1 | //===- mlir-linalg-ods-yaml-gen.cpp - Linalg ODS generation from yaml ----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements an ODS (and C++) generator from a YAML form |
10 | // derived from the mathematical expression of linalg named ops. Typically a |
11 | // math oriented DSL will be used to export the essential representation to |
12 | // this form, and maintaining the SOT at the math level (versus recreating it |
13 | // in MLIR) is deemed to have systemic value. |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #include "mlir/AsmParser/AsmParser.h" |
18 | #include "mlir/IR/AffineMap.h" |
19 | #include "mlir/IR/Diagnostics.h" |
20 | #include "mlir/IR/MLIRContext.h" |
21 | #include "mlir/Support/FileUtilities.h" |
22 | #include "mlir/Support/LLVM.h" |
23 | #include "llvm/ADT/StringRef.h" |
24 | #include "llvm/Support/CommandLine.h" |
25 | #include "llvm/Support/Debug.h" |
26 | #include "llvm/Support/FormatVariadic.h" |
27 | #include "llvm/Support/ToolOutputFile.h" |
28 | #include "llvm/Support/YAMLTraits.h" |
29 | #include <optional> |
30 | |
31 | using namespace mlir; |
32 | |
33 | using llvm::yaml::Input; |
34 | using llvm::yaml::MappingTraits; |
35 | using llvm::yaml::ScalarEnumerationTraits; |
36 | using llvm::yaml::ScalarTraits; |
37 | |
38 | #define DEBUG_TYPE "linalg-ods-gen" |
39 | |
40 | //===----------------------------------------------------------------------===// |
41 | // Mapping structs (correspond to data types in the YAML description). |
42 | // TODO: Since this is a schema/part of the contract, it should be moved to |
43 | // a real header. |
44 | //===----------------------------------------------------------------------===// |
45 | |
46 | namespace { |
47 | |
48 | struct LinalgYAMLContext { |
49 | MLIRContext *mlirContext; |
50 | }; |
51 | |
52 | struct LinalgOpMetadata { |
53 | std::string name; |
54 | std::string cppClassName; |
55 | std::optional<std::string> doc; |
56 | SmallVector<std::string> implements; |
57 | SmallVector<std::string> defines; |
58 | }; |
59 | |
60 | struct SerializedAffineMap { |
61 | AffineMapAttr affineMapAttr; |
62 | |
63 | AffineMap affineMap() { return affineMapAttr.getValue(); } |
64 | }; |
65 | |
66 | enum class LinalgOperandDefKind { |
67 | InputTensor, |
68 | Scalar, |
69 | OutputTensor, |
70 | IndexAttr, |
71 | UnaryFnAttr, |
72 | BinaryFnAttr, |
73 | TypeFnAttr |
74 | }; |
75 | |
76 | struct LinalgOperandDef { |
77 | std::string name; |
78 | LinalgOperandDefKind kind; |
79 | std::optional<std::string> typeVar; |
80 | std::optional<SerializedAffineMap> shapeMap; |
81 | std::optional<SerializedAffineMap> indexAttrMap; |
82 | std::optional<SmallVector<int64_t>> defaultIndices; |
83 | std::optional<std::string> defaultFn; |
84 | }; |
85 | |
86 | enum class LinalgIteratorTypeDef { |
87 | parallel, |
88 | reduction, |
89 | }; |
90 | |
91 | struct LinalgIndexingMapsConfig { |
92 | std::optional<SmallVector<SerializedAffineMap>> staticIndexingMaps; |
93 | }; |
94 | |
95 | struct ScalarExpression; |
96 | |
97 | enum class ScalarFnKind { Unary, Binary, Type }; |
98 | |
99 | struct ScalarFn { |
100 | ScalarFnKind kind; |
101 | std::optional<std::string> fnName; |
102 | std::optional<std::string> attrName; |
103 | std::optional<std::string> typeVar; |
104 | // NOTE: This must be of arity 1, but to break the self-referential cycle, |
105 | // we use a heap allocated vector. |
106 | std::vector<ScalarExpression> operands; |
107 | }; |
108 | |
109 | struct ScalarExpression { |
110 | std::optional<std::string> arg; |
111 | std::optional<std::string> constant; |
112 | std::optional<int64_t> index; |
113 | std::optional<ScalarFn> scalarFn; |
114 | }; |
115 | |
116 | struct ScalarAssign { |
117 | std::string arg; |
118 | ScalarExpression value; |
119 | }; |
120 | |
121 | struct LinalgStructuredOpConfig { |
122 | SmallVector<LinalgOperandDef> args; |
123 | LinalgIndexingMapsConfig indexingMaps; |
124 | SmallVector<LinalgIteratorTypeDef> iteratorTypes; |
125 | std::vector<ScalarAssign> assignments; |
126 | }; |
127 | |
128 | struct LinalgOpConfig { |
129 | std::optional<LinalgOpMetadata> metadata; |
130 | std::optional<LinalgStructuredOpConfig> structuredOp; |
131 | }; |
132 | |
133 | } // namespace |
134 | |
135 | //===----------------------------------------------------------------------===// |
136 | // Mapping traits. |
137 | //===----------------------------------------------------------------------===// |
138 | |
139 | LLVM_YAML_IS_SEQUENCE_VECTOR(LinalgOperandDef) |
140 | LLVM_YAML_IS_SEQUENCE_VECTOR(SerializedAffineMap) |
141 | LLVM_YAML_IS_SEQUENCE_VECTOR(LinalgIteratorTypeDef) |
142 | LLVM_YAML_IS_SEQUENCE_VECTOR(ScalarAssign) |
143 | LLVM_YAML_IS_SEQUENCE_VECTOR(ScalarExpression) |
144 | LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(LinalgOpConfig) |
145 | |
146 | namespace llvm { |
147 | namespace yaml { |
148 | |
149 | /// Top-level type containing op metadata and one of a concrete op type. |
150 | /// Currently, the only defined op type is `structured_op` (maps to |
151 | /// `LinalgStructuredOpConfig`). |
152 | template <> |
153 | struct MappingTraits<LinalgOpConfig> { |
154 | static void mapping(IO &io, LinalgOpConfig &info) { |
155 | io.mapOptional(Key: "metadata" , Val&: info.metadata); |
156 | io.mapOptional(Key: "structured_op" , Val&: info.structuredOp); |
157 | } |
158 | }; |
159 | |
160 | /// A structured op models (at most) a single contraction by modeling |
161 | /// - A list of named arguments (`LinalgOperandDef`), which can be inputs, |
162 | /// outputs, or index attributes. |
163 | /// - List of indexing maps (see `LinalgIndexingMaps`). |
164 | /// - Iterator types (see `LinalgIteratorTypeDef`). |
165 | /// - List of scalar level assignment (see `ScalarAssign`). |
166 | template <> |
167 | struct MappingTraits<LinalgStructuredOpConfig> { |
168 | static void mapping(IO &io, LinalgStructuredOpConfig &info) { |
169 | io.mapRequired(Key: "args" , Val&: info.args); |
170 | io.mapRequired(Key: "indexing_maps" , Val&: info.indexingMaps); |
171 | io.mapRequired(Key: "iterator_types" , Val&: info.iteratorTypes); |
172 | io.mapRequired(Key: "assignments" , Val&: info.assignments); |
173 | } |
174 | }; |
175 | |
176 | /// Maps a named tensor, scalar or attribute argument to an operation, |
177 | /// consisting of: |
178 | /// - `name`: Must be unique within the operation. |
179 | /// - `usage`: How the argument is used (input, output, attribute, etc). |
180 | /// - `type_var`: The symbolic type variable that binds to the element or self |
181 | /// type of the tensor or scalar argument, respectively. |
