| 1 | /* |
| 2 | * kmp_affinity.cpp -- affinity management |
| 3 | */ |
| 4 | |
| 5 | //===----------------------------------------------------------------------===// |
| 6 | // |
| 7 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 8 | // See https://llvm.org/LICENSE.txt for license information. |
| 9 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "kmp.h" |
| 14 | #include "kmp_affinity.h" |
| 15 | #include "kmp_i18n.h" |
| 16 | #include "kmp_io.h" |
| 17 | #include "kmp_str.h" |
| 18 | #include "kmp_wrapper_getpid.h" |
| 19 | #if KMP_USE_HIER_SCHED |
| 20 | #include "kmp_dispatch_hier.h" |
| 21 | #endif |
| 22 | #if KMP_USE_HWLOC |
| 23 | // Copied from hwloc |
| 24 | #define HWLOC_GROUP_KIND_INTEL_MODULE 102 |
| 25 | #define HWLOC_GROUP_KIND_INTEL_TILE 103 |
| 26 | #define HWLOC_GROUP_KIND_INTEL_DIE 104 |
| 27 | #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220 |
| 28 | #endif |
| 29 | #include <ctype.h> |
| 30 | |
| 31 | // The machine topology |
| 32 | kmp_topology_t *__kmp_topology = nullptr; |
| 33 | // KMP_HW_SUBSET environment variable |
| 34 | kmp_hw_subset_t *__kmp_hw_subset = nullptr; |
| 35 | |
| 36 | // Store the real or imagined machine hierarchy here |
| 37 | static hierarchy_info machine_hierarchy; |
| 38 | |
| 39 | void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } |
| 40 | |
| 41 | #if KMP_AFFINITY_SUPPORTED |
| 42 | // Helper class to see if place lists further restrict the fullMask |
| 43 | class kmp_full_mask_modifier_t { |
| 44 | kmp_affin_mask_t *mask; |
| 45 | |
| 46 | public: |
| 47 | kmp_full_mask_modifier_t() { |
| 48 | KMP_CPU_ALLOC(mask); |
| 49 | KMP_CPU_ZERO(mask); |
| 50 | } |
| 51 | ~kmp_full_mask_modifier_t() { |
| 52 | KMP_CPU_FREE(mask); |
| 53 | mask = nullptr; |
| 54 | } |
| 55 | void include(const kmp_affin_mask_t *other) { KMP_CPU_UNION(mask, other); } |
| 56 | // If the new full mask is different from the current full mask, |
| 57 | // then switch them. Returns true if full mask was affected, false otherwise. |
| 58 | bool restrict_to_mask() { |
| 59 | // See if the new mask further restricts or changes the full mask |
| 60 | if (KMP_CPU_EQUAL(__kmp_affin_fullMask, mask) || KMP_CPU_ISEMPTY(mask)) |
| 61 | return false; |
| 62 | return __kmp_topology->restrict_to_mask(mask); |
| 63 | } |
| 64 | }; |
| 65 | |
| 66 | static inline const char * |
| 67 | __kmp_get_affinity_env_var(const kmp_affinity_t &affinity, |
| 68 | bool for_binding = false) { |
| 69 | if (affinity.flags.omp_places) { |
| 70 | if (for_binding) |
| 71 | return "OMP_PROC_BIND" ; |
| 72 | return "OMP_PLACES" ; |
| 73 | } |
| 74 | return affinity.env_var; |
| 75 | } |
| 76 | #endif // KMP_AFFINITY_SUPPORTED |
| 77 | |
| 78 | void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { |
| 79 | kmp_uint32 depth; |
| 80 | // The test below is true if affinity is available, but set to "none". Need to |
| 81 | // init on first use of hierarchical barrier. |
| 82 | if (TCR_1(machine_hierarchy.uninitialized)) |
| 83 | machine_hierarchy.init(num_addrs: nproc); |
| 84 | |
| 85 | // Adjust the hierarchy in case num threads exceeds original |
| 86 | if (nproc > machine_hierarchy.base_num_threads) |
| 87 | machine_hierarchy.resize(nproc); |
| 88 | |
| 89 | depth = machine_hierarchy.depth; |
| 90 | KMP_DEBUG_ASSERT(depth > 0); |
| 91 | |
| 92 | thr_bar->depth = depth; |
| 93 | __kmp_type_convert(src: machine_hierarchy.numPerLevel[0] - 1, |
| 94 | dest: &(thr_bar->base_leaf_kids)); |
| 95 | thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; |
| 96 | } |
| 97 | |
| 98 | static int nCoresPerPkg, nPackages; |
| 99 | static int __kmp_nThreadsPerCore; |
| 100 | #ifndef KMP_DFLT_NTH_CORES |
| 101 | static int __kmp_ncores; |
| 102 | #endif |
| 103 | |
| 104 | const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { |
| 105 | switch (type) { |
| 106 | case KMP_HW_SOCKET: |
| 107 | return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); |
| 108 | case KMP_HW_DIE: |
| 109 | return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); |
| 110 | case KMP_HW_MODULE: |
| 111 | return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); |
| 112 | case KMP_HW_TILE: |
| 113 | return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); |
| 114 | case KMP_HW_NUMA: |
| 115 | return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); |
| 116 | case KMP_HW_L3: |
| 117 | return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); |
| 118 | case KMP_HW_L2: |
| 119 | return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); |
| 120 | case KMP_HW_L1: |
| 121 | return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); |
| 122 | case KMP_HW_LLC: |
| 123 | return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache)); |
| 124 | case KMP_HW_CORE: |
| 125 | return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); |
| 126 | case KMP_HW_THREAD: |
| 127 | return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); |
| 128 | case KMP_HW_PROC_GROUP: |
| 129 | return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); |
| 130 | case KMP_HW_UNKNOWN: |
| 131 | case KMP_HW_LAST: |
| 132 | return KMP_I18N_STR(Unknown); |
| 133 | } |
| 134 | KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration" ); |
| 135 | KMP_BUILTIN_UNREACHABLE; |
| 136 | } |
| 137 | |
| 138 | const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) { |
| 139 | switch (type) { |
| 140 | case KMP_HW_SOCKET: |
| 141 | return ((plural) ? "sockets" : "socket" ); |
| 142 | case KMP_HW_DIE: |
| 143 | return ((plural) ? "dice" : "die" ); |
| 144 | case KMP_HW_MODULE: |
| 145 | return ((plural) ? "modules" : "module" ); |
| 146 | case KMP_HW_TILE: |
| 147 | return ((plural) ? "tiles" : "tile" ); |
| 148 | case KMP_HW_NUMA: |
| 149 | return ((plural) ? "numa_domains" : "numa_domain" ); |
| 150 | case KMP_HW_L3: |
| 151 | return ((plural) ? "l3_caches" : "l3_cache" ); |
| 152 | case KMP_HW_L2: |
| 153 | return ((plural) ? "l2_caches" : "l2_cache" ); |
| 154 | case KMP_HW_L1: |
| 155 | return ((plural) ? "l1_caches" : "l1_cache" ); |
| 156 | case KMP_HW_LLC: |
| 157 | return ((plural) ? "ll_caches" : "ll_cache" ); |
| 158 | case KMP_HW_CORE: |
| 159 | return ((plural) ? "cores" : "core" ); |
| 160 | case KMP_HW_THREAD: |
| 161 | return ((plural) ? "threads" : "thread" ); |
| 162 | case KMP_HW_PROC_GROUP: |
| 163 | return ((plural) ? "proc_groups" : "proc_group" ); |
| 164 | case KMP_HW_UNKNOWN: |
| 165 | case KMP_HW_LAST: |
| 166 | return ((plural) ? "unknowns" : "unknown" ); |
| 167 | } |
| 168 | KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration" ); |
| 169 | KMP_BUILTIN_UNREACHABLE; |
| 170 | } |
| 171 | |
| 172 | const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) { |
| 173 | switch (type) { |
| 174 | case KMP_HW_CORE_TYPE_UNKNOWN: |
| 175 | case KMP_HW_MAX_NUM_CORE_TYPES: |
| 176 | return "unknown" ; |
| 177 | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 |
| 178 | case KMP_HW_CORE_TYPE_ATOM: |
| 179 | return "Intel Atom(R) processor" ; |
| 180 | case KMP_HW_CORE_TYPE_CORE: |
| 181 | return "Intel(R) Core(TM) processor" ; |
| 182 | #endif |
| 183 | } |
| 184 | KMP_ASSERT2(false, "Unhandled kmp_hw_core_type_t enumeration" ); |
| 185 | KMP_BUILTIN_UNREACHABLE; |
| 186 | } |
| 187 | |
| 188 | #if KMP_AFFINITY_SUPPORTED |
| 189 | // If affinity is supported, check the affinity |
| 190 | // verbose and warning flags before printing warning |
| 191 | #define KMP_AFF_WARNING(s, ...) \ |
| 192 | if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) { \ |
| 193 | KMP_WARNING(__VA_ARGS__); \ |
| 194 | } |
| 195 | #else |
| 196 | #define KMP_AFF_WARNING(s, ...) KMP_WARNING(__VA_ARGS__) |
| 197 | #endif |
| 198 | |
| 199 | //////////////////////////////////////////////////////////////////////////////// |
| 200 | // kmp_hw_thread_t methods |
| 201 | int kmp_hw_thread_t::compare_ids(const void *a, const void *b) { |
| 202 | const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a; |
| 203 | const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b; |
| 204 | int depth = __kmp_topology->get_depth(); |
| 205 | for (int level = 0; level < depth; ++level) { |
| 206 | // Reverse sort (higher efficiencies earlier in list) cores by core |
| 207 | // efficiency if available. |
| 208 | if (__kmp_is_hybrid_cpu() && |
| 209 | __kmp_topology->get_type(level) == KMP_HW_CORE && |
| 210 | ahwthread->attrs.is_core_eff_valid() && |
| 211 | bhwthread->attrs.is_core_eff_valid()) { |
| 212 | if (ahwthread->attrs.get_core_eff() < bhwthread->attrs.get_core_eff()) |
| 213 | return 1; |
| 214 | if (ahwthread->attrs.get_core_eff() > bhwthread->attrs.get_core_eff()) |
| 215 | return -1; |
| 216 | } |
| 217 | if (ahwthread->ids[level] == bhwthread->ids[level]) |
| 218 | continue; |
| 219 | // If the hardware id is unknown for this level, then place hardware thread |
| 220 | // further down in the sorted list as it should take last priority |
| 221 | if (ahwthread->ids[level] == UNKNOWN_ID) |
| 222 | return 1; |
| 223 | else if (bhwthread->ids[level] == UNKNOWN_ID) |
| 224 | return -1; |
| 225 | else if (ahwthread->ids[level] < bhwthread->ids[level]) |
| 226 | return -1; |
| 227 | else if (ahwthread->ids[level] > bhwthread->ids[level]) |
| 228 | return 1; |
| 229 | } |
| 230 | if (ahwthread->os_id < bhwthread->os_id) |
| 231 | return -1; |
| 232 | else if (ahwthread->os_id > bhwthread->os_id) |
| 233 | return 1; |
| 234 | return 0; |
| 235 | } |
| 236 | |
| 237 | #if KMP_AFFINITY_SUPPORTED |
| 238 | int kmp_hw_thread_t::compare_compact(const void *a, const void *b) { |
| 239 | int i; |
| 240 | const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a; |
| 241 | const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b; |
| 242 | int depth = __kmp_topology->get_depth(); |
| 243 | int compact = __kmp_topology->compact; |
| 244 | KMP_DEBUG_ASSERT(compact >= 0); |
| 245 | KMP_DEBUG_ASSERT(compact <= depth); |
| 246 | for (i = 0; i < compact; i++) { |
| 247 | int j = depth - i - 1; |
| 248 | if (aa->sub_ids[j] < bb->sub_ids[j]) |
| 249 | return -1; |
| 250 | if (aa->sub_ids[j] > bb->sub_ids[j]) |
| 251 | return 1; |
| 252 | } |
| 253 | for (; i < depth; i++) { |
| 254 | int j = i - compact; |
| 255 | if (aa->sub_ids[j] < bb->sub_ids[j]) |
| 256 | return -1; |
| 257 | if (aa->sub_ids[j] > bb->sub_ids[j]) |
| 258 | return 1; |
| 259 | } |
| 260 | return 0; |
| 261 | } |
| 262 | #endif |
| 263 | |
| 264 | void kmp_hw_thread_t::print() const { |
| 265 | int depth = __kmp_topology->get_depth(); |
| 266 | printf(format: "%4d " , os_id); |
| 267 | for (int i = 0; i < depth; ++i) { |
| 268 | printf(format: "%4d (%d) " , ids[i], sub_ids[i]); |
| 269 | } |
| 270 | if (attrs) { |
| 271 | if (attrs.is_core_type_valid()) |
| 272 | printf(format: " (%s)" , __kmp_hw_get_core_type_string(type: attrs.get_core_type())); |
| 273 | if (attrs.is_core_eff_valid()) |
| 274 | printf(format: " (eff=%d)" , attrs.get_core_eff()); |
| 275 | } |
| 276 | if (leader) |
| 277 | printf(format: " (leader)" ); |
| 278 | printf(format: "\n" ); |
| 279 | } |
| 280 | |
| 281 | //////////////////////////////////////////////////////////////////////////////// |
| 282 | // kmp_topology_t methods |
| 283 | |
| 284 | // Add a layer to the topology based on the ids. Assume the topology |
| 285 | // is perfectly nested (i.e., so no object has more than one parent) |
| 286 | void kmp_topology_t::insert_layer(kmp_hw_t type, const int *ids) { |
| 287 | // Figure out where the layer should go by comparing the ids of the current |
| 288 | // layers with the new ids |
| 289 | int target_layer; |
| 290 | int previous_id = kmp_hw_thread_t::UNKNOWN_ID; |
| 291 | int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID; |
| 292 | |
| 293 | // Start from the highest layer and work down to find target layer |
| 294 | // If new layer is equal to another layer then put the new layer above |
| 295 | for (target_layer = 0; target_layer < depth; ++target_layer) { |
| 296 | bool layers_equal = true; |
| 297 | bool strictly_above_target_layer = false; |
| 298 | for (int i = 0; i < num_hw_threads; ++i) { |
| 299 | int id = hw_threads[i].ids[target_layer]; |
| 300 | int new_id = ids[i]; |
| 301 | if (id != previous_id && new_id == previous_new_id) { |
| 302 | // Found the layer we are strictly above |
| 303 | strictly_above_target_layer = true; |
| 304 | layers_equal = false; |
| 305 | break; |
| 306 | } else if (id == previous_id && new_id != previous_new_id) { |
| 307 | // Found a layer we are below. Move to next layer and check. |
| 308 | layers_equal = false; |
| 309 | break; |
| 310 | } |
| 311 | previous_id = id; |
| 312 | previous_new_id = new_id; |
| 313 | } |
| 314 | if (strictly_above_target_layer || layers_equal) |
| 315 | break; |
| 316 | } |
| 317 | |
| 318 | // Found the layer we are above. Now move everything to accommodate the new |
| 319 | // layer. And put the new ids and type into the topology. |
| 320 | for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) |
| 321 | types[j] = types[i]; |
| 322 | types[target_layer] = type; |
| 323 | for (int k = 0; k < num_hw_threads; ++k) { |
| 324 | for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) |
| 325 | hw_threads[k].ids[j] = hw_threads[k].ids[i]; |
| 326 | hw_threads[k].ids[target_layer] = ids[k]; |
| 327 | } |
| 328 | equivalent[type] = type; |
| 329 | depth++; |
| 330 | } |
| 331 | |
| 332 | #if KMP_GROUP_AFFINITY |
| 333 | // Insert the Windows Processor Group structure into the topology |
| 334 | void kmp_topology_t::_insert_windows_proc_groups() { |
| 335 | // Do not insert the processor group structure for a single group |
| 336 | if (__kmp_num_proc_groups == 1) |
| 337 | return; |
| 338 | kmp_affin_mask_t *mask; |
| 339 | int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads); |
| 340 | KMP_CPU_ALLOC(mask); |
| 341 | for (int i = 0; i < num_hw_threads; ++i) { |
| 342 | KMP_CPU_ZERO(mask); |
| 343 | KMP_CPU_SET(hw_threads[i].os_id, mask); |
| 344 | ids[i] = __kmp_get_proc_group(mask); |
| 345 | } |
| 346 | KMP_CPU_FREE(mask); |
| 347 | insert_layer(KMP_HW_PROC_GROUP, ids); |
| 348 | __kmp_free(ids); |
| 349 | |
| 350 | // sort topology after adding proc groups |
| 351 | __kmp_topology->sort_ids(); |
| 352 | } |
| 353 | #endif |
| 354 | |
| 355 | // Remove layers that don't add information to the topology. |
| 356 | // This is done by having the layer take on the id = UNKNOWN_ID (-1) |
| 357 | void kmp_topology_t::_remove_radix1_layers() { |
| 358 | int preference[KMP_HW_LAST]; |
| 359 | int top_index1, top_index2; |
| 360 | // Set up preference associative array |
| 361 | preference[KMP_HW_SOCKET] = 110; |
| 362 | preference[KMP_HW_PROC_GROUP] = 100; |
| 363 | preference[KMP_HW_CORE] = 95; |
| 364 | preference[KMP_HW_THREAD] = 90; |
| 365 | preference[KMP_HW_NUMA] = 85; |
| 366 | preference[KMP_HW_DIE] = 80; |
| 367 | preference[KMP_HW_TILE] = 75; |
| 368 | preference[KMP_HW_MODULE] = 73; |
| 369 | preference[KMP_HW_L3] = 70; |
| 370 | preference[KMP_HW_L2] = 65; |
| 371 | preference[KMP_HW_L1] = 60; |
| 372 | preference[KMP_HW_LLC] = 5; |
| 373 | top_index1 = 0; |
| 374 | top_index2 = 1; |
| 375 | while (top_index1 < depth - 1 && top_index2 < depth) { |
| 376 | kmp_hw_t type1 = types[top_index1]; |
| 377 | kmp_hw_t type2 = types[top_index2]; |
| 378 | KMP_ASSERT_VALID_HW_TYPE(type1); |
| 379 | KMP_ASSERT_VALID_HW_TYPE(type2); |
| 380 | // Do not allow the three main topology levels (sockets, cores, threads) to |
| 381 | // be compacted down |
| 382 | if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE || |
| 383 | type1 == KMP_HW_SOCKET) && |
| 384 | (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE || |
| 385 | type2 == KMP_HW_SOCKET)) { |
| 386 | top_index1 = top_index2++; |
| 387 | continue; |
| 388 | } |
| 389 | bool radix1 = true; |
| 390 | bool all_same = true; |
| 391 | int id1 = hw_threads[0].ids[top_index1]; |
| 392 | int id2 = hw_threads[0].ids[top_index2]; |
| 393 | int pref1 = preference[type1]; |
| 394 | int pref2 = preference[type2]; |
| 395 | for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) { |
| 396 | if (hw_threads[hwidx].ids[top_index1] == id1 && |
| 397 | hw_threads[hwidx].ids[top_index2] != id2) { |
| 398 | radix1 = false; |
| 399 | break; |
| 400 | } |
| 401 | if (hw_threads[hwidx].ids[top_index2] != id2) |
| 402 | all_same = false; |
| 403 | id1 = hw_threads[hwidx].ids[top_index1]; |
| 404 | id2 = hw_threads[hwidx].ids[top_index2]; |
| 405 | } |
| 406 | if (radix1) { |
| 407 | // Select the layer to remove based on preference |
| 408 | kmp_hw_t remove_type, keep_type; |
| 409 | int remove_layer, remove_layer_ids; |
| 410 | if (pref1 > pref2) { |
| 411 | remove_type = type2; |
| 412 | remove_layer = remove_layer_ids = top_index2; |
| 413 | keep_type = type1; |
| 414 | } else { |
| 415 | remove_type = type1; |
| 416 | remove_layer = remove_layer_ids = top_index1; |
| 417 | keep_type = type2; |
| 418 | } |
| 419 | // If all the indexes for the second (deeper) layer are the same. |
| 420 | // e.g., all are zero, then make sure to keep the first layer's ids |
| 421 | if (all_same) |
| 422 | remove_layer_ids = top_index2; |
| 423 | // Remove radix one type by setting the equivalence, removing the id from |
| 424 | // the hw threads and removing the layer from types and depth |
| 425 | set_equivalent_type(type1: remove_type, type2: keep_type); |
| 426 | for (int idx = 0; idx < num_hw_threads; ++idx) { |
| 427 | kmp_hw_thread_t &hw_thread = hw_threads[idx]; |
| 428 | for (int d = remove_layer_ids; d < depth - 1; ++d) |
| 429 | hw_thread.ids[d] = hw_thread.ids[d + 1]; |
| 430 | } |
| 431 | for (int idx = remove_layer; idx < depth - 1; ++idx) |
| 432 | types[idx] = types[idx + 1]; |
| 433 | depth--; |
| 434 | } else { |
| 435 | top_index1 = top_index2++; |
| 436 | } |
| 437 | } |
| 438 | KMP_ASSERT(depth > 0); |
| 439 | } |
| 440 | |
| 441 | void kmp_topology_t::_set_last_level_cache() { |
| 442 | if (get_equivalent_type(type: KMP_HW_L3) != KMP_HW_UNKNOWN) |
| 443 | set_equivalent_type(type1: KMP_HW_LLC, type2: KMP_HW_L3); |
| 444 | else if (get_equivalent_type(type: KMP_HW_L2) != KMP_HW_UNKNOWN) |
| 445 | set_equivalent_type(type1: KMP_HW_LLC, type2: KMP_HW_L2); |
| 446 | #if KMP_MIC_SUPPORTED |
| 447 | else if (__kmp_mic_type == mic3) { |
| 448 | if (get_equivalent_type(type: KMP_HW_L2) != KMP_HW_UNKNOWN) |
| 449 | set_equivalent_type(type1: KMP_HW_LLC, type2: KMP_HW_L2); |
| 450 | else if (get_equivalent_type(type: KMP_HW_TILE) != KMP_HW_UNKNOWN) |
| 451 | set_equivalent_type(type1: KMP_HW_LLC, type2: KMP_HW_TILE); |
| 452 | // L2/Tile wasn't detected so just say L1 |
| 453 | else |
| 454 | set_equivalent_type(type1: KMP_HW_LLC, type2: KMP_HW_L1); |
| 455 | } |
| 456 | #endif |
| 457 | else if (get_equivalent_type(type: KMP_HW_L1) != KMP_HW_UNKNOWN) |
| 458 | set_equivalent_type(type1: KMP_HW_LLC, type2: KMP_HW_L1); |
| 459 | // Fallback is to set last level cache to socket or core |
| 460 | if (get_equivalent_type(type: KMP_HW_LLC) == KMP_HW_UNKNOWN) { |
| 461 | if (get_equivalent_type(type: KMP_HW_SOCKET) != KMP_HW_UNKNOWN) |
| 462 | set_equivalent_type(type1: KMP_HW_LLC, type2: KMP_HW_SOCKET); |
| 463 | else if (get_equivalent_type(type: KMP_HW_CORE) != KMP_HW_UNKNOWN) |
| 464 | set_equivalent_type(type1: KMP_HW_LLC, type2: KMP_HW_CORE); |
| 465 | } |
| 466 | KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN); |
| 467 | } |
| 468 | |
| 469 | // Gather the count of each topology layer and the ratio |
| 470 | void kmp_topology_t::_gather_enumeration_information() { |
| 471 | int previous_id[KMP_HW_LAST]; |
| 472 | int max[KMP_HW_LAST]; |
| 473 | |
| 474 | for (int i = 0; i < depth; ++i) { |
| 475 | previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; |
| 476 | max[i] = 0; |
| 477 | count[i] = 0; |
| 478 | ratio[i] = 0; |
| 479 | } |
| 480 | int core_level = get_level(type: KMP_HW_CORE); |
| 481 | for (int i = 0; i < num_hw_threads; ++i) { |
| 482 | kmp_hw_thread_t &hw_thread = hw_threads[i]; |
| 483 | for (int layer = 0; layer < depth; ++layer) { |
| 484 | int id = hw_thread.ids[layer]; |
| 485 | if (id != previous_id[layer]) { |
| 486 | // Add an additional increment to each count |
| 487 | for (int l = layer; l < depth; ++l) { |
| 488 | if (hw_thread.ids[l] != kmp_hw_thread_t::UNKNOWN_ID) |
| 489 | count[l]++; |
| 490 | } |
| 491 | // Keep track of topology layer ratio statistics |
| 492 | if (hw_thread.ids[layer] != kmp_hw_thread_t::UNKNOWN_ID) |
| 493 | max[layer]++; |
| 494 | for (int l = layer + 1; l < depth; ++l) { |
| 495 | if (max[l] > ratio[l]) |
| 496 | ratio[l] = max[l]; |
| 497 | max[l] = 1; |
| 498 | } |
| 499 | // Figure out the number of different core types |
| 500 | // and efficiencies for hybrid CPUs |
| 501 | if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) { |
| 502 | if (hw_thread.attrs.is_core_eff_valid() && |
| 503 | hw_thread.attrs.core_eff >= num_core_efficiencies) { |
| 504 | // Because efficiencies can range from 0 to max efficiency - 1, |
| 505 | // the number of efficiencies is max efficiency + 1 |
| 506 | num_core_efficiencies = hw_thread.attrs.core_eff + 1; |
| 507 | } |
| 508 | if (hw_thread.attrs.is_core_type_valid()) { |
| 509 | bool found = false; |
| 510 | for (int j = 0; j < num_core_types; ++j) { |
| 511 | if (hw_thread.attrs.get_core_type() == core_types[j]) { |
| 512 | found = true; |
| 513 | break; |
| 514 | } |
| 515 | } |
| 516 | if (!found) { |
| 517 | KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES); |
| 518 | core_types[num_core_types++] = hw_thread.attrs.get_core_type(); |
| 519 | } |
| 520 | } |
| 521 | } |
| 522 | break; |
| 523 | } |
| 524 | } |
| 525 | for (int layer = 0; layer < depth; ++layer) { |
| 526 | previous_id[layer] = hw_thread.ids[layer]; |
| 527 | } |
| 528 | } |
| 529 | for (int layer = 0; layer < depth; ++layer) { |
| 530 | if (max[layer] > ratio[layer]) |
| 531 | ratio[layer] = max[layer]; |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr, |
| 536 | int above_level, |
| 537 | bool find_all) const { |
| 538 | int current, current_max; |
| 539 | int previous_id[KMP_HW_LAST]; |
| 540 | for (int i = 0; i < depth; ++i) |
| 541 | previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; |
| 542 | int core_level = get_level(type: KMP_HW_CORE); |
| 543 | if (find_all) |
| 544 | above_level = -1; |
| 545 | KMP_ASSERT(above_level < core_level); |
| 546 | current_max = 0; |
| 547 | current = 0; |
| 548 | for (int i = 0; i < num_hw_threads; ++i) { |
| 549 | kmp_hw_thread_t &hw_thread = hw_threads[i]; |
| 550 | if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) { |
| 551 | if (current > current_max) |
| 552 | current_max = current; |
| 553 | current = hw_thread.attrs.contains(other: attr); |
| 554 | } else { |
| 555 | for (int level = above_level + 1; level <= core_level; ++level) { |
| 556 | if (hw_thread.ids[level] != previous_id[level]) { |
| 557 | if (hw_thread.attrs.contains(other: attr)) |
| 558 | current++; |
| 559 | break; |
| 560 | } |
| 561 | } |
| 562 | } |
| 563 | for (int level = 0; level < depth; ++level) |
| 564 | previous_id[level] = hw_thread.ids[level]; |
| 565 | } |
| 566 | if (current > current_max) |
| 567 | current_max = current; |
| 568 | return current_max; |
| 569 | } |
| 570 | |
| 571 | // Find out if the topology is uniform |
| 572 | void kmp_topology_t::_discover_uniformity() { |
| 573 | int num = 1; |
| 574 | for (int level = 0; level < depth; ++level) |
| 575 | num *= ratio[level]; |
| 576 | flags.uniform = (num == count[depth - 1]); |
| 577 | } |
| 578 | |
| 579 | // Set all the sub_ids for each hardware thread |
| 580 | void kmp_topology_t::_set_sub_ids() { |
| 581 | int previous_id[KMP_HW_LAST]; |
| 582 | int sub_id[KMP_HW_LAST]; |
| 583 | |
| 584 | for (int i = 0; i < depth; ++i) { |
| 585 | previous_id[i] = -1; |
| 586 | sub_id[i] = -1; |
| 587 | } |
| 588 | for (int i = 0; i < num_hw_threads; ++i) { |
| 589 | kmp_hw_thread_t &hw_thread = hw_threads[i]; |
| 590 | // Setup the sub_id |
| 591 | for (int j = 0; j < depth; ++j) { |
| 592 | if (hw_thread.ids[j] != previous_id[j]) { |
| 593 | sub_id[j]++; |
| 594 | for (int k = j + 1; k < depth; ++k) { |
| 595 | sub_id[k] = 0; |
| 596 | } |
| 597 | break; |
| 598 | } |
| 599 | } |
| 600 | // Set previous_id |
| 601 | for (int j = 0; j < depth; ++j) { |
| 602 | previous_id[j] = hw_thread.ids[j]; |
| 603 | } |
| 604 | // Set the sub_ids field |
| 605 | for (int j = 0; j < depth; ++j) { |
| 606 | hw_thread.sub_ids[j] = sub_id[j]; |
| 607 | } |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | void kmp_topology_t::_set_globals() { |
| 612 | // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores |
| 613 | int core_level, thread_level, package_level; |
| 614 | package_level = get_level(type: KMP_HW_SOCKET); |
| 615 | #if KMP_GROUP_AFFINITY |
| 616 | if (package_level == -1) |
| 617 | package_level = get_level(KMP_HW_PROC_GROUP); |
| 618 | #endif |
| 619 | core_level = get_level(type: KMP_HW_CORE); |
