1 | //===- ShapedTypeTest.cpp - ShapedType unit tests -------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/IR/AffineMap.h" |
10 | #include "mlir/IR/BuiltinAttributes.h" |
11 | #include "mlir/IR/BuiltinTypes.h" |
12 | #include "mlir/IR/Dialect.h" |
13 | #include "mlir/IR/DialectInterface.h" |
14 | #include "mlir/Support/LLVM.h" |
15 | #include "llvm/ADT/SmallVector.h" |
16 | #include "gtest/gtest.h" |
17 | #include <cstdint> |
18 | |
19 | using namespace mlir; |
20 | using namespace mlir::detail; |
21 | |
22 | namespace { |
23 | TEST(ShapedTypeTest, CloneMemref) { |
24 | MLIRContext context; |
25 | |
26 | Type i32 = IntegerType::get(&context, 32); |
27 | Type f32 = Float32Type::get(&context); |
28 | Attribute memSpace = IntegerAttr::get(IntegerType::get(&context, 64), 7); |
29 | Type memrefOriginalType = i32; |
30 | llvm::SmallVector<int64_t> memrefOriginalShape({10, 20}); |
31 | AffineMap map = makeStridedLinearLayoutMap(strides: {2, 3}, offset: 5, context: &context); |
32 | |
33 | ShapedType memrefType = |
34 | (ShapedType)MemRefType::Builder(memrefOriginalShape, memrefOriginalType) |
35 | .setMemorySpace(memSpace) |
36 | .setLayout(AffineMapAttr::get(map)); |
37 | // Update shape. |
38 | llvm::SmallVector<int64_t> memrefNewShape({30, 40}); |
39 | ASSERT_NE(memrefOriginalShape, memrefNewShape); |
40 | ASSERT_EQ(memrefType.clone(memrefNewShape), |
41 | (ShapedType)MemRefType::Builder(memrefNewShape, memrefOriginalType) |
42 | .setMemorySpace(memSpace) |
43 | .setLayout(AffineMapAttr::get(map))); |
44 | // Update type. |
45 | Type memrefNewType = f32; |
46 | ASSERT_NE(memrefOriginalType, memrefNewType); |
47 | ASSERT_EQ(memrefType.clone(memrefNewType), |
48 | (MemRefType)MemRefType::Builder(memrefOriginalShape, memrefNewType) |
49 | .setMemorySpace(memSpace) |
50 | .setLayout(AffineMapAttr::get(map))); |
51 | // Update both. |
52 | ASSERT_EQ(memrefType.clone(memrefNewShape, memrefNewType), |
53 | (MemRefType)MemRefType::Builder(memrefNewShape, memrefNewType) |
54 | .setMemorySpace(memSpace) |
55 | .setLayout(AffineMapAttr::get(map))); |
56 | |
57 | // Test unranked memref cloning. |
58 | ShapedType unrankedTensorType = |
59 | UnrankedMemRefType::get(memrefOriginalType, memSpace); |
60 | ASSERT_EQ(unrankedTensorType.clone(memrefNewShape), |
61 | (MemRefType)MemRefType::Builder(memrefNewShape, memrefOriginalType) |
62 | .setMemorySpace(memSpace)); |
63 | ASSERT_EQ(unrankedTensorType.clone(memrefNewType), |
64 | UnrankedMemRefType::get(memrefNewType, memSpace)); |
65 | ASSERT_EQ(unrankedTensorType.clone(memrefNewShape, memrefNewType), |
66 | (MemRefType)MemRefType::Builder(memrefNewShape, memrefNewType) |
67 | .setMemorySpace(memSpace)); |
68 | } |
69 | |
70 | TEST(ShapedTypeTest, CloneTensor) { |
71 | MLIRContext context; |
72 | |
73 | Type i32 = IntegerType::get(&context, 32); |
74 | Type f32 = Float32Type::get(&context); |
75 | |
76 | Type tensorOriginalType = i32; |
77 | llvm::SmallVector<int64_t> tensorOriginalShape({10, 20}); |
78 | |
79 | // Test ranked tensor cloning. |
80 | ShapedType tensorType = |
81 | RankedTensorType::get(tensorOriginalShape, tensorOriginalType); |
82 | // Update shape. |