182 | /// - `shape_map`: An optional AffineMap from all op symbols to the shape of |
183 | /// the argument. Only tensor arguments have a `shape_map`. Each shape must |
184 | /// be normalized over the same list of symbols and have no dimension |
185 | /// inputs. |
186 | /// - `index_attr_map`: An optional AffineMap from all op symbols to the |
187 | /// index attribute symbols. During op creation these symbols are replaced |
188 | /// by the corresponding `name` index attribue values. Only index attribute |
189 | /// arguments have an `index_attr_map`. |
190 | /// - `default_indices`: An optional default initialization for index |
191 | /// attribute arguments. |
192 | /// - `default_fn`: An optional default initialization for function attribute |
193 | /// arguments. |
194 | template <> |
195 | struct MappingTraits<LinalgOperandDef> { |
196 | static void mapping(IO &io, LinalgOperandDef &info) { |
197 | io.mapRequired(Key: "name" , Val&: info.name); |
198 | io.mapRequired(Key: "kind" , Val&: info.kind); |
199 | io.mapOptional(Key: "type_var" , Val&: info.typeVar); |
200 | io.mapOptional(Key: "shape_map" , Val&: info.shapeMap); |
201 | io.mapOptional(Key: "index_attr_map" , Val&: info.indexAttrMap); |
202 | io.mapOptional(Key: "default_indices" , Val&: info.defaultIndices); |
203 | io.mapOptional(Key: "default_fn" , Val&: info.defaultFn); |
204 | } |
205 | }; |
206 | |
207 | /// Usage enum for a named argument. |
208 | template <> |
209 | struct ScalarEnumerationTraits<LinalgOperandDefKind> { |
210 | static void enumeration(IO &io, LinalgOperandDefKind &value) { |
211 | io.enumCase(Val&: value, Str: "input_tensor" , ConstVal: LinalgOperandDefKind::InputTensor); |
212 | io.enumCase(Val&: value, Str: "scalar" , ConstVal: LinalgOperandDefKind::Scalar); |
213 | io.enumCase(Val&: value, Str: "output_tensor" , ConstVal: LinalgOperandDefKind::OutputTensor); |
214 | io.enumCase(Val&: value, Str: "index_attr" , ConstVal: LinalgOperandDefKind::IndexAttr); |
215 | io.enumCase(Val&: value, Str: "unary_fn_attr" , ConstVal: LinalgOperandDefKind::UnaryFnAttr); |
216 | io.enumCase(Val&: value, Str: "binary_fn_attr" , ConstVal: LinalgOperandDefKind::BinaryFnAttr); |
217 | io.enumCase(Val&: value, Str: "type_fn_attr" , ConstVal: LinalgOperandDefKind::TypeFnAttr); |
218 | } |
219 | }; |
220 | |
221 | /// Iterator type enum. |
222 | template <> |
223 | struct ScalarEnumerationTraits<LinalgIteratorTypeDef> { |
224 | static void enumeration(IO &io, LinalgIteratorTypeDef &value) { |
225 | io.enumCase(Val&: value, Str: "parallel" , ConstVal: LinalgIteratorTypeDef::parallel); |
226 | io.enumCase(Val&: value, Str: "reduction" , ConstVal: LinalgIteratorTypeDef::reduction); |
227 | } |
228 | }; |
229 | |
230 | /// Metadata about the op (name, C++ name, and documentation). |
231 | template <> |
232 | struct MappingTraits<LinalgOpMetadata> { |
233 | static void mapping(IO &io, LinalgOpMetadata &info) { |
234 | io.mapRequired(Key: "name" , Val&: info.name); |
235 | io.mapRequired(Key: "cpp_class_name" , Val&: info.cppClassName); |
236 | io.mapOptional(Key: "doc" , Val&: info.doc); |
237 | io.mapOptional(Key: "implements" , Val&: info.implements); |
238 | io.mapOptional(Key: "defines" , Val&: info.defines); |
239 | } |
240 | }; |
241 | |
242 | /// How the ops indexing maps are produced. Must be one of: |
243 | /// - static_indexing_maps: A static list of AffineMaps, possibly with |
244 | /// some symbols that bind to attributes of the op. Each indexing map must |
245 | /// be normalized over the same list of dimensions, and its symbols must |
246 | /// match the symbols for argument shapes. |
247 | template <> |
248 | struct MappingTraits<LinalgIndexingMapsConfig> { |
249 | static void mapping(IO &io, LinalgIndexingMapsConfig &info) { |
250 | io.mapOptional(Key: "static_indexing_maps" , Val&: info.staticIndexingMaps); |
251 | } |
252 | }; |
253 | |
254 | /// Models an assignment to a named output. |
255 | /// - The `arg` name must match a named output. |
256 | /// - The `value` is a scalar expression for computing the value to |
257 | /// assign (see `ScalarExpression`). |
258 | template <> |
259 | struct MappingTraits<ScalarAssign> { |
260 | static void mapping(IO &io, ScalarAssign &info) { |
261 | io.mapRequired(Key: "arg" , Val&: info.arg); |
262 | io.mapRequired(Key: "value" , Val&: info.value); |
263 | } |
264 | }; |
265 | |
266 | /// A scalar expression (RHS of an assignment). Must be one of: |
267 | /// - `scalar_arg`: An operation argument. |
268 | /// - `scalar_const`: A constant definition. |
269 | /// - `scalar_index`: An iteration index. |
270 | /// - `scalar_fn`: A named function (see `ScalarFn`). |
271 | template <> |
272 | struct MappingTraits<ScalarExpression> { |
273 | static void mapping(IO &io, ScalarExpression &info) { |
274 | io.mapOptional(Key: "scalar_arg" , Val&: info.arg); |
275 | io.mapOptional(Key: "scalar_const" , Val&: info.constant); |
276 | io.mapOptional(Key: "scalar_index" , Val&: info.index); |
277 | io.mapOptional(Key: "scalar_fn" , Val&: info.scalarFn); |
278 | } |
279 | }; |
280 | |
281 | /// Scalar function kind enum. |
282 | template <> |
283 | struct ScalarEnumerationTraits<ScalarFnKind> { |
284 | static void enumeration(IO &io, ScalarFnKind &value) { |
285 | io.enumCase(Val&: value, Str: "unary" , ConstVal: ScalarFnKind::Unary); |
286 | io.enumCase(Val&: value, Str: "binary" , ConstVal: ScalarFnKind::Binary); |
287 | io.enumCase(Val&: value, Str: "type" , ConstVal: ScalarFnKind::Type); |
288 | } |
289 | }; |
290 | |
291 | /// A scalar expression that evaluates a named function. |
292 | /// Functions are generally "math" level and type polymorphic. Builtin |
293 | /// functions include: |
294 | /// - `add(lhs, rhs)` |
295 | /// - `mul(lhs, rhs)` |
296 | template <> |
297 | struct MappingTraits<ScalarFn> { |
298 | static void mapping(IO &io, ScalarFn &info) { |
299 | io.mapRequired(Key: "kind" , Val&: info.kind); |
300 | io.mapOptional(Key: "fn_name" , Val&: info.fnName); |
301 | io.mapOptional(Key: "attr_name" , Val&: info.attrName); |
302 | io.mapOptional(Key: "type_var" , Val&: info.typeVar); |
303 | io.mapRequired(Key: "operands" , Val&: info.operands); |
304 | } |
305 | }; |
306 | |
307 | /// Helper mapping which accesses an AffineMapAttr as a serialized string of |
308 | /// the same. |
309 | template <> |
310 | struct ScalarTraits<SerializedAffineMap> { |
311 | static void output(const SerializedAffineMap &value, void *rawYamlContext, |
312 | raw_ostream &out) { |
313 | assert(value.affineMapAttr); |
