1//===- ir.c - Simple test of C APIs ---------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM
4// Exceptions.
5// See https://llvm.org/LICENSE.txt for license information.
6// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7//
8//===----------------------------------------------------------------------===//
9
10/* RUN: mlir-capi-ir-test 2>&1 | FileCheck %s
11 */
12
13#include "mlir-c/IR.h"
14#include "mlir-c/AffineExpr.h"
15#include "mlir-c/AffineMap.h"
16#include "mlir-c/BuiltinAttributes.h"
17#include "mlir-c/BuiltinTypes.h"
18#include "mlir-c/Diagnostics.h"
19#include "mlir-c/Dialect/Func.h"
20#include "mlir-c/IntegerSet.h"
21#include "mlir-c/RegisterEverything.h"
22#include "mlir-c/Support.h"
23
24#include <assert.h>
25#include <inttypes.h>
26#include <math.h>
27#include <stdio.h>
28#include <stdlib.h>
29#include <string.h>
30
31static void registerAllUpstreamDialects(MlirContext ctx) {
32 MlirDialectRegistry registry = mlirDialectRegistryCreate();
33 mlirRegisterAllDialects(registry);
34 mlirContextAppendDialectRegistry(ctx, registry);
35 mlirDialectRegistryDestroy(registry);
36}
37
38struct ResourceDeleteUserData {
39 const char *name;
40};
41static struct ResourceDeleteUserData resourceI64BlobUserData = {
42 "resource_i64_blob"};
43static void reportResourceDelete(void *userData, const void *data, size_t size,
44 size_t align) {
45 fprintf(stderr, format: "reportResourceDelete: %s\n",
46 ((struct ResourceDeleteUserData *)userData)->name);
47}
48
49void populateLoopBody(MlirContext ctx, MlirBlock loopBody,
50 MlirLocation location, MlirBlock funcBody) {
51 MlirValue iv = mlirBlockGetArgument(block: loopBody, pos: 0);
52 MlirValue funcArg0 = mlirBlockGetArgument(block: funcBody, pos: 0);
53 MlirValue funcArg1 = mlirBlockGetArgument(block: funcBody, pos: 1);
54 MlirType f32Type =
55 mlirTypeParseGet(context: ctx, type: mlirStringRefCreateFromCString(str: "f32"));
56
57 MlirOperationState loadLHSState = mlirOperationStateGet(
58 name: mlirStringRefCreateFromCString(str: "memref.load"), loc: location);
59 MlirValue loadLHSOperands[] = {funcArg0, iv};
60 mlirOperationStateAddOperands(state: &loadLHSState, n: 2, operands: loadLHSOperands);
61 mlirOperationStateAddResults(state: &loadLHSState, n: 1, results: &f32Type);
62 MlirOperation loadLHS = mlirOperationCreate(state: &loadLHSState);
63 mlirBlockAppendOwnedOperation(block: loopBody, operation: loadLHS);
64
65 MlirOperationState loadRHSState = mlirOperationStateGet(
66 name: mlirStringRefCreateFromCString(str: "memref.load"), loc: location);
67 MlirValue loadRHSOperands[] = {funcArg1, iv};
68 mlirOperationStateAddOperands(state: &loadRHSState, n: 2, operands: loadRHSOperands);
69 mlirOperationStateAddResults(state: &loadRHSState, n: 1, results: &f32Type);
70 MlirOperation loadRHS = mlirOperationCreate(state: &loadRHSState);
71 mlirBlockAppendOwnedOperation(block: loopBody, operation: loadRHS);
72
73 MlirOperationState addState = mlirOperationStateGet(
74 name: mlirStringRefCreateFromCString(str: "arith.addf"), loc: location);
75 MlirValue addOperands[] = {mlirOperationGetResult(op: loadLHS, pos: 0),
76 mlirOperationGetResult(op: loadRHS, pos: 0)};
77 mlirOperationStateAddOperands(state: &addState, n: 2, operands: addOperands);
78 mlirOperationStateAddResults(state: &addState, n: 1, results: &f32Type);
79 MlirOperation add = mlirOperationCreate(state: &addState);
80 mlirBlockAppendOwnedOperation(block: loopBody, operation: add);
81
82 MlirOperationState storeState = mlirOperationStateGet(
83 name: mlirStringRefCreateFromCString(str: "memref.store"), loc: location);
84 MlirValue storeOperands[] = {mlirOperationGetResult(op: add, pos: 0), funcArg0, iv};
85 mlirOperationStateAddOperands(state: &storeState, n: 3, operands: storeOperands);
86 MlirOperation store = mlirOperationCreate(state: &storeState);
87 mlirBlockAppendOwnedOperation(block: loopBody, operation: store);
88
89 MlirOperationState yieldState = mlirOperationStateGet(
90 name: mlirStringRefCreateFromCString(str: "scf.yield"), loc: location);
91 MlirOperation yield = mlirOperationCreate(state: &yieldState);
92 mlirBlockAppendOwnedOperation(block: loopBody, operation: yield);
93}
94
95MlirModule makeAndDumpAdd(MlirContext ctx, MlirLocation location) {
96 MlirModule moduleOp = mlirModuleCreateEmpty(location);
97 MlirBlock moduleBody = mlirModuleGetBody(module: moduleOp);
98
99 MlirType memrefType =
100 mlirTypeParseGet(context: ctx, type: mlirStringRefCreateFromCString(str: "memref<?xf32>"));
101 MlirType funcBodyArgTypes[] = {memrefType, memrefType};
102 MlirLocation funcBodyArgLocs[] = {location, location};
103 MlirRegion funcBodyRegion = mlirRegionCreate();
104 MlirBlock funcBody =
105 mlirBlockCreate(nArgs: sizeof(funcBodyArgTypes) / sizeof(MlirType),
106 args: funcBodyArgTypes, locs: funcBodyArgLocs);
107 mlirRegionAppendOwnedBlock(region: funcBodyRegion, block: funcBody);
108
109 MlirAttribute funcTypeAttr = mlirAttributeParseGet(
110 context: ctx,
111 attr: mlirStringRefCreateFromCString(str: "(memref<?xf32>, memref<?xf32>) -> ()"));
112 MlirAttribute funcNameAttr =
113 mlirAttributeParseGet(context: ctx, attr: mlirStringRefCreateFromCString(str: "\"add\""));
114 MlirNamedAttribute funcAttrs[] = {
115 mlirNamedAttributeGet(
116 name: mlirIdentifierGet(context: ctx,
117 str: mlirStringRefCreateFromCString(str: "function_type")),
118 attr: funcTypeAttr),
119 mlirNamedAttributeGet(
120 name: mlirIdentifierGet(context: ctx, str: mlirStringRefCreateFromCString(str: "sym_name")),
121 attr: funcNameAttr)};
122 MlirOperationState funcState = mlirOperationStateGet(
123 name: mlirStringRefCreateFromCString(str: "func.func"), loc: location);
124 mlirOperationStateAddAttributes(state: &funcState, n: 2, attributes: funcAttrs);
125 mlirOperationStateAddOwnedRegions(state: &funcState, n: 1, regions: &funcBodyRegion);
126 MlirOperation func = mlirOperationCreate(state: &funcState);
127 mlirBlockInsertOwnedOperation(block: moduleBody, pos: 0, operation: func);
128
129 MlirType indexType =
130 mlirTypeParseGet(context: ctx, type: mlirStringRefCreateFromCString(str: "index"));
131 MlirAttribute indexZeroLiteral =
132 mlirAttributeParseGet(context: ctx, attr: mlirStringRefCreateFromCString(str: "0 : index"));
133 MlirNamedAttribute indexZeroValueAttr = mlirNamedAttributeGet(
134 name: mlirIdentifierGet(context: ctx, str: mlirStringRefCreateFromCString(str: "value")),
135 attr: indexZeroLiteral);
136 MlirOperationState constZeroState = mlirOperationStateGet(
137 name: mlirStringRefCreateFromCString(str: "arith.constant"), loc: location);
138 mlirOperationStateAddResults(state: &constZeroState, n: 1, results: &indexType);
139 mlirOperationStateAddAttributes(state: &constZeroState, n: 1, attributes: &indexZeroValueAttr);
140 MlirOperation constZero = mlirOperationCreate(state: &constZeroState);
141 mlirBlockAppendOwnedOperation(block: funcBody, operation: constZero);
142
143 MlirValue funcArg0 = mlirBlockGetArgument(block: funcBody, pos: 0);
144 MlirValue constZeroValue = mlirOperationGetResult(op: constZero, pos: 0);
145 MlirValue dimOperands[] = {funcArg0, constZeroValue};
146 MlirOperationState dimState = mlirOperationStateGet(
147 name: mlirStringRefCreateFromCString(str: "memref.dim"), loc: location);
148 mlirOperationStateAddOperands(state: &dimState, n: 2, operands: dimOperands);
149 mlirOperationStateAddResults(state: &dimState, n: 1, results: &indexType);
150 MlirOperation dim = mlirOperationCreate(state: &dimState);
151 mlirBlockAppendOwnedOperation(block: funcBody, operation: dim);
152
153 MlirRegion loopBodyRegion = mlirRegionCreate();
154 MlirBlock loopBody = mlirBlockCreate(nArgs: 0, NULL, NULL);
155 mlirBlockAddArgument(block: loopBody, type: indexType, loc: location);
156 mlirRegionAppendOwnedBlock(region: loopBodyRegion, block: loopBody);
157
158 MlirAttribute indexOneLiteral =
159 mlirAttributeParseGet(context: ctx, attr: mlirStringRefCreateFromCString(str: "1 : index"));
160 MlirNamedAttribute indexOneValueAttr = mlirNamedAttributeGet(
161 name: mlirIdentifierGet(context: ctx, str: mlirStringRefCreateFromCString(str: "value")),
162 attr: indexOneLiteral);
163 MlirOperationState constOneState = mlirOperationStateGet(
164 name: mlirStringRefCreateFromCString(str: "arith.constant"), loc: location);
165 mlirOperationStateAddResults(state: &constOneState, n: 1, results: &indexType);
166 mlirOperationStateAddAttributes(state: &constOneState, n: 1, attributes: &indexOneValueAttr);
167 MlirOperation constOne = mlirOperationCreate(state: &constOneState);
168 mlirBlockAppendOwnedOperation(block: funcBody, operation: constOne);
169
170 MlirValue dimValue = mlirOperationGetResult(op: dim, pos: 0);
171 MlirValue constOneValue = mlirOperationGetResult(op: constOne, pos: 0);
172 MlirValue loopOperands[] = {constZeroValue, dimValue, constOneValue};
173 MlirOperationState loopState = mlirOperationStateGet(
174 name: mlirStringRefCreateFromCString(str: "scf.for"), loc: location);
175 mlirOperationStateAddOperands(state: &loopState, n: 3, operands: loopOperands);
176 mlirOperationStateAddOwnedRegions(state: &loopState, n: 1, regions: &loopBodyRegion);
177 MlirOperation loop = mlirOperationCreate(state: &loopState);
178 mlirBlockAppendOwnedOperation(block: funcBody, operation: loop);
179
180 populateLoopBody(ctx, loopBody, location, funcBody);
181
182 MlirOperationState retState = mlirOperationStateGet(
183 name: mlirStringRefCreateFromCString(str: "func.return"), loc: location);
184 MlirOperation ret = mlirOperationCreate(state: &retState);
185 mlirBlockAppendOwnedOperation(block: funcBody, operation: ret);
186
187 MlirOperation module = mlirModuleGetOperation(module: moduleOp);
188 mlirOperationDump(op: module);
189 // clang-format off
190 // CHECK: module {
191 // CHECK: func @add(%[[ARG0:.*]]: memref<?xf32>, %[[ARG1:.*]]: memref<?xf32>) {
192 // CHECK: %[[C0:.*]] = arith.constant 0 : index
193 // CHECK: %[[DIM:.*]] = memref.dim %[[ARG0]], %[[C0]] : memref<?xf32>
194 // CHECK: %[[C1:.*]] = arith.constant 1 : index
195 // CHECK: scf.for %[[I:.*]] = %[[C0]] to %[[DIM]] step %[[C1]] {
196 // CHECK: %[[LHS:.*]] = memref.load %[[ARG0]][%[[I]]] : memref<?xf32>
197 // CHECK: %[[RHS:.*]] = memref.load %[[ARG1]][%[[I]]] : memref<?xf32>
198 // CHECK: %[[SUM:.*]] = arith.addf %[[LHS]], %[[RHS]] : f32
199 // CHECK: memref.store %[[SUM]], %[[ARG0]][%[[I]]] : memref<?xf32>
200 // CHECK: }
201 // CHECK: return
202 // CHECK: }
203 // CHECK: }
204 // clang-format on
205
206 return moduleOp;
207}
208
209struct OpListNode {
210 MlirOperation op;
211 struct OpListNode *next;
212};
213typedef struct OpListNode OpListNode;
214
215struct ModuleStats {
216 unsigned numOperations;
217 unsigned numAttributes;
218 unsigned numBlocks;
219 unsigned numRegions;
220 unsigned numValues;
221 unsigned numBlockArguments;
222 unsigned numOpResults;
223};
224typedef struct ModuleStats ModuleStats;
225
226int collectStatsSingle(OpListNode *head, ModuleStats *stats) {
227 MlirOperation operation = head->op;
228 stats->numOperations += 1;
229 stats->numValues += mlirOperationGetNumResults(op: operation);
230 stats->numAttributes += mlirOperationGetNumAttributes(op: operation);
231
232 unsigned numRegions = mlirOperationGetNumRegions(op: operation);
233
234 stats->numRegions += numRegions;
235
236 intptr_t numResults = mlirOperationGetNumResults(op: operation);
237 for (intptr_t i = 0; i < numResults; ++i) {
238 MlirValue result = mlirOperationGetResult(op: operation, pos: i);
239 if (!mlirValueIsAOpResult(value: result))
240 return 1;
241 if (mlirValueIsABlockArgument(value: result))
242 return 2;
243 if (!mlirOperationEqual(op: operation, other: mlirOpResultGetOwner(value: result)))
244 return 3;
245 if (i != mlirOpResultGetResultNumber(value: result))
246 return 4;
247 ++stats->numOpResults;
248 }
249
250 MlirRegion region = mlirOperationGetFirstRegion(op: operation);
251 while (!mlirRegionIsNull(region)) {
252 for (MlirBlock block = mlirRegionGetFirstBlock(region);
253 !mlirBlockIsNull(block); block = mlirBlockGetNextInRegion(block)) {
254 ++stats->numBlocks;
255 intptr_t numArgs = mlirBlockGetNumArguments(block);
256 stats->numValues += numArgs;
257 for (intptr_t j = 0; j < numArgs; ++j) {
258 MlirValue arg = mlirBlockGetArgument(block, pos: j);
259 if (!mlirValueIsABlockArgument(value: arg))
260 return 5;
261 if (mlirValueIsAOpResult(value: arg))
262 return 6;
263 if (!mlirBlockEqual(block, other: mlirBlockArgumentGetOwner(value: arg)))
264 return 7;
265 if (j != mlirBlockArgumentGetArgNumber(value: arg))
266 return 8;
267 ++stats->numBlockArguments;
268 }
269
270 for (MlirOperation child = mlirBlockGetFirstOperation(block);
271 !mlirOperationIsNull(op: child);
272 child = mlirOperationGetNextInBlock(op: child)) {
273 OpListNode *node = malloc(size: sizeof(OpListNode));
274 node->op = child;
275 node->next = head->next;
276 head->next = node;
277 }
278 }
279 region = mlirRegionGetNextInOperation(region);
280 }
281 return 0;
282}
283
284int collectStats(MlirOperation operation) {
285 OpListNode *head = malloc(size: sizeof(OpListNode));
286 head->op = operation;
287 head->next = NULL;
288
289 ModuleStats stats;
290 stats.numOperations = 0;
291 stats.numAttributes = 0;
292 stats.numBlocks = 0;
293 stats.numRegions = 0;
294 stats.numValues = 0;
295 stats.numBlockArguments = 0;
296 stats.numOpResults = 0;
297
298 do {
299 int retval = collectStatsSingle(head, stats: &stats);
300 if (retval) {
301 free(ptr: head);
302 return retval;
303 }
304 OpListNode *next = head->next;
305 free(ptr: head);
306 head = next;
307 } while (head);
308
309 if (stats.numValues != stats.numBlockArguments + stats.numOpResults)
310 return 100;
311
312 fprintf(stderr, format: "@stats\n");
313 fprintf(stderr, format: "Number of operations: %u\n", stats.numOperations);
314 fprintf(stderr, format: "Number of attributes: %u\n", stats.numAttributes);
315 fprintf(stderr, format: "Number of blocks: %u\n", stats.numBlocks);
316 fprintf(stderr, format: "Number of regions: %u\n", stats.numRegions);
317 fprintf(stderr, format: "Number of values: %u\n", stats.numValues);
318 fprintf(stderr, format: "Number of block arguments: %u\n", stats.numBlockArguments);
319 fprintf(stderr, format: "Number of op results: %u\n", stats.numOpResults);
320 // clang-format off
321 // CHECK-LABEL: @stats
322 // CHECK: Number of operations: 12
323 // CHECK: Number of attributes: 5
324 // CHECK: Number of blocks: 3
325 // CHECK: Number of regions: 3
326 // CHECK: Number of values: 9
327 // CHECK: Number of block arguments: 3
328 // CHECK: Number of op results: 6
329 // clang-format on
330 return 0;
331}
332
333static void printToStderr(MlirStringRef str, void *userData) {
334 (void)userData;
335 fwrite(ptr: str.data, size: 1, n: str.length, stderr);
336}
337
338static void printFirstOfEach(MlirContext ctx, MlirOperation operation) {
339 // Assuming we are given a module, go to the first operation of the first
340 // function.
341 MlirRegion region = mlirOperationGetRegion(op: operation, pos: 0);
342 MlirBlock block = mlirRegionGetFirstBlock(region);
343 MlirOperation function = mlirBlockGetFirstOperation(block);
344 region = mlirOperationGetRegion(op: function, pos: 0);
345 MlirOperation parentOperation = function;
346 block = mlirRegionGetFirstBlock(region);
347 operation = mlirBlockGetFirstOperation(block);
348 assert(mlirModuleIsNull(mlirModuleFromOperation(operation)));
349
350 // Verify that parent operation and block report correctly.