83 | llvm::SmallVector<int64_t> tensorNewShape({30, 40}); |
84 | ASSERT_NE(tensorOriginalShape, tensorNewShape); |
85 | ASSERT_EQ( |
86 | tensorType.clone(tensorNewShape), |
87 | (ShapedType)RankedTensorType::get(tensorNewShape, tensorOriginalType)); |
88 | // Update type. |
89 | Type tensorNewType = f32; |
90 | ASSERT_NE(tensorOriginalType, tensorNewType); |
91 | ASSERT_EQ( |
92 | tensorType.clone(tensorNewType), |
93 | (ShapedType)RankedTensorType::get(tensorOriginalShape, tensorNewType)); |
94 | // Update both. |
95 | ASSERT_EQ(tensorType.clone(tensorNewShape, tensorNewType), |
96 | (ShapedType)RankedTensorType::get(tensorNewShape, tensorNewType)); |
97 | |
98 | // Test unranked tensor cloning. |
99 | ShapedType unrankedTensorType = UnrankedTensorType::get(tensorOriginalType); |
100 | ASSERT_EQ( |
101 | unrankedTensorType.clone(tensorNewShape), |
102 | (ShapedType)RankedTensorType::get(tensorNewShape, tensorOriginalType)); |
103 | ASSERT_EQ(unrankedTensorType.clone(tensorNewType), |
104 | (ShapedType)UnrankedTensorType::get(tensorNewType)); |
105 | ASSERT_EQ( |
106 | unrankedTensorType.clone(tensorNewShape), |
107 | (ShapedType)RankedTensorType::get(tensorNewShape, tensorOriginalType)); |
108 | } |
109 | |
110 | TEST(ShapedTypeTest, CloneVector) { |
111 | MLIRContext context; |
112 | |
113 | Type i32 = IntegerType::get(&context, 32); |
114 | Type f32 = Float32Type::get(&context); |
115 | |
116 | Type vectorOriginalType = i32; |
117 | llvm::SmallVector<int64_t> vectorOriginalShape({10, 20}); |
118 | ShapedType vectorType = |
119 | VectorType::get(vectorOriginalShape, vectorOriginalType); |
120 | // Update shape. |
121 | llvm::SmallVector<int64_t> vectorNewShape({30, 40}); |
122 | ASSERT_NE(vectorOriginalShape, vectorNewShape); |
123 | ASSERT_EQ(vectorType.clone(vectorNewShape), |
124 | VectorType::get(vectorNewShape, vectorOriginalType)); |
125 | // Update type. |
126 | Type vectorNewType = f32; |
127 | ASSERT_NE(vectorOriginalType, vectorNewType); |
128 | ASSERT_EQ(vectorType.clone(vectorNewType), |
129 | VectorType::get(vectorOriginalShape, vectorNewType)); |
130 | // Update both. |
131 | ASSERT_EQ(vectorType.clone(vectorNewShape, vectorNewType), |
132 | VectorType::get(vectorNewShape, vectorNewType)); |
133 | } |
134 | |
135 | TEST(ShapedTypeTest, VectorTypeBuilder) { |
136 | MLIRContext context; |
137 | Type f32 = Float32Type::get(&context); |
138 | |
139 | SmallVector<int64_t> shape{2, 4, 8, 9, 1}; |
140 | SmallVector<bool> scalableDims{true, false, true, false, false}; |
141 | VectorType vectorType = VectorType::get(shape, f32, scalableDims); |
142 | |
143 | { |
144 | // Drop some dims. |
145 | VectorType dropFrontTwoDims = |
146 | VectorType::Builder(vectorType).dropDim(0).dropDim(0); |
147 | ASSERT_EQ(vectorType.getElementType(), dropFrontTwoDims.getElementType()); |
148 | ASSERT_EQ(vectorType.getShape().drop_front(2), dropFrontTwoDims.getShape()); |
149 | ASSERT_EQ(vectorType.getScalableDims().drop_front(2), |
150 | dropFrontTwoDims.getScalableDims()); |
151 | } |
152 | |
153 | { |
154 | // Set some dims. |
155 | VectorType setTwoDims = |
156 | VectorType::Builder(vectorType).setDim(0, 10).setDim(3, 12); |