314 | value.affineMapAttr.print(os&: out); |
315 | } |
316 | static StringRef input(StringRef scalar, void *rawYamlContext, |
317 | SerializedAffineMap &value) { |
318 | assert(rawYamlContext); |
319 | auto *yamlContext = static_cast<LinalgYAMLContext *>(rawYamlContext); |
320 | if (auto attr = dyn_cast_or_null<AffineMapAttr>( |
321 | Val: mlir::parseAttribute(attrStr: scalar, context: yamlContext->mlirContext))) |
322 | value.affineMapAttr = attr; |
323 | else if (!value.affineMapAttr || !isa<AffineMapAttr>(Val: value.affineMapAttr)) |
324 | return "could not parse as an affine map attribute" ; |
325 | return StringRef(); |
326 | } |
327 | static QuotingType mustQuote(StringRef) { return QuotingType::None; } |
328 | }; |
329 | |
330 | } // namespace yaml |
331 | } // namespace llvm |
332 | |
333 | namespace { |
334 | |
335 | //===----------------------------------------------------------------------===// |
336 | // Generation utilities |
337 | //===----------------------------------------------------------------------===// |
338 | |
339 | class GenerationContext { |
340 | public: |
341 | GenerationContext(MLIRContext *context, raw_ostream *odsOut, |
342 | raw_ostream *defnOut) |
343 | : context(context), loc(UnknownLoc::get(context)), odsOut(odsOut), |
344 | defnOut(defnOut) {} |
345 | |
346 | MLIRContext *getContext() { return context; } |
347 | |
348 | void setLoc(Location loc) { this->loc = loc; } |
349 | Location getLoc() { return loc; } |
350 | |
351 | bool shouldGenerateOds() { return odsOut; } |
352 | bool shouldGenerateDefns() { return defnOut; } |
353 | |
354 | raw_ostream &odss() { |
355 | assert(odsOut && "ODS stream not defined" ); |
356 | return *odsOut; |
357 | } |
358 | |
359 | raw_ostream &defns() { |
360 | assert(defnOut && "Definition stream not defined" ); |
361 | return *defnOut; |
362 | } |
363 | |
364 | private: |
365 | MLIRContext *context; |
366 | Location loc; |
367 | raw_ostream *odsOut; |
368 | raw_ostream *defnOut; |
369 | }; |
370 | |
371 | } // namespace |
372 | |
373 | static std::string generateCppExpression(SerializedAffineMap self, |
374 | StringRef contextName) { |
375 | std::string printedStr; |
376 | llvm::raw_string_ostream printedSs(printedStr); |
377 | self.affineMapAttr.print(os&: printedSs); |
378 | printedSs.flush(); |
379 | |
380 | static const char exprFormat[] = |
381 | R"FMT(llvm::cast<AffineMapAttr>(mlir::parseAttribute("{0}", {1})).getValue())FMT" ; |
382 | return llvm::formatv(Fmt: exprFormat, Vals&: printedStr, Vals&: contextName); |
383 | } |
384 | |
385 | template <typename Container> |
386 | static std::string interleaveToString(Container &container, |
387 | StringRef separator) { |
388 | std::string result; |
389 | llvm::raw_string_ostream ss(result); |
390 | llvm::interleave(container, ss, separator); |
391 | ss.flush(); |
392 | return result; |
393 | } |
394 | |
395 | static std::optional<int> |
396 | findTensorDefArgIndex(StringRef name, SmallVectorImpl<LinalgOperandDef> &args) { |
397 | for (const auto &it : llvm::enumerate(First&: args)) { |
398 | if (it.value().name == name) |
399 | return it.index(); |
400 | } |
401 | return std::nullopt; |
402 | } |
403 | |
404 | // Try to map the TypeVar to a predefined or an argument type. |
405 | static std::optional<std::string> |
406 | findTypeValue(StringRef typeVar, SmallVectorImpl<LinalgOperandDef> &args) { |
407 | // Handle all predefined types. |
408 | if (typeVar == "I32" ) |
409 | return std::string("helper.getIntegerType(32)" ); |
410 | if (typeVar == "I64" ) |
411 | return std::string("helper.getIntegerType(64)" ); |
412 | if (typeVar == "F32" ) |
413 | return std::string("helper.getFloat32Type()" ); |
414 | if (typeVar == "F64" ) |
415 | return std::string("helper.getFloat64Type()" ); |
416 | |
417 | // Search all argument types. |
418 | for (const auto &it : llvm::enumerate(First&: args)) { |
419 | if (it.value().kind != LinalgOperandDefKind::InputTensor && |
420 | it.value().kind != LinalgOperandDefKind::Scalar && |
421 | it.value().kind != LinalgOperandDefKind::OutputTensor) |
422 | continue; |
423 | if (*it.value().typeVar == typeVar) |
424 | return llvm::formatv(Fmt: "block.getArgument({0}).getType()" , Vals: it.index()) |
425 | .str(); |
426 | } |
427 | |
428 | return std::nullopt; |
429 | } |
430 | |
431 | static ScalarAssign *findAssignment(StringRef name, |
432 | std::vector<ScalarAssign> &assignments) { |
433 | for (auto &assign : assignments) { |
434 | if (assign.arg == name) |
435 | return &assign; |
436 | } |
437 | return nullptr; |
438 | } |
439 | |
440 | // Return true if the operand is a function attribute. |
441 | static bool isFunctionAttribute(LinalgOperandDefKind kind) { |
442 | return kind == LinalgOperandDefKind::UnaryFnAttr || |
443 | kind == LinalgOperandDefKind::BinaryFnAttr || |
444 | kind == LinalgOperandDefKind::TypeFnAttr; |
445 | } |
446 | |
447 | // Return true if the operand is an attribute. |
448 | static bool isAttribute(LinalgOperandDefKind kind) { |
449 | return kind == LinalgOperandDefKind::IndexAttr || isFunctionAttribute(kind); |
450 | } |
451 | |
452 | // Get the enum name for the given operand kind. |
453 | std::string convertOperandKindToEnumName(LinalgOperandDefKind kind) { |
454 | switch (kind) { |
455 | case LinalgOperandDefKind::UnaryFnAttr: |
456 | return std::string("UnaryFn" ); |
457 | case LinalgOperandDefKind::BinaryFnAttr: |
458 | return std::string("BinaryFn" ); |
459 | case LinalgOperandDefKind::TypeFnAttr: |
460 | return std::string("TypeFn" ); |
461 | default: |
462 | break; |
463 | } |
464 | llvm_unreachable("unsupported function attribute kind" ); |
465 | } |
466 | |
467 | // Get the enum name for the given function kind. |
468 | std::string convertFunctionKindToEnumName(ScalarFnKind kind) { |
469 | switch (kind) { |
470 | case ScalarFnKind::Unary: |
471 | return std::string("UnaryFn" ); |
472 | case ScalarFnKind::Binary: |
473 | return std::string("BinaryFn" ); |
474 | case ScalarFnKind::Type: |
475 | return std::string("TypeFn" ); |
476 | } |
477 | llvm_unreachable("unsupported function kind" ); |
478 | } |
479 | |
480 | //===----------------------------------------------------------------------===// |
481 | // Templates |
482 | //===----------------------------------------------------------------------===// |
483 | |
484 | // A single line banner format. Parameters: |
485 | // {0}: Single line comment |
486 | static const char bannerFormat[] = R"FMT( |
487 | //===----------------------------------------------------------------------===// |
488 | // {0} |
