | // forwarded to `successor`. |
| 400 | auto getForwardedOpOperands = [&](const RegionSuccessor &successor, |
| 401 | Operation *terminator = nullptr) { |
| 402 | OperandRange operands = |
| 403 | terminator ? cast<RegionBranchTerminatorOpInterface>(terminator) |
| 404 | .getSuccessorOperands(successor) |
| 405 | : regionBranchOp.getEntrySuccessorOperands(successor); |
| 406 | SmallVector<OpOperand *> opOperands = operandsToOpOperands(operands); |
| 407 | return opOperands; |
| 408 | }; |
| 409 | |
| 410 | // Mark the non-forwarded operands of `regionBranchOp` in |
| 411 | // `nonForwardedOperands`. |
| 412 | auto markNonForwardedOperands = [&](BitVector &nonForwardedOperands) { |
| 413 | nonForwardedOperands.resize(N: regionBranchOp->getNumOperands(), t: true); |
| 414 | for (const RegionSuccessor &successor : getSuccessors()) { |
| 415 | for (OpOperand *opOperand : getForwardedOpOperands(successor)) |
| 416 | nonForwardedOperands.reset(opOperand->getOperandNumber()); |
| 417 | } |
| 418 | }; |
| 419 | |
| 420 | // Mark the non-forwarded terminator operands of the various regions of |
| 421 | // `regionBranchOp` in `nonForwardedRets`. |
| 422 | auto markNonForwardedReturnValues = |
| 423 | [&](DenseMap<Operation *, BitVector> &nonForwardedRets) { |
| 424 | for (Region ®ion : regionBranchOp->getRegions()) { |
| 425 | if (region.empty()) |
| 426 | continue; |
| 427 | Operation *terminator = region.front().getTerminator(); |
| 428 | nonForwardedRets[terminator] = |
| 429 | BitVector(terminator->getNumOperands(), true); |
| 430 | for (const RegionSuccessor &successor : getSuccessors(®ion)) { |
| 431 | for (OpOperand *opOperand : |
| 432 | getForwardedOpOperands(successor, terminator)) |
| 433 | nonForwardedRets[terminator].reset(opOperand->getOperandNumber()); |
| 434 | } |
| 435 | } |
| 436 | }; |
| 437 | |
| 438 | // Update `valuesToKeep` (which is expected to correspond to operands or |
| 439 | // terminator operands) based on `resultsToKeep` and `argsToKeep`, given |
| 440 | // `region`. When `valuesToKeep` correspond to operands, `region` is null. |
| 441 | // Else, `region` is the parent region of the terminator. |
| 442 | auto updateOperandsOrTerminatorOperandsToKeep = |
| 443 | [&](BitVector &valuesToKeep, BitVector &resultsToKeep, |
| 444 | DenseMap<Region *, BitVector> &argsToKeep, Region *region = nullptr) { |
| 445 | Operation *terminator = |
| 446 | region ? region->front().getTerminator() : nullptr; |
| 447 | |
| 448 | for (const RegionSuccessor &successor : getSuccessors(region)) { |
| 449 | Region *successorRegion = successor.getSuccessor(); |
| 450 | for (auto [opOperand, input] : |
| 451 | llvm::zip(getForwardedOpOperands(successor, terminator), |
| 452 | successor.getSuccessorInputs())) { |
| 453 | size_t operandNum = opOperand->getOperandNumber(); |
| 454 | bool updateBasedOn = |
| 455 | successorRegion |
| 456 | ? argsToKeep[successorRegion] |
| 457 | [cast<BlockArgument>(input).getArgNumber()] |
| 458 | : resultsToKeep[cast<OpResult>(input).getResultNumber()]; |
| 459 | valuesToKeep[operandNum] = valuesToKeep[operandNum] | updateBasedOn; |
| 460 | } |
| 461 | } |
| 462 | }; |
| 463 | |
| 464 | // Recompute `resultsToKeep` and `argsToKeep` based on `operandsToKeep` and |
| 465 | // `terminatorOperandsToKeep`. Store true in `resultsOrArgsToKeepChanged` if a |
| 466 | // value is modified, else, false. |
| 467 | auto recomputeResultsAndArgsToKeep = |
| 468 | [&](BitVector &resultsToKeep, DenseMap<Region *, BitVector> &argsToKeep, |