351 // CHECK: Parent operation eq: 1
352 fprintf(stderr, format: "Parent operation eq: %d\n",
353 mlirOperationEqual(op: mlirOperationGetParentOperation(op: operation),
354 other: parentOperation));
355 // CHECK: Block eq: 1
356 fprintf(stderr, format: "Block eq: %d\n",
357 mlirBlockEqual(block: mlirOperationGetBlock(op: operation), other: block));
358 // CHECK: Block parent operation eq: 1
359 fprintf(
360 stderr, format: "Block parent operation eq: %d\n",
361 mlirOperationEqual(op: mlirBlockGetParentOperation(block), other: parentOperation));
362 // CHECK: Block parent region eq: 1
363 fprintf(stderr, format: "Block parent region eq: %d\n",
364 mlirRegionEqual(region: mlirBlockGetParentRegion(block), other: region));
365
366 // In the module we created, the first operation of the first function is
367 // an "memref.dim", which has an attribute and a single result that we can
368 // use to test the printing mechanism.
369 mlirBlockPrint(block, callback: printToStderr, NULL);
370 fprintf(stderr, format: "\n");
371 fprintf(stderr, format: "First operation: ");
372 mlirOperationPrint(op: operation, callback: printToStderr, NULL);
373 fprintf(stderr, format: "\n");
374 // clang-format off
375 // CHECK: %[[C0:.*]] = arith.constant 0 : index
376 // CHECK: %[[DIM:.*]] = memref.dim %{{.*}}, %[[C0]] : memref<?xf32>
377 // CHECK: %[[C1:.*]] = arith.constant 1 : index
378 // CHECK: scf.for %[[I:.*]] = %[[C0]] to %[[DIM]] step %[[C1]] {
379 // CHECK: %[[LHS:.*]] = memref.load %{{.*}}[%[[I]]] : memref<?xf32>
380 // CHECK: %[[RHS:.*]] = memref.load %{{.*}}[%[[I]]] : memref<?xf32>
381 // CHECK: %[[SUM:.*]] = arith.addf %[[LHS]], %[[RHS]] : f32
382 // CHECK: memref.store %[[SUM]], %{{.*}}[%[[I]]] : memref<?xf32>
383 // CHECK: }
384 // CHECK: return
385 // CHECK: First operation: {{.*}} = arith.constant 0 : index
386 // clang-format on
387
388 // Get the operation name and print it.
389 MlirIdentifier ident = mlirOperationGetName(op: operation);
390 MlirStringRef identStr = mlirIdentifierStr(ident);
391 fprintf(stderr, format: "Operation name: '");
392 for (size_t i = 0; i < identStr.length; ++i)
393 fputc(c: identStr.data[i], stderr);
394 fprintf(stderr, format: "'\n");
395 // CHECK: Operation name: 'arith.constant'
396
397 // Get the identifier again and verify equal.
398 MlirIdentifier identAgain = mlirIdentifierGet(context: ctx, str: identStr);
399 fprintf(stderr, format: "Identifier equal: %d\n",
400 mlirIdentifierEqual(ident, other: identAgain));
401 // CHECK: Identifier equal: 1
402
403 // Get the block terminator and print it.
404 MlirOperation terminator = mlirBlockGetTerminator(block);
405 fprintf(stderr, format: "Terminator: ");
406 mlirOperationPrint(op: terminator, callback: printToStderr, NULL);
407 fprintf(stderr, format: "\n");
408 // CHECK: Terminator: func.return
409
410 // Get the attribute by name.
411 bool hasValueAttr = mlirOperationHasInherentAttributeByName(
412 op: operation, name: mlirStringRefCreateFromCString(str: "value"));
413 if (hasValueAttr)
414 // CHECK: Has attr "value"
415 fprintf(stderr, format: "Has attr \"value\"");
416
417 MlirAttribute valueAttr0 = mlirOperationGetInherentAttributeByName(
418 op: operation, name: mlirStringRefCreateFromCString(str: "value"));
419 fprintf(stderr, format: "Get attr \"value\": ");
420 mlirAttributePrint(attr: valueAttr0, callback: printToStderr, NULL);
421 fprintf(stderr, format: "\n");
422 // CHECK: Get attr "value": 0 : index
423
424 // Get a non-existing attribute and assert that it is null (sanity).
425 fprintf(stderr, format: "does_not_exist is null: %d\n",
426 mlirAttributeIsNull(attr: mlirOperationGetDiscardableAttributeByName(
427 op: operation, name: mlirStringRefCreateFromCString(str: "does_not_exist"))));
428 // CHECK: does_not_exist is null: 1
429
430 // Get result 0 and its type.
431 MlirValue value = mlirOperationGetResult(op: operation, pos: 0);
432 fprintf(stderr, format: "Result 0: ");
433 mlirValuePrint(value, callback: printToStderr, NULL);
434 fprintf(stderr, format: "\n");
435 fprintf(stderr, format: "Value is null: %d\n", mlirValueIsNull(value));
436 // CHECK: Result 0: {{.*}} = arith.constant 0 : index
437 // CHECK: Value is null: 0
438
439 MlirType type = mlirValueGetType(value);
440 fprintf(stderr, format: "Result 0 type: ");
441 mlirTypePrint(type, callback: printToStderr, NULL);
442 fprintf(stderr, format: "\n");
443 // CHECK: Result 0 type: index
444
445 // Set a discardable attribute.
446 mlirOperationSetDiscardableAttributeByName(
447 op: operation, name: mlirStringRefCreateFromCString(str: "custom_attr"),
448 attr: mlirBoolAttrGet(ctx, value: 1));
449 fprintf(stderr, format: "Op with set attr: ");
450 mlirOperationPrint(op: operation, callback: printToStderr, NULL);
451 fprintf(stderr, format: "\n");
452 // CHECK: Op with set attr: {{.*}} {custom_attr = true}
453
454 // Remove the attribute.
455 fprintf(stderr, format: "Remove attr: %d\n",
456 mlirOperationRemoveDiscardableAttributeByName(
457 op: operation, name: mlirStringRefCreateFromCString(str: "custom_attr")));
458 fprintf(stderr, format: "Remove attr again: %d\n",
459 mlirOperationRemoveDiscardableAttributeByName(
460 op: operation, name: mlirStringRefCreateFromCString(str: "custom_attr")));
461 fprintf(stderr, format: "Removed attr is null: %d\n",
462 mlirAttributeIsNull(attr: mlirOperationGetDiscardableAttributeByName(
463 op: operation, name: mlirStringRefCreateFromCString(str: "custom_attr"))));
464 // CHECK: Remove attr: 1
465 // CHECK: Remove attr again: 0
466 // CHECK: Removed attr is null: 1
467
468 // Add a large attribute to verify printing flags.
469 int64_t eltsShape[] = {4};
470 int32_t eltsData[] = {1, 2, 3, 4};
471 mlirOperationSetDiscardableAttributeByName(
472 op: operation, name: mlirStringRefCreateFromCString(str: "elts"),
473 attr: mlirDenseElementsAttrInt32Get(
474 shapedType: mlirRankedTensorTypeGet(rank: 1, shape: eltsShape, elementType: mlirIntegerTypeGet(ctx, bitwidth: 32),
475 encoding: mlirAttributeGetNull()),
476 numElements: 4, elements: eltsData));
477 MlirOpPrintingFlags flags = mlirOpPrintingFlagsCreate();
478 mlirOpPrintingFlagsElideLargeElementsAttrs(flags, largeElementLimit: 2);
479 mlirOpPrintingFlagsPrintGenericOpForm(flags);
480 mlirOpPrintingFlagsEnableDebugInfo(flags, /*enable=*/1, /*prettyForm=*/0);
481 mlirOpPrintingFlagsUseLocalScope(flags);
482 fprintf(stderr, format: "Op print with all flags: ");
483 mlirOperationPrintWithFlags(op: operation, flags, callback: printToStderr, NULL);
484 fprintf(stderr, format: "\n");
485 fprintf(stderr, format: "Op print with state: ");
486 MlirAsmState state = mlirAsmStateCreateForOperation(op: parentOperation, flags);
487 mlirOperationPrintWithState(op: operation, state, callback: printToStderr, NULL);
488 fprintf(stderr, format: "\n");
489 // clang-format off
490 // CHECK: Op print with all flags: %{{.*}} = "arith.constant"() <{value = 0 : index}> {elts = dense_resource<__elided__> : tensor<4xi32>} : () -> index loc(unknown)
491 // clang-format on
492
493 mlirOpPrintingFlagsDestroy(flags);
494 flags = mlirOpPrintingFlagsCreate();
495 mlirOpPrintingFlagsSkipRegions(flags);
496 fprintf(stderr, format: "Op print with skip regions flag: ");
497 mlirOperationPrintWithFlags(op: function, flags, callback: printToStderr, NULL);
498 fprintf(stderr, format: "\n");
499 // clang-format off
500 // CHECK: Op print with skip regions flag: func.func @add(%[[ARG0:.*]]: memref<?xf32>, %[[ARG1:.*]]: memref<?xf32>)
501 // CHECK-NOT: constant
502 // CHECK-NOT: return
503 // clang-format on
504
505 fprintf(stderr, format: "With state: |");
506 mlirValuePrintAsOperand(value, state, callback: printToStderr, NULL);
507 // CHECK: With state: |%0|
508 fprintf(stderr, format: "|\n");
509 mlirAsmStateDestroy(state);
510
511 mlirOpPrintingFlagsDestroy(flags);
512}
513
514static int constructAndTraverseIr(MlirContext ctx) {
515 MlirLocation location = mlirLocationUnknownGet(context: ctx);
516
517 MlirModule moduleOp = makeAndDumpAdd(ctx, location);
518 MlirOperation module = mlirModuleGetOperation(module: moduleOp);
519 assert(!mlirModuleIsNull(mlirModuleFromOperation(module)));
520
521 int errcode = collectStats(operation: module);
522 if (errcode)
523 return errcode;
524
525 printFirstOfEach(ctx, operation: module);
526
527 mlirModuleDestroy(module: moduleOp);
528 return 0;
529}
530
531/// Creates an operation with a region containing multiple blocks with
532/// operations and dumps it. The blocks and operations are inserted using
533/// block/operation-relative API and their final order is checked.
534static void buildWithInsertionsAndPrint(MlirContext ctx) {
535 MlirLocation loc = mlirLocationUnknownGet(context: ctx);
536 mlirContextSetAllowUnregisteredDialects(context: ctx, true);
537
538 MlirRegion owningRegion = mlirRegionCreate();
539 MlirBlock nullBlock = mlirRegionGetFirstBlock(region: owningRegion);
540 MlirOperationState state = mlirOperationStateGet(
541 name: mlirStringRefCreateFromCString(str: "insertion.order.test"), loc);
542 mlirOperationStateAddOwnedRegions(state: &state, n: 1, regions: &owningRegion);
543 MlirOperation op = mlirOperationCreate(state: &state);
544 MlirRegion region = mlirOperationGetRegion(op, pos: 0);
545
546 // Use integer types of different bitwidth as block arguments in order to
547 // differentiate blocks.
548 MlirType i1 = mlirIntegerTypeGet(ctx, bitwidth: 1);
549 MlirType i2 = mlirIntegerTypeGet(ctx, bitwidth: 2);
550 MlirType i3 = mlirIntegerTypeGet(ctx, bitwidth: 3);
551 MlirType i4 = mlirIntegerTypeGet(ctx, bitwidth: 4);
552 MlirType i5 = mlirIntegerTypeGet(ctx, bitwidth: 5);
553 MlirBlock block1 = mlirBlockCreate(nArgs: 1, args: &i1, locs: &loc);
554 MlirBlock block2 = mlirBlockCreate(nArgs: 1, args: &i2, locs: &loc);
555 MlirBlock block3 = mlirBlockCreate(nArgs: 1, args: &i3, locs: &loc);
556 MlirBlock block4 = mlirBlockCreate(nArgs: 1, args: &i4, locs: &loc);
557 MlirBlock block5 = mlirBlockCreate(nArgs: 1, args: &i5, locs: &loc);
558 // Insert blocks so as to obtain the 1-2-3-4 order,
559 mlirRegionInsertOwnedBlockBefore(region, reference: nullBlock, block: block3);
560 mlirRegionInsertOwnedBlockBefore(region, reference: block3, block: block2);
561 mlirRegionInsertOwnedBlockAfter(region, reference: nullBlock, block: block1);
562 mlirRegionInsertOwnedBlockAfter(region, reference: block3, block: block4);
563 mlirRegionInsertOwnedBlockBefore(region, reference: block3, block: block5);
564
565 MlirOperationState op1State =
566 mlirOperationStateGet(name: mlirStringRefCreateFromCString(str: "dummy.op1"), loc);
567 MlirOperationState op2State =
568 mlirOperationStateGet(name: mlirStringRefCreateFromCString(str: "dummy.op2"), loc);
569 MlirOperationState op3State =
570 mlirOperationStateGet(name: mlirStringRefCreateFromCString(str: "dummy.op3"), loc);
571 MlirOperationState op4State =
572 mlirOperationStateGet(name: mlirStringRefCreateFromCString(str: "dummy.op4"), loc);
573 MlirOperationState op5State =
574 mlirOperationStateGet(name: mlirStringRefCreateFromCString(str: "dummy.op5"), loc);
575 MlirOperationState op6State =
576 mlirOperationStateGet(name: mlirStringRefCreateFromCString(str: "dummy.op6"), loc);
577 MlirOperationState op7State =
578 mlirOperationStateGet(name: mlirStringRefCreateFromCString(str: "dummy.op7"), loc);
579 MlirOperationState op8State =
580 mlirOperationStateGet(name: mlirStringRefCreateFromCString(str: "dummy.op8"), loc);
581 MlirOperation op1 = mlirOperationCreate(state: &op1State);
582 MlirOperation op2 = mlirOperationCreate(state: &op2State);
583 MlirOperation op3 = mlirOperationCreate(state: &op3State);
584 MlirOperation op4 = mlirOperationCreate(state: &op4State);
585 MlirOperation op5 = mlirOperationCreate(state: &op5State);
586 MlirOperation op6 = mlirOperationCreate(state: &op6State);
587 MlirOperation op7 = mlirOperationCreate(state: &op7State);
588 MlirOperation op8 = mlirOperationCreate(state: &op8State);
589
590 // Insert operations in the first block so as to obtain the 1-2-3-4 order.
591 MlirOperation nullOperation = mlirBlockGetFirstOperation(block: block1);
592 assert(mlirOperationIsNull(nullOperation));
593 mlirBlockInsertOwnedOperationBefore(block: block1, reference: nullOperation, operation: op3);
594 mlirBlockInsertOwnedOperationBefore(block: block1, reference: op3, operation: op2);
595 mlirBlockInsertOwnedOperationAfter(block: block1, reference: nullOperation, operation: op1);
596 mlirBlockInsertOwnedOperationAfter(block: block1, reference: op3, operation: op4);
597
598 // Append operations to the rest of blocks to make them non-empty and thus
599 // printable.
600 mlirBlockAppendOwnedOperation(block: block2, operation: op5);
601 mlirBlockAppendOwnedOperation(block: block3, operation: op6);
602 mlirBlockAppendOwnedOperation(block: block4, operation: op7);
603 mlirBlockAppendOwnedOperation(block: block5, operation: op8);
604
605 // Remove block5.
606 mlirBlockDetach(block: block5);
607 mlirBlockDestroy(block: block5);
608
609 mlirOperationDump(op);
610 mlirOperationDestroy(op);
611 mlirContextSetAllowUnregisteredDialects(context: ctx, false);
612 // clang-format off
613 // CHECK-LABEL: "insertion.order.test"
614 // CHECK: ^{{.*}}(%{{.*}}: i1
615 // CHECK: "dummy.op1"
616 // CHECK-NEXT: "dummy.op2"
617 // CHECK-NEXT: "dummy.op3"
618 // CHECK-NEXT: "dummy.op4"
619 // CHECK: ^{{.*}}(%{{.*}}: i2
620 // CHECK: "dummy.op5"
621 // CHECK-NOT: ^{{.*}}(%{{.*}}: i5
622 // CHECK-NOT: "dummy.op8"
623 // CHECK: ^{{.*}}(%{{.*}}: i3
624 // CHECK: "dummy.op6"
625 // CHECK: ^{{.*}}(%{{.*}}: i4
626 // CHECK: "dummy.op7"
627 // clang-format on
628}
629
630/// Creates operations with type inference and tests various failure modes.
631static int createOperationWithTypeInference(MlirContext ctx) {
632 MlirLocation loc = mlirLocationUnknownGet(context: ctx);
633 MlirAttribute iAttr = mlirIntegerAttrGet(type: mlirIntegerTypeGet(ctx, bitwidth: 32), value: 4);
634
635 // The shape.const_size op implements result type inference and is only used
636 // for that reason.
637 MlirOperationState state = mlirOperationStateGet(
638 name: mlirStringRefCreateFromCString(str: "shape.const_size"), loc);
639 MlirNamedAttribute valueAttr = mlirNamedAttributeGet(
640 name: mlirIdentifierGet(context: ctx, str: mlirStringRefCreateFromCString(str: "value")), attr: iAttr);
641 mlirOperationStateAddAttributes(state: &state, n: 1, attributes: &valueAttr);
642 mlirOperationStateEnableResultTypeInference(state: &state);
643
644 // Expect result type inference to succeed.
645 MlirOperation op = mlirOperationCreate(state: &state);
646 if (mlirOperationIsNull(op)) {
647 fprintf(stderr, format: "ERROR: Result type inference unexpectedly failed");
648 return 1;
649 }
650
651 // CHECK: RESULT_TYPE_INFERENCE: !shape.size
652 fprintf(stderr, format: "RESULT_TYPE_INFERENCE: ");
653 mlirTypeDump(type: mlirValueGetType(value: mlirOperationGetResult(op, pos: 0)));
654 fprintf(stderr, format: "\n");
655 mlirOperationDestroy(op);
656 return 0;
657}
658
659/// Dumps instances of all builtin types to check that C API works correctly.