489 | //===----------------------------------------------------------------------===// |
490 | )FMT" ; |
491 | |
492 | //===----------------------------------------------------------------------===// |
493 | // Named generic op generation. |
494 | // These ops map at most a single contraction that complies with the limitations |
495 | // of a linalg.generic. |
496 | //===----------------------------------------------------------------------===// |
497 | |
498 | // Template for Linalg named ops' ODS definitions. Parameters: |
499 | // {0}: ODS/C++ op name |
500 | // {1}: assembly op mnemonic |
501 | // {2}: op interface list |
502 | // {3}: documentation (summary + description) |
503 | // {4}: op attribute list |
504 | // {5}: builder methods taking standalone attribute parameters |
505 | // {6}: additional method defintions |
506 | // {7}: additional methods for attributes used by indexing maps |
507 | static const char [] = R"FMT( |
508 | //===----------------------------------------------------------------------===// |
509 | // Op definition for {0} |
510 | //===----------------------------------------------------------------------===// |
511 | |
512 | def {0} : LinalgStructuredBase_Op<"{1}", !listconcat([AttrSizedOperandSegments], |
513 | /*extraInterfaces=*/[{2}])> { |
514 | {3} |
515 | let arguments = (ins |
516 | Variadic<AnyType>:$inputs, |
517 | Variadic<AnyShaped>:$outputs{4} |
518 | ); |
519 | let results = (outs Variadic<AnyRankedTensor>:$result_tensors); |
520 | let regions = (region AnyRegion:$region); |
521 | |
522 | let skipDefaultBuilders = 1; |
523 | let builders = [ |
524 | OpBuilder< |
525 | (ins "ValueRange":$inputs, "ValueRange":$outputs, |
526 | CArg<"ArrayRef<NamedAttribute>", "{{}">:$attributes), |
527 | [{{ |
528 | buildStructuredOp($_builder, $_state, std::nullopt, inputs, outputs, |
529 | attributes, {0}::getRegionBuilder()); |
530 | }]>, |
531 | OpBuilder< |
532 | (ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs, |
533 | "ValueRange":$outputs, |
534 | CArg<"ArrayRef<NamedAttribute>", "{{}">:$attributes), |
535 | [{{ |
536 | buildStructuredOp($_builder, $_state, resultTensorTypes, |
537 | inputs, outputs, attributes, {0}::getRegionBuilder()); |
538 | }]>, |
539 | OpBuilder< |
540 | (ins "TypeRange":$resultTensorTypes, "ValueRange":$operands, |
541 | CArg<"ArrayRef<NamedAttribute>", "{{}">:$attributes), |
542 | [{{ |
543 | $_state.addOperands(operands); |
544 | $_state.addAttributes(attributes); |
545 | $_state.addTypes(resultTensorTypes); |
546 | (void)$_state.addRegion(); |
547 | }]> |
548 | {5} |
549 | ]; |
550 | let hasCustomAssemblyFormat = 1; |
551 | let hasFolder = 1; |
552 | {6} |
553 | |
554 | let extraClassDeclaration = structuredOpsBaseDecls # [{{ |
555 | // Auto-generated. |
556 | SmallVector<utils::IteratorType> getIteratorTypesArray(); |
557 | ArrayAttr getIndexingMaps(); |
558 | static void regionBuilder(ImplicitLocOpBuilder &b, |
559 | Block &block, ArrayRef<NamedAttribute> attrs); |
560 | static std::function<void(ImplicitLocOpBuilder &, |
561 | Block &, ArrayRef<NamedAttribute>)> |
562 | getRegionBuilder() {{ |
563 | return regionBuilder; |
564 | } |
565 | |
566 | ::mlir::MutableOperandRange getDpsInitsMutable() {{ |
567 | return getOutputsMutable(); |
568 | } |
569 | |
570 | // Generic methods. |
571 | static unsigned getNumRegionArgs(); |
572 | std::string getLibraryCallName(); |
573 | {7} |
574 | }]; |
575 | } |
576 | )FMT" ; |
577 | |
578 | // Builder method taking attribute parameters. Parameters: |
579 | // {0}: Class name |
580 | // {1}: Comma interleaved attribute parameters |
581 | // {2}: Attribute initialization |
582 | static const char structuredOpBuilderFormat[] = R"FMT( |
583 | , OpBuilder< |
584 | (ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs, |
585 | "ValueRange":$outputs, {1}, |
586 | CArg<"ArrayRef<NamedAttribute>", "{{}">:$attributes), |
587 | [{{ |
588 | {2} |
589 | buildStructuredOp($_builder, $_state, resultTensorTypes, inputs, outputs, |
590 | attributes, {0}::getRegionBuilder()); |
591 | }]> |
592 | )FMT" ; |
593 | |
594 | // The getIteratorTypesArray() method for structured ops. Parameters: |
595 | // {0}: Class name |
596 | // {1}: Comma interleaved iterator type names. |
597 | static const char structuredOpIteratorTypesFormat[] = |
598 | R"FMT( |
599 | SmallVector<utils::IteratorType> {0}::getIteratorTypesArray() {{ |
600 | return SmallVector<utils::IteratorType>{{ {1} }; |
601 | } |
602 | )FMT" ; |
603 | |
604 | // The getIteratorTypesArray() method for rank polymorphic structured ops. |
605 | // Parameters: |
606 | // {0}: Class name |
607 | static const char rankPolyStructuredOpIteratorTypesFormat[] = |
608 | R"FMT( |
609 | SmallVector<utils::IteratorType> {0}::getIteratorTypesArray() {{ |
610 | int64_t rank = getRank(getDpsInitOperand(0)); |
611 | return SmallVector<utils::IteratorType>(rank, utils::IteratorType::parallel); |
612 | } |
613 | )FMT" ; |
614 | |
615 | // The indexing_maps() method for structured ops. Parameters: |
616 | // {0}: Class name |
617 | // {1}: Comma-separated list of dimension variable names. |
618 | // {2}: Statements |
619 | static const char structuredOpIndexingMapsFormat[] = R"FMT( |
620 | ArrayAttr {0}::getIndexingMaps() {{ |
621 | static const char memoizeAttr[] = "linalg.memoized_indexing_maps"; |
622 | ArrayAttr cached = getOperation()->getAttrOfType<ArrayAttr>(memoizeAttr); |
623 | if (cached) |
624 | return cached; |
625 | |
626 | MLIRContext *context = getContext(); |
627 | auto symbolBindings = getSymbolBindings(*this); |
628 | SmallVector<AffineMap> maps; |
629 | {2} |
630 | cached = Builder(context).getAffineMapArrayAttr(maps); |
631 | getOperation()->setAttr(memoizeAttr, cached); |
632 | return cached; |
633 | } |
634 | )FMT" ; |
635 | |
636 | // The indexing_maps() method for rank polymorphic structured ops. Parameters: |
637 | // {0}: Class name |
638 | static const char rankPolyStructuredOpIndexingMapsFormat[] = R"FMT( |
639 | ArrayAttr {0}::getIndexingMaps() {{ |
640 | MLIRContext *context = getContext(); |
641 | AffineMap scalarMap = AffineMap::get(getNumParallelLoops(), 0, context); |
642 | AffineMap tensorMap = AffineMap::getMultiDimIdentityMap( |
643 | getNumParallelLoops(), context); |
644 | SmallVector<AffineMap> indexingMaps; |
645 | for (OpOperand &opOperand : getOperation()->getOpOperands()) |
646 | indexingMaps.push_back(getRank(&opOperand) == 0 ? scalarMap : tensorMap); |
647 | return Builder(getContext()).getAffineMapArrayAttr(indexingMaps); |
648 | } |
649 | )FMT" ; |
650 | |
651 | // Implementations of fold and getEffects. |
652 | // Parameters: |
