1 | //===------ omptarget.cpp - Target independent OpenMP target RTL -- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Implementation of the interface to be used by Clang during the codegen of a |
10 | // target region. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "omptarget.h" |
15 | #include "OffloadPolicy.h" |
16 | #include "OpenMP/OMPT/Callback.h" |
17 | #include "OpenMP/OMPT/Interface.h" |
18 | #include "PluginManager.h" |
19 | #include "Shared/Debug.h" |
20 | #include "Shared/EnvironmentVar.h" |
21 | #include "Shared/Utils.h" |
22 | #include "device.h" |
23 | #include "private.h" |
24 | #include "rtl.h" |
25 | |
26 | #include "Shared/Profile.h" |
27 | |
28 | #include "OpenMP/Mapping.h" |
29 | #include "OpenMP/omp.h" |
30 | |
31 | #include "llvm/ADT/StringExtras.h" |
32 | #include "llvm/ADT/bit.h" |
33 | #include "llvm/Frontend/OpenMP/OMPConstants.h" |
34 | #include "llvm/Object/ObjectFile.h" |
35 | |
36 | #include <cassert> |
37 | #include <cstdint> |
38 | #include <vector> |
39 | |
40 | using llvm::SmallVector; |
41 | #ifdef OMPT_SUPPORT |
42 | using namespace llvm::omp::target::ompt; |
43 | #endif |
44 | |
45 | int AsyncInfoTy::synchronize() { |
46 | int Result = OFFLOAD_SUCCESS; |
47 | if (!isQueueEmpty()) { |
48 | switch (SyncType) { |
49 | case SyncTy::BLOCKING: |
50 | // If we have a queue we need to synchronize it now. |
51 | Result = Device.synchronize(*this); |
52 | assert(AsyncInfo.Queue == nullptr && |
53 | "The device plugin should have nulled the queue to indicate there " |
54 | "are no outstanding actions!" ); |
55 | break; |
56 | case SyncTy::NON_BLOCKING: |
57 | Result = Device.queryAsync(*this); |
58 | break; |
59 | } |
60 | } |
61 | |
62 | // Run any pending post-processing function registered on this async object. |
63 | if (Result == OFFLOAD_SUCCESS && isQueueEmpty()) |
64 | Result = runPostProcessing(); |
65 | |
66 | return Result; |
67 | } |
68 | |
69 | void *&AsyncInfoTy::getVoidPtrLocation() { |
70 | BufferLocations.push_back(nullptr); |
71 | return BufferLocations.back(); |
72 | } |
73 | |
74 | bool AsyncInfoTy::isDone() const { return isQueueEmpty(); } |
75 | |
76 | int32_t AsyncInfoTy::runPostProcessing() { |
77 | size_t Size = PostProcessingFunctions.size(); |
78 | for (size_t I = 0; I < Size; ++I) { |
79 | const int Result = PostProcessingFunctions[I](); |
80 | if (Result != OFFLOAD_SUCCESS) |
81 | return Result; |
82 | } |
83 | |
84 | // Clear the vector up until the last known function, since post-processing |
85 | // procedures might add new procedures themselves. |
86 | const auto *PrevBegin = PostProcessingFunctions.begin(); |
87 | PostProcessingFunctions.erase(PrevBegin, PrevBegin + Size); |
88 | |
89 | return OFFLOAD_SUCCESS; |
90 | } |
91 | |
92 | bool AsyncInfoTy::isQueueEmpty() const { return AsyncInfo.Queue == nullptr; } |
93 | |
94 | /* All begin addresses for partially mapped structs must be aligned, up to 16, |
95 | * in order to ensure proper alignment of members. E.g. |
96 | * |
97 | * struct S { |
98 | * int a; // 4-aligned |
99 | * int b; // 4-aligned |
100 | * int *p; // 8-aligned |
101 | * } s1; |
102 | * ... |
103 | * #pragma omp target map(tofrom: s1.b, s1.p[0:N]) |
104 | * { |
105 | * s1.b = 5; |
106 | * for (int i...) s1.p[i] = ...; |
107 | * } |
108 | * |
109 | * Here we are mapping s1 starting from member b, so BaseAddress=&s1=&s1.a and |
110 | * BeginAddress=&s1.b. Let's assume that the struct begins at address 0x100, |
111 | * then &s1.a=0x100, &s1.b=0x104, &s1.p=0x108. Each member obeys the alignment |
112 | * requirements for its type. Now, when we allocate memory on the device, in |
113 | * CUDA's case cuMemAlloc() returns an address which is at least 256-aligned. |
114 | * This means that the chunk of the struct on the device will start at a |
115 | * 256-aligned address, let's say 0x200. Then the address of b will be 0x200 and |
116 | * address of p will be a misaligned 0x204 (on the host there was no need to add |
117 | * padding between b and p, so p comes exactly 4 bytes after b). If the device |
118 | * kernel tries to access s1.p, a misaligned address error occurs (as reported |
119 | * by the CUDA plugin). By padding the begin address down to a multiple of 8 and |
120 | * extending the size of the allocated chuck accordingly, the chuck on the |
121 | * device will start at 0x200 with the padding (4 bytes), then &s1.b=0x204 and |
122 | * &s1.p=0x208, as they should be to satisfy the alignment requirements. |
123 | */ |
124 | static const int64_t MaxAlignment = 16; |
125 | |
126 | /// Return the alignment requirement of partially mapped structs, see |
127 | /// MaxAlignment above. |
128 | static uint64_t getPartialStructRequiredAlignment(void *HstPtrBase) { |
129 | int LowestOneBit = __builtin_ffsl(reinterpret_cast<uintptr_t>(HstPtrBase)); |
130 | uint64_t BaseAlignment = 1 << (LowestOneBit - 1); |
131 | return MaxAlignment < BaseAlignment ? MaxAlignment : BaseAlignment; |
132 | } |
133 | |
134 | void handleTargetOutcome(bool Success, ident_t *Loc) { |
135 | switch (OffloadPolicy::get(*PM).Kind) { |
136 | case OffloadPolicy::DISABLED: |
137 | if (Success) { |
138 | FATAL_MESSAGE0(1, "expected no offloading while offloading is disabled" ); |
139 | } |
140 | break; |
141 | case OffloadPolicy::MANDATORY: |
142 | if (!Success) { |
143 | if (getInfoLevel() & OMP_INFOTYPE_DUMP_TABLE) { |
144 | auto ExclusiveDevicesAccessor = PM->getExclusiveDevicesAccessor(); |
145 | for (auto &Device : PM->devices(ExclusiveDevicesAccessor)) |
146 | dumpTargetPointerMappings(Loc, Device); |
147 | } else |
148 | FAILURE_MESSAGE("Consult https://openmp.llvm.org/design/Runtimes.html " |
149 | "for debugging options.\n" ); |
150 | |
151 | if (!PM->getNumActivePlugins()) { |
152 | FAILURE_MESSAGE( |
153 | "No images found compatible with the installed hardware. " ); |
154 | |
155 | llvm::SmallVector<llvm::StringRef> Archs; |
156 | for (auto &Image : PM->deviceImages()) { |
157 | const char *Start = reinterpret_cast<const char *>( |
158 | Image.getExecutableImage().ImageStart); |
159 | uint64_t Length = |
160 | utils::getPtrDiff(Start, Image.getExecutableImage().ImageEnd); |
161 | llvm::MemoryBufferRef Buffer(llvm::StringRef(Start, Length), |
162 | /*Identifier=*/"" ); |
163 | |
164 | auto ObjectOrErr = llvm::object::ObjectFile::createObjectFile(Buffer); |
165 | if (auto Err = ObjectOrErr.takeError()) { |
166 | llvm::consumeError(std::move(Err)); |
167 | continue; |
168 | } |
169 | |
170 | if (auto CPU = (*ObjectOrErr)->tryGetCPUName()) |
171 | Archs.push_back(*CPU); |
172 | } |
173 | fprintf(stderr, "Found %zu image(s): (%s)\n" , Archs.size(), |
174 | llvm::join(Archs, "," ).c_str()); |
175 | } |
176 | |
177 | SourceInfo Info(Loc); |
178 | if (Info.isAvailible()) |
179 | fprintf(stderr, "%s:%d:%d: " , Info.getFilename(), Info.getLine(), |
180 | Info.getColumn()); |
181 | else |
182 | FAILURE_MESSAGE("Source location information not present. Compile with " |
183 | "-g or -gline-tables-only.\n" ); |
184 | FATAL_MESSAGE0( |
185 | 1, "failure of target construct while offloading is mandatory" ); |
186 | } else { |
187 | if (getInfoLevel() & OMP_INFOTYPE_DUMP_TABLE) { |
188 | auto ExclusiveDevicesAccessor = PM->getExclusiveDevicesAccessor(); |
189 | for (auto &Device : PM->devices(ExclusiveDevicesAccessor)) |
190 | dumpTargetPointerMappings(Loc, Device); |
191 | } |
192 | } |
193 | break; |
194 | } |
195 | } |
196 | |
197 | static int32_t getParentIndex(int64_t Type) { |
198 | return ((Type & OMP_TGT_MAPTYPE_MEMBER_OF) >> 48) - 1; |
199 | } |
200 | |
201 | void *targetAllocExplicit(size_t Size, int DeviceNum, int Kind, |
202 | const char *Name) { |
203 | DP("Call to %s for device %d requesting %zu bytes\n" , Name, DeviceNum, Size); |
204 | |
205 | if (Size <= 0) { |
206 | DP("Call to %s with non-positive length\n" , Name); |
207 | return NULL; |
208 | } |
209 | |
210 | void *Rc = NULL; |
211 | |
212 | if (DeviceNum == omp_get_initial_device()) { |
213 | Rc = malloc(size: Size); |
214 | DP("%s returns host ptr " DPxMOD "\n" , Name, DPxPTR(Rc)); |
215 | return Rc; |
216 | } |
217 | |
218 | auto DeviceOrErr = PM->getDevice(DeviceNum); |
219 | if (!DeviceOrErr) |
220 | FATAL_MESSAGE(DeviceNum, "%s" , toString(DeviceOrErr.takeError()).c_str()); |
221 | |
222 | Rc = DeviceOrErr->allocData(Size, nullptr, Kind); |
223 | DP("%s returns device ptr " DPxMOD "\n" , Name, DPxPTR(Rc)); |
224 | return Rc; |
225 | } |
226 | |
227 | void targetFreeExplicit(void *DevicePtr, int DeviceNum, int Kind, |