660/// Additionally, performs simple identity checks that a builtin type
661/// constructed with C API can be inspected and has the expected type. The
662/// latter achieves full coverage of C API for builtin types. Returns 0 on
663/// success and a non-zero error code on failure.
664static int printBuiltinTypes(MlirContext ctx) {
665 // Integer types.
666 MlirType i32 = mlirIntegerTypeGet(ctx, bitwidth: 32);
667 MlirType si32 = mlirIntegerTypeSignedGet(ctx, bitwidth: 32);
668 MlirType ui32 = mlirIntegerTypeUnsignedGet(ctx, bitwidth: 32);
669 if (!mlirTypeIsAInteger(type: i32) || mlirTypeIsAF32(type: i32))
670 return 1;
671 if (!mlirTypeIsAInteger(type: si32) || !mlirIntegerTypeIsSigned(type: si32))
672 return 2;
673 if (!mlirTypeIsAInteger(type: ui32) || !mlirIntegerTypeIsUnsigned(type: ui32))
674 return 3;
675 if (mlirTypeEqual(t1: i32, t2: ui32) || mlirTypeEqual(t1: i32, t2: si32))
676 return 4;
677 if (mlirIntegerTypeGetWidth(type: i32) != mlirIntegerTypeGetWidth(type: si32))
678 return 5;
679 fprintf(stderr, format: "@types\n");
680 mlirTypeDump(type: i32);
681 fprintf(stderr, format: "\n");
682 mlirTypeDump(type: si32);
683 fprintf(stderr, format: "\n");
684 mlirTypeDump(type: ui32);
685 fprintf(stderr, format: "\n");
686 // CHECK-LABEL: @types
687 // CHECK: i32
688 // CHECK: si32
689 // CHECK: ui32
690
691 // Index type.
692 MlirType index = mlirIndexTypeGet(ctx);
693 if (!mlirTypeIsAIndex(type: index))
694 return 6;
695 mlirTypeDump(type: index);
696 fprintf(stderr, format: "\n");
697 // CHECK: index
698
699 // Floating-point types.
700 MlirType bf16 = mlirBF16TypeGet(ctx);
701 MlirType f16 = mlirF16TypeGet(ctx);
702 MlirType f32 = mlirF32TypeGet(ctx);
703 MlirType f64 = mlirF64TypeGet(ctx);
704 if (!mlirTypeIsABF16(type: bf16))
705 return 7;
706 if (!mlirTypeIsAF16(type: f16))
707 return 9;
708 if (!mlirTypeIsAF32(type: f32))
709 return 10;
710 if (!mlirTypeIsAF64(type: f64))
711 return 11;
712 mlirTypeDump(type: bf16);
713 fprintf(stderr, format: "\n");
714 mlirTypeDump(type: f16);
715 fprintf(stderr, format: "\n");
716 mlirTypeDump(type: f32);
717 fprintf(stderr, format: "\n");
718 mlirTypeDump(type: f64);
719 fprintf(stderr, format: "\n");
720 // CHECK: bf16
721 // CHECK: f16
722 // CHECK: f32
723 // CHECK: f64
724
725 // None type.
726 MlirType none = mlirNoneTypeGet(ctx);
727 if (!mlirTypeIsANone(type: none))
728 return 12;
729 mlirTypeDump(type: none);
730 fprintf(stderr, format: "\n");
731 // CHECK: none
732
733 // Complex type.
734 MlirType cplx = mlirComplexTypeGet(elementType: f32);
735 if (!mlirTypeIsAComplex(type: cplx) ||
736 !mlirTypeEqual(t1: mlirComplexTypeGetElementType(type: cplx), t2: f32))
737 return 13;
738 mlirTypeDump(type: cplx);
739 fprintf(stderr, format: "\n");
740 // CHECK: complex<f32>
741
742 // Vector (and Shaped) type. ShapedType is a common base class for vectors,
743 // memrefs and tensors, one cannot create instances of this class so it is
744 // tested on an instance of vector type.
745 int64_t shape[] = {2, 3};
746 MlirType vector =
747 mlirVectorTypeGet(rank: sizeof(shape) / sizeof(int64_t), shape, elementType: f32);
748 if (!mlirTypeIsAVector(type: vector) || !mlirTypeIsAShaped(type: vector))
749 return 14;
750 if (!mlirTypeEqual(t1: mlirShapedTypeGetElementType(type: vector), t2: f32) ||
751 !mlirShapedTypeHasRank(type: vector) || mlirShapedTypeGetRank(type: vector) != 2 ||
752 mlirShapedTypeGetDimSize(type: vector, dim: 0) != 2 ||
753 mlirShapedTypeIsDynamicDim(type: vector, dim: 0) ||
754 mlirShapedTypeGetDimSize(type: vector, dim: 1) != 3 ||
755 !mlirShapedTypeHasStaticShape(type: vector))
756 return 15;
757 mlirTypeDump(type: vector);
758 fprintf(stderr, format: "\n");
759 // CHECK: vector<2x3xf32>
760
761 // Scalable vector type.
762 bool scalable[] = {false, true};
763 MlirType scalableVector = mlirVectorTypeGetScalable(
764 rank: sizeof(shape) / sizeof(int64_t), shape, scalable, elementType: f32);
765 if (!mlirTypeIsAVector(type: scalableVector))
766 return 16;
767 if (!mlirVectorTypeIsScalable(type: scalableVector) ||
768 mlirVectorTypeIsDimScalable(type: scalableVector, dim: 0) ||
769 !mlirVectorTypeIsDimScalable(type: scalableVector, dim: 1))
770 return 17;
771 mlirTypeDump(type: scalableVector);
772 fprintf(stderr, format: "\n");
773 // CHECK: vector<2x[3]xf32>
774
775 // Ranked tensor type.
776 MlirType rankedTensor = mlirRankedTensorTypeGet(
777 rank: sizeof(shape) / sizeof(int64_t), shape, elementType: f32, encoding: mlirAttributeGetNull());
778 if (!mlirTypeIsATensor(type: rankedTensor) ||
779 !mlirTypeIsARankedTensor(type: rankedTensor) ||
780 !mlirAttributeIsNull(attr: mlirRankedTensorTypeGetEncoding(type: rankedTensor)))
781 return 18;
782 mlirTypeDump(type: rankedTensor);
783 fprintf(stderr, format: "\n");
784 // CHECK: tensor<2x3xf32>
785
786 // Unranked tensor type.
787 MlirType unrankedTensor = mlirUnrankedTensorTypeGet(elementType: f32);
788 if (!mlirTypeIsATensor(type: unrankedTensor) ||
789 !mlirTypeIsAUnrankedTensor(type: unrankedTensor) ||
790 mlirShapedTypeHasRank(type: unrankedTensor))
791 return 19;
792 mlirTypeDump(type: unrankedTensor);
793 fprintf(stderr, format: "\n");
794 // CHECK: tensor<*xf32>
795
796 // MemRef type.
797 MlirAttribute memSpace2 = mlirIntegerAttrGet(type: mlirIntegerTypeGet(ctx, bitwidth: 64), value: 2);
798 MlirType memRef = mlirMemRefTypeContiguousGet(
799 elementType: f32, rank: sizeof(shape) / sizeof(int64_t), shape, memorySpace: memSpace2);
800 if (!mlirTypeIsAMemRef(type: memRef) ||
801 !mlirAttributeEqual(a1: mlirMemRefTypeGetMemorySpace(type: memRef), a2: memSpace2))
802 return 20;
803 mlirTypeDump(type: memRef);
804 fprintf(stderr, format: "\n");
805 // CHECK: memref<2x3xf32, 2>
806
807 // Unranked MemRef type.
808 MlirAttribute memSpace4 = mlirIntegerAttrGet(type: mlirIntegerTypeGet(ctx, bitwidth: 64), value: 4);
809 MlirType unrankedMemRef = mlirUnrankedMemRefTypeGet(elementType: f32, memorySpace: memSpace4);
810 if (!mlirTypeIsAUnrankedMemRef(type: unrankedMemRef) ||
811 mlirTypeIsAMemRef(type: unrankedMemRef) ||
812 !mlirAttributeEqual(a1: mlirUnrankedMemrefGetMemorySpace(type: unrankedMemRef),
813 a2: memSpace4))
814 return 21;
815 mlirTypeDump(type: unrankedMemRef);
816 fprintf(stderr, format: "\n");
817 // CHECK: memref<*xf32, 4>
818
819 // Tuple type.
820 MlirType types[] = {unrankedMemRef, f32};
821 MlirType tuple = mlirTupleTypeGet(ctx, numElements: 2, elements: types);
822 if (!mlirTypeIsATuple(type: tuple) || mlirTupleTypeGetNumTypes(type: tuple) != 2 ||
823 !mlirTypeEqual(t1: mlirTupleTypeGetType(type: tuple, pos: 0), t2: unrankedMemRef) ||
824 !mlirTypeEqual(t1: mlirTupleTypeGetType(type: tuple, pos: 1), t2: f32))
825 return 22;
826 mlirTypeDump(type: tuple);
827 fprintf(stderr, format: "\n");
828 // CHECK: tuple<memref<*xf32, 4>, f32>
829
830 // Function type.
831 MlirType funcInputs[2] = {mlirIndexTypeGet(ctx), mlirIntegerTypeGet(ctx, bitwidth: 1)};
832 MlirType funcResults[3] = {mlirIntegerTypeGet(ctx, bitwidth: 16),
833 mlirIntegerTypeGet(ctx, bitwidth: 32),
834 mlirIntegerTypeGet(ctx, bitwidth: 64)};
835 MlirType funcType = mlirFunctionTypeGet(ctx, numInputs: 2, inputs: funcInputs, numResults: 3, results: funcResults);
836 if (mlirFunctionTypeGetNumInputs(type: funcType) != 2)
837 return 23;
838 if (mlirFunctionTypeGetNumResults(type: funcType) != 3)
839 return 24;
840 if (!mlirTypeEqual(t1: funcInputs[0], t2: mlirFunctionTypeGetInput(type: funcType, pos: 0)) ||
841 !mlirTypeEqual(t1: funcInputs[1], t2: mlirFunctionTypeGetInput(type: funcType, pos: 1)))
842 return 25;
843 if (!mlirTypeEqual(t1: funcResults[0], t2: mlirFunctionTypeGetResult(type: funcType, pos: 0)) ||
844 !mlirTypeEqual(t1: funcResults[1], t2: mlirFunctionTypeGetResult(type: funcType, pos: 1)) ||
845 !mlirTypeEqual(t1: funcResults[2], t2: mlirFunctionTypeGetResult(type: funcType, pos: 2)))
846 return 26;
847 mlirTypeDump(type: funcType);
848 fprintf(stderr, format: "\n");
849 // CHECK: (index, i1) -> (i16, i32, i64)
850
851 // Opaque type.
852 MlirStringRef namespace = mlirStringRefCreate(str: "dialect", length: 7);
853 MlirStringRef data = mlirStringRefCreate(str: "type", length: 4);
854 mlirContextSetAllowUnregisteredDialects(context: ctx, true);
855 MlirType opaque = mlirOpaqueTypeGet(ctx, dialectNamespace: namespace, typeData: data);
856 mlirContextSetAllowUnregisteredDialects(context: ctx, false);
857 if (!mlirTypeIsAOpaque(type: opaque) ||
858 !mlirStringRefEqual(string: mlirOpaqueTypeGetDialectNamespace(type: opaque),
859 other: namespace) ||
860 !mlirStringRefEqual(string: mlirOpaqueTypeGetData(type: opaque), other: data))
861 return 27;
862 mlirTypeDump(type: opaque);
863 fprintf(stderr, format: "\n");
864 // CHECK: !dialect.type
865
866 return 0;
867}
868
869void callbackSetFixedLengthString(const char *data, intptr_t len,
870 void *userData) {
871 strncpy(dest: userData, src: data, n: len);
872}
873
874bool stringIsEqual(const char *lhs, MlirStringRef rhs) {
875 if (strlen(s: lhs) != rhs.length) {
876 return false;
877 }
878 return !strncmp(s1: lhs, s2: rhs.data, n: rhs.length);
879}
880
881int printBuiltinAttributes(MlirContext ctx) {
882 MlirAttribute floating =
883 mlirFloatAttrDoubleGet(ctx, type: mlirF64TypeGet(ctx), value: 2.0);
884 if (!mlirAttributeIsAFloat(attr: floating) ||
885 fabs(x: mlirFloatAttrGetValueDouble(attr: floating) - 2.0) > 1E-6)
886 return 1;
887 fprintf(stderr, format: "@attrs\n");
888 mlirAttributeDump(attr: floating);
889 // CHECK-LABEL: @attrs
890 // CHECK: 2.000000e+00 : f64
891
892 // Exercise mlirAttributeGetType() just for the first one.
893 MlirType floatingType = mlirAttributeGetType(attribute: floating);
894 mlirTypeDump(type: floatingType);
895 // CHECK: f64
896
897 MlirAttribute integer = mlirIntegerAttrGet(type: mlirIntegerTypeGet(ctx, bitwidth: 32), value: 42);
898 MlirAttribute signedInteger =
899 mlirIntegerAttrGet(type: mlirIntegerTypeSignedGet(ctx, bitwidth: 8), value: -1);
900 MlirAttribute unsignedInteger =
901 mlirIntegerAttrGet(type: mlirIntegerTypeUnsignedGet(ctx, bitwidth: 8), value: 255);
902 if (!mlirAttributeIsAInteger(attr: integer) ||
903 mlirIntegerAttrGetValueInt(attr: integer) != 42 ||
904 mlirIntegerAttrGetValueSInt(attr: signedInteger) != -1 ||
905 mlirIntegerAttrGetValueUInt(attr: unsignedInteger) != 255)
906 return 2;
907 mlirAttributeDump(attr: integer);
908 mlirAttributeDump(attr: signedInteger);
909 mlirAttributeDump(attr: unsignedInteger);
910 // CHECK: 42 : i32
911 // CHECK: -1 : si8
912 // CHECK: 255 : ui8
913
914 MlirAttribute boolean = mlirBoolAttrGet(ctx, value: 1);
915 if (!mlirAttributeIsABool(attr: boolean) || !mlirBoolAttrGetValue(attr: boolean))
916 return 3;
917 mlirAttributeDump(attr: boolean);
918 // CHECK: true
919
920 const char data[] = "abcdefghijklmnopqestuvwxyz";
921 MlirAttribute opaque =
922 mlirOpaqueAttrGet(ctx, dialectNamespace: mlirStringRefCreateFromCString(str: "func"), dataLength: 3, data,
923 type: mlirNoneTypeGet(ctx));
924 if (!mlirAttributeIsAOpaque(attr: opaque) ||
925 !stringIsEqual(lhs: "func", rhs: mlirOpaqueAttrGetDialectNamespace(attr: opaque)))
926 return 4;
927
928 MlirStringRef opaqueData = mlirOpaqueAttrGetData(attr: opaque);
929 if (opaqueData.length != 3 ||
930 strncmp(s1: data, s2: opaqueData.data, n: opaqueData.length))
931 return 5;
932 mlirAttributeDump(attr: opaque);
933 // CHECK: #func.abc
934
935 MlirAttribute string =
936 mlirStringAttrGet(ctx, str: mlirStringRefCreate(str: data + 3, length: 2));
937 if (!mlirAttributeIsAString(attr: string))
938 return 6;
939
940 MlirStringRef stringValue = mlirStringAttrGetValue(attr: string);
941 if (stringValue.length != 2 ||
942 strncmp(s1: data + 3, s2: stringValue.data, n: stringValue.length))
943 return 7;
944 mlirAttributeDump(attr: string);
945 // CHECK: "de"
946
947 MlirAttribute flatSymbolRef =
948 mlirFlatSymbolRefAttrGet(ctx, symbol: mlirStringRefCreate(str: data + 5, length: 3));
949 if (!mlirAttributeIsAFlatSymbolRef(attr: flatSymbolRef))
950 return 8;
951
952 MlirStringRef flatSymbolRefValue =
953 mlirFlatSymbolRefAttrGetValue(attr: flatSymbolRef);
954 if (flatSymbolRefValue.length != 3 ||
955 strncmp(s1: data + 5, s2: flatSymbolRefValue.data, n: flatSymbolRefValue.length))
956 return 9;
957 mlirAttributeDump(attr: flatSymbolRef);
958 // CHECK: @fgh
959
960 MlirAttribute symbols[] = {flatSymbolRef, flatSymbolRef};
961 MlirAttribute symbolRef =
962 mlirSymbolRefAttrGet(ctx, symbol: mlirStringRefCreate(str: data + 8, length: 2), numReferences: 2, references: symbols);
963 if (!mlirAttributeIsASymbolRef(attr: symbolRef) ||
964 mlirSymbolRefAttrGetNumNestedReferences(attr: symbolRef) != 2 ||
965 !mlirAttributeEqual(a1: mlirSymbolRefAttrGetNestedReference(attr: symbolRef, pos: 0),
966 a2: flatSymbolRef) ||
967 !mlirAttributeEqual(a1: mlirSymbolRefAttrGetNestedReference(attr: symbolRef, pos: 1),
968 a2: flatSymbolRef))
969 return 10;
970
971 MlirStringRef symbolRefLeaf = mlirSymbolRefAttrGetLeafReference(attr: symbolRef);
972 MlirStringRef symbolRefRoot = mlirSymbolRefAttrGetRootReference(attr: symbolRef);
973 if (symbolRefLeaf.length != 3 ||
974 strncmp(s1: data + 5, s2: symbolRefLeaf.data, n: symbolRefLeaf.length) ||
975 symbolRefRoot.length != 2 ||
976 strncmp(s1: data + 8, s2: symbolRefRoot.data, n: symbolRefRoot.length))
977 return 11;
978 mlirAttributeDump(attr: symbolRef);
979 // CHECK: @ij::@fgh::@fgh
980
981 MlirAttribute type = mlirTypeAttrGet(type: mlirF32TypeGet(ctx));
982 if (!mlirAttributeIsAType(attr: type) ||
983 !mlirTypeEqual(t1: mlirF32TypeGet(ctx), t2: mlirTypeAttrGetValue(attr: type)))
984 return 12;
985 mlirAttributeDump(attr: type);
986 // CHECK: f32
987
988 MlirAttribute unit = mlirUnitAttrGet(ctx);
989 if (!mlirAttributeIsAUnit(attr: unit))
990 return 13;
991 mlirAttributeDump(attr: unit);
992 // CHECK: unit
993
994 int64_t shape[] = {1, 2};
995
996 int bools[] = {0, 1};
997 uint8_t uints8[] = {0u, 1u};
998 int8_t ints8[] = {0, 1};
999 uint16_t uints16[] = {0u, 1u};
1000 int16_t ints16[] = {0, 1};
1001 uint32_t uints32[] = {0u, 1u};
1002 int32_t ints32[] = {0, 1};
1003 uint64_t uints64[] = {0u, 1u};
1004 int64_t ints64[] = {0, 1};
1005 float floats[] = {0.0f, 1.0f};
1006 double doubles[] = {0.0, 1.0};
1007 uint16_t bf16s[] = {0x0, 0x3f80};