653 | // {0}: Class name |
654 | const char structuredOpFoldersFormat[] = R"FMT( |
655 | LogicalResult {0}::fold(FoldAdaptor, |
656 | SmallVectorImpl<OpFoldResult> &) {{ |
657 | return memref::foldMemRefCast(*this); |
658 | } |
659 | void {0}::getEffects(SmallVectorImpl< |
660 | SideEffects::EffectInstance<MemoryEffects::Effect> >&effects) {{ |
661 | if (hasPureTensorSemantics()) return; |
662 | getGenericEffectsImpl(effects, |
663 | getOperation()->getResults(), getDpsInputs(), getDpsInits()); |
664 | } |
665 | )FMT" ; |
666 | |
667 | // Implementation of parse/print. |
668 | // Parameters: |
669 | // {0}: Class name |
670 | static const char structuredOpParserFormat[] = R"FMT( |
671 | ParseResult {0}::parse(OpAsmParser &parser, OperationState &result) {{ |
672 | return ::parseNamedStructuredOp(parser, result, |
673 | {0}::getNumRegionArgs(), {0}::getRegionBuilder()); |
674 | } |
675 | void {0}::print(OpAsmPrinter &p) {{ |
676 | ::printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs()); |
677 | } |
678 | )FMT" ; |
679 | |
680 | static LogicalResult generateNamedGenericOpOds(LinalgOpConfig &opConfig, |
681 | GenerationContext &genContext) { |
682 | if (!genContext.shouldGenerateOds()) |
683 | return success(); |
684 | |
685 | raw_ostream &os = genContext.odss(); |
686 | |
687 | std::string interfaceNameList; |
688 | std::string attrList; |
689 | std::string attrMethods; |
690 | std::string attrBuilder; |
691 | |
692 | std::string doc; |
693 | if (opConfig.metadata->doc) { |
694 | static const char structuredOpDocFmt[] = R"FMT( |
695 | let summary = [{{{0}}]; |
696 | let description = [{{{1}}]; |
697 | )FMT" ; |
698 | StringRef summary, description; |
699 | std::tie(args&: summary, args&: description) = |
700 | StringRef(*opConfig.metadata->doc).trim().split(Separator: "\n\n" ); |
701 | |
702 | doc = llvm::formatv(Fmt: structuredOpDocFmt, Vals: summary.trim(), Vals: description.trim()); |
703 | } |
704 | |
705 | interfaceNameList = interleaveToString(container&: opConfig.metadata->implements, separator: ", " ); |
706 | |
707 | std::string definitionList; |
708 | for (const std::string &definition : opConfig.metadata->defines) { |
709 | static const char definitionFmt[] = "let {0} = 1;\n" ; |
710 | definitionList.append(str: llvm::formatv(Fmt: definitionFmt, Vals: definition)); |
711 | } |
712 | |
713 | if (llvm::any_of(Range&: opConfig.structuredOp->args, P: [](LinalgOperandDef &arg) { |
714 | return isAttribute(kind: arg.kind); |
715 | })) { |
716 | SmallVector<std::string> attrDefs; |
717 | SmallVector<std::string> attrParams; |
718 | SmallVector<std::string> attrStmts; |
719 | for (LinalgOperandDef &arg : opConfig.structuredOp->args) { |
720 | static const char paramFmt[] = "\"Attribute\":${0}" ; |
721 | static const char stmtFmt[] = "$_state.addAttribute(\"{0}\", {0});" ; |
722 | // Add the type conversion attributes to the op definition and builders. |
723 | if (isFunctionAttribute(kind: arg.kind)) { |
724 | assert(arg.defaultFn); |
725 | std::string enumName = convertOperandKindToEnumName(kind: arg.kind); |
726 | static const char typeFmt[] = "{0}::{1}" ; |
727 | static const char defFmt[] = |
728 | "DefaultValuedOptionalAttr<{0}, \"{1}\">:${2}" ; |
729 | attrDefs.push_back(Elt: llvm::formatv( |
730 | Fmt: defFmt, Vals: llvm::formatv(Fmt: "{0}Attr" , Vals&: enumName), |
731 | Vals: llvm::formatv(Fmt: typeFmt, Vals&: enumName, Vals&: arg.defaultFn), Vals&: arg.name)); |
732 | attrParams.push_back(Elt: llvm::formatv(Fmt: paramFmt, Vals&: arg.name)); |
733 | attrStmts.push_back(Elt: llvm::formatv(Fmt: stmtFmt, Vals&: arg.name)); |
734 | } |
735 | // Add the index attributes to the op definition and builders. |
736 | if (arg.kind == LinalgOperandDefKind::IndexAttr) { |
737 | assert(arg.indexAttrMap.has_value()); |
738 | assert(arg.defaultIndices.has_value()); |
739 | size_t size = arg.indexAttrMap->affineMap().getNumResults(); |
740 | assert(arg.defaultIndices->size() == size); |
741 | static const char typeFmt[] = "RankedI64ElementsAttr<[{0}]>" ; |
742 | static const char defFmt[] = |
743 | "DefaultValuedOptionalAttr<{0}, \"{ {1} }\">:${2}" ; |
744 | std::string defaultVals; |
745 | llvm::raw_string_ostream ss(defaultVals); |
746 | llvm::interleave( |
747 | c: *arg.defaultIndices, os&: ss, |
748 | each_fn: [&](int64_t val) { ss << "static_cast<int64_t>(" << val << ")" ; }, |
749 | separator: ", " ); |
750 | attrDefs.push_back(Elt: llvm::formatv(Fmt: defFmt, Vals: llvm::formatv(Fmt: typeFmt, Vals&: size), |
751 | Vals&: ss.str(), Vals&: arg.name)); |
752 | attrParams.push_back(Elt: llvm::formatv(Fmt: paramFmt, Vals&: arg.name)); |
753 | attrStmts.push_back(Elt: llvm::formatv(Fmt: stmtFmt, Vals&: arg.name)); |
754 | } |
755 | } |
756 | if (llvm::any_of(Range&: opConfig.structuredOp->args, P: [](LinalgOperandDef &arg) { |
757 | return arg.kind == LinalgOperandDefKind::IndexAttr; |
758 | })) { |
759 | attrMethods = R"( |
760 | bool hasDynamicIndexingMaps(); |
761 | LogicalResult verifyIndexingMapRequiredAttributes(); |
762 | )" ; |
763 | } |
764 | attrList = ",\n" + llvm::join(R&: attrDefs, Separator: ",\n" ); |
765 | attrBuilder = llvm::formatv( |
766 | Fmt: structuredOpBuilderFormat, Vals&: opConfig.metadata->cppClassName, |
767 | Vals: llvm::join(R&: attrParams, Separator: ", " ), Vals: llvm::join(R&: attrStmts, Separator: "\n" )); |
768 | } |
769 | |
770 | os << llvm::formatv(Fmt: structuredOpOdsHeaderFormat, |
771 | Vals&: opConfig.metadata->cppClassName, Vals&: opConfig.metadata->name, |
772 | Vals&: interfaceNameList, Vals&: doc, Vals&: attrList, Vals&: attrBuilder, |
773 | Vals&: definitionList, Vals&: attrMethods); |
774 | |
775 | return success(); |
776 | } |
777 | |
778 | static LogicalResult |
779 | generateNamedGenericOpDefns(LinalgOpConfig &opConfig, |
780 | GenerationContext &genContext) { |
781 | if (!genContext.shouldGenerateDefns()) |
782 | return success(); |
783 | |
784 | raw_ostream &os = genContext.defns(); |
785 | StringRef className = opConfig.metadata->cppClassName; |
786 | |
787 | // Implementation banner. |
788 | std::string = llvm::formatv(Fmt: "Implementation of {0}" , Vals&: className); |
789 | os << llvm::formatv(Fmt: bannerFormat, Vals&: bannerComment); |
790 | |
791 | // Compute the number of scalar and tensor arguments. |
792 | int64_t numOfArgs = |
793 | llvm::count_if(Range&: opConfig.structuredOp->args, P: [](LinalgOperandDef &arg) { |
794 | return arg.kind == LinalgOperandDefKind::InputTensor || |
795 | arg.kind == LinalgOperandDefKind::Scalar || |
796 | arg.kind == LinalgOperandDefKind::OutputTensor; |