| 469 | BitVector &operandsToKeep, |
| 470 | DenseMap<Operation *, BitVector> &terminatorOperandsToKeep, |
| 471 | bool &resultsOrArgsToKeepChanged) { |
| 472 | resultsOrArgsToKeepChanged = false; |
| 473 | |
| 474 | // Recompute `resultsToKeep` and `argsToKeep` based on `operandsToKeep`. |
| 475 | for (const RegionSuccessor &successor : getSuccessors()) { |
| 476 | Region *successorRegion = successor.getSuccessor(); |
| 477 | for (auto [opOperand, input] : |
| 478 | llvm::zip(getForwardedOpOperands(successor), |
| 479 | successor.getSuccessorInputs())) { |
| 480 | bool recomputeBasedOn = |
| 481 | operandsToKeep[opOperand->getOperandNumber()]; |
| 482 | bool toRecompute = |
| 483 | successorRegion |
| 484 | ? argsToKeep[successorRegion] |
| 485 | [cast<BlockArgument>(input).getArgNumber()] |
| 486 | : resultsToKeep[cast<OpResult>(input).getResultNumber()]; |
| 487 | if (!toRecompute && recomputeBasedOn) |
| 488 | resultsOrArgsToKeepChanged = true; |
| 489 | if (successorRegion) { |
| 490 | argsToKeep[successorRegion][cast<BlockArgument>(input) |
| 491 | .getArgNumber()] = |
| 492 | argsToKeep[successorRegion] |
| 493 | [cast<BlockArgument>(input).getArgNumber()] | |
| 494 | recomputeBasedOn; |
| 495 | } else { |
| 496 | resultsToKeep[cast<OpResult>(input).getResultNumber()] = |
| 497 | resultsToKeep[cast<OpResult>(input).getResultNumber()] | |
| 498 | recomputeBasedOn; |
| 499 | } |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | // Recompute `resultsToKeep` and `argsToKeep` based on |
| 504 | // `terminatorOperandsToKeep`. |
| 505 | for (Region ®ion : regionBranchOp->getRegions()) { |
| 506 | if (region.empty()) |
| 507 | continue; |
| 508 | Operation *terminator = region.front().getTerminator(); |
| 509 | for (const RegionSuccessor &successor : getSuccessors(®ion)) { |
| 510 | Region *successorRegion = successor.getSuccessor(); |
| 511 | for (auto [opOperand, input] : |
| 512 | llvm::zip(getForwardedOpOperands(successor, terminator), |
| 513 | successor.getSuccessorInputs())) { |
| 514 | bool recomputeBasedOn = |
| 515 | terminatorOperandsToKeep[region.back().getTerminator()] |
| 516 | [opOperand->getOperandNumber()]; |
| 517 | bool toRecompute = |
| 518 | successorRegion |
| 519 | ? argsToKeep[successorRegion] |
| 520 | [cast<BlockArgument>(input).getArgNumber()] |
| 521 | : resultsToKeep[cast<OpResult>(input).getResultNumber()]; |
| 522 | if (!toRecompute && recomputeBasedOn) |
| 523 | resultsOrArgsToKeepChanged = true; |
| 524 | if (successorRegion) { |
| 525 | argsToKeep[successorRegion][cast<BlockArgument>(input) |
| 526 | .getArgNumber()] = |
| 527 | argsToKeep[successorRegion] |
| 528 | [cast<BlockArgument>(input).getArgNumber()] | |
| 529 | recomputeBasedOn; |
| 530 | } else { |
| 531 | resultsToKeep[cast<OpResult>(input).getResultNumber()] = |
| 532 | resultsToKeep[cast<OpResult>(input).getResultNumber()] | |
| 533 | recomputeBasedOn; |
| 534 | } |
| 535 | } |
| 536 | } |
| 537 | } |
| 538 | }; |
| 539 | |
| 540 | // Mark the values that we want to keep in `resultsToKeep`, `argsToKeep`, |
| 541 | // `operandsToKeep`, and `terminatorOperandsToKeep`. |
| 542 | auto markValuesToKeep = |
| 543 | [&](BitVector &resultsToKeep, DenseMap<Region *, BitVector> &argsToKeep, |
| 544 | BitVector &operandsToKeep, |
| 545 | DenseMap<Operation *, BitVector> &terminatorOperandsToKeep) { |
| 546 | bool resultsOrArgsToKeepChanged = true; |
| 547 | // We keep updating and recomputing the values until we reach a point |