1008 uint16_t f16s[] = {0x0, 0x3c00};
1009 MlirAttribute encoding = mlirAttributeGetNull();
1010 MlirAttribute boolElements = mlirDenseElementsAttrBoolGet(
1011 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeGet(ctx, bitwidth: 1), encoding),
1012 numElements: 2, elements: bools);
1013 MlirAttribute uint8Elements = mlirDenseElementsAttrUInt8Get(
1014 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeUnsignedGet(ctx, bitwidth: 8),
1015 encoding),
1016 numElements: 2, elements: uints8);
1017 MlirAttribute int8Elements = mlirDenseElementsAttrInt8Get(
1018 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeGet(ctx, bitwidth: 8), encoding),
1019 numElements: 2, elements: ints8);
1020 MlirAttribute uint16Elements = mlirDenseElementsAttrUInt16Get(
1021 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeUnsignedGet(ctx, bitwidth: 16),
1022 encoding),
1023 numElements: 2, elements: uints16);
1024 MlirAttribute int16Elements = mlirDenseElementsAttrInt16Get(
1025 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeGet(ctx, bitwidth: 16), encoding),
1026 numElements: 2, elements: ints16);
1027 MlirAttribute uint32Elements = mlirDenseElementsAttrUInt32Get(
1028 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeUnsignedGet(ctx, bitwidth: 32),
1029 encoding),
1030 numElements: 2, elements: uints32);
1031 MlirAttribute int32Elements = mlirDenseElementsAttrInt32Get(
1032 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeGet(ctx, bitwidth: 32), encoding),
1033 numElements: 2, elements: ints32);
1034 MlirAttribute uint64Elements = mlirDenseElementsAttrUInt64Get(
1035 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeUnsignedGet(ctx, bitwidth: 64),
1036 encoding),
1037 numElements: 2, elements: uints64);
1038 MlirAttribute int64Elements = mlirDenseElementsAttrInt64Get(
1039 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeGet(ctx, bitwidth: 64), encoding),
1040 numElements: 2, elements: ints64);
1041 MlirAttribute floatElements = mlirDenseElementsAttrFloatGet(
1042 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirF32TypeGet(ctx), encoding), numElements: 2,
1043 elements: floats);
1044 MlirAttribute doubleElements = mlirDenseElementsAttrDoubleGet(
1045 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirF64TypeGet(ctx), encoding), numElements: 2,
1046 elements: doubles);
1047 MlirAttribute bf16Elements = mlirDenseElementsAttrBFloat16Get(
1048 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirBF16TypeGet(ctx), encoding), numElements: 2,
1049 elements: bf16s);
1050 MlirAttribute f16Elements = mlirDenseElementsAttrFloat16Get(
1051 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirF16TypeGet(ctx), encoding), numElements: 2,
1052 elements: f16s);
1053
1054 if (!mlirAttributeIsADenseElements(attr: boolElements) ||
1055 !mlirAttributeIsADenseElements(attr: uint8Elements) ||
1056 !mlirAttributeIsADenseElements(attr: int8Elements) ||
1057 !mlirAttributeIsADenseElements(attr: uint32Elements) ||
1058 !mlirAttributeIsADenseElements(attr: int32Elements) ||
1059 !mlirAttributeIsADenseElements(attr: uint64Elements) ||
1060 !mlirAttributeIsADenseElements(attr: int64Elements) ||
1061 !mlirAttributeIsADenseElements(attr: floatElements) ||
1062 !mlirAttributeIsADenseElements(attr: doubleElements) ||
1063 !mlirAttributeIsADenseElements(attr: bf16Elements) ||
1064 !mlirAttributeIsADenseElements(attr: f16Elements))
1065 return 14;
1066
1067 if (mlirDenseElementsAttrGetBoolValue(attr: boolElements, pos: 1) != 1 ||
1068 mlirDenseElementsAttrGetUInt8Value(attr: uint8Elements, pos: 1) != 1 ||
1069 mlirDenseElementsAttrGetInt8Value(attr: int8Elements, pos: 1) != 1 ||
1070 mlirDenseElementsAttrGetUInt16Value(attr: uint16Elements, pos: 1) != 1 ||
1071 mlirDenseElementsAttrGetInt16Value(attr: int16Elements, pos: 1) != 1 ||
1072 mlirDenseElementsAttrGetUInt32Value(attr: uint32Elements, pos: 1) != 1 ||
1073 mlirDenseElementsAttrGetInt32Value(attr: int32Elements, pos: 1) != 1 ||
1074 mlirDenseElementsAttrGetUInt64Value(attr: uint64Elements, pos: 1) != 1 ||
1075 mlirDenseElementsAttrGetInt64Value(attr: int64Elements, pos: 1) != 1 ||
1076 fabsf(x: mlirDenseElementsAttrGetFloatValue(attr: floatElements, pos: 1) - 1.0f) >
1077 1E-6f ||
1078 fabs(x: mlirDenseElementsAttrGetDoubleValue(attr: doubleElements, pos: 1) - 1.0) > 1E-6)
1079 return 15;
1080
1081 mlirAttributeDump(attr: boolElements);
1082 mlirAttributeDump(attr: uint8Elements);
1083 mlirAttributeDump(attr: int8Elements);
1084 mlirAttributeDump(attr: uint32Elements);
1085 mlirAttributeDump(attr: int32Elements);
1086 mlirAttributeDump(attr: uint64Elements);
1087 mlirAttributeDump(attr: int64Elements);
1088 mlirAttributeDump(attr: floatElements);
1089 mlirAttributeDump(attr: doubleElements);
1090 mlirAttributeDump(attr: bf16Elements);
1091 mlirAttributeDump(attr: f16Elements);
1092 // CHECK: dense<{{\[}}[false, true]]> : tensor<1x2xi1>
1093 // CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xui8>
1094 // CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xi8>
1095 // CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xui32>
1096 // CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xi32>
1097 // CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xui64>
1098 // CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xi64>
1099 // CHECK: dense<{{\[}}[0.000000e+00, 1.000000e+00]]> : tensor<1x2xf32>
1100 // CHECK: dense<{{\[}}[0.000000e+00, 1.000000e+00]]> : tensor<1x2xf64>
1101 // CHECK: dense<{{\[}}[0.000000e+00, 1.000000e+00]]> : tensor<1x2xbf16>
1102 // CHECK: dense<{{\[}}[0.000000e+00, 1.000000e+00]]> : tensor<1x2xf16>
1103
1104 MlirAttribute splatBool = mlirDenseElementsAttrBoolSplatGet(
1105 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeGet(ctx, bitwidth: 1), encoding),
1106 element: 1);
1107 MlirAttribute splatUInt8 = mlirDenseElementsAttrUInt8SplatGet(
1108 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeUnsignedGet(ctx, bitwidth: 8),
1109 encoding),
1110 element: 1);
1111 MlirAttribute splatInt8 = mlirDenseElementsAttrInt8SplatGet(
1112 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeGet(ctx, bitwidth: 8), encoding),
1113 element: 1);
1114 MlirAttribute splatUInt32 = mlirDenseElementsAttrUInt32SplatGet(
1115 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeUnsignedGet(ctx, bitwidth: 32),
1116 encoding),
1117 element: 1);
1118 MlirAttribute splatInt32 = mlirDenseElementsAttrInt32SplatGet(
1119 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeGet(ctx, bitwidth: 32), encoding),
1120 element: 1);
1121 MlirAttribute splatUInt64 = mlirDenseElementsAttrUInt64SplatGet(
1122 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeUnsignedGet(ctx, bitwidth: 64),
1123 encoding),
1124 element: 1);
1125 MlirAttribute splatInt64 = mlirDenseElementsAttrInt64SplatGet(
1126 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeGet(ctx, bitwidth: 64), encoding),
1127 element: 1);
1128 MlirAttribute splatFloat = mlirDenseElementsAttrFloatSplatGet(
1129 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirF32TypeGet(ctx), encoding), element: 1.0f);
1130 MlirAttribute splatDouble = mlirDenseElementsAttrDoubleSplatGet(
1131 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirF64TypeGet(ctx), encoding), element: 1.0);
1132
1133 if (!mlirAttributeIsADenseElements(attr: splatBool) ||
1134 !mlirDenseElementsAttrIsSplat(attr: splatBool) ||
1135 !mlirAttributeIsADenseElements(attr: splatUInt8) ||
1136 !mlirDenseElementsAttrIsSplat(attr: splatUInt8) ||
1137 !mlirAttributeIsADenseElements(attr: splatInt8) ||
1138 !mlirDenseElementsAttrIsSplat(attr: splatInt8) ||
1139 !mlirAttributeIsADenseElements(attr: splatUInt32) ||
1140 !mlirDenseElementsAttrIsSplat(attr: splatUInt32) ||
1141 !mlirAttributeIsADenseElements(attr: splatInt32) ||
1142 !mlirDenseElementsAttrIsSplat(attr: splatInt32) ||
1143 !mlirAttributeIsADenseElements(attr: splatUInt64) ||
1144 !mlirDenseElementsAttrIsSplat(attr: splatUInt64) ||
1145 !mlirAttributeIsADenseElements(attr: splatInt64) ||
1146 !mlirDenseElementsAttrIsSplat(attr: splatInt64) ||
1147 !mlirAttributeIsADenseElements(attr: splatFloat) ||
1148 !mlirDenseElementsAttrIsSplat(attr: splatFloat) ||
1149 !mlirAttributeIsADenseElements(attr: splatDouble) ||
1150 !mlirDenseElementsAttrIsSplat(attr: splatDouble))
1151 return 16;
1152
1153 if (mlirDenseElementsAttrGetBoolSplatValue(attr: splatBool) != 1 ||
1154 mlirDenseElementsAttrGetUInt8SplatValue(attr: splatUInt8) != 1 ||
1155 mlirDenseElementsAttrGetInt8SplatValue(attr: splatInt8) != 1 ||
1156 mlirDenseElementsAttrGetUInt32SplatValue(attr: splatUInt32) != 1 ||
1157 mlirDenseElementsAttrGetInt32SplatValue(attr: splatInt32) != 1 ||
1158 mlirDenseElementsAttrGetUInt64SplatValue(attr: splatUInt64) != 1 ||
1159 mlirDenseElementsAttrGetInt64SplatValue(attr: splatInt64) != 1 ||
1160 fabsf(x: mlirDenseElementsAttrGetFloatSplatValue(attr: splatFloat) - 1.0f) >
1161 1E-6f ||
1162 fabs(x: mlirDenseElementsAttrGetDoubleSplatValue(attr: splatDouble) - 1.0) > 1E-6)
1163 return 17;
1164
1165 const uint8_t *uint8RawData =
1166 (const uint8_t *)mlirDenseElementsAttrGetRawData(attr: uint8Elements);
1167 const int8_t *int8RawData =
1168 (const int8_t *)mlirDenseElementsAttrGetRawData(attr: int8Elements);
1169 const uint32_t *uint32RawData =
1170 (const uint32_t *)mlirDenseElementsAttrGetRawData(attr: uint32Elements);
1171 const int32_t *int32RawData =
1172 (const int32_t *)mlirDenseElementsAttrGetRawData(attr: int32Elements);
1173 const uint64_t *uint64RawData =
1174 (const uint64_t *)mlirDenseElementsAttrGetRawData(attr: uint64Elements);
1175 const int64_t *int64RawData =
1176 (const int64_t *)mlirDenseElementsAttrGetRawData(attr: int64Elements);
1177 const float *floatRawData =
1178 (const float *)mlirDenseElementsAttrGetRawData(attr: floatElements);
1179 const double *doubleRawData =
1180 (const double *)mlirDenseElementsAttrGetRawData(attr: doubleElements);
1181 const uint16_t *bf16RawData =
1182 (const uint16_t *)mlirDenseElementsAttrGetRawData(attr: bf16Elements);
1183 const uint16_t *f16RawData =
1184 (const uint16_t *)mlirDenseElementsAttrGetRawData(attr: f16Elements);
1185 if (uint8RawData[0] != 0u || uint8RawData[1] != 1u || int8RawData[0] != 0 ||
1186 int8RawData[1] != 1 || uint32RawData[0] != 0u || uint32RawData[1] != 1u ||
1187 int32RawData[0] != 0 || int32RawData[1] != 1 || uint64RawData[0] != 0u ||
1188 uint64RawData[1] != 1u || int64RawData[0] != 0 || int64RawData[1] != 1 ||
1189 floatRawData[0] != 0.0f || floatRawData[1] != 1.0f ||
1190 doubleRawData[0] != 0.0 || doubleRawData[1] != 1.0 ||
1191 bf16RawData[0] != 0 || bf16RawData[1] != 0x3f80 || f16RawData[0] != 0 ||
1192 f16RawData[1] != 0x3c00)
1193 return 18;
1194
1195 mlirAttributeDump(attr: splatBool);
1196 mlirAttributeDump(attr: splatUInt8);
1197 mlirAttributeDump(attr: splatInt8);
1198 mlirAttributeDump(attr: splatUInt32);
1199 mlirAttributeDump(attr: splatInt32);
1200 mlirAttributeDump(attr: splatUInt64);
1201 mlirAttributeDump(attr: splatInt64);
1202 mlirAttributeDump(attr: splatFloat);
1203 mlirAttributeDump(attr: splatDouble);
1204 // CHECK: dense<true> : tensor<1x2xi1>
1205 // CHECK: dense<1> : tensor<1x2xui8>
1206 // CHECK: dense<1> : tensor<1x2xi8>
1207 // CHECK: dense<1> : tensor<1x2xui32>
1208 // CHECK: dense<1> : tensor<1x2xi32>
1209 // CHECK: dense<1> : tensor<1x2xui64>
1210 // CHECK: dense<1> : tensor<1x2xi64>
1211 // CHECK: dense<1.000000e+00> : tensor<1x2xf32>
1212 // CHECK: dense<1.000000e+00> : tensor<1x2xf64>
1213
1214 mlirAttributeDump(attr: mlirElementsAttrGetValue(attr: floatElements, rank: 2, idxs: uints64));
1215 mlirAttributeDump(attr: mlirElementsAttrGetValue(attr: doubleElements, rank: 2, idxs: uints64));
1216 mlirAttributeDump(attr: mlirElementsAttrGetValue(attr: bf16Elements, rank: 2, idxs: uints64));
1217 mlirAttributeDump(attr: mlirElementsAttrGetValue(attr: f16Elements, rank: 2, idxs: uints64));
1218 // CHECK: 1.000000e+00 : f32
1219 // CHECK: 1.000000e+00 : f64
1220 // CHECK: 1.000000e+00 : bf16
1221 // CHECK: 1.000000e+00 : f16
1222
1223 int64_t indices[] = {0, 1};
1224 int64_t one = 1;
1225 MlirAttribute indicesAttr = mlirDenseElementsAttrInt64Get(
1226 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeGet(ctx, bitwidth: 64), encoding),
1227 numElements: 2, elements: indices);
1228 MlirAttribute valuesAttr = mlirDenseElementsAttrFloatGet(
1229 shapedType: mlirRankedTensorTypeGet(rank: 1, shape: &one, elementType: mlirF32TypeGet(ctx), encoding), numElements: 1,
1230 elements: floats);
1231 MlirAttribute sparseAttr = mlirSparseElementsAttribute(
1232 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirF32TypeGet(ctx), encoding),
1233 denseIndices: indicesAttr, denseValues: valuesAttr);
1234 mlirAttributeDump(attr: sparseAttr);
1235 // CHECK: sparse<{{\[}}[0, 1]], 0.000000e+00> : tensor<1x2xf32>
1236
1237 MlirAttribute boolArray = mlirDenseBoolArrayGet(ctx, size: 2, values: bools);
1238 MlirAttribute int8Array = mlirDenseI8ArrayGet(ctx, size: 2, values: ints8);
1239 MlirAttribute int16Array = mlirDenseI16ArrayGet(ctx, size: 2, values: ints16);
1240 MlirAttribute int32Array = mlirDenseI32ArrayGet(ctx, size: 2, values: ints32);
1241 MlirAttribute int64Array = mlirDenseI64ArrayGet(ctx, size: 2, values: ints64);
1242 MlirAttribute floatArray = mlirDenseF32ArrayGet(ctx, size: 2, values: floats);
1243 MlirAttribute doubleArray = mlirDenseF64ArrayGet(ctx, size: 2, values: doubles);
1244 if (!mlirAttributeIsADenseBoolArray(attr: boolArray) ||
1245 !mlirAttributeIsADenseI8Array(attr: int8Array) ||
1246 !mlirAttributeIsADenseI16Array(attr: int16Array) ||
1247 !mlirAttributeIsADenseI32Array(attr: int32Array) ||
1248 !mlirAttributeIsADenseI64Array(attr: int64Array) ||
1249 !mlirAttributeIsADenseF32Array(attr: floatArray) ||
1250 !mlirAttributeIsADenseF64Array(attr: doubleArray))
1251 return 19;
1252
1253 if (mlirDenseArrayGetNumElements(attr: boolArray) != 2 ||
1254 mlirDenseArrayGetNumElements(attr: int8Array) != 2 ||
1255 mlirDenseArrayGetNumElements(attr: int16Array) != 2 ||
1256 mlirDenseArrayGetNumElements(attr: int32Array) != 2 ||
1257 mlirDenseArrayGetNumElements(attr: int64Array) != 2 ||
1258 mlirDenseArrayGetNumElements(attr: floatArray) != 2 ||
