1 | //===- MatrixTest.cpp - Tests for QuasiPolynomial -------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Analysis/Presburger/QuasiPolynomial.h" |
10 | #include "./Utils.h" |
11 | #include "mlir/Analysis/Presburger/Fraction.h" |
12 | #include <gmock/gmock.h> |
13 | #include <gtest/gtest.h> |
14 | |
15 | using namespace mlir; |
16 | using namespace presburger; |
17 | |
18 | // Test the arithmetic operations on QuasiPolynomials; |
19 | // addition, subtraction, multiplication, and division |
20 | // by a constant. |
21 | // Two QPs of 3 parameters each were generated randomly |
22 | // and their sum, difference, and product computed by hand. |
23 | TEST(QuasiPolynomialTest, arithmetic) { |
24 | QuasiPolynomial qp1( |
25 | 3, {Fraction(1, 3), Fraction(1, 1), Fraction(1, 2)}, |
26 | {{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)}, |
27 | {Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}}, |
28 | {{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}}, |
29 | {{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)}, |
30 | {Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)}, |
31 | {Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)}}}); |
32 | QuasiPolynomial qp2( |
33 | 3, {Fraction(1, 1), Fraction(2, 1)}, |
34 | {{{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)}, |
35 | {Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}}, |
36 | {{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), Fraction(0, 1)}}}); |
37 | |
38 | QuasiPolynomial sum = qp1 + qp2; |
39 | EXPECT_EQ_REPR_QUASIPOLYNOMIAL( |
40 | a: sum, |
41 | b: QuasiPolynomial( |
42 | 3, |
43 | {Fraction(1, 3), Fraction(1, 1), Fraction(1, 2), Fraction(1, 1), |
44 | Fraction(2, 1)}, |
45 | {{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)}, |
46 | {Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}}, |
47 | {{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}}, |
48 | {{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)}, |
49 | {Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)}, |
50 | {Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)}}, |
51 | {{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)}, |
52 | {Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}}, |
53 | {{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), |
54 | Fraction(0, 1)}}})); |
55 | |
56 | QuasiPolynomial diff = qp1 - qp2; |
57 | EXPECT_EQ_REPR_QUASIPOLYNOMIAL( |
58 | a: diff, |
59 | b: QuasiPolynomial( |
60 | 3, |
61 | {Fraction(1, 3), Fraction(1, 1), Fraction(1, 2), Fraction(-1, 1), |
62 | Fraction(-2, 1)}, |
63 | {{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)}, |
64 | {Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}}, |
65 | {{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}}, |
66 | {{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)}, |
67 | {Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)}, |
68 | {Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)}}, |
69 | {{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)}, |
70 | {Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}}, |
71 | {{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), |
72 | Fraction(0, 1)}}})); |
73 | |
74 | QuasiPolynomial prod = qp1 * qp2; |
75 | EXPECT_EQ_REPR_QUASIPOLYNOMIAL( |
76 | a: prod, |
77 | b: QuasiPolynomial( |
78 | 3, |
79 | {Fraction(1, 3), Fraction(2, 3), Fraction(1, 1), Fraction(2, 1), |
80 | Fraction(1, 2), Fraction(1, 1)}, |
81 | {{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)}, |
82 | {Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}, |
83 | {Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)}, |
84 | {Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}}, |
85 | {{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)}, |
86 | {Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}, |
87 | {Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), Fraction(0, 1)}}, |
88 | {{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}, |
89 | {Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)}, |
90 | {Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}}, |
91 | {{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}, |
92 | {Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), Fraction(0, 1)}}, |
93 | {{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)}, |
94 | {Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)}, |
95 | {Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)}, |
96 | {Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)}, |
97 | {Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}}, |
98 | {{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)}, |
99 | {Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)}, |
100 | {Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)}, |
101 | {Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), |
102 | Fraction(0, 1)}}})); |
103 | |
104 | QuasiPolynomial quot = qp1 / 2; |
105 | EXPECT_EQ_REPR_QUASIPOLYNOMIAL( |
106 | a: quot, |
107 | b: QuasiPolynomial( |
108 | 3, {Fraction(1, 6), Fraction(1, 2), Fraction(1, 4)}, |
109 | {{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)}, |
110 | {Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}}, |
111 | {{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}}, |
112 | {{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)}, |
113 | {Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)}, |
114 | {Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), |
115 | Fraction(0, 1)}}})); |
116 | } |
117 | |
118 | // Test the simplify() operation on QPs, which removes terms that |
119 | // are identically zero. A random QP was generated and terms were |
120 | // changed to account for each condition in simplify() – |
121 | // the term coefficient being zero, or all the coefficients in some |
122 | // affine term in the product being zero. |
123 | TEST(QuasiPolynomialTest, simplify) { |
124 | QuasiPolynomial qp(2, |
125 | {Fraction(2, 3), Fraction(0, 1), Fraction(1, 1), |
126 | Fraction(1, 2), Fraction(0, 1)}, |
127 | {{{Fraction(1, 1), Fraction(3, 4), Fraction(5, 3)}, |
128 | {Fraction(2, 1), Fraction(0, 1), Fraction(0, 1)}}, |
129 | {{Fraction(1, 3), Fraction(8, 5), Fraction(2, 5)}}, |
130 | {{Fraction(2, 7), Fraction(9, 5), Fraction(0, 1)}, |
131 | {Fraction(0, 1), Fraction(0, 1), Fraction(0, 1)}}, |
132 | {{Fraction(1, 1), Fraction(4, 5), Fraction(6, 5)}}, |
133 | {{Fraction(1, 3), Fraction(4, 3), Fraction(7, 8)}}}); |
134 | EXPECT_EQ_REPR_QUASIPOLYNOMIAL( |
135 | a: qp.simplify(), |
136 | b: QuasiPolynomial(2, {Fraction(2, 3), Fraction(1, 2)}, |
137 | {{{Fraction(1, 1), Fraction(3, 4), Fraction(5, 3)}, |
138 | {Fraction(2, 1), Fraction(0, 1), Fraction(0, 1)}}, |
139 | {{Fraction(1, 1), Fraction(4, 5), Fraction(6, 5)}}})); |
140 | } |