| 1 | //===- MatrixTest.cpp - Tests for QuasiPolynomial -------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Analysis/Presburger/QuasiPolynomial.h" |
| 10 | #include "./Utils.h" |
| 11 | #include "mlir/Analysis/Presburger/Fraction.h" |
| 12 | #include <gmock/gmock.h> |
| 13 | #include <gtest/gtest.h> |
| 14 | |
| 15 | using namespace mlir; |
| 16 | using namespace presburger; |
| 17 | |
| 18 | // Test the arithmetic operations on QuasiPolynomials; |
| 19 | // addition, subtraction, multiplication, and division |
| 20 | // by a constant. |
| 21 | // Two QPs of 3 parameters each were generated randomly |
| 22 | // and their sum, difference, and product computed by hand. |
| 23 | TEST(QuasiPolynomialTest, arithmetic) { |
| 24 | QuasiPolynomial qp1( |
| 25 | 3, {Fraction(1, 3), Fraction(1, 1), Fraction(1, 2)}, |
| 26 | {{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)}, |
| 27 | {Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}}, |
| 28 | {{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}}, |
| 29 | {{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)}, |
| 30 | {Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)}, |
| 31 | {Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)}}}); |
| 32 | QuasiPolynomial qp2( |
| 33 | 3, {Fraction(1, 1), Fraction(2, 1)}, |
| 34 | {{{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)}, |
| 35 | {Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}}, |
| 36 | {{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), Fraction(0, 1)}}}); |
| 37 | |
| 38 | QuasiPolynomial sum = qp1 + qp2; |
| 39 | EXPECT_EQ_REPR_QUASIPOLYNOMIAL( |
| 40 | a: sum, |
| 41 | b: QuasiPolynomial( |
| 42 | 3, |
| 43 | {Fraction(1, 3), Fraction(1, 1), Fraction(1, 2), Fraction(1, 1), |
| 44 | Fraction(2, 1)}, |
| 45 | {{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)}, |
| 46 | {Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}}, |
| 47 | {{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}}, |
| 48 | {{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)}, |
| 49 | {Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)}, |
| 50 | {Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)}}, |
| 51 | {{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)}, |
| 52 | {Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}}, |
| 53 | {{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), |
| 54 | Fraction(0, 1)}}})); |
| 55 | |
| 56 | QuasiPolynomial diff = qp1 - qp2; |
| 57 | EXPECT_EQ_REPR_QUASIPOLYNOMIAL( |
| 58 | a: diff, |
| 59 | b: QuasiPolynomial( |
| 60 | 3, |
| 61 | {Fraction(1, 3), Fraction(1, 1), Fraction(1, 2), Fraction(-1, 1), |
| 62 | Fraction(-2, 1)}, |
| 63 | {{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)}, |
| 64 | {Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}}, |
| 65 | {{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}}, |
| 66 | {{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)}, |
| 67 | {Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)}, |
| 68 | {Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)}}, |
| 69 | {{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)}, |
| 70 | {Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}}, |
| 71 | {{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), |
| 72 | Fraction(0, 1)}}})); |
| 73 | |
| 74 | QuasiPolynomial prod = qp1 * qp2; |
| 75 | EXPECT_EQ_REPR_QUASIPOLYNOMIAL( |
| 76 | a: prod, |
| 77 | b: QuasiPolynomial( |
| 78 | 3, |
| 79 | {Fraction(1, 3), Fraction(2, 3), Fraction(1, 1), Fraction(2, 1), |
| 80 | Fraction(1, 2), Fraction(1, 1)}, |
| 81 | {{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)}, |
| 82 | {Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}, |
| 83 | {Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)}, |
| 84 | {Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}}, |
| 85 | {{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)}, |
| 86 | {Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}, |
| 87 | {Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), Fraction(0, 1)}}, |
| 88 | {{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}, |
| 89 | {Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)}, |
| 90 | {Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}}, |
| 91 | {{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}, |
| 92 | {Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), Fraction(0, 1)}}, |
| 93 | {{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)}, |
| 94 | {Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)}, |
| 95 | {Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)}, |
| 96 | {Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)}, |
| 97 | {Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}}, |
| 98 | {{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)}, |
| 99 | {Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)}, |
| 100 | {Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)}, |
| 101 | {Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), |
| 102 | Fraction(0, 1)}}})); |
| 103 | |
| 104 | QuasiPolynomial quot = qp1 / 2; |
| 105 | EXPECT_EQ_REPR_QUASIPOLYNOMIAL( |
| 106 | a: quot, |
| 107 | b: QuasiPolynomial( |
| 108 | 3, {Fraction(1, 6), Fraction(1, 2), Fraction(1, 4)}, |
| 109 | {{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)}, |
| 110 | {Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}}, |
| 111 | {{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}}, |
| 112 | {{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)}, |
| 113 | {Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)}, |
| 114 | {Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), |
| 115 | Fraction(0, 1)}}})); |
| 116 | } |
| 117 | |
| 118 | // Test the simplify() operation on QPs, which removes terms that |
| 119 | // are identically zero. A random QP was generated and terms were |
| 120 | // changed to account for each condition in simplify() – |
| 121 | // the term coefficient being zero, or all the coefficients in some |
| 122 | // affine term in the product being zero. |
| 123 | TEST(QuasiPolynomialTest, simplify) { |
| 124 | QuasiPolynomial qp(2, |
| 125 | {Fraction(2, 3), Fraction(0, 1), Fraction(1, 1), |
| 126 | Fraction(1, 2), Fraction(0, 1)}, |
| 127 | {{{Fraction(1, 1), Fraction(3, 4), Fraction(5, 3)}, |
| 128 | {Fraction(2, 1), Fraction(0, 1), Fraction(0, 1)}}, |
| 129 | {{Fraction(1, 3), Fraction(8, 5), Fraction(2, 5)}}, |
| 130 | {{Fraction(2, 7), Fraction(9, 5), Fraction(0, 1)}, |
| 131 | {Fraction(0, 1), Fraction(0, 1), Fraction(0, 1)}}, |
| 132 | {{Fraction(1, 1), Fraction(4, 5), Fraction(6, 5)}}, |
| 133 | {{Fraction(1, 3), Fraction(4, 3), Fraction(7, 8)}}}); |
| 134 | EXPECT_EQ_REPR_QUASIPOLYNOMIAL( |
| 135 | a: qp.simplify(), |
| 136 | b: QuasiPolynomial(2, {Fraction(2, 3), Fraction(1, 2)}, |
| 137 | {{{Fraction(1, 1), Fraction(3, 4), Fraction(5, 3)}, |
| 138 | {Fraction(2, 1), Fraction(0, 1), Fraction(0, 1)}}, |
| 139 | {{Fraction(1, 1), Fraction(4, 5), Fraction(6, 5)}}})); |
| 140 | } |
| 141 | |