1259 mlirDenseArrayGetNumElements(attr: doubleArray) != 2)
1260 return 20;
1261
1262 if (mlirDenseBoolArrayGetElement(attr: boolArray, pos: 1) != 1 ||
1263 mlirDenseI8ArrayGetElement(attr: int8Array, pos: 1) != 1 ||
1264 mlirDenseI16ArrayGetElement(attr: int16Array, pos: 1) != 1 ||
1265 mlirDenseI32ArrayGetElement(attr: int32Array, pos: 1) != 1 ||
1266 mlirDenseI64ArrayGetElement(attr: int64Array, pos: 1) != 1 ||
1267 fabsf(x: mlirDenseF32ArrayGetElement(attr: floatArray, pos: 1) - 1.0f) > 1E-6f ||
1268 fabs(x: mlirDenseF64ArrayGetElement(attr: doubleArray, pos: 1) - 1.0) > 1E-6)
1269 return 21;
1270
1271 int64_t layoutStrides[3] = {5, 7, 13};
1272 MlirAttribute stridedLayoutAttr =
1273 mlirStridedLayoutAttrGet(ctx, offset: 42, numStrides: 3, strides: &layoutStrides[0]);
1274
1275 // CHECK: strided<[5, 7, 13], offset: 42>
1276 mlirAttributeDump(attr: stridedLayoutAttr);
1277
1278 if (mlirStridedLayoutAttrGetOffset(attr: stridedLayoutAttr) != 42 ||
1279 mlirStridedLayoutAttrGetNumStrides(attr: stridedLayoutAttr) != 3 ||
1280 mlirStridedLayoutAttrGetStride(attr: stridedLayoutAttr, pos: 0) != 5 ||
1281 mlirStridedLayoutAttrGetStride(attr: stridedLayoutAttr, pos: 1) != 7 ||
1282 mlirStridedLayoutAttrGetStride(attr: stridedLayoutAttr, pos: 2) != 13)
1283 return 22;
1284
1285 MlirAttribute uint8Blob = mlirUnmanagedDenseUInt8ResourceElementsAttrGet(
1286 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeUnsignedGet(ctx, bitwidth: 8),
1287 encoding),
1288 name: mlirStringRefCreateFromCString(str: "resource_ui8"), numElements: 2, elements: uints8);
1289 MlirAttribute uint16Blob = mlirUnmanagedDenseUInt16ResourceElementsAttrGet(
1290 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeUnsignedGet(ctx, bitwidth: 16),
1291 encoding),
1292 name: mlirStringRefCreateFromCString(str: "resource_ui16"), numElements: 2, elements: uints16);
1293 MlirAttribute uint32Blob = mlirUnmanagedDenseUInt32ResourceElementsAttrGet(
1294 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeUnsignedGet(ctx, bitwidth: 32),
1295 encoding),
1296 name: mlirStringRefCreateFromCString(str: "resource_ui32"), numElements: 2, elements: uints32);
1297 MlirAttribute uint64Blob = mlirUnmanagedDenseUInt64ResourceElementsAttrGet(
1298 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeUnsignedGet(ctx, bitwidth: 64),
1299 encoding),
1300 name: mlirStringRefCreateFromCString(str: "resource_ui64"), numElements: 2, elements: uints64);
1301 MlirAttribute int8Blob = mlirUnmanagedDenseInt8ResourceElementsAttrGet(
1302 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeGet(ctx, bitwidth: 8), encoding),
1303 name: mlirStringRefCreateFromCString(str: "resource_i8"), numElements: 2, elements: ints8);
1304 MlirAttribute int16Blob = mlirUnmanagedDenseInt16ResourceElementsAttrGet(
1305 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeGet(ctx, bitwidth: 16), encoding),
1306 name: mlirStringRefCreateFromCString(str: "resource_i16"), numElements: 2, elements: ints16);
1307 MlirAttribute int32Blob = mlirUnmanagedDenseInt32ResourceElementsAttrGet(
1308 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeGet(ctx, bitwidth: 32), encoding),
1309 name: mlirStringRefCreateFromCString(str: "resource_i32"), numElements: 2, elements: ints32);
1310 MlirAttribute int64Blob = mlirUnmanagedDenseInt64ResourceElementsAttrGet(
1311 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeGet(ctx, bitwidth: 64), encoding),
1312 name: mlirStringRefCreateFromCString(str: "resource_i64"), numElements: 2, elements: ints64);
1313 MlirAttribute floatsBlob = mlirUnmanagedDenseFloatResourceElementsAttrGet(
1314 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirF32TypeGet(ctx), encoding),
1315 name: mlirStringRefCreateFromCString(str: "resource_f32"), numElements: 2, elements: floats);
1316 MlirAttribute doublesBlob = mlirUnmanagedDenseDoubleResourceElementsAttrGet(
1317 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirF64TypeGet(ctx), encoding),
1318 name: mlirStringRefCreateFromCString(str: "resource_f64"), numElements: 2, elements: doubles);
1319 MlirAttribute blobBlob = mlirUnmanagedDenseResourceElementsAttrGet(
1320 shapedType: mlirRankedTensorTypeGet(rank: 2, shape, elementType: mlirIntegerTypeGet(ctx, bitwidth: 64), encoding),
1321 name: mlirStringRefCreateFromCString(str: "resource_i64_blob"), /*data=*/uints64,
1322 /*dataLength=*/sizeof(uints64),
1323 /*dataAlignment=*/_Alignof(uint64_t),
1324 /*dataIsMutable=*/false,
1325 /*deleter=*/reportResourceDelete,
1326 /*userData=*/(void *)&resourceI64BlobUserData);
1327
1328 mlirAttributeDump(attr: uint8Blob);
1329 mlirAttributeDump(attr: uint16Blob);
1330 mlirAttributeDump(attr: uint32Blob);
1331 mlirAttributeDump(attr: uint64Blob);
1332 mlirAttributeDump(attr: int8Blob);
1333 mlirAttributeDump(attr: int16Blob);
1334 mlirAttributeDump(attr: int32Blob);
1335 mlirAttributeDump(attr: int64Blob);
1336 mlirAttributeDump(attr: floatsBlob);
1337 mlirAttributeDump(attr: doublesBlob);
1338 mlirAttributeDump(attr: blobBlob);
1339 // CHECK: dense_resource<resource_ui8> : tensor<1x2xui8>
1340 // CHECK: dense_resource<resource_ui16> : tensor<1x2xui16>
1341 // CHECK: dense_resource<resource_ui32> : tensor<1x2xui32>
1342 // CHECK: dense_resource<resource_ui64> : tensor<1x2xui64>
1343 // CHECK: dense_resource<resource_i8> : tensor<1x2xi8>
1344 // CHECK: dense_resource<resource_i16> : tensor<1x2xi16>
1345 // CHECK: dense_resource<resource_i32> : tensor<1x2xi32>
1346 // CHECK: dense_resource<resource_i64> : tensor<1x2xi64>
1347 // CHECK: dense_resource<resource_f32> : tensor<1x2xf32>
1348 // CHECK: dense_resource<resource_f64> : tensor<1x2xf64>
1349 // CHECK: dense_resource<resource_i64_blob> : tensor<1x2xi64>
1350
1351 if (mlirDenseUInt8ResourceElementsAttrGetValue(attr: uint8Blob, pos: 1) != 1 ||
1352 mlirDenseUInt16ResourceElementsAttrGetValue(attr: uint16Blob, pos: 1) != 1 ||
1353 mlirDenseUInt32ResourceElementsAttrGetValue(attr: uint32Blob, pos: 1) != 1 ||
1354 mlirDenseUInt64ResourceElementsAttrGetValue(attr: uint64Blob, pos: 1) != 1 ||
1355 mlirDenseInt8ResourceElementsAttrGetValue(attr: int8Blob, pos: 1) != 1 ||
1356 mlirDenseInt16ResourceElementsAttrGetValue(attr: int16Blob, pos: 1) != 1 ||
1357 mlirDenseInt32ResourceElementsAttrGetValue(attr: int32Blob, pos: 1) != 1 ||
1358 mlirDenseInt64ResourceElementsAttrGetValue(attr: int64Blob, pos: 1) != 1 ||
1359 fabsf(x: mlirDenseF32ArrayGetElement(attr: floatArray, pos: 1) - 1.0f) > 1E-6f ||
1360 fabsf(x: mlirDenseFloatResourceElementsAttrGetValue(attr: floatsBlob, pos: 1) - 1.0f) >
1361 1e-6 ||
1362 fabs(x: mlirDenseDoubleResourceElementsAttrGetValue(attr: doublesBlob, pos: 1) - 1.0f) >
1363 1e-6 ||
1364 mlirDenseUInt64ResourceElementsAttrGetValue(attr: blobBlob, pos: 1) != 1)
1365 return 23;
1366
1367 MlirLocation loc = mlirLocationUnknownGet(context: ctx);
1368 MlirAttribute locAttr = mlirLocationGetAttribute(location: loc);
1369 if (!mlirAttributeIsALocation(attr: locAttr))
1370 return 24;
1371
1372 return 0;
1373}
1374
1375int printAffineMap(MlirContext ctx) {
1376 MlirAffineMap emptyAffineMap = mlirAffineMapEmptyGet(ctx);
1377 MlirAffineMap affineMap = mlirAffineMapZeroResultGet(ctx, dimCount: 3, symbolCount: 2);
1378 MlirAffineMap constAffineMap = mlirAffineMapConstantGet(ctx, val: 2);
1379 MlirAffineMap multiDimIdentityAffineMap =
1380 mlirAffineMapMultiDimIdentityGet(ctx, numDims: 3);
1381 MlirAffineMap minorIdentityAffineMap =
1382 mlirAffineMapMinorIdentityGet(ctx, dims: 3, results: 2);
1383 unsigned permutation[] = {1, 2, 0};
1384 MlirAffineMap permutationAffineMap = mlirAffineMapPermutationGet(
1385 ctx, size: sizeof(permutation) / sizeof(unsigned), permutation);
1386
1387 fprintf(stderr, format: "@affineMap\n");
1388 mlirAffineMapDump(affineMap: emptyAffineMap);
1389 mlirAffineMapDump(affineMap);
1390 mlirAffineMapDump(affineMap: constAffineMap);
1391 mlirAffineMapDump(affineMap: multiDimIdentityAffineMap);
1392 mlirAffineMapDump(affineMap: minorIdentityAffineMap);
1393 mlirAffineMapDump(affineMap: permutationAffineMap);
1394 // CHECK-LABEL: @affineMap
1395 // CHECK: () -> ()
1396 // CHECK: (d0, d1, d2)[s0, s1] -> ()
1397 // CHECK: () -> (2)
1398 // CHECK: (d0, d1, d2) -> (d0, d1, d2)
1399 // CHECK: (d0, d1, d2) -> (d1, d2)
1400 // CHECK: (d0, d1, d2) -> (d1, d2, d0)
1401
1402 if (!mlirAffineMapIsIdentity(affineMap: emptyAffineMap) ||
1403 mlirAffineMapIsIdentity(affineMap) ||
1404 mlirAffineMapIsIdentity(affineMap: constAffineMap) ||
1405 !mlirAffineMapIsIdentity(affineMap: multiDimIdentityAffineMap) ||
1406 mlirAffineMapIsIdentity(affineMap: minorIdentityAffineMap) ||
1407 mlirAffineMapIsIdentity(affineMap: permutationAffineMap))
1408 return 1;
1409
1410 if (!mlirAffineMapIsMinorIdentity(affineMap: emptyAffineMap) ||
1411 mlirAffineMapIsMinorIdentity(affineMap) ||
1412 !mlirAffineMapIsMinorIdentity(affineMap: multiDimIdentityAffineMap) ||
1413 !mlirAffineMapIsMinorIdentity(affineMap: minorIdentityAffineMap) ||
1414 mlirAffineMapIsMinorIdentity(affineMap: permutationAffineMap))
1415 return 2;
1416
1417 if (!mlirAffineMapIsEmpty(affineMap: emptyAffineMap) ||
1418 mlirAffineMapIsEmpty(affineMap) || mlirAffineMapIsEmpty(affineMap: constAffineMap) ||
1419 mlirAffineMapIsEmpty(affineMap: multiDimIdentityAffineMap) ||
1420 mlirAffineMapIsEmpty(affineMap: minorIdentityAffineMap) ||
1421 mlirAffineMapIsEmpty(affineMap: permutationAffineMap))
1422 return 3;
1423
1424 if (mlirAffineMapIsSingleConstant(affineMap: emptyAffineMap) ||
1425 mlirAffineMapIsSingleConstant(affineMap) ||
1426 !mlirAffineMapIsSingleConstant(affineMap: constAffineMap) ||
1427 mlirAffineMapIsSingleConstant(affineMap: multiDimIdentityAffineMap) ||
1428 mlirAffineMapIsSingleConstant(affineMap: minorIdentityAffineMap) ||
1429 mlirAffineMapIsSingleConstant(affineMap: permutationAffineMap))
1430 return 4;
1431
1432 if (mlirAffineMapGetSingleConstantResult(affineMap: constAffineMap) != 2)
1433 return 5;
1434
1435 if (mlirAffineMapGetNumDims(affineMap: emptyAffineMap) != 0 ||
1436 mlirAffineMapGetNumDims(affineMap) != 3 ||
1437 mlirAffineMapGetNumDims(affineMap: constAffineMap) != 0 ||
1438 mlirAffineMapGetNumDims(affineMap: multiDimIdentityAffineMap) != 3 ||
1439 mlirAffineMapGetNumDims(affineMap: minorIdentityAffineMap) != 3 ||
1440 mlirAffineMapGetNumDims(affineMap: permutationAffineMap) != 3)
1441 return 6;
1442
1443 if (mlirAffineMapGetNumSymbols(affineMap: emptyAffineMap) != 0 ||
1444 mlirAffineMapGetNumSymbols(affineMap) != 2 ||
1445 mlirAffineMapGetNumSymbols(affineMap: constAffineMap) != 0 ||
1446 mlirAffineMapGetNumSymbols(affineMap: multiDimIdentityAffineMap) != 0 ||
1447 mlirAffineMapGetNumSymbols(affineMap: minorIdentityAffineMap) != 0 ||
1448 mlirAffineMapGetNumSymbols(affineMap: permutationAffineMap) != 0)
1449 return 7;
1450
1451 if (mlirAffineMapGetNumResults(affineMap: emptyAffineMap) != 0 ||
1452 mlirAffineMapGetNumResults(affineMap) != 0 ||
1453 mlirAffineMapGetNumResults(affineMap: constAffineMap) != 1 ||
1454 mlirAffineMapGetNumResults(affineMap: multiDimIdentityAffineMap) != 3 ||
1455 mlirAffineMapGetNumResults(affineMap: minorIdentityAffineMap) != 2 ||
1456 mlirAffineMapGetNumResults(affineMap: permutationAffineMap) != 3)
1457 return 8;
1458
1459 if (mlirAffineMapGetNumInputs(affineMap: emptyAffineMap) != 0 ||
1460 mlirAffineMapGetNumInputs(affineMap) != 5 ||
1461 mlirAffineMapGetNumInputs(affineMap: constAffineMap) != 0 ||
1462 mlirAffineMapGetNumInputs(affineMap: multiDimIdentityAffineMap) != 3 ||
1463 mlirAffineMapGetNumInputs(affineMap: minorIdentityAffineMap) != 3 ||
1464 mlirAffineMapGetNumInputs(affineMap: permutationAffineMap) != 3)
1465 return 9;
1466
1467 if (!mlirAffineMapIsProjectedPermutation(affineMap: emptyAffineMap) ||
1468 !mlirAffineMapIsPermutation(affineMap: emptyAffineMap) ||
1469 mlirAffineMapIsProjectedPermutation(affineMap) ||
1470 mlirAffineMapIsPermutation(affineMap) ||
1471 mlirAffineMapIsProjectedPermutation(affineMap: constAffineMap) ||
1472 mlirAffineMapIsPermutation(affineMap: constAffineMap) ||
1473 !mlirAffineMapIsProjectedPermutation(affineMap: multiDimIdentityAffineMap) ||
1474 !mlirAffineMapIsPermutation(affineMap: multiDimIdentityAffineMap) ||
1475 !mlirAffineMapIsProjectedPermutation(affineMap: minorIdentityAffineMap) ||
1476 mlirAffineMapIsPermutation(affineMap: minorIdentityAffineMap) ||
1477 !mlirAffineMapIsProjectedPermutation(affineMap: permutationAffineMap) ||
1478 !mlirAffineMapIsPermutation(affineMap: permutationAffineMap))
1479 return 10;
1480
1481 intptr_t sub[] = {1};
1482
1483 MlirAffineMap subMap = mlirAffineMapGetSubMap(
1484 affineMap: multiDimIdentityAffineMap, size: sizeof(sub) / sizeof(intptr_t), resultPos: sub);
1485 MlirAffineMap majorSubMap =
1486 mlirAffineMapGetMajorSubMap(affineMap: multiDimIdentityAffineMap, numResults: 1);
1487 MlirAffineMap minorSubMap =
1488 mlirAffineMapGetMinorSubMap(affineMap: multiDimIdentityAffineMap, numResults: 1);
1489
1490 mlirAffineMapDump(affineMap: subMap);
1491 mlirAffineMapDump(affineMap: majorSubMap);
1492 mlirAffineMapDump(affineMap: minorSubMap);
1493 // CHECK: (d0, d1, d2) -> (d1)
1494 // CHECK: (d0, d1, d2) -> (d0)
1495 // CHECK: (d0, d1, d2) -> (d2)
1496
1497 // CHECK: distinct[0]<"foo">
1498 mlirAttributeDump(attr: mlirDisctinctAttrCreate(
1499 referencedAttr: mlirStringAttrGet(ctx, str: mlirStringRefCreateFromCString(str: "foo"))));
1500
1501 return 0;
1502}
1503
1504int printAffineExpr(MlirContext ctx) {
1505 MlirAffineExpr affineDimExpr = mlirAffineDimExprGet(ctx, position: 5);
1506 MlirAffineExpr affineSymbolExpr = mlirAffineSymbolExprGet(ctx, position: 5);
1507 MlirAffineExpr affineConstantExpr = mlirAffineConstantExprGet(ctx, constant: 5);
1508 MlirAffineExpr affineAddExpr =
1509 mlirAffineAddExprGet(lhs: affineDimExpr, rhs: affineSymbolExpr);
1510 MlirAffineExpr affineMulExpr =
1511 mlirAffineMulExprGet(lhs: affineDimExpr, rhs: affineSymbolExpr);
1512 MlirAffineExpr affineModExpr =
1513 mlirAffineModExprGet(lhs: affineDimExpr, rhs: affineSymbolExpr);
1514 MlirAffineExpr affineFloorDivExpr =
1515 mlirAffineFloorDivExprGet(lhs: affineDimExpr, rhs: affineSymbolExpr);
1516 MlirAffineExpr affineCeilDivExpr =
1517 mlirAffineCeilDivExprGet(lhs: affineDimExpr, rhs: affineSymbolExpr);
1518
1519 // Tests mlirAffineExprDump.
