| 1 | //===- ShapedTypeTest.cpp - ShapedType unit tests -------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/IR/AffineMap.h" |
| 10 | #include "mlir/IR/BuiltinAttributes.h" |
| 11 | #include "mlir/IR/BuiltinTypes.h" |
| 12 | #include "mlir/IR/Dialect.h" |
| 13 | #include "mlir/IR/DialectInterface.h" |
| 14 | #include "mlir/Support/LLVM.h" |
| 15 | #include "llvm/ADT/SmallVector.h" |
| 16 | #include "gtest/gtest.h" |
| 17 | #include <cstdint> |
| 18 | |
| 19 | using namespace mlir; |
| 20 | using namespace mlir::detail; |
| 21 | |
| 22 | namespace { |
| 23 | TEST(ShapedTypeTest, CloneMemref) { |
| 24 | MLIRContext context; |
| 25 | |
| 26 | Type i32 = IntegerType::get(&context, 32); |
| 27 | Type f32 = Float32Type::get(&context); |
| 28 | Attribute memSpace = IntegerAttr::get(IntegerType::get(&context, 64), 7); |
| 29 | Type memrefOriginalType = i32; |
| 30 | llvm::SmallVector<int64_t> memrefOriginalShape({10, 20}); |
| 31 | AffineMap map = makeStridedLinearLayoutMap(strides: {2, 3}, offset: 5, context: &context); |
| 32 | |
| 33 | ShapedType memrefType = |
| 34 | (ShapedType)MemRefType::Builder(memrefOriginalShape, memrefOriginalType) |
| 35 | .setMemorySpace(memSpace) |
| 36 | .setLayout(AffineMapAttr::get(map)); |
| 37 | // Update shape. |
| 38 | llvm::SmallVector<int64_t> memrefNewShape({30, 40}); |
| 39 | ASSERT_NE(memrefOriginalShape, memrefNewShape); |
| 40 | ASSERT_EQ(memrefType.clone(memrefNewShape), |
| 41 | (ShapedType)MemRefType::Builder(memrefNewShape, memrefOriginalType) |
| 42 | .setMemorySpace(memSpace) |
| 43 | .setLayout(AffineMapAttr::get(map))); |
| 44 | // Update type. |
| 45 | Type memrefNewType = f32; |
| 46 | ASSERT_NE(memrefOriginalType, memrefNewType); |
| 47 | ASSERT_EQ(memrefType.clone(memrefNewType), |
| 48 | (MemRefType)MemRefType::Builder(memrefOriginalShape, memrefNewType) |
| 49 | .setMemorySpace(memSpace) |
| 50 | .setLayout(AffineMapAttr::get(map))); |
| 51 | // Update both. |
| 52 | ASSERT_EQ(memrefType.clone(memrefNewShape, memrefNewType), |
| 53 | (MemRefType)MemRefType::Builder(memrefNewShape, memrefNewType) |
| 54 | .setMemorySpace(memSpace) |
| 55 | .setLayout(AffineMapAttr::get(map))); |
| 56 | |
| 57 | // Test unranked memref cloning. |
| 58 | ShapedType unrankedTensorType = |
| 59 | UnrankedMemRefType::get(memrefOriginalType, memSpace); |
| 60 | ASSERT_EQ(unrankedTensorType.clone(memrefNewShape), |
| 61 | (MemRefType)MemRefType::Builder(memrefNewShape, memrefOriginalType) |
| 62 | .setMemorySpace(memSpace)); |
| 63 | ASSERT_EQ(unrankedTensorType.clone(memrefNewType), |
| 64 | UnrankedMemRefType::get(memrefNewType, memSpace)); |
| 65 | ASSERT_EQ(unrankedTensorType.clone(memrefNewShape, memrefNewType), |
| 66 | (MemRefType)MemRefType::Builder(memrefNewShape, memrefNewType) |
| 67 | .setMemorySpace(memSpace)); |
| 68 | } |
| 69 | |
| 70 | TEST(ShapedTypeTest, CloneTensor) { |
| 71 | MLIRContext context; |
| 72 | |
| 73 | Type i32 = IntegerType::get(&context, 32); |
| 74 | Type f32 = Float32Type::get(&context); |
| 75 | |
| 76 | Type tensorOriginalType = i32; |
| 77 | llvm::SmallVector<int64_t> tensorOriginalShape({10, 20}); |
| 78 | |
| 79 | // Test ranked tensor cloning. |
| 80 | ShapedType tensorType = |
| 81 | RankedTensorType::get(tensorOriginalShape, tensorOriginalType); |
| 82 | // Update shape. |