| 620 | thread_level = get_level(type: KMP_HW_THREAD); |
| 621 | |
| 622 | KMP_ASSERT(core_level != -1); |
| 623 | KMP_ASSERT(thread_level != -1); |
| 624 | |
| 625 | __kmp_nThreadsPerCore = calculate_ratio(level1: thread_level, level2: core_level); |
| 626 | if (package_level != -1) { |
| 627 | nCoresPerPkg = calculate_ratio(level1: core_level, level2: package_level); |
| 628 | nPackages = get_count(level: package_level); |
| 629 | } else { |
| 630 | // assume one socket |
| 631 | nCoresPerPkg = get_count(level: core_level); |
| 632 | nPackages = 1; |
| 633 | } |
| 634 | #ifndef KMP_DFLT_NTH_CORES |
| 635 | __kmp_ncores = get_count(level: core_level); |
| 636 | #endif |
| 637 | } |
| 638 | |
| 639 | kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth, |
| 640 | const kmp_hw_t *types) { |
| 641 | kmp_topology_t *retval; |
| 642 | // Allocate all data in one large allocation |
| 643 | size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc + |
| 644 | sizeof(int) * (size_t)KMP_HW_LAST * 3; |
| 645 | char *bytes = (char *)__kmp_allocate(size); |
| 646 | retval = (kmp_topology_t *)bytes; |
| 647 | if (nproc > 0) { |
| 648 | retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t)); |
| 649 | } else { |
| 650 | retval->hw_threads = nullptr; |
| 651 | } |
| 652 | retval->num_hw_threads = nproc; |
| 653 | retval->depth = ndepth; |
| 654 | int *arr = |
| 655 | (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc); |
| 656 | retval->types = (kmp_hw_t *)arr; |
| 657 | retval->ratio = arr + (size_t)KMP_HW_LAST; |
| 658 | retval->count = arr + 2 * (size_t)KMP_HW_LAST; |
| 659 | retval->num_core_efficiencies = 0; |
| 660 | retval->num_core_types = 0; |
| 661 | retval->compact = 0; |
| 662 | for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) |
| 663 | retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN; |
| 664 | KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; } |
| 665 | for (int i = 0; i < ndepth; ++i) { |
| 666 | retval->types[i] = types[i]; |
| 667 | retval->equivalent[types[i]] = types[i]; |
| 668 | } |
| 669 | return retval; |
| 670 | } |
| 671 | |
| 672 | void kmp_topology_t::deallocate(kmp_topology_t *topology) { |
| 673 | if (topology) |
| 674 | __kmp_free(topology); |
| 675 | } |
| 676 | |
| 677 | bool kmp_topology_t::check_ids() const { |
| 678 | // Assume ids have been sorted |
| 679 | if (num_hw_threads == 0) |
| 680 | return true; |
| 681 | for (int i = 1; i < num_hw_threads; ++i) { |
| 682 | kmp_hw_thread_t ¤t_thread = hw_threads[i]; |
| 683 | kmp_hw_thread_t &previous_thread = hw_threads[i - 1]; |
| 684 | bool unique = false; |
| 685 | for (int j = 0; j < depth; ++j) { |
| 686 | if (previous_thread.ids[j] != current_thread.ids[j]) { |
| 687 | unique = true; |
| 688 | break; |
| 689 | } |
| 690 | } |
| 691 | if (unique) |
| 692 | continue; |
| 693 | return false; |
| 694 | } |
| 695 | return true; |
| 696 | } |
| 697 | |
| 698 | void kmp_topology_t::dump() const { |
| 699 | printf(format: "***********************\n" ); |
| 700 | printf(format: "*** __kmp_topology: ***\n" ); |
| 701 | printf(format: "***********************\n" ); |
| 702 | printf(format: "* depth: %d\n" , depth); |
| 703 | |
| 704 | printf(format: "* types: " ); |
| 705 | for (int i = 0; i < depth; ++i) |
| 706 | printf(format: "%15s " , __kmp_hw_get_keyword(type: types[i])); |
| 707 | printf(format: "\n" ); |
| 708 | |
| 709 | printf(format: "* ratio: " ); |
| 710 | for (int i = 0; i < depth; ++i) { |
| 711 | printf(format: "%15d " , ratio[i]); |
| 712 | } |
| 713 | printf(format: "\n" ); |
| 714 | |
| 715 | printf(format: "* count: " ); |
| 716 | for (int i = 0; i < depth; ++i) { |
| 717 | printf(format: "%15d " , count[i]); |
| 718 | } |
| 719 | printf(format: "\n" ); |
| 720 | |
| 721 | printf(format: "* num_core_eff: %d\n" , num_core_efficiencies); |
| 722 | printf(format: "* num_core_types: %d\n" , num_core_types); |
| 723 | printf(format: "* core_types: " ); |
| 724 | for (int i = 0; i < num_core_types; ++i) |
| 725 | printf(format: "%3d " , core_types[i]); |
| 726 | printf(format: "\n" ); |
| 727 | |
| 728 | printf(format: "* equivalent map:\n" ); |
| 729 | KMP_FOREACH_HW_TYPE(i) { |
| 730 | const char *key = __kmp_hw_get_keyword(type: i); |
| 731 | const char *value = __kmp_hw_get_keyword(type: equivalent[i]); |
| 732 | printf(format: "%-15s -> %-15s\n" , key, value); |
| 733 | } |
| 734 | |
| 735 | printf(format: "* uniform: %s\n" , (is_uniform() ? "Yes" : "No" )); |
| 736 | |
| 737 | printf(format: "* num_hw_threads: %d\n" , num_hw_threads); |
| 738 | printf(format: "* hw_threads:\n" ); |
| 739 | for (int i = 0; i < num_hw_threads; ++i) { |
| 740 | hw_threads[i].print(); |
| 741 | } |
| 742 | printf(format: "***********************\n" ); |
| 743 | } |
| 744 | |
| 745 | void kmp_topology_t::print(const char *env_var) const { |
| 746 | kmp_str_buf_t buf; |
| 747 | int print_types_depth; |
| 748 | __kmp_str_buf_init(&buf); |
| 749 | kmp_hw_t print_types[KMP_HW_LAST + 2]; |
| 750 | |
| 751 | // Num Available Threads |
| 752 | if (num_hw_threads) { |
| 753 | KMP_INFORM(AvailableOSProc, env_var, num_hw_threads); |
| 754 | } else { |
| 755 | KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc); |
| 756 | } |
| 757 | |
| 758 | // Uniform or not |
| 759 | if (is_uniform()) { |
| 760 | KMP_INFORM(Uniform, env_var); |
| 761 | } else { |
| 762 | KMP_INFORM(NonUniform, env_var); |
| 763 | } |
| 764 | |
| 765 | // Equivalent types |
| 766 | KMP_FOREACH_HW_TYPE(type) { |
| 767 | kmp_hw_t eq_type = equivalent[type]; |
| 768 | if (eq_type != KMP_HW_UNKNOWN && eq_type != type) { |
| 769 | KMP_INFORM(AffEqualTopologyTypes, env_var, |
| 770 | __kmp_hw_get_catalog_string(type), |
| 771 | __kmp_hw_get_catalog_string(eq_type)); |
| 772 | } |
| 773 | } |
| 774 | |
| 775 | // Quick topology |
| 776 | KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST); |
| 777 | // Create a print types array that always guarantees printing |
| 778 | // the core and thread level |
| 779 | print_types_depth = 0; |
| 780 | for (int level = 0; level < depth; ++level) |
| 781 | print_types[print_types_depth++] = types[level]; |
| 782 | if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) { |
| 783 | // Force in the core level for quick topology |
| 784 | if (print_types[print_types_depth - 1] == KMP_HW_THREAD) { |
| 785 | // Force core before thread e.g., 1 socket X 2 threads/socket |
| 786 | // becomes 1 socket X 1 core/socket X 2 threads/socket |
| 787 | print_types[print_types_depth - 1] = KMP_HW_CORE; |
| 788 | print_types[print_types_depth++] = KMP_HW_THREAD; |
| 789 | } else { |
| 790 | print_types[print_types_depth++] = KMP_HW_CORE; |
| 791 | } |
| 792 | } |
| 793 | // Always put threads at very end of quick topology |
| 794 | if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD) |
| 795 | print_types[print_types_depth++] = KMP_HW_THREAD; |
| 796 | |
| 797 | __kmp_str_buf_clear(buffer: &buf); |
| 798 | kmp_hw_t numerator_type; |
| 799 | kmp_hw_t denominator_type = KMP_HW_UNKNOWN; |
| 800 | int core_level = get_level(type: KMP_HW_CORE); |
| 801 | int ncores = get_count(level: core_level); |
| 802 | |
| 803 | for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) { |
| 804 | int c; |
| 805 | bool plural; |
| 806 | numerator_type = print_types[plevel]; |
| 807 | KMP_ASSERT_VALID_HW_TYPE(numerator_type); |
| 808 | if (equivalent[numerator_type] != numerator_type) |
| 809 | c = 1; |
| 810 | else |
| 811 | c = get_ratio(level: level++); |
| 812 | plural = (c > 1); |
| 813 | if (plevel == 0) { |
| 814 | __kmp_str_buf_print(buffer: &buf, format: "%d %s" , c, |
| 815 | __kmp_hw_get_catalog_string(type: numerator_type, plural)); |
| 816 | } else { |
| 817 | __kmp_str_buf_print(buffer: &buf, format: " x %d %s/%s" , c, |
| 818 | __kmp_hw_get_catalog_string(type: numerator_type, plural), |
| 819 | __kmp_hw_get_catalog_string(type: denominator_type)); |
| 820 | } |
| 821 | denominator_type = numerator_type; |
| 822 | } |
| 823 | KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores); |
| 824 | |
| 825 | // Hybrid topology information |
| 826 | if (__kmp_is_hybrid_cpu()) { |
| 827 | for (int i = 0; i < num_core_types; ++i) { |
| 828 | kmp_hw_core_type_t core_type = core_types[i]; |
| 829 | kmp_hw_attr_t attr; |
| 830 | attr.clear(); |
| 831 | attr.set_core_type(core_type); |
| 832 | int ncores = get_ncores_with_attr(attr); |
| 833 | if (ncores > 0) { |
| 834 | KMP_INFORM(TopologyHybrid, env_var, ncores, |
| 835 | __kmp_hw_get_core_type_string(core_type)); |
| 836 | KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS) |
| 837 | for (int eff = 0; eff < num_core_efficiencies; ++eff) { |
| 838 | attr.set_core_eff(eff); |
| 839 | int ncores_with_eff = get_ncores_with_attr(attr); |
| 840 | if (ncores_with_eff > 0) { |
| 841 | KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff); |
| 842 | } |
| 843 | } |
| 844 | } |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | if (num_hw_threads <= 0) { |
| 849 | __kmp_str_buf_free(buffer: &buf); |
| 850 | return; |
| 851 | } |
| 852 | |
| 853 | // Full OS proc to hardware thread map |
| 854 | KMP_INFORM(OSProcToPhysicalThreadMap, env_var); |
| 855 | for (int i = 0; i < num_hw_threads; i++) { |
| 856 | __kmp_str_buf_clear(buffer: &buf); |
| 857 | for (int level = 0; level < depth; ++level) { |
| 858 | if (hw_threads[i].ids[level] == kmp_hw_thread_t::UNKNOWN_ID) |
| 859 | continue; |
| 860 | kmp_hw_t type = types[level]; |
| 861 | __kmp_str_buf_print(buffer: &buf, format: "%s " , __kmp_hw_get_catalog_string(type)); |
| 862 | __kmp_str_buf_print(buffer: &buf, format: "%d " , hw_threads[i].ids[level]); |
| 863 | } |
| 864 | if (__kmp_is_hybrid_cpu()) |
| 865 | __kmp_str_buf_print( |
| 866 | buffer: &buf, format: "(%s)" , |
| 867 | __kmp_hw_get_core_type_string(type: hw_threads[i].attrs.get_core_type())); |
| 868 | KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str); |
| 869 | } |
| 870 | |
| 871 | __kmp_str_buf_free(buffer: &buf); |
| 872 | } |
| 873 | |
| 874 | #if KMP_AFFINITY_SUPPORTED |
| 875 | void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const { |
| 876 | const char *env_var = __kmp_get_affinity_env_var(affinity); |
| 877 | // If requested hybrid CPU attributes for granularity (either OMP_PLACES or |
| 878 | // KMP_AFFINITY), but none exist, then reset granularity and have below method |
| 879 | // select a granularity and warn user. |
| 880 | if (!__kmp_is_hybrid_cpu()) { |
| 881 | if (affinity.core_attr_gran.valid) { |
| 882 | // OMP_PLACES with cores:<attribute> but non-hybrid arch, use cores |
| 883 | // instead |
| 884 | KMP_AFF_WARNING( |
| 885 | affinity, AffIgnoringNonHybrid, env_var, |
| 886 | __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true)); |
| 887 | affinity.gran = KMP_HW_CORE; |
| 888 | affinity.gran_levels = -1; |
| 889 | affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN; |
| 890 | affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0; |
| 891 | } else if (affinity.flags.core_types_gran || |
| 892 | affinity.flags.core_effs_gran) { |
| 893 | // OMP_PLACES=core_types|core_effs but non-hybrid, use cores instead |
| 894 | if (affinity.flags.omp_places) { |
| 895 | KMP_AFF_WARNING( |
| 896 | affinity, AffIgnoringNonHybrid, env_var, |
| 897 | __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true)); |
| 898 | } else { |
| 899 | // KMP_AFFINITY=granularity=core_type|core_eff,... |
| 900 | KMP_AFF_WARNING(affinity, AffGranularityBad, env_var, |
| 901 | "Intel(R) Hybrid Technology core attribute" , |
| 902 | __kmp_hw_get_catalog_string(KMP_HW_CORE)); |
| 903 | } |
| 904 | affinity.gran = KMP_HW_CORE; |
| 905 | affinity.gran_levels = -1; |
| 906 | affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN; |
| 907 | affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0; |
| 908 | } |
| 909 | } |
| 910 | // Set the number of affinity granularity levels |
| 911 | if (affinity.gran_levels < 0) { |
| 912 | kmp_hw_t gran_type = get_equivalent_type(type: affinity.gran); |
| 913 | // Check if user's granularity request is valid |
| 914 | if (gran_type == KMP_HW_UNKNOWN) { |
| 915 | // First try core, then thread, then package |
| 916 | kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET}; |
| 917 | for (auto g : gran_types) { |
| 918 | if (get_equivalent_type(type: g) != KMP_HW_UNKNOWN) { |
| 919 | gran_type = g; |
| 920 | break; |
| 921 | } |
| 922 | } |
| 923 | KMP_ASSERT(gran_type != KMP_HW_UNKNOWN); |
| 924 | // Warn user what granularity setting will be used instead |
| 925 | KMP_AFF_WARNING(affinity, AffGranularityBad, env_var, |
| 926 | __kmp_hw_get_catalog_string(affinity.gran), |
| 927 | __kmp_hw_get_catalog_string(gran_type)); |
| 928 | affinity.gran = gran_type; |
| 929 | } |
| 930 | #if KMP_GROUP_AFFINITY |
| 931 | // If more than one processor group exists, and the level of |
| 932 | // granularity specified by the user is too coarse, then the |
| 933 | // granularity must be adjusted "down" to processor group affinity |
| 934 | // because threads can only exist within one processor group. |
| 935 | // For example, if a user sets granularity=socket and there are two |
| 936 | // processor groups that cover a socket, then the runtime must |
| 937 | // restrict the granularity down to the processor group level. |
| 938 | if (__kmp_num_proc_groups > 1) { |
| 939 | int gran_depth = get_level(gran_type); |
| 940 | int proc_group_depth = get_level(KMP_HW_PROC_GROUP); |
| 941 | if (gran_depth >= 0 && proc_group_depth >= 0 && |
| 942 | gran_depth < proc_group_depth) { |
| 943 | KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var, |
| 944 | __kmp_hw_get_catalog_string(affinity.gran)); |
| 945 | affinity.gran = gran_type = KMP_HW_PROC_GROUP; |
| 946 | } |
| 947 | } |
| 948 | #endif |
| 949 | affinity.gran_levels = 0; |
| 950 | for (int i = depth - 1; i >= 0 && get_type(level: i) != gran_type; --i) |
| 951 | affinity.gran_levels++; |
| 952 | } |
| 953 | } |
| 954 | #endif |
| 955 | |
| 956 | void kmp_topology_t::canonicalize() { |
| 957 | #if KMP_GROUP_AFFINITY |
| 958 | _insert_windows_proc_groups(); |
| 959 | #endif |
| 960 | _remove_radix1_layers(); |
| 961 | _gather_enumeration_information(); |
| 962 | _discover_uniformity(); |
| 963 | _set_sub_ids(); |
| 964 | _set_globals(); |
| 965 | _set_last_level_cache(); |
| 966 | |
| 967 | #if KMP_MIC_SUPPORTED |
| 968 | // Manually Add L2 = Tile equivalence |
| 969 | if (__kmp_mic_type == mic3) { |
| 970 | if (get_level(type: KMP_HW_L2) != -1) |
| 971 | set_equivalent_type(type1: KMP_HW_TILE, type2: KMP_HW_L2); |
| 972 | else if (get_level(type: KMP_HW_TILE) != -1) |
| 973 | set_equivalent_type(type1: KMP_HW_L2, type2: KMP_HW_TILE); |
| 974 | } |
| 975 | #endif |
| 976 | |
| 977 | // Perform post canonicalization checking |
| 978 | KMP_ASSERT(depth > 0); |
| 979 | for (int level = 0; level < depth; ++level) { |
| 980 | // All counts, ratios, and types must be valid |
| 981 | KMP_ASSERT(count[level] > 0 && ratio[level] > 0); |
| 982 | KMP_ASSERT_VALID_HW_TYPE(types[level]); |
| 983 | // Detected types must point to themselves |
| 984 | KMP_ASSERT(equivalent[types[level]] == types[level]); |
| 985 | } |
| 986 | } |
| 987 | |
| 988 | // Canonicalize an explicit packages X cores/pkg X threads/core topology |
| 989 | void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg, |
| 990 | int nthreads_per_core, int ncores) { |
| 991 | int ndepth = 3; |
| 992 | depth = ndepth; |
| 993 | KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; } |
| 994 | for (int level = 0; level < depth; ++level) { |
| 995 | count[level] = 0; |
| 996 | ratio[level] = 0; |
| 997 | } |
| 998 | count[0] = npackages; |
| 999 | count[1] = ncores; |
| 1000 | count[2] = __kmp_xproc; |
| 1001 | ratio[0] = npackages; |
| 1002 | ratio[1] = ncores_per_pkg; |
| 1003 | ratio[2] = nthreads_per_core; |
| 1004 | equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET; |
| 1005 | equivalent[KMP_HW_CORE] = KMP_HW_CORE; |
| 1006 | equivalent[KMP_HW_THREAD] = KMP_HW_THREAD; |
| 1007 | types[0] = KMP_HW_SOCKET; |
| 1008 | types[1] = KMP_HW_CORE; |
| 1009 | types[2] = KMP_HW_THREAD; |
| 1010 | //__kmp_avail_proc = __kmp_xproc; |
| 1011 | _discover_uniformity(); |
| 1012 | } |
| 1013 | |
| 1014 | #if KMP_AFFINITY_SUPPORTED |
| 1015 | static kmp_str_buf_t * |
| 1016 | __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf, |
| 1017 | bool plural) { |
| 1018 | __kmp_str_buf_init(buf); |
| 1019 | if (attr.is_core_type_valid()) |
| 1020 | __kmp_str_buf_print(buffer: buf, format: "%s %s" , |
| 1021 | __kmp_hw_get_core_type_string(type: attr.get_core_type()), |
| 1022 | __kmp_hw_get_catalog_string(type: KMP_HW_CORE, plural)); |
| 1023 | else |
| 1024 | __kmp_str_buf_print(buffer: buf, format: "%s eff=%d" , |
| 1025 | __kmp_hw_get_catalog_string(type: KMP_HW_CORE, plural), |
| 1026 | attr.get_core_eff()); |
| 1027 | return buf; |
| 1028 | } |
| 1029 | |
| 1030 | bool kmp_topology_t::restrict_to_mask(const kmp_affin_mask_t *mask) { |
| 1031 | // Apply the filter |
| 1032 | bool affected; |
| 1033 | int new_index = 0; |
| 1034 | for (int i = 0; i < num_hw_threads; ++i) { |
| 1035 | int os_id = hw_threads[i].os_id; |
| 1036 | if (KMP_CPU_ISSET(os_id, mask)) { |
| 1037 | if (i != new_index) |
| 1038 | hw_threads[new_index] = hw_threads[i]; |
| 1039 | new_index++; |
| 1040 | } else { |
| 1041 | KMP_CPU_CLR(os_id, __kmp_affin_fullMask); |
| 1042 | __kmp_avail_proc--; |
| 1043 | } |
| 1044 | } |
| 1045 | |
| 1046 | KMP_DEBUG_ASSERT(new_index <= num_hw_threads); |
| 1047 | affected = (num_hw_threads != new_index); |
| 1048 | num_hw_threads = new_index; |
| 1049 | |
| 1050 | // Post hardware subset canonicalization |
| 1051 | if (affected) { |
| 1052 | _gather_enumeration_information(); |
| 1053 | _discover_uniformity(); |
| 1054 | _set_globals(); |
| 1055 | _set_last_level_cache(); |
| 1056 | #if KMP_OS_WINDOWS |
| 1057 | // Copy filtered full mask if topology has single processor group |
| 1058 | if (__kmp_num_proc_groups <= 1) |
| 1059 | #endif |
| 1060 | __kmp_affin_origMask->copy(src: __kmp_affin_fullMask); |
| 1061 | } |
| 1062 | return affected; |
| 1063 | } |
| 1064 | |
| 1065 | // Apply the KMP_HW_SUBSET envirable to the topology |
| 1066 | // Returns true if KMP_HW_SUBSET filtered any processors |
| 1067 | // otherwise, returns false |
| 1068 | bool kmp_topology_t::filter_hw_subset() { |
| 1069 | // If KMP_HW_SUBSET wasn't requested, then do nothing. |
| 1070 | if (!__kmp_hw_subset) |
| 1071 | return false; |
| 1072 | |
| 1073 | // First, sort the KMP_HW_SUBSET items by the machine topology |
| 1074 | __kmp_hw_subset->sort(); |
| 1075 | |
| 1076 | __kmp_hw_subset->canonicalize(top: __kmp_topology); |
| 1077 | |
| 1078 | // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology |
| 1079 | bool using_core_types = false; |
| 1080 | bool using_core_effs = false; |
| 1081 | bool is_absolute = __kmp_hw_subset->is_absolute(); |
| 1082 | int hw_subset_depth = __kmp_hw_subset->get_depth(); |
| 1083 | kmp_hw_t specified[KMP_HW_LAST]; |
| 1084 | int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth); |
| 1085 | KMP_ASSERT(hw_subset_depth > 0); |
| 1086 | KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; } |
| 1087 | int core_level = get_level(type: KMP_HW_CORE); |
| 1088 | for (int i = 0; i < hw_subset_depth; ++i) { |
| 1089 | int max_count; |
| 1090 | const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(index: i); |
| 1091 | int num = item.num[0]; |
| 1092 | int offset = item.offset[0]; |
| 1093 | kmp_hw_t type = item.type; |
| 1094 | kmp_hw_t equivalent_type = equivalent[type]; |
| 1095 | int level = get_level(type); |
| 1096 | topology_levels[i] = level; |
| 1097 | |
| 1098 | // Check to see if current layer is in detected machine topology |
| 1099 | if (equivalent_type != KMP_HW_UNKNOWN) { |
| 1100 | __kmp_hw_subset->at(index: i).type = equivalent_type; |
| 1101 | } else { |
| 1102 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric, |
| 1103 | __kmp_hw_get_catalog_string(type)); |
| 1104 | return false; |
| 1105 | } |
| 1106 | |
| 1107 | // Check to see if current layer has already been |
| 1108 | // specified either directly or through an equivalent type |
| 1109 | if (specified[equivalent_type] != KMP_HW_UNKNOWN) { |
| 1110 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers, |
| 1111 | __kmp_hw_get_catalog_string(type), |
| 1112 | __kmp_hw_get_catalog_string(specified[equivalent_type])); |
| 1113 | return false; |
| 1114 | } |
| 1115 | specified[equivalent_type] = type; |
| 1116 | |
| 1117 | // Check to see if each layer's num & offset parameters are valid |
| 1118 | max_count = get_ratio(level); |
| 1119 | if (!is_absolute) { |
| 1120 | if (max_count < 0 || |
| 1121 | (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { |
| 1122 | bool plural = (num > 1); |
| 1123 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, |
| 1124 | __kmp_hw_get_catalog_string(type, plural)); |
| 1125 | return false; |
| 1126 | } |
| 1127 | } |
| 1128 | |
| 1129 | // Check to see if core attributes are consistent |
| 1130 | if (core_level == level) { |
| 1131 | // Determine which core attributes are specified |
| 1132 | for (int j = 0; j < item.num_attrs; ++j) { |
| 1133 | if (item.attr[j].is_core_type_valid()) |
| 1134 | using_core_types = true; |
| 1135 | if (item.attr[j].is_core_eff_valid()) |
| 1136 | using_core_effs = true; |
| 1137 | } |
| 1138 | |
| 1139 | // Check if using a single core attribute on non-hybrid arch. |
| 1140 | // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute. |
| 1141 | // |
| 1142 | // Check if using multiple core attributes on non-hyrbid arch. |
| 1143 | // Ignore all of KMP_HW_SUBSET if this is the case. |
| 1144 | if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) { |
| 1145 | if (item.num_attrs == 1) { |
| 1146 | if (using_core_effs) { |
| 1147 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr, |
| 1148 | "efficiency" ); |
| 1149 | } else { |
| 1150 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr, |
| 1151 | "core_type" ); |
| 1152 | } |
| 1153 | using_core_effs = false; |
| 1154 | using_core_types = false; |
| 1155 | } else { |
| 1156 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid); |
| 1157 | return false; |
| 1158 | } |
| 1159 | } |
| 1160 | |
| 1161 | // Check if using both core types and core efficiencies together |
| 1162 | if (using_core_types && using_core_effs) { |
| 1163 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type" , |
| 1164 | "efficiency" ); |
| 1165 | return false; |
| 1166 | } |
| 1167 | |
| 1168 | // Check that core efficiency values are valid |
| 1169 | if (using_core_effs) { |
| 1170 | for (int j = 0; j < item.num_attrs; ++j) { |
| 1171 | if (item.attr[j].is_core_eff_valid()) { |
| 1172 | int core_eff = item.attr[j].get_core_eff(); |
| 1173 | if (core_eff < 0 || core_eff >= num_core_efficiencies) { |
| 1174 | kmp_str_buf_t buf; |
| 1175 | __kmp_str_buf_init(&buf); |
| 1176 | __kmp_str_buf_print(buffer: &buf, format: "%d" , item.attr[j].get_core_eff()); |
| 1177 | __kmp_msg(kmp_ms_warning, |
| 1178 | KMP_MSG(AffHWSubsetAttrInvalid, "efficiency" , buf.str), |
| 1179 | KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1), |
| 1180 | __kmp_msg_null); |
| 1181 | __kmp_str_buf_free(buffer: &buf); |
| 1182 | return false; |
| 1183 | } |
| 1184 | } |
| 1185 | } |
| 1186 | } |
| 1187 | |
| 1188 | // Check that the number of requested cores with attributes is valid |
| 1189 | if ((using_core_types || using_core_effs) && !is_absolute) { |
| 1190 | for (int j = 0; j < item.num_attrs; ++j) { |
| 1191 | int num = item.num[j]; |
| 1192 | int offset = item.offset[j]; |
| 1193 | int level_above = core_level - 1; |
| 1194 | if (level_above >= 0) { |
| 1195 | max_count = get_ncores_with_attr_per(attr: item.attr[j], above: level_above); |
| 1196 | if (max_count <= 0 || |
| 1197 | (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { |
| 1198 | kmp_str_buf_t buf; |
| 1199 | __kmp_hw_get_catalog_core_string(attr: item.attr[j], buf: &buf, plural: num > 0); |
| 1200 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str); |
| 1201 | __kmp_str_buf_free(buffer: &buf); |
| 1202 | return false; |
| 1203 | } |
| 1204 | } |
| 1205 | } |
| 1206 | } |
| 1207 | |
| 1208 | if ((using_core_types || using_core_effs) && item.num_attrs > 1) { |
| 1209 | for (int j = 0; j < item.num_attrs; ++j) { |
| 1210 | // Ambiguous use of specific core attribute + generic core |
| 1211 | // e.g., 4c & 3c:intel_core or 4c & 3c:eff1 |
| 1212 | if (!item.attr[j]) { |
| 1213 | kmp_hw_attr_t other_attr; |
| 1214 | for (int k = 0; k < item.num_attrs; ++k) { |
| 1215 | if (item.attr[k] != item.attr[j]) { |
| 1216 | other_attr = item.attr[k]; |
| 1217 | break; |
| 1218 | } |
| 1219 | } |
| 1220 | kmp_str_buf_t buf; |
| 1221 | __kmp_hw_get_catalog_core_string(attr: other_attr, buf: &buf, plural: item.num[j] > 0); |
| 1222 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, |
| 1223 | __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str); |