228 | const char *Name) { |
229 | DP("Call to %s for device %d and address " DPxMOD "\n" , Name, DeviceNum, |
230 | DPxPTR(DevicePtr)); |
231 | |
232 | if (!DevicePtr) { |
233 | DP("Call to %s with NULL ptr\n" , Name); |
234 | return; |
235 | } |
236 | |
237 | if (DeviceNum == omp_get_initial_device()) { |
238 | free(ptr: DevicePtr); |
239 | DP("%s deallocated host ptr\n" , Name); |
240 | return; |
241 | } |
242 | |
243 | auto DeviceOrErr = PM->getDevice(DeviceNum); |
244 | if (!DeviceOrErr) |
245 | FATAL_MESSAGE(DeviceNum, "%s" , toString(DeviceOrErr.takeError()).c_str()); |
246 | |
247 | if (DeviceOrErr->deleteData(DevicePtr, Kind) == OFFLOAD_FAIL) |
248 | FATAL_MESSAGE(DeviceNum, "%s" , |
249 | "Failed to deallocate device ptr. Set " |
250 | "OFFLOAD_TRACK_ALLOCATION_TRACES=1 to track allocations." ); |
251 | |
252 | DP("omp_target_free deallocated device ptr\n" ); |
253 | } |
254 | |
255 | void *targetLockExplicit(void *HostPtr, size_t Size, int DeviceNum, |
256 | const char *Name) { |
257 | DP("Call to %s for device %d locking %zu bytes\n" , Name, DeviceNum, Size); |
258 | |
259 | if (Size <= 0) { |
260 | DP("Call to %s with non-positive length\n" , Name); |
261 | return NULL; |
262 | } |
263 | |
264 | void *RC = NULL; |
265 | |
266 | auto DeviceOrErr = PM->getDevice(DeviceNum); |
267 | if (!DeviceOrErr) |
268 | FATAL_MESSAGE(DeviceNum, "%s" , toString(DeviceOrErr.takeError()).c_str()); |
269 | |
270 | int32_t Err = 0; |
271 | Err = DeviceOrErr->RTL->data_lock(DeviceNum, HostPtr, Size, &RC); |
272 | if (Err) { |
273 | DP("Could not lock ptr %p\n" , HostPtr); |
274 | return nullptr; |
275 | } |
276 | DP("%s returns device ptr " DPxMOD "\n" , Name, DPxPTR(RC)); |
277 | return RC; |
278 | } |
279 | |
280 | void targetUnlockExplicit(void *HostPtr, int DeviceNum, const char *Name) { |
281 | DP("Call to %s for device %d unlocking\n" , Name, DeviceNum); |
282 | |
283 | auto DeviceOrErr = PM->getDevice(DeviceNum); |
284 | if (!DeviceOrErr) |
285 | FATAL_MESSAGE(DeviceNum, "%s" , toString(DeviceOrErr.takeError()).c_str()); |
286 | |
287 | DeviceOrErr->RTL->data_unlock(DeviceNum, HostPtr); |
288 | DP("%s returns\n" , Name); |
289 | } |
290 | |
291 | /// Call the user-defined mapper function followed by the appropriate |
292 | // targetData* function (targetData{Begin,End,Update}). |
293 | int targetDataMapper(ident_t *Loc, DeviceTy &Device, void *ArgBase, void *Arg, |
294 | int64_t ArgSize, int64_t ArgType, map_var_info_t ArgNames, |
295 | void *ArgMapper, AsyncInfoTy &AsyncInfo, |
296 | TargetDataFuncPtrTy TargetDataFunction) { |
297 | DP("Calling the mapper function " DPxMOD "\n" , DPxPTR(ArgMapper)); |
298 | |
299 | // The mapper function fills up Components. |
300 | MapperComponentsTy MapperComponents; |
301 | MapperFuncPtrTy MapperFuncPtr = (MapperFuncPtrTy)(ArgMapper); |
302 | (*MapperFuncPtr)((void *)&MapperComponents, ArgBase, Arg, ArgSize, ArgType, |
303 | ArgNames); |
304 | |
305 | // Construct new arrays for args_base, args, arg_sizes and arg_types |
306 | // using the information in MapperComponents and call the corresponding |
307 | // targetData* function using these new arrays. |
308 | SmallVector<void *> MapperArgsBase(MapperComponents.Components.size()); |
309 | SmallVector<void *> MapperArgs(MapperComponents.Components.size()); |
310 | SmallVector<int64_t> MapperArgSizes(MapperComponents.Components.size()); |
311 | SmallVector<int64_t> MapperArgTypes(MapperComponents.Components.size()); |
312 | SmallVector<void *> MapperArgNames(MapperComponents.Components.size()); |
313 | |
314 | for (unsigned I = 0, E = MapperComponents.Components.size(); I < E; ++I) { |
315 | auto &C = MapperComponents.Components[I]; |
316 | MapperArgsBase[I] = C.Base; |
317 | MapperArgs[I] = C.Begin; |
318 | MapperArgSizes[I] = C.Size; |
319 | MapperArgTypes[I] = C.Type; |
320 | MapperArgNames[I] = C.Name; |
321 | } |
322 | |
323 | int Rc = TargetDataFunction(Loc, Device, MapperComponents.Components.size(), |
324 | MapperArgsBase.data(), MapperArgs.data(), |
325 | MapperArgSizes.data(), MapperArgTypes.data(), |
326 | MapperArgNames.data(), /*arg_mappers*/ nullptr, |
327 | AsyncInfo, /*FromMapper=*/true); |
328 | |
329 | return Rc; |
330 | } |
331 | |
332 | /// Internal function to do the mapping and transfer the data to the device |
333 | int targetDataBegin(ident_t *Loc, DeviceTy &Device, int32_t ArgNum, |
334 | void **ArgsBase, void **Args, int64_t *ArgSizes, |
335 | int64_t *ArgTypes, map_var_info_t *ArgNames, |
336 | void **ArgMappers, AsyncInfoTy &AsyncInfo, |
337 | bool FromMapper) { |
338 | // process each input. |
339 | for (int32_t I = 0; I < ArgNum; ++I) { |
340 | // Ignore private variables and arrays - there is no mapping for them. |
341 | if ((ArgTypes[I] & OMP_TGT_MAPTYPE_LITERAL) || |
342 | (ArgTypes[I] & OMP_TGT_MAPTYPE_PRIVATE)) |
343 | continue; |
344 | TIMESCOPE_WITH_DETAILS_AND_IDENT( |
345 | "HostToDev" , "Size=" + std::to_string(val: ArgSizes[I]) + "B" , Loc); |
346 | if (ArgMappers && ArgMappers[I]) { |
347 | // Instead of executing the regular path of targetDataBegin, call the |
348 | // targetDataMapper variant which will call targetDataBegin again |
349 | // with new arguments. |
350 | DP("Calling targetDataMapper for the %dth argument\n" , I); |
351 | |
352 | map_var_info_t ArgName = (!ArgNames) ? nullptr : ArgNames[I]; |
353 | int Rc = targetDataMapper(Loc, Device, ArgsBase[I], Args[I], ArgSizes[I], |
354 | ArgTypes[I], ArgName, ArgMappers[I], AsyncInfo, |
355 | targetDataBegin); |
356 | |
357 | if (Rc != OFFLOAD_SUCCESS) { |
358 | REPORT("Call to targetDataBegin via targetDataMapper for custom mapper" |
359 | " failed.\n" ); |
360 | return OFFLOAD_FAIL; |
361 | } |
362 | |
363 | // Skip the rest of this function, continue to the next argument. |
364 | continue; |
365 | } |
366 | |
367 | void *HstPtrBegin = Args[I]; |
368 | void *HstPtrBase = ArgsBase[I]; |
369 | int64_t DataSize = ArgSizes[I]; |
370 | map_var_info_t HstPtrName = (!ArgNames) ? nullptr : ArgNames[I]; |
371 | |
372 | // Adjust for proper alignment if this is a combined entry (for structs). |
373 | // Look at the next argument - if that is MEMBER_OF this one, then this one |
374 | // is a combined entry. |
375 | int64_t TgtPadding = 0; |
376 | const int NextI = I + 1; |
377 | if (getParentIndex(Type: ArgTypes[I]) < 0 && NextI < ArgNum && |
378 | getParentIndex(Type: ArgTypes[NextI]) == I) { |
379 | int64_t Alignment = getPartialStructRequiredAlignment(HstPtrBase); |
380 | TgtPadding = (int64_t)HstPtrBegin % Alignment; |
381 | if (TgtPadding) { |
382 | DP("Using a padding of %" PRId64 " bytes for begin address " DPxMOD |
383 | "\n" , |
384 | TgtPadding, DPxPTR(HstPtrBegin)); |
385 | } |
386 | } |
387 | |
388 | // Address of pointer on the host and device, respectively. |
389 | void *PointerHstPtrBegin, *PointerTgtPtrBegin; |
390 | TargetPointerResultTy PointerTpr; |
391 | bool IsHostPtr = false; |
392 | bool IsImplicit = ArgTypes[I] & OMP_TGT_MAPTYPE_IMPLICIT; |
393 | // Force the creation of a device side copy of the data when: |
394 | // a close map modifier was associated with a map that contained a to. |
395 | bool HasCloseModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_CLOSE; |
396 | bool HasPresentModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_PRESENT; |
397 | bool HasHoldModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_OMPX_HOLD; |
398 | // UpdateRef is based on MEMBER_OF instead of TARGET_PARAM because if we |
399 | // have reached this point via __tgt_target_data_begin and not __tgt_target |
400 | // then no argument is marked as TARGET_PARAM ("omp target data map" is not |
401 | // associated with a target region, so there are no target parameters). This |
402 | // may be considered a hack, we could revise the scheme in the future. |
403 | bool UpdateRef = |
404 | !(ArgTypes[I] & OMP_TGT_MAPTYPE_MEMBER_OF) && !(FromMapper && I == 0); |
405 | |
406 | MappingInfoTy::HDTTMapAccessorTy HDTTMap = |
407 | Device.getMappingInfo().HostDataToTargetMap.getExclusiveAccessor(); |
408 | if (ArgTypes[I] & OMP_TGT_MAPTYPE_PTR_AND_OBJ) { |
409 | DP("Has a pointer entry: \n" ); |
410 | // Base is address of pointer. |
411 | // |
412 | // Usually, the pointer is already allocated by this time. For example: |
413 | // |
414 | // #pragma omp target map(s.p[0:N]) |
415 | // |
416 | // The map entry for s comes first, and the PTR_AND_OBJ entry comes |
417 | // afterward, so the pointer is already allocated by the time the |