797 | }); |
798 | |
799 | // An operation that accesses only scalars and scalar/rank zero tensors is |
800 | // rank polymorhpic. We implement rank polymorphism by generating different |
801 | // indexing maps and iterators that match the rank of the first output tensor. |
802 | // An operation is rank polymorphic if the iteration domain has rank zero. |
803 | bool isRankPolymorphic = opConfig.structuredOp->iteratorTypes.empty(); |
804 | |
805 | // Generate the iterator_types() method. |
806 | if (!isRankPolymorphic) { |
807 | std::string ; |
808 | llvm::raw_string_ostream ss(iteratorsStr); |
809 | llvm::interleaveComma(c: opConfig.structuredOp->iteratorTypes, os&: ss, |
810 | each_fn: [&](LinalgIteratorTypeDef it) { |
811 | switch (it) { |
812 | case LinalgIteratorTypeDef::parallel: |
813 | ss << "utils::IteratorType::parallel" ; |
814 | break; |
815 | case LinalgIteratorTypeDef::reduction: |
816 | ss << "utils::IteratorType::reduction" ; |
817 | break; |
818 | } |
819 | }); |
820 | ss.flush(); |
821 | os << llvm::formatv(Fmt: structuredOpIteratorTypesFormat, Vals&: className, |
822 | Vals&: iteratorsStr); |
823 | } else { |
824 | os << llvm::formatv(Fmt: rankPolyStructuredOpIteratorTypesFormat, Vals&: className); |
825 | } |
826 | |
827 | // Generating the getIndexingMaps() method. |
828 | if (auto &staticMaps = |
829 | opConfig.structuredOp->indexingMaps.staticIndexingMaps) { |
830 | if (staticMaps->empty()) |
831 | return emitError(loc: genContext.getLoc()) << "op has no indexing maps" ; |
832 | if (!isRankPolymorphic) { |
833 | AffineMap firstMap = staticMaps->front().affineMap(); |
834 | |
835 | // Symbol bindings. |
836 | { |
837 | // For each symbol, generate a declaration for it, either with an |
838 | // AffineSymbolExpr or an AffineConstantExpr (if the symbol derives from |
839 | // an attribute). |
840 | // TODO: Possibly lift into a top-level method. |
841 | static const char structuredOpSymbolBindingsFormat[] = R"FMT( |
842 | static SmallVector<AffineExpr> getSymbolBindings({0} self) { |
843 | MLIRContext *context = self.getContext(); |
844 | SmallVector<AffineExpr> exprs; |
845 | {1} |
846 | return exprs; |
847 | } |
848 | )FMT" ; |
849 | |
850 | unsigned symbolCount = firstMap.getNumSymbols(); |
851 | SmallVector<std::string> symbolBindings; |
852 | for (unsigned i = 0; i < symbolCount; ++i) { |
853 | symbolBindings.push_back(Elt: llvm::formatv( |
854 | Fmt: " exprs.push_back(getAffineSymbolExpr({0}, context));" , Vals&: i)); |
855 | } |
856 | |
857 | // Access an index attribute. Parameters: |
858 | // {0}: Attribute name |
859 | // {1}: Symbol position |
860 | // {2}: Attribute index |
861 | static const char structuredOpAccessAttrFormat[] = R"FMT( |
862 | int64_t cst{1} = self.get{0}().getValues<int64_t>()[{2}]; |
863 | exprs.push_back(getAffineConstantExpr(cst{1}, context)); |
864 | )FMT" ; |
865 | // Update all symbol bindings mapped to an attribute. |
866 | for (LinalgOperandDef &arg : opConfig.structuredOp->args) { |
867 | if (arg.kind != LinalgOperandDefKind::IndexAttr) |
868 | continue; |
869 | assert(arg.indexAttrMap); |
870 | for (auto [idx, result] : |
871 | llvm::enumerate(First: arg.indexAttrMap->affineMap().getResults())) { |
872 | if (auto symbol = dyn_cast<AffineSymbolExpr>(Val: result)) { |
873 | std::string argName = arg.name; |
874 | argName[0] = toupper(c: argName[0]); |
875 | symbolBindings[symbol.getPosition()] = |
876 | llvm::formatv(Fmt: structuredOpAccessAttrFormat, Vals&: argName, |
877 | Vals: symbol.getPosition(), Vals&: idx); |
878 | } |
879 | } |
880 | } |
881 | |
882 | std::string symbolBindingsStr; |
883 | llvm::raw_string_ostream symbolBindingsSs(symbolBindingsStr); |
884 | llvm::interleave(c: symbolBindings, os&: symbolBindingsSs, separator: "\n" ); |
885 | symbolBindingsSs.flush(); |
886 | |
887 | os << llvm::formatv(Fmt: structuredOpSymbolBindingsFormat, Vals&: className, |
888 | Vals&: symbolBindingsStr); |
889 | } |
890 | |
891 | // Indexing maps. |
892 | { |
893 | unsigned dimCount = firstMap.getNumDims(); |
894 | |
895 | // Generate a comma-separated list of dim identifiers to be passed to |
896 | // bindDims, ensuring tht AffineExpr identifiers are bound in the right |
897 | // order to the proper AffineDimExpr. |
898 | // This results in vars in scope like: d0, d1, d2... |
899 | SmallVector<unsigned> dimIndices; |
900 | for (unsigned i = 0; i < dimCount; ++i) |
901 | dimIndices.push_back(Elt: i); |
902 | std::string dimIdentsStr; |
903 | llvm::raw_string_ostream dimIdentsSs(dimIdentsStr); |
904 | llvm::interleaveComma(c: dimIndices, os&: dimIdentsSs, |
905 | each_fn: [&](unsigned i) { dimIdentsSs << "d" << i; }); |
906 | dimIdentsSs.flush(); |
907 | |
908 | // Statements to add and simplify each affine map. |
909 | SmallVector<std::string> stmts; |
910 | for (auto &indexingMap : *staticMaps) { |
911 | // TODO: Assert that dim and symbol count match the first. |
912 | stmts.push_back( |
913 | Elt: llvm::formatv(Fmt: "maps.push_back({0});" , |
914 | Vals: generateCppExpression(self: indexingMap, contextName: "context" ))); |
915 | stmts.push_back(Elt: llvm::formatv( |
916 | Fmt: "maps.back() = " |
917 | "simplifyAffineMap(maps.back().replaceDimsAndSymbols({{}, " |
918 | "symbolBindings, {0}, 0));" , |
919 | Vals&: dimCount)); |
920 | } |
921 | |
922 | // TODO: This needs to be memoized and/or converted to non-parser based |
923 | // C++ codegen prior to real use. |
924 | os << llvm::formatv(Fmt: structuredOpIndexingMapsFormat, Vals&: className, |
925 | Vals&: dimIdentsStr, Vals: interleaveToString(container&: stmts, separator: "\n " )); |
926 | } |
927 | } else { |
928 | os << llvm::formatv(Fmt: rankPolyStructuredOpIndexingMapsFormat, Vals&: className); |
929 | } |
930 | } else { |
931 | return emitError(loc: genContext.getLoc()) |
932 | << "generating code for non static indexing maps not currently " |
933 | "supported" ; |
934 | } |
935 | |
936 | // getNumRegionArgs() |
937 | { |
938 | // Generates a getNumRegionArgs() method. Parameters: |
939 | // {0}: Class name |
940 | // {1}: Number of region args |
941 | static const char structuredOpGetNumRegionArgsFormat[] = R"FMT( |
942 | unsigned {0}::getNumRegionArgs() {{ return {1}; } |
943 | )FMT" ; |
944 | os << llvm::formatv(Fmt: structuredOpGetNumRegionArgsFormat, Vals&: className, |
945 | Vals&: numOfArgs); |
946 | } |
947 | |
948 | // getLibraryCallName() |
949 | { |
950 | // Generates a getLibraryCallName method. Parameters: |
951 | // {0}: Class name |
952 | static const char structuredOpGetLibraryCallFormat[] = R"FMT( |
953 | std::string {0}::getLibraryCallName() {{ |
