1 | //===- Utils.h - Utils for Presburger Tests ---------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines helper functions for Presburger unittests. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef MLIR_UNITTESTS_ANALYSIS_PRESBURGER_UTILS_H |
14 | #define MLIR_UNITTESTS_ANALYSIS_PRESBURGER_UTILS_H |
15 | |
16 | #include "mlir/Analysis/Presburger/GeneratingFunction.h" |
17 | #include "mlir/Analysis/Presburger/IntegerRelation.h" |
18 | #include "mlir/Analysis/Presburger/Matrix.h" |
19 | #include "mlir/Analysis/Presburger/QuasiPolynomial.h" |
20 | |
21 | #include <gtest/gtest.h> |
22 | #include <optional> |
23 | |
24 | namespace mlir { |
25 | namespace presburger { |
26 | using llvm::dynamicAPIntFromInt64; |
27 | |
28 | inline IntMatrix makeIntMatrix(unsigned numRow, unsigned numColumns, |
29 | ArrayRef<SmallVector<int, 8>> matrix) { |
30 | IntMatrix results(numRow, numColumns); |
31 | assert(matrix.size() == numRow); |
32 | for (unsigned i = 0; i < numRow; ++i) { |
33 | assert(matrix[i].size() == numColumns && |
34 | "Output expression has incorrect dimensionality!" ); |
35 | for (unsigned j = 0; j < numColumns; ++j) |
36 | results(i, j) = DynamicAPInt(matrix[i][j]); |
37 | } |
38 | return results; |
39 | } |
40 | |
41 | inline FracMatrix makeFracMatrix(unsigned numRow, unsigned numColumns, |
42 | ArrayRef<SmallVector<Fraction, 8>> matrix) { |
43 | FracMatrix results(numRow, numColumns); |
44 | assert(matrix.size() == numRow); |
45 | for (unsigned i = 0; i < numRow; ++i) { |
46 | assert(matrix[i].size() == numColumns && |
47 | "Output expression has incorrect dimensionality!" ); |
48 | for (unsigned j = 0; j < numColumns; ++j) |
49 | results(i, j) = matrix[i][j]; |
50 | } |
51 | return results; |
52 | } |
53 | |
54 | inline void EXPECT_EQ_INT_MATRIX(IntMatrix a, IntMatrix b) { |
55 | EXPECT_EQ(a.getNumRows(), b.getNumRows()); |
56 | EXPECT_EQ(a.getNumColumns(), b.getNumColumns()); |
57 | |
58 | for (unsigned row = 0; row < a.getNumRows(); row++) |
59 | for (unsigned col = 0; col < a.getNumColumns(); col++) |
60 | EXPECT_EQ(a(row, col), b(row, col)); |
61 | } |
62 | |
63 | inline void EXPECT_EQ_FRAC_MATRIX(FracMatrix a, FracMatrix b) { |
64 | EXPECT_EQ(a.getNumRows(), b.getNumRows()); |
65 | EXPECT_EQ(a.getNumColumns(), b.getNumColumns()); |
66 | |
67 | for (unsigned row = 0; row < a.getNumRows(); row++) |
68 | for (unsigned col = 0; col < a.getNumColumns(); col++) |
69 | EXPECT_EQ(a(row, col), b(row, col)); |
70 | } |
71 | |
72 | // Check the coefficients (in order) of two generating functions. |
73 | // Note that this is not a true equality check. |
74 | inline void EXPECT_EQ_REPR_GENERATINGFUNCTION(detail::GeneratingFunction a, |
75 | detail::GeneratingFunction b) { |
76 | EXPECT_EQ(a.getNumParams(), b.getNumParams()); |
77 | |
78 | SmallVector<int> aSigns = a.getSigns(); |
79 | SmallVector<int> bSigns = b.getSigns(); |
80 | EXPECT_EQ(aSigns.size(), bSigns.size()); |
81 | for (unsigned i = 0, e = aSigns.size(); i < e; i++) |
82 | EXPECT_EQ(aSigns[i], bSigns[i]); |
83 | |
84 | std::vector<detail::ParamPoint> aNums = a.getNumerators(); |
85 | std::vector<detail::ParamPoint> bNums = b.getNumerators(); |
86 | EXPECT_EQ(aNums.size(), bNums.size()); |
87 | for (unsigned i = 0, e = aNums.size(); i < e; i++) |
88 | EXPECT_EQ_FRAC_MATRIX(a: aNums[i], b: bNums[i]); |
89 | |