418 | // PTR_AND_OBJ entry is handled below, and PointerTgtPtrBegin is thus |
419 | // non-null. However, "declare target link" can produce a PTR_AND_OBJ |
420 | // entry for a global that might not already be allocated by the time the |
421 | // PTR_AND_OBJ entry is handled below, and so the allocation might fail |
422 | // when HasPresentModifier. |
423 | PointerTpr = Device.getMappingInfo().getTargetPointer( |
424 | HDTTMap, HstPtrBase, HstPtrBase, /*TgtPadding=*/0, sizeof(void *), |
425 | /*HstPtrName=*/nullptr, |
426 | /*HasFlagTo=*/false, /*HasFlagAlways=*/false, IsImplicit, UpdateRef, |
427 | HasCloseModifier, HasPresentModifier, HasHoldModifier, AsyncInfo, |
428 | /*OwnedTPR=*/nullptr, /*ReleaseHDTTMap=*/false); |
429 | PointerTgtPtrBegin = PointerTpr.TargetPointer; |
430 | IsHostPtr = PointerTpr.Flags.IsHostPointer; |
431 | if (!PointerTgtPtrBegin) { |
432 | REPORT("Call to getTargetPointer returned null pointer (%s).\n" , |
433 | HasPresentModifier ? "'present' map type modifier" |
434 | : "device failure or illegal mapping" ); |
435 | return OFFLOAD_FAIL; |
436 | } |
437 | DP("There are %zu bytes allocated at target address " DPxMOD " - is%s new" |
438 | "\n" , |
439 | sizeof(void *), DPxPTR(PointerTgtPtrBegin), |
440 | (PointerTpr.Flags.IsNewEntry ? "" : " not" )); |
441 | PointerHstPtrBegin = HstPtrBase; |
442 | // modify current entry. |
443 | HstPtrBase = *(void **)HstPtrBase; |
444 | // No need to update pointee ref count for the first element of the |
445 | // subelement that comes from mapper. |
446 | UpdateRef = |
447 | (!FromMapper || I != 0); // subsequently update ref count of pointee |
448 | } |
449 | |
450 | const bool HasFlagTo = ArgTypes[I] & OMP_TGT_MAPTYPE_TO; |
451 | const bool HasFlagAlways = ArgTypes[I] & OMP_TGT_MAPTYPE_ALWAYS; |
452 | // Note that HDTTMap will be released in getTargetPointer. |
453 | auto TPR = Device.getMappingInfo().getTargetPointer( |
454 | HDTTMap, HstPtrBegin, HstPtrBase, TgtPadding, DataSize, HstPtrName, |
455 | HasFlagTo, HasFlagAlways, IsImplicit, UpdateRef, HasCloseModifier, |
456 | HasPresentModifier, HasHoldModifier, AsyncInfo, PointerTpr.getEntry()); |
457 | void *TgtPtrBegin = TPR.TargetPointer; |
458 | IsHostPtr = TPR.Flags.IsHostPointer; |
459 | // If data_size==0, then the argument could be a zero-length pointer to |
460 | // NULL, so getOrAlloc() returning NULL is not an error. |
461 | if (!TgtPtrBegin && (DataSize || HasPresentModifier)) { |
462 | REPORT("Call to getTargetPointer returned null pointer (%s).\n" , |
463 | HasPresentModifier ? "'present' map type modifier" |
464 | : "device failure or illegal mapping" ); |
465 | return OFFLOAD_FAIL; |
466 | } |
467 | DP("There are %" PRId64 " bytes allocated at target address " DPxMOD |
468 | " - is%s new\n" , |
469 | DataSize, DPxPTR(TgtPtrBegin), (TPR.Flags.IsNewEntry ? "" : " not" )); |
470 | |
471 | if (ArgTypes[I] & OMP_TGT_MAPTYPE_RETURN_PARAM) { |
472 | uintptr_t Delta = (uintptr_t)HstPtrBegin - (uintptr_t)HstPtrBase; |
473 | void *TgtPtrBase = (void *)((uintptr_t)TgtPtrBegin - Delta); |
474 | DP("Returning device pointer " DPxMOD "\n" , DPxPTR(TgtPtrBase)); |
475 | ArgsBase[I] = TgtPtrBase; |
476 | } |
477 | |
478 | if (ArgTypes[I] & OMP_TGT_MAPTYPE_PTR_AND_OBJ && !IsHostPtr) { |
479 | |
480 | uint64_t Delta = (uint64_t)HstPtrBegin - (uint64_t)HstPtrBase; |
481 | void *ExpectedTgtPtrBase = (void *)((uint64_t)TgtPtrBegin - Delta); |
482 | |
483 | if (PointerTpr.getEntry()->addShadowPointer(ShadowPtrInfoTy{ |
484 | (void **)PointerHstPtrBegin, HstPtrBase, |
485 | (void **)PointerTgtPtrBegin, ExpectedTgtPtrBase})) { |
486 | DP("Update pointer (" DPxMOD ") -> [" DPxMOD "]\n" , |
487 | DPxPTR(PointerTgtPtrBegin), DPxPTR(TgtPtrBegin)); |
488 | |
489 | void *&TgtPtrBase = AsyncInfo.getVoidPtrLocation(); |
490 | TgtPtrBase = ExpectedTgtPtrBase; |
491 | |
492 | int Ret = |
493 | Device.submitData(PointerTgtPtrBegin, &TgtPtrBase, sizeof(void *), |
494 | AsyncInfo, PointerTpr.getEntry()); |
495 | if (Ret != OFFLOAD_SUCCESS) { |
496 | REPORT("Copying data to device failed.\n" ); |
497 | return OFFLOAD_FAIL; |
498 | } |
499 | if (PointerTpr.getEntry()->addEventIfNecessary(Device, AsyncInfo) != |
500 | OFFLOAD_SUCCESS) |
501 | return OFFLOAD_FAIL; |
502 | } |
503 | } |
504 | |
505 | // Check if variable can be used on the device: |
506 | bool IsStructMember = ArgTypes[I] & OMP_TGT_MAPTYPE_MEMBER_OF; |
507 | if (getInfoLevel() & OMP_INFOTYPE_EMPTY_MAPPING && ArgTypes[I] != 0 && |
508 | !IsStructMember && !IsImplicit && !TPR.isPresent() && |
509 | !TPR.isContained() && !TPR.isHostPointer()) |
510 | INFO(OMP_INFOTYPE_EMPTY_MAPPING, Device.DeviceID, |
511 | "variable %s does not have a valid device counterpart\n" , |
512 | (HstPtrName) ? getNameFromMapping(HstPtrName).c_str() : "unknown" ); |
513 | } |
514 | |
515 | return OFFLOAD_SUCCESS; |
516 | } |
517 | |
518 | namespace { |
519 | /// This structure contains information to deallocate a target pointer, aka. |
520 | /// used to fix up the shadow map and potentially delete the entry from the |
521 | /// mapping table via \p DeviceTy::deallocTgtPtr. |
522 | struct PostProcessingInfo { |
523 | /// Host pointer used to look up into the map table |
524 | void *HstPtrBegin; |
525 | |
526 | /// Size of the data |
527 | int64_t DataSize; |
528 | |
529 | /// The mapping type (bitfield). |
530 | int64_t ArgType; |
531 | |
532 | /// The target pointer information. |
533 | TargetPointerResultTy TPR; |
534 | |
535 | PostProcessingInfo(void *HstPtr, int64_t Size, int64_t ArgType, |
536 | TargetPointerResultTy &&TPR) |
537 | : HstPtrBegin(HstPtr), DataSize(Size), ArgType(ArgType), |
538 | TPR(std::move(TPR)) {} |
539 | }; |
540 | |
541 | } // namespace |
542 | |
543 | /// Applies the necessary post-processing procedures to entries listed in \p |
544 | /// EntriesInfo after the execution of all device side operations from a target |
545 | /// data end. This includes the update of pointers at the host and removal of |
546 | /// device buffer when needed. It returns OFFLOAD_FAIL or OFFLOAD_SUCCESS |
547 | /// according to the successfulness of the operations. |
548 | [[nodiscard]] static int |
549 | postProcessingTargetDataEnd(DeviceTy *Device, |
550 | SmallVector<PostProcessingInfo> &EntriesInfo) { |
551 | int Ret = OFFLOAD_SUCCESS; |
552 | |
553 | for (auto &[HstPtrBegin, DataSize, ArgType, TPR] : EntriesInfo) { |
554 | bool DelEntry = !TPR.isHostPointer(); |
555 | |
556 | // If the last element from the mapper (for end transfer args comes in |
557 | // reverse order), do not remove the partial entry, the parent struct still |
558 | // exists. |
559 | if ((ArgType & OMP_TGT_MAPTYPE_MEMBER_OF) && |
560 | !(ArgType & OMP_TGT_MAPTYPE_PTR_AND_OBJ)) { |
561 | DelEntry = false; // protect parent struct from being deallocated |
562 | } |
563 | |
564 | // If we marked the entry to be deleted we need to verify no other |
565 | // thread reused it by now. If deletion is still supposed to happen by |
566 | // this thread LR will be set and exclusive access to the HDTT map |
567 | // will avoid another thread reusing the entry now. Note that we do |
568 | // not request (exclusive) access to the HDTT map if DelEntry is |
569 | // not set. |
570 | MappingInfoTy::HDTTMapAccessorTy HDTTMap = |
571 | Device->getMappingInfo().HostDataToTargetMap.getExclusiveAccessor(); |
572 | |
573 | // We cannot use a lock guard because we may end up delete the mutex. |
574 | // We also explicitly unlocked the entry after it was put in the EntriesInfo |
575 | // so it can be reused. |
576 | TPR.getEntry()->lock(); |
577 | auto *Entry = TPR.getEntry(); |
578 | |
579 | const bool IsNotLastUser = Entry->decDataEndThreadCount() != 0; |
580 | if (DelEntry && (Entry->getTotalRefCount() != 0 || IsNotLastUser)) { |
581 | // The thread is not in charge of deletion anymore. Give up access |
582 | // to the HDTT map and unset the deletion flag. |
583 | HDTTMap.destroy(); |
584 | DelEntry = false; |
585 | } |
586 | |
587 | // If we copied back to the host a struct/array containing pointers, |
588 | // we need to restore the original host pointer values from their |
589 | // shadow copies. If the struct is going to be deallocated, remove any |
590 | // remaining shadow pointer entries for this struct. |
591 | const bool HasFrom = ArgType & OMP_TGT_MAPTYPE_FROM; |
592 | if (HasFrom) { |
593 | Entry->foreachShadowPointerInfo([&](const ShadowPtrInfoTy &ShadowPtr) { |
594 | *ShadowPtr.HstPtrAddr = ShadowPtr.HstPtrVal; |