1520 fprintf(stderr, format: "@affineExpr\n");
1521 mlirAffineExprDump(affineExpr: affineDimExpr);
1522 mlirAffineExprDump(affineExpr: affineSymbolExpr);
1523 mlirAffineExprDump(affineExpr: affineConstantExpr);
1524 mlirAffineExprDump(affineExpr: affineAddExpr);
1525 mlirAffineExprDump(affineExpr: affineMulExpr);
1526 mlirAffineExprDump(affineExpr: affineModExpr);
1527 mlirAffineExprDump(affineExpr: affineFloorDivExpr);
1528 mlirAffineExprDump(affineExpr: affineCeilDivExpr);
1529 // CHECK-LABEL: @affineExpr
1530 // CHECK: d5
1531 // CHECK: s5
1532 // CHECK: 5
1533 // CHECK: d5 + s5
1534 // CHECK: d5 * s5
1535 // CHECK: d5 mod s5
1536 // CHECK: d5 floordiv s5
1537 // CHECK: d5 ceildiv s5
1538
1539 // Tests methods of affine binary operation expression, takes add expression
1540 // as an example.
1541 mlirAffineExprDump(affineExpr: mlirAffineBinaryOpExprGetLHS(affineExpr: affineAddExpr));
1542 mlirAffineExprDump(affineExpr: mlirAffineBinaryOpExprGetRHS(affineExpr: affineAddExpr));
1543 // CHECK: d5
1544 // CHECK: s5
1545
1546 // Tests methods of affine dimension expression.
1547 if (mlirAffineDimExprGetPosition(affineExpr: affineDimExpr) != 5)
1548 return 1;
1549
1550 // Tests methods of affine symbol expression.
1551 if (mlirAffineSymbolExprGetPosition(affineExpr: affineSymbolExpr) != 5)
1552 return 2;
1553
1554 // Tests methods of affine constant expression.
1555 if (mlirAffineConstantExprGetValue(affineExpr: affineConstantExpr) != 5)
1556 return 3;
1557
1558 // Tests methods of affine expression.
1559 if (mlirAffineExprIsSymbolicOrConstant(affineExpr: affineDimExpr) ||
1560 !mlirAffineExprIsSymbolicOrConstant(affineExpr: affineSymbolExpr) ||
1561 !mlirAffineExprIsSymbolicOrConstant(affineExpr: affineConstantExpr) ||
1562 mlirAffineExprIsSymbolicOrConstant(affineExpr: affineAddExpr) ||
1563 mlirAffineExprIsSymbolicOrConstant(affineExpr: affineMulExpr) ||
1564 mlirAffineExprIsSymbolicOrConstant(affineExpr: affineModExpr) ||
1565 mlirAffineExprIsSymbolicOrConstant(affineExpr: affineFloorDivExpr) ||
1566 mlirAffineExprIsSymbolicOrConstant(affineExpr: affineCeilDivExpr))
1567 return 4;
1568
1569 if (!mlirAffineExprIsPureAffine(affineExpr: affineDimExpr) ||
1570 !mlirAffineExprIsPureAffine(affineExpr: affineSymbolExpr) ||
1571 !mlirAffineExprIsPureAffine(affineExpr: affineConstantExpr) ||
1572 !mlirAffineExprIsPureAffine(affineExpr: affineAddExpr) ||
1573 mlirAffineExprIsPureAffine(affineExpr: affineMulExpr) ||
1574 mlirAffineExprIsPureAffine(affineExpr: affineModExpr) ||
1575 mlirAffineExprIsPureAffine(affineExpr: affineFloorDivExpr) ||
1576 mlirAffineExprIsPureAffine(affineExpr: affineCeilDivExpr))
1577 return 5;
1578
1579 if (mlirAffineExprGetLargestKnownDivisor(affineExpr: affineDimExpr) != 1 ||
1580 mlirAffineExprGetLargestKnownDivisor(affineExpr: affineSymbolExpr) != 1 ||
1581 mlirAffineExprGetLargestKnownDivisor(affineExpr: affineConstantExpr) != 5 ||
1582 mlirAffineExprGetLargestKnownDivisor(affineExpr: affineAddExpr) != 1 ||
1583 mlirAffineExprGetLargestKnownDivisor(affineExpr: affineMulExpr) != 1 ||
1584 mlirAffineExprGetLargestKnownDivisor(affineExpr: affineModExpr) != 1 ||
1585 mlirAffineExprGetLargestKnownDivisor(affineExpr: affineFloorDivExpr) != 1 ||
1586 mlirAffineExprGetLargestKnownDivisor(affineExpr: affineCeilDivExpr) != 1)
1587 return 6;
1588
1589 if (!mlirAffineExprIsMultipleOf(affineExpr: affineDimExpr, factor: 1) ||
1590 !mlirAffineExprIsMultipleOf(affineExpr: affineSymbolExpr, factor: 1) ||
1591 !mlirAffineExprIsMultipleOf(affineExpr: affineConstantExpr, factor: 5) ||
1592 !mlirAffineExprIsMultipleOf(affineExpr: affineAddExpr, factor: 1) ||
1593 !mlirAffineExprIsMultipleOf(affineExpr: affineMulExpr, factor: 1) ||
1594 !mlirAffineExprIsMultipleOf(affineExpr: affineModExpr, factor: 1) ||
1595 !mlirAffineExprIsMultipleOf(affineExpr: affineFloorDivExpr, factor: 1) ||
1596 !mlirAffineExprIsMultipleOf(affineExpr: affineCeilDivExpr, factor: 1))
1597 return 7;
1598
1599 if (!mlirAffineExprIsFunctionOfDim(affineExpr: affineDimExpr, position: 5) ||
1600 mlirAffineExprIsFunctionOfDim(affineExpr: affineSymbolExpr, position: 5) ||
1601 mlirAffineExprIsFunctionOfDim(affineExpr: affineConstantExpr, position: 5) ||
1602 !mlirAffineExprIsFunctionOfDim(affineExpr: affineAddExpr, position: 5) ||
1603 !mlirAffineExprIsFunctionOfDim(affineExpr: affineMulExpr, position: 5) ||
1604 !mlirAffineExprIsFunctionOfDim(affineExpr: affineModExpr, position: 5) ||
1605 !mlirAffineExprIsFunctionOfDim(affineExpr: affineFloorDivExpr, position: 5) ||
1606 !mlirAffineExprIsFunctionOfDim(affineExpr: affineCeilDivExpr, position: 5))
1607 return 8;
1608
1609 // Tests 'IsA' methods of affine binary operation expression.
1610 if (!mlirAffineExprIsAAdd(affineExpr: affineAddExpr))
1611 return 9;
1612
1613 if (!mlirAffineExprIsAMul(affineExpr: affineMulExpr))
1614 return 10;
1615
1616 if (!mlirAffineExprIsAMod(affineExpr: affineModExpr))
1617 return 11;
1618
1619 if (!mlirAffineExprIsAFloorDiv(affineExpr: affineFloorDivExpr))
1620 return 12;
1621
1622 if (!mlirAffineExprIsACeilDiv(affineExpr: affineCeilDivExpr))
1623 return 13;
1624
1625 if (!mlirAffineExprIsABinary(affineExpr: affineAddExpr))
1626 return 14;
1627
1628 // Test other 'IsA' method on affine expressions.
1629 if (!mlirAffineExprIsAConstant(affineExpr: affineConstantExpr))
1630 return 15;
1631
1632 if (!mlirAffineExprIsADim(affineExpr: affineDimExpr))
1633 return 16;
1634
1635 if (!mlirAffineExprIsASymbol(affineExpr: affineSymbolExpr))
1636 return 17;
1637
1638 // Test equality and nullity.
1639 MlirAffineExpr otherDimExpr = mlirAffineDimExprGet(ctx, position: 5);
1640 if (!mlirAffineExprEqual(lhs: affineDimExpr, rhs: otherDimExpr))
1641 return 18;
1642
1643 if (mlirAffineExprIsNull(affineExpr: affineDimExpr))
1644 return 19;
1645
1646 return 0;
1647}
1648
1649int affineMapFromExprs(MlirContext ctx) {
1650 MlirAffineExpr affineDimExpr = mlirAffineDimExprGet(ctx, position: 0);
1651 MlirAffineExpr affineSymbolExpr = mlirAffineSymbolExprGet(ctx, position: 1);
1652 MlirAffineExpr exprs[] = {affineDimExpr, affineSymbolExpr};
1653 MlirAffineMap map = mlirAffineMapGet(ctx, dimCount: 3, symbolCount: 3, nAffineExprs: 2, affineExprs: exprs);
1654
1655 // CHECK-LABEL: @affineMapFromExprs
1656 fprintf(stderr, format: "@affineMapFromExprs");
1657 // CHECK: (d0, d1, d2)[s0, s1, s2] -> (d0, s1)
1658 mlirAffineMapDump(affineMap: map);
1659
1660 if (mlirAffineMapGetNumResults(affineMap: map) != 2)
1661 return 1;
1662
1663 if (!mlirAffineExprEqual(lhs: mlirAffineMapGetResult(affineMap: map, pos: 0), rhs: affineDimExpr))
1664 return 2;
1665
1666 if (!mlirAffineExprEqual(lhs: mlirAffineMapGetResult(affineMap: map, pos: 1), rhs: affineSymbolExpr))
1667 return 3;
1668
1669 MlirAffineExpr affineDim2Expr = mlirAffineDimExprGet(ctx, position: 1);
1670 MlirAffineExpr composed = mlirAffineExprCompose(affineExpr: affineDim2Expr, affineMap: map);
1671 // CHECK: s1
1672 mlirAffineExprDump(affineExpr: composed);
1673 if (!mlirAffineExprEqual(lhs: composed, rhs: affineSymbolExpr))
1674 return 4;
1675
1676 return 0;
1677}
1678
1679int printIntegerSet(MlirContext ctx) {
1680 MlirIntegerSet emptySet = mlirIntegerSetEmptyGet(context: ctx, numDims: 2, numSymbols: 1);
1681
1682 // CHECK-LABEL: @printIntegerSet
1683 fprintf(stderr, format: "@printIntegerSet");
1684
1685 // CHECK: (d0, d1)[s0] : (1 == 0)
1686 mlirIntegerSetDump(set: emptySet);
1687
1688 if (!mlirIntegerSetIsCanonicalEmpty(set: emptySet))
1689 return 1;
1690
1691 MlirIntegerSet anotherEmptySet = mlirIntegerSetEmptyGet(context: ctx, numDims: 2, numSymbols: 1);
1692 if (!mlirIntegerSetEqual(s1: emptySet, s2: anotherEmptySet))
1693 return 2;
1694
1695 // Construct a set constrained by:
1696 // d0 - s0 == 0,
1697 // d1 - 42 >= 0.
1698 MlirAffineExpr negOne = mlirAffineConstantExprGet(ctx, constant: -1);
1699 MlirAffineExpr negFortyTwo = mlirAffineConstantExprGet(ctx, constant: -42);
1700 MlirAffineExpr d0 = mlirAffineDimExprGet(ctx, position: 0);
1701 MlirAffineExpr d1 = mlirAffineDimExprGet(ctx, position: 1);
1702 MlirAffineExpr s0 = mlirAffineSymbolExprGet(ctx, position: 0);
1703 MlirAffineExpr negS0 = mlirAffineMulExprGet(lhs: negOne, rhs: s0);
1704 MlirAffineExpr d0minusS0 = mlirAffineAddExprGet(lhs: d0, rhs: negS0);
1705 MlirAffineExpr d1minus42 = mlirAffineAddExprGet(lhs: d1, rhs: negFortyTwo);
1706 MlirAffineExpr constraints[] = {d0minusS0, d1minus42};
1707 bool flags[] = {true, false};
1708
1709 MlirIntegerSet set = mlirIntegerSetGet(context: ctx, numDims: 2, numSymbols: 1, numConstraints: 2, constraints, eqFlags: flags);
1710 // CHECK: (d0, d1)[s0] : (
1711 // CHECK-DAG: d0 - s0 == 0
1712 // CHECK-DAG: d1 - 42 >= 0
1713 mlirIntegerSetDump(set);
1714
1715 // Transform d1 into s0.
1716 MlirAffineExpr s1 = mlirAffineSymbolExprGet(ctx, position: 1);
1717 MlirAffineExpr repl[] = {d0, s1};
1718 MlirIntegerSet replaced = mlirIntegerSetReplaceGet(set, dimReplacements: repl, symbolReplacements: &s0, numResultDims: 1, numResultSymbols: 2);
1719 // CHECK: (d0)[s0, s1] : (
1720 // CHECK-DAG: d0 - s0 == 0
1721 // CHECK-DAG: s1 - 42 >= 0
1722 mlirIntegerSetDump(set: replaced);
1723
1724 if (mlirIntegerSetGetNumDims(set) != 2)
1725 return 3;
1726 if (mlirIntegerSetGetNumDims(set: replaced) != 1)
1727 return 4;
1728
1729 if (mlirIntegerSetGetNumSymbols(set) != 1)
1730 return 5;
1731 if (mlirIntegerSetGetNumSymbols(set: replaced) != 2)
1732 return 6;
1733
1734 if (mlirIntegerSetGetNumInputs(set) != 3)
1735 return 7;
1736
1737 if (mlirIntegerSetGetNumConstraints(set) != 2)
1738 return 8;
1739
1740 if (mlirIntegerSetGetNumEqualities(set) != 1)
1741 return 9;
1742
1743 if (mlirIntegerSetGetNumInequalities(set) != 1)
1744 return 10;
1745
1746 MlirAffineExpr cstr1 = mlirIntegerSetGetConstraint(set, pos: 0);
1747 MlirAffineExpr cstr2 = mlirIntegerSetGetConstraint(set, pos: 1);
1748 bool isEq1 = mlirIntegerSetIsConstraintEq(set, pos: 0);
1749 bool isEq2 = mlirIntegerSetIsConstraintEq(set, pos: 1);
1750 if (!mlirAffineExprEqual(lhs: cstr1, rhs: isEq1 ? d0minusS0 : d1minus42))
1751 return 11;
1752 if (!mlirAffineExprEqual(lhs: cstr2, rhs: isEq2 ? d0minusS0 : d1minus42))
1753 return 12;
1754
1755 return 0;
1756}
1757
1758int registerOnlyStd(void) {
1759 MlirContext ctx = mlirContextCreate();
1760 // The built-in dialect is always loaded.
1761 if (mlirContextGetNumLoadedDialects(context: ctx) != 1)
1762 return 1;
1763
1764 MlirDialectHandle stdHandle = mlirGetDialectHandle__func__();
1765
1766 MlirDialect std = mlirContextGetOrLoadDialect(
1767 context: ctx, name: mlirDialectHandleGetNamespace(stdHandle));
1768 if (!mlirDialectIsNull(dialect: std))
1769 return 2;
1770
1771 mlirDialectHandleRegisterDialect(stdHandle, ctx);
1772
1773 std = mlirContextGetOrLoadDialect(context: ctx,
1774 name: mlirDialectHandleGetNamespace(stdHandle));
1775 if (mlirDialectIsNull(dialect: std))
1776 return 3;
1777
1778 MlirDialect alsoStd = mlirDialectHandleLoadDialect(stdHandle, ctx);
1779 if (!mlirDialectEqual(dialect1: std, dialect2: alsoStd))
1780 return 4;
1781
1782 MlirStringRef stdNs = mlirDialectGetNamespace(dialect: std);
1783 MlirStringRef alsoStdNs = mlirDialectHandleGetNamespace(stdHandle);
1784 if (stdNs.length != alsoStdNs.length ||
1785 strncmp(s1: stdNs.data, s2: alsoStdNs.data, n: stdNs.length))
1786 return 5;
1787
1788 fprintf(stderr, format: "@registration\n");
1789 // CHECK-LABEL: @registration
1790
1791 // CHECK: func.call is_registered: 1
1792 fprintf(stderr, format: "func.call is_registered: %d\n",
1793 mlirContextIsRegisteredOperation(
1794 context: ctx, name: mlirStringRefCreateFromCString(str: "func.call")));
1795
1796 // CHECK: func.not_existing_op is_registered: 0
1797 fprintf(stderr, format: "func.not_existing_op is_registered: %d\n",
1798 mlirContextIsRegisteredOperation(
1799 context: ctx, name: mlirStringRefCreateFromCString(str: "func.not_existing_op")));
1800
1801 // CHECK: not_existing_dialect.not_existing_op is_registered: 0
1802 fprintf(stderr, format: "not_existing_dialect.not_existing_op is_registered: %d\n",
1803 mlirContextIsRegisteredOperation(
1804 context: ctx, name: mlirStringRefCreateFromCString(
1805 str: "not_existing_dialect.not_existing_op")));
1806
1807 mlirContextDestroy(context: ctx);
1808 return 0;
1809}
1810
1811/// Tests backreference APIs
1812static int testBackreferences(void) {
1813 fprintf(stderr, format: "@test_backreferences\n");
1814
1815 MlirContext ctx = mlirContextCreate();
1816 mlirContextSetAllowUnregisteredDialects(context: ctx, true);
1817 MlirLocation loc = mlirLocationUnknownGet(context: ctx);
1818
1819 MlirOperationState opState =
1820 mlirOperationStateGet(name: mlirStringRefCreateFromCString(str: "invalid.op"), loc);
1821 MlirRegion region = mlirRegionCreate();
1822 MlirBlock block = mlirBlockCreate(nArgs: 0, NULL, NULL);
1823 mlirRegionAppendOwnedBlock(region, block);
1824 mlirOperationStateAddOwnedRegions(state: &opState, n: 1, regions: &region);
1825 MlirOperation op = mlirOperationCreate(state: &opState);
1826 MlirIdentifier ident =
1827 mlirIdentifierGet(context: ctx, str: mlirStringRefCreateFromCString(str: "identifier"));
1828
1829 if (!mlirContextEqual(ctx1: ctx, ctx2: mlirOperationGetContext(op))) {
1830 fprintf(stderr, format: "ERROR: Getting context from operation failed\n");
1831 return 1;
1832 }
1833 if (!mlirOperationEqual(op, other: mlirBlockGetParentOperation(block))) {
1834 fprintf(stderr, format: "ERROR: Getting parent operation from block failed\n");
1835 return 2;
1836 }
1837 if (!mlirContextEqual(ctx1: ctx, ctx2: mlirIdentifierGetContext(ident))) {
1838 fprintf(stderr, format: "ERROR: Getting context from identifier failed\n");
1839 return 3;
1840 }
1841
1842 mlirOperationDestroy(op);
1843 mlirContextDestroy(context: ctx);
1844
1845 // CHECK-LABEL: @test_backreferences
1846 return 0;
1847}
1848
1849/// Tests operand APIs.