| 83 | llvm::SmallVector<int64_t> tensorNewShape({30, 40}); |
| 84 | ASSERT_NE(tensorOriginalShape, tensorNewShape); |
| 85 | ASSERT_EQ( |
| 86 | tensorType.clone(tensorNewShape), |
| 87 | (ShapedType)RankedTensorType::get(tensorNewShape, tensorOriginalType)); |
| 88 | // Update type. |
| 89 | Type tensorNewType = f32; |
| 90 | ASSERT_NE(tensorOriginalType, tensorNewType); |
| 91 | ASSERT_EQ( |
| 92 | tensorType.clone(tensorNewType), |
| 93 | (ShapedType)RankedTensorType::get(tensorOriginalShape, tensorNewType)); |
| 94 | // Update both. |
| 95 | ASSERT_EQ(tensorType.clone(tensorNewShape, tensorNewType), |
| 96 | (ShapedType)RankedTensorType::get(tensorNewShape, tensorNewType)); |
| 97 | |
| 98 | // Test unranked tensor cloning. |
| 99 | ShapedType unrankedTensorType = UnrankedTensorType::get(tensorOriginalType); |
| 100 | ASSERT_EQ( |
| 101 | unrankedTensorType.clone(tensorNewShape), |
| 102 | (ShapedType)RankedTensorType::get(tensorNewShape, tensorOriginalType)); |
| 103 | ASSERT_EQ(unrankedTensorType.clone(tensorNewType), |
| 104 | (ShapedType)UnrankedTensorType::get(tensorNewType)); |
| 105 | ASSERT_EQ( |
| 106 | unrankedTensorType.clone(tensorNewShape), |
| 107 | (ShapedType)RankedTensorType::get(tensorNewShape, tensorOriginalType)); |
| 108 | } |
| 109 | |
| 110 | TEST(ShapedTypeTest, CloneVector) { |
| 111 | MLIRContext context; |
| 112 | |
| 113 | Type i32 = IntegerType::get(&context, 32); |
| 114 | Type f32 = Float32Type::get(&context); |
| 115 | |
| 116 | Type vectorOriginalType = i32; |
| 117 | llvm::SmallVector<int64_t> vectorOriginalShape({10, 20}); |
| 118 | ShapedType vectorType = |
| 119 | VectorType::get(vectorOriginalShape, vectorOriginalType); |
| 120 | // Update shape. |
| 121 | llvm::SmallVector<int64_t> vectorNewShape({30, 40}); |
| 122 | ASSERT_NE(vectorOriginalShape, vectorNewShape); |
| 123 | ASSERT_EQ(vectorType.clone(vectorNewShape), |
| 124 | VectorType::get(vectorNewShape, vectorOriginalType)); |
| 125 | // Update type. |
| 126 | Type vectorNewType = f32; |
| 127 | ASSERT_NE(vectorOriginalType, vectorNewType); |
| 128 | ASSERT_EQ(vectorType.clone(vectorNewType), |
| 129 | VectorType::get(vectorOriginalShape, vectorNewType)); |
| 130 | // Update both. |
| 131 | ASSERT_EQ(vectorType.clone(vectorNewShape, vectorNewType), |
| 132 | VectorType::get(vectorNewShape, vectorNewType)); |
| 133 | } |
| 134 | |
| 135 | TEST(ShapedTypeTest, VectorTypeBuilder) { |
| 136 | MLIRContext context; |
| 137 | Type f32 = Float32Type::get(&context); |
| 138 | |
| 139 | SmallVector<int64_t> shape{2, 4, 8, 9, 1}; |
| 140 | SmallVector<bool> scalableDims{true, false, true, false, false}; |
| 141 | VectorType vectorType = VectorType::get(shape, f32, scalableDims); |
| 142 | |
| 143 | { |
| 144 | // Drop some dims. |
| 145 | VectorType dropFrontTwoDims = |
| 146 | VectorType::Builder(vectorType).dropDim(0).dropDim(0); |
| 147 | ASSERT_EQ(vectorType.getElementType(), dropFrontTwoDims.getElementType()); |
| 148 | ASSERT_EQ(vectorType.getShape().drop_front(2), dropFrontTwoDims.getShape()); |
| 149 | ASSERT_EQ(vectorType.getScalableDims().drop_front(2), |
| 150 | dropFrontTwoDims.getScalableDims()); |
| 151 | } |
| 152 | |
| 153 | { |
| 154 | // Set some dims. |
| 155 | VectorType setTwoDims = |
| 156 | VectorType::Builder(vectorType).setDim(0, 10).setDim(3, 12); |