595 | DP("Restoring original host pointer value " DPxMOD " for host " |
596 | "pointer " DPxMOD "\n" , |
597 | DPxPTR(ShadowPtr.HstPtrVal), DPxPTR(ShadowPtr.HstPtrAddr)); |
598 | return OFFLOAD_SUCCESS; |
599 | }); |
600 | } |
601 | |
602 | // Give up the lock as we either don't need it anymore (e.g., done with |
603 | // TPR), or erase TPR. |
604 | TPR.setEntry(nullptr); |
605 | |
606 | if (!DelEntry) |
607 | continue; |
608 | |
609 | Ret = Device->getMappingInfo().eraseMapEntry(HDTTMap, Entry, DataSize); |
610 | // Entry is already remove from the map, we can unlock it now. |
611 | HDTTMap.destroy(); |
612 | Ret |= Device->getMappingInfo().deallocTgtPtrAndEntry(Entry, DataSize); |
613 | if (Ret != OFFLOAD_SUCCESS) { |
614 | REPORT("Deallocating data from device failed.\n" ); |
615 | break; |
616 | } |
617 | } |
618 | |
619 | delete &EntriesInfo; |
620 | return Ret; |
621 | } |
622 | |
623 | /// Internal function to undo the mapping and retrieve the data from the device. |
624 | int targetDataEnd(ident_t *Loc, DeviceTy &Device, int32_t ArgNum, |
625 | void **ArgBases, void **Args, int64_t *ArgSizes, |
626 | int64_t *ArgTypes, map_var_info_t *ArgNames, |
627 | void **ArgMappers, AsyncInfoTy &AsyncInfo, bool FromMapper) { |
628 | int Ret = OFFLOAD_SUCCESS; |
629 | auto *PostProcessingPtrs = new SmallVector<PostProcessingInfo>(); |
630 | // process each input. |
631 | for (int32_t I = ArgNum - 1; I >= 0; --I) { |
632 | // Ignore private variables and arrays - there is no mapping for them. |
633 | // Also, ignore the use_device_ptr directive, it has no effect here. |
634 | if ((ArgTypes[I] & OMP_TGT_MAPTYPE_LITERAL) || |
635 | (ArgTypes[I] & OMP_TGT_MAPTYPE_PRIVATE)) |
636 | continue; |
637 | |
638 | if (ArgMappers && ArgMappers[I]) { |
639 | // Instead of executing the regular path of targetDataEnd, call the |
640 | // targetDataMapper variant which will call targetDataEnd again |
641 | // with new arguments. |
642 | DP("Calling targetDataMapper for the %dth argument\n" , I); |
643 | |
644 | map_var_info_t ArgName = (!ArgNames) ? nullptr : ArgNames[I]; |
645 | Ret = targetDataMapper(Loc, Device, ArgBases[I], Args[I], ArgSizes[I], |
646 | ArgTypes[I], ArgName, ArgMappers[I], AsyncInfo, |
647 | targetDataEnd); |
648 | |
649 | if (Ret != OFFLOAD_SUCCESS) { |
650 | REPORT("Call to targetDataEnd via targetDataMapper for custom mapper" |
651 | " failed.\n" ); |
652 | return OFFLOAD_FAIL; |
653 | } |
654 | |
655 | // Skip the rest of this function, continue to the next argument. |
656 | continue; |
657 | } |
658 | |
659 | void *HstPtrBegin = Args[I]; |
660 | int64_t DataSize = ArgSizes[I]; |
661 | bool IsImplicit = ArgTypes[I] & OMP_TGT_MAPTYPE_IMPLICIT; |
662 | bool UpdateRef = (!(ArgTypes[I] & OMP_TGT_MAPTYPE_MEMBER_OF) || |
663 | (ArgTypes[I] & OMP_TGT_MAPTYPE_PTR_AND_OBJ)) && |
664 | !(FromMapper && I == 0); |
665 | bool ForceDelete = ArgTypes[I] & OMP_TGT_MAPTYPE_DELETE; |
666 | bool HasPresentModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_PRESENT; |
667 | bool HasHoldModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_OMPX_HOLD; |
668 | |
669 | // If PTR_AND_OBJ, HstPtrBegin is address of pointee |
670 | TargetPointerResultTy TPR = Device.getMappingInfo().getTgtPtrBegin( |
671 | HstPtrBegin, DataSize, UpdateRef, HasHoldModifier, !IsImplicit, |
672 | ForceDelete, /*FromDataEnd=*/true); |
673 | void *TgtPtrBegin = TPR.TargetPointer; |
674 | if (!TPR.isPresent() && !TPR.isHostPointer() && |
675 | (DataSize || HasPresentModifier)) { |
676 | DP("Mapping does not exist (%s)\n" , |
677 | (HasPresentModifier ? "'present' map type modifier" : "ignored" )); |
678 | if (HasPresentModifier) { |
679 | // OpenMP 5.1, sec. 2.21.7.1 "map Clause", p. 350 L10-13: |
680 | // "If a map clause appears on a target, target data, target enter data |
681 | // or target exit data construct with a present map-type-modifier then |
682 | // on entry to the region if the corresponding list item does not appear |
683 | // in the device data environment then an error occurs and the program |
684 | // terminates." |
685 | // |
686 | // This should be an error upon entering an "omp target exit data". It |
687 | // should not be an error upon exiting an "omp target data" or "omp |
688 | // target". For "omp target data", Clang thus doesn't include present |
689 | // modifiers for end calls. For "omp target", we have not found a valid |
690 | // OpenMP program for which the error matters: it appears that, if a |
691 | // program can guarantee that data is present at the beginning of an |
692 | // "omp target" region so that there's no error there, that data is also |
693 | // guaranteed to be present at the end. |
694 | MESSAGE("device mapping required by 'present' map type modifier does " |
695 | "not exist for host address " DPxMOD " (%" PRId64 " bytes)" , |
696 | DPxPTR(HstPtrBegin), DataSize); |
697 | return OFFLOAD_FAIL; |
698 | } |
699 | } else { |
700 | DP("There are %" PRId64 " bytes allocated at target address " DPxMOD |
701 | " - is%s last\n" , |
702 | DataSize, DPxPTR(TgtPtrBegin), (TPR.Flags.IsLast ? "" : " not" )); |
703 | } |
704 | |
705 | // OpenMP 5.1, sec. 2.21.7.1 "map Clause", p. 351 L14-16: |
706 | // "If the map clause appears on a target, target data, or target exit data |
707 | // construct and a corresponding list item of the original list item is not |
708 | // present in the device data environment on exit from the region then the |
709 | // list item is ignored." |
710 | if (!TPR.isPresent()) |
711 | continue; |
712 | |
713 | // Move data back to the host |
714 | const bool HasAlways = ArgTypes[I] & OMP_TGT_MAPTYPE_ALWAYS; |
715 | const bool HasFrom = ArgTypes[I] & OMP_TGT_MAPTYPE_FROM; |
716 | if (HasFrom && (HasAlways || TPR.Flags.IsLast) && |
717 | !TPR.Flags.IsHostPointer && DataSize != 0) { |
718 | DP("Moving %" PRId64 " bytes (tgt:" DPxMOD ") -> (hst:" DPxMOD ")\n" , |
719 | DataSize, DPxPTR(TgtPtrBegin), DPxPTR(HstPtrBegin)); |
720 | TIMESCOPE_WITH_DETAILS_AND_IDENT( |
721 | "DevToHost" , "Size=" + std::to_string(val: DataSize) + "B" , Loc); |
722 | // Wait for any previous transfer if an event is present. |
723 | if (void *Event = TPR.getEntry()->getEvent()) { |
724 | if (Device.waitEvent(Event, AsyncInfo) != OFFLOAD_SUCCESS) { |
725 | REPORT("Failed to wait for event " DPxMOD ".\n" , DPxPTR(Event)); |
726 | return OFFLOAD_FAIL; |
727 | } |
728 | } |
729 | |
730 | Ret = Device.retrieveData(HstPtrBegin, TgtPtrBegin, DataSize, AsyncInfo, |
731 | TPR.getEntry()); |
732 | if (Ret != OFFLOAD_SUCCESS) { |
733 | REPORT("Copying data from device failed.\n" ); |
734 | return OFFLOAD_FAIL; |
735 | } |
736 | |
737 | // As we are expecting to delete the entry the d2h copy might race |
738 | // with another one that also tries to delete the entry. This happens |
739 | // as the entry can be reused and the reuse might happen after the |
740 | // copy-back was issued but before it completed. Since the reuse might |
741 | // also copy-back a value we would race. |
742 | if (TPR.Flags.IsLast) { |
743 | if (TPR.getEntry()->addEventIfNecessary(Device, AsyncInfo) != |
744 | OFFLOAD_SUCCESS) |
745 | return OFFLOAD_FAIL; |
746 | } |
747 | } |
748 | |
749 | // Add pointer to the buffer for post-synchronize processing. |
750 | PostProcessingPtrs->emplace_back(HstPtrBegin, DataSize, ArgTypes[I], |
751 | std::move(TPR)); |
752 | PostProcessingPtrs->back().TPR.getEntry()->unlock(); |
753 | } |
754 | |
755 | // Add post-processing functions |
756 | // TODO: We might want to remove `mutable` in the future by not changing the |
757 | // captured variables somehow. |
758 | AsyncInfo.addPostProcessingFunction([=, Device = &Device]() mutable -> int { |
759 | return postProcessingTargetDataEnd(Device, *PostProcessingPtrs); |
760 | }); |
761 | |
762 | return Ret; |
763 | } |
764 | |
765 | static int targetDataContiguous(ident_t *Loc, DeviceTy &Device, void *ArgsBase, |
766 | void *HstPtrBegin, int64_t ArgSize, |
767 | int64_t ArgType, AsyncInfoTy &AsyncInfo) { |
768 | TargetPointerResultTy TPR = Device.getMappingInfo().getTgtPtrBegin( |
769 | HstPtrBegin, ArgSize, /*UpdateRefCount=*/false, |
770 | /*UseHoldRefCount=*/false, /*MustContain=*/true); |
771 | void *TgtPtrBegin = TPR.TargetPointer; |
772 | if (!TPR.isPresent()) { |
773 | DP("hst data:" DPxMOD " not found, becomes a noop\n" , DPxPTR(HstPtrBegin)); |
774 | if (ArgType & OMP_TGT_MAPTYPE_PRESENT) { |
775 | MESSAGE("device mapping required by 'present' motion modifier does not " |