157 | ASSERT_EQ(setTwoDims.getShape(), ArrayRef<int64_t>({10, 4, 8, 12, 1})); |
158 | ASSERT_EQ(vectorType.getElementType(), setTwoDims.getElementType()); |
159 | ASSERT_EQ(vectorType.getScalableDims(), setTwoDims.getScalableDims()); |
160 | } |
161 | |
162 | { |
163 | // Test for bug from: |
164 | // https://github.com/llvm/llvm-project/commit/b44b3494f60296db6aca38a14cab061d9b747a0a |
165 | // Constructs a temporary builder, modifies it, copies it to `builder`. |
166 | // This used to lead to a use-after-free. Running under sanitizers will |
167 | // catch any issues. |
168 | VectorType::Builder builder = VectorType::Builder(vectorType).setDim(0, 16); |
169 | VectorType newVectorType = VectorType(builder); |
170 | ASSERT_EQ(newVectorType.getDimSize(0), 16); |
171 | } |
172 | |
173 | { |
174 | // Make builder from scratch (without scalable dims) -- this use to lead to |
175 | // a use-after-free see: https://github.com/llvm/llvm-project/pull/68969. |
176 | // Running under sanitizers will catch any issues. |
177 | SmallVector<int64_t> shape{1, 2, 3, 4}; |
178 | VectorType::Builder builder(shape, f32); |
179 | ASSERT_EQ(VectorType(builder).getShape(), ArrayRef(shape)); |
180 | } |
181 | |
182 | { |
183 | // Set vector shape (without scalable dims) -- this use to lead to |
184 | // a use-after-free see: https://github.com/llvm/llvm-project/pull/68969. |
185 | // Running under sanitizers will catch any issues. |
186 | VectorType::Builder builder(vectorType); |
187 | SmallVector<int64_t> newShape{2, 2}; |
188 | builder.setShape(newShape); |
189 | ASSERT_EQ(VectorType(builder).getShape(), ArrayRef(newShape)); |
190 | } |
191 | } |
192 | |
193 | TEST(ShapedTypeTest, RankedTensorTypeBuilder) { |
194 | MLIRContext context; |
195 | Type f32 = Float32Type::get(&context); |
196 | |
197 | SmallVector<int64_t> shape{2, 4, 8, 16, 32}; |
198 | RankedTensorType tensorType = RankedTensorType::get(shape, f32); |
199 | |
200 | { |
201 | // Drop some dims. |
202 | RankedTensorType dropFrontTwoDims = |
203 | RankedTensorType::Builder(tensorType).dropDim(0).dropDim(1).dropDim(0); |
204 | ASSERT_EQ(tensorType.getElementType(), dropFrontTwoDims.getElementType()); |
205 | ASSERT_EQ(dropFrontTwoDims.getShape(), ArrayRef<int64_t>({16, 32})); |
206 | } |
207 | |
208 | { |
209 | // Insert some dims. |
210 | RankedTensorType insertTwoDims = |
211 | RankedTensorType::Builder(tensorType).insertDim(7, 2).insertDim(9, 3); |
212 | ASSERT_EQ(tensorType.getElementType(), insertTwoDims.getElementType()); |
213 | ASSERT_EQ(insertTwoDims.getShape(), |
214 | ArrayRef<int64_t>({2, 4, 7, 9, 8, 16, 32})); |
215 | } |
216 | |
217 | { |
218 | // Test for bug from: |
219 | // https://github.com/llvm/llvm-project/commit/b44b3494f60296db6aca38a14cab061d9b747a0a |
220 | // Constructs a temporary builder, modifies it, copies it to `builder`. |
221 | // This used to lead to a use-after-free. Running under sanitizers will |
222 | // catch any issues. |
223 | RankedTensorType::Builder builder = |
224 | RankedTensorType::Builder(tensorType).dropDim(0); |
225 | RankedTensorType newTensorType = RankedTensorType(builder); |