| 157 | ASSERT_EQ(setTwoDims.getShape(), ArrayRef<int64_t>({10, 4, 8, 12, 1})); |
| 158 | ASSERT_EQ(vectorType.getElementType(), setTwoDims.getElementType()); |
| 159 | ASSERT_EQ(vectorType.getScalableDims(), setTwoDims.getScalableDims()); |
| 160 | } |
| 161 | |
| 162 | { |
| 163 | // Test for bug from: |
| 164 | // https://github.com/llvm/llvm-project/commit/b44b3494f60296db6aca38a14cab061d9b747a0a |
| 165 | // Constructs a temporary builder, modifies it, copies it to `builder`. |
| 166 | // This used to lead to a use-after-free. Running under sanitizers will |
| 167 | // catch any issues. |
| 168 | VectorType::Builder builder = VectorType::Builder(vectorType).setDim(0, 16); |
| 169 | VectorType newVectorType = VectorType(builder); |
| 170 | ASSERT_EQ(newVectorType.getDimSize(0), 16); |
| 171 | } |
| 172 | |
| 173 | { |
| 174 | // Make builder from scratch (without scalable dims) -- this use to lead to |
| 175 | // a use-after-free see: https://github.com/llvm/llvm-project/pull/68969. |
| 176 | // Running under sanitizers will catch any issues. |
| 177 | SmallVector<int64_t> shape{1, 2, 3, 4}; |
| 178 | VectorType::Builder builder(shape, f32); |
| 179 | ASSERT_EQ(VectorType(builder).getShape(), ArrayRef(shape)); |
| 180 | } |
| 181 | |
| 182 | { |
| 183 | // Set vector shape (without scalable dims) -- this use to lead to |
| 184 | // a use-after-free see: https://github.com/llvm/llvm-project/pull/68969. |
| 185 | // Running under sanitizers will catch any issues. |
| 186 | VectorType::Builder builder(vectorType); |
| 187 | SmallVector<int64_t> newShape{2, 2}; |
| 188 | builder.setShape(newShape); |
| 189 | ASSERT_EQ(VectorType(builder).getShape(), ArrayRef(newShape)); |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | TEST(ShapedTypeTest, RankedTensorTypeBuilder) { |
| 194 | MLIRContext context; |
| 195 | Type f32 = Float32Type::get(&context); |
| 196 | |
| 197 | SmallVector<int64_t> shape{2, 4, 8, 16, 32}; |
| 198 | RankedTensorType tensorType = RankedTensorType::get(shape, f32); |
| 199 | |
| 200 | { |
| 201 | // Drop some dims. |
| 202 | RankedTensorType dropFrontTwoDims = |
| 203 | RankedTensorType::Builder(tensorType).dropDim(0).dropDim(1).dropDim(0); |
| 204 | ASSERT_EQ(tensorType.getElementType(), dropFrontTwoDims.getElementType()); |
| 205 | ASSERT_EQ(dropFrontTwoDims.getShape(), ArrayRef<int64_t>({16, 32})); |
| 206 | } |
| 207 | |
| 208 | { |
| 209 | // Insert some dims. |
| 210 | RankedTensorType insertTwoDims = |
| 211 | RankedTensorType::Builder(tensorType).insertDim(7, 2).insertDim(9, 3); |
| 212 | ASSERT_EQ(tensorType.getElementType(), insertTwoDims.getElementType()); |
| 213 | ASSERT_EQ(insertTwoDims.getShape(), |
| 214 | ArrayRef<int64_t>({2, 4, 7, 9, 8, 16, 32})); |
| 215 | } |
| 216 | |
| 217 | { |
| 218 | // Test for bug from: |
| 219 | // https://github.com/llvm/llvm-project/commit/b44b3494f60296db6aca38a14cab061d9b747a0a |
| 220 | // Constructs a temporary builder, modifies it, copies it to `builder`. |
| 221 | // This used to lead to a use-after-free. Running under sanitizers will |
| 222 | // catch any issues. |
| 223 | RankedTensorType::Builder builder = |
| 224 | RankedTensorType::Builder(tensorType).dropDim(0); |
| 225 | RankedTensorType newTensorType = RankedTensorType(builder); |