776 | "exist for host address " DPxMOD " (%" PRId64 " bytes)" , |
777 | DPxPTR(HstPtrBegin), ArgSize); |
778 | return OFFLOAD_FAIL; |
779 | } |
780 | return OFFLOAD_SUCCESS; |
781 | } |
782 | |
783 | if (TPR.Flags.IsHostPointer) { |
784 | DP("hst data:" DPxMOD " unified and shared, becomes a noop\n" , |
785 | DPxPTR(HstPtrBegin)); |
786 | return OFFLOAD_SUCCESS; |
787 | } |
788 | |
789 | if (ArgType & OMP_TGT_MAPTYPE_TO) { |
790 | DP("Moving %" PRId64 " bytes (hst:" DPxMOD ") -> (tgt:" DPxMOD ")\n" , |
791 | ArgSize, DPxPTR(HstPtrBegin), DPxPTR(TgtPtrBegin)); |
792 | int Ret = Device.submitData(TgtPtrBegin, HstPtrBegin, ArgSize, AsyncInfo, |
793 | TPR.getEntry()); |
794 | if (Ret != OFFLOAD_SUCCESS) { |
795 | REPORT("Copying data to device failed.\n" ); |
796 | return OFFLOAD_FAIL; |
797 | } |
798 | if (TPR.getEntry()) { |
799 | int Ret = TPR.getEntry()->foreachShadowPointerInfo( |
800 | [&](ShadowPtrInfoTy &ShadowPtr) { |
801 | DP("Restoring original target pointer value " DPxMOD " for target " |
802 | "pointer " DPxMOD "\n" , |
803 | DPxPTR(ShadowPtr.TgtPtrVal), DPxPTR(ShadowPtr.TgtPtrAddr)); |
804 | Ret = Device.submitData(ShadowPtr.TgtPtrAddr, |
805 | (void *)&ShadowPtr.TgtPtrVal, |
806 | sizeof(void *), AsyncInfo); |
807 | if (Ret != OFFLOAD_SUCCESS) { |
808 | REPORT("Copying data to device failed.\n" ); |
809 | return OFFLOAD_FAIL; |
810 | } |
811 | return OFFLOAD_SUCCESS; |
812 | }); |
813 | if (Ret != OFFLOAD_SUCCESS) { |
814 | DP("Updating shadow map failed\n" ); |
815 | return Ret; |
816 | } |
817 | } |
818 | } |
819 | |
820 | if (ArgType & OMP_TGT_MAPTYPE_FROM) { |
821 | DP("Moving %" PRId64 " bytes (tgt:" DPxMOD ") -> (hst:" DPxMOD ")\n" , |
822 | ArgSize, DPxPTR(TgtPtrBegin), DPxPTR(HstPtrBegin)); |
823 | int Ret = Device.retrieveData(HstPtrBegin, TgtPtrBegin, ArgSize, AsyncInfo, |
824 | TPR.getEntry()); |
825 | if (Ret != OFFLOAD_SUCCESS) { |
826 | REPORT("Copying data from device failed.\n" ); |
827 | return OFFLOAD_FAIL; |
828 | } |
829 | |
830 | // Wait for device-to-host memcopies for whole struct to complete, |
831 | // before restoring the correct host pointer. |
832 | if (auto *Entry = TPR.getEntry()) { |
833 | AsyncInfo.addPostProcessingFunction([=]() -> int { |
834 | int Ret = Entry->foreachShadowPointerInfo( |
835 | [&](const ShadowPtrInfoTy &ShadowPtr) { |
836 | *ShadowPtr.HstPtrAddr = ShadowPtr.HstPtrVal; |
837 | DP("Restoring original host pointer value " DPxMOD |
838 | " for host pointer " DPxMOD "\n" , |
839 | DPxPTR(ShadowPtr.HstPtrVal), DPxPTR(ShadowPtr.HstPtrAddr)); |
840 | return OFFLOAD_SUCCESS; |
841 | }); |
842 | Entry->unlock(); |
843 | if (Ret != OFFLOAD_SUCCESS) { |
844 | DP("Updating shadow map failed\n" ); |
845 | return Ret; |
846 | } |
847 | return OFFLOAD_SUCCESS; |
848 | }); |
849 | } |
850 | } |
851 | |
852 | return OFFLOAD_SUCCESS; |
853 | } |
854 | |
855 | static int targetDataNonContiguous(ident_t *Loc, DeviceTy &Device, |
856 | void *ArgsBase, |
857 | __tgt_target_non_contig *NonContig, |
858 | uint64_t Size, int64_t ArgType, |
859 | int CurrentDim, int DimSize, uint64_t Offset, |
860 | AsyncInfoTy &AsyncInfo) { |
861 | int Ret = OFFLOAD_SUCCESS; |
862 | if (CurrentDim < DimSize) { |
863 | for (unsigned int I = 0; I < NonContig[CurrentDim].Count; ++I) { |
864 | uint64_t CurOffset = |
865 | (NonContig[CurrentDim].Offset + I) * NonContig[CurrentDim].Stride; |
866 | // we only need to transfer the first element for the last dimension |
867 | // since we've already got a contiguous piece. |
868 | if (CurrentDim != DimSize - 1 || I == 0) { |
869 | Ret = targetDataNonContiguous(Loc, Device, ArgsBase, NonContig, Size, |
870 | ArgType, CurrentDim + 1, DimSize, |
871 | Offset + CurOffset, AsyncInfo); |
872 | // Stop the whole process if any contiguous piece returns anything |
873 | // other than OFFLOAD_SUCCESS. |
874 | if (Ret != OFFLOAD_SUCCESS) |
875 | return Ret; |
876 | } |
877 | } |
878 | } else { |
879 | char *Ptr = (char *)ArgsBase + Offset; |
880 | DP("Transfer of non-contiguous : host ptr " DPxMOD " offset %" PRIu64 |
881 | " len %" PRIu64 "\n" , |
882 | DPxPTR(Ptr), Offset, Size); |
883 | Ret = targetDataContiguous(Loc, Device, ArgsBase, Ptr, Size, ArgType, |
884 | AsyncInfo); |
885 | } |
886 | return Ret; |
887 | } |
888 | |
889 | static int getNonContigMergedDimension(__tgt_target_non_contig *NonContig, |
890 | int32_t DimSize) { |
891 | int RemovedDim = 0; |
892 | for (int I = DimSize - 1; I > 0; --I) { |
893 | if (NonContig[I].Count * NonContig[I].Stride == NonContig[I - 1].Stride) |
894 | RemovedDim++; |
895 | } |
896 | return RemovedDim; |
897 | } |
898 | |
899 | /// Internal function to pass data to/from the target. |
900 | int targetDataUpdate(ident_t *Loc, DeviceTy &Device, int32_t ArgNum, |
901 | void **ArgsBase, void **Args, int64_t *ArgSizes, |
902 | int64_t *ArgTypes, map_var_info_t *ArgNames, |
903 | void **ArgMappers, AsyncInfoTy &AsyncInfo, bool) { |
904 | // process each input. |
905 | for (int32_t I = 0; I < ArgNum; ++I) { |
906 | if ((ArgTypes[I] & OMP_TGT_MAPTYPE_LITERAL) || |
907 | (ArgTypes[I] & OMP_TGT_MAPTYPE_PRIVATE)) |
908 | continue; |
909 | |
910 | if (ArgMappers && ArgMappers[I]) { |
911 | // Instead of executing the regular path of targetDataUpdate, call the |
912 | // targetDataMapper variant which will call targetDataUpdate again |
913 | // with new arguments. |
914 | DP("Calling targetDataMapper for the %dth argument\n" , I); |
915 | |
916 | map_var_info_t ArgName = (!ArgNames) ? nullptr : ArgNames[I]; |
917 | int Ret = targetDataMapper(Loc, Device, ArgsBase[I], Args[I], ArgSizes[I], |
918 | ArgTypes[I], ArgName, ArgMappers[I], AsyncInfo, |
919 | targetDataUpdate); |
920 | |
921 | if (Ret != OFFLOAD_SUCCESS) { |
922 | REPORT("Call to targetDataUpdate via targetDataMapper for custom mapper" |
923 | " failed.\n" ); |
924 | return OFFLOAD_FAIL; |
925 | } |
926 | |
927 | // Skip the rest of this function, continue to the next argument. |
928 | continue; |
929 | } |
930 | |
931 | int Ret = OFFLOAD_SUCCESS; |
932 | |
933 | if (ArgTypes[I] & OMP_TGT_MAPTYPE_NON_CONTIG) { |
934 | __tgt_target_non_contig *NonContig = (__tgt_target_non_contig *)Args[I]; |
935 | int32_t DimSize = ArgSizes[I]; |
936 | uint64_t Size = |
937 | NonContig[DimSize - 1].Count * NonContig[DimSize - 1].Stride; |
938 | int32_t MergedDim = getNonContigMergedDimension(NonContig, DimSize); |
939 | Ret = targetDataNonContiguous( |
940 | Loc, Device, ArgsBase[I], NonContig, Size, ArgTypes[I], |
941 | /*current_dim=*/0, DimSize - MergedDim, /*offset=*/0, AsyncInfo); |
942 | } else { |
943 | Ret = targetDataContiguous(Loc, Device, ArgsBase[I], Args[I], ArgSizes[I], |
944 | ArgTypes[I], AsyncInfo); |
945 | } |
946 | if (Ret == OFFLOAD_FAIL) |
947 | return OFFLOAD_FAIL; |
948 | } |
949 | return OFFLOAD_SUCCESS; |
950 | } |
951 | |
952 | static const unsigned LambdaMapping = OMP_TGT_MAPTYPE_PTR_AND_OBJ | |
953 | OMP_TGT_MAPTYPE_LITERAL | |
954 | OMP_TGT_MAPTYPE_IMPLICIT; |
955 | static bool isLambdaMapping(int64_t Mapping) { |
956 | return (Mapping & LambdaMapping) == LambdaMapping; |
957 | } |
958 | |
959 | namespace { |
960 | /// Find the table information in the map or look it up in the translation |
961 | /// tables. |
962 | TableMap *getTableMap(void *HostPtr) { |
963 | std::lock_guard<std::mutex> TblMapLock(PM->TblMapMtx); |
964 | HostPtrToTableMapTy::iterator TableMapIt = |
965 | PM->HostPtrToTableMap.find(HostPtr); |
966 | |
967 | if (TableMapIt != PM->HostPtrToTableMap.end()) |
968 | return &TableMapIt->second; |
969 | |
970 | // We don't have a map. So search all the registered libraries. |
971 | TableMap *TM = nullptr; |
972 | std::lock_guard<std::mutex> TrlTblLock(PM->TrlTblMtx); |
973 | for (HostEntriesBeginToTransTableTy::iterator Itr = |
974 | PM->HostEntriesBeginToTransTable.begin(); |
975 | Itr != PM->HostEntriesBeginToTransTable.end(); ++Itr) { |
976 | // get the translation table (which contains all the good info). |
977 | TranslationTable *TransTable = &Itr->second; |
978 | // iterate over all the host table entries to see if we can locate the |
979 | // host_ptr. |
980 | llvm::offloading::EntryTy *Cur = TransTable->HostTable.EntriesBegin; |
981 | for (uint32_t I = 0; Cur < TransTable->HostTable.EntriesEnd; ++Cur, ++I) { |
982 | if (Cur->Address != HostPtr) |
983 | continue; |
984 | // we got a match, now fill the HostPtrToTableMap so that we |
985 | // may avoid this search next time. |
986 | TM = &(PM->HostPtrToTableMap)[HostPtr]; |
987 | TM->Table = TransTable; |
988 | TM->Index = I; |
