1 | //===- TestReifyValueBounds.cpp - Test value bounds reification -----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "TestDialect.h" |
10 | #include "TestOps.h" |
11 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
12 | #include "mlir/Dialect/Affine/IR/ValueBoundsOpInterfaceImpl.h" |
13 | #include "mlir/Dialect/Affine/Transforms/Transforms.h" |
14 | #include "mlir/Dialect/Arith/Transforms/Transforms.h" |
15 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
16 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
17 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
18 | #include "mlir/Dialect/Vector/IR/ScalableValueBoundsConstraintSet.h" |
19 | #include "mlir/IR/PatternMatch.h" |
20 | #include "mlir/Interfaces/FunctionInterfaces.h" |
21 | #include "mlir/Interfaces/ValueBoundsOpInterface.h" |
22 | #include "mlir/Pass/Pass.h" |
23 | |
24 | #define PASS_NAME "test-affine-reify-value-bounds" |
25 | |
26 | using namespace mlir; |
27 | using namespace mlir::affine; |
28 | |
29 | namespace { |
30 | |
31 | /// This pass applies the permutation on the first maximal perfect nest. |
32 | struct TestReifyValueBounds |
33 | : public PassWrapper<TestReifyValueBounds, |
34 | InterfacePass<FunctionOpInterface>> { |
35 | MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestReifyValueBounds) |
36 | |
37 | StringRef getArgument() const final { return PASS_NAME; } |
38 | StringRef getDescription() const final { |
39 | return "Tests ValueBoundsOpInterface with affine dialect reification" ; |
40 | } |
41 | TestReifyValueBounds() = default; |
42 | TestReifyValueBounds(const TestReifyValueBounds &pass) : PassWrapper(pass){}; |
43 | |
44 | void getDependentDialects(DialectRegistry ®istry) const override { |
45 | registry.insert<affine::AffineDialect, tensor::TensorDialect, |
46 | memref::MemRefDialect>(); |
47 | } |
48 | |
49 | void runOnOperation() override; |
50 | |
51 | private: |
52 | Option<bool> reifyToFuncArgs{ |
53 | *this, "reify-to-func-args" , |
54 | llvm::cl::desc("Reify in terms of function args" ), llvm::cl::init(Val: false)}; |
55 | |
56 | Option<bool> useArithOps{*this, "use-arith-ops" , |
57 | llvm::cl::desc("Reify with arith dialect ops" ), |
58 | llvm::cl::init(Val: false)}; |
59 | }; |
60 | |
61 | } // namespace |
62 | |
63 | static ValueBoundsConstraintSet::ComparisonOperator |
64 | invertComparisonOperator(ValueBoundsConstraintSet::ComparisonOperator cmp) { |
65 | if (cmp == ValueBoundsConstraintSet::ComparisonOperator::LT) |
66 | return ValueBoundsConstraintSet::ComparisonOperator::GE; |
67 | if (cmp == ValueBoundsConstraintSet::ComparisonOperator::LE) |
68 | return ValueBoundsConstraintSet::ComparisonOperator::GT; |
69 | if (cmp == ValueBoundsConstraintSet::ComparisonOperator::GT) |
70 | return ValueBoundsConstraintSet::ComparisonOperator::LE; |
71 | if (cmp == ValueBoundsConstraintSet::ComparisonOperator::GE) |
72 | return ValueBoundsConstraintSet::ComparisonOperator::LT; |
73 | llvm_unreachable("unsupported comparison operator" ); |
74 | } |
75 | |
76 | /// Look for "test.reify_bound" ops in the input and replace their results with |
77 | /// the reified values. |
78 | static LogicalResult testReifyValueBounds(FunctionOpInterface funcOp, |
79 | bool reifyToFuncArgs, |
80 | bool useArithOps) { |
81 | IRRewriter rewriter(funcOp.getContext()); |
82 | WalkResult result = funcOp.walk([&](test::ReifyBoundOp op) { |
83 | auto boundType = op.getBoundType(); |
84 | Value value = op.getVar(); |
85 | std::optional<int64_t> dim = op.getDim(); |
86 | auto shapedType = dyn_cast<ShapedType>(value.getType()); |
87 | if (!shapedType && dim.has_value()) { |
88 | op->emitOpError("dim specified for non-shaped type" ); |
89 | return WalkResult::interrupt(); |
90 | } |
91 | if (shapedType && !dim.has_value()) { |
92 | op->emitOpError("dim not specified for shaped type" ); |
93 | return WalkResult::interrupt(); |
94 | } |
95 | if (shapedType && shapedType.hasRank() && dim.has_value()) { |
96 | if (dim.value() < 0) { |
97 | op->emitOpError("dim must be non-negative" ); |
98 | return WalkResult::interrupt(); |
99 | } |
100 | |
101 | if (dim.value() >= shapedType.getRank()) { |
102 | op->emitOpError("invalid dim for shaped type rank" ); |
103 | return WalkResult::interrupt(); |
104 | } |
105 | } |
106 | |
107 | bool constant = op.getConstant(); |
108 | bool scalable = op.getScalable(); |
109 | |
110 | // Prepare stop condition. By default, reify in terms of the op's |
111 | // operands. No stop condition is used when a constant was requested. |
112 | std::function<bool(Value, std::optional<int64_t>, |
113 | ValueBoundsConstraintSet & cstr)> |
114 | stopCondition = [&](Value v, std::optional<int64_t> d, |
115 | ValueBoundsConstraintSet &cstr) { |
116 | // Reify in terms of SSA values that are different from `value`. |
117 | return v != value; |
118 | }; |