954 | return generateLibraryCallName(getOperation()); |
955 | } |
956 | )FMT" ; |
957 | os << llvm::formatv(Fmt: structuredOpGetLibraryCallFormat, Vals&: className); |
958 | } |
959 | |
960 | // hasDynamicIndexingMaps() and verifyIndexingMapRequiredAttributes() |
961 | if (llvm::any_of(Range&: opConfig.structuredOp->args, P: [](LinalgOperandDef &arg) { |
962 | return arg.kind == LinalgOperandDefKind::IndexAttr; |
963 | })) { |
964 | std::vector<std::string> attrVerifications; |
965 | for (LinalgOperandDef &arg : opConfig.structuredOp->args) { |
966 | if (arg.kind != LinalgOperandDefKind::IndexAttr) |
967 | continue; |
968 | assert(arg.indexAttrMap); |
969 | // Verify index attribute. Paramters: |
970 | // {0}: Attribute name |
971 | // {1}: Attribute size |
972 | static const char attrFmt[] = R"FMT( |
973 | if (auto attr = op->getAttrOfType<DenseElementsAttr>("{0}")) {{ |
974 | if (!attr.getType().getElementType().isInteger(64)) |
975 | return op->emitError("incorrect element type for index attribute '{0}'"); |
976 | if (attr.getType().getShape() != ArrayRef<int64_t>{{ {1} }) |
977 | return op->emitError("incorrect shape for index attribute '{0}'"); |
978 | } |
979 | )FMT" ; |
980 | attrVerifications.push_back(x: llvm::formatv( |
981 | Fmt: attrFmt, Vals&: arg.name, Vals: arg.indexAttrMap->affineMap().getNumResults())); |
982 | } |
983 | |
984 | // Generates the verifyIndexingMapRequiredAttributes method. Parameters: |
985 | // {0}: Class name |
986 | // {1}: Attribute verification |
987 | static const char structuredOpVerifyIndexingMapRequiredAttributes[] = R"FMT( |
988 | bool {0}::hasDynamicIndexingMaps() {{ return true; } |
989 | LogicalResult {0}::verifyIndexingMapRequiredAttributes() {{ |
990 | Operation *op = getOperation(); |
991 | {1} |
992 | return success(); |
993 | } |
994 | )FMT" ; |
995 | os << llvm::formatv(Fmt: structuredOpVerifyIndexingMapRequiredAttributes, |
996 | Vals&: className, Vals: llvm::join(R&: attrVerifications, Separator: "\n" )); |
997 | } |
998 | |
999 | // regionBuilder() |
1000 | { |
1001 | // Generates a regionBuilder method. Parameters. |
1002 | // {0}: Class name |
1003 | // {1}: Number of args |
1004 | // {2}: Attributes |
1005 | // {3}: Statements |
1006 | static const char structuredOpRegionBuilderFormat[] = R"FMT( |
1007 | void {0}::regionBuilder(ImplicitLocOpBuilder &b, |
1008 | Block &block, ArrayRef<NamedAttribute> attrs) {{ |
1009 | assert({1} > 0 && block.getNumArguments() == {1} && |
1010 | "{0} regionBuilder expects {1} (>=0) args"); |
1011 | RegionBuilderHelper helper(b, block); |
1012 | SmallVector<Value> yields; |
1013 | {2} |
1014 | {3} |
1015 | helper.yieldOutputs(yields); |
1016 | } |
1017 | )FMT" ; |
1018 | auto &args = opConfig.structuredOp->args; |
1019 | auto &assignments = opConfig.structuredOp->assignments; |
1020 | size_t generatedAssignmentCount = 0; |
1021 | int localCounter = 0; |
1022 | SmallVector<std::string> attrs; |
1023 | SmallVector<std::string> stmts; |
1024 | for (LinalgOperandDef &arg : args) { |
1025 | if (!isFunctionAttribute(kind: arg.kind)) |
1026 | continue; |
1027 | // Obtain the type function attribute values. Parameters. |
1028 | // {0}: enum name |
1029 | // {1}: attribute name |
1030 | // {2}: default type function name |
1031 | static const char attrDef[] = R"FMT( |
1032 | {0} {1}Val = {0}::{2}; |
1033 | auto {1}Iter = llvm::find_if(attrs, [&](const NamedAttribute &attr) {{ |
1034 | return attr.getName() == "{1}"; }); |
1035 | if ({1}Iter != attrs.end()) {{ |
1036 | if (auto attr = llvm::dyn_cast<{0}Attr>({1}Iter->getValue())) |
1037 | {1}Val = attr.getValue(); |
1038 | } |
1039 | )FMT" ; |
1040 | std::string enumName = convertOperandKindToEnumName(kind: arg.kind); |
1041 | attrs.push_back( |
1042 | Elt: llvm::formatv(Fmt: attrDef, Vals&: enumName, Vals&: arg.name, Vals&: arg.defaultFn)); |
1043 | } |
1044 | for (LinalgOperandDef &arg : args) { |
1045 | if (arg.kind != LinalgOperandDefKind::OutputTensor) |
1046 | continue; |
1047 | |
1048 | // Find the assignment that correlates with the argument. |
1049 | ScalarAssign *assignment = findAssignment(name: arg.name, assignments); |
1050 | if (!assignment) |
1051 | return emitError(loc: genContext.getLoc()) |
1052 | << "no assignment found for output argument " << arg.name; |
1053 | ++generatedAssignmentCount; |
1054 | |
1055 | // Recursively generate the expression. |
1056 | std::function<std::optional<std::string>(ScalarExpression &)> |
1057 | generateExpression = |
1058 | [&](ScalarExpression &expression) -> std::optional<std::string> { |
1059 | if (expression.arg) { |
1060 | // Argument reference. |
1061 | std::optional<int> argIndex = |
1062 | findTensorDefArgIndex(name: *expression.arg, args); |
1063 | if (!argIndex) { |
1064 | emitError(loc: genContext.getLoc()) |
1065 | << "scalar argument not defined on the op: " << *expression.arg; |
1066 | return std::nullopt; |
1067 | } |
1068 | return std::string( |
1069 | llvm::formatv(Fmt: "block.getArgument({0})" , Vals&: *argIndex)); |
1070 | } |
1071 | if (expression.constant) { |
1072 | std::string cppIdent = llvm::formatv(Fmt: "value{0}" , Vals&: ++localCounter); |
1073 | stmts.push_back( |
1074 | Elt: llvm::formatv(Fmt: R"FMT(Value {0} = helper.constant("{1}");)FMT" , |
1075 | Vals&: cppIdent, Vals&: expression.constant)); |
1076 | return cppIdent; |
1077 | } |
1078 | if (expression.index) { |
1079 | // Access an iteration index. |
1080 | std::string cppIdent = llvm::formatv(Fmt: "value{0}" , Vals&: ++localCounter); |
1081 | stmts.push_back(Elt: llvm::formatv(Fmt: "Value {0} = helper.index({1});" , |
1082 | Vals&: cppIdent, Vals&: *expression.index)); |
1083 | return cppIdent; |
1084 | } |
1085 | if (expression.scalarFn) { |
1086 | std::string enumName = |
1087 | convertFunctionKindToEnumName(kind: expression.scalarFn->kind); |
1088 | |
1089 | // Get the function or attribute name. |
1090 | assert(expression.scalarFn->fnName || expression.scalarFn->attrName); |
1091 | std::string funcType; |
1092 | if (expression.scalarFn->fnName) { |
1093 | funcType = llvm::formatv(Fmt: "{0}::{1}" , Vals&: enumName, |
1094 | Vals&: *expression.scalarFn->fnName); |
1095 | } |
1096 | if (expression.scalarFn->attrName) { |
1097 | if (llvm::none_of(Range&: args, P: [&](LinalgOperandDef &arg) { |
1098 | return isFunctionAttribute(kind: arg.kind) && |
1099 | arg.name == *expression.scalarFn->attrName; |
1100 | })) { |
1101 | emitError(loc: genContext.getLoc()) << "missing function attribute " |
1102 | << *expression.scalarFn->attrName; |
1103 | } |