989 | return TM; |
990 | } |
991 | } |
992 | |
993 | return nullptr; |
994 | } |
995 | |
996 | /// A class manages private arguments in a target region. |
997 | class PrivateArgumentManagerTy { |
998 | /// A data structure for the information of first-private arguments. We can |
999 | /// use this information to optimize data transfer by packing all |
1000 | /// first-private arguments and transfer them all at once. |
1001 | struct FirstPrivateArgInfoTy { |
1002 | /// Host pointer begin |
1003 | char *HstPtrBegin; |
1004 | /// Host pointer end |
1005 | char *HstPtrEnd; |
1006 | /// The index of the element in \p TgtArgs corresponding to the argument |
1007 | int Index; |
1008 | /// Alignment of the entry (base of the entry, not after the entry). |
1009 | uint32_t Alignment; |
1010 | /// Size (without alignment, see padding) |
1011 | uint32_t Size; |
1012 | /// Padding used to align this argument entry, if necessary. |
1013 | uint32_t Padding; |
1014 | /// Host pointer name |
1015 | map_var_info_t HstPtrName = nullptr; |
1016 | |
1017 | FirstPrivateArgInfoTy(int Index, void *HstPtr, uint32_t Size, |
1018 | uint32_t Alignment, uint32_t Padding, |
1019 | map_var_info_t HstPtrName = nullptr) |
1020 | : HstPtrBegin(reinterpret_cast<char *>(HstPtr)), |
1021 | HstPtrEnd(HstPtrBegin + Size), Index(Index), Alignment(Alignment), |
1022 | Size(Size), Padding(Padding), HstPtrName(HstPtrName) {} |
1023 | }; |
1024 | |
1025 | /// A vector of target pointers for all private arguments |
1026 | SmallVector<void *> TgtPtrs; |
1027 | |
1028 | /// A vector of information of all first-private arguments to be packed |
1029 | SmallVector<FirstPrivateArgInfoTy> FirstPrivateArgInfo; |
1030 | /// Host buffer for all arguments to be packed |
1031 | SmallVector<char> FirstPrivateArgBuffer; |
1032 | /// The total size of all arguments to be packed |
1033 | int64_t FirstPrivateArgSize = 0; |
1034 | |
1035 | /// A reference to the \p DeviceTy object |
1036 | DeviceTy &Device; |
1037 | /// A pointer to a \p AsyncInfoTy object |
1038 | AsyncInfoTy &AsyncInfo; |
1039 | |
1040 | // TODO: What would be the best value here? Should we make it configurable? |
1041 | // If the size is larger than this threshold, we will allocate and transfer it |
1042 | // immediately instead of packing it. |
1043 | static constexpr const int64_t FirstPrivateArgSizeThreshold = 1024; |
1044 | |
1045 | public: |
1046 | /// Constructor |
1047 | PrivateArgumentManagerTy(DeviceTy &Dev, AsyncInfoTy &AsyncInfo) |
1048 | : Device(Dev), AsyncInfo(AsyncInfo) {} |
1049 | |
1050 | /// Add a private argument |
1051 | int addArg(void *HstPtr, int64_t ArgSize, int64_t ArgOffset, |
1052 | bool IsFirstPrivate, void *&TgtPtr, int TgtArgsIndex, |
1053 | map_var_info_t HstPtrName = nullptr, |
1054 | const bool AllocImmediately = false) { |
1055 | // If the argument is not first-private, or its size is greater than a |
1056 | // predefined threshold, we will allocate memory and issue the transfer |
1057 | // immediately. |
1058 | if (ArgSize > FirstPrivateArgSizeThreshold || !IsFirstPrivate || |
1059 | AllocImmediately) { |
1060 | TgtPtr = Device.allocData(ArgSize, HstPtr); |
1061 | if (!TgtPtr) { |
1062 | DP("Data allocation for %sprivate array " DPxMOD " failed.\n" , |
1063 | (IsFirstPrivate ? "first-" : "" ), DPxPTR(HstPtr)); |
1064 | return OFFLOAD_FAIL; |
1065 | } |
1066 | #ifdef OMPTARGET_DEBUG |
1067 | void *TgtPtrBase = (void *)((intptr_t)TgtPtr + ArgOffset); |
1068 | DP("Allocated %" PRId64 " bytes of target memory at " DPxMOD |
1069 | " for %sprivate array " DPxMOD " - pushing target argument " DPxMOD |
1070 | "\n" , |
1071 | ArgSize, DPxPTR(TgtPtr), (IsFirstPrivate ? "first-" : "" ), |
1072 | DPxPTR(HstPtr), DPxPTR(TgtPtrBase)); |
1073 | #endif |
1074 | // If first-private, copy data from host |
1075 | if (IsFirstPrivate) { |
1076 | DP("Submitting firstprivate data to the device.\n" ); |
1077 | int Ret = Device.submitData(TgtPtr, HstPtr, ArgSize, AsyncInfo); |
1078 | if (Ret != OFFLOAD_SUCCESS) { |
1079 | DP("Copying data to device failed, failed.\n" ); |
1080 | return OFFLOAD_FAIL; |
1081 | } |
1082 | } |
1083 | TgtPtrs.push_back(TgtPtr); |
1084 | } else { |
1085 | DP("Firstprivate array " DPxMOD " of size %" PRId64 " will be packed\n" , |
1086 | DPxPTR(HstPtr), ArgSize); |
1087 | // When reach this point, the argument must meet all following |
1088 | // requirements: |
1089 | // 1. Its size does not exceed the threshold (see the comment for |
1090 | // FirstPrivateArgSizeThreshold); |
1091 | // 2. It must be first-private (needs to be mapped to target device). |
1092 | // We will pack all this kind of arguments to transfer them all at once |
1093 | // to reduce the number of data transfer. We will not take |
1094 | // non-first-private arguments, aka. private arguments that doesn't need |
1095 | // to be mapped to target device, into account because data allocation |
1096 | // can be very efficient with memory manager. |
1097 | |
1098 | // Placeholder value |
1099 | TgtPtr = nullptr; |
1100 | auto *LastFPArgInfo = |
1101 | FirstPrivateArgInfo.empty() ? nullptr : &FirstPrivateArgInfo.back(); |
1102 | |
1103 | // Compute the start alignment of this entry, add padding if necessary. |
1104 | // TODO: Consider sorting instead. |
1105 | uint32_t Padding = 0; |
1106 | uint32_t StartAlignment = |
1107 | LastFPArgInfo ? LastFPArgInfo->Alignment : MaxAlignment; |
1108 | if (LastFPArgInfo) { |
1109 | // Check if we keep the start alignment or if it is shrunk due to the |
1110 | // size of the last element. |
1111 | uint32_t Offset = LastFPArgInfo->Size % StartAlignment; |
1112 | if (Offset) |
1113 | StartAlignment = Offset; |
1114 | // We only need as much alignment as the host pointer had (since we |
1115 | // don't know the alignment information from the source we might end up |
1116 | // overaligning accesses but not too much). |
1117 | uint32_t RequiredAlignment = |
1118 | llvm::bit_floor(Value: getPartialStructRequiredAlignment(HstPtrBase: HstPtr)); |
1119 | if (RequiredAlignment > StartAlignment) { |
1120 | Padding = RequiredAlignment - StartAlignment; |
1121 | StartAlignment = RequiredAlignment; |
1122 | } |
1123 | } |
1124 | |
1125 | FirstPrivateArgInfo.emplace_back(TgtArgsIndex, HstPtr, ArgSize, |
1126 | StartAlignment, Padding, HstPtrName); |
1127 | FirstPrivateArgSize += Padding + ArgSize; |
1128 | } |
1129 | |
1130 | return OFFLOAD_SUCCESS; |
1131 | } |
1132 | |
1133 | /// Pack first-private arguments, replace place holder pointers in \p TgtArgs, |
1134 | /// and start the transfer. |
1135 | int packAndTransfer(SmallVector<void *> &TgtArgs) { |
1136 | if (!FirstPrivateArgInfo.empty()) { |
1137 | assert(FirstPrivateArgSize != 0 && |
1138 | "FirstPrivateArgSize is 0 but FirstPrivateArgInfo is empty" ); |
1139 | FirstPrivateArgBuffer.resize(FirstPrivateArgSize, 0); |
1140 | auto *Itr = FirstPrivateArgBuffer.begin(); |
1141 | // Copy all host data to this buffer |
1142 | for (FirstPrivateArgInfoTy &Info : FirstPrivateArgInfo) { |
1143 | // First pad the pointer as we (have to) pad it on the device too. |
1144 | Itr = std::next(Itr, Info.Padding); |
1145 | std::copy(Info.HstPtrBegin, Info.HstPtrEnd, Itr); |
1146 | Itr = std::next(Itr, Info.Size); |
1147 | } |
1148 | // Allocate target memory |
1149 | void *TgtPtr = |
1150 | Device.allocData(FirstPrivateArgSize, FirstPrivateArgBuffer.data()); |
1151 | if (TgtPtr == nullptr) { |
1152 | DP("Failed to allocate target memory for private arguments.\n" ); |
1153 | return OFFLOAD_FAIL; |
1154 | } |
1155 | TgtPtrs.push_back(TgtPtr); |
1156 | DP("Allocated %" PRId64 " bytes of target memory at " DPxMOD "\n" , |
1157 | FirstPrivateArgSize, DPxPTR(TgtPtr)); |
1158 | // Transfer data to target device |
1159 | int Ret = Device.submitData(TgtPtr, FirstPrivateArgBuffer.data(), |
1160 | FirstPrivateArgSize, AsyncInfo); |
1161 | if (Ret != OFFLOAD_SUCCESS) { |
1162 | DP("Failed to submit data of private arguments.\n" ); |
1163 | return OFFLOAD_FAIL; |
1164 | } |
1165 | // Fill in all placeholder pointers |
1166 | auto TP = reinterpret_cast<uintptr_t>(TgtPtr); |
1167 | for (FirstPrivateArgInfoTy &Info : FirstPrivateArgInfo) { |
1168 | void *&Ptr = TgtArgs[Info.Index]; |
1169 | assert(Ptr == nullptr && "Target pointer is already set by mistaken" ); |
1170 | // Pad the device pointer to get the right alignment. |
1171 | TP += Info.Padding; |
1172 | Ptr = reinterpret_cast<void *>(TP); |
1173 | TP += Info.Size; |
1174 | DP("Firstprivate array " DPxMOD " of size %" PRId64 " mapped to " DPxMOD |
