1 | //===-- SROA.cpp - Scalar Replacement Of Aggregates -------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Transforms/SROA.h" |
10 | #include "mlir/Analysis/DataLayoutAnalysis.h" |
11 | #include "mlir/Analysis/SliceAnalysis.h" |
12 | #include "mlir/Analysis/TopologicalSortUtils.h" |
13 | #include "mlir/Interfaces/MemorySlotInterfaces.h" |
14 | #include "mlir/Transforms/Passes.h" |
15 | |
16 | namespace mlir { |
17 | #define GEN_PASS_DEF_SROA |
18 | #include "mlir/Transforms/Passes.h.inc" |
19 | } // namespace mlir |
20 | |
21 | #define DEBUG_TYPE "sroa" |
22 | |
23 | using namespace mlir; |
24 | |
25 | namespace { |
26 | |
27 | /// Information computed by destructurable memory slot analysis used to perform |
28 | /// actual destructuring of the slot. This struct is only constructed if |
29 | /// destructuring is possible, and contains the necessary data to perform it. |
30 | struct MemorySlotDestructuringInfo { |
31 | /// Set of the indices that are actually used when accessing the subelements. |
32 | SmallPtrSet<Attribute, 8> usedIndices; |
33 | /// Blocking uses of a given user of the memory slot that must be eliminated. |
34 | DenseMap<Operation *, SmallPtrSet<OpOperand *, 4>> userToBlockingUses; |
35 | /// List of potentially indirect accessors of the memory slot that need |
36 | /// rewiring. |
37 | SmallVector<DestructurableAccessorOpInterface> accessors; |
38 | }; |
39 | |
40 | } // namespace |
41 | |
42 | /// Computes information for slot destructuring. This will compute whether this |
43 | /// slot can be destructured and data to perform the destructuring. Returns |
44 | /// nothing if the slot cannot be destructured or if there is no useful work to |
45 | /// be done. |
46 | static std::optional<MemorySlotDestructuringInfo> |
47 | computeDestructuringInfo(DestructurableMemorySlot &slot, |
48 | const DataLayout &dataLayout) { |
49 | assert(isa<DestructurableTypeInterface>(slot.elemType)); |
50 | |
51 | if (slot.ptr.use_empty()) |
52 | return {}; |
53 | |
54 | MemorySlotDestructuringInfo info; |
55 | |
56 | SmallVector<MemorySlot> usedSafelyWorklist; |
57 | |
58 | auto scheduleAsBlockingUse = [&](OpOperand &use) { |
59 | SmallPtrSetImpl<OpOperand *> &blockingUses = |
60 | info.userToBlockingUses[use.getOwner()]; |
61 | blockingUses.insert(Ptr: &use); |
62 | }; |
63 | |
64 | // Initialize the analysis with the immediate users of the slot. |
65 | for (OpOperand &use : slot.ptr.getUses()) { |
66 | if (auto accessor = |
67 | dyn_cast<DestructurableAccessorOpInterface>(use.getOwner())) { |
68 | if (accessor.canRewire(slot, info.usedIndices, usedSafelyWorklist, |
69 | dataLayout)) { |
70 | info.accessors.push_back(accessor); |
71 | continue; |
72 | } |
73 | } |
74 | |
75 | // If it cannot be shown that the operation uses the slot safely, maybe it |
76 | // can be promoted out of using the slot? |
77 | scheduleAsBlockingUse(use); |
78 | } |
79 | |
80 | SmallPtrSet<OpOperand *, 16> visited; |
81 | while (!usedSafelyWorklist.empty()) { |
82 | MemorySlot mustBeUsedSafely = usedSafelyWorklist.pop_back_val(); |
83 | for (OpOperand &subslotUse : mustBeUsedSafely.ptr.getUses()) { |
84 | if (!visited.insert(Ptr: &subslotUse).second) |
85 | continue; |
86 | Operation *subslotUser = subslotUse.getOwner(); |
87 | |
88 | if (auto memOp = dyn_cast<SafeMemorySlotAccessOpInterface>(subslotUser)) |
89 | if (succeeded(memOp.ensureOnlySafeAccesses( |
90 | mustBeUsedSafely, usedSafelyWorklist, dataLayout))) |
91 | continue; |
92 | |
93 | // If it cannot be shown that the operation uses the slot safely, maybe it |
94 | // can be promoted out of using the slot? |
95 | scheduleAsBlockingUse(subslotUse); |
96 | } |
97 | } |
98 | |
99 | SetVector<Operation *> forwardSlice; |