| 226 | ASSERT_EQ(tensorType.getShape().drop_front(), newTensorType.getShape()); |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | /// Simple wrapper class to enable "isa querying" and simple accessing of |
| 231 | /// encoding. |
| 232 | class TensorWithString : public RankedTensorType { |
| 233 | public: |
| 234 | using RankedTensorType::RankedTensorType; |
| 235 | |
| 236 | static TensorWithString get(ArrayRef<int64_t> shape, Type elementType, |
| 237 | StringRef name) { |
| 238 | return mlir::cast<TensorWithString>(RankedTensorType::get( |
| 239 | shape, elementType, StringAttr::get(elementType.getContext(), name))); |
| 240 | } |
| 241 | |
| 242 | StringRef getName() const { |
| 243 | if (Attribute enc = getEncoding()) |
| 244 | return mlir::cast<StringAttr>(enc).getValue(); |
| 245 | return {}; |
| 246 | } |
| 247 | |
| 248 | static bool classof(Type type) { |
| 249 | if (auto rt = mlir::dyn_cast_or_null<RankedTensorType>(type)) |
| 250 | return mlir::isa_and_present<StringAttr>(rt.getEncoding()); |
| 251 | return false; |
| 252 | } |
| 253 | }; |
| 254 | |
| 255 | TEST(ShapedTypeTest, RankedTensorTypeView) { |
| 256 | MLIRContext context; |
| 257 | Type f32 = Float32Type::get(&context); |
| 258 | |
| 259 | Type noEncodingRankedTensorType = RankedTensorType::get({10, 20}, f32); |
| 260 | |
| 261 | UnitAttr unitAttr = UnitAttr::get(&context); |
| 262 | Type unitEncodingRankedTensorType = |
| 263 | RankedTensorType::get({10, 20}, f32, unitAttr); |
| 264 | |
| 265 | StringAttr stringAttr = StringAttr::get(&context, "app" ); |
| 266 | Type stringEncodingRankedTensorType = |
| 267 | RankedTensorType::get({10, 20}, f32, stringAttr); |
| 268 | |
| 269 | EXPECT_FALSE(mlir::isa<TensorWithString>(noEncodingRankedTensorType)); |
| 270 | EXPECT_FALSE(mlir::isa<TensorWithString>(unitEncodingRankedTensorType)); |
| 271 | ASSERT_TRUE(mlir::isa<TensorWithString>(stringEncodingRankedTensorType)); |
| 272 | |
| 273 | // Cast to TensorWithString view. |
| 274 | auto view = mlir::cast<TensorWithString>(Val&: stringEncodingRankedTensorType); |
| 275 | ASSERT_TRUE(mlir::isa<TensorWithString>(view)); |
| 276 | EXPECT_EQ(view.getName(), "app" ); |
| 277 | // Verify one could cast view type back to base type. |
| 278 | ASSERT_TRUE(mlir::isa<RankedTensorType>(view)); |
| 279 | |
| 280 | Type viewCreated = TensorWithString::get(shape: {10, 20}, elementType: f32, name: "bob" ); |
| 281 | ASSERT_TRUE(mlir::isa<TensorWithString>(viewCreated)); |
| 282 | ASSERT_TRUE(mlir::isa<RankedTensorType>(viewCreated)); |
| 283 | view = mlir::cast<TensorWithString>(Val&: viewCreated); |
| 284 | EXPECT_EQ(view.getName(), "bob" ); |
| 285 | |
| 286 | // Verify encoding clone methods. |
| 287 | EXPECT_EQ(unitEncodingRankedTensorType, |
| 288 | cast<RankedTensorType>(noEncodingRankedTensorType) |
| 289 | .cloneWithEncoding(unitAttr)); |
| 290 | EXPECT_EQ(stringEncodingRankedTensorType, |
| 291 | cast<RankedTensorType>(noEncodingRankedTensorType) |
| 292 | .cloneWithEncoding(stringAttr)); |
| 293 | EXPECT_EQ( |
| 294 | noEncodingRankedTensorType, |
| 295 | cast<RankedTensorType>(unitEncodingRankedTensorType).dropEncoding()); |
| 296 | EXPECT_EQ( |
| 297 | noEncodingRankedTensorType, |
| 298 | cast<RankedTensorType>(stringEncodingRankedTensorType).dropEncoding()); |
| 299 | } |
| 300 | |
| 301 | } // namespace |
| 302 | |