90 | std::vector<std::vector<detail::Point>> aDens = a.getDenominators(); |
91 | std::vector<std::vector<detail::Point>> bDens = b.getDenominators(); |
92 | EXPECT_EQ(aDens.size(), bDens.size()); |
93 | for (unsigned i = 0, e = aDens.size(); i < e; i++) { |
94 | EXPECT_EQ(aDens[i].size(), bDens[i].size()); |
95 | for (unsigned j = 0, f = aDens[i].size(); j < f; j++) { |
96 | EXPECT_EQ(aDens[i][j].size(), bDens[i][j].size()); |
97 | for (unsigned k = 0, g = aDens[i][j].size(); k < g; k++) { |
98 | EXPECT_EQ(aDens[i][j][k], bDens[i][j][k]); |
99 | } |
100 | } |
101 | } |
102 | } |
103 | |
104 | // Check the coefficients (in order) of two quasipolynomials. |
105 | // Note that this is not a true equality check. |
106 | inline void EXPECT_EQ_REPR_QUASIPOLYNOMIAL(QuasiPolynomial a, |
107 | QuasiPolynomial b) { |
108 | EXPECT_EQ(a.getNumInputs(), b.getNumInputs()); |
109 | |
110 | SmallVector<Fraction> aCoeffs = a.getCoefficients(), |
111 | bCoeffs = b.getCoefficients(); |
112 | EXPECT_EQ(aCoeffs.size(), bCoeffs.size()); |
113 | for (unsigned i = 0, e = aCoeffs.size(); i < e; i++) |
114 | EXPECT_EQ(aCoeffs[i], bCoeffs[i]); |
115 | |
116 | std::vector<std::vector<SmallVector<Fraction>>> aAff = a.getAffine(), |
117 | bAff = b.getAffine(); |
118 | EXPECT_EQ(aAff.size(), bAff.size()); |
119 | for (unsigned i = 0, e = aAff.size(); i < e; i++) { |
120 | EXPECT_EQ(aAff[i].size(), bAff[i].size()); |
121 | for (unsigned j = 0, f = aAff[i].size(); j < f; j++) |
122 | for (unsigned k = 0, g = a.getNumInputs(); k <= g; k++) |
123 | EXPECT_EQ(aAff[i][j][k], bAff[i][j][k]); |
124 | } |
125 | } |
126 | |
127 | /// lhs and rhs represent non-negative integers or positive infinity. The |
128 | /// infinity case corresponds to when the Optional is empty. |
129 | inline bool infinityOrUInt64LE(std::optional<DynamicAPInt> lhs, |
130 | std::optional<DynamicAPInt> rhs) { |
131 | // No constraint. |
132 | if (!rhs) |
133 | return true; |
134 | // Finite rhs provided so lhs has to be finite too. |
135 | if (!lhs) |
136 | return false; |
137 | return *lhs <= *rhs; |
138 | } |
139 | |
140 | /// Expect that the computed volume is a valid overapproximation of |
141 | /// the true volume `trueVolume`, while also being at least as good an |
142 | /// approximation as `resultBound`. |
143 | inline void expectComputedVolumeIsValidOverapprox( |
144 | const std::optional<DynamicAPInt> &computedVolume, |
145 | const std::optional<DynamicAPInt> &trueVolume, |
146 | const std::optional<DynamicAPInt> &resultBound) { |
147 | assert(infinityOrUInt64LE(trueVolume, resultBound) && |
148 | "can't expect result to be less than the true volume" ); |
149 | EXPECT_TRUE(infinityOrUInt64LE(trueVolume, computedVolume)); |
150 | EXPECT_TRUE(infinityOrUInt64LE(computedVolume, resultBound)); |
151 | } |
152 | |
153 | inline void expectComputedVolumeIsValidOverapprox( |
154 | const std::optional<DynamicAPInt> &computedVolume, |
155 | std::optional<int64_t> trueVolume, std::optional<int64_t> resultBound) { |
156 | expectComputedVolumeIsValidOverapprox( |
157 | computedVolume, |
158 | trueVolume: llvm::transformOptional(O: trueVolume, F&: dynamicAPIntFromInt64), |
159 | resultBound: llvm::transformOptional(O: resultBound, F&: dynamicAPIntFromInt64)); |
160 | } |
161 | |
162 | } // namespace presburger |
163 | } // namespace mlir |
164 | |
165 | #endif // MLIR_UNITTESTS_ANALYSIS_PRESBURGER_UTILS_H |
166 | |