100 | mlir::getForwardSlice(root: slot.ptr, forwardSlice: &forwardSlice); |
101 | for (Operation *user : forwardSlice) { |
102 | // If the next operation has no blocking uses, everything is fine. |
103 | auto it = info.userToBlockingUses.find(user); |
104 | if (it == info.userToBlockingUses.end()) |
105 | continue; |
106 | |
107 | SmallPtrSet<OpOperand *, 4> &blockingUses = it->second; |
108 | auto promotable = dyn_cast<PromotableOpInterface>(user); |
109 | |
110 | // An operation that has blocking uses must be promoted. If it is not |
111 | // promotable, destructuring must fail. |
112 | if (!promotable) |
113 | return {}; |
114 | |
115 | SmallVector<OpOperand *> newBlockingUses; |
116 | // If the operation decides it cannot deal with removing the blocking uses, |
117 | // destructuring must fail. |
118 | if (!promotable.canUsesBeRemoved(blockingUses, newBlockingUses, dataLayout)) |
119 | return {}; |
120 | |
121 | // Then, register any new blocking uses for coming operations. |
122 | for (OpOperand *blockingUse : newBlockingUses) { |
123 | assert(llvm::is_contained(user->getResults(), blockingUse->get())); |
124 | |
125 | SmallPtrSetImpl<OpOperand *> &newUserBlockingUseSet = |
126 | info.userToBlockingUses[blockingUse->getOwner()]; |
127 | newUserBlockingUseSet.insert(Ptr: blockingUse); |
128 | } |
129 | } |
130 | |
131 | return info; |
132 | } |
133 | |
134 | /// Performs the destructuring of a destructible slot given associated |
135 | /// destructuring information. The provided slot will be destructured in |
136 | /// subslots as specified by its allocator. |
137 | static void destructureSlot( |
138 | DestructurableMemorySlot &slot, |
139 | DestructurableAllocationOpInterface allocator, OpBuilder &builder, |
140 | const DataLayout &dataLayout, MemorySlotDestructuringInfo &info, |
141 | SmallVectorImpl<DestructurableAllocationOpInterface> &newAllocators, |
142 | const SROAStatistics &statistics) { |
143 | OpBuilder::InsertionGuard guard(builder); |
144 | |
145 | builder.setInsertionPointToStart(slot.ptr.getParentBlock()); |
146 | DenseMap<Attribute, MemorySlot> subslots = |
147 | allocator.destructure(slot, info.usedIndices, builder, newAllocators); |
148 | |
149 | if (statistics.slotsWithMemoryBenefit && |
150 | slot.subelementTypes.size() != info.usedIndices.size()) |
151 | (*statistics.slotsWithMemoryBenefit)++; |
152 | |
153 | if (statistics.maxSubelementAmount) |
154 | statistics.maxSubelementAmount->updateMax(V: slot.subelementTypes.size()); |
155 | |
156 | SetVector<Operation *> usersToRewire; |
157 | usersToRewire.insert_range(llvm::make_first_range(info.userToBlockingUses)); |
158 | usersToRewire.insert_range(info.accessors); |
159 | usersToRewire = mlir::topologicalSort(toSort: usersToRewire); |
160 | |
161 | llvm::SmallVector<Operation *> toErase; |
162 | for (Operation *toRewire : llvm::reverse(C&: usersToRewire)) { |
163 | builder.setInsertionPointAfter(toRewire); |
164 | if (auto accessor = dyn_cast<DestructurableAccessorOpInterface>(toRewire)) { |
165 | if (accessor.rewire(slot, subslots, builder, dataLayout) == |
166 | DeletionKind::Delete) |
167 | toErase.push_back(Elt: accessor); |
168 | continue; |
169 | } |
170 | |
171 | auto promotable = cast<PromotableOpInterface>(toRewire); |
172 | if (promotable.removeBlockingUses(info.userToBlockingUses[promotable], |
173 | builder) == DeletionKind::Delete) |
174 | toErase.push_back(Elt: promotable); |
175 | } |
176 | |
177 | for (Operation *toEraseOp : toErase) |
178 | toEraseOp->erase(); |
179 | |
180 | assert(slot.ptr.use_empty() && "after destructuring, the original slot " |
181 | "pointer should no longer be used" ); |
182 | |