1850int testOperands(void) {
1851 fprintf(stderr, format: "@testOperands\n");
1852 // CHECK-LABEL: @testOperands
1853
1854 MlirContext ctx = mlirContextCreate();
1855 registerAllUpstreamDialects(ctx);
1856
1857 mlirContextGetOrLoadDialect(context: ctx, name: mlirStringRefCreateFromCString(str: "arith"));
1858 mlirContextGetOrLoadDialect(context: ctx, name: mlirStringRefCreateFromCString(str: "test"));
1859 MlirLocation loc = mlirLocationUnknownGet(context: ctx);
1860 MlirType indexType = mlirIndexTypeGet(ctx);
1861
1862 // Create some constants to use as operands.
1863 MlirAttribute indexZeroLiteral =
1864 mlirAttributeParseGet(context: ctx, attr: mlirStringRefCreateFromCString(str: "0 : index"));
1865 MlirNamedAttribute indexZeroValueAttr = mlirNamedAttributeGet(
1866 name: mlirIdentifierGet(context: ctx, str: mlirStringRefCreateFromCString(str: "value")),
1867 attr: indexZeroLiteral);
1868 MlirOperationState constZeroState = mlirOperationStateGet(
1869 name: mlirStringRefCreateFromCString(str: "arith.constant"), loc);
1870 mlirOperationStateAddResults(state: &constZeroState, n: 1, results: &indexType);
1871 mlirOperationStateAddAttributes(state: &constZeroState, n: 1, attributes: &indexZeroValueAttr);
1872 MlirOperation constZero = mlirOperationCreate(state: &constZeroState);
1873 MlirValue constZeroValue = mlirOperationGetResult(op: constZero, pos: 0);
1874
1875 MlirAttribute indexOneLiteral =
1876 mlirAttributeParseGet(context: ctx, attr: mlirStringRefCreateFromCString(str: "1 : index"));
1877 MlirNamedAttribute indexOneValueAttr = mlirNamedAttributeGet(
1878 name: mlirIdentifierGet(context: ctx, str: mlirStringRefCreateFromCString(str: "value")),
1879 attr: indexOneLiteral);
1880 MlirOperationState constOneState = mlirOperationStateGet(
1881 name: mlirStringRefCreateFromCString(str: "arith.constant"), loc);
1882 mlirOperationStateAddResults(state: &constOneState, n: 1, results: &indexType);
1883 mlirOperationStateAddAttributes(state: &constOneState, n: 1, attributes: &indexOneValueAttr);
1884 MlirOperation constOne = mlirOperationCreate(state: &constOneState);
1885 MlirValue constOneValue = mlirOperationGetResult(op: constOne, pos: 0);
1886
1887 // Create the operation under test.
1888 mlirContextSetAllowUnregisteredDialects(context: ctx, true);
1889 MlirOperationState opState =
1890 mlirOperationStateGet(name: mlirStringRefCreateFromCString(str: "dummy.op"), loc);
1891 MlirValue initialOperands[] = {constZeroValue};
1892 mlirOperationStateAddOperands(state: &opState, n: 1, operands: initialOperands);
1893 MlirOperation op = mlirOperationCreate(state: &opState);
1894
1895 // Test operand APIs.
1896 intptr_t numOperands = mlirOperationGetNumOperands(op);
1897 fprintf(stderr, format: "Num Operands: %" PRIdPTR "\n", numOperands);
1898 // CHECK: Num Operands: 1
1899
1900 MlirValue opOperand1 = mlirOperationGetOperand(op, pos: 0);
1901 fprintf(stderr, format: "Original operand: ");
1902 mlirValuePrint(value: opOperand1, callback: printToStderr, NULL);
1903 // CHECK: Original operand: {{.+}} arith.constant 0 : index
1904
1905 mlirOperationSetOperand(op, pos: 0, newValue: constOneValue);
1906 MlirValue opOperand2 = mlirOperationGetOperand(op, pos: 0);
1907 fprintf(stderr, format: "Updated operand: ");
1908 mlirValuePrint(value: opOperand2, callback: printToStderr, NULL);
1909 // CHECK: Updated operand: {{.+}} arith.constant 1 : index
1910
1911 // Test op operand APIs.
1912 MlirOpOperand use1 = mlirValueGetFirstUse(value: opOperand1);
1913 if (!mlirOpOperandIsNull(opOperand: use1)) {
1914 fprintf(stderr, format: "ERROR: Use should be null\n");
1915 return 1;
1916 }
1917
1918 MlirOpOperand use2 = mlirValueGetFirstUse(value: opOperand2);
1919 if (mlirOpOperandIsNull(opOperand: use2)) {
1920 fprintf(stderr, format: "ERROR: Use should not be null\n");
1921 return 2;
1922 }
1923
1924 fprintf(stderr, format: "Use owner: ");
1925 mlirOperationPrint(op: mlirOpOperandGetOwner(opOperand: use2), callback: printToStderr, NULL);
1926 fprintf(stderr, format: "\n");
1927 // CHECK: Use owner: "dummy.op"
1928
1929 fprintf(stderr, format: "Use operandNumber: %d\n",
1930 mlirOpOperandGetOperandNumber(opOperand: use2));
1931 // CHECK: Use operandNumber: 0
1932
1933 use2 = mlirOpOperandGetNextUse(opOperand: use2);
1934 if (!mlirOpOperandIsNull(opOperand: use2)) {
1935 fprintf(stderr, format: "ERROR: Next use should be null\n");
1936 return 3;
1937 }
1938
1939 MlirOperationState op2State =
1940 mlirOperationStateGet(name: mlirStringRefCreateFromCString(str: "dummy.op2"), loc);
1941 MlirValue initialOperands2[] = {constOneValue};
1942 mlirOperationStateAddOperands(state: &op2State, n: 1, operands: initialOperands2);
1943 MlirOperation op2 = mlirOperationCreate(state: &op2State);
1944
1945 MlirOpOperand use3 = mlirValueGetFirstUse(value: constOneValue);
1946 fprintf(stderr, format: "First use owner: ");
1947 mlirOperationPrint(op: mlirOpOperandGetOwner(opOperand: use3), callback: printToStderr, NULL);
1948 fprintf(stderr, format: "\n");
1949 // CHECK: First use owner: "dummy.op2"
1950
1951 use3 = mlirOpOperandGetNextUse(opOperand: mlirValueGetFirstUse(value: constOneValue));
1952 fprintf(stderr, format: "Second use owner: ");
1953 mlirOperationPrint(op: mlirOpOperandGetOwner(opOperand: use3), callback: printToStderr, NULL);
1954 fprintf(stderr, format: "\n");
1955 // CHECK: Second use owner: "dummy.op"
1956
1957 MlirAttribute indexTwoLiteral =
1958 mlirAttributeParseGet(context: ctx, attr: mlirStringRefCreateFromCString(str: "2 : index"));
1959 MlirNamedAttribute indexTwoValueAttr = mlirNamedAttributeGet(
1960 name: mlirIdentifierGet(context: ctx, str: mlirStringRefCreateFromCString(str: "value")),
1961 attr: indexTwoLiteral);
1962 MlirOperationState constTwoState = mlirOperationStateGet(
1963 name: mlirStringRefCreateFromCString(str: "arith.constant"), loc);
1964 mlirOperationStateAddResults(state: &constTwoState, n: 1, results: &indexType);
1965 mlirOperationStateAddAttributes(state: &constTwoState, n: 1, attributes: &indexTwoValueAttr);
1966 MlirOperation constTwo = mlirOperationCreate(state: &constTwoState);
1967 MlirValue constTwoValue = mlirOperationGetResult(op: constTwo, pos: 0);
1968
1969 mlirValueReplaceAllUsesOfWith(of: constOneValue, with: constTwoValue);
1970
1971 use3 = mlirValueGetFirstUse(value: constOneValue);
1972 if (!mlirOpOperandIsNull(opOperand: use3)) {
1973 fprintf(stderr, format: "ERROR: Use should be null\n");
1974 return 4;
1975 }
1976
1977 MlirOpOperand use4 = mlirValueGetFirstUse(value: constTwoValue);
1978 fprintf(stderr, format: "First replacement use owner: ");
1979 mlirOperationPrint(op: mlirOpOperandGetOwner(opOperand: use4), callback: printToStderr, NULL);
1980 fprintf(stderr, format: "\n");
1981 // CHECK: First replacement use owner: "dummy.op"
1982
1983 use4 = mlirOpOperandGetNextUse(opOperand: mlirValueGetFirstUse(value: constTwoValue));
1984 fprintf(stderr, format: "Second replacement use owner: ");
1985 mlirOperationPrint(op: mlirOpOperandGetOwner(opOperand: use4), callback: printToStderr, NULL);
1986 fprintf(stderr, format: "\n");
1987 // CHECK: Second replacement use owner: "dummy.op2"
1988
1989 MlirOpOperand use5 = mlirValueGetFirstUse(value: constTwoValue);
1990 MlirOpOperand use6 = mlirOpOperandGetNextUse(opOperand: use5);
1991 if (!mlirValueEqual(value1: mlirOpOperandGetValue(opOperand: use5),
1992 value2: mlirOpOperandGetValue(opOperand: use6))) {
1993 fprintf(stderr,
1994 format: "ERROR: First and second operand should share the same value\n");
1995 return 5;
1996 }
1997
1998 mlirOperationDestroy(op);
1999 mlirOperationDestroy(op: op2);
2000 mlirOperationDestroy(op: constZero);
2001 mlirOperationDestroy(op: constOne);
2002 mlirOperationDestroy(op: constTwo);
2003 mlirContextDestroy(context: ctx);
2004
2005 return 0;
2006}
2007
2008/// Tests clone APIs.
2009int testClone(void) {
2010 fprintf(stderr, format: "@testClone\n");
2011 // CHECK-LABEL: @testClone
2012
2013 MlirContext ctx = mlirContextCreate();
2014 registerAllUpstreamDialects(ctx);
2015
2016 mlirContextGetOrLoadDialect(context: ctx, name: mlirStringRefCreateFromCString(str: "func"));
2017 mlirContextGetOrLoadDialect(context: ctx, name: mlirStringRefCreateFromCString(str: "arith"));
2018 MlirLocation loc = mlirLocationUnknownGet(context: ctx);
2019 MlirType indexType = mlirIndexTypeGet(ctx);
2020 MlirStringRef valueStringRef = mlirStringRefCreateFromCString(str: "value");
2021
2022 MlirAttribute indexZeroLiteral =
2023 mlirAttributeParseGet(context: ctx, attr: mlirStringRefCreateFromCString(str: "0 : index"));
2024 MlirNamedAttribute indexZeroValueAttr = mlirNamedAttributeGet(
2025 name: mlirIdentifierGet(context: ctx, str: valueStringRef), attr: indexZeroLiteral);
2026 MlirOperationState constZeroState = mlirOperationStateGet(
2027 name: mlirStringRefCreateFromCString(str: "arith.constant"), loc);
2028 mlirOperationStateAddResults(state: &constZeroState, n: 1, results: &indexType);
2029 mlirOperationStateAddAttributes(state: &constZeroState, n: 1, attributes: &indexZeroValueAttr);
2030 MlirOperation constZero = mlirOperationCreate(state: &constZeroState);
2031
2032 MlirAttribute indexOneLiteral =
2033 mlirAttributeParseGet(context: ctx, attr: mlirStringRefCreateFromCString(str: "1 : index"));
2034 MlirOperation constOne = mlirOperationClone(op: constZero);
2035 mlirOperationSetAttributeByName(op: constOne, name: valueStringRef, attr: indexOneLiteral);
2036
2037 mlirOperationPrint(op: constZero, callback: printToStderr, NULL);
2038 mlirOperationPrint(op: constOne, callback: printToStderr, NULL);
2039 // CHECK: arith.constant 0 : index
2040 // CHECK: arith.constant 1 : index
2041
2042 mlirOperationDestroy(op: constZero);
2043 mlirOperationDestroy(op: constOne);
2044 mlirContextDestroy(context: ctx);
2045 return 0;
2046}
2047
2048// Wraps a diagnostic into additional text we can match against.
2049MlirLogicalResult errorHandler(MlirDiagnostic diagnostic, void *userData) {
2050 fprintf(stderr, format: "processing diagnostic (userData: %" PRIdPTR ") <<\n",
2051 (intptr_t)userData);
2052 mlirDiagnosticPrint(diagnostic, callback: printToStderr, NULL);
2053 fprintf(stderr, format: "\n");
2054 MlirLocation loc = mlirDiagnosticGetLocation(diagnostic);
2055 mlirLocationPrint(location: loc, callback: printToStderr, NULL);
2056 assert(mlirDiagnosticGetNumNotes(diagnostic) == 0);
2057 fprintf(stderr, format: "\n>> end of diagnostic (userData: %" PRIdPTR ")\n",
2058 (intptr_t)userData);
2059 return mlirLogicalResultSuccess();
2060}
2061
2062// Logs when the delete user data callback is called
2063static void deleteUserData(void *userData) {
2064 fprintf(stderr, format: "deleting user data (userData: %" PRIdPTR ")\n",
2065 (intptr_t)userData);
2066}
2067
2068int testTypeID(MlirContext ctx) {
2069 fprintf(stderr, format: "@testTypeID\n");
2070
2071 // Test getting and comparing type and attribute type ids.
2072 MlirType i32 = mlirIntegerTypeGet(ctx, bitwidth: 32);
2073 MlirTypeID i32ID = mlirTypeGetTypeID(type: i32);
2074 MlirType ui32 = mlirIntegerTypeUnsignedGet(ctx, bitwidth: 32);
2075 MlirTypeID ui32ID = mlirTypeGetTypeID(type: ui32);
2076 MlirType f32 = mlirF32TypeGet(ctx);
2077 MlirTypeID f32ID = mlirTypeGetTypeID(type: f32);
2078 MlirAttribute i32Attr = mlirIntegerAttrGet(type: i32, value: 1);
2079 MlirTypeID i32AttrID = mlirAttributeGetTypeID(attribute: i32Attr);
2080
2081 if (mlirTypeIDIsNull(typeID: i32ID) || mlirTypeIDIsNull(typeID: ui32ID) ||
2082 mlirTypeIDIsNull(typeID: f32ID) || mlirTypeIDIsNull(typeID: i32AttrID)) {
2083 fprintf(stderr, format: "ERROR: Expected type ids to be present\n");
2084 return 1;
2085 }
2086
2087 if (!mlirTypeIDEqual(typeID1: i32ID, typeID2: ui32ID) ||
2088 mlirTypeIDHashValue(typeID: i32ID) != mlirTypeIDHashValue(typeID: ui32ID)) {
2089 fprintf(
2090 stderr,
2091 format: "ERROR: Expected different integer types to have the same type id\n");
2092 return 2;
2093 }
2094
2095 if (mlirTypeIDEqual(typeID1: i32ID, typeID2: f32ID)) {
2096 fprintf(stderr,
2097 format: "ERROR: Expected integer type id to not equal float type id\n");
2098 return 3;
2099 }
2100
2101 if (mlirTypeIDEqual(typeID1: i32ID, typeID2: i32AttrID)) {
2102 fprintf(stderr, format: "ERROR: Expected integer type id to not equal integer "
2103 "attribute type id\n");
2104 return 4;
2105 }
2106
2107 MlirLocation loc = mlirLocationUnknownGet(context: ctx);
2108 MlirType indexType = mlirIndexTypeGet(ctx);
2109 MlirStringRef valueStringRef = mlirStringRefCreateFromCString(str: "value");
2110
2111 // Create a registered operation, which should have a type id.
2112 MlirAttribute indexZeroLiteral =
2113 mlirAttributeParseGet(context: ctx, attr: mlirStringRefCreateFromCString(str: "0 : index"));
2114 MlirNamedAttribute indexZeroValueAttr = mlirNamedAttributeGet(
2115 name: mlirIdentifierGet(context: ctx, str: valueStringRef), attr: indexZeroLiteral);
2116 MlirOperationState constZeroState = mlirOperationStateGet(
2117 name: mlirStringRefCreateFromCString(str: "arith.constant"), loc);
2118 mlirOperationStateAddResults(state: &constZeroState, n: 1, results: &indexType);
2119 mlirOperationStateAddAttributes(state: &constZeroState, n: 1, attributes: &indexZeroValueAttr);
2120 MlirOperation constZero = mlirOperationCreate(state: &constZeroState);
2121
2122 if (!mlirOperationVerify(op: constZero)) {
2123 fprintf(stderr, format: "ERROR: Expected operation to verify correctly\n");
2124 return 5;
2125 }
2126
2127 if (mlirOperationIsNull(op: constZero)) {
2128 fprintf(stderr, format: "ERROR: Expected registered operation to be present\n");
2129 return 6;
2130 }
2131
2132 MlirTypeID registeredOpID = mlirOperationGetTypeID(op: constZero);
2133
2134 if (mlirTypeIDIsNull(typeID: registeredOpID)) {
2135 fprintf(stderr,
2136 format: "ERROR: Expected registered operation type id to be present\n");
2137 return 7;
2138 }
2139
2140 // Create an unregistered operation, which should not have a type id.
