| 1 | //===- Utils.h - Utils for Presburger Tests ---------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines helper functions for Presburger unittests. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef MLIR_UNITTESTS_ANALYSIS_PRESBURGER_UTILS_H |
| 14 | #define MLIR_UNITTESTS_ANALYSIS_PRESBURGER_UTILS_H |
| 15 | |
| 16 | #include "mlir/Analysis/Presburger/GeneratingFunction.h" |
| 17 | #include "mlir/Analysis/Presburger/IntegerRelation.h" |
| 18 | #include "mlir/Analysis/Presburger/Matrix.h" |
| 19 | #include "mlir/Analysis/Presburger/QuasiPolynomial.h" |
| 20 | |
| 21 | #include <gtest/gtest.h> |
| 22 | #include <optional> |
| 23 | |
| 24 | namespace mlir { |
| 25 | namespace presburger { |
| 26 | using llvm::dynamicAPIntFromInt64; |
| 27 | |
| 28 | inline IntMatrix makeIntMatrix(unsigned numRow, unsigned numColumns, |
| 29 | ArrayRef<SmallVector<int, 8>> matrix) { |
| 30 | IntMatrix results(numRow, numColumns); |
| 31 | assert(matrix.size() == numRow); |
| 32 | for (unsigned i = 0; i < numRow; ++i) { |
| 33 | assert(matrix[i].size() == numColumns && |
| 34 | "Output expression has incorrect dimensionality!" ); |
| 35 | for (unsigned j = 0; j < numColumns; ++j) |
| 36 | results(i, j) = DynamicAPInt(matrix[i][j]); |
| 37 | } |
| 38 | return results; |
| 39 | } |
| 40 | |
| 41 | inline FracMatrix makeFracMatrix(unsigned numRow, unsigned numColumns, |
| 42 | ArrayRef<SmallVector<Fraction, 8>> matrix) { |
| 43 | FracMatrix results(numRow, numColumns); |
| 44 | assert(matrix.size() == numRow); |
| 45 | for (unsigned i = 0; i < numRow; ++i) { |
| 46 | assert(matrix[i].size() == numColumns && |
| 47 | "Output expression has incorrect dimensionality!" ); |
| 48 | for (unsigned j = 0; j < numColumns; ++j) |
| 49 | results(i, j) = matrix[i][j]; |
| 50 | } |
| 51 | return results; |
| 52 | } |
| 53 | |
| 54 | inline void EXPECT_EQ_INT_MATRIX(IntMatrix a, IntMatrix b) { |
| 55 | EXPECT_EQ(a.getNumRows(), b.getNumRows()); |
| 56 | EXPECT_EQ(a.getNumColumns(), b.getNumColumns()); |
| 57 | |
| 58 | for (unsigned row = 0; row < a.getNumRows(); row++) |
| 59 | for (unsigned col = 0; col < a.getNumColumns(); col++) |
| 60 | EXPECT_EQ(a(row, col), b(row, col)); |
| 61 | } |
| 62 | |
| 63 | inline void EXPECT_EQ_FRAC_MATRIX(FracMatrix a, FracMatrix b) { |
| 64 | EXPECT_EQ(a.getNumRows(), b.getNumRows()); |
| 65 | EXPECT_EQ(a.getNumColumns(), b.getNumColumns()); |
| 66 | |
| 67 | for (unsigned row = 0; row < a.getNumRows(); row++) |
| 68 | for (unsigned col = 0; col < a.getNumColumns(); col++) |
| 69 | EXPECT_EQ(a(row, col), b(row, col)); |
| 70 | } |
| 71 | |
| 72 | // Check the coefficients (in order) of two generating functions. |
| 73 | // Note that this is not a true equality check. |
| 74 | inline void EXPECT_EQ_REPR_GENERATINGFUNCTION(detail::GeneratingFunction a, |
| 75 | detail::GeneratingFunction b) { |
| 76 | EXPECT_EQ(a.getNumParams(), b.getNumParams()); |
| 77 | |
| 78 | SmallVector<int> aSigns = a.getSigns(); |
| 79 | SmallVector<int> bSigns = b.getSigns(); |
| 80 | EXPECT_EQ(aSigns.size(), bSigns.size()); |
| 81 | for (unsigned i = 0, e = aSigns.size(); i < e; i++) |
| 82 | EXPECT_EQ(aSigns[i], bSigns[i]); |
| 83 | |
| 84 | std::vector<detail::ParamPoint> aNums = a.getNumerators(); |
| 85 | std::vector<detail::ParamPoint> bNums = b.getNumerators(); |
| 86 | EXPECT_EQ(aNums.size(), bNums.size()); |
| 87 | for (unsigned i = 0, e = aNums.size(); i < e; i++) |
| 88 | EXPECT_EQ_FRAC_MATRIX(a: aNums[i], b: bNums[i]); |
| 89 | |
| 90 | std::vector<std::vector<detail::Point>> aDens = a.getDenominators(); |