183 | LLVM_DEBUG(llvm::dbgs() << "[sroa] Destructured memory slot: " << slot.ptr |
184 | << "\n" ); |
185 | |
186 | if (statistics.destructuredAmount) |
187 | (*statistics.destructuredAmount)++; |
188 | |
189 | std::optional<DestructurableAllocationOpInterface> newAllocator = |
190 | allocator.handleDestructuringComplete(slot, builder); |
191 | // Add newly created allocators to the worklist for further processing. |
192 | if (newAllocator) |
193 | newAllocators.push_back(*newAllocator); |
194 | } |
195 | |
196 | LogicalResult mlir::tryToDestructureMemorySlots( |
197 | ArrayRef<DestructurableAllocationOpInterface> allocators, |
198 | OpBuilder &builder, const DataLayout &dataLayout, |
199 | SROAStatistics statistics) { |
200 | bool destructuredAny = false; |
201 | |
202 | SmallVector<DestructurableAllocationOpInterface> workList(allocators); |
203 | SmallVector<DestructurableAllocationOpInterface> newWorkList; |
204 | newWorkList.reserve(allocators.size()); |
205 | // Destructuring a slot can allow for further destructuring of other |
206 | // slots, destructuring is tried until no destructuring succeeds. |
207 | while (true) { |
208 | bool changesInThisRound = false; |
209 | |
210 | for (DestructurableAllocationOpInterface allocator : workList) { |
211 | bool destructuredAnySlot = false; |
212 | for (DestructurableMemorySlot slot : allocator.getDestructurableSlots()) { |
213 | std::optional<MemorySlotDestructuringInfo> info = |
214 | computeDestructuringInfo(slot, dataLayout); |
215 | if (!info) |
216 | continue; |
217 | |
218 | destructureSlot(slot, allocator, builder, dataLayout, *info, |
219 | newWorkList, statistics); |
220 | destructuredAnySlot = true; |
221 | |
222 | // A break is required, since destructuring a slot may invalidate the |
223 | // remaning slots of an allocator. |
224 | break; |
225 | } |
226 | if (!destructuredAnySlot) |
227 | newWorkList.push_back(allocator); |
228 | changesInThisRound |= destructuredAnySlot; |
229 | } |
230 | |
231 | if (!changesInThisRound) |
232 | break; |
233 | destructuredAny |= changesInThisRound; |
234 | |
235 | // Swap the vector's backing memory and clear the entries in newWorkList |
236 | // afterwards. This ensures that additional heap allocations can be avoided. |
237 | workList.swap(newWorkList); |
238 | newWorkList.clear(); |
239 | } |
240 | |
241 | return success(IsSuccess: destructuredAny); |
242 | } |
243 | |
244 | namespace { |
245 | |
246 | struct SROA : public impl::SROABase<SROA> { |
247 | using impl::SROABase<SROA>::SROABase; |
248 | |
249 | void runOnOperation() override { |
250 | Operation *scopeOp = getOperation(); |
251 | |
252 | SROAStatistics statistics{&destructuredAmount, &slotsWithMemoryBenefit, |
253 | &maxSubelementAmount}; |
254 | |
255 | auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>(); |
256 | const DataLayout &dataLayout = dataLayoutAnalysis.getAtOrAbove(scopeOp); |
257 | bool changed = false; |
258 | |
259 | for (Region ®ion : scopeOp->getRegions()) { |
260 | if (region.getBlocks().empty()) |
261 | continue; |
262 | |
263 | OpBuilder builder(®ion.front(), region.front().begin()); |
264 | |
265 | SmallVector<DestructurableAllocationOpInterface> allocators; |
266 | // Build a list of allocators to attempt to destructure the slots of. |
267 | region.walk([&](DestructurableAllocationOpInterface allocator) { |
268 | allocators.emplace_back(allocator); |
269 | }); |
270 | |
271 | // Attempt to destructure as many slots as possible. |
272 | if (succeeded(tryToDestructureMemorySlots(allocators, builder, dataLayout, |
273 | statistics))) |
274 | changed = true; |
275 | } |
276 | if (!changed) |
277 | markAllAnalysesPreserved(); |
278 | } |
279 | }; |
280 | |
281 | } // namespace |
282 | |