| 548 | // where they stop changing. |
| 549 | while (resultsOrArgsToKeepChanged) { |
| 550 | // Update the operands that need to be kept. |
| 551 | updateOperandsOrTerminatorOperandsToKeep(operandsToKeep, |
| 552 | resultsToKeep, argsToKeep); |
| 553 | |
| 554 | // Update the terminator operands that need to be kept. |
| 555 | for (Region ®ion : regionBranchOp->getRegions()) { |
| 556 | if (region.empty()) |
| 557 | continue; |
| 558 | updateOperandsOrTerminatorOperandsToKeep( |
| 559 | terminatorOperandsToKeep[region.back().getTerminator()], |
| 560 | resultsToKeep, argsToKeep, ®ion); |
| 561 | } |
| 562 | |
| 563 | // Recompute the results and arguments that need to be kept. |
| 564 | recomputeResultsAndArgsToKeep( |
| 565 | resultsToKeep, argsToKeep, operandsToKeep, |
| 566 | terminatorOperandsToKeep, resultsOrArgsToKeepChanged); |
| 567 | } |
| 568 | }; |
| 569 | |
| 570 | // Scenario 1. This is the only case where the entire `regionBranchOp` |
| 571 | // is removed. It will not happen in any other scenario. Note that in this |
| 572 | // case, a non-forwarded operand of `regionBranchOp` could be live/non-live. |
| 573 | // It could never be live because of this op but its liveness could have been |
| 574 | // attributed to something else. |
| 575 | // Do (1') and (2'). |
| 576 | if (isMemoryEffectFree(regionBranchOp.getOperation()) && |
| 577 | !hasLive(regionBranchOp->getResults(), nonLiveSet, la)) { |
| 578 | cl.operations.push_back(regionBranchOp.getOperation()); |
| 579 | return; |
| 580 | } |
| 581 | |
| 582 | // Scenario 2. |
| 583 | // At this point, we know that every non-forwarded operand of `regionBranchOp` |
| 584 | // is live. |
| 585 | |
| 586 | // Stores the results of `regionBranchOp` that we want to keep. |
| 587 | BitVector resultsToKeep; |
| 588 | // Stores the mapping from regions of `regionBranchOp` to their arguments that |
| 589 | // we want to keep. |
| 590 | DenseMap<Region *, BitVector> argsToKeep; |
| 591 | // Stores the operands of `regionBranchOp` that we want to keep. |
| 592 | BitVector operandsToKeep; |
| 593 | // Stores the mapping from region terminators in `regionBranchOp` to their |
| 594 | // operands that we want to keep. |
| 595 | DenseMap<Operation *, BitVector> terminatorOperandsToKeep; |
| 596 | |
| 597 | // Initializing the above variables... |
| 598 | |
| 599 | // The live results of `regionBranchOp` definitely need to be kept. |
| 600 | markLiveResults(resultsToKeep); |
| 601 | // Similarly, the live arguments of the regions in `regionBranchOp` definitely |
| 602 | // need to be kept. |
| 603 | markLiveArgs(argsToKeep); |
| 604 | // The non-forwarded operands of `regionBranchOp` definitely need to be kept. |
| 605 | // A live forwarded operand can be removed but no non-forwarded operand can be |
| 606 | // removed since it "controls" the flow of data in this control flow op. |
| 607 | markNonForwardedOperands(operandsToKeep); |
| 608 | // Similarly, the non-forwarded terminator operands of the regions in |
| 609 | // `regionBranchOp` definitely need to be kept. |
| 610 | markNonForwardedReturnValues(terminatorOperandsToKeep); |
| 611 | |
| 612 | // Mark the values (results, arguments, operands, and terminator operands) |
| 613 | // that we want to keep. |
| 614 | markValuesToKeep(resultsToKeep, argsToKeep, operandsToKeep, |
| 615 | terminatorOperandsToKeep); |
| 616 | |
| 617 | // Do (1). |
| 618 | cl.operands.push_back({regionBranchOp, operandsToKeep.flip()}); |