1175 | "\n" , |
1176 | DPxPTR(Info.HstPtrBegin), Info.HstPtrEnd - Info.HstPtrBegin, |
1177 | DPxPTR(Ptr)); |
1178 | } |
1179 | } |
1180 | |
1181 | return OFFLOAD_SUCCESS; |
1182 | } |
1183 | |
1184 | /// Free all target memory allocated for private arguments |
1185 | int free() { |
1186 | for (void *P : TgtPtrs) { |
1187 | int Ret = Device.deleteData(P); |
1188 | if (Ret != OFFLOAD_SUCCESS) { |
1189 | DP("Deallocation of (first-)private arrays failed.\n" ); |
1190 | return OFFLOAD_FAIL; |
1191 | } |
1192 | } |
1193 | |
1194 | TgtPtrs.clear(); |
1195 | |
1196 | return OFFLOAD_SUCCESS; |
1197 | } |
1198 | }; |
1199 | |
1200 | /// Process data before launching the kernel, including calling targetDataBegin |
1201 | /// to map and transfer data to target device, transferring (first-)private |
1202 | /// variables. |
1203 | static int processDataBefore(ident_t *Loc, int64_t DeviceId, void *HostPtr, |
1204 | int32_t ArgNum, void **ArgBases, void **Args, |
1205 | int64_t *ArgSizes, int64_t *ArgTypes, |
1206 | map_var_info_t *ArgNames, void **ArgMappers, |
1207 | SmallVector<void *> &TgtArgs, |
1208 | SmallVector<ptrdiff_t> &TgtOffsets, |
1209 | PrivateArgumentManagerTy &PrivateArgumentManager, |
1210 | AsyncInfoTy &AsyncInfo) { |
1211 | |
1212 | auto DeviceOrErr = PM->getDevice(DeviceId); |
1213 | if (!DeviceOrErr) |
1214 | FATAL_MESSAGE(DeviceId, "%s" , toString(DeviceOrErr.takeError()).c_str()); |
1215 | |
1216 | int Ret = targetDataBegin(Loc, *DeviceOrErr, ArgNum, ArgBases, Args, ArgSizes, |
1217 | ArgTypes, ArgNames, ArgMappers, AsyncInfo); |
1218 | if (Ret != OFFLOAD_SUCCESS) { |
1219 | REPORT("Call to targetDataBegin failed, abort target.\n" ); |
1220 | return OFFLOAD_FAIL; |
1221 | } |
1222 | |
1223 | // List of (first-)private arrays allocated for this target region |
1224 | SmallVector<int> TgtArgsPositions(ArgNum, -1); |
1225 | |
1226 | for (int32_t I = 0; I < ArgNum; ++I) { |
1227 | if (!(ArgTypes[I] & OMP_TGT_MAPTYPE_TARGET_PARAM)) { |
1228 | // This is not a target parameter, do not push it into TgtArgs. |
1229 | // Check for lambda mapping. |
1230 | if (isLambdaMapping(Mapping: ArgTypes[I])) { |
1231 | assert((ArgTypes[I] & OMP_TGT_MAPTYPE_MEMBER_OF) && |
1232 | "PTR_AND_OBJ must be also MEMBER_OF." ); |
1233 | unsigned Idx = getParentIndex(Type: ArgTypes[I]); |
1234 | int TgtIdx = TgtArgsPositions[Idx]; |
1235 | assert(TgtIdx != -1 && "Base address must be translated already." ); |
1236 | // The parent lambda must be processed already and it must be the last |
1237 | // in TgtArgs and TgtOffsets arrays. |
1238 | void *HstPtrVal = Args[I]; |
1239 | void *HstPtrBegin = ArgBases[I]; |
1240 | void *HstPtrBase = Args[Idx]; |
1241 | void *TgtPtrBase = |
1242 | (void *)((intptr_t)TgtArgs[TgtIdx] + TgtOffsets[TgtIdx]); |
1243 | DP("Parent lambda base " DPxMOD "\n" , DPxPTR(TgtPtrBase)); |
1244 | uint64_t Delta = (uint64_t)HstPtrBegin - (uint64_t)HstPtrBase; |
1245 | void *TgtPtrBegin = (void *)((uintptr_t)TgtPtrBase + Delta); |
1246 | void *&PointerTgtPtrBegin = AsyncInfo.getVoidPtrLocation(); |
1247 | TargetPointerResultTy TPR = |
1248 | DeviceOrErr->getMappingInfo().getTgtPtrBegin( |
1249 | HstPtrVal, ArgSizes[I], /*UpdateRefCount=*/false, |
1250 | /*UseHoldRefCount=*/false); |
1251 | PointerTgtPtrBegin = TPR.TargetPointer; |
1252 | if (!TPR.isPresent()) { |
1253 | DP("No lambda captured variable mapped (" DPxMOD ") - ignored\n" , |
1254 | DPxPTR(HstPtrVal)); |
1255 | continue; |
1256 | } |
1257 | if (TPR.Flags.IsHostPointer) { |
1258 | DP("Unified memory is active, no need to map lambda captured" |
1259 | "variable (" DPxMOD ")\n" , |
1260 | DPxPTR(HstPtrVal)); |
1261 | continue; |
1262 | } |
1263 | DP("Update lambda reference (" DPxMOD ") -> [" DPxMOD "]\n" , |
1264 | DPxPTR(PointerTgtPtrBegin), DPxPTR(TgtPtrBegin)); |
1265 | Ret = |
1266 | DeviceOrErr->submitData(TgtPtrBegin, &PointerTgtPtrBegin, |
1267 | sizeof(void *), AsyncInfo, TPR.getEntry()); |
1268 | if (Ret != OFFLOAD_SUCCESS) { |
1269 | REPORT("Copying data to device failed.\n" ); |
1270 | return OFFLOAD_FAIL; |
1271 | } |
1272 | } |
1273 | continue; |
1274 | } |
1275 | void *HstPtrBegin = Args[I]; |
1276 | void *HstPtrBase = ArgBases[I]; |
1277 | void *TgtPtrBegin; |
1278 | map_var_info_t HstPtrName = (!ArgNames) ? nullptr : ArgNames[I]; |
1279 | ptrdiff_t TgtBaseOffset; |
1280 | TargetPointerResultTy TPR; |
1281 | if (ArgTypes[I] & OMP_TGT_MAPTYPE_LITERAL) { |
1282 | DP("Forwarding first-private value " DPxMOD " to the target construct\n" , |
1283 | DPxPTR(HstPtrBase)); |
1284 | TgtPtrBegin = HstPtrBase; |
1285 | TgtBaseOffset = 0; |
1286 | } else if (ArgTypes[I] & OMP_TGT_MAPTYPE_PRIVATE) { |
1287 | TgtBaseOffset = (intptr_t)HstPtrBase - (intptr_t)HstPtrBegin; |
1288 | const bool IsFirstPrivate = (ArgTypes[I] & OMP_TGT_MAPTYPE_TO); |
1289 | // If there is a next argument and it depends on the current one, we need |
1290 | // to allocate the private memory immediately. If this is not the case, |
1291 | // then the argument can be marked for optimization and packed with the |
1292 | // other privates. |
1293 | const bool AllocImmediately = |
1294 | (I < ArgNum - 1 && (ArgTypes[I + 1] & OMP_TGT_MAPTYPE_MEMBER_OF)); |
1295 | Ret = PrivateArgumentManager.addArg( |
1296 | HstPtrBegin, ArgSizes[I], TgtBaseOffset, IsFirstPrivate, TgtPtrBegin, |
1297 | TgtArgs.size(), HstPtrName, AllocImmediately); |
1298 | if (Ret != OFFLOAD_SUCCESS) { |
1299 | REPORT("Failed to process %sprivate argument " DPxMOD "\n" , |
1300 | (IsFirstPrivate ? "first-" : "" ), DPxPTR(HstPtrBegin)); |
1301 | return OFFLOAD_FAIL; |
1302 | } |
1303 | } else { |
1304 | if (ArgTypes[I] & OMP_TGT_MAPTYPE_PTR_AND_OBJ) |
1305 | HstPtrBase = *reinterpret_cast<void **>(HstPtrBase); |
1306 | TPR = DeviceOrErr->getMappingInfo().getTgtPtrBegin( |
1307 | HstPtrBegin, ArgSizes[I], |
1308 | /*UpdateRefCount=*/false, |
1309 | /*UseHoldRefCount=*/false); |
1310 | TgtPtrBegin = TPR.TargetPointer; |
1311 | TgtBaseOffset = (intptr_t)HstPtrBase - (intptr_t)HstPtrBegin; |
1312 | #ifdef OMPTARGET_DEBUG |
1313 | void *TgtPtrBase = (void *)((intptr_t)TgtPtrBegin + TgtBaseOffset); |
1314 | DP("Obtained target argument " DPxMOD " from host pointer " DPxMOD "\n" , |
1315 | DPxPTR(TgtPtrBase), DPxPTR(HstPtrBegin)); |
1316 | #endif |
1317 | } |
1318 | TgtArgsPositions[I] = TgtArgs.size(); |
1319 | TgtArgs.push_back(TgtPtrBegin); |
1320 | TgtOffsets.push_back(TgtBaseOffset); |
1321 | } |
1322 | |
1323 | assert(TgtArgs.size() == TgtOffsets.size() && |
1324 | "Size mismatch in arguments and offsets" ); |
1325 | |
1326 | // Pack and transfer first-private arguments |
1327 | Ret = PrivateArgumentManager.packAndTransfer(TgtArgs); |
1328 | if (Ret != OFFLOAD_SUCCESS) { |
1329 | DP("Failed to pack and transfer first private arguments\n" ); |
1330 | return OFFLOAD_FAIL; |
1331 | } |
1332 | |
1333 | return OFFLOAD_SUCCESS; |
1334 | } |
1335 | |
1336 | /// Process data after launching the kernel, including transferring data back to |
1337 | /// host if needed and deallocating target memory of (first-)private variables. |
1338 | static int processDataAfter(ident_t *Loc, int64_t DeviceId, void *HostPtr, |
1339 | int32_t ArgNum, void **ArgBases, void **Args, |
1340 | int64_t *ArgSizes, int64_t *ArgTypes, |
1341 | map_var_info_t *ArgNames, void **ArgMappers, |
1342 | PrivateArgumentManagerTy &PrivateArgumentManager, |
1343 | AsyncInfoTy &AsyncInfo) { |
1344 | |
1345 | auto DeviceOrErr = PM->getDevice(DeviceId); |
1346 | if (!DeviceOrErr) |
1347 | FATAL_MESSAGE(DeviceId, "%s" , toString(DeviceOrErr.takeError()).c_str()); |
1348 | |
1349 | // Move data from device. |
1350 | int Ret = targetDataEnd(Loc, *DeviceOrErr, ArgNum, ArgBases, Args, ArgSizes, |
1351 | ArgTypes, ArgNames, ArgMappers, AsyncInfo); |
1352 | if (Ret != OFFLOAD_SUCCESS) { |
1353 | REPORT("Call to targetDataEnd failed, abort target.\n" ); |
1354 | return OFFLOAD_FAIL; |
1355 | } |
1356 | |
1357 | // Free target memory for private arguments after synchronization. |
1358 | // TODO: We might want to remove `mutable` in the future by not changing the |
1359 | // captured variables somehow. |
1360 | AsyncInfo.addPostProcessingFunction( |
1361 | [PrivateArgumentManager = |
1362 | std::move(PrivateArgumentManager)]() mutable -> int { |
1363 | int Ret = PrivateArgumentManager.free(); |
1364 | if (Ret != OFFLOAD_SUCCESS) { |
1365 | REPORT("Failed to deallocate target memory for private args\n" ); |
1366 | return OFFLOAD_FAIL; |
1367 | } |