2141 mlirContextSetAllowUnregisteredDialects(context: ctx, true);
2142 MlirOperationState opState =
2143 mlirOperationStateGet(name: mlirStringRefCreateFromCString(str: "dummy.op"), loc);
2144 MlirOperation unregisteredOp = mlirOperationCreate(state: &opState);
2145 if (mlirOperationIsNull(op: unregisteredOp)) {
2146 fprintf(stderr, format: "ERROR: Expected unregistered operation to be present\n");
2147 return 8;
2148 }
2149
2150 MlirTypeID unregisteredOpID = mlirOperationGetTypeID(op: unregisteredOp);
2151
2152 if (!mlirTypeIDIsNull(typeID: unregisteredOpID)) {
2153 fprintf(stderr,
2154 format: "ERROR: Expected unregistered operation type id to be null\n");
2155 return 9;
2156 }
2157
2158 mlirOperationDestroy(op: constZero);
2159 mlirOperationDestroy(op: unregisteredOp);
2160
2161 return 0;
2162}
2163
2164int testSymbolTable(MlirContext ctx) {
2165 fprintf(stderr, format: "@testSymbolTable\n");
2166
2167 const char *moduleString = "func.func private @foo()"
2168 "func.func private @bar()";
2169 const char *otherModuleString = "func.func private @qux()"
2170 "func.func private @foo()";
2171
2172 MlirModule module =
2173 mlirModuleCreateParse(context: ctx, module: mlirStringRefCreateFromCString(str: moduleString));
2174 MlirModule otherModule = mlirModuleCreateParse(
2175 context: ctx, module: mlirStringRefCreateFromCString(str: otherModuleString));
2176
2177 MlirSymbolTable symbolTable =
2178 mlirSymbolTableCreate(operation: mlirModuleGetOperation(module));
2179
2180 MlirOperation funcFoo =
2181 mlirSymbolTableLookup(symbolTable, name: mlirStringRefCreateFromCString(str: "foo"));
2182 if (mlirOperationIsNull(op: funcFoo))
2183 return 1;
2184
2185 MlirOperation funcBar =
2186 mlirSymbolTableLookup(symbolTable, name: mlirStringRefCreateFromCString(str: "bar"));
2187 if (mlirOperationEqual(op: funcFoo, other: funcBar))
2188 return 2;
2189
2190 MlirOperation missing =
2191 mlirSymbolTableLookup(symbolTable, name: mlirStringRefCreateFromCString(str: "qux"));
2192 if (!mlirOperationIsNull(op: missing))
2193 return 3;
2194
2195 MlirBlock moduleBody = mlirModuleGetBody(module);
2196 MlirBlock otherModuleBody = mlirModuleGetBody(module: otherModule);
2197 MlirOperation operation = mlirBlockGetFirstOperation(block: otherModuleBody);
2198 mlirOperationRemoveFromParent(op: operation);
2199 mlirBlockAppendOwnedOperation(block: moduleBody, operation);
2200
2201 // At this moment, the operation is still missing from the symbol table.
2202 MlirOperation stillMissing =
2203 mlirSymbolTableLookup(symbolTable, name: mlirStringRefCreateFromCString(str: "qux"));
2204 if (!mlirOperationIsNull(op: stillMissing))
2205 return 4;
2206
2207 // After it is added to the symbol table, and not only the operation with
2208 // which the table is associated, it can be looked up.
2209 mlirSymbolTableInsert(symbolTable, operation);
2210 MlirOperation funcQux =
2211 mlirSymbolTableLookup(symbolTable, name: mlirStringRefCreateFromCString(str: "qux"));
2212 if (!mlirOperationEqual(op: operation, other: funcQux))
2213 return 5;
2214
2215 // Erasing from the symbol table also removes the operation.
2216 mlirSymbolTableErase(symbolTable, operation: funcBar);
2217 MlirOperation nowMissing =
2218 mlirSymbolTableLookup(symbolTable, name: mlirStringRefCreateFromCString(str: "bar"));
2219 if (!mlirOperationIsNull(op: nowMissing))
2220 return 6;
2221
2222 // Adding a symbol with the same name to the table should rename.
2223 MlirOperation duplicateNameOp = mlirBlockGetFirstOperation(block: otherModuleBody);
2224 mlirOperationRemoveFromParent(op: duplicateNameOp);
2225 mlirBlockAppendOwnedOperation(block: moduleBody, operation: duplicateNameOp);
2226 MlirAttribute newName = mlirSymbolTableInsert(symbolTable, operation: duplicateNameOp);
2227 MlirStringRef newNameStr = mlirStringAttrGetValue(attr: newName);
2228 if (mlirStringRefEqual(string: newNameStr, other: mlirStringRefCreateFromCString(str: "foo")))
2229 return 7;
2230 MlirAttribute updatedName = mlirOperationGetAttributeByName(
2231 op: duplicateNameOp, name: mlirSymbolTableGetSymbolAttributeName());
2232 if (!mlirAttributeEqual(a1: updatedName, a2: newName))
2233 return 8;
2234
2235 mlirOperationDump(op: mlirModuleGetOperation(module));
2236 mlirOperationDump(op: mlirModuleGetOperation(module: otherModule));
2237 // clang-format off
2238 // CHECK-LABEL: @testSymbolTable
2239 // CHECK: module
2240 // CHECK: func private @foo
2241 // CHECK: func private @qux
2242 // CHECK: func private @foo{{.+}}
2243 // CHECK: module
2244 // CHECK-NOT: @qux
2245 // CHECK-NOT: @foo
2246 // clang-format on
2247
2248 mlirSymbolTableDestroy(symbolTable);
2249 mlirModuleDestroy(module);
2250 mlirModuleDestroy(module: otherModule);
2251
2252 return 0;
2253}
2254
2255typedef struct {
2256 const char *x;
2257} callBackData;
2258
2259MlirWalkResult walkCallBack(MlirOperation op, void *rootOpVoid) {
2260 fprintf(stderr, format: "%s: %s\n", ((callBackData *)(rootOpVoid))->x,
2261 mlirIdentifierStr(ident: mlirOperationGetName(op)).data);
2262 return MlirWalkResultAdvance;
2263}
2264
2265MlirWalkResult walkCallBackTestWalkResult(MlirOperation op, void *rootOpVoid) {
2266 fprintf(stderr, format: "%s: %s\n", ((callBackData *)(rootOpVoid))->x,
2267 mlirIdentifierStr(ident: mlirOperationGetName(op)).data);
2268 if (strcmp(s1: mlirIdentifierStr(ident: mlirOperationGetName(op)).data, s2: "func.func") ==
2269 0)
2270 return MlirWalkResultSkip;
2271 if (strcmp(s1: mlirIdentifierStr(ident: mlirOperationGetName(op)).data, s2: "arith.addi") ==
2272 0)
2273 return MlirWalkResultInterrupt;
2274 return MlirWalkResultAdvance;
2275}
2276
2277int testOperationWalk(MlirContext ctx) {
2278 // CHECK-LABEL: @testOperationWalk
2279 fprintf(stderr, format: "@testOperationWalk\n");
2280
2281 const char *moduleString = "module {\n"
2282 " func.func @foo() {\n"
2283 " %1 = arith.constant 10: i32\n"
2284 " arith.addi %1, %1: i32\n"
2285 " return\n"
2286 " }\n"
2287 " func.func @bar() {\n"
2288 " return\n"
2289 " }\n"
2290 "}";
2291 MlirModule module =
2292 mlirModuleCreateParse(context: ctx, module: mlirStringRefCreateFromCString(str: moduleString));
2293
2294 callBackData data;
2295 data.x = "i love you";
2296
2297 // CHECK-NEXT: i love you: arith.constant
2298 // CHECK-NEXT: i love you: arith.addi
2299 // CHECK-NEXT: i love you: func.return
2300 // CHECK-NEXT: i love you: func.func
2301 // CHECK-NEXT: i love you: func.return
2302 // CHECK-NEXT: i love you: func.func
2303 // CHECK-NEXT: i love you: builtin.module
2304 mlirOperationWalk(op: mlirModuleGetOperation(module), callback: walkCallBack,
2305 userData: (void *)(&data), walkOrder: MlirWalkPostOrder);
2306
2307 data.x = "i don't love you";
2308 // CHECK-NEXT: i don't love you: builtin.module
2309 // CHECK-NEXT: i don't love you: func.func
2310 // CHECK-NEXT: i don't love you: arith.constant
2311 // CHECK-NEXT: i don't love you: arith.addi
2312 // CHECK-NEXT: i don't love you: func.return
2313 // CHECK-NEXT: i don't love you: func.func
2314 // CHECK-NEXT: i don't love you: func.return
2315 mlirOperationWalk(op: mlirModuleGetOperation(module), callback: walkCallBack,
2316 userData: (void *)(&data), walkOrder: MlirWalkPreOrder);
2317
2318 data.x = "interrupt";
2319 // Interrupted at `arith.addi`
2320 // CHECK-NEXT: interrupt: arith.constant
2321 // CHECK-NEXT: interrupt: arith.addi
2322 mlirOperationWalk(op: mlirModuleGetOperation(module), callback: walkCallBackTestWalkResult,
2323 userData: (void *)(&data), walkOrder: MlirWalkPostOrder);
2324
2325 data.x = "skip";
2326 // Skip at `func.func`
2327 // CHECK-NEXT: skip: builtin.module
2328 // CHECK-NEXT: skip: func.func
2329 // CHECK-NEXT: skip: func.func
2330 mlirOperationWalk(op: mlirModuleGetOperation(module), callback: walkCallBackTestWalkResult,
2331 userData: (void *)(&data), walkOrder: MlirWalkPreOrder);
2332
2333 mlirModuleDestroy(module);
2334 return 0;
2335}
2336
2337int testDialectRegistry(void) {
2338 fprintf(stderr, format: "@testDialectRegistry\n");
2339
2340 MlirDialectRegistry registry = mlirDialectRegistryCreate();
2341 if (mlirDialectRegistryIsNull(registry)) {
2342 fprintf(stderr, format: "ERROR: Expected registry to be present\n");
2343 return 1;
2344 }
2345
2346 MlirDialectHandle stdHandle = mlirGetDialectHandle__func__();
2347 mlirDialectHandleInsertDialect(stdHandle, registry);
2348
2349 MlirContext ctx = mlirContextCreate();
2350 if (mlirContextGetNumRegisteredDialects(context: ctx) != 0) {
2351 fprintf(stderr,
2352 format: "ERROR: Expected no dialects to be registered to new context\n");
2353 }
2354
2355 mlirContextAppendDialectRegistry(ctx, registry);
2356 if (mlirContextGetNumRegisteredDialects(context: ctx) != 1) {
2357 fprintf(stderr, format: "ERROR: Expected the dialect in the registry to be "
2358 "registered to the context\n");
2359 }
2360
2361 mlirContextDestroy(context: ctx);
2362 mlirDialectRegistryDestroy(registry);
2363
2364 return 0;
2365}
2366
2367void testExplicitThreadPools(void) {
2368 MlirLlvmThreadPool threadPool = mlirLlvmThreadPoolCreate();
2369 MlirDialectRegistry registry = mlirDialectRegistryCreate();
2370 mlirRegisterAllDialects(registry);
2371 MlirContext context =
2372 mlirContextCreateWithRegistry(registry, /*threadingEnabled=*/false);
2373 mlirContextSetThreadPool(context, threadPool);
2374 mlirContextDestroy(context);
2375 mlirDialectRegistryDestroy(registry);
2376 mlirLlvmThreadPoolDestroy(pool: threadPool);
2377}
2378
2379void testDiagnostics(void) {
2380 MlirContext ctx = mlirContextCreate();
2381 MlirDiagnosticHandlerID id = mlirContextAttachDiagnosticHandler(
2382 context: ctx, handler: errorHandler, userData: (void *)42, deleteUserData);
2383 fprintf(stderr, format: "@test_diagnostics\n");
2384 MlirLocation unknownLoc = mlirLocationUnknownGet(context: ctx);
2385 mlirEmitError(location: unknownLoc, message: "test diagnostics");
2386 MlirAttribute unknownAttr = mlirLocationGetAttribute(location: unknownLoc);
2387 MlirLocation unknownClone = mlirLocationFromAttribute(attribute: unknownAttr);
2388 mlirEmitError(location: unknownClone, message: "test clone");
2389 MlirLocation fileLineColLoc = mlirLocationFileLineColGet(
2390 context: ctx, filename: mlirStringRefCreateFromCString(str: "file.c"), line: 1, col: 2);
2391 mlirEmitError(location: fileLineColLoc, message: "test diagnostics");
2392 MlirLocation fileLineColRange = mlirLocationFileLineColRangeGet(
2393 context: ctx, filename: mlirStringRefCreateFromCString(str: "other-file.c"), start_line: 1, start_col: 2, end_line: 3, end_col: 4);
2394 mlirEmitError(location: fileLineColRange, message: "test diagnostics");
2395 MlirLocation callSiteLoc = mlirLocationCallSiteGet(
2396 callee: mlirLocationFileLineColGet(
2397 context: ctx, filename: mlirStringRefCreateFromCString(str: "other-file.c"), line: 2, col: 3),
2398 caller: fileLineColLoc);
2399 mlirEmitError(location: callSiteLoc, message: "test diagnostics");
2400 MlirLocation null = {0};
2401 MlirLocation nameLoc =
2402 mlirLocationNameGet(context: ctx, name: mlirStringRefCreateFromCString(str: "named"), childLoc: null);
2403 mlirEmitError(location: nameLoc, message: "test diagnostics");
2404 MlirLocation locs[2] = {nameLoc, callSiteLoc};
2405 MlirAttribute nullAttr = {0};
2406 MlirLocation fusedLoc = mlirLocationFusedGet(ctx, nLocations: 2, locations: locs, metadata: nullAttr);
2407 mlirEmitError(location: fusedLoc, message: "test diagnostics");
2408 mlirContextDetachDiagnosticHandler(context: ctx, id);
2409 mlirEmitError(location: unknownLoc, message: "more test diagnostics");
2410 // CHECK-LABEL: @test_diagnostics
2411 // CHECK: processing diagnostic (userData: 42) <<
2412 // CHECK: test diagnostics
2413 // CHECK: loc(unknown)
2414 // CHECK: processing diagnostic (userData: 42) <<
2415 // CHECK: test clone
2416 // CHECK: loc(unknown)
2417 // CHECK: >> end of diagnostic (userData: 42)
2418 // CHECK: processing diagnostic (userData: 42) <<
2419 // CHECK: test diagnostics
2420 // CHECK: loc("file.c":1:2)
2421 // CHECK: >> end of diagnostic (userData: 42)
2422 // CHECK: processing diagnostic (userData: 42) <<
2423 // CHECK: test diagnostics
2424 // CHECK: loc("other-file.c":1:2 to 3:4)
2425 // CHECK: >> end of diagnostic (userData: 42)
2426 // CHECK: processing diagnostic (userData: 42) <<
2427 // CHECK: test diagnostics
2428 // CHECK: loc(callsite("other-file.c":2:3 at "file.c":1:2))
2429 // CHECK: >> end of diagnostic (userData: 42)
2430 // CHECK: processing diagnostic (userData: 42) <<
2431 // CHECK: test diagnostics
2432 // CHECK: loc("named")
2433 // CHECK: >> end of diagnostic (userData: 42)
2434 // CHECK: processing diagnostic (userData: 42) <<
2435 // CHECK: test diagnostics
2436 // CHECK: loc(fused["named", callsite("other-file.c":2:3 at "file.c":1:2)])
2437 // CHECK: deleting user data (userData: 42)
2438 // CHECK-NOT: processing diagnostic
2439 // CHECK: more test diagnostics
2440 mlirContextDestroy(context: ctx);
2441}
2442
2443int main(void) {
2444 MlirContext ctx = mlirContextCreate();
2445 registerAllUpstreamDialects(ctx);
2446 mlirContextGetOrLoadDialect(context: ctx, name: mlirStringRefCreateFromCString(str: "func"));
2447 mlirContextGetOrLoadDialect(context: ctx, name: mlirStringRefCreateFromCString(str: "memref"));
2448 mlirContextGetOrLoadDialect(context: ctx, name: mlirStringRefCreateFromCString(str: "shape"));
2449 mlirContextGetOrLoadDialect(context: ctx, name: mlirStringRefCreateFromCString(str: "scf"));
2450
2451 if (constructAndTraverseIr(ctx))
2452 return 1;
2453 buildWithInsertionsAndPrint(ctx);
2454 if (createOperationWithTypeInference(ctx))
2455 return 2;
2456
2457 if (printBuiltinTypes(ctx))
2458 return 3;
2459 if (printBuiltinAttributes(ctx))
2460 return 4;
2461 if (printAffineMap(ctx))
2462 return 5;
2463 if (printAffineExpr(ctx))
2464 return 6;
2465 if (affineMapFromExprs(ctx))
2466 return 7;
2467 if (printIntegerSet(ctx))
2468 return 8;
2469 if (registerOnlyStd())
2470 return 9;
2471 if (testBackreferences())
2472 return 10;
2473 if (testOperands())
2474 return 11;
2475 if (testClone())
2476 return 12;
2477 if (testTypeID(ctx))
2478 return 13;
2479 if (testSymbolTable(ctx))
2480 return 14;
2481 if (testDialectRegistry())
2482 return 15;
2483 if (testOperationWalk(ctx))
2484 return 16;
2485
2486 testExplicitThreadPools();
2487 testDiagnostics();
2488
2489 // CHECK: DESTROY MAIN CONTEXT
2490 // CHECK: reportResourceDelete: resource_i64_blob
2491 fprintf(stderr, format: "DESTROY MAIN CONTEXT\n");
2492 mlirContextDestroy(context: ctx);
2493
2494 return 0;
2495}
2496

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of mlir/test/CAPI/ir.c