226 | ASSERT_EQ(tensorType.getShape().drop_front(), newTensorType.getShape()); |
227 | } |
228 | } |
229 | |
230 | /// Simple wrapper class to enable "isa querying" and simple accessing of |
231 | /// encoding. |
232 | class TensorWithString : public RankedTensorType { |
233 | public: |
234 | using RankedTensorType::RankedTensorType; |
235 | |
236 | static TensorWithString get(ArrayRef<int64_t> shape, Type elementType, |
237 | StringRef name) { |
238 | return mlir::cast<TensorWithString>(RankedTensorType::get( |
239 | shape, elementType, StringAttr::get(elementType.getContext(), name))); |
240 | } |
241 | |
242 | StringRef getName() const { |
243 | if (Attribute enc = getEncoding()) |
244 | return mlir::cast<StringAttr>(enc).getValue(); |
245 | return {}; |
246 | } |
247 | |
248 | static bool classof(Type type) { |
249 | if (auto rt = mlir::dyn_cast_or_null<RankedTensorType>(type)) |
250 | return mlir::isa_and_present<StringAttr>(rt.getEncoding()); |
251 | return false; |
252 | } |
253 | }; |
254 | |
255 | TEST(ShapedTypeTest, RankedTensorTypeView) { |
256 | MLIRContext context; |
257 | Type f32 = Float32Type::get(&context); |
258 | |
259 | Type noEncodingRankedTensorType = RankedTensorType::get({10, 20}, f32); |
260 | |
261 | UnitAttr unitAttr = UnitAttr::get(&context); |
262 | Type unitEncodingRankedTensorType = |
263 | RankedTensorType::get({10, 20}, f32, unitAttr); |
264 | |
265 | StringAttr stringAttr = StringAttr::get(&context, "app" ); |
266 | Type stringEncodingRankedTensorType = |
267 | RankedTensorType::get({10, 20}, f32, stringAttr); |
268 | |
269 | EXPECT_FALSE(mlir::isa<TensorWithString>(noEncodingRankedTensorType)); |
270 | EXPECT_FALSE(mlir::isa<TensorWithString>(unitEncodingRankedTensorType)); |
271 | ASSERT_TRUE(mlir::isa<TensorWithString>(stringEncodingRankedTensorType)); |
272 | |
273 | // Cast to TensorWithString view. |
274 | auto view = mlir::cast<TensorWithString>(Val&: stringEncodingRankedTensorType); |
275 | ASSERT_TRUE(mlir::isa<TensorWithString>(view)); |
276 | EXPECT_EQ(view.getName(), "app" ); |
277 | // Verify one could cast view type back to base type. |
278 | ASSERT_TRUE(mlir::isa<RankedTensorType>(view)); |
279 | |
280 | Type viewCreated = TensorWithString::get(shape: {10, 20}, elementType: f32, name: "bob" ); |
281 | ASSERT_TRUE(mlir::isa<TensorWithString>(viewCreated)); |
282 | ASSERT_TRUE(mlir::isa<RankedTensorType>(viewCreated)); |
283 | view = mlir::cast<TensorWithString>(Val&: viewCreated); |
284 | EXPECT_EQ(view.getName(), "bob" ); |
285 | |
286 | // Verify encoding clone methods. |
287 | EXPECT_EQ(unitEncodingRankedTensorType, |
288 | cast<RankedTensorType>(noEncodingRankedTensorType) |
289 | .cloneWithEncoding(unitAttr)); |
290 | EXPECT_EQ(stringEncodingRankedTensorType, |
291 | cast<RankedTensorType>(noEncodingRankedTensorType) |
292 | .cloneWithEncoding(stringAttr)); |
293 | EXPECT_EQ( |
294 | noEncodingRankedTensorType, |
295 | cast<RankedTensorType>(unitEncodingRankedTensorType).dropEncoding()); |
296 | EXPECT_EQ( |
297 | noEncodingRankedTensorType, |
298 | cast<RankedTensorType>(stringEncodingRankedTensorType).dropEncoding()); |
299 | } |
300 | |
301 | } // namespace |
302 | |