1104 | funcType = llvm::formatv(Fmt: "{0}Val" , Vals&: *expression.scalarFn->attrName); |
1105 | } |
1106 | assert(!funcType.empty()); |
1107 | |
1108 | // Add the optional type parameter to the operands. |
1109 | SmallVector<std::string> operandCppValues; |
1110 | if (expression.scalarFn->kind == ScalarFnKind::Type) { |
1111 | assert(expression.scalarFn->typeVar.has_value()); |
1112 | std::optional<std::string> typeCppValue = |
1113 | findTypeValue(typeVar: *expression.scalarFn->typeVar, args); |
1114 | if (!typeCppValue) { |
1115 | emitError(loc: genContext.getLoc()) |
1116 | << "type variable " << *expression.scalarFn->typeVar |
1117 | << ", used in a type conversion, must map to a predefined or " |
1118 | << "an argument type but it does not" ; |
1119 | return std::nullopt; |
1120 | } |
1121 | operandCppValues.push_back(Elt: *typeCppValue); |
1122 | } |
1123 | |
1124 | // Collect the scalar operands. |
1125 | for (ScalarExpression &operand : expression.scalarFn->operands) { |
1126 | auto operandCppValue = generateExpression(operand); |
1127 | if (!operandCppValue) |
1128 | return std::nullopt; |
1129 | operandCppValues.push_back(Elt: *operandCppValue); |
1130 | } |
1131 | |
1132 | // Call the function builder. |
1133 | std::string cppIdent = llvm::formatv(Fmt: "value{0}" , Vals&: ++localCounter); |
1134 | stmts.push_back(Elt: llvm::formatv( |
1135 | Fmt: "Value {0} = helper.build{1}({2}, {3});" , Vals&: cppIdent, Vals&: enumName, |
1136 | Vals&: funcType, Vals: interleaveToString(container&: operandCppValues, separator: ", " ))); |
1137 | return cppIdent; |
1138 | } |
1139 | emitError(loc: genContext.getLoc()) << "unknown ScalarExpression type" ; |
1140 | return std::nullopt; |
1141 | }; |
1142 | std::optional<std::string> cppValue = |
1143 | generateExpression(assignment->value); |
1144 | if (!cppValue) |
1145 | return failure(); |
1146 | stmts.push_back(Elt: llvm::formatv(Fmt: "yields.push_back({0});" , Vals&: *cppValue)); |
1147 | } |
1148 | |
1149 | if (generatedAssignmentCount != assignments.size()) |
1150 | return emitError(loc: genContext.getLoc()) |
1151 | << "mismatched number of assignments vs output arguments" ; |
1152 | |
1153 | os << llvm::formatv(Fmt: structuredOpRegionBuilderFormat, Vals&: className, Vals&: numOfArgs, |
1154 | Vals: interleaveToString(container&: attrs, separator: "\n " ), |
1155 | Vals: interleaveToString(container&: stmts, separator: "\n " )); |
1156 | } |
1157 | |
1158 | // Parser and printer. |
1159 | os << llvm::formatv(Fmt: structuredOpParserFormat, Vals&: className); |
1160 | |
1161 | // Canonicalizers and folders. |
1162 | os << llvm::formatv(Fmt: structuredOpFoldersFormat, Vals&: className); |
1163 | |
1164 | return success(); |
1165 | } |
1166 | |
1167 | static LogicalResult generateOp(LinalgOpConfig &opConfig, |
1168 | GenerationContext &genContext) { |
1169 | // Switch on op type being generated. |
1170 | if (opConfig.structuredOp) { |
1171 | return success( |
1172 | isSuccess: succeeded(result: generateNamedGenericOpOds(opConfig, genContext)) && |
1173 | succeeded(result: generateNamedGenericOpDefns(opConfig, genContext))); |
1174 | } |
1175 | return emitError(loc: genContext.getLoc()) << "unsupported operation type" ; |
1176 | } |
1177 | |
1178 | //===----------------------------------------------------------------------===// |
1179 | // Command line options and main |
1180 | //===----------------------------------------------------------------------===// |
1181 | |
1182 | static llvm::cl::opt<std::string> |
1183 | inputFilename(llvm::cl::Positional, llvm::cl::desc("<input file>" ), |
1184 | llvm::cl::init(Val: "-" ), llvm::cl::value_desc("YAML filename" )); |
1185 | |
1186 | static llvm::cl::opt<std::string> |
1187 | outputOdsDeclFilename("o-ods-decl" , llvm::cl::desc("ODS output filename" ), |
1188 | llvm::cl::value_desc("filename" ), llvm::cl::init(Val: "" )); |
1189 | |
1190 | static llvm::cl::opt<std::string> |
1191 | outputCppImplFilename("o-impl" , |
1192 | llvm::cl::desc("C++ implementation file name" ), |
1193 | llvm::cl::value_desc("filename" ), llvm::cl::init(Val: "" )); |
1194 | |
1195 | int main(int argc, char **argv) { |
1196 | llvm::cl::ParseCommandLineOptions(argc, argv, Overview: "Linalg ODS Gen from YAML" ); |
1197 | |
1198 | // Set up the input file. |
1199 | std::string errorMessage; |
1200 | std::unique_ptr<llvm::MemoryBuffer> file = |
1201 | mlir::openInputFile(inputFilename, errorMessage: &errorMessage); |
1202 | if (!file) { |
1203 | llvm::errs() << errorMessage << "\n" ; |
1204 | return 1; |
1205 | } |
1206 | |
1207 | MLIRContext mlirContext; |
1208 | LinalgYAMLContext yamlContext{.mlirContext: &mlirContext}; |
1209 | |
1210 | std::vector<LinalgOpConfig> opConfigs; |
1211 | |
1212 | // Parse input. |
1213 | Input yin(file->getBuffer(), &yamlContext); |
1214 | yin >> opConfigs; |
1215 | |
1216 | if (yin.error()) |
1217 | return 1; |
1218 | |
1219 | // Open output files. |
1220 | std::unique_ptr<llvm::ToolOutputFile> outputOdsDecl; |
1221 | if (!outputOdsDeclFilename.empty()) { |
1222 | outputOdsDecl = openOutputFile(outputFilename: outputOdsDeclFilename, errorMessage: &errorMessage); |
1223 | if (!outputOdsDecl) { |
1224 | llvm::errs() << errorMessage << "\n" ; |
1225 | return 1; |
1226 | } |
1227 | } |
1228 | |
1229 | std::unique_ptr<llvm::ToolOutputFile> outputCppImpl; |
1230 | if (!outputCppImplFilename.empty()) { |
1231 | outputCppImpl = openOutputFile(outputFilename: outputCppImplFilename, errorMessage: &errorMessage); |
1232 | if (!outputCppImpl) { |
1233 | llvm::errs() << errorMessage << "\n" ; |
1234 | return 1; |
1235 | } |
1236 | } |
1237 | |
1238 | if (!outputOdsDecl && !outputCppImpl) { |
1239 | llvm::errs() << "error: No output files specified\n" ; |
1240 | return 1; |
1241 | } |
1242 | |
1243 | // Generate. |
1244 | GenerationContext genContext(&mlirContext, |
1245 | outputOdsDecl ? &outputOdsDecl->os() : nullptr, |
1246 | outputCppImpl ? &outputCppImpl->os() : nullptr); |
1247 | |
1248 | for (auto &opConfig : opConfigs) { |
1249 | if (!opConfig.metadata) { |
1250 | emitError(loc: genContext.getLoc()) |
1251 | << "missing operation metadata on subsequent op" ; |
1252 | return 1; |
1253 | } |
1254 | |
1255 | genContext.setLoc(NameLoc::get( |
1256 | StringAttr::get(&mlirContext, opConfig.metadata->cppClassName))); |
1257 | if (failed(result: generateOp(opConfig, genContext))) { |
1258 | return 1; |
1259 | } |
1260 | } |
1261 | |
1262 | if (outputOdsDecl) |
1263 | outputOdsDecl->keep(); |
1264 | if (outputCppImpl) |
1265 | outputCppImpl->keep(); |
1266 | |
1267 | return 0; |
1268 | } |
1269 | |