| 619 | |
| 620 | // Do (2.a) and (2.b). |
| 621 | for (Region ®ion : regionBranchOp->getRegions()) { |
| 622 | if (region.empty()) |
| 623 | continue; |
| 624 | BitVector argsToRemove = argsToKeep[®ion].flip(); |
| 625 | cl.blocks.push_back({®ion.front(), argsToRemove}); |
| 626 | collectNonLiveValues(nonLiveSet, region.front().getArguments(), |
| 627 | argsToRemove); |
| 628 | } |
| 629 | |
| 630 | // Do (2.c). |
| 631 | for (Region ®ion : regionBranchOp->getRegions()) { |
| 632 | if (region.empty()) |
| 633 | continue; |
| 634 | Operation *terminator = region.front().getTerminator(); |
| 635 | cl.operands.push_back( |
| 636 | {terminator, terminatorOperandsToKeep[terminator].flip()}); |
| 637 | } |
| 638 | |
| 639 | // Do (3) and (4). |
| 640 | BitVector resultsToRemove = resultsToKeep.flip(); |
| 641 | collectNonLiveValues(nonLiveSet, regionBranchOp.getOperation()->getResults(), |
| 642 | resultsToRemove); |
| 643 | cl.results.push_back({regionBranchOp.getOperation(), resultsToRemove}); |
| 644 | } |
| 645 | |
| 646 | /// Steps to process a `BranchOpInterface` operation: |
| 647 | /// Iterate through each successor block of `branchOp`. |
| 648 | /// (1) For each successor block, gather all operands from all successors. |
| 649 | /// (2) Fetch their associated liveness analysis data and collect for future |
| 650 | /// removal. |
| 651 | /// (3) Identify and collect the dead operands from the successor block |
| 652 | /// as well as their corresponding arguments. |
| 653 | |
| 654 | static void processBranchOp(BranchOpInterface branchOp, RunLivenessAnalysis &la, |
| 655 | DenseSet<Value> &nonLiveSet, |
| 656 | RDVFinalCleanupList &cl) { |
| 657 | unsigned numSuccessors = branchOp->getNumSuccessors(); |
| 658 | |
| 659 | for (unsigned succIdx = 0; succIdx < numSuccessors; ++succIdx) { |
| 660 | Block *successorBlock = branchOp->getSuccessor(succIdx); |
| 661 | |
| 662 | // Do (1) |
| 663 | SuccessorOperands successorOperands = |
| 664 | branchOp.getSuccessorOperands(succIdx); |
| 665 | SmallVector<Value> operandValues; |
| 666 | for (unsigned operandIdx = 0; operandIdx < successorOperands.size(); |
| 667 | ++operandIdx) { |
| 668 | operandValues.push_back(successorOperands[operandIdx]); |
| 669 | } |
| 670 | |
| 671 | // Do (2) |
| 672 | BitVector successorNonLive = |
| 673 | markLives(operandValues, nonLiveSet, la).flip(); |
| 674 | collectNonLiveValues(nonLiveSet, successorBlock->getArguments(), |
| 675 | successorNonLive); |
| 676 | |
| 677 | // Do (3) |
| 678 | cl.blocks.push_back({successorBlock, successorNonLive}); |
| 679 | cl.successorOperands.push_back({branchOp, succIdx, successorNonLive}); |
| 680 | } |
| 681 | } |
| 682 | |
| 683 | /// Removes dead values collected in RDVFinalCleanupList. |
| 684 | /// To be run once when all dead values have been collected. |
| 685 | static void cleanUpDeadVals(RDVFinalCleanupList &list) { |
| 686 | // 1. Operations |
| 687 | for (auto &op : list.operations) { |
| 688 | op->dropAllUses(); |
| 689 | op->erase(); |
| 690 | } |
| 691 | |
| 692 | // 2. Values |
| 693 | for (auto &v : list.values) { |
| 694 | v.dropAllUses(); |
| 695 | } |
| 696 | |
| 697 | // 3. Functions |
| 698 | for (auto &f : list.functions) { |
| 699 | // Some functions may not allow erasing arguments or results. These calls |
| 700 | // return failure in such cases without modifying the function, so it's okay |
| 701 | // to proceed. |
| 702 | (void)f.funcOp.eraseArguments(f.nonLiveArgs); |