| 1224 | __kmp_str_buf_free(buffer: &buf); |
| 1225 | return false; |
| 1226 | } |
| 1227 | // Allow specifying a specific core type or core eff exactly once |
| 1228 | for (int k = 0; k < j; ++k) { |
| 1229 | if (!item.attr[j] || !item.attr[k]) |
| 1230 | continue; |
| 1231 | if (item.attr[k] == item.attr[j]) { |
| 1232 | kmp_str_buf_t buf; |
| 1233 | __kmp_hw_get_catalog_core_string(attr: item.attr[j], buf: &buf, |
| 1234 | plural: item.num[j] > 0); |
| 1235 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str); |
| 1236 | __kmp_str_buf_free(buffer: &buf); |
| 1237 | return false; |
| 1238 | } |
| 1239 | } |
| 1240 | } |
| 1241 | } |
| 1242 | } |
| 1243 | } |
| 1244 | |
| 1245 | // For keeping track of sub_ids for an absolute KMP_HW_SUBSET |
| 1246 | // or core attributes (core type or efficiency) |
| 1247 | int prev_sub_ids[KMP_HW_LAST]; |
| 1248 | int abs_sub_ids[KMP_HW_LAST]; |
| 1249 | int core_eff_sub_ids[KMP_HW_MAX_NUM_CORE_EFFS]; |
| 1250 | int core_type_sub_ids[KMP_HW_MAX_NUM_CORE_TYPES]; |
| 1251 | for (size_t i = 0; i < KMP_HW_LAST; ++i) { |
| 1252 | abs_sub_ids[i] = -1; |
| 1253 | prev_sub_ids[i] = -1; |
| 1254 | } |
| 1255 | for (size_t i = 0; i < KMP_HW_MAX_NUM_CORE_EFFS; ++i) |
| 1256 | core_eff_sub_ids[i] = -1; |
| 1257 | for (size_t i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) |
| 1258 | core_type_sub_ids[i] = -1; |
| 1259 | |
| 1260 | // Determine which hardware threads should be filtered. |
| 1261 | |
| 1262 | // Helpful to determine if a topology layer is targeted by an absolute subset |
| 1263 | auto is_targeted = [&](int level) { |
| 1264 | if (is_absolute) { |
| 1265 | for (int i = 0; i < hw_subset_depth; ++i) |
| 1266 | if (topology_levels[i] == level) |
| 1267 | return true; |
| 1268 | return false; |
| 1269 | } |
| 1270 | // If not absolute KMP_HW_SUBSET, then every layer is seen as targeted |
| 1271 | return true; |
| 1272 | }; |
| 1273 | |
| 1274 | // Helpful to index into core type sub Ids array |
| 1275 | auto get_core_type_index = [](const kmp_hw_thread_t &t) { |
| 1276 | switch (t.attrs.get_core_type()) { |
| 1277 | case KMP_HW_CORE_TYPE_UNKNOWN: |
| 1278 | case KMP_HW_MAX_NUM_CORE_TYPES: |
| 1279 | return 0; |
| 1280 | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 |
| 1281 | case KMP_HW_CORE_TYPE_ATOM: |
| 1282 | return 1; |
| 1283 | case KMP_HW_CORE_TYPE_CORE: |
| 1284 | return 2; |
| 1285 | #endif |
| 1286 | } |
| 1287 | KMP_ASSERT2(false, "Unhandled kmp_hw_thread_t enumeration" ); |
| 1288 | KMP_BUILTIN_UNREACHABLE; |
| 1289 | }; |
| 1290 | |
| 1291 | // Helpful to index into core efficiencies sub Ids array |
| 1292 | auto get_core_eff_index = [](const kmp_hw_thread_t &t) { |
| 1293 | return t.attrs.get_core_eff(); |
| 1294 | }; |
| 1295 | |
| 1296 | int num_filtered = 0; |
| 1297 | kmp_affin_mask_t *filtered_mask; |
| 1298 | KMP_CPU_ALLOC(filtered_mask); |
| 1299 | KMP_CPU_COPY(filtered_mask, __kmp_affin_fullMask); |
| 1300 | for (int i = 0; i < num_hw_threads; ++i) { |
| 1301 | kmp_hw_thread_t &hw_thread = hw_threads[i]; |
| 1302 | |
| 1303 | // Figure out the absolute sub ids and core eff/type sub ids |
| 1304 | if (is_absolute || using_core_effs || using_core_types) { |
| 1305 | for (int level = 0; level < get_depth(); ++level) { |
| 1306 | if (hw_thread.sub_ids[level] != prev_sub_ids[level]) { |
| 1307 | bool found_targeted = false; |
| 1308 | for (int j = level; j < get_depth(); ++j) { |
| 1309 | bool targeted = is_targeted(j); |
| 1310 | if (!found_targeted && targeted) { |
| 1311 | found_targeted = true; |
| 1312 | abs_sub_ids[j]++; |
| 1313 | if (j == core_level && using_core_effs) |
| 1314 | core_eff_sub_ids[get_core_eff_index(hw_thread)]++; |
| 1315 | if (j == core_level && using_core_types) |
| 1316 | core_type_sub_ids[get_core_type_index(hw_thread)]++; |
| 1317 | } else if (targeted) { |
| 1318 | abs_sub_ids[j] = 0; |
| 1319 | if (j == core_level && using_core_effs) |
| 1320 | core_eff_sub_ids[get_core_eff_index(hw_thread)] = 0; |
| 1321 | if (j == core_level && using_core_types) |
| 1322 | core_type_sub_ids[get_core_type_index(hw_thread)] = 0; |
| 1323 | } |
| 1324 | } |
| 1325 | break; |
| 1326 | } |
| 1327 | } |
| 1328 | for (int level = 0; level < get_depth(); ++level) |
| 1329 | prev_sub_ids[level] = hw_thread.sub_ids[level]; |
| 1330 | } |
| 1331 | |
| 1332 | // Check to see if this hardware thread should be filtered |
| 1333 | bool should_be_filtered = false; |
| 1334 | for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth; |
| 1335 | ++hw_subset_index) { |
| 1336 | const auto &hw_subset_item = __kmp_hw_subset->at(index: hw_subset_index); |
| 1337 | int level = topology_levels[hw_subset_index]; |
| 1338 | if (level == -1) |
| 1339 | continue; |
| 1340 | if ((using_core_effs || using_core_types) && level == core_level) { |
| 1341 | // Look for the core attribute in KMP_HW_SUBSET which corresponds |
| 1342 | // to this hardware thread's core attribute. Use this num,offset plus |
| 1343 | // the running sub_id for the particular core attribute of this hardware |
| 1344 | // thread to determine if the hardware thread should be filtered or not. |
| 1345 | int attr_idx; |
| 1346 | kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type(); |
| 1347 | int core_eff = hw_thread.attrs.get_core_eff(); |
| 1348 | for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) { |
| 1349 | if (using_core_types && |
| 1350 | hw_subset_item.attr[attr_idx].get_core_type() == core_type) |
| 1351 | break; |
| 1352 | if (using_core_effs && |
| 1353 | hw_subset_item.attr[attr_idx].get_core_eff() == core_eff) |
| 1354 | break; |
| 1355 | } |
| 1356 | // This core attribute isn't in the KMP_HW_SUBSET so always filter it. |
| 1357 | if (attr_idx == hw_subset_item.num_attrs) { |
| 1358 | should_be_filtered = true; |
| 1359 | break; |
| 1360 | } |
| 1361 | int sub_id; |
| 1362 | int num = hw_subset_item.num[attr_idx]; |
| 1363 | int offset = hw_subset_item.offset[attr_idx]; |
| 1364 | if (using_core_types) |
| 1365 | sub_id = core_type_sub_ids[get_core_type_index(hw_thread)]; |
| 1366 | else |
| 1367 | sub_id = core_eff_sub_ids[get_core_eff_index(hw_thread)]; |
| 1368 | if (sub_id < offset || |
| 1369 | (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) { |
| 1370 | should_be_filtered = true; |
| 1371 | break; |
| 1372 | } |
| 1373 | } else { |
| 1374 | int sub_id; |
| 1375 | int num = hw_subset_item.num[0]; |
| 1376 | int offset = hw_subset_item.offset[0]; |
| 1377 | if (is_absolute) |
| 1378 | sub_id = abs_sub_ids[level]; |
| 1379 | else |
| 1380 | sub_id = hw_thread.sub_ids[level]; |
| 1381 | if (hw_thread.ids[level] == kmp_hw_thread_t::UNKNOWN_ID || |
| 1382 | sub_id < offset || |
| 1383 | (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) { |
| 1384 | should_be_filtered = true; |
| 1385 | break; |
| 1386 | } |
| 1387 | } |
| 1388 | } |
| 1389 | // Collect filtering information |
| 1390 | if (should_be_filtered) { |
| 1391 | KMP_CPU_CLR(hw_thread.os_id, filtered_mask); |
| 1392 | num_filtered++; |
| 1393 | } |
| 1394 | } |
| 1395 | |
| 1396 | // One last check that we shouldn't allow filtering entire machine |
| 1397 | if (num_filtered == num_hw_threads) { |
| 1398 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered); |
| 1399 | return false; |
| 1400 | } |
| 1401 | |
| 1402 | // Apply the filter |
| 1403 | restrict_to_mask(mask: filtered_mask); |
| 1404 | return true; |
| 1405 | } |
| 1406 | |
| 1407 | bool kmp_topology_t::is_close(int hwt1, int hwt2, |
| 1408 | const kmp_affinity_t &stgs) const { |
| 1409 | int hw_level = stgs.gran_levels; |
| 1410 | if (hw_level >= depth) |
| 1411 | return true; |
| 1412 | bool retval = true; |
| 1413 | const kmp_hw_thread_t &t1 = hw_threads[hwt1]; |
| 1414 | const kmp_hw_thread_t &t2 = hw_threads[hwt2]; |
| 1415 | if (stgs.flags.core_types_gran) |
| 1416 | return t1.attrs.get_core_type() == t2.attrs.get_core_type(); |
| 1417 | if (stgs.flags.core_effs_gran) |
| 1418 | return t1.attrs.get_core_eff() == t2.attrs.get_core_eff(); |
| 1419 | for (int i = 0; i < (depth - hw_level); ++i) { |
| 1420 | if (t1.ids[i] != t2.ids[i]) |
| 1421 | return false; |
| 1422 | } |
| 1423 | return retval; |
| 1424 | } |
| 1425 | |
| 1426 | //////////////////////////////////////////////////////////////////////////////// |
| 1427 | |
| 1428 | bool KMPAffinity::picked_api = false; |
| 1429 | |
| 1430 | void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } |
| 1431 | void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } |
| 1432 | void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } |
| 1433 | void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } |
| 1434 | void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } |
| 1435 | void KMPAffinity::operator delete(void *p) { __kmp_free(p); } |
| 1436 | |
| 1437 | void KMPAffinity::pick_api() { |
| 1438 | KMPAffinity *affinity_dispatch; |
| 1439 | if (picked_api) |
| 1440 | return; |
| 1441 | #if KMP_USE_HWLOC |
| 1442 | // Only use Hwloc if affinity isn't explicitly disabled and |
| 1443 | // user requests Hwloc topology method |
| 1444 | if (__kmp_affinity_top_method == affinity_top_method_hwloc && |
| 1445 | __kmp_affinity.type != affinity_disabled) { |
| 1446 | affinity_dispatch = new KMPHwlocAffinity(); |
| 1447 | __kmp_hwloc_available = true; |
| 1448 | } else |
| 1449 | #endif |
| 1450 | { |
| 1451 | affinity_dispatch = new KMPNativeAffinity(); |
| 1452 | } |
| 1453 | __kmp_affinity_dispatch = affinity_dispatch; |
| 1454 | picked_api = true; |
| 1455 | } |
| 1456 | |
| 1457 | void KMPAffinity::destroy_api() { |
| 1458 | if (__kmp_affinity_dispatch != NULL) { |
| 1459 | delete __kmp_affinity_dispatch; |
| 1460 | __kmp_affinity_dispatch = NULL; |
| 1461 | picked_api = false; |
| 1462 | } |
| 1463 | } |
| 1464 | |
| 1465 | #define KMP_ADVANCE_SCAN(scan) \ |
| 1466 | while (*scan != '\0') { \ |
| 1467 | scan++; \ |
| 1468 | } |
| 1469 | |
| 1470 | // Print the affinity mask to the character array in a pretty format. |
| 1471 | // The format is a comma separated list of non-negative integers or integer |
| 1472 | // ranges: e.g., 1,2,3-5,7,9-15 |
| 1473 | // The format can also be the string "{<empty>}" if no bits are set in mask |
| 1474 | char *__kmp_affinity_print_mask(char *buf, int buf_len, |
| 1475 | kmp_affin_mask_t *mask) { |
| 1476 | int start = 0, finish = 0, previous = 0; |
| 1477 | bool first_range; |
| 1478 | KMP_ASSERT(buf); |
| 1479 | KMP_ASSERT(buf_len >= 40); |
| 1480 | KMP_ASSERT(mask); |
| 1481 | char *scan = buf; |
| 1482 | char *end = buf + buf_len - 1; |
| 1483 | |
| 1484 | // Check for empty set. |
| 1485 | if (mask->begin() == mask->end()) { |
| 1486 | KMP_SNPRINTF(s: scan, maxlen: end - scan + 1, format: "{<empty>}" ); |
| 1487 | KMP_ADVANCE_SCAN(scan); |
| 1488 | KMP_ASSERT(scan <= end); |
| 1489 | return buf; |
| 1490 | } |
| 1491 | |
| 1492 | first_range = true; |
| 1493 | start = mask->begin(); |
| 1494 | while (1) { |
| 1495 | // Find next range |
| 1496 | // [start, previous] is inclusive range of contiguous bits in mask |
| 1497 | for (finish = mask->next(previous: start), previous = start; |
| 1498 | finish == previous + 1 && finish != mask->end(); |
| 1499 | finish = mask->next(previous: finish)) { |
| 1500 | previous = finish; |
| 1501 | } |
| 1502 | |
| 1503 | // The first range does not need a comma printed before it, but the rest |
| 1504 | // of the ranges do need a comma beforehand |
| 1505 | if (!first_range) { |
| 1506 | KMP_SNPRINTF(s: scan, maxlen: end - scan + 1, format: "%s" , "," ); |
| 1507 | KMP_ADVANCE_SCAN(scan); |
| 1508 | } else { |
| 1509 | first_range = false; |
| 1510 | } |
| 1511 | // Range with three or more contiguous bits in the affinity mask |
| 1512 | if (previous - start > 1) { |
| 1513 | KMP_SNPRINTF(s: scan, maxlen: end - scan + 1, format: "%u-%u" , start, previous); |
| 1514 | } else { |
| 1515 | // Range with one or two contiguous bits in the affinity mask |
| 1516 | KMP_SNPRINTF(s: scan, maxlen: end - scan + 1, format: "%u" , start); |
| 1517 | KMP_ADVANCE_SCAN(scan); |
| 1518 | if (previous - start > 0) { |
| 1519 | KMP_SNPRINTF(s: scan, maxlen: end - scan + 1, format: ",%u" , previous); |
| 1520 | } |
| 1521 | } |
| 1522 | KMP_ADVANCE_SCAN(scan); |
| 1523 | // Start over with new start point |
| 1524 | start = finish; |
| 1525 | if (start == mask->end()) |
| 1526 | break; |
| 1527 | // Check for overflow |
| 1528 | if (end - scan < 2) |
| 1529 | break; |
| 1530 | } |
| 1531 | |
| 1532 | // Check for overflow |
| 1533 | KMP_ASSERT(scan <= end); |
| 1534 | return buf; |
| 1535 | } |
| 1536 | #undef KMP_ADVANCE_SCAN |
| 1537 | |
| 1538 | // Print the affinity mask to the string buffer object in a pretty format |
| 1539 | // The format is a comma separated list of non-negative integers or integer |
| 1540 | // ranges: e.g., 1,2,3-5,7,9-15 |
| 1541 | // The format can also be the string "{<empty>}" if no bits are set in mask |
| 1542 | kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, |
| 1543 | kmp_affin_mask_t *mask) { |
| 1544 | int start = 0, finish = 0, previous = 0; |
| 1545 | bool first_range; |
| 1546 | KMP_ASSERT(buf); |
| 1547 | KMP_ASSERT(mask); |
| 1548 | |
| 1549 | __kmp_str_buf_clear(buffer: buf); |
| 1550 | |
| 1551 | // Check for empty set. |
| 1552 | if (mask->begin() == mask->end()) { |
| 1553 | __kmp_str_buf_print(buffer: buf, format: "%s" , "{<empty>}" ); |
| 1554 | return buf; |
| 1555 | } |
| 1556 | |
| 1557 | first_range = true; |
| 1558 | start = mask->begin(); |
| 1559 | while (1) { |
| 1560 | // Find next range |
| 1561 | // [start, previous] is inclusive range of contiguous bits in mask |
| 1562 | for (finish = mask->next(previous: start), previous = start; |
| 1563 | finish == previous + 1 && finish != mask->end(); |
| 1564 | finish = mask->next(previous: finish)) { |
| 1565 | previous = finish; |
| 1566 | } |
| 1567 | |
| 1568 | // The first range does not need a comma printed before it, but the rest |
| 1569 | // of the ranges do need a comma beforehand |
| 1570 | if (!first_range) { |
| 1571 | __kmp_str_buf_print(buffer: buf, format: "%s" , "," ); |
| 1572 | } else { |
| 1573 | first_range = false; |
| 1574 | } |
| 1575 | // Range with three or more contiguous bits in the affinity mask |
| 1576 | if (previous - start > 1) { |
| 1577 | __kmp_str_buf_print(buffer: buf, format: "%u-%u" , start, previous); |
| 1578 | } else { |
| 1579 | // Range with one or two contiguous bits in the affinity mask |
| 1580 | __kmp_str_buf_print(buffer: buf, format: "%u" , start); |
| 1581 | if (previous - start > 0) { |
| 1582 | __kmp_str_buf_print(buffer: buf, format: ",%u" , previous); |
| 1583 | } |
| 1584 | } |
| 1585 | // Start over with new start point |
| 1586 | start = finish; |
| 1587 | if (start == mask->end()) |
| 1588 | break; |
| 1589 | } |
| 1590 | return buf; |
| 1591 | } |
| 1592 | |
| 1593 | static kmp_affin_mask_t *__kmp_parse_cpu_list(const char *path) { |
| 1594 | kmp_affin_mask_t *mask; |
| 1595 | KMP_CPU_ALLOC(mask); |
| 1596 | KMP_CPU_ZERO(mask); |
| 1597 | #if KMP_OS_LINUX |
| 1598 | int n, begin_cpu, end_cpu; |
| 1599 | kmp_safe_raii_file_t file; |
| 1600 | auto skip_ws = [](FILE *f) { |
| 1601 | int c; |
| 1602 | do { |
| 1603 | c = fgetc(stream: f); |
| 1604 | } while (isspace(c)); |
| 1605 | if (c != EOF) |
| 1606 | ungetc(c: c, stream: f); |
| 1607 | }; |
| 1608 | // File contains CSV of integer ranges representing the CPUs |
| 1609 | // e.g., 1,2,4-7,9,11-15 |
| 1610 | int status = file.try_open(filename: path, mode: "r" ); |
| 1611 | if (status != 0) |
| 1612 | return mask; |
| 1613 | while (!feof(stream: file)) { |
| 1614 | skip_ws(file); |
| 1615 | n = fscanf(stream: file, format: "%d" , &begin_cpu); |
| 1616 | if (n != 1) |
| 1617 | break; |
| 1618 | skip_ws(file); |
| 1619 | int c = fgetc(stream: file); |
| 1620 | if (c == EOF || c == ',') { |
| 1621 | // Just single CPU |
| 1622 | end_cpu = begin_cpu; |
| 1623 | } else if (c == '-') { |
| 1624 | // Range of CPUs |
| 1625 | skip_ws(file); |
| 1626 | n = fscanf(stream: file, format: "%d" , &end_cpu); |
| 1627 | if (n != 1) |
| 1628 | break; |
| 1629 | skip_ws(file); |
| 1630 | c = fgetc(stream: file); // skip ',' |
| 1631 | } else { |
| 1632 | // Syntax problem |
| 1633 | break; |
| 1634 | } |
| 1635 | // Ensure a valid range of CPUs |
| 1636 | if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 || |
| 1637 | end_cpu >= __kmp_xproc || begin_cpu > end_cpu) { |
| 1638 | continue; |
| 1639 | } |
| 1640 | // Insert [begin_cpu, end_cpu] into mask |
| 1641 | for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) { |
| 1642 | KMP_CPU_SET(cpu, mask); |
| 1643 | } |
| 1644 | } |
| 1645 | #endif |
| 1646 | return mask; |
| 1647 | } |
| 1648 | |
| 1649 | // Return (possibly empty) affinity mask representing the offline CPUs |
| 1650 | // Caller must free the mask |
| 1651 | kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() { |
| 1652 | return __kmp_parse_cpu_list(path: "/sys/devices/system/cpu/offline" ); |
| 1653 | } |
| 1654 | |
| 1655 | // Return the number of available procs |
| 1656 | int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { |
| 1657 | int avail_proc = 0; |
| 1658 | KMP_CPU_ZERO(mask); |
| 1659 | |
| 1660 | #if KMP_GROUP_AFFINITY |
| 1661 | |
| 1662 | if (__kmp_num_proc_groups > 1) { |
| 1663 | int group; |
| 1664 | KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); |
| 1665 | for (group = 0; group < __kmp_num_proc_groups; group++) { |
| 1666 | int i; |
| 1667 | int num = __kmp_GetActiveProcessorCount(group); |
| 1668 | for (i = 0; i < num; i++) { |
| 1669 | KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); |
| 1670 | avail_proc++; |
| 1671 | } |
| 1672 | } |
| 1673 | } else |
| 1674 | |
| 1675 | #endif /* KMP_GROUP_AFFINITY */ |
| 1676 | |
| 1677 | { |
| 1678 | int proc; |
| 1679 | kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus(); |
| 1680 | for (proc = 0; proc < __kmp_xproc; proc++) { |
| 1681 | // Skip offline CPUs |
| 1682 | if (KMP_CPU_ISSET(proc, offline_cpus)) |
| 1683 | continue; |
| 1684 | KMP_CPU_SET(proc, mask); |
| 1685 | avail_proc++; |
| 1686 | } |
| 1687 | KMP_CPU_FREE(offline_cpus); |
| 1688 | } |
| 1689 | |
| 1690 | return avail_proc; |
| 1691 | } |
| 1692 | |
| 1693 | // All of the __kmp_affinity_create_*_map() routines should allocate the |
| 1694 | // internal topology object and set the layer ids for it. Each routine |
| 1695 | // returns a boolean on whether it was successful at doing so. |
| 1696 | kmp_affin_mask_t *__kmp_affin_fullMask = NULL; |
| 1697 | // Original mask is a subset of full mask in multiple processor groups topology |
| 1698 | kmp_affin_mask_t *__kmp_affin_origMask = NULL; |
| 1699 | |
| 1700 | #if KMP_USE_HWLOC |
| 1701 | static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { |
| 1702 | #if HWLOC_API_VERSION >= 0x00020000 |
| 1703 | return hwloc_obj_type_is_cache(obj->type); |
| 1704 | #else |
| 1705 | return obj->type == HWLOC_OBJ_CACHE; |
| 1706 | #endif |
| 1707 | } |
| 1708 | |
| 1709 | // Returns KMP_HW_* type derived from HWLOC_* type |
| 1710 | static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { |
| 1711 | |
| 1712 | if (__kmp_hwloc_is_cache_type(obj)) { |
| 1713 | if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) |
| 1714 | return KMP_HW_UNKNOWN; |
| 1715 | switch (obj->attr->cache.depth) { |
| 1716 | case 1: |
| 1717 | return KMP_HW_L1; |
| 1718 | case 2: |
| 1719 | #if KMP_MIC_SUPPORTED |
| 1720 | if (__kmp_mic_type == mic3) { |
| 1721 | return KMP_HW_TILE; |
| 1722 | } |
| 1723 | #endif |
| 1724 | return KMP_HW_L2; |
| 1725 | case 3: |
| 1726 | return KMP_HW_L3; |
| 1727 | } |
| 1728 | return KMP_HW_UNKNOWN; |
| 1729 | } |
| 1730 | |
| 1731 | switch (obj->type) { |
| 1732 | case HWLOC_OBJ_PACKAGE: |
| 1733 | return KMP_HW_SOCKET; |
| 1734 | case HWLOC_OBJ_NUMANODE: |
| 1735 | return KMP_HW_NUMA; |
| 1736 | case HWLOC_OBJ_CORE: |
| 1737 | return KMP_HW_CORE; |
| 1738 | case HWLOC_OBJ_PU: |
| 1739 | return KMP_HW_THREAD; |
| 1740 | case HWLOC_OBJ_GROUP: |
| 1741 | #if HWLOC_API_VERSION >= 0x00020000 |
| 1742 | if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE) |
| 1743 | return KMP_HW_DIE; |
| 1744 | else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE) |
| 1745 | return KMP_HW_TILE; |
| 1746 | else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE) |
| 1747 | return KMP_HW_MODULE; |
| 1748 | else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP) |
| 1749 | return KMP_HW_PROC_GROUP; |
| 1750 | #endif |
| 1751 | return KMP_HW_UNKNOWN; |
| 1752 | #if HWLOC_API_VERSION >= 0x00020100 |
| 1753 | case HWLOC_OBJ_DIE: |
| 1754 | return KMP_HW_DIE; |
| 1755 | #endif |
| 1756 | } |
| 1757 | return KMP_HW_UNKNOWN; |
| 1758 | } |
| 1759 | |
| 1760 | // Returns the number of objects of type 'type' below 'obj' within the topology |
| 1761 | // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is |
| 1762 | // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET |
| 1763 | // object. |
| 1764 | static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, |
| 1765 | hwloc_obj_type_t type) { |
| 1766 | int retval = 0; |
| 1767 | hwloc_obj_t first; |
| 1768 | for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, |
| 1769 | obj->logical_index, type, 0); |
| 1770 | first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, |
| 1771 | obj->type, first) == obj; |
| 1772 | first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, |
| 1773 | first)) { |
| 1774 | ++retval; |
| 1775 | } |
| 1776 | return retval; |
| 1777 | } |
| 1778 | |
| 1779 | // This gets the sub_id for a lower object under a higher object in the |
| 1780 | // topology tree |
| 1781 | static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, |
| 1782 | hwloc_obj_t lower) { |
| 1783 | hwloc_obj_t obj; |
| 1784 | hwloc_obj_type_t ltype = lower->type; |
| 1785 | int lindex = lower->logical_index - 1; |
| 1786 | int sub_id = 0; |
| 1787 | // Get the previous lower object |
| 1788 | obj = hwloc_get_obj_by_type(t, ltype, lindex); |
| 1789 | while (obj && lindex >= 0 && |
| 1790 | hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { |
| 1791 | if (obj->userdata) { |
| 1792 | sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); |
| 1793 | break; |
| 1794 | } |
| 1795 | sub_id++; |
| 1796 | lindex--; |
| 1797 | obj = hwloc_get_obj_by_type(t, ltype, lindex); |
| 1798 | } |
| 1799 | // store sub_id + 1 so that 0 is differed from NULL |
| 1800 | lower->userdata = RCAST(void *, sub_id + 1); |
| 1801 | return sub_id; |
| 1802 | } |
| 1803 | |
| 1804 | static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) { |
| 1805 | kmp_hw_t type; |
| 1806 | int hw_thread_index, sub_id; |
| 1807 | int depth; |
| 1808 | hwloc_obj_t pu, obj, root, prev; |
| 1809 | kmp_hw_t types[KMP_HW_LAST]; |
| 1810 | hwloc_obj_type_t hwloc_types[KMP_HW_LAST]; |
| 1811 | |
| 1812 | hwloc_topology_t tp = __kmp_hwloc_topology; |
| 1813 | *msg_id = kmp_i18n_null; |
| 1814 | if (__kmp_affinity.flags.verbose) { |
| 1815 | KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY" ); |
| 1816 | } |
| 1817 | |
| 1818 | if (!KMP_AFFINITY_CAPABLE()) { |
| 1819 | // Hack to try and infer the machine topology using only the data |
| 1820 | // available from hwloc on the current thread, and __kmp_xproc. |
| 1821 | KMP_ASSERT(__kmp_affinity.type == affinity_none); |
| 1822 | // hwloc only guarantees existance of PU object, so check PACKAGE and CORE |
| 1823 | hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); |
| 1824 | if (o != NULL) |
| 1825 | nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); |
| 1826 | else |
| 1827 | nCoresPerPkg = 1; // no PACKAGE found |
| 1828 | o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); |
| 1829 | if (o != NULL) |
| 1830 | __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); |
| 1831 | else |
| 1832 | __kmp_nThreadsPerCore = 1; // no CORE found |
| 1833 | if (__kmp_nThreadsPerCore == 0) |
| 1834 | __kmp_nThreadsPerCore = 1; |
| 1835 | __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; |
| 1836 | if (nCoresPerPkg == 0) |
| 1837 | nCoresPerPkg = 1; // to prevent possible division by 0 |
| 1838 | nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; |
| 1839 | return true; |
| 1840 | } |
| 1841 | |
| 1842 | #if HWLOC_API_VERSION >= 0x00020400 |
| 1843 | // Handle multiple types of cores if they exist on the system |
| 1844 | int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0); |
| 1845 | |
| 1846 | typedef struct kmp_hwloc_cpukinds_info_t { |
| 1847 | int efficiency; |
| 1848 | kmp_hw_core_type_t core_type; |
| 1849 | hwloc_bitmap_t mask; |
| 1850 | } kmp_hwloc_cpukinds_info_t; |
| 1851 | kmp_hwloc_cpukinds_info_t *cpukinds = nullptr; |
| 1852 | |
| 1853 | if (nr_cpu_kinds > 0) { |
| 1854 | unsigned nr_infos; |
| 1855 | struct hwloc_info_s *infos; |
| 1856 | cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate( |
| 1857 | sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds); |