| 91 | std::vector<std::vector<detail::Point>> bDens = b.getDenominators(); |
| 92 | EXPECT_EQ(aDens.size(), bDens.size()); |
| 93 | for (unsigned i = 0, e = aDens.size(); i < e; i++) { |
| 94 | EXPECT_EQ(aDens[i].size(), bDens[i].size()); |
| 95 | for (unsigned j = 0, f = aDens[i].size(); j < f; j++) { |
| 96 | EXPECT_EQ(aDens[i][j].size(), bDens[i][j].size()); |
| 97 | for (unsigned k = 0, g = aDens[i][j].size(); k < g; k++) { |
| 98 | EXPECT_EQ(aDens[i][j][k], bDens[i][j][k]); |
| 99 | } |
| 100 | } |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | // Check the coefficients (in order) of two quasipolynomials. |
| 105 | // Note that this is not a true equality check. |
| 106 | inline void EXPECT_EQ_REPR_QUASIPOLYNOMIAL(QuasiPolynomial a, |
| 107 | QuasiPolynomial b) { |
| 108 | EXPECT_EQ(a.getNumInputs(), b.getNumInputs()); |
| 109 | |
| 110 | SmallVector<Fraction> aCoeffs = a.getCoefficients(), |
| 111 | bCoeffs = b.getCoefficients(); |
| 112 | EXPECT_EQ(aCoeffs.size(), bCoeffs.size()); |
| 113 | for (unsigned i = 0, e = aCoeffs.size(); i < e; i++) |
| 114 | EXPECT_EQ(aCoeffs[i], bCoeffs[i]); |
| 115 | |
| 116 | std::vector<std::vector<SmallVector<Fraction>>> aAff = a.getAffine(), |
| 117 | bAff = b.getAffine(); |
| 118 | EXPECT_EQ(aAff.size(), bAff.size()); |
| 119 | for (unsigned i = 0, e = aAff.size(); i < e; i++) { |
| 120 | EXPECT_EQ(aAff[i].size(), bAff[i].size()); |
| 121 | for (unsigned j = 0, f = aAff[i].size(); j < f; j++) |
| 122 | for (unsigned k = 0, g = a.getNumInputs(); k <= g; k++) |
| 123 | EXPECT_EQ(aAff[i][j][k], bAff[i][j][k]); |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | /// lhs and rhs represent non-negative integers or positive infinity. The |
| 128 | /// infinity case corresponds to when the Optional is empty. |
| 129 | inline bool infinityOrUInt64LE(std::optional<DynamicAPInt> lhs, |
| 130 | std::optional<DynamicAPInt> rhs) { |
| 131 | // No constraint. |
| 132 | if (!rhs) |
| 133 | return true; |
| 134 | // Finite rhs provided so lhs has to be finite too. |
| 135 | if (!lhs) |
| 136 | return false; |
| 137 | return *lhs <= *rhs; |
| 138 | } |
| 139 | |
| 140 | /// Expect that the computed volume is a valid overapproximation of |
| 141 | /// the true volume `trueVolume`, while also being at least as good an |
| 142 | /// approximation as `resultBound`. |
| 143 | inline void expectComputedVolumeIsValidOverapprox( |
| 144 | const std::optional<DynamicAPInt> &computedVolume, |
| 145 | const std::optional<DynamicAPInt> &trueVolume, |
| 146 | const std::optional<DynamicAPInt> &resultBound) { |
| 147 | assert(infinityOrUInt64LE(trueVolume, resultBound) && |
| 148 | "can't expect result to be less than the true volume" ); |
| 149 | EXPECT_TRUE(infinityOrUInt64LE(trueVolume, computedVolume)); |
| 150 | EXPECT_TRUE(infinityOrUInt64LE(computedVolume, resultBound)); |
| 151 | } |
| 152 | |
| 153 | inline void expectComputedVolumeIsValidOverapprox( |
| 154 | const std::optional<DynamicAPInt> &computedVolume, |
| 155 | std::optional<int64_t> trueVolume, std::optional<int64_t> resultBound) { |
| 156 | expectComputedVolumeIsValidOverapprox( |
| 157 | computedVolume, |
| 158 | trueVolume: llvm::transformOptional(O: trueVolume, F&: dynamicAPIntFromInt64), |
| 159 | resultBound: llvm::transformOptional(O: resultBound, F&: dynamicAPIntFromInt64)); |
| 160 | } |
| 161 | |
| 162 | } // namespace presburger |
| 163 | } // namespace mlir |
| 164 | |
| 165 | #endif // MLIR_UNITTESTS_ANALYSIS_PRESBURGER_UTILS_H |
| 166 | |