| 703 | (void)f.funcOp.eraseResults(f.nonLiveRets); |
| 704 | } |
| 705 | |
| 706 | // 4. Operands |
| 707 | for (auto &o : list.operands) { |
| 708 | o.op->eraseOperands(o.nonLive); |
| 709 | } |
| 710 | |
| 711 | // 5. Results |
| 712 | for (auto &r : list.results) { |
| 713 | dropUsesAndEraseResults(r.op, r.nonLive); |
| 714 | } |
| 715 | |
| 716 | // 6. Blocks |
| 717 | for (auto &b : list.blocks) { |
| 718 | // blocks that are accessed via multiple codepaths processed once |
| 719 | if (b.b->getNumArguments() != b.nonLiveArgs.size()) |
| 720 | continue; |
| 721 | // it iterates backwards because erase invalidates all successor indexes |
| 722 | for (int i = b.nonLiveArgs.size() - 1; i >= 0; --i) { |
| 723 | if (!b.nonLiveArgs[i]) |
| 724 | continue; |
| 725 | b.b->getArgument(i).dropAllUses(); |
| 726 | b.b->eraseArgument(i); |
| 727 | } |
| 728 | } |
| 729 | |
| 730 | // 7. Successor Operands |
| 731 | for (auto &op : list.successorOperands) { |
| 732 | SuccessorOperands successorOperands = |
| 733 | op.branch.getSuccessorOperands(op.successorIndex); |
| 734 | // blocks that are accessed via multiple codepaths processed once |
| 735 | if (successorOperands.size() != op.nonLiveOperands.size()) |
| 736 | continue; |
| 737 | // it iterates backwards because erase invalidates all successor indexes |
| 738 | for (int i = successorOperands.size() - 1; i >= 0; --i) { |
| 739 | if (!op.nonLiveOperands[i]) |
| 740 | continue; |
| 741 | successorOperands.erase(i); |
| 742 | } |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | struct RemoveDeadValues : public impl::RemoveDeadValuesBase<RemoveDeadValues> { |
| 747 | void runOnOperation() override; |
| 748 | }; |
| 749 | } // namespace |
| 750 | |
| 751 | void RemoveDeadValues::runOnOperation() { |
| 752 | auto &la = getAnalysis<RunLivenessAnalysis>(); |
| 753 | Operation *module = getOperation(); |
| 754 | |
| 755 | // Tracks values eligible for erasure - complements liveness analysis to |
| 756 | // identify "droppable" values. |
| 757 | DenseSet<Value> deadVals; |
| 758 | |
| 759 | // Maintains a list of Ops, values, branches, etc., slated for cleanup at the |
| 760 | // end of this pass. |
| 761 | RDVFinalCleanupList finalCleanupList; |
| 762 | |
| 763 | module->walk(callback: [&](Operation *op) { |
| 764 | if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) { |
| 765 | processFuncOp(funcOp, module, la, deadVals, finalCleanupList); |
| 766 | } else if (auto regionBranchOp = dyn_cast<RegionBranchOpInterface>(op)) { |
| 767 | processRegionBranchOp(regionBranchOp, la, deadVals, finalCleanupList); |
| 768 | } else if (auto branchOp = dyn_cast<BranchOpInterface>(op)) { |
| 769 | processBranchOp(branchOp, la, deadVals, finalCleanupList); |
| 770 | } else if (op->hasTrait<::mlir::OpTrait::IsTerminator>()) { |
| 771 | // Nothing to do here because this is a terminator op and it should be |
| 772 | // honored with respect to its parent |
| 773 | } else if (isa<CallOpInterface>(Val: op)) { |
| 774 | // Nothing to do because this op is associated with a function op and gets |
| 775 | // cleaned when the latter is cleaned. |
| 776 | } else { |
| 777 | processSimpleOp(op, la, deadVals, finalCleanupList); |
| 778 | } |
| 779 | }); |
| 780 | |
| 781 | cleanUpDeadVals(list&: finalCleanupList); |
| 782 | } |
| 783 | |
| 784 | std::unique_ptr<Pass> mlir::createRemoveDeadValuesPass() { |
| 785 | return std::make_unique<RemoveDeadValues>(); |
| 786 | } |
| 787 | |