| 1858 | for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) { |
| 1859 | cpukinds[idx].efficiency = -1; |
| 1860 | cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN; |
| 1861 | cpukinds[idx].mask = hwloc_bitmap_alloc(); |
| 1862 | if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask, |
| 1863 | &cpukinds[idx].efficiency, &nr_infos, &infos, |
| 1864 | 0) == 0) { |
| 1865 | for (unsigned i = 0; i < nr_infos; ++i) { |
| 1866 | if (__kmp_str_match("CoreType" , 8, infos[i].name)) { |
| 1867 | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 |
| 1868 | if (__kmp_str_match("IntelAtom" , 9, infos[i].value)) { |
| 1869 | cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM; |
| 1870 | break; |
| 1871 | } else if (__kmp_str_match("IntelCore" , 9, infos[i].value)) { |
| 1872 | cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE; |
| 1873 | break; |
| 1874 | } |
| 1875 | #endif |
| 1876 | } |
| 1877 | } |
| 1878 | } |
| 1879 | } |
| 1880 | } |
| 1881 | #endif |
| 1882 | |
| 1883 | root = hwloc_get_root_obj(tp); |
| 1884 | |
| 1885 | // Figure out the depth and types in the topology |
| 1886 | depth = 0; |
| 1887 | obj = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); |
| 1888 | while (obj && obj != root) { |
| 1889 | #if HWLOC_API_VERSION >= 0x00020000 |
| 1890 | if (obj->memory_arity) { |
| 1891 | hwloc_obj_t memory; |
| 1892 | for (memory = obj->memory_first_child; memory; |
| 1893 | memory = hwloc_get_next_child(tp, obj, memory)) { |
| 1894 | if (memory->type == HWLOC_OBJ_NUMANODE) |
| 1895 | break; |
| 1896 | } |
| 1897 | if (memory && memory->type == HWLOC_OBJ_NUMANODE) { |
| 1898 | types[depth] = KMP_HW_NUMA; |
| 1899 | hwloc_types[depth] = memory->type; |
| 1900 | depth++; |
| 1901 | } |
| 1902 | } |
| 1903 | #endif |
| 1904 | type = __kmp_hwloc_type_2_topology_type(obj); |
| 1905 | if (type != KMP_HW_UNKNOWN) { |
| 1906 | types[depth] = type; |
| 1907 | hwloc_types[depth] = obj->type; |
| 1908 | depth++; |
| 1909 | } |
| 1910 | obj = obj->parent; |
| 1911 | } |
| 1912 | KMP_ASSERT(depth > 0); |
| 1913 | |
| 1914 | // Get the order for the types correct |
| 1915 | for (int i = 0, j = depth - 1; i < j; ++i, --j) { |
| 1916 | hwloc_obj_type_t hwloc_temp = hwloc_types[i]; |
| 1917 | kmp_hw_t temp = types[i]; |
| 1918 | types[i] = types[j]; |
| 1919 | types[j] = temp; |
| 1920 | hwloc_types[i] = hwloc_types[j]; |
| 1921 | hwloc_types[j] = hwloc_temp; |
| 1922 | } |
| 1923 | |
| 1924 | // Allocate the data structure to be returned. |
| 1925 | __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); |
| 1926 | |
| 1927 | hw_thread_index = 0; |
| 1928 | pu = NULL; |
| 1929 | while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) { |
| 1930 | int index = depth - 1; |
| 1931 | bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); |
| 1932 | kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); |
| 1933 | if (included) { |
| 1934 | hw_thread.clear(); |
| 1935 | hw_thread.ids[index] = pu->logical_index; |
| 1936 | hw_thread.os_id = pu->os_index; |
| 1937 | hw_thread.original_idx = hw_thread_index; |
| 1938 | // If multiple core types, then set that attribute for the hardware thread |
| 1939 | #if HWLOC_API_VERSION >= 0x00020400 |
| 1940 | if (cpukinds) { |
| 1941 | int cpukind_index = -1; |
| 1942 | for (int i = 0; i < nr_cpu_kinds; ++i) { |
| 1943 | if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) { |
| 1944 | cpukind_index = i; |
| 1945 | break; |
| 1946 | } |
| 1947 | } |
| 1948 | if (cpukind_index >= 0) { |
| 1949 | hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type); |
| 1950 | hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency); |
| 1951 | } |
| 1952 | } |
| 1953 | #endif |
| 1954 | index--; |
| 1955 | } |
| 1956 | obj = pu; |
| 1957 | prev = obj; |
| 1958 | while (obj != root && obj != NULL) { |
| 1959 | obj = obj->parent; |
| 1960 | #if HWLOC_API_VERSION >= 0x00020000 |
| 1961 | // NUMA Nodes are handled differently since they are not within the |
| 1962 | // parent/child structure anymore. They are separate children |
| 1963 | // of obj (memory_first_child points to first memory child) |
| 1964 | if (obj->memory_arity) { |
| 1965 | hwloc_obj_t memory; |
| 1966 | for (memory = obj->memory_first_child; memory; |
| 1967 | memory = hwloc_get_next_child(tp, obj, memory)) { |
| 1968 | if (memory->type == HWLOC_OBJ_NUMANODE) |
| 1969 | break; |
| 1970 | } |
| 1971 | if (memory && memory->type == HWLOC_OBJ_NUMANODE) { |
| 1972 | sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); |
| 1973 | if (included) { |
| 1974 | hw_thread.ids[index] = memory->logical_index; |
| 1975 | hw_thread.ids[index + 1] = sub_id; |
| 1976 | index--; |
| 1977 | } |
| 1978 | } |
| 1979 | prev = obj; |
| 1980 | } |
| 1981 | #endif |
| 1982 | type = __kmp_hwloc_type_2_topology_type(obj); |
| 1983 | if (type != KMP_HW_UNKNOWN) { |
| 1984 | sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); |
| 1985 | if (included) { |
| 1986 | hw_thread.ids[index] = obj->logical_index; |
| 1987 | hw_thread.ids[index + 1] = sub_id; |
| 1988 | index--; |
| 1989 | } |
| 1990 | prev = obj; |
| 1991 | } |
| 1992 | } |
| 1993 | if (included) |
| 1994 | hw_thread_index++; |
| 1995 | } |
| 1996 | |
| 1997 | #if HWLOC_API_VERSION >= 0x00020400 |
| 1998 | // Free the core types information |
| 1999 | if (cpukinds) { |
| 2000 | for (int idx = 0; idx < nr_cpu_kinds; ++idx) |
| 2001 | hwloc_bitmap_free(cpukinds[idx].mask); |
| 2002 | __kmp_free(cpukinds); |
| 2003 | } |
| 2004 | #endif |
| 2005 | __kmp_topology->sort_ids(); |
| 2006 | return true; |
| 2007 | } |
| 2008 | #endif // KMP_USE_HWLOC |
| 2009 | |
| 2010 | // If we don't know how to retrieve the machine's processor topology, or |
| 2011 | // encounter an error in doing so, this routine is called to form a "flat" |
| 2012 | // mapping of os thread id's <-> processor id's. |
| 2013 | static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) { |
| 2014 | *msg_id = kmp_i18n_null; |
| 2015 | int depth = 3; |
| 2016 | kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD}; |
| 2017 | |
| 2018 | if (__kmp_affinity.flags.verbose) { |
| 2019 | KMP_INFORM(UsingFlatOS, "KMP_AFFINITY" ); |
| 2020 | } |
| 2021 | |
| 2022 | // Even if __kmp_affinity.type == affinity_none, this routine might still |
| 2023 | // be called to set __kmp_ncores, as well as |
| 2024 | // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. |
| 2025 | if (!KMP_AFFINITY_CAPABLE()) { |
| 2026 | KMP_ASSERT(__kmp_affinity.type == affinity_none); |
| 2027 | __kmp_ncores = nPackages = __kmp_xproc; |
| 2028 | __kmp_nThreadsPerCore = nCoresPerPkg = 1; |
| 2029 | return true; |
| 2030 | } |
| 2031 | |
| 2032 | // When affinity is off, this routine will still be called to set |
| 2033 | // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. |
| 2034 | // Make sure all these vars are set correctly, and return now if affinity is |
| 2035 | // not enabled. |
| 2036 | __kmp_ncores = nPackages = __kmp_avail_proc; |
| 2037 | __kmp_nThreadsPerCore = nCoresPerPkg = 1; |
| 2038 | |
| 2039 | // Construct the data structure to be returned. |
| 2040 | __kmp_topology = kmp_topology_t::allocate(nproc: __kmp_avail_proc, ndepth: depth, types); |
| 2041 | int avail_ct = 0; |
| 2042 | int i; |
| 2043 | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { |
| 2044 | // Skip this proc if it is not included in the machine model. |
| 2045 | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { |
| 2046 | continue; |
| 2047 | } |
| 2048 | kmp_hw_thread_t &hw_thread = __kmp_topology->at(index: avail_ct); |
| 2049 | hw_thread.clear(); |
| 2050 | hw_thread.os_id = i; |
| 2051 | hw_thread.original_idx = avail_ct; |
| 2052 | hw_thread.ids[0] = i; |
| 2053 | hw_thread.ids[1] = 0; |
| 2054 | hw_thread.ids[2] = 0; |
| 2055 | avail_ct++; |
| 2056 | } |
| 2057 | if (__kmp_affinity.flags.verbose) { |
| 2058 | KMP_INFORM(OSProcToPackage, "KMP_AFFINITY" ); |
| 2059 | } |
| 2060 | return true; |
| 2061 | } |
| 2062 | |
| 2063 | #if KMP_GROUP_AFFINITY |
| 2064 | // If multiple Windows* OS processor groups exist, we can create a 2-level |
| 2065 | // topology map with the groups at level 0 and the individual procs at level 1. |
| 2066 | // This facilitates letting the threads float among all procs in a group, |
| 2067 | // if granularity=group (the default when there are multiple groups). |
| 2068 | static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) { |
| 2069 | *msg_id = kmp_i18n_null; |
| 2070 | int depth = 3; |
| 2071 | kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD}; |
| 2072 | const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR); |
| 2073 | |
| 2074 | if (__kmp_affinity.flags.verbose) { |
| 2075 | KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY" ); |
| 2076 | } |
| 2077 | |
| 2078 | // If we aren't affinity capable, then use flat topology |
| 2079 | if (!KMP_AFFINITY_CAPABLE()) { |
| 2080 | KMP_ASSERT(__kmp_affinity.type == affinity_none); |
| 2081 | nPackages = __kmp_num_proc_groups; |
| 2082 | __kmp_nThreadsPerCore = 1; |
| 2083 | __kmp_ncores = __kmp_xproc; |
| 2084 | nCoresPerPkg = nPackages / __kmp_ncores; |
| 2085 | return true; |
| 2086 | } |
| 2087 | |
| 2088 | // Construct the data structure to be returned. |
| 2089 | __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); |
| 2090 | int avail_ct = 0; |
| 2091 | int i; |
| 2092 | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { |
| 2093 | // Skip this proc if it is not included in the machine model. |
| 2094 | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { |
| 2095 | continue; |
| 2096 | } |
| 2097 | kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); |
| 2098 | hw_thread.clear(); |
| 2099 | hw_thread.os_id = i; |
| 2100 | hw_thread.original_idx = avail_ct; |
| 2101 | hw_thread.ids[0] = i / BITS_PER_GROUP; |
| 2102 | hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP; |
| 2103 | avail_ct++; |
| 2104 | } |
| 2105 | return true; |
| 2106 | } |
| 2107 | #endif /* KMP_GROUP_AFFINITY */ |
| 2108 | |
| 2109 | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 |
| 2110 | |
| 2111 | template <kmp_uint32 LSB, kmp_uint32 MSB> |
| 2112 | static inline unsigned (kmp_uint32 v) { |
| 2113 | const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; |
| 2114 | const kmp_uint32 SHIFT_RIGHT = LSB; |
| 2115 | kmp_uint32 retval = v; |
| 2116 | retval <<= SHIFT_LEFT; |
| 2117 | retval >>= (SHIFT_LEFT + SHIFT_RIGHT); |
| 2118 | return retval; |
| 2119 | } |
| 2120 | |
| 2121 | static int __kmp_cpuid_mask_width(int count) { |
| 2122 | int r = 0; |
| 2123 | |
| 2124 | while ((1 << r) < count) |
| 2125 | ++r; |
| 2126 | return r; |
| 2127 | } |
| 2128 | |
| 2129 | class apicThreadInfo { |
| 2130 | public: |
| 2131 | unsigned osId; // param to __kmp_affinity_bind_thread |
| 2132 | unsigned apicId; // from cpuid after binding |
| 2133 | unsigned maxCoresPerPkg; // "" |
| 2134 | unsigned maxThreadsPerPkg; // "" |
| 2135 | unsigned pkgId; // inferred from above values |
| 2136 | unsigned coreId; // "" |
| 2137 | unsigned threadId; // "" |
| 2138 | }; |
| 2139 | |
| 2140 | static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, |
| 2141 | const void *b) { |
| 2142 | const apicThreadInfo *aa = (const apicThreadInfo *)a; |
| 2143 | const apicThreadInfo *bb = (const apicThreadInfo *)b; |
| 2144 | if (aa->pkgId < bb->pkgId) |
| 2145 | return -1; |
| 2146 | if (aa->pkgId > bb->pkgId) |
| 2147 | return 1; |
| 2148 | if (aa->coreId < bb->coreId) |
| 2149 | return -1; |
| 2150 | if (aa->coreId > bb->coreId) |
| 2151 | return 1; |
| 2152 | if (aa->threadId < bb->threadId) |
| 2153 | return -1; |
| 2154 | if (aa->threadId > bb->threadId) |
| 2155 | return 1; |
| 2156 | return 0; |
| 2157 | } |
| 2158 | |
| 2159 | class cpuid_cache_info_t { |
| 2160 | public: |
| 2161 | struct info_t { |
| 2162 | unsigned level = 0; |
| 2163 | unsigned mask = 0; |
| 2164 | bool operator==(const info_t &rhs) const { |
| 2165 | return level == rhs.level && mask == rhs.mask; |
| 2166 | } |
| 2167 | bool operator!=(const info_t &rhs) const { return !operator==(rhs); } |
| 2168 | }; |
| 2169 | cpuid_cache_info_t() : depth(0) { |
| 2170 | table[MAX_CACHE_LEVEL].level = 0; |
| 2171 | table[MAX_CACHE_LEVEL].mask = 0; |
| 2172 | } |
| 2173 | size_t get_depth() const { return depth; } |
| 2174 | info_t &operator[](size_t index) { return table[index]; } |
| 2175 | const info_t &operator[](size_t index) const { return table[index]; } |
| 2176 | bool operator==(const cpuid_cache_info_t &rhs) const { |
| 2177 | if (rhs.depth != depth) |
| 2178 | return false; |
| 2179 | for (size_t i = 0; i < depth; ++i) |
| 2180 | if (table[i] != rhs.table[i]) |
| 2181 | return false; |
| 2182 | return true; |
| 2183 | } |
| 2184 | bool operator!=(const cpuid_cache_info_t &rhs) const { |
| 2185 | return !operator==(rhs); |
| 2186 | } |
| 2187 | // Get cache information assocaited with L1, L2, L3 cache, etc. |
| 2188 | // If level does not exist, then return the "NULL" level (level 0) |
| 2189 | const info_t &get_level(unsigned level) const { |
| 2190 | for (size_t i = 0; i < depth; ++i) { |
| 2191 | if (table[i].level == level) |
| 2192 | return table[i]; |
| 2193 | } |
| 2194 | return table[MAX_CACHE_LEVEL]; |
| 2195 | } |
| 2196 | |
| 2197 | static kmp_hw_t get_topology_type(unsigned level) { |
| 2198 | KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL); |
| 2199 | switch (level) { |
| 2200 | case 1: |
| 2201 | return KMP_HW_L1; |
| 2202 | case 2: |
| 2203 | return KMP_HW_L2; |
| 2204 | case 3: |
| 2205 | return KMP_HW_L3; |
| 2206 | } |
| 2207 | return KMP_HW_UNKNOWN; |
| 2208 | } |
| 2209 | void get_leaf4_levels() { |
| 2210 | unsigned level = 0; |
| 2211 | while (depth < MAX_CACHE_LEVEL) { |
| 2212 | unsigned cache_type, max_threads_sharing; |
| 2213 | unsigned cache_level, cache_mask_width; |
| 2214 | kmp_cpuid buf2; |
| 2215 | __kmp_x86_cpuid(leaf: 4, subleaf: level, p: &buf2); |
| 2216 | cache_type = __kmp_extract_bits<0, 4>(v: buf2.eax); |
| 2217 | if (!cache_type) |
| 2218 | break; |
| 2219 | // Skip instruction caches |
| 2220 | if (cache_type == 2) { |
| 2221 | level++; |
| 2222 | continue; |
| 2223 | } |
| 2224 | max_threads_sharing = __kmp_extract_bits<14, 25>(v: buf2.eax) + 1; |
| 2225 | cache_mask_width = __kmp_cpuid_mask_width(count: max_threads_sharing); |
| 2226 | cache_level = __kmp_extract_bits<5, 7>(v: buf2.eax); |
| 2227 | table[depth].level = cache_level; |
| 2228 | table[depth].mask = ((-1) << cache_mask_width); |
| 2229 | depth++; |
| 2230 | level++; |
| 2231 | } |
| 2232 | } |
| 2233 | static const int MAX_CACHE_LEVEL = 3; |
| 2234 | |
| 2235 | private: |
| 2236 | size_t depth; |
| 2237 | info_t table[MAX_CACHE_LEVEL + 1]; |
| 2238 | }; |
| 2239 | |
| 2240 | // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use |
| 2241 | // an algorithm which cycles through the available os threads, setting |
| 2242 | // the current thread's affinity mask to that thread, and then retrieves |
| 2243 | // the Apic Id for each thread context using the cpuid instruction. |
| 2244 | static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) { |
| 2245 | kmp_cpuid buf; |
| 2246 | *msg_id = kmp_i18n_null; |
| 2247 | |
| 2248 | if (__kmp_affinity.flags.verbose) { |
| 2249 | KMP_INFORM(AffInfoStr, "KMP_AFFINITY" , KMP_I18N_STR(DecodingLegacyAPIC)); |
| 2250 | } |
| 2251 | |
| 2252 | // Check if cpuid leaf 4 is supported. |
| 2253 | __kmp_x86_cpuid(leaf: 0, subleaf: 0, p: &buf); |
| 2254 | if (buf.eax < 4) { |
| 2255 | *msg_id = kmp_i18n_str_NoLeaf4Support; |
| 2256 | return false; |
| 2257 | } |
| 2258 | |
| 2259 | // The algorithm used starts by setting the affinity to each available thread |
| 2260 | // and retrieving info from the cpuid instruction, so if we are not capable of |
| 2261 | // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we |
| 2262 | // need to do something else - use the defaults that we calculated from |
| 2263 | // issuing cpuid without binding to each proc. |
| 2264 | if (!KMP_AFFINITY_CAPABLE()) { |
| 2265 | // Hack to try and infer the machine topology using only the data |
| 2266 | // available from cpuid on the current thread, and __kmp_xproc. |
| 2267 | KMP_ASSERT(__kmp_affinity.type == affinity_none); |
| 2268 | |
| 2269 | // Get an upper bound on the number of threads per package using cpuid(1). |
| 2270 | // On some OS/chps combinations where HT is supported by the chip but is |
| 2271 | // disabled, this value will be 2 on a single core chip. Usually, it will be |
| 2272 | // 2 if HT is enabled and 1 if HT is disabled. |
| 2273 | __kmp_x86_cpuid(leaf: 1, subleaf: 0, p: &buf); |
| 2274 | int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; |
| 2275 | if (maxThreadsPerPkg == 0) { |
| 2276 | maxThreadsPerPkg = 1; |
| 2277 | } |
| 2278 | |
| 2279 | // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded |
| 2280 | // value. |
| 2281 | // |
| 2282 | // The author of cpu_count.cpp treated this only an upper bound on the |
| 2283 | // number of cores, but I haven't seen any cases where it was greater than |
| 2284 | // the actual number of cores, so we will treat it as exact in this block of |
| 2285 | // code. |
| 2286 | // |
| 2287 | // First, we need to check if cpuid(4) is supported on this chip. To see if |
| 2288 | // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or |
| 2289 | // greater. |
| 2290 | __kmp_x86_cpuid(leaf: 0, subleaf: 0, p: &buf); |
| 2291 | if (buf.eax >= 4) { |
| 2292 | __kmp_x86_cpuid(leaf: 4, subleaf: 0, p: &buf); |
| 2293 | nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; |
| 2294 | } else { |
| 2295 | nCoresPerPkg = 1; |
| 2296 | } |
| 2297 | |
| 2298 | // There is no way to reliably tell if HT is enabled without issuing the |
| 2299 | // cpuid instruction from every thread, can correlating the cpuid info, so |
| 2300 | // if the machine is not affinity capable, we assume that HT is off. We have |
| 2301 | // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine |
| 2302 | // does not support HT. |
| 2303 | // |
| 2304 | // - Older OSes are usually found on machines with older chips, which do not |
| 2305 | // support HT. |
| 2306 | // - The performance penalty for mistakenly identifying a machine as HT when |
| 2307 | // it isn't (which results in blocktime being incorrectly set to 0) is |
| 2308 | // greater than the penalty when for mistakenly identifying a machine as |
| 2309 | // being 1 thread/core when it is really HT enabled (which results in |
| 2310 | // blocktime being incorrectly set to a positive value). |
| 2311 | __kmp_ncores = __kmp_xproc; |
| 2312 | nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; |
| 2313 | __kmp_nThreadsPerCore = 1; |
| 2314 | return true; |
| 2315 | } |
| 2316 | |
| 2317 | // From here on, we can assume that it is safe to call |
| 2318 | // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if |
| 2319 | // __kmp_affinity.type = affinity_none. |
| 2320 | |
| 2321 | // Save the affinity mask for the current thread. |
| 2322 | kmp_affinity_raii_t previous_affinity; |
| 2323 | |
| 2324 | // Run through each of the available contexts, binding the current thread |
| 2325 | // to it, and obtaining the pertinent information using the cpuid instr. |
| 2326 | // |
| 2327 | // The relevant information is: |
| 2328 | // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context |
| 2329 | // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. |
| 2330 | // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value |
| 2331 | // of this field determines the width of the core# + thread# fields in the |
| 2332 | // Apic Id. It is also an upper bound on the number of threads per |
| 2333 | // package, but it has been verified that situations happen were it is not |
| 2334 | // exact. In particular, on certain OS/chip combinations where Intel(R) |
| 2335 | // Hyper-Threading Technology is supported by the chip but has been |
| 2336 | // disabled, the value of this field will be 2 (for a single core chip). |
| 2337 | // On other OS/chip combinations supporting Intel(R) Hyper-Threading |
| 2338 | // Technology, the value of this field will be 1 when Intel(R) |
| 2339 | // Hyper-Threading Technology is disabled and 2 when it is enabled. |
| 2340 | // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value |
| 2341 | // of this field (+1) determines the width of the core# field in the Apic |
| 2342 | // Id. The comments in "cpucount.cpp" say that this value is an upper |
| 2343 | // bound, but the IA-32 architecture manual says that it is exactly the |
| 2344 | // number of cores per package, and I haven't seen any case where it |
| 2345 | // wasn't. |
| 2346 | // |
| 2347 | // From this information, deduce the package Id, core Id, and thread Id, |
| 2348 | // and set the corresponding fields in the apicThreadInfo struct. |
| 2349 | unsigned i; |
| 2350 | apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( |
| 2351 | __kmp_avail_proc * sizeof(apicThreadInfo)); |
| 2352 | unsigned nApics = 0; |
| 2353 | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { |
| 2354 | // Skip this proc if it is not included in the machine model. |
| 2355 | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { |
| 2356 | continue; |
| 2357 | } |
| 2358 | KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); |
| 2359 | |
| 2360 | __kmp_affinity_dispatch->bind_thread(proc: i); |
| 2361 | threadInfo[nApics].osId = i; |
| 2362 | |
| 2363 | // The apic id and max threads per pkg come from cpuid(1). |
| 2364 | __kmp_x86_cpuid(leaf: 1, subleaf: 0, p: &buf); |
| 2365 | if (((buf.edx >> 9) & 1) == 0) { |
| 2366 | __kmp_free(threadInfo); |
| 2367 | *msg_id = kmp_i18n_str_ApicNotPresent; |
| 2368 | return false; |
| 2369 | } |
| 2370 | threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; |
| 2371 | threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; |
| 2372 | if (threadInfo[nApics].maxThreadsPerPkg == 0) { |
| 2373 | threadInfo[nApics].maxThreadsPerPkg = 1; |
| 2374 | } |
| 2375 | |
| 2376 | // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded |
| 2377 | // value. |
| 2378 | // |
| 2379 | // First, we need to check if cpuid(4) is supported on this chip. To see if |
| 2380 | // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n |
| 2381 | // or greater. |
| 2382 | __kmp_x86_cpuid(leaf: 0, subleaf: 0, p: &buf); |
| 2383 | if (buf.eax >= 4) { |
| 2384 | __kmp_x86_cpuid(leaf: 4, subleaf: 0, p: &buf); |
| 2385 | threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; |
| 2386 | } else { |
| 2387 | threadInfo[nApics].maxCoresPerPkg = 1; |
| 2388 | } |
| 2389 | |
| 2390 | // Infer the pkgId / coreId / threadId using only the info obtained locally. |
| 2391 | int widthCT = __kmp_cpuid_mask_width(count: threadInfo[nApics].maxThreadsPerPkg); |
| 2392 | threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; |
| 2393 | |
| 2394 | int widthC = __kmp_cpuid_mask_width(count: threadInfo[nApics].maxCoresPerPkg); |
| 2395 | int widthT = widthCT - widthC; |
| 2396 | if (widthT < 0) { |
| 2397 | // I've never seen this one happen, but I suppose it could, if the cpuid |
| 2398 | // instruction on a chip was really screwed up. Make sure to restore the |
| 2399 | // affinity mask before the tail call. |
| 2400 | __kmp_free(threadInfo); |
| 2401 | *msg_id = kmp_i18n_str_InvalidCpuidInfo; |
| 2402 | return false; |
| 2403 | } |
| 2404 | |
| 2405 | int maskC = (1 << widthC) - 1; |
| 2406 | threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; |
| 2407 | |
| 2408 | int maskT = (1 << widthT) - 1; |
| 2409 | threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; |
| 2410 | |
| 2411 | nApics++; |
| 2412 | } |
| 2413 | |
| 2414 | // We've collected all the info we need. |
| 2415 | // Restore the old affinity mask for this thread. |
| 2416 | previous_affinity.restore(); |
| 2417 | |
| 2418 | // Sort the threadInfo table by physical Id. |
| 2419 | qsort(base: threadInfo, nmemb: nApics, size: sizeof(*threadInfo), |
| 2420 | compar: __kmp_affinity_cmp_apicThreadInfo_phys_id); |
| 2421 | |
| 2422 | // The table is now sorted by pkgId / coreId / threadId, but we really don't |
| 2423 | // know the radix of any of the fields. pkgId's may be sparsely assigned among |
| 2424 | // the chips on a system. Although coreId's are usually assigned |
| 2425 | // [0 .. coresPerPkg-1] and threadId's are usually assigned |
| 2426 | // [0..threadsPerCore-1], we don't want to make any such assumptions. |
| 2427 | // |
| 2428 | // For that matter, we don't know what coresPerPkg and threadsPerCore (or the |
| 2429 | // total # packages) are at this point - we want to determine that now. We |
| 2430 | // only have an upper bound on the first two figures. |
| 2431 | // |
| 2432 | // We also perform a consistency check at this point: the values returned by |
| 2433 | // the cpuid instruction for any thread bound to a given package had better |
| 2434 | // return the same info for maxThreadsPerPkg and maxCoresPerPkg. |
| 2435 | nPackages = 1; |