1368 | return Ret; |
1369 | }); |
1370 | |
1371 | return OFFLOAD_SUCCESS; |
1372 | } |
1373 | } // namespace |
1374 | |
1375 | /// performs the same actions as data_begin in case arg_num is |
1376 | /// non-zero and initiates run of the offloaded region on the target platform; |
1377 | /// if arg_num is non-zero after the region execution is done it also |
1378 | /// performs the same action as data_update and data_end above. This function |
1379 | /// returns 0 if it was able to transfer the execution to a target and an |
1380 | /// integer different from zero otherwise. |
1381 | int target(ident_t *Loc, DeviceTy &Device, void *HostPtr, |
1382 | KernelArgsTy &KernelArgs, AsyncInfoTy &AsyncInfo) { |
1383 | int32_t DeviceId = Device.DeviceID; |
1384 | TableMap *TM = getTableMap(HostPtr); |
1385 | // No map for this host pointer found! |
1386 | if (!TM) { |
1387 | REPORT("Host ptr " DPxMOD " does not have a matching target pointer.\n" , |
1388 | DPxPTR(HostPtr)); |
1389 | return OFFLOAD_FAIL; |
1390 | } |
1391 | |
1392 | // get target table. |
1393 | __tgt_target_table *TargetTable = nullptr; |
1394 | { |
1395 | std::lock_guard<std::mutex> TrlTblLock(PM->TrlTblMtx); |
1396 | assert(TM->Table->TargetsTable.size() > (size_t)DeviceId && |
1397 | "Not expecting a device ID outside the table's bounds!" ); |
1398 | TargetTable = TM->Table->TargetsTable[DeviceId]; |
1399 | } |
1400 | assert(TargetTable && "Global data has not been mapped\n" ); |
1401 | |
1402 | DP("loop trip count is %" PRIu64 ".\n" , KernelArgs.Tripcount); |
1403 | |
1404 | // We need to keep bases and offsets separate. Sometimes (e.g. in OpenCL) we |
1405 | // need to manifest base pointers prior to launching a kernel. Even if we have |
1406 | // mapped an object only partially, e.g. A[N:M], although the kernel is |
1407 | // expected to access elements starting at address &A[N] and beyond, we still |
1408 | // need to manifest the base of the array &A[0]. In other cases, e.g. the COI |
1409 | // API, we need the begin address itself, i.e. &A[N], as the API operates on |
1410 | // begin addresses, not bases. That's why we pass args and offsets as two |
1411 | // separate entities so that each plugin can do what it needs. This behavior |
1412 | // was introduced via https://reviews.llvm.org/D33028 and commit 1546d319244c. |
1413 | SmallVector<void *> TgtArgs; |
1414 | SmallVector<ptrdiff_t> TgtOffsets; |
1415 | |
1416 | PrivateArgumentManagerTy PrivateArgumentManager(Device, AsyncInfo); |
1417 | |
1418 | int NumClangLaunchArgs = KernelArgs.NumArgs; |
1419 | int Ret = OFFLOAD_SUCCESS; |
1420 | if (NumClangLaunchArgs) { |
1421 | // Process data, such as data mapping, before launching the kernel |
1422 | Ret = processDataBefore(Loc, DeviceId, HostPtr, NumClangLaunchArgs, |
1423 | KernelArgs.ArgBasePtrs, KernelArgs.ArgPtrs, |
1424 | KernelArgs.ArgSizes, KernelArgs.ArgTypes, |
1425 | KernelArgs.ArgNames, KernelArgs.ArgMappers, TgtArgs, |
1426 | TgtOffsets, PrivateArgumentManager, AsyncInfo); |
1427 | if (Ret != OFFLOAD_SUCCESS) { |
1428 | REPORT("Failed to process data before launching the kernel.\n" ); |
1429 | return OFFLOAD_FAIL; |
1430 | } |
1431 | |
1432 | // Clang might pass more values via the ArgPtrs to the runtime that we pass |
1433 | // on to the kernel. |
1434 | // TODO: Next time we adjust the KernelArgsTy we should introduce a new |
1435 | // NumKernelArgs field. |
1436 | KernelArgs.NumArgs = TgtArgs.size(); |
1437 | } |
1438 | |
1439 | // Launch device execution. |
1440 | void *TgtEntryPtr = TargetTable->EntriesBegin[TM->Index].Address; |
1441 | DP("Launching target execution %s with pointer " DPxMOD " (index=%d).\n" , |
1442 | TargetTable->EntriesBegin[TM->Index].SymbolName, DPxPTR(TgtEntryPtr), |
1443 | TM->Index); |
1444 | |
1445 | { |
1446 | assert(KernelArgs.NumArgs == TgtArgs.size() && "Argument count mismatch!" ); |
1447 | TIMESCOPE_WITH_DETAILS_AND_IDENT( |
1448 | "Kernel Target" , |
1449 | "NumArguments=" + std::to_string(KernelArgs.NumArgs) + |
1450 | ";NumTeams=" + std::to_string(KernelArgs.NumTeams[0]) + |
1451 | ";TripCount=" + std::to_string(KernelArgs.Tripcount), |
1452 | Loc); |
1453 | |
1454 | #ifdef OMPT_SUPPORT |
1455 | /// RAII to establish tool anchors before and after kernel launch |
1456 | int32_t NumTeams = KernelArgs.NumTeams[0]; |
1457 | // No need to guard this with OMPT_IF_BUILT |
1458 | InterfaceRAII TargetSubmitRAII( |
1459 | RegionInterface.getCallbacks<ompt_callback_target_submit>(), NumTeams); |
1460 | #endif |
1461 | |
1462 | Ret = Device.launchKernel(TgtEntryPtr, TgtArgs.data(), TgtOffsets.data(), |
1463 | KernelArgs, AsyncInfo); |
1464 | } |
1465 | |
1466 | if (Ret != OFFLOAD_SUCCESS) { |
1467 | REPORT("Executing target region abort target.\n" ); |
1468 | return OFFLOAD_FAIL; |
1469 | } |
1470 | |
1471 | if (NumClangLaunchArgs) { |
1472 | // Transfer data back and deallocate target memory for (first-)private |
1473 | // variables |
1474 | Ret = processDataAfter(Loc, DeviceId, HostPtr, NumClangLaunchArgs, |
1475 | KernelArgs.ArgBasePtrs, KernelArgs.ArgPtrs, |
1476 | KernelArgs.ArgSizes, KernelArgs.ArgTypes, |
1477 | KernelArgs.ArgNames, KernelArgs.ArgMappers, |
1478 | PrivateArgumentManager, AsyncInfo); |
1479 | if (Ret != OFFLOAD_SUCCESS) { |
1480 | REPORT("Failed to process data after launching the kernel.\n" ); |
1481 | return OFFLOAD_FAIL; |
1482 | } |
1483 | } |
1484 | |
1485 | return OFFLOAD_SUCCESS; |
1486 | } |
1487 | |
1488 | /// Enables the record replay mechanism by pre-allocating MemorySize |
1489 | /// and informing the record-replayer of whether to store the output |
1490 | /// in some file. |
1491 | int target_activate_rr(DeviceTy &Device, uint64_t MemorySize, void *VAddr, |
1492 | bool IsRecord, bool SaveOutput, |
1493 | uint64_t &ReqPtrArgOffset) { |
1494 | return Device.RTL->initialize_record_replay(Device.DeviceID, MemorySize, |
1495 | VAddr, IsRecord, SaveOutput, |
1496 | ReqPtrArgOffset); |
1497 | } |
1498 | |
1499 | /// Executes a kernel using pre-recorded information for loading to |
1500 | /// device memory to launch the target kernel with the pre-recorded |
1501 | /// configuration. |
1502 | int target_replay(ident_t *Loc, DeviceTy &Device, void *HostPtr, |
1503 | void *DeviceMemory, int64_t DeviceMemorySize, void **TgtArgs, |
1504 | ptrdiff_t *TgtOffsets, int32_t NumArgs, int32_t NumTeams, |
1505 | int32_t ThreadLimit, uint64_t LoopTripCount, |
1506 | AsyncInfoTy &AsyncInfo) { |
1507 | int32_t DeviceId = Device.DeviceID; |
1508 | TableMap *TM = getTableMap(HostPtr); |
1509 | // Fail if the table map fails to find the target kernel pointer for the |
1510 | // provided host pointer. |
1511 | if (!TM) { |
1512 | REPORT("Host ptr " DPxMOD " does not have a matching target pointer.\n" , |
1513 | DPxPTR(HostPtr)); |
1514 | return OFFLOAD_FAIL; |
1515 | } |
1516 | |
1517 | // Retrieve the target table of offloading entries. |
1518 | __tgt_target_table *TargetTable = nullptr; |
1519 | { |
1520 | std::lock_guard<std::mutex> TrlTblLock(PM->TrlTblMtx); |
1521 | assert(TM->Table->TargetsTable.size() > (size_t)DeviceId && |
1522 | "Not expecting a device ID outside the table's bounds!" ); |
1523 | TargetTable = TM->Table->TargetsTable[DeviceId]; |
1524 | } |
1525 | assert(TargetTable && "Global data has not been mapped\n" ); |
1526 | |
1527 | // Retrieve the target kernel pointer, allocate and store the recorded device |
1528 | // memory data, and launch device execution. |
1529 | void *TgtEntryPtr = TargetTable->EntriesBegin[TM->Index].Address; |
1530 | DP("Launching target execution %s with pointer " DPxMOD " (index=%d).\n" , |
1531 | TargetTable->EntriesBegin[TM->Index].SymbolName, DPxPTR(TgtEntryPtr), |
1532 | TM->Index); |
1533 | |
1534 | void *TgtPtr = Device.allocData(DeviceMemorySize, /*HstPtr=*/nullptr, |
1535 | TARGET_ALLOC_DEFAULT); |
1536 | Device.submitData(TgtPtr, DeviceMemory, DeviceMemorySize, AsyncInfo); |
1537 | |
1538 | KernelArgsTy KernelArgs{}; |
1539 | KernelArgs.Version = OMP_KERNEL_ARG_VERSION; |
1540 | KernelArgs.NumArgs = NumArgs; |
1541 | KernelArgs.Tripcount = LoopTripCount; |
1542 | KernelArgs.NumTeams[0] = NumTeams; |
1543 | KernelArgs.ThreadLimit[0] = ThreadLimit; |
1544 | |
1545 | int Ret = Device.launchKernel(TgtEntryPtr, TgtArgs, TgtOffsets, KernelArgs, |
1546 | AsyncInfo); |
1547 | |
1548 | if (Ret != OFFLOAD_SUCCESS) { |
1549 | REPORT("Executing target region abort target.\n" ); |
1550 | return OFFLOAD_FAIL; |
1551 | } |
1552 | |
1553 | return OFFLOAD_SUCCESS; |
1554 | } |
1555 | |