119 | if (reifyToFuncArgs) { |
120 | // Reify in terms of function block arguments. |
121 | stopCondition = [](Value v, std::optional<int64_t> d, |
122 | ValueBoundsConstraintSet &cstr) { |
123 | auto bbArg = dyn_cast<BlockArgument>(Val&: v); |
124 | if (!bbArg) |
125 | return false; |
126 | return isa<FunctionOpInterface>(Val: bbArg.getParentBlock()->getParentOp()); |
127 | }; |
128 | } |
129 | |
130 | // Reify value bound |
131 | rewriter.setInsertionPointAfter(op); |
132 | FailureOr<OpFoldResult> reified = failure(); |
133 | if (constant) { |
134 | auto reifiedConst = ValueBoundsConstraintSet::computeConstantBound( |
135 | type: boundType, var: {value, dim}, /*stopCondition=*/nullptr); |
136 | if (succeeded(reifiedConst)) |
137 | reified = FailureOr<OpFoldResult>(rewriter.getIndexAttr(value: *reifiedConst)); |
138 | } else if (scalable) { |
139 | auto loc = op->getLoc(); |
140 | auto reifiedScalable = |
141 | vector::ScalableValueBoundsConstraintSet::computeScalableBound( |
142 | value, dim, vscaleMin: *op.getVscaleMin(), vscaleMax: *op.getVscaleMax(), boundType: boundType); |
143 | if (succeeded(reifiedScalable)) { |
144 | SmallVector<std::pair<Value, std::optional<int64_t>>, 1> vscaleOperand; |
145 | if (reifiedScalable->map.getNumInputs() == 1) { |
146 | // The only possible input to the bound is vscale. |
147 | vscaleOperand.push_back(std::make_pair( |
148 | rewriter.create<vector::VectorScaleOp>(loc), std::nullopt)); |
149 | } |
150 | reified = affine::materializeComputedBound( |
151 | b&: rewriter, loc: loc, boundMap: reifiedScalable->map, mapOperands: vscaleOperand); |
152 | } |
153 | } else { |
154 | if (useArithOps) { |
155 | reified = arith::reifyValueBound(b&: rewriter, loc: op->getLoc(), type: boundType, |
156 | var: op.getVariable(), stopCondition); |
157 | } else { |
158 | reified = reifyValueBound(rewriter, op->getLoc(), boundType, |
159 | op.getVariable(), stopCondition); |
160 | } |
161 | } |
162 | if (failed(Result: reified)) { |
163 | op->emitOpError("could not reify bound" ); |
164 | return WalkResult::interrupt(); |
165 | } |
166 | |
167 | // Replace the op with the reified bound. |
168 | if (auto val = llvm::dyn_cast_if_present<Value>(Val&: *reified)) { |
169 | rewriter.replaceOp(op, val); |
170 | return WalkResult::skip(); |
171 | } |
172 | Value constOp = rewriter.create<arith::ConstantIndexOp>( |
173 | op->getLoc(), cast<IntegerAttr>(cast<Attribute>(Val&: *reified)).getInt()); |
174 | rewriter.replaceOp(op, constOp); |
175 | return WalkResult::skip(); |
176 | }); |
177 | return failure(IsFailure: result.wasInterrupted()); |
178 | } |
179 | |
180 | /// Look for "test.compare" ops and emit errors/remarks. |
181 | static LogicalResult testEquality(FunctionOpInterface funcOp) { |
182 | IRRewriter rewriter(funcOp.getContext()); |
183 | WalkResult result = funcOp.walk([&](test::CompareOp op) { |
184 | auto cmpType = op.getComparisonOperator(); |
185 | if (op.getCompose()) { |
186 | if (cmpType != ValueBoundsConstraintSet::EQ) { |
187 | op->emitOpError( |
188 | "comparison operator must be EQ when 'composed' is specified" ); |
189 | return WalkResult::interrupt(); |
190 | } |
191 | FailureOr<int64_t> delta = affine::fullyComposeAndComputeConstantDelta( |
192 | value1: op->getOperand(0), value2: op->getOperand(1)); |
193 | if (failed(Result: delta)) { |
194 | op->emitError("could not determine equality" ); |
195 | } else if (*delta == 0) { |
196 | op->emitRemark("equal" ); |
197 | } else { |
198 | op->emitRemark("different" ); |
199 | } |
200 | return WalkResult::advance(); |
201 | } |
202 | |
203 | auto compare = [&](ValueBoundsConstraintSet::ComparisonOperator cmp) { |
204 | return ValueBoundsConstraintSet::compare(op.getLhs(), cmp, op.getRhs()); |
205 | }; |
206 | if (compare(cmpType)) { |
207 | op->emitRemark("true" ); |
208 | } else if (cmpType != ValueBoundsConstraintSet::EQ && |
209 | compare(invertComparisonOperator(cmpType))) { |
210 | op->emitRemark("false" ); |
211 | } else if (cmpType == ValueBoundsConstraintSet::EQ && |
212 | (compare(ValueBoundsConstraintSet::ComparisonOperator::LT) || |
213 | compare(ValueBoundsConstraintSet::ComparisonOperator::GT))) { |
214 | op->emitRemark("false" ); |
215 | } else { |
216 | op->emitError("unknown" ); |
217 | } |
218 | return WalkResult::advance(); |
219 | }); |
220 | return failure(IsFailure: result.wasInterrupted()); |
221 | } |
222 | |
223 | void TestReifyValueBounds::runOnOperation() { |
224 | if (failed( |
225 | testReifyValueBounds(getOperation(), reifyToFuncArgs, useArithOps))) |
226 | signalPassFailure(); |
227 | if (failed(testEquality(getOperation()))) |
228 | signalPassFailure(); |
229 | } |
230 | |
231 | namespace mlir { |
232 | void registerTestAffineReifyValueBoundsPass() { |
233 | PassRegistration<TestReifyValueBounds>(); |
234 | } |
235 | } // namespace mlir |
236 | |