| 2436 | nCoresPerPkg = 1; |
| 2437 | __kmp_nThreadsPerCore = 1; |
| 2438 | unsigned nCores = 1; |
| 2439 | |
| 2440 | unsigned pkgCt = 1; // to determine radii |
| 2441 | unsigned lastPkgId = threadInfo[0].pkgId; |
| 2442 | unsigned coreCt = 1; |
| 2443 | unsigned lastCoreId = threadInfo[0].coreId; |
| 2444 | unsigned threadCt = 1; |
| 2445 | unsigned lastThreadId = threadInfo[0].threadId; |
| 2446 | |
| 2447 | // intra-pkg consist checks |
| 2448 | unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; |
| 2449 | unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; |
| 2450 | |
| 2451 | for (i = 1; i < nApics; i++) { |
| 2452 | if (threadInfo[i].pkgId != lastPkgId) { |
| 2453 | nCores++; |
| 2454 | pkgCt++; |
| 2455 | lastPkgId = threadInfo[i].pkgId; |
| 2456 | if ((int)coreCt > nCoresPerPkg) |
| 2457 | nCoresPerPkg = coreCt; |
| 2458 | coreCt = 1; |
| 2459 | lastCoreId = threadInfo[i].coreId; |
| 2460 | if ((int)threadCt > __kmp_nThreadsPerCore) |
| 2461 | __kmp_nThreadsPerCore = threadCt; |
| 2462 | threadCt = 1; |
| 2463 | lastThreadId = threadInfo[i].threadId; |
| 2464 | |
| 2465 | // This is a different package, so go on to the next iteration without |
| 2466 | // doing any consistency checks. Reset the consistency check vars, though. |
| 2467 | prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; |
| 2468 | prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; |
| 2469 | continue; |
| 2470 | } |
| 2471 | |
| 2472 | if (threadInfo[i].coreId != lastCoreId) { |
| 2473 | nCores++; |
| 2474 | coreCt++; |
| 2475 | lastCoreId = threadInfo[i].coreId; |
| 2476 | if ((int)threadCt > __kmp_nThreadsPerCore) |
| 2477 | __kmp_nThreadsPerCore = threadCt; |
| 2478 | threadCt = 1; |
| 2479 | lastThreadId = threadInfo[i].threadId; |
| 2480 | } else if (threadInfo[i].threadId != lastThreadId) { |
| 2481 | threadCt++; |
| 2482 | lastThreadId = threadInfo[i].threadId; |
| 2483 | } else { |
| 2484 | __kmp_free(threadInfo); |
| 2485 | *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; |
| 2486 | return false; |
| 2487 | } |
| 2488 | |
| 2489 | // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg |
| 2490 | // fields agree between all the threads bounds to a given package. |
| 2491 | if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || |
| 2492 | (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { |
| 2493 | __kmp_free(threadInfo); |
| 2494 | *msg_id = kmp_i18n_str_InconsistentCpuidInfo; |
| 2495 | return false; |
| 2496 | } |
| 2497 | } |
| 2498 | // When affinity is off, this routine will still be called to set |
| 2499 | // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. |
| 2500 | // Make sure all these vars are set correctly |
| 2501 | nPackages = pkgCt; |
| 2502 | if ((int)coreCt > nCoresPerPkg) |
| 2503 | nCoresPerPkg = coreCt; |
| 2504 | if ((int)threadCt > __kmp_nThreadsPerCore) |
| 2505 | __kmp_nThreadsPerCore = threadCt; |
| 2506 | __kmp_ncores = nCores; |
| 2507 | KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); |
| 2508 | |
| 2509 | // Now that we've determined the number of packages, the number of cores per |
| 2510 | // package, and the number of threads per core, we can construct the data |
| 2511 | // structure that is to be returned. |
| 2512 | int idx = 0; |
| 2513 | int pkgLevel = 0; |
| 2514 | int coreLevel = 1; |
| 2515 | int threadLevel = 2; |
| 2516 | //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); |
| 2517 | int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); |
| 2518 | kmp_hw_t types[3]; |
| 2519 | if (pkgLevel >= 0) |
| 2520 | types[idx++] = KMP_HW_SOCKET; |
| 2521 | if (coreLevel >= 0) |
| 2522 | types[idx++] = KMP_HW_CORE; |
| 2523 | if (threadLevel >= 0) |
| 2524 | types[idx++] = KMP_HW_THREAD; |
| 2525 | |
| 2526 | KMP_ASSERT(depth > 0); |
| 2527 | __kmp_topology = kmp_topology_t::allocate(nproc: nApics, ndepth: depth, types); |
| 2528 | |
| 2529 | for (i = 0; i < nApics; ++i) { |
| 2530 | idx = 0; |
| 2531 | unsigned os = threadInfo[i].osId; |
| 2532 | kmp_hw_thread_t &hw_thread = __kmp_topology->at(index: i); |
| 2533 | hw_thread.clear(); |
| 2534 | |
| 2535 | if (pkgLevel >= 0) { |
| 2536 | hw_thread.ids[idx++] = threadInfo[i].pkgId; |
| 2537 | } |
| 2538 | if (coreLevel >= 0) { |
| 2539 | hw_thread.ids[idx++] = threadInfo[i].coreId; |
| 2540 | } |
| 2541 | if (threadLevel >= 0) { |
| 2542 | hw_thread.ids[idx++] = threadInfo[i].threadId; |
| 2543 | } |
| 2544 | hw_thread.os_id = os; |
| 2545 | hw_thread.original_idx = i; |
| 2546 | } |
| 2547 | |
| 2548 | __kmp_free(threadInfo); |
| 2549 | __kmp_topology->sort_ids(); |
| 2550 | if (!__kmp_topology->check_ids()) { |
| 2551 | kmp_topology_t::deallocate(topology: __kmp_topology); |
| 2552 | __kmp_topology = nullptr; |
| 2553 | *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; |
| 2554 | return false; |
| 2555 | } |
| 2556 | return true; |
| 2557 | } |
| 2558 | |
| 2559 | // Hybrid cpu detection using CPUID.1A |
| 2560 | // Thread should be pinned to processor already |
| 2561 | static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency, |
| 2562 | unsigned *native_model_id) { |
| 2563 | kmp_cpuid buf; |
| 2564 | __kmp_x86_cpuid(leaf: 0x1a, subleaf: 0, p: &buf); |
| 2565 | *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(v: buf.eax); |
| 2566 | switch (*type) { |
| 2567 | case KMP_HW_CORE_TYPE_ATOM: |
| 2568 | *efficiency = 0; |
| 2569 | break; |
| 2570 | case KMP_HW_CORE_TYPE_CORE: |
| 2571 | *efficiency = 1; |
| 2572 | break; |
| 2573 | default: |
| 2574 | *efficiency = 0; |
| 2575 | } |
| 2576 | *native_model_id = __kmp_extract_bits<0, 23>(v: buf.eax); |
| 2577 | } |
| 2578 | |
| 2579 | // Intel(R) microarchitecture code name Nehalem, Dunnington and later |
| 2580 | // architectures support a newer interface for specifying the x2APIC Ids, |
| 2581 | // based on CPUID.B or CPUID.1F |
| 2582 | /* |
| 2583 | * CPUID.B or 1F, Input ECX (sub leaf # aka level number) |
| 2584 | Bits Bits Bits Bits |
| 2585 | 31-16 15-8 7-4 4-0 |
| 2586 | ---+-----------+--------------+-------------+-----------------+ |
| 2587 | EAX| reserved | reserved | reserved | Bits to Shift | |
| 2588 | ---+-----------|--------------+-------------+-----------------| |
| 2589 | EBX| reserved | Num logical processors at level (16 bits) | |
| 2590 | ---+-----------|--------------+-------------------------------| |
| 2591 | ECX| reserved | Level Type | Level Number (8 bits) | |
| 2592 | ---+-----------+--------------+-------------------------------| |
| 2593 | EDX| X2APIC ID (32 bits) | |
| 2594 | ---+----------------------------------------------------------+ |
| 2595 | */ |
| 2596 | |
| 2597 | enum { |
| 2598 | INTEL_LEVEL_TYPE_INVALID = 0, // Package level |
| 2599 | INTEL_LEVEL_TYPE_SMT = 1, |
| 2600 | INTEL_LEVEL_TYPE_CORE = 2, |
| 2601 | INTEL_LEVEL_TYPE_MODULE = 3, |
| 2602 | INTEL_LEVEL_TYPE_TILE = 4, |
| 2603 | INTEL_LEVEL_TYPE_DIE = 5, |
| 2604 | INTEL_LEVEL_TYPE_LAST = 6, |
| 2605 | }; |
| 2606 | KMP_BUILD_ASSERT(INTEL_LEVEL_TYPE_LAST < sizeof(unsigned) * CHAR_BIT); |
| 2607 | #define KMP_LEAF_1F_KNOWN_LEVELS ((1u << INTEL_LEVEL_TYPE_LAST) - 1u) |
| 2608 | |
| 2609 | static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { |
| 2610 | switch (intel_type) { |
| 2611 | case INTEL_LEVEL_TYPE_INVALID: |
| 2612 | return KMP_HW_SOCKET; |
| 2613 | case INTEL_LEVEL_TYPE_SMT: |
| 2614 | return KMP_HW_THREAD; |
| 2615 | case INTEL_LEVEL_TYPE_CORE: |
| 2616 | return KMP_HW_CORE; |
| 2617 | case INTEL_LEVEL_TYPE_TILE: |
| 2618 | return KMP_HW_TILE; |
| 2619 | case INTEL_LEVEL_TYPE_MODULE: |
| 2620 | return KMP_HW_MODULE; |
| 2621 | case INTEL_LEVEL_TYPE_DIE: |
| 2622 | return KMP_HW_DIE; |
| 2623 | } |
| 2624 | return KMP_HW_UNKNOWN; |
| 2625 | } |
| 2626 | |
| 2627 | static int __kmp_topology_type_2_intel_type(kmp_hw_t type) { |
| 2628 | switch (type) { |
| 2629 | case KMP_HW_SOCKET: |
| 2630 | return INTEL_LEVEL_TYPE_INVALID; |
| 2631 | case KMP_HW_THREAD: |
| 2632 | return INTEL_LEVEL_TYPE_SMT; |
| 2633 | case KMP_HW_CORE: |
| 2634 | return INTEL_LEVEL_TYPE_CORE; |
| 2635 | case KMP_HW_TILE: |
| 2636 | return INTEL_LEVEL_TYPE_TILE; |
| 2637 | case KMP_HW_MODULE: |
| 2638 | return INTEL_LEVEL_TYPE_MODULE; |
| 2639 | case KMP_HW_DIE: |
| 2640 | return INTEL_LEVEL_TYPE_DIE; |
| 2641 | default: |
| 2642 | return INTEL_LEVEL_TYPE_INVALID; |
| 2643 | } |
| 2644 | } |
| 2645 | |
| 2646 | struct cpuid_level_info_t { |
| 2647 | unsigned level_type, mask, mask_width, nitems, cache_mask; |
| 2648 | }; |
| 2649 | |
| 2650 | class cpuid_topo_desc_t { |
| 2651 | unsigned desc = 0; |
| 2652 | |
| 2653 | public: |
| 2654 | void clear() { desc = 0; } |
| 2655 | bool contains(int intel_type) const { |
| 2656 | KMP_DEBUG_ASSERT(intel_type >= 0 && intel_type < INTEL_LEVEL_TYPE_LAST); |
| 2657 | if ((1u << intel_type) & desc) |
| 2658 | return true; |
| 2659 | return false; |
| 2660 | } |
| 2661 | bool contains_topology_type(kmp_hw_t type) const { |
| 2662 | KMP_DEBUG_ASSERT(type >= 0 && type < KMP_HW_LAST); |
| 2663 | int intel_type = __kmp_topology_type_2_intel_type(type); |
| 2664 | return contains(intel_type); |
| 2665 | } |
| 2666 | bool contains(cpuid_topo_desc_t rhs) const { |
| 2667 | return ((desc | rhs.desc) == desc); |
| 2668 | } |
| 2669 | void add(int intel_type) { desc |= (1u << intel_type); } |
| 2670 | void add(cpuid_topo_desc_t rhs) { desc |= rhs.desc; } |
| 2671 | }; |
| 2672 | |
| 2673 | struct cpuid_proc_info_t { |
| 2674 | // Topology info |
| 2675 | int os_id; |
| 2676 | unsigned apic_id; |
| 2677 | unsigned depth; |
| 2678 | // Hybrid info |
| 2679 | unsigned native_model_id; |
| 2680 | int efficiency; |
| 2681 | kmp_hw_core_type_t type; |
| 2682 | cpuid_topo_desc_t description; |
| 2683 | |
| 2684 | cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; |
| 2685 | }; |
| 2686 | |
| 2687 | // This function takes the topology leaf, an info pointer to store the levels |
| 2688 | // detected, and writable descriptors for the total topology. |
| 2689 | // Returns whether total types, depth, or description were modified. |
| 2690 | static bool __kmp_x2apicid_get_levels(int leaf, cpuid_proc_info_t *info, |
| 2691 | kmp_hw_t total_types[KMP_HW_LAST], |
| 2692 | int *total_depth, |
| 2693 | cpuid_topo_desc_t *total_description) { |
| 2694 | unsigned level, levels_index; |
| 2695 | unsigned level_type, mask_width, nitems; |
| 2696 | kmp_cpuid buf; |
| 2697 | cpuid_level_info_t(&levels)[INTEL_LEVEL_TYPE_LAST] = info->levels; |
| 2698 | bool retval = false; |
| 2699 | |
| 2700 | // New algorithm has known topology layers act as highest unknown topology |
| 2701 | // layers when unknown topology layers exist. |
| 2702 | // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z> |
| 2703 | // are unknown topology layers, Then SMT will take the characteristics of |
| 2704 | // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>). |
| 2705 | // This eliminates unknown portions of the topology while still keeping the |
| 2706 | // correct structure. |
| 2707 | level = levels_index = 0; |
| 2708 | do { |
| 2709 | __kmp_x86_cpuid(leaf, subleaf: level, p: &buf); |
| 2710 | level_type = __kmp_extract_bits<8, 15>(v: buf.ecx); |
| 2711 | mask_width = __kmp_extract_bits<0, 4>(v: buf.eax); |
| 2712 | nitems = __kmp_extract_bits<0, 15>(v: buf.ebx); |
| 2713 | if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) { |
| 2714 | info->depth = 0; |
| 2715 | return retval; |
| 2716 | } |
| 2717 | |
| 2718 | if (KMP_LEAF_1F_KNOWN_LEVELS & (1u << level_type)) { |
| 2719 | // Add a new level to the topology |
| 2720 | KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); |
| 2721 | levels[levels_index].level_type = level_type; |
| 2722 | levels[levels_index].mask_width = mask_width; |
| 2723 | levels[levels_index].nitems = nitems; |
| 2724 | levels_index++; |
| 2725 | } else { |
| 2726 | // If it is an unknown level, then logically move the previous layer up |
| 2727 | if (levels_index > 0) { |
| 2728 | levels[levels_index - 1].mask_width = mask_width; |
| 2729 | levels[levels_index - 1].nitems = nitems; |
| 2730 | } |
| 2731 | } |
| 2732 | level++; |
| 2733 | } while (level_type != INTEL_LEVEL_TYPE_INVALID); |
| 2734 | KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); |
| 2735 | info->description.clear(); |
| 2736 | info->depth = levels_index; |
| 2737 | |
| 2738 | // If types, depth, and total_description are uninitialized, |
| 2739 | // then initialize them now |
| 2740 | if (*total_depth == 0) { |
| 2741 | *total_depth = info->depth; |
| 2742 | total_description->clear(); |
| 2743 | for (int i = *total_depth - 1, j = 0; i >= 0; --i, ++j) { |
| 2744 | total_types[j] = |
| 2745 | __kmp_intel_type_2_topology_type(intel_type: info->levels[i].level_type); |
| 2746 | total_description->add(intel_type: info->levels[i].level_type); |
| 2747 | } |
| 2748 | retval = true; |
| 2749 | } |
| 2750 | |
| 2751 | // Ensure the INTEL_LEVEL_TYPE_INVALID (Socket) layer isn't first |
| 2752 | if (levels_index == 0 || levels[0].level_type == INTEL_LEVEL_TYPE_INVALID) |
| 2753 | return 0; |
| 2754 | |
| 2755 | // Set the masks to & with apicid |
| 2756 | for (unsigned i = 0; i < levels_index; ++i) { |
| 2757 | if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { |
| 2758 | levels[i].mask = ~((-1) << levels[i].mask_width); |
| 2759 | levels[i].cache_mask = (-1) << levels[i].mask_width; |
| 2760 | for (unsigned j = 0; j < i; ++j) |
| 2761 | levels[i].mask ^= levels[j].mask; |
| 2762 | } else { |
| 2763 | KMP_DEBUG_ASSERT(i > 0); |
| 2764 | levels[i].mask = (-1) << levels[i - 1].mask_width; |
| 2765 | levels[i].cache_mask = 0; |
| 2766 | } |
| 2767 | info->description.add(intel_type: info->levels[i].level_type); |
| 2768 | } |
| 2769 | |
| 2770 | // If this processor has level type not on other processors, then make |
| 2771 | // sure to include it in total types, depth, and description. |
| 2772 | // One assumption here is that the first type, i.e. socket, is known. |
| 2773 | // Another assumption is that types array is always large enough to fit any |
| 2774 | // new layers since its length is KMP_HW_LAST. |
| 2775 | if (!total_description->contains(rhs: info->description)) { |
| 2776 | for (int i = info->depth - 1, j = 0; i >= 0; --i, ++j) { |
| 2777 | // If this level is known already, then skip it. |
| 2778 | if (total_description->contains(intel_type: levels[i].level_type)) |
| 2779 | continue; |
| 2780 | // Unknown level, insert before last known level |
| 2781 | kmp_hw_t curr_type = |
| 2782 | __kmp_intel_type_2_topology_type(intel_type: levels[i].level_type); |
| 2783 | KMP_ASSERT(j != 0 && "Bad APIC Id information" ); |
| 2784 | // Move over all known levels to make room for new level |
| 2785 | for (int k = info->depth - 1; k >= j; --k) { |
| 2786 | KMP_DEBUG_ASSERT(k + 1 < KMP_HW_LAST); |
| 2787 | total_types[k + 1] = total_types[k]; |
| 2788 | } |
| 2789 | // Insert new level |
| 2790 | total_types[j] = curr_type; |
| 2791 | (*total_depth)++; |
| 2792 | } |
| 2793 | total_description->add(rhs: info->description); |
| 2794 | retval = true; |
| 2795 | } |
| 2796 | return retval; |
| 2797 | } |
| 2798 | |
| 2799 | static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) { |
| 2800 | |
| 2801 | kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; |
| 2802 | kmp_cpuid buf; |
| 2803 | int topology_leaf, highest_leaf; |
| 2804 | int num_leaves; |
| 2805 | int depth = 0; |
| 2806 | cpuid_topo_desc_t total_description; |
| 2807 | static int leaves[] = {0, 0}; |
| 2808 | |
| 2809 | // If affinity is disabled, __kmp_avail_proc may be zero |
| 2810 | int ninfos = (__kmp_avail_proc > 0 ? __kmp_avail_proc : 1); |
| 2811 | cpuid_proc_info_t *proc_info = (cpuid_proc_info_t *)__kmp_allocate( |
| 2812 | (sizeof(cpuid_proc_info_t) + sizeof(cpuid_cache_info_t)) * ninfos); |
| 2813 | cpuid_cache_info_t *cache_info = (cpuid_cache_info_t *)(proc_info + ninfos); |
| 2814 | |
| 2815 | kmp_i18n_id_t leaf_message_id; |
| 2816 | |
| 2817 | *msg_id = kmp_i18n_null; |
| 2818 | if (__kmp_affinity.flags.verbose) { |
| 2819 | KMP_INFORM(AffInfoStr, "KMP_AFFINITY" , KMP_I18N_STR(Decodingx2APIC)); |
| 2820 | } |
| 2821 | |
| 2822 | // Get the highest cpuid leaf supported |
| 2823 | __kmp_x86_cpuid(leaf: 0, subleaf: 0, p: &buf); |
| 2824 | highest_leaf = buf.eax; |
| 2825 | |
| 2826 | // If a specific topology method was requested, only allow that specific leaf |
| 2827 | // otherwise, try both leaves 31 and 11 in that order |
| 2828 | num_leaves = 0; |
| 2829 | if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { |
| 2830 | num_leaves = 1; |
| 2831 | leaves[0] = 11; |
| 2832 | leaf_message_id = kmp_i18n_str_NoLeaf11Support; |
| 2833 | } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { |
| 2834 | num_leaves = 1; |
| 2835 | leaves[0] = 31; |
| 2836 | leaf_message_id = kmp_i18n_str_NoLeaf31Support; |
| 2837 | } else { |
| 2838 | num_leaves = 2; |
| 2839 | leaves[0] = 31; |
| 2840 | leaves[1] = 11; |
| 2841 | leaf_message_id = kmp_i18n_str_NoLeaf11Support; |
| 2842 | } |
| 2843 | |
| 2844 | // Check to see if cpuid leaf 31 or 11 is supported. |
| 2845 | __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; |
| 2846 | topology_leaf = -1; |
| 2847 | for (int i = 0; i < num_leaves; ++i) { |
| 2848 | int leaf = leaves[i]; |
| 2849 | if (highest_leaf < leaf) |
| 2850 | continue; |
| 2851 | __kmp_x86_cpuid(leaf, subleaf: 0, p: &buf); |
| 2852 | if (buf.ebx == 0) |
| 2853 | continue; |
| 2854 | topology_leaf = leaf; |
| 2855 | __kmp_x2apicid_get_levels(leaf, info: &proc_info[0], total_types: types, total_depth: &depth, |
| 2856 | total_description: &total_description); |
| 2857 | if (depth == 0) |
| 2858 | continue; |
| 2859 | break; |
| 2860 | } |
| 2861 | if (topology_leaf == -1 || depth == 0) { |
| 2862 | *msg_id = leaf_message_id; |
| 2863 | __kmp_free(proc_info); |
| 2864 | return false; |
| 2865 | } |
| 2866 | KMP_ASSERT(depth <= INTEL_LEVEL_TYPE_LAST); |
| 2867 | |
| 2868 | // The algorithm used starts by setting the affinity to each available thread |
| 2869 | // and retrieving info from the cpuid instruction, so if we are not capable of |
| 2870 | // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then |
| 2871 | // we need to do something else - use the defaults that we calculated from |
| 2872 | // issuing cpuid without binding to each proc. |
| 2873 | if (!KMP_AFFINITY_CAPABLE()) { |
| 2874 | // Hack to try and infer the machine topology using only the data |
| 2875 | // available from cpuid on the current thread, and __kmp_xproc. |
| 2876 | KMP_ASSERT(__kmp_affinity.type == affinity_none); |
| 2877 | for (int i = 0; i < depth; ++i) { |
| 2878 | if (proc_info[0].levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { |
| 2879 | __kmp_nThreadsPerCore = proc_info[0].levels[i].nitems; |
| 2880 | } else if (proc_info[0].levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { |
| 2881 | nCoresPerPkg = proc_info[0].levels[i].nitems; |
| 2882 | } |
| 2883 | } |
| 2884 | __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; |
| 2885 | nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; |
| 2886 | __kmp_free(proc_info); |
| 2887 | return true; |
| 2888 | } |
| 2889 | |
| 2890 | // From here on, we can assume that it is safe to call |
| 2891 | // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if |
| 2892 | // __kmp_affinity.type = affinity_none. |
| 2893 | |
| 2894 | // Save the affinity mask for the current thread. |
| 2895 | kmp_affinity_raii_t previous_affinity; |
| 2896 | |
| 2897 | // Run through each of the available contexts, binding the current thread |
| 2898 | // to it, and obtaining the pertinent information using the cpuid instr. |
| 2899 | unsigned int proc; |
| 2900 | int hw_thread_index = 0; |
| 2901 | bool uniform_caches = true; |
| 2902 | |
| 2903 | KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { |
| 2904 | // Skip this proc if it is not included in the machine model. |
| 2905 | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { |
| 2906 | continue; |
| 2907 | } |
| 2908 | KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc); |
| 2909 | |
| 2910 | // Gather topology information |
| 2911 | __kmp_affinity_dispatch->bind_thread(proc); |
| 2912 | __kmp_x86_cpuid(leaf: topology_leaf, subleaf: 0, p: &buf); |
| 2913 | proc_info[hw_thread_index].os_id = proc; |
| 2914 | proc_info[hw_thread_index].apic_id = buf.edx; |
| 2915 | __kmp_x2apicid_get_levels(leaf: topology_leaf, info: &proc_info[hw_thread_index], total_types: types, |
| 2916 | total_depth: &depth, total_description: &total_description); |
| 2917 | if (proc_info[hw_thread_index].depth == 0) { |
| 2918 | *msg_id = kmp_i18n_str_InvalidCpuidInfo; |
| 2919 | __kmp_free(proc_info); |
| 2920 | return false; |
| 2921 | } |
| 2922 | // Gather cache information and insert afterwards |
| 2923 | cache_info[hw_thread_index].get_leaf4_levels(); |
| 2924 | if (uniform_caches && hw_thread_index > 0) |
| 2925 | if (cache_info[0] != cache_info[hw_thread_index]) |
| 2926 | uniform_caches = false; |
| 2927 | // Hybrid information |
| 2928 | if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) { |
| 2929 | __kmp_get_hybrid_info(type: &proc_info[hw_thread_index].type, |
| 2930 | efficiency: &proc_info[hw_thread_index].efficiency, |
| 2931 | native_model_id: &proc_info[hw_thread_index].native_model_id); |
| 2932 | } |
| 2933 | hw_thread_index++; |
| 2934 | } |
| 2935 | KMP_ASSERT(hw_thread_index > 0); |
| 2936 | previous_affinity.restore(); |
| 2937 | |
| 2938 | // Allocate the data structure to be returned. |
| 2939 | __kmp_topology = kmp_topology_t::allocate(nproc: __kmp_avail_proc, ndepth: depth, types); |
| 2940 | |
| 2941 | // Create topology Ids and hybrid types in __kmp_topology |
| 2942 | for (int i = 0; i < __kmp_topology->get_num_hw_threads(); ++i) { |
| 2943 | kmp_hw_thread_t &hw_thread = __kmp_topology->at(index: i); |
| 2944 | hw_thread.clear(); |
| 2945 | hw_thread.os_id = proc_info[i].os_id; |
| 2946 | hw_thread.original_idx = i; |
| 2947 | unsigned apic_id = proc_info[i].apic_id; |
| 2948 | // Put in topology information |
| 2949 | for (int j = 0, idx = depth - 1; j < depth; ++j, --idx) { |
| 2950 | if (!(proc_info[i].description.contains_topology_type( |
| 2951 | type: __kmp_topology->get_type(level: j)))) { |
| 2952 | hw_thread.ids[idx] = kmp_hw_thread_t::UNKNOWN_ID; |
| 2953 | } else { |
| 2954 | hw_thread.ids[idx] = apic_id & proc_info[i].levels[j].mask; |
| 2955 | if (j > 0) { |
| 2956 | hw_thread.ids[idx] >>= proc_info[i].levels[j - 1].mask_width; |
| 2957 | } |
| 2958 | } |
| 2959 | } |
| 2960 | hw_thread.attrs.set_core_type(proc_info[i].type); |
| 2961 | hw_thread.attrs.set_core_eff(proc_info[i].efficiency); |
| 2962 | } |
| 2963 | |
| 2964 | __kmp_topology->sort_ids(); |
| 2965 | |
| 2966 | // Change Ids to logical Ids |
| 2967 | for (int j = 0; j < depth - 1; ++j) { |
| 2968 | int new_id = 0; |
| 2969 | int prev_id = __kmp_topology->at(index: 0).ids[j]; |
| 2970 | int curr_id = __kmp_topology->at(index: 0).ids[j + 1]; |
| 2971 | __kmp_topology->at(index: 0).ids[j + 1] = new_id; |
| 2972 | for (int i = 1; i < __kmp_topology->get_num_hw_threads(); ++i) { |
| 2973 | kmp_hw_thread_t &hw_thread = __kmp_topology->at(index: i); |
| 2974 | if (hw_thread.ids[j] == prev_id && hw_thread.ids[j + 1] == curr_id) { |
| 2975 | hw_thread.ids[j + 1] = new_id; |
| 2976 | } else if (hw_thread.ids[j] == prev_id && |
| 2977 | hw_thread.ids[j + 1] != curr_id) { |
| 2978 | curr_id = hw_thread.ids[j + 1]; |
| 2979 | hw_thread.ids[j + 1] = ++new_id; |
| 2980 | } else { |
| 2981 | prev_id = hw_thread.ids[j]; |
| 2982 | curr_id = hw_thread.ids[j + 1]; |
| 2983 | hw_thread.ids[j + 1] = ++new_id; |
| 2984 | } |
| 2985 | } |
| 2986 | } |
| 2987 | |
| 2988 | // First check for easy cache placement. This occurs when caches are |
| 2989 | // equivalent to a layer in the CPUID leaf 0xb or 0x1f topology. |
| 2990 | if (uniform_caches) { |
| 2991 | for (size_t i = 0; i < cache_info[0].get_depth(); ++i) { |
| 2992 | unsigned cache_mask = cache_info[0][i].mask; |
| 2993 | unsigned cache_level = cache_info[0][i].level; |
| 2994 | KMP_ASSERT(cache_level <= cpuid_cache_info_t::MAX_CACHE_LEVEL); |
| 2995 | kmp_hw_t cache_type = cpuid_cache_info_t::get_topology_type(level: cache_level); |
| 2996 | __kmp_topology->set_equivalent_type(type1: cache_type, type2: cache_type); |
| 2997 | for (int j = 0; j < depth; ++j) { |
| 2998 | unsigned hw_cache_mask = proc_info[0].levels[j].cache_mask; |
| 2999 | if (hw_cache_mask == cache_mask && j < depth - 1) { |
| 3000 | kmp_hw_t type = __kmp_intel_type_2_topology_type( |
| 3001 | intel_type: proc_info[0].levels[j + 1].level_type); |
| 3002 | __kmp_topology->set_equivalent_type(type1: cache_type, type2: type); |
| 3003 | } |
| 3004 | } |
| 3005 | } |
| 3006 | } else { |
| 3007 | // If caches are non-uniform, then record which caches exist. |
| 3008 | for (int i = 0; i < __kmp_topology->get_num_hw_threads(); ++i) { |
| 3009 | for (size_t j = 0; j < cache_info[i].get_depth(); ++j) { |
| 3010 | unsigned cache_level = cache_info[i][j].level; |
| 3011 | kmp_hw_t cache_type = |
| 3012 | cpuid_cache_info_t::get_topology_type(level: cache_level); |
| 3013 | if (__kmp_topology->get_equivalent_type(type: cache_type) == KMP_HW_UNKNOWN) |
| 3014 | __kmp_topology->set_equivalent_type(type1: cache_type, type2: cache_type); |
| 3015 | } |
| 3016 | } |
| 3017 | } |
| 3018 | |
| 3019 | // See if any cache level needs to be added manually through cache Ids |
| 3020 | bool unresolved_cache_levels = false; |
| 3021 | for (unsigned level = 1; level <= cpuid_cache_info_t::MAX_CACHE_LEVEL; |
| 3022 | ++level) { |
| 3023 | kmp_hw_t cache_type = cpuid_cache_info_t::get_topology_type(level); |
| 3024 | // This also filters out caches which may not be in the topology |
| 3025 | // since the equivalent type might be KMP_HW_UNKNOWN. |
| 3026 | if (__kmp_topology->get_equivalent_type(type: cache_type) == cache_type) { |
| 3027 | unresolved_cache_levels = true; |
| 3028 | break; |
| 3029 | } |
| 3030 | } |
| 3031 | |
| 3032 | // Insert unresolved cache layers into machine topology using cache Ids |
| 3033 | if (unresolved_cache_levels) { |
| 3034 | int num_hw_threads = __kmp_topology->get_num_hw_threads(); |
| 3035 | int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads); |
| 3036 | for (unsigned l = 1; l <= cpuid_cache_info_t::MAX_CACHE_LEVEL; ++l) { |
| 3037 | kmp_hw_t cache_type = cpuid_cache_info_t::get_topology_type(level: l); |
| 3038 | if (__kmp_topology->get_equivalent_type(type: cache_type) != cache_type) |
| 3039 | continue; |
| 3040 | for (int i = 0; i < num_hw_threads; ++i) { |
| 3041 | int original_idx = __kmp_topology->at(index: i).original_idx; |
| 3042 | ids[i] = kmp_hw_thread_t::UNKNOWN_ID; |
| 3043 | const cpuid_cache_info_t::info_t &info = |
| 3044 | cache_info[original_idx].get_level(level: l); |
| 3045 | // if cache level not in topology for this processor, then skip |
| 3046 | if (info.level == 0) |
| 3047 | continue; |
| 3048 | ids[i] = info.mask & proc_info[original_idx].apic_id; |
| 3049 | } |
| 3050 | __kmp_topology->insert_layer(type: cache_type, ids); |
| 3051 | } |
| 3052 | } |
| 3053 | |
| 3054 | if (!__kmp_topology->check_ids()) { |
| 3055 | kmp_topology_t::deallocate(topology: __kmp_topology); |
| 3056 | __kmp_topology = nullptr; |
| 3057 | *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; |
| 3058 | __kmp_free(proc_info); |
| 3059 | return false; |
| 3060 | } |
| 3061 | __kmp_free(proc_info); |
| 3062 | return true; |
| 3063 | } |
| 3064 | #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ |
| 3065 | |
| 3066 | #define osIdIndex 0 |
| 3067 | #define threadIdIndex 1 |
| 3068 | #define coreIdIndex 2 |
| 3069 | #define pkgIdIndex 3 |
| 3070 | #define nodeIdIndex 4 |
| 3071 | |
| 3072 | typedef unsigned *ProcCpuInfo; |
| 3073 | static unsigned maxIndex = pkgIdIndex; |
| 3074 | |
| 3075 | static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, |
| 3076 | const void *b) { |
| 3077 | unsigned i; |
| 3078 | const unsigned *aa = *(unsigned *const *)a; |
| 3079 | const unsigned *bb = *(unsigned *const *)b; |
| 3080 | for (i = maxIndex;; i--) { |
| 3081 | if (aa[i] < bb[i]) |
| 3082 | return -1; |
| 3083 | if (aa[i] > bb[i]) |
| 3084 | return 1; |
| 3085 | if (i == osIdIndex) |
| 3086 | break; |
| 3087 | } |
| 3088 | return 0; |
| 3089 | } |
| 3090 | |
| 3091 | #if KMP_USE_HIER_SCHED |
| 3092 | // Set the array sizes for the hierarchy layers |
| 3093 | static void __kmp_dispatch_set_hierarchy_values() { |
| 3094 | // Set the maximum number of L1's to number of cores |
| 3095 | // Set the maximum number of L2's to either number of cores / 2 for |
| 3096 | // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing |
| 3097 | // Or the number of cores for Intel(R) Xeon(R) processors |
| 3098 | // Set the maximum number of NUMA nodes and L3's to number of packages |
| 3099 | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = |
| 3100 | nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; |
| 3101 | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; |
| 3102 | #if KMP_ARCH_X86_64 && \ |
| 3103 | (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \ |
| 3104 | KMP_OS_WINDOWS) && \ |
| 3105 | KMP_MIC_SUPPORTED |
| 3106 | if (__kmp_mic_type >= mic3) |
| 3107 | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; |
| 3108 | else |
| 3109 | #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) |
| 3110 | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; |
| 3111 | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; |
| 3112 | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; |
| 3113 | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; |
| 3114 | // Set the number of threads per unit |
| 3115 | // Number of hardware threads per L1/L2/L3/NUMA/LOOP |
| 3116 | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; |
| 3117 | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = |
| 3118 | __kmp_nThreadsPerCore; |
| 3119 | #if KMP_ARCH_X86_64 && \ |
| 3120 | (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \ |
| 3121 | KMP_OS_WINDOWS) && \ |
| 3122 | KMP_MIC_SUPPORTED |
| 3123 | if (__kmp_mic_type >= mic3) |
| 3124 | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = |
| 3125 | 2 * __kmp_nThreadsPerCore; |
| 3126 | else |
| 3127 | #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) |
| 3128 | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = |
| 3129 | __kmp_nThreadsPerCore; |
| 3130 | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = |
| 3131 | nCoresPerPkg * __kmp_nThreadsPerCore; |
| 3132 | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = |
| 3133 | nCoresPerPkg * __kmp_nThreadsPerCore; |
| 3134 | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = |
| 3135 | nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; |
| 3136 | } |
| 3137 | |
| 3138 | // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) |
| 3139 | // i.e., this thread's L1 or this thread's L2, etc. |
| 3140 | int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { |
| 3141 | int index = type + 1; |
| 3142 | int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; |
| 3143 | KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); |
| 3144 | if (type == kmp_hier_layer_e::LAYER_THREAD) |
| 3145 | return tid; |
| 3146 | else if (type == kmp_hier_layer_e::LAYER_LOOP) |
| 3147 | return 0; |
| 3148 | KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); |
| 3149 | if (tid >= num_hw_threads) |
| 3150 | tid = tid % num_hw_threads; |
| 3151 | return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; |
| 3152 | } |
| 3153 | |
| 3154 | // Return the number of t1's per t2 |
| 3155 | int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { |
| 3156 | int i1 = t1 + 1; |
| 3157 | int i2 = t2 + 1; |
| 3158 | KMP_DEBUG_ASSERT(i1 <= i2); |
| 3159 | KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); |
| 3160 | KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); |
| 3161 | KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); |
| 3162 | // (nthreads/t2) / (nthreads/t1) = t1 / t2 |
| 3163 | return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; |
| 3164 | } |
| 3165 | #endif // KMP_USE_HIER_SCHED |
| 3166 | |
| 3167 | static inline const char *__kmp_cpuinfo_get_filename() { |
| 3168 | const char *filename; |
| 3169 | if (__kmp_cpuinfo_file != nullptr) |
| 3170 | filename = __kmp_cpuinfo_file; |
| 3171 | else |
| 3172 | filename = "/proc/cpuinfo" ; |
| 3173 | return filename; |
| 3174 | } |
| 3175 | |
| 3176 | static inline const char *__kmp_cpuinfo_get_envvar() { |
| 3177 | const char *envvar = nullptr; |
| 3178 | if (__kmp_cpuinfo_file != nullptr) |
| 3179 | envvar = "KMP_CPUINFO_FILE" ; |
| 3180 | return envvar; |
| 3181 | } |
| 3182 | |
| 3183 | static bool __kmp_package_id_from_core_siblings_list(unsigned **threadInfo, |
| 3184 | unsigned num_avail, |
| 3185 | unsigned idx) { |
| 3186 | if (!KMP_AFFINITY_CAPABLE()) |
| 3187 | return false; |
| 3188 | |
| 3189 | char path[256]; |
| 3190 | KMP_SNPRINTF(s: path, maxlen: sizeof(path), |
| 3191 | format: "/sys/devices/system/cpu/cpu%u/topology/core_siblings_list" , |
| 3192 | threadInfo[idx][osIdIndex]); |
| 3193 | kmp_affin_mask_t *siblings = __kmp_parse_cpu_list(path); |
| 3194 | for (unsigned i = 0; i < num_avail; ++i) { |
| 3195 | unsigned cpu_id = threadInfo[i][osIdIndex]; |
| 3196 | KMP_ASSERT(cpu_id < __kmp_affin_mask_size * CHAR_BIT); |
| 3197 | if (!KMP_CPU_ISSET(cpu_id, siblings)) |
| 3198 | continue; |
| 3199 | if (threadInfo[i][pkgIdIndex] == UINT_MAX) { |
| 3200 | // Arbitrarily pick the first index we encounter, it only matters that |
| 3201 | // the value is the same for all siblings. |
| 3202 | threadInfo[i][pkgIdIndex] = idx; |
| 3203 | } else if (threadInfo[i][pkgIdIndex] != idx) { |
| 3204 | // Contradictory sibling lists. |
| 3205 | KMP_CPU_FREE(siblings); |
| 3206 | return false; |
| 3207 | } |
| 3208 | } |
| 3209 | KMP_ASSERT(threadInfo[idx][pkgIdIndex] != UINT_MAX); |
| 3210 | KMP_CPU_FREE(siblings); |
| 3211 | return true; |
| 3212 | } |
| 3213 | |
| 3214 | // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the |
| 3215 | // affinity map. On AIX, the map is obtained through system SRAD (Scheduler |
| 3216 | // Resource Allocation Domain). |
| 3217 | static bool __kmp_affinity_create_cpuinfo_map(int *line, |
| 3218 | kmp_i18n_id_t *const msg_id) { |
| 3219 | *msg_id = kmp_i18n_null; |
| 3220 | |
| 3221 | #if KMP_OS_AIX |
| 3222 | unsigned num_records = __kmp_xproc; |
| 3223 | #else |
| 3224 | const char *filename = __kmp_cpuinfo_get_filename(); |
| 3225 | const char *envvar = __kmp_cpuinfo_get_envvar(); |
| 3226 | |
| 3227 | if (__kmp_affinity.flags.verbose) { |
| 3228 | KMP_INFORM(AffParseFilename, "KMP_AFFINITY" , filename); |
| 3229 | } |
| 3230 | |
| 3231 | kmp_safe_raii_file_t f(filename, "r" , envvar); |
| 3232 | |
| 3233 | // Scan of the file, and count the number of "processor" (osId) fields, |
| 3234 | // and find the highest value of <n> for a node_<n> field. |
| 3235 | char buf[256]; |
| 3236 | unsigned num_records = 0; |
| 3237 | while (!feof(stream: f)) { |
| 3238 | buf[sizeof(buf) - 1] = 1; |
| 3239 | if (!fgets(s: buf, n: sizeof(buf), stream: f)) { |
| 3240 | // Read errors presumably because of EOF |
| 3241 | break; |
| 3242 | } |
| 3243 | |
| 3244 | char s1[] = "processor" ; |
| 3245 | if (strncmp(s1: buf, s2: s1, n: sizeof(s1) - 1) == 0) { |
| 3246 | num_records++; |
| 3247 | continue; |
| 3248 | } |
| 3249 | |
| 3250 | // FIXME - this will match "node_<n> <garbage>" |
| 3251 | unsigned level; |
| 3252 | if (KMP_SSCANF(s: buf, format: "node_%u id" , &level) == 1) { |
| 3253 | // validate the input fisrt: |
| 3254 | if (level > (unsigned)__kmp_xproc) { // level is too big |
| 3255 | level = __kmp_xproc; |
| 3256 | } |
| 3257 | if (nodeIdIndex + level >= maxIndex) { |
| 3258 | maxIndex = nodeIdIndex + level; |
| 3259 | } |
| 3260 | continue; |
| 3261 | } |
| 3262 | } |
| 3263 | |
| 3264 | // Check for empty file / no valid processor records, or too many. The number |
| 3265 | // of records can't exceed the number of valid bits in the affinity mask. |
| 3266 | if (num_records == 0) { |
| 3267 | *msg_id = kmp_i18n_str_NoProcRecords; |
| 3268 | return false; |
| 3269 | } |
| 3270 | if (num_records > (unsigned)__kmp_xproc) { |
| 3271 | *msg_id = kmp_i18n_str_TooManyProcRecords; |
| 3272 | return false; |
| 3273 | } |
| 3274 | |
| 3275 | // Set the file pointer back to the beginning, so that we can scan the file |
| 3276 | // again, this time performing a full parse of the data. Allocate a vector of |
| 3277 | // ProcCpuInfo object, where we will place the data. Adding an extra element |
| 3278 | // at the end allows us to remove a lot of extra checks for termination |
| 3279 | // conditions. |
| 3280 | if (fseek(stream: f, off: 0, SEEK_SET) != 0) { |
| 3281 | *msg_id = kmp_i18n_str_CantRewindCpuinfo; |
| 3282 | return false; |
| 3283 | } |
| 3284 | #endif // KMP_OS_AIX |
| 3285 | |
| 3286 | // Allocate the array of records to store the proc info in. The dummy |
| 3287 | // element at the end makes the logic in filling them out easier to code. |
| 3288 | unsigned **threadInfo = |
| 3289 | (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); |
| 3290 | unsigned i; |
| 3291 | for (i = 0; i <= num_records; i++) { |
| 3292 | threadInfo[i] = |
| 3293 | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); |
| 3294 | } |
| 3295 | |
| 3296 | #define CLEANUP_THREAD_INFO \ |
| 3297 | for (i = 0; i <= num_records; i++) { \ |
| 3298 | __kmp_free(threadInfo[i]); \ |
| 3299 | } \ |
| 3300 | __kmp_free(threadInfo); |
| 3301 | |
| 3302 | // A value of UINT_MAX means that we didn't find the field |
| 3303 | unsigned __index; |
| 3304 | |
| 3305 | #define INIT_PROC_INFO(p) \ |
| 3306 | for (__index = 0; __index <= maxIndex; __index++) { \ |
| 3307 | (p)[__index] = UINT_MAX; \ |
| 3308 | } |
| 3309 | |
| 3310 | for (i = 0; i <= num_records; i++) { |
| 3311 | INIT_PROC_INFO(threadInfo[i]); |
| 3312 | } |
| 3313 | |
| 3314 | #if KMP_OS_AIX |
| 3315 | int smt_threads; |
| 3316 | lpar_info_format1_t cpuinfo; |
| 3317 | unsigned num_avail = __kmp_xproc; |
| 3318 | |
| 3319 | if (__kmp_affinity.flags.verbose) |
| 3320 | KMP_INFORM(AffParseFilename, "KMP_AFFINITY" , "system info for topology" ); |
| 3321 | |
| 3322 | // Get the number of SMT threads per core. |
| 3323 | smt_threads = syssmt(GET_NUMBER_SMT_SETS, 0, 0, NULL); |
| 3324 | |
| 3325 | // Allocate a resource set containing available system resourses. |
| 3326 | rsethandle_t sys_rset = rs_alloc(RS_SYSTEM); |
| 3327 | if (sys_rset == NULL) { |
| 3328 | CLEANUP_THREAD_INFO; |
| 3329 | *msg_id = kmp_i18n_str_UnknownTopology; |
| 3330 | return false; |
| 3331 | } |
| 3332 | // Allocate a resource set for the SRAD info. |
| 3333 | rsethandle_t srad = rs_alloc(RS_EMPTY); |
| 3334 | if (srad == NULL) { |
| 3335 | rs_free(sys_rset); |
| 3336 | CLEANUP_THREAD_INFO; |
| 3337 | *msg_id = kmp_i18n_str_UnknownTopology; |
| 3338 | return false; |
| 3339 | } |
| 3340 | |
| 3341 | // Get the SRAD system detail level. |
| 3342 | int sradsdl = rs_getinfo(NULL, R_SRADSDL, 0); |
| 3343 | if (sradsdl < 0) { |
| 3344 | rs_free(sys_rset); |
| 3345 | rs_free(srad); |
| 3346 | CLEANUP_THREAD_INFO; |
| 3347 | *msg_id = kmp_i18n_str_UnknownTopology; |
| 3348 | return false; |
| 3349 | } |
| 3350 | // Get the number of RADs at that SRAD SDL. |
| 3351 | int num_rads = rs_numrads(sys_rset, sradsdl, 0); |
| 3352 | if (num_rads < 0) { |
| 3353 | rs_free(sys_rset); |
| 3354 | rs_free(srad); |
| 3355 | CLEANUP_THREAD_INFO; |
| 3356 | *msg_id = kmp_i18n_str_UnknownTopology; |
| 3357 | return false; |
| 3358 | } |
| 3359 | |
| 3360 | // Get the maximum number of procs that may be contained in a resource set. |
| 3361 | int max_procs = rs_getinfo(NULL, R_MAXPROCS, 0); |
| 3362 | if (max_procs < 0) { |
| 3363 | rs_free(sys_rset); |
| 3364 | rs_free(srad); |
| 3365 | CLEANUP_THREAD_INFO; |
| 3366 | *msg_id = kmp_i18n_str_UnknownTopology; |
| 3367 | return false; |
| 3368 | } |
| 3369 | |
| 3370 | int cur_rad = 0; |
| 3371 | int num_set = 0; |
| 3372 | for (int srad_idx = 0; cur_rad < num_rads && srad_idx < VMI_MAXRADS; |
| 3373 | ++srad_idx) { |
| 3374 | // Check if the SRAD is available in the RSET. |
| 3375 | if (rs_getrad(sys_rset, srad, sradsdl, srad_idx, 0) < 0) |
| 3376 | continue; |
| 3377 | |
| 3378 | for (int cpu = 0; cpu < max_procs; cpu++) { |
| 3379 | // Set the info for the cpu if it is in the SRAD. |
| 3380 | if (rs_op(RS_TESTRESOURCE, srad, NULL, R_PROCS, cpu)) { |
| 3381 | threadInfo[cpu][osIdIndex] = cpu; |
| 3382 | threadInfo[cpu][pkgIdIndex] = cur_rad; |
| 3383 | threadInfo[cpu][coreIdIndex] = cpu / smt_threads; |
| 3384 | ++num_set; |
| 3385 | if (num_set >= num_avail) { |
| 3386 | // Done if all available CPUs have been set. |
| 3387 | break; |
| 3388 | } |
| 3389 | } |
| 3390 | } |
| 3391 | ++cur_rad; |
| 3392 | } |
| 3393 | rs_free(sys_rset); |
| 3394 | rs_free(srad); |
| 3395 | |
| 3396 | // The topology is already sorted. |
| 3397 | |
| 3398 | #else // !KMP_OS_AIX |
| 3399 | unsigned num_avail = 0; |
| 3400 | *line = 0; |
| 3401 | #if KMP_ARCH_S390X |
| 3402 | bool reading_s390x_sys_info = true; |
| 3403 | #endif |
| 3404 | while (!feof(stream: f)) { |
| 3405 | // Create an inner scoping level, so that all the goto targets at the end of |
| 3406 | // the loop appear in an outer scoping level. This avoids warnings about |
| 3407 | // jumping past an initialization to a target in the same block. |
| 3408 | { |
| 3409 | buf[sizeof(buf) - 1] = 1; |
| 3410 | bool long_line = false; |
| 3411 | if (!fgets(s: buf, n: sizeof(buf), stream: f)) { |
| 3412 | // Read errors presumably because of EOF |
| 3413 | // If there is valid data in threadInfo[num_avail], then fake |
| 3414 | // a blank line in ensure that the last address gets parsed. |
| 3415 | bool valid = false; |
| 3416 | for (i = 0; i <= maxIndex; i++) { |
| 3417 | if (threadInfo[num_avail][i] != UINT_MAX) { |
| 3418 | valid = true; |
| 3419 | } |
| 3420 | } |
| 3421 | if (!valid) { |
| 3422 | break; |
| 3423 | } |
| 3424 | buf[0] = 0; |
| 3425 | } else if (!buf[sizeof(buf) - 1]) { |
| 3426 | // The line is longer than the buffer. Set a flag and don't |
| 3427 | // emit an error if we were going to ignore the line, anyway. |
| 3428 | long_line = true; |
| 3429 | |
| 3430 | #define CHECK_LINE \ |
| 3431 | if (long_line) { \ |
| 3432 | CLEANUP_THREAD_INFO; \ |
| 3433 | *msg_id = kmp_i18n_str_LongLineCpuinfo; \ |
| 3434 | return false; \ |
| 3435 | } |
| 3436 | } |
| 3437 | (*line)++; |
| 3438 | |
| 3439 | #if KMP_ARCH_LOONGARCH64 |
| 3440 | // The parsing logic of /proc/cpuinfo in this function highly depends on |
| 3441 | // the blank lines between each processor info block. But on LoongArch a |
| 3442 | // blank line exists before the first processor info block (i.e. after the |
| 3443 | // "system type" line). This blank line was added because the "system |
| 3444 | // type" line is unrelated to any of the CPUs. We must skip this line so |
| 3445 | // that the original logic works on LoongArch. |
| 3446 | if (*buf == '\n' && *line == 2) |
| 3447 | continue; |
| 3448 | #endif |
| 3449 | #if KMP_ARCH_S390X |
| 3450 | // s390x /proc/cpuinfo starts with a variable number of lines containing |
| 3451 | // the overall system information. Skip them. |
| 3452 | if (reading_s390x_sys_info) { |
| 3453 | if (*buf == '\n') |
| 3454 | reading_s390x_sys_info = false; |
| 3455 | continue; |
| 3456 | } |
| 3457 | #endif |
| 3458 | |
| 3459 | #if KMP_ARCH_S390X |
| 3460 | char s1[] = "cpu number" ; |
| 3461 | #else |
| 3462 | char s1[] = "processor" ; |
| 3463 | #endif |
| 3464 | if (strncmp(s1: buf, s2: s1, n: sizeof(s1) - 1) == 0) { |
| 3465 | CHECK_LINE; |
| 3466 | char *p = strchr(s: buf + sizeof(s1) - 1, c: ':'); |
| 3467 | unsigned val; |
| 3468 | if ((p == NULL) || (KMP_SSCANF(s: p + 1, format: "%u\n" , &val) != 1)) |
| 3469 | goto no_val; |
| 3470 | if (threadInfo[num_avail][osIdIndex] != UINT_MAX) |
| 3471 | #if KMP_ARCH_AARCH64 |
| 3472 | // Handle the old AArch64 /proc/cpuinfo layout differently, |
| 3473 | // it contains all of the 'processor' entries listed in a |
| 3474 | // single 'Processor' section, therefore the normal looking |
| 3475 | // for duplicates in that section will always fail. |
| 3476 | num_avail++; |
| 3477 | #else |
| 3478 | goto dup_field; |
| 3479 | #endif |
| 3480 | threadInfo[num_avail][osIdIndex] = val; |
| 3481 | #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) |
| 3482 | char path[256]; |
| 3483 | KMP_SNPRINTF( |
| 3484 | path, sizeof(path), |
| 3485 | "/sys/devices/system/cpu/cpu%u/topology/physical_package_id" , |
| 3486 | threadInfo[num_avail][osIdIndex]); |
| 3487 | __kmp_read_from_file(path, "%u" , &threadInfo[num_avail][pkgIdIndex]); |
| 3488 | |
| 3489 | #if KMP_ARCH_S390X |
| 3490 | // Disambiguate physical_package_id. |
| 3491 | unsigned book_id; |
| 3492 | KMP_SNPRINTF(path, sizeof(path), |
| 3493 | "/sys/devices/system/cpu/cpu%u/topology/book_id" , |
| 3494 | threadInfo[num_avail][osIdIndex]); |
| 3495 | __kmp_read_from_file(path, "%u" , &book_id); |
| 3496 | threadInfo[num_avail][pkgIdIndex] |= (book_id << 8); |
| 3497 | |
| 3498 | unsigned drawer_id; |
| 3499 | KMP_SNPRINTF(path, sizeof(path), |
| 3500 | "/sys/devices/system/cpu/cpu%u/topology/drawer_id" , |
| 3501 | threadInfo[num_avail][osIdIndex]); |
| 3502 | __kmp_read_from_file(path, "%u" , &drawer_id); |
| 3503 | threadInfo[num_avail][pkgIdIndex] |= (drawer_id << 16); |
| 3504 | #endif |
| 3505 | |
| 3506 | KMP_SNPRINTF(path, sizeof(path), |
| 3507 | "/sys/devices/system/cpu/cpu%u/topology/core_id" , |
| 3508 | threadInfo[num_avail][osIdIndex]); |
| 3509 | __kmp_read_from_file(path, "%u" , &threadInfo[num_avail][coreIdIndex]); |
| 3510 | continue; |
| 3511 | #else |
| 3512 | } |
| 3513 | char s2[] = "physical id" ; |
| 3514 | if (strncmp(s1: buf, s2: s2, n: sizeof(s2) - 1) == 0) { |
| 3515 | CHECK_LINE; |
| 3516 | char *p = strchr(s: buf + sizeof(s2) - 1, c: ':'); |
| 3517 | unsigned val; |
| 3518 | if ((p == NULL) || (KMP_SSCANF(s: p + 1, format: "%u\n" , &val) != 1)) |
| 3519 | goto no_val; |
| 3520 | if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) |
| 3521 | goto dup_field; |
| 3522 | threadInfo[num_avail][pkgIdIndex] = val; |
| 3523 | continue; |
| 3524 | } |
| 3525 | char s3[] = "core id" ; |
| 3526 | if (strncmp(s1: buf, s2: s3, n: sizeof(s3) - 1) == 0) { |
| 3527 | CHECK_LINE; |
| 3528 | char *p = strchr(s: buf + sizeof(s3) - 1, c: ':'); |
| 3529 | unsigned val; |
| 3530 | if ((p == NULL) || (KMP_SSCANF(s: p + 1, format: "%u\n" , &val) != 1)) |
| 3531 | goto no_val; |
| 3532 | if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) |
| 3533 | goto dup_field; |
| 3534 | threadInfo[num_avail][coreIdIndex] = val; |
| 3535 | continue; |
| 3536 | #endif // KMP_OS_LINUX && USE_SYSFS_INFO |
| 3537 | } |
| 3538 | char s4[] = "thread id" ; |
| 3539 | if (strncmp(s1: buf, s2: s4, n: sizeof(s4) - 1) == 0) { |
| 3540 | CHECK_LINE; |
| 3541 | char *p = strchr(s: buf + sizeof(s4) - 1, c: ':'); |
| 3542 | unsigned val; |
| 3543 | if ((p == NULL) || (KMP_SSCANF(s: p + 1, format: "%u\n" , &val) != 1)) |
| 3544 | goto no_val; |
| 3545 | if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) |
| 3546 | goto dup_field; |
| 3547 | threadInfo[num_avail][threadIdIndex] = val; |
| 3548 | continue; |
| 3549 | } |
| 3550 | unsigned level; |
| 3551 | if (KMP_SSCANF(s: buf, format: "node_%u id" , &level) == 1) { |
| 3552 | CHECK_LINE; |
| 3553 | char *p = strchr(s: buf + sizeof(s4) - 1, c: ':'); |
| 3554 | unsigned val; |
| 3555 | if ((p == NULL) || (KMP_SSCANF(s: p + 1, format: "%u\n" , &val) != 1)) |
| 3556 | goto no_val; |
| 3557 | // validate the input before using level: |
| 3558 | if (level > (unsigned)__kmp_xproc) { // level is too big |
| 3559 | level = __kmp_xproc; |
| 3560 | } |
| 3561 | if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) |
| 3562 | goto dup_field; |
| 3563 | threadInfo[num_avail][nodeIdIndex + level] = val; |
| 3564 | continue; |
| 3565 | } |
| 3566 | |
| 3567 | // We didn't recognize the leading token on the line. There are lots of |
| 3568 | // leading tokens that we don't recognize - if the line isn't empty, go on |
| 3569 | // to the next line. |
| 3570 | if ((*buf != 0) && (*buf != '\n')) { |
| 3571 | // If the line is longer than the buffer, read characters |
| 3572 | // until we find a newline. |
| 3573 | if (long_line) { |
| 3574 | int ch; |
| 3575 | while (((ch = fgetc(stream: f)) != EOF) && (ch != '\n')) |
| 3576 | ; |
| 3577 | } |
| 3578 | continue; |
| 3579 | } |
| 3580 | |
| 3581 | // A newline has signalled the end of the processor record. |
| 3582 | // Check that there aren't too many procs specified. |
| 3583 | if ((int)num_avail == __kmp_xproc) { |
| 3584 | CLEANUP_THREAD_INFO; |
| 3585 | *msg_id = kmp_i18n_str_TooManyEntries; |
| 3586 | return false; |
| 3587 | } |
| 3588 | |
| 3589 | // Check for missing fields. The osId field must be there. The physical |
| 3590 | // id field will be checked later. |
| 3591 | if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { |
| 3592 | CLEANUP_THREAD_INFO; |
| 3593 | *msg_id = kmp_i18n_str_MissingProcField; |
| 3594 | return false; |
| 3595 | } |
| 3596 | |
| 3597 | // Skip this proc if it is not included in the machine model. |
| 3598 | if (KMP_AFFINITY_CAPABLE() && |
| 3599 | !KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], |
| 3600 | __kmp_affin_fullMask)) { |
| 3601 | INIT_PROC_INFO(threadInfo[num_avail]); |
| 3602 | continue; |
| 3603 | } |
| 3604 | |
| 3605 | // We have a successful parse of this proc's info. |
| 3606 | // Increment the counter, and prepare for the next proc. |
| 3607 | num_avail++; |
| 3608 | KMP_ASSERT(num_avail <= num_records); |
| 3609 | INIT_PROC_INFO(threadInfo[num_avail]); |
| 3610 | } |
| 3611 | continue; |
| 3612 | |
| 3613 | no_val: |
| 3614 | CLEANUP_THREAD_INFO; |
| 3615 | *msg_id = kmp_i18n_str_MissingValCpuinfo; |
| 3616 | return false; |
| 3617 | |
| 3618 | dup_field: |
| 3619 | CLEANUP_THREAD_INFO; |
| 3620 | *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; |
| 3621 | return false; |
| 3622 | } |
| 3623 | *line = 0; |
| 3624 | |
| 3625 | // At least on powerpc, Linux may return -1 for physical_package_id. Try |
| 3626 | // to reconstruct topology from core_siblings_list in that case. |
| 3627 | for (i = 0; i < num_avail; ++i) { |
| 3628 | if (threadInfo[i][pkgIdIndex] == UINT_MAX) { |
| 3629 | if (!__kmp_package_id_from_core_siblings_list(threadInfo, num_avail, idx: i)) { |
| 3630 | CLEANUP_THREAD_INFO; |
| 3631 | *msg_id = kmp_i18n_str_MissingPhysicalIDField; |
| 3632 | return false; |
| 3633 | } |
| 3634 | } |
| 3635 | } |
| 3636 | |
| 3637 | #if KMP_MIC && REDUCE_TEAM_SIZE |
| 3638 | unsigned teamSize = 0; |
| 3639 | #endif // KMP_MIC && REDUCE_TEAM_SIZE |
| 3640 | |
| 3641 | // check for num_records == __kmp_xproc ??? |
| 3642 | |
| 3643 | // If it is configured to omit the package level when there is only a single |
| 3644 | // package, the logic at the end of this routine won't work if there is only a |
| 3645 | // single thread |
| 3646 | KMP_ASSERT(num_avail > 0); |
| 3647 | KMP_ASSERT(num_avail <= num_records); |
| 3648 | |
| 3649 | // Sort the threadInfo table by physical Id. |
| 3650 | qsort(base: threadInfo, nmemb: num_avail, size: sizeof(*threadInfo), |
| 3651 | compar: __kmp_affinity_cmp_ProcCpuInfo_phys_id); |
| 3652 | |
| 3653 | #endif // KMP_OS_AIX |
| 3654 | |
| 3655 | // The table is now sorted by pkgId / coreId / threadId, but we really don't |
| 3656 | // know the radix of any of the fields. pkgId's may be sparsely assigned among |
| 3657 | // the chips on a system. Although coreId's are usually assigned |
| 3658 | // [0 .. coresPerPkg-1] and threadId's are usually assigned |
| 3659 | // [0..threadsPerCore-1], we don't want to make any such assumptions. |
| 3660 | // |
| 3661 | // For that matter, we don't know what coresPerPkg and threadsPerCore (or the |
| 3662 | // total # packages) are at this point - we want to determine that now. We |
| 3663 | // only have an upper bound on the first two figures. |
| 3664 | unsigned *counts = |
| 3665 | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); |
| 3666 | unsigned *maxCt = |
| 3667 | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); |
| 3668 | unsigned *totals = |
| 3669 | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); |
| 3670 | unsigned *lastId = |
| 3671 | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); |
| 3672 | |
| 3673 | bool assign_thread_ids = false; |
| 3674 | unsigned threadIdCt; |
| 3675 | unsigned index; |
| 3676 | |
| 3677 | restart_radix_check: |
| 3678 | threadIdCt = 0; |
| 3679 | |
| 3680 | // Initialize the counter arrays with data from threadInfo[0]. |
| 3681 | if (assign_thread_ids) { |
| 3682 | if (threadInfo[0][threadIdIndex] == UINT_MAX) { |
| 3683 | threadInfo[0][threadIdIndex] = threadIdCt++; |
| 3684 | } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { |
| 3685 | threadIdCt = threadInfo[0][threadIdIndex] + 1; |
| 3686 | } |
| 3687 | } |
| 3688 | for (index = 0; index <= maxIndex; index++) { |
| 3689 | counts[index] = 1; |
| 3690 | maxCt[index] = 1; |
| 3691 | totals[index] = 1; |
| 3692 | lastId[index] = threadInfo[0][index]; |
| 3693 | ; |
| 3694 | } |
| 3695 | |
| 3696 | // Run through the rest of the OS procs. |
| 3697 | for (i = 1; i < num_avail; i++) { |
| 3698 | // Find the most significant index whose id differs from the id for the |
| 3699 | // previous OS proc. |
| 3700 | for (index = maxIndex; index >= threadIdIndex; index--) { |
| 3701 | if (assign_thread_ids && (index == threadIdIndex)) { |
| 3702 | // Auto-assign the thread id field if it wasn't specified. |
| 3703 | if (threadInfo[i][threadIdIndex] == UINT_MAX) { |
| 3704 | threadInfo[i][threadIdIndex] = threadIdCt++; |
| 3705 | } |
| 3706 | // Apparently the thread id field was specified for some entries and not |
| 3707 | // others. Start the thread id counter off at the next higher thread id. |
| 3708 | else if (threadIdCt <= threadInfo[i][threadIdIndex]) { |
| 3709 | threadIdCt = threadInfo[i][threadIdIndex] + 1; |
| 3710 | } |
| 3711 | } |
| 3712 | if (threadInfo[i][index] != lastId[index]) { |
| 3713 | // Run through all indices which are less significant, and reset the |
| 3714 | // counts to 1. At all levels up to and including index, we need to |
| 3715 | // increment the totals and record the last id. |
| 3716 | unsigned index2; |
| 3717 | for (index2 = threadIdIndex; index2 < index; index2++) { |
| 3718 | totals[index2]++; |
| 3719 | if (counts[index2] > maxCt[index2]) { |
| 3720 | maxCt[index2] = counts[index2]; |
| 3721 | } |
| 3722 | counts[index2] = 1; |
| 3723 | lastId[index2] = threadInfo[i][index2]; |
| 3724 | } |
| 3725 | counts[index]++; |
| 3726 | totals[index]++; |
| 3727 | lastId[index] = threadInfo[i][index]; |
| 3728 | |
| 3729 | if (assign_thread_ids && (index > threadIdIndex)) { |
| 3730 | |
| 3731 | #if KMP_MIC && REDUCE_TEAM_SIZE |
| 3732 | // The default team size is the total #threads in the machine |
| 3733 | // minus 1 thread for every core that has 3 or more threads. |
| 3734 | teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); |
| 3735 | #endif // KMP_MIC && REDUCE_TEAM_SIZE |
| 3736 | |
| 3737 | // Restart the thread counter, as we are on a new core. |
| 3738 | threadIdCt = 0; |
| 3739 | |
| 3740 | // Auto-assign the thread id field if it wasn't specified. |
| 3741 | if (threadInfo[i][threadIdIndex] == UINT_MAX) { |
| 3742 | threadInfo[i][threadIdIndex] = threadIdCt++; |
| 3743 | } |
| 3744 | |
| 3745 | // Apparently the thread id field was specified for some entries and |
| 3746 | // not others. Start the thread id counter off at the next higher |
| 3747 | // thread id. |
| 3748 | else if (threadIdCt <= threadInfo[i][threadIdIndex]) { |
| 3749 | threadIdCt = threadInfo[i][threadIdIndex] + 1; |
| 3750 | } |
| 3751 | } |
| 3752 | break; |
| 3753 | } |
| 3754 | } |
| 3755 | if (index < threadIdIndex) { |
| 3756 | // If thread ids were specified, it is an error if they are not unique. |
| 3757 | // Also, check that we waven't already restarted the loop (to be safe - |
| 3758 | // shouldn't need to). |
| 3759 | if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { |
| 3760 | __kmp_free(lastId); |
| 3761 | __kmp_free(totals); |
| 3762 | __kmp_free(maxCt); |
| 3763 | __kmp_free(counts); |
| 3764 | CLEANUP_THREAD_INFO; |
| 3765 | *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; |
| 3766 | return false; |
| 3767 | } |
| 3768 | |
| 3769 | // If the thread ids were not specified and we see entries that |
| 3770 | // are duplicates, start the loop over and assign the thread ids manually. |
| 3771 | assign_thread_ids = true; |
| 3772 | goto restart_radix_check; |
| 3773 | } |
| 3774 | } |
| 3775 | |
| 3776 | #if KMP_MIC && REDUCE_TEAM_SIZE |
| 3777 | // The default team size is the total #threads in the machine |
| 3778 | // minus 1 thread for every core that has 3 or more threads. |
| 3779 | teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); |
| 3780 | #endif // KMP_MIC && REDUCE_TEAM_SIZE |
| 3781 | |
| 3782 | for (index = threadIdIndex; index <= maxIndex; index++) { |
| 3783 | if (counts[index] > maxCt[index]) { |
| 3784 | maxCt[index] = counts[index]; |
| 3785 | } |
| 3786 | } |
| 3787 | |
| 3788 | __kmp_nThreadsPerCore = maxCt[threadIdIndex]; |
| 3789 | nCoresPerPkg = maxCt[coreIdIndex]; |
| 3790 | nPackages = totals[pkgIdIndex]; |
| 3791 | |
| 3792 | // When affinity is off, this routine will still be called to set |
| 3793 | // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. |
| 3794 | // Make sure all these vars are set correctly, and return now if affinity is |
| 3795 | // not enabled. |
| 3796 | __kmp_ncores = totals[coreIdIndex]; |
| 3797 | if (!KMP_AFFINITY_CAPABLE()) { |
| 3798 | KMP_ASSERT(__kmp_affinity.type == affinity_none); |
| 3799 | return true; |
| 3800 | } |
| 3801 | |
| 3802 | #if KMP_MIC && REDUCE_TEAM_SIZE |
| 3803 | // Set the default team size. |
| 3804 | if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { |
| 3805 | __kmp_dflt_team_nth = teamSize; |
| 3806 | KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " |
| 3807 | "__kmp_dflt_team_nth = %d\n" , |
| 3808 | __kmp_dflt_team_nth)); |
| 3809 | } |
| 3810 | #endif // KMP_MIC && REDUCE_TEAM_SIZE |
| 3811 | |
| 3812 | KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); |
| 3813 | |
| 3814 | // Count the number of levels which have more nodes at that level than at the |
| 3815 | // parent's level (with there being an implicit root node of the top level). |
| 3816 | // This is equivalent to saying that there is at least one node at this level |
| 3817 | // which has a sibling. These levels are in the map, and the package level is |
| 3818 | // always in the map. |
| 3819 | bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); |
| 3820 | for (index = threadIdIndex; index < maxIndex; index++) { |
| 3821 | KMP_ASSERT(totals[index] >= totals[index + 1]); |
| 3822 | inMap[index] = (totals[index] > totals[index + 1]); |
| 3823 | } |
| 3824 | inMap[maxIndex] = (totals[maxIndex] > 1); |
| 3825 | inMap[pkgIdIndex] = true; |
| 3826 | inMap[coreIdIndex] = true; |
| 3827 | inMap[threadIdIndex] = true; |
| 3828 | |
| 3829 | int depth = 0; |
| 3830 | int idx = 0; |
| 3831 | kmp_hw_t types[KMP_HW_LAST]; |
| 3832 | int pkgLevel = -1; |
| 3833 | int coreLevel = -1; |
| 3834 | int threadLevel = -1; |
| 3835 | for (index = threadIdIndex; index <= maxIndex; index++) { |
| 3836 | if (inMap[index]) { |
| 3837 | depth++; |
| 3838 | } |
| 3839 | } |
| 3840 | if (inMap[pkgIdIndex]) { |
| 3841 | pkgLevel = idx; |
| 3842 | types[idx++] = KMP_HW_SOCKET; |
| 3843 | } |
| 3844 | if (inMap[coreIdIndex]) { |
| 3845 | coreLevel = idx; |
| 3846 | types[idx++] = KMP_HW_CORE; |
| 3847 | } |
| 3848 | if (inMap[threadIdIndex]) { |
| 3849 | threadLevel = idx; |
| 3850 | types[idx++] = KMP_HW_THREAD; |
| 3851 | } |
| 3852 | KMP_ASSERT(depth > 0); |
| 3853 | |
| 3854 | // Construct the data structure that is to be returned. |
| 3855 | __kmp_topology = kmp_topology_t::allocate(nproc: num_avail, ndepth: depth, types); |
| 3856 | |
| 3857 | for (i = 0; i < num_avail; ++i) { |
| 3858 | unsigned os = threadInfo[i][osIdIndex]; |
| 3859 | int src_index; |
| 3860 | kmp_hw_thread_t &hw_thread = __kmp_topology->at(index: i); |
| 3861 | hw_thread.clear(); |
| 3862 | hw_thread.os_id = os; |
| 3863 | hw_thread.original_idx = i; |
| 3864 | |
| 3865 | idx = 0; |
| 3866 | for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { |
| 3867 | if (!inMap[src_index]) { |
| 3868 | continue; |
| 3869 | } |
| 3870 | if (src_index == pkgIdIndex) { |
| 3871 | hw_thread.ids[pkgLevel] = threadInfo[i][src_index]; |
| 3872 | } else if (src_index == coreIdIndex) { |
| 3873 | hw_thread.ids[coreLevel] = threadInfo[i][src_index]; |
| 3874 | } else if (src_index == threadIdIndex) { |
| 3875 | hw_thread.ids[threadLevel] = threadInfo[i][src_index]; |
| 3876 | } |
| 3877 | } |
| 3878 | } |
| 3879 | |
| 3880 | __kmp_free(inMap); |
| 3881 | __kmp_free(lastId); |
| 3882 | __kmp_free(totals); |
| 3883 | __kmp_free(maxCt); |
| 3884 | __kmp_free(counts); |
| 3885 | CLEANUP_THREAD_INFO; |
| 3886 | __kmp_topology->sort_ids(); |
| 3887 | |
| 3888 | int tlevel = __kmp_topology->get_level(type: KMP_HW_THREAD); |
| 3889 | if (tlevel > 0) { |
| 3890 | // If the thread level does not have ids, then put them in. |
| 3891 | if (__kmp_topology->at(index: 0).ids[tlevel] == kmp_hw_thread_t::UNKNOWN_ID) { |
| 3892 | __kmp_topology->at(index: 0).ids[tlevel] = 0; |
| 3893 | } |
| 3894 | for (int i = 1; i < __kmp_topology->get_num_hw_threads(); ++i) { |
| 3895 | kmp_hw_thread_t &hw_thread = __kmp_topology->at(index: i); |
| 3896 | if (hw_thread.ids[tlevel] != kmp_hw_thread_t::UNKNOWN_ID) |
| 3897 | continue; |
| 3898 | kmp_hw_thread_t &prev_hw_thread = __kmp_topology->at(index: i - 1); |
| 3899 | // Check if socket, core, anything above thread level changed. |
| 3900 | // If the ids did change, then restart thread id at 0 |
| 3901 | // Otherwise, set thread id to prev thread's id + 1 |
| 3902 | for (int j = 0; j < tlevel; ++j) { |
| 3903 | if (hw_thread.ids[j] != prev_hw_thread.ids[j]) { |
| 3904 | hw_thread.ids[tlevel] = 0; |
| 3905 | break; |
| 3906 | } |
| 3907 | } |
| 3908 | if (hw_thread.ids[tlevel] == kmp_hw_thread_t::UNKNOWN_ID) |
| 3909 | hw_thread.ids[tlevel] = prev_hw_thread.ids[tlevel] + 1; |
| 3910 | } |
| 3911 | } |
| 3912 | |
| 3913 | if (!__kmp_topology->check_ids()) { |
| 3914 | kmp_topology_t::deallocate(topology: __kmp_topology); |
| 3915 | __kmp_topology = nullptr; |
| 3916 | *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; |
| 3917 | return false; |
| 3918 | } |
| 3919 | return true; |
| 3920 | } |
| 3921 | |
| 3922 | // Create and return a table of affinity masks, indexed by OS thread ID. |
| 3923 | // This routine handles OR'ing together all the affinity masks of threads |
| 3924 | // that are sufficiently close, if granularity > fine. |
| 3925 | template <typename FindNextFunctionType> |
| 3926 | static void __kmp_create_os_id_masks(unsigned *numUnique, |
| 3927 | kmp_affinity_t &affinity, |
| 3928 | FindNextFunctionType find_next) { |
| 3929 | // First form a table of affinity masks in order of OS thread id. |
| 3930 | int maxOsId; |
| 3931 | int i; |
| 3932 | int numAddrs = __kmp_topology->get_num_hw_threads(); |
| 3933 | int depth = __kmp_topology->get_depth(); |
| 3934 | const char *env_var = __kmp_get_affinity_env_var(affinity); |
| 3935 | KMP_ASSERT(numAddrs); |
| 3936 | KMP_ASSERT(depth); |
| 3937 | |
| 3938 | i = find_next(-1); |
| 3939 | // If could not find HW thread location that satisfies find_next conditions, |
| 3940 | // then return and fallback to increment find_next. |
| 3941 | if (i >= numAddrs) |
| 3942 | return; |
| 3943 | |
| 3944 | maxOsId = 0; |
| 3945 | for (i = numAddrs - 1;; --i) { |
| 3946 | int osId = __kmp_topology->at(index: i).os_id; |
| 3947 | if (osId > maxOsId) { |
| 3948 | maxOsId = osId; |
| 3949 | } |
| 3950 | if (i == 0) |
| 3951 | break; |
| 3952 | } |
| 3953 | affinity.num_os_id_masks = maxOsId + 1; |
| 3954 | KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks); |
| 3955 | KMP_ASSERT(affinity.gran_levels >= 0); |
| 3956 | if (affinity.flags.verbose && (affinity.gran_levels > 0)) { |
| 3957 | KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels); |
| 3958 | } |
| 3959 | if (affinity.gran_levels >= (int)depth) { |
| 3960 | KMP_AFF_WARNING(affinity, AffThreadsMayMigrate); |
| 3961 | } |
| 3962 | |
| 3963 | // Run through the table, forming the masks for all threads on each core. |
| 3964 | // Threads on the same core will have identical kmp_hw_thread_t objects, not |
| 3965 | // considering the last level, which must be the thread id. All threads on a |
| 3966 | // core will appear consecutively. |
| 3967 | int unique = 0; |
| 3968 | int j = 0; // index of 1st thread on core |
| 3969 | int leader = 0; |
| 3970 | kmp_affin_mask_t *sum; |
| 3971 | KMP_CPU_ALLOC_ON_STACK(sum); |
| 3972 | KMP_CPU_ZERO(sum); |
| 3973 | |
| 3974 | i = j = leader = find_next(-1); |
| 3975 | KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); |
| 3976 | kmp_full_mask_modifier_t full_mask; |
| 3977 | for (i = find_next(i); i < numAddrs; i = find_next(i)) { |
| 3978 | // If this thread is sufficiently close to the leader (within the |
| 3979 | // granularity setting), then set the bit for this os thread in the |
| 3980 | // affinity mask for this group, and go on to the next thread. |
| 3981 | if (__kmp_topology->is_close(hwt1: leader, hwt2: i, stgs: affinity)) { |
| 3982 | KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); |
| 3983 | continue; |
| 3984 | } |
| 3985 | |
| 3986 | // For every thread in this group, copy the mask to the thread's entry in |
| 3987 | // the OS Id mask table. Mark the first address as a leader. |
| 3988 | for (; j < i; j = find_next(j)) { |
| 3989 | int osId = __kmp_topology->at(index: j).os_id; |
| 3990 | KMP_DEBUG_ASSERT(osId <= maxOsId); |
| 3991 | kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId); |
| 3992 | KMP_CPU_COPY(mask, sum); |
| 3993 | __kmp_topology->at(index: j).leader = (j == leader); |
| 3994 | } |
| 3995 | unique++; |
| 3996 | |
| 3997 | // Start a new mask. |
| 3998 | leader = i; |
| 3999 | full_mask.include(other: sum); |
| 4000 | KMP_CPU_ZERO(sum); |
| 4001 | KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); |
| 4002 | } |
| 4003 | |
| 4004 | // For every thread in last group, copy the mask to the thread's |
| 4005 | // entry in the OS Id mask table. |
| 4006 | for (; j < i; j = find_next(j)) { |
| 4007 | int osId = __kmp_topology->at(index: j).os_id; |
| 4008 | KMP_DEBUG_ASSERT(osId <= maxOsId); |
| 4009 | kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId); |
| 4010 | KMP_CPU_COPY(mask, sum); |
| 4011 | __kmp_topology->at(index: j).leader = (j == leader); |
| 4012 | } |
| 4013 | full_mask.include(other: sum); |
| 4014 | unique++; |
| 4015 | KMP_CPU_FREE_FROM_STACK(sum); |
| 4016 | |
| 4017 | // See if the OS Id mask table further restricts or changes the full mask |
| 4018 | if (full_mask.restrict_to_mask() && affinity.flags.verbose) { |
| 4019 | __kmp_topology->print(env_var); |
| 4020 | } |
| 4021 | |
| 4022 | *numUnique = unique; |
| 4023 | } |
| 4024 | |
| 4025 | // Stuff for the affinity proclist parsers. It's easier to declare these vars |
| 4026 | // as file-static than to try and pass them through the calling sequence of |
| 4027 | // the recursive-descent OMP_PLACES parser. |
| 4028 | static kmp_affin_mask_t *newMasks; |
| 4029 | static int numNewMasks; |
| 4030 | static int nextNewMask; |
| 4031 | |
| 4032 | #define ADD_MASK(_mask) \ |
| 4033 | { \ |
| 4034 | if (nextNewMask >= numNewMasks) { \ |
| 4035 | int i; \ |
| 4036 | numNewMasks *= 2; \ |
| 4037 | kmp_affin_mask_t *temp; \ |
| 4038 | KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ |
| 4039 | for (i = 0; i < numNewMasks / 2; i++) { \ |
| 4040 | kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ |
| 4041 | kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ |
| 4042 | KMP_CPU_COPY(dest, src); \ |
| 4043 | } \ |
| 4044 | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ |
| 4045 | newMasks = temp; \ |
| 4046 | } \ |
| 4047 | KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ |
| 4048 | nextNewMask++; \ |
| 4049 | } |
| 4050 | |
| 4051 | #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ |
| 4052 | { \ |
| 4053 | if (((_osId) > _maxOsId) || \ |
| 4054 | (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ |
| 4055 | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId); \ |
| 4056 | } else { \ |
| 4057 | ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ |
| 4058 | } \ |
| 4059 | } |
| 4060 | |
| 4061 | // Re-parse the proclist (for the explicit affinity type), and form the list |
| 4062 | // of affinity newMasks indexed by gtid. |
| 4063 | static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) { |
| 4064 | int i; |
| 4065 | kmp_affin_mask_t **out_masks = &affinity.masks; |
| 4066 | unsigned *out_numMasks = &affinity.num_masks; |
| 4067 | const char *proclist = affinity.proclist; |
| 4068 | kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; |
| 4069 | int maxOsId = affinity.num_os_id_masks - 1; |
| 4070 | const char *scan = proclist; |
| 4071 | const char *next = proclist; |
| 4072 | |
| 4073 | // We use malloc() for the temporary mask vector, so that we can use |
| 4074 | // realloc() to extend it. |
| 4075 | numNewMasks = 2; |
| 4076 | KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); |
| 4077 | nextNewMask = 0; |
| 4078 | kmp_affin_mask_t *sumMask; |
| 4079 | KMP_CPU_ALLOC(sumMask); |
| 4080 | int setSize = 0; |
| 4081 | |
| 4082 | for (;;) { |
| 4083 | int start, end, stride; |
| 4084 | |
| 4085 | SKIP_WS(scan); |
| 4086 | next = scan; |
| 4087 | if (*next == '\0') { |
| 4088 | break; |
| 4089 | } |
| 4090 | |
| 4091 | if (*next == '{') { |
| 4092 | int num; |
| 4093 | setSize = 0; |
| 4094 | next++; // skip '{' |
| 4095 | SKIP_WS(next); |
| 4096 | scan = next; |
| 4097 | |
| 4098 | // Read the first integer in the set. |
| 4099 | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist" ); |
| 4100 | SKIP_DIGITS(next); |
| 4101 | num = __kmp_str_to_int(str: scan, sentinel: *next); |
| 4102 | KMP_ASSERT2(num >= 0, "bad explicit proc list" ); |
| 4103 | |
| 4104 | // Copy the mask for that osId to the sum (union) mask. |
| 4105 | if ((num > maxOsId) || |
| 4106 | (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { |
| 4107 | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); |
| 4108 | KMP_CPU_ZERO(sumMask); |
| 4109 | } else { |
| 4110 | KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); |
| 4111 | setSize = 1; |
| 4112 | } |
| 4113 | |
| 4114 | for (;;) { |
| 4115 | // Check for end of set. |
| 4116 | SKIP_WS(next); |
| 4117 | if (*next == '}') { |
| 4118 | next++; // skip '}' |
| 4119 | break; |
| 4120 | } |
| 4121 | |
| 4122 | // Skip optional comma. |
| 4123 | if (*next == ',') { |
| 4124 | next++; |
| 4125 | } |
| 4126 | SKIP_WS(next); |
| 4127 | |
| 4128 | // Read the next integer in the set. |
| 4129 | scan = next; |
| 4130 | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list" ); |
| 4131 | |
| 4132 | SKIP_DIGITS(next); |
| 4133 | num = __kmp_str_to_int(str: scan, sentinel: *next); |
| 4134 | KMP_ASSERT2(num >= 0, "bad explicit proc list" ); |
| 4135 | |
| 4136 | // Add the mask for that osId to the sum mask. |
| 4137 | if ((num > maxOsId) || |
| 4138 | (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { |
| 4139 | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); |
| 4140 | } else { |
| 4141 | KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); |
| 4142 | setSize++; |
| 4143 | } |
| 4144 | } |
| 4145 | if (setSize > 0) { |
| 4146 | ADD_MASK(sumMask); |
| 4147 | } |
| 4148 | |
| 4149 | SKIP_WS(next); |
| 4150 | if (*next == ',') { |
| 4151 | next++; |
| 4152 | } |
| 4153 | scan = next; |
| 4154 | continue; |
| 4155 | } |
| 4156 | |
| 4157 | // Read the first integer. |
| 4158 | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list" ); |
| 4159 | SKIP_DIGITS(next); |
| 4160 | start = __kmp_str_to_int(str: scan, sentinel: *next); |
| 4161 | KMP_ASSERT2(start >= 0, "bad explicit proc list" ); |
| 4162 | SKIP_WS(next); |
| 4163 | |
| 4164 | // If this isn't a range, then add a mask to the list and go on. |
| 4165 | if (*next != '-') { |
| 4166 | ADD_MASK_OSID(start, osId2Mask, maxOsId); |
| 4167 | |
| 4168 | // Skip optional comma. |
| 4169 | if (*next == ',') { |
| 4170 | next++; |
| 4171 | } |
| 4172 | scan = next; |
| 4173 | continue; |
| 4174 | } |
| 4175 | |
| 4176 | // This is a range. Skip over the '-' and read in the 2nd int. |
| 4177 | next++; // skip '-' |
| 4178 | SKIP_WS(next); |
| 4179 | scan = next; |
| 4180 | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list" ); |
| 4181 | SKIP_DIGITS(next); |
| 4182 | end = __kmp_str_to_int(str: scan, sentinel: *next); |
| 4183 | KMP_ASSERT2(end >= 0, "bad explicit proc list" ); |
| 4184 | |
| 4185 | // Check for a stride parameter |
| 4186 | stride = 1; |
| 4187 | SKIP_WS(next); |
| 4188 | if (*next == ':') { |
| 4189 | // A stride is specified. Skip over the ':" and read the 3rd int. |
| 4190 | int sign = +1; |
| 4191 | next++; // skip ':' |
| 4192 | SKIP_WS(next); |
| 4193 | scan = next; |
| 4194 | if (*next == '-') { |
| 4195 | sign = -1; |
| 4196 | next++; |
| 4197 | SKIP_WS(next); |
| 4198 | scan = next; |
| 4199 | } |
| 4200 | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list" ); |
| 4201 | SKIP_DIGITS(next); |
| 4202 | stride = __kmp_str_to_int(str: scan, sentinel: *next); |
| 4203 | KMP_ASSERT2(stride >= 0, "bad explicit proc list" ); |
| 4204 | stride *= sign; |
| 4205 | } |
| 4206 | |
| 4207 | // Do some range checks. |
| 4208 | KMP_ASSERT2(stride != 0, "bad explicit proc list" ); |
| 4209 | if (stride > 0) { |
| 4210 | KMP_ASSERT2(start <= end, "bad explicit proc list" ); |
| 4211 | } else { |
| 4212 | KMP_ASSERT2(start >= end, "bad explicit proc list" ); |
| 4213 | } |
| 4214 | KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list" ); |
| 4215 | |
| 4216 | // Add the mask for each OS proc # to the list. |
| 4217 | if (stride > 0) { |
| 4218 | do { |
| 4219 | ADD_MASK_OSID(start, osId2Mask, maxOsId); |
| 4220 | start += stride; |
| 4221 | } while (start <= end); |
| 4222 | } else { |
| 4223 | do { |
| 4224 | ADD_MASK_OSID(start, osId2Mask, maxOsId); |
| 4225 | start += stride; |
| 4226 | } while (start >= end); |
| 4227 | } |
| 4228 | |
| 4229 | // Skip optional comma. |
| 4230 | SKIP_WS(next); |
| 4231 | if (*next == ',') { |
| 4232 | next++; |
| 4233 | } |
| 4234 | scan = next; |
| 4235 | } |
| 4236 | |
| 4237 | *out_numMasks = nextNewMask; |
| 4238 | if (nextNewMask == 0) { |
| 4239 | *out_masks = NULL; |
| 4240 | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); |
| 4241 | return; |
| 4242 | } |
| 4243 | KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); |
| 4244 | for (i = 0; i < nextNewMask; i++) { |
| 4245 | kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); |
| 4246 | kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); |
| 4247 | KMP_CPU_COPY(dest, src); |
| 4248 | } |
| 4249 | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); |
| 4250 | KMP_CPU_FREE(sumMask); |
| 4251 | } |
| 4252 | |
| 4253 | /*----------------------------------------------------------------------------- |
| 4254 | Re-parse the OMP_PLACES proc id list, forming the newMasks for the different |
| 4255 | places. Again, Here is the grammar: |
| 4256 | |
| 4257 | place_list := place |
| 4258 | place_list := place , place_list |
| 4259 | place := num |
| 4260 | place := place : num |
| 4261 | place := place : num : signed |
| 4262 | place := { subplacelist } |
| 4263 | place := ! place // (lowest priority) |
| 4264 | subplace_list := subplace |
| 4265 | subplace_list := subplace , subplace_list |
| 4266 | subplace := num |
| 4267 | subplace := num : num |
| 4268 | subplace := num : num : signed |
| 4269 | signed := num |
| 4270 | signed := + signed |
| 4271 | signed := - signed |
| 4272 | -----------------------------------------------------------------------------*/ |
| 4273 | static void __kmp_process_subplace_list(const char **scan, |
| 4274 | kmp_affinity_t &affinity, int maxOsId, |
| 4275 | kmp_affin_mask_t *tempMask, |
| 4276 | int *setSize) { |
| 4277 | const char *next; |
| 4278 | kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; |
| 4279 | |
| 4280 | for (;;) { |
| 4281 | int start, count, stride, i; |
| 4282 | |
| 4283 | // Read in the starting proc id |
| 4284 | SKIP_WS(*scan); |
| 4285 | KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list" ); |
| 4286 | next = *scan; |
| 4287 | SKIP_DIGITS(next); |
| 4288 | start = __kmp_str_to_int(str: *scan, sentinel: *next); |
| 4289 | KMP_ASSERT(start >= 0); |
| 4290 | *scan = next; |
| 4291 | |
| 4292 | // valid follow sets are ',' ':' and '}' |
| 4293 | SKIP_WS(*scan); |
| 4294 | if (**scan == '}' || **scan == ',') { |
| 4295 | if ((start > maxOsId) || |
| 4296 | (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { |
| 4297 | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); |
| 4298 | } else { |
| 4299 | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); |
| 4300 | (*setSize)++; |
| 4301 | } |
| 4302 | if (**scan == '}') { |
| 4303 | break; |
| 4304 | } |
| 4305 | (*scan)++; // skip ',' |
| 4306 | continue; |
| 4307 | } |
| 4308 | KMP_ASSERT2(**scan == ':', "bad explicit places list" ); |
| 4309 | (*scan)++; // skip ':' |
| 4310 | |
| 4311 | // Read count parameter |
| 4312 | SKIP_WS(*scan); |
| 4313 | KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list" ); |
| 4314 | next = *scan; |
| 4315 | SKIP_DIGITS(next); |
| 4316 | count = __kmp_str_to_int(str: *scan, sentinel: *next); |
| 4317 | KMP_ASSERT(count >= 0); |
| 4318 | *scan = next; |
| 4319 | |
| 4320 | // valid follow sets are ',' ':' and '}' |
| 4321 | SKIP_WS(*scan); |
| 4322 | if (**scan == '}' || **scan == ',') { |
| 4323 | for (i = 0; i < count; i++) { |
| 4324 | if ((start > maxOsId) || |
| 4325 | (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { |
| 4326 | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); |
| 4327 | break; // don't proliferate warnings for large count |
| 4328 | } else { |
| 4329 | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); |
| 4330 | start++; |
| 4331 | (*setSize)++; |
| 4332 | } |
| 4333 | } |
| 4334 | if (**scan == '}') { |
| 4335 | break; |
| 4336 | } |
| 4337 | (*scan)++; // skip ',' |
| 4338 | continue; |
| 4339 | } |
| 4340 | KMP_ASSERT2(**scan == ':', "bad explicit places list" ); |
| 4341 | (*scan)++; // skip ':' |
| 4342 | |
| 4343 | // Read stride parameter |
| 4344 | int sign = +1; |
| 4345 | for (;;) { |
| 4346 | SKIP_WS(*scan); |
| 4347 | if (**scan == '+') { |
| 4348 | (*scan)++; // skip '+' |
| 4349 | continue; |
| 4350 | } |
| 4351 | if (**scan == '-') { |
| 4352 | sign *= -1; |
| 4353 | (*scan)++; // skip '-' |
| 4354 | continue; |
| 4355 | } |
| 4356 | break; |
| 4357 | } |
| 4358 | SKIP_WS(*scan); |
| 4359 | KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list" ); |
| 4360 | next = *scan; |
| 4361 | SKIP_DIGITS(next); |
| 4362 | stride = __kmp_str_to_int(str: *scan, sentinel: *next); |
| 4363 | KMP_ASSERT(stride >= 0); |
| 4364 | *scan = next; |
| 4365 | stride *= sign; |
| 4366 | |
| 4367 | // valid follow sets are ',' and '}' |
| 4368 | SKIP_WS(*scan); |
| 4369 | if (**scan == '}' || **scan == ',') { |
| 4370 | for (i = 0; i < count; i++) { |
| 4371 | if ((start > maxOsId) || |
| 4372 | (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { |
| 4373 | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); |
| 4374 | break; // don't proliferate warnings for large count |
| 4375 | } else { |
| 4376 | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); |
| 4377 | start += stride; |
| 4378 | (*setSize)++; |
| 4379 | } |
| 4380 | } |
| 4381 | if (**scan == '}') { |
| 4382 | break; |
| 4383 | } |
| 4384 | (*scan)++; // skip ',' |
| 4385 | continue; |
| 4386 | } |
| 4387 | |
| 4388 | KMP_ASSERT2(0, "bad explicit places list" ); |
| 4389 | } |
| 4390 | } |
| 4391 | |
| 4392 | static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity, |
| 4393 | int maxOsId, kmp_affin_mask_t *tempMask, |
| 4394 | int *setSize) { |
| 4395 | const char *next; |
| 4396 | kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; |
| 4397 | |
| 4398 | // valid follow sets are '{' '!' and num |
| 4399 | SKIP_WS(*scan); |
| 4400 | if (**scan == '{') { |
| 4401 | (*scan)++; // skip '{' |
| 4402 | __kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize); |
| 4403 | KMP_ASSERT2(**scan == '}', "bad explicit places list" ); |
| 4404 | (*scan)++; // skip '}' |
| 4405 | } else if (**scan == '!') { |
| 4406 | (*scan)++; // skip '!' |
| 4407 | __kmp_process_place(scan, affinity, maxOsId, tempMask, setSize); |
| 4408 | KMP_CPU_COMPLEMENT(maxOsId, tempMask); |
| 4409 | } else if ((**scan >= '0') && (**scan <= '9')) { |
| 4410 | next = *scan; |
| 4411 | SKIP_DIGITS(next); |
| 4412 | int num = __kmp_str_to_int(str: *scan, sentinel: *next); |
| 4413 | KMP_ASSERT(num >= 0); |
| 4414 | if ((num > maxOsId) || |
| 4415 | (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { |
| 4416 | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); |
| 4417 | } else { |
| 4418 | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); |
| 4419 | (*setSize)++; |
| 4420 | } |
| 4421 | *scan = next; // skip num |
| 4422 | } else { |
| 4423 | KMP_ASSERT2(0, "bad explicit places list" ); |
| 4424 | } |
| 4425 | } |
| 4426 | |
| 4427 | // static void |
| 4428 | void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) { |
| 4429 | int i, j, count, stride, sign; |
| 4430 | kmp_affin_mask_t **out_masks = &affinity.masks; |
| 4431 | unsigned *out_numMasks = &affinity.num_masks; |
| 4432 | const char *placelist = affinity.proclist; |
| 4433 | kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; |
| 4434 | int maxOsId = affinity.num_os_id_masks - 1; |
| 4435 | const char *scan = placelist; |
| 4436 | const char *next = placelist; |
| 4437 | |
| 4438 | numNewMasks = 2; |
| 4439 | KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); |
| 4440 | nextNewMask = 0; |
| 4441 | |
| 4442 | // tempMask is modified based on the previous or initial |
| 4443 | // place to form the current place |
| 4444 | // previousMask contains the previous place |
| 4445 | kmp_affin_mask_t *tempMask; |
| 4446 | kmp_affin_mask_t *previousMask; |
| 4447 | KMP_CPU_ALLOC(tempMask); |
| 4448 | KMP_CPU_ZERO(tempMask); |
| 4449 | KMP_CPU_ALLOC(previousMask); |
| 4450 | KMP_CPU_ZERO(previousMask); |
| 4451 | int setSize = 0; |
| 4452 | |
| 4453 | for (;;) { |
| 4454 | __kmp_process_place(scan: &scan, affinity, maxOsId, tempMask, setSize: &setSize); |
| 4455 | |
| 4456 | // valid follow sets are ',' ':' and EOL |
| 4457 | SKIP_WS(scan); |
| 4458 | if (*scan == '\0' || *scan == ',') { |
| 4459 | if (setSize > 0) { |
| 4460 | ADD_MASK(tempMask); |
| 4461 | } |
| 4462 | KMP_CPU_ZERO(tempMask); |
| 4463 | setSize = 0; |
| 4464 | if (*scan == '\0') { |
| 4465 | break; |
| 4466 | } |
| 4467 | scan++; // skip ',' |
| 4468 | continue; |
| 4469 | } |
| 4470 | |
| 4471 | KMP_ASSERT2(*scan == ':', "bad explicit places list" ); |
| 4472 | scan++; // skip ':' |
| 4473 | |
| 4474 | // Read count parameter |
| 4475 | SKIP_WS(scan); |
| 4476 | KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list" ); |
| 4477 | next = scan; |
| 4478 | SKIP_DIGITS(next); |
| 4479 | count = __kmp_str_to_int(str: scan, sentinel: *next); |
| 4480 | KMP_ASSERT(count >= 0); |
| 4481 | scan = next; |
| 4482 | |
| 4483 | // valid follow sets are ',' ':' and EOL |
| 4484 | SKIP_WS(scan); |
| 4485 | if (*scan == '\0' || *scan == ',') { |
| 4486 | stride = +1; |
| 4487 | } else { |
| 4488 | KMP_ASSERT2(*scan == ':', "bad explicit places list" ); |
| 4489 | scan++; // skip ':' |
| 4490 | |
| 4491 | // Read stride parameter |
| 4492 | sign = +1; |
| 4493 | for (;;) { |
| 4494 | SKIP_WS(scan); |
| 4495 | if (*scan == '+') { |
| 4496 | scan++; // skip '+' |
| 4497 | continue; |
| 4498 | } |
| 4499 | if (*scan == '-') { |
| 4500 | sign *= -1; |
| 4501 | scan++; // skip '-' |
| 4502 | continue; |
| 4503 | } |
| 4504 | break; |
| 4505 | } |
| 4506 | SKIP_WS(scan); |
| 4507 | KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list" ); |
| 4508 | next = scan; |
| 4509 | SKIP_DIGITS(next); |
| 4510 | stride = __kmp_str_to_int(str: scan, sentinel: *next); |
| 4511 | KMP_DEBUG_ASSERT(stride >= 0); |
| 4512 | scan = next; |
| 4513 | stride *= sign; |
| 4514 | } |
| 4515 | |
| 4516 | // Add places determined by initial_place : count : stride |
| 4517 | for (i = 0; i < count; i++) { |
| 4518 | if (setSize == 0) { |
| 4519 | break; |
| 4520 | } |
| 4521 | // Add the current place, then build the next place (tempMask) from that |
| 4522 | KMP_CPU_COPY(previousMask, tempMask); |
| 4523 | ADD_MASK(previousMask); |
| 4524 | KMP_CPU_ZERO(tempMask); |
| 4525 | setSize = 0; |
| 4526 | KMP_CPU_SET_ITERATE(j, previousMask) { |
| 4527 | if (!KMP_CPU_ISSET(j, previousMask)) { |
| 4528 | continue; |
| 4529 | } |
| 4530 | if ((j + stride > maxOsId) || (j + stride < 0) || |
| 4531 | (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || |
| 4532 | (!KMP_CPU_ISSET(j + stride, |
| 4533 | KMP_CPU_INDEX(osId2Mask, j + stride)))) { |
| 4534 | if (i < count - 1) { |
| 4535 | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride); |
| 4536 | } |
| 4537 | continue; |
| 4538 | } |
| 4539 | KMP_CPU_SET(j + stride, tempMask); |
| 4540 | setSize++; |
| 4541 | } |
| 4542 | } |
| 4543 | KMP_CPU_ZERO(tempMask); |
| 4544 | setSize = 0; |
| 4545 | |
| 4546 | // valid follow sets are ',' and EOL |
| 4547 | SKIP_WS(scan); |
| 4548 | if (*scan == '\0') { |
| 4549 | break; |
| 4550 | } |
| 4551 | if (*scan == ',') { |
| 4552 | scan++; // skip ',' |
| 4553 | continue; |
| 4554 | } |
| 4555 | |
| 4556 | KMP_ASSERT2(0, "bad explicit places list" ); |
| 4557 | } |
| 4558 | |
| 4559 | *out_numMasks = nextNewMask; |
| 4560 | if (nextNewMask == 0) { |
| 4561 | *out_masks = NULL; |
| 4562 | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); |
| 4563 | return; |
| 4564 | } |
| 4565 | KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); |
| 4566 | KMP_CPU_FREE(tempMask); |
| 4567 | KMP_CPU_FREE(previousMask); |
| 4568 | for (i = 0; i < nextNewMask; i++) { |
| 4569 | kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); |
| 4570 | kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); |
| 4571 | KMP_CPU_COPY(dest, src); |
| 4572 | } |
| 4573 | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); |
| 4574 | } |
| 4575 | |
| 4576 | #undef ADD_MASK |
| 4577 | #undef ADD_MASK_OSID |
| 4578 | |
| 4579 | // This function figures out the deepest level at which there is at least one |
| 4580 | // cluster/core with more than one processing unit bound to it. |
| 4581 | static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) { |
| 4582 | int core_level = 0; |
| 4583 | |
| 4584 | for (int i = 0; i < nprocs; i++) { |
| 4585 | const kmp_hw_thread_t &hw_thread = __kmp_topology->at(index: i); |
| 4586 | for (int j = bottom_level; j > 0; j--) { |
| 4587 | if (hw_thread.ids[j] > 0) { |
| 4588 | if (core_level < (j - 1)) { |
| 4589 | core_level = j - 1; |
| 4590 | } |
| 4591 | } |
| 4592 | } |
| 4593 | } |
| 4594 | return core_level; |
| 4595 | } |
| 4596 | |
| 4597 | // This function counts number of clusters/cores at given level. |
| 4598 | static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level, |
| 4599 | int core_level) { |
| 4600 | return __kmp_topology->get_count(level: core_level); |
| 4601 | } |
| 4602 | // This function finds to which cluster/core given processing unit is bound. |
| 4603 | static int __kmp_affinity_find_core(int proc, int bottom_level, |
| 4604 | int core_level) { |
| 4605 | int core = 0; |
| 4606 | KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads()); |
| 4607 | for (int i = 0; i <= proc; ++i) { |
| 4608 | if (i + 1 <= proc) { |
| 4609 | for (int j = 0; j <= core_level; ++j) { |
| 4610 | if (__kmp_topology->at(index: i + 1).sub_ids[j] != |
| 4611 | __kmp_topology->at(index: i).sub_ids[j]) { |
| 4612 | core++; |
| 4613 | break; |
| 4614 | } |
| 4615 | } |
| 4616 | } |
| 4617 | } |
| 4618 | return core; |
| 4619 | } |
| 4620 | |
| 4621 | // This function finds maximal number of processing units bound to a |
| 4622 | // cluster/core at given level. |
| 4623 | static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level, |
| 4624 | int core_level) { |
| 4625 | if (core_level >= bottom_level) |
| 4626 | return 1; |
| 4627 | int thread_level = __kmp_topology->get_level(type: KMP_HW_THREAD); |
| 4628 | return __kmp_topology->calculate_ratio(level1: thread_level, level2: core_level); |
| 4629 | } |
| 4630 | |
| 4631 | static int *procarr = NULL; |
| 4632 | static int __kmp_aff_depth = 0; |
| 4633 | static int *__kmp_osid_to_hwthread_map = NULL; |
| 4634 | |
| 4635 | static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask, |
| 4636 | kmp_affinity_ids_t &ids, |
| 4637 | kmp_affinity_attrs_t &attrs) { |
| 4638 | if (!KMP_AFFINITY_CAPABLE()) |
| 4639 | return; |
| 4640 | |
| 4641 | // Initiailze ids and attrs thread data |
| 4642 | for (int i = 0; i < KMP_HW_LAST; ++i) |
| 4643 | ids.ids[i] = kmp_hw_thread_t::UNKNOWN_ID; |
| 4644 | attrs = KMP_AFFINITY_ATTRS_UNKNOWN; |
| 4645 | |
| 4646 | // Iterate through each os id within the mask and determine |
| 4647 | // the topology id and attribute information |
| 4648 | int cpu; |
| 4649 | int depth = __kmp_topology->get_depth(); |
| 4650 | KMP_CPU_SET_ITERATE(cpu, mask) { |
| 4651 | int osid_idx = __kmp_osid_to_hwthread_map[cpu]; |
| 4652 | ids.os_id = cpu; |
| 4653 | const kmp_hw_thread_t &hw_thread = __kmp_topology->at(index: osid_idx); |
| 4654 | for (int level = 0; level < depth; ++level) { |
| 4655 | kmp_hw_t type = __kmp_topology->get_type(level); |
| 4656 | int id = hw_thread.sub_ids[level]; |
| 4657 | if (ids.ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids.ids[type] == id) { |
| 4658 | ids.ids[type] = id; |
| 4659 | } else { |
| 4660 | // This mask spans across multiple topology units, set it as such |
| 4661 | // and mark every level below as such as well. |
| 4662 | ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID; |
| 4663 | for (; level < depth; ++level) { |
| 4664 | kmp_hw_t type = __kmp_topology->get_type(level); |
| 4665 | ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID; |
| 4666 | } |
| 4667 | } |
| 4668 | } |
| 4669 | if (!attrs.valid) { |
| 4670 | attrs.core_type = hw_thread.attrs.get_core_type(); |
| 4671 | attrs.core_eff = hw_thread.attrs.get_core_eff(); |
| 4672 | attrs.valid = 1; |
| 4673 | } else { |
| 4674 | // This mask spans across multiple attributes, set it as such |
| 4675 | if (attrs.core_type != hw_thread.attrs.get_core_type()) |
| 4676 | attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN; |
| 4677 | if (attrs.core_eff != hw_thread.attrs.get_core_eff()) |
| 4678 | attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF; |
| 4679 | } |
| 4680 | } |
| 4681 | } |
| 4682 | |
| 4683 | static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) { |
| 4684 | if (!KMP_AFFINITY_CAPABLE()) |
| 4685 | return; |
| 4686 | const kmp_affin_mask_t *mask = th->th.th_affin_mask; |
| 4687 | kmp_affinity_ids_t &ids = th->th.th_topology_ids; |
| 4688 | kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs; |
| 4689 | __kmp_affinity_get_mask_topology_info(mask, ids, attrs); |
| 4690 | } |
| 4691 | |
| 4692 | // Assign the topology information to each place in the place list |
| 4693 | // A thread can then grab not only its affinity mask, but the topology |
| 4694 | // information associated with that mask. e.g., Which socket is a thread on |
| 4695 | static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) { |
| 4696 | if (!KMP_AFFINITY_CAPABLE()) |
| 4697 | return; |
| 4698 | if (affinity.type != affinity_none) { |
| 4699 | KMP_ASSERT(affinity.num_os_id_masks); |
| 4700 | KMP_ASSERT(affinity.os_id_masks); |
| 4701 | } |
| 4702 | KMP_ASSERT(affinity.num_masks); |
| 4703 | KMP_ASSERT(affinity.masks); |
| 4704 | KMP_ASSERT(__kmp_affin_fullMask); |
| 4705 | |
| 4706 | int max_cpu = __kmp_affin_fullMask->get_max_cpu(); |
| 4707 | int num_hw_threads = __kmp_topology->get_num_hw_threads(); |
| 4708 | |
| 4709 | // Allocate thread topology information |
| 4710 | if (!affinity.ids) { |
| 4711 | affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate( |
| 4712 | sizeof(kmp_affinity_ids_t) * affinity.num_masks); |
| 4713 | } |
| 4714 | if (!affinity.attrs) { |
| 4715 | affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate( |
| 4716 | sizeof(kmp_affinity_attrs_t) * affinity.num_masks); |
| 4717 | } |
| 4718 | if (!__kmp_osid_to_hwthread_map) { |
| 4719 | // Want the +1 because max_cpu should be valid index into map |
| 4720 | __kmp_osid_to_hwthread_map = |
| 4721 | (int *)__kmp_allocate(sizeof(int) * (max_cpu + 1)); |
| 4722 | } |
| 4723 | |
| 4724 | // Create the OS proc to hardware thread map |
| 4725 | for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread) { |
| 4726 | int os_id = __kmp_topology->at(index: hw_thread).os_id; |
| 4727 | if (KMP_CPU_ISSET(os_id, __kmp_affin_fullMask)) |
| 4728 | __kmp_osid_to_hwthread_map[os_id] = hw_thread; |
| 4729 | } |
| 4730 | |
| 4731 | for (unsigned i = 0; i < affinity.num_masks; ++i) { |
| 4732 | kmp_affinity_ids_t &ids = affinity.ids[i]; |
| 4733 | kmp_affinity_attrs_t &attrs = affinity.attrs[i]; |
| 4734 | kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i); |
| 4735 | __kmp_affinity_get_mask_topology_info(mask, ids, attrs); |
| 4736 | } |
| 4737 | } |
| 4738 | |
| 4739 | // Called when __kmp_topology is ready |
| 4740 | static void __kmp_aux_affinity_initialize_other_data(kmp_affinity_t &affinity) { |
| 4741 | // Initialize other data structures which depend on the topology |
| 4742 | if (__kmp_topology && __kmp_topology->get_num_hw_threads()) { |
| 4743 | machine_hierarchy.init(num_addrs: __kmp_topology->get_num_hw_threads()); |
| 4744 | __kmp_affinity_get_topology_info(affinity); |
| 4745 | #if KMP_WEIGHTED_ITERATIONS_SUPPORTED |
| 4746 | __kmp_first_osid_with_ecore = __kmp_get_first_osid_with_ecore(); |
| 4747 | #endif |
| 4748 | } |
| 4749 | } |
| 4750 | |
| 4751 | // Create a one element mask array (set of places) which only contains the |
| 4752 | // initial process's affinity mask |
| 4753 | static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) { |
| 4754 | KMP_ASSERT(__kmp_affin_fullMask != NULL); |
| 4755 | KMP_ASSERT(affinity.type == affinity_none); |
| 4756 | KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); |
| 4757 | affinity.num_masks = 1; |
| 4758 | KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks); |
| 4759 | kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0); |
| 4760 | KMP_CPU_COPY(dest, __kmp_affin_fullMask); |
| 4761 | __kmp_aux_affinity_initialize_other_data(affinity); |
| 4762 | } |
| 4763 | |
| 4764 | static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) { |
| 4765 | // Create the "full" mask - this defines all of the processors that we |
| 4766 | // consider to be in the machine model. If respect is set, then it is the |
| 4767 | // initialization thread's affinity mask. Otherwise, it is all processors that |
| 4768 | // we know about on the machine. |
| 4769 | int verbose = affinity.flags.verbose; |
| 4770 | const char *env_var = affinity.env_var; |
| 4771 | |
| 4772 | // Already initialized |
| 4773 | if (__kmp_affin_fullMask && __kmp_affin_origMask) |
| 4774 | return; |
| 4775 | |
| 4776 | if (__kmp_affin_fullMask == NULL) { |
| 4777 | KMP_CPU_ALLOC(__kmp_affin_fullMask); |
| 4778 | } |
| 4779 | if (__kmp_affin_origMask == NULL) { |
| 4780 | KMP_CPU_ALLOC(__kmp_affin_origMask); |
| 4781 | } |
| 4782 | if (KMP_AFFINITY_CAPABLE()) { |
| 4783 | __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); |
| 4784 | // Make a copy before possible expanding to the entire machine mask |
| 4785 | __kmp_affin_origMask->copy(src: __kmp_affin_fullMask); |
| 4786 | if (affinity.flags.respect) { |
| 4787 | // Count the number of available processors. |
| 4788 | unsigned i; |
| 4789 | __kmp_avail_proc = 0; |
| 4790 | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { |
| 4791 | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { |
| 4792 | continue; |
| 4793 | } |
| 4794 | __kmp_avail_proc++; |
| 4795 | } |
| 4796 | if (__kmp_avail_proc > __kmp_xproc) { |
| 4797 | KMP_AFF_WARNING(affinity, ErrorInitializeAffinity); |
| 4798 | affinity.type = affinity_none; |
| 4799 | KMP_AFFINITY_DISABLE(); |
| 4800 | return; |
| 4801 | } |
| 4802 | |
| 4803 | if (verbose) { |
| 4804 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 4805 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 4806 | mask: __kmp_affin_fullMask); |
| 4807 | KMP_INFORM(InitOSProcSetRespect, env_var, buf); |
| 4808 | } |
| 4809 | } else { |
| 4810 | if (verbose) { |
| 4811 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 4812 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 4813 | mask: __kmp_affin_fullMask); |
| 4814 | KMP_INFORM(InitOSProcSetNotRespect, env_var, buf); |
| 4815 | } |
| 4816 | __kmp_avail_proc = |
| 4817 | __kmp_affinity_entire_machine_mask(mask: __kmp_affin_fullMask); |
| 4818 | #if KMP_OS_WINDOWS |
| 4819 | if (__kmp_num_proc_groups <= 1) { |
| 4820 | // Copy expanded full mask if topology has single processor group |
| 4821 | __kmp_affin_origMask->copy(__kmp_affin_fullMask); |
| 4822 | } |
| 4823 | // Set the process affinity mask since threads' affinity |
| 4824 | // masks must be subset of process mask in Windows* OS |
| 4825 | __kmp_affin_fullMask->set_process_affinity(true); |
| 4826 | #endif |
| 4827 | } |
| 4828 | } |
| 4829 | } |
| 4830 | |
| 4831 | static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) { |
| 4832 | bool success = false; |
| 4833 | const char *env_var = affinity.env_var; |
| 4834 | kmp_i18n_id_t msg_id = kmp_i18n_null; |
| 4835 | int verbose = affinity.flags.verbose; |
| 4836 | |
| 4837 | // For backward compatibility, setting KMP_CPUINFO_FILE => |
| 4838 | // KMP_TOPOLOGY_METHOD=cpuinfo |
| 4839 | if ((__kmp_cpuinfo_file != NULL) && |
| 4840 | (__kmp_affinity_top_method == affinity_top_method_all)) { |
| 4841 | __kmp_affinity_top_method = affinity_top_method_cpuinfo; |
| 4842 | } |
| 4843 | |
| 4844 | if (__kmp_affinity_top_method == affinity_top_method_all) { |
| 4845 | // In the default code path, errors are not fatal - we just try using |
| 4846 | // another method. We only emit a warning message if affinity is on, or the |
| 4847 | // verbose flag is set, an the nowarnings flag was not set. |
| 4848 | #if KMP_USE_HWLOC |
| 4849 | if (!success && |
| 4850 | __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { |
| 4851 | if (!__kmp_hwloc_error) { |
| 4852 | success = __kmp_affinity_create_hwloc_map(&msg_id); |
| 4853 | if (!success && verbose) { |
| 4854 | KMP_INFORM(AffIgnoringHwloc, env_var); |
| 4855 | } |
| 4856 | } else if (verbose) { |
| 4857 | KMP_INFORM(AffIgnoringHwloc, env_var); |
| 4858 | } |
| 4859 | } |
| 4860 | #endif |
| 4861 | |
| 4862 | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 |
| 4863 | if (!success) { |
| 4864 | success = __kmp_affinity_create_x2apicid_map(&msg_id); |
| 4865 | if (!success && verbose && msg_id != kmp_i18n_null) { |
| 4866 | KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); |
| 4867 | } |
| 4868 | } |
| 4869 | if (!success) { |
| 4870 | success = __kmp_affinity_create_apicid_map(&msg_id); |
| 4871 | if (!success && verbose && msg_id != kmp_i18n_null) { |
| 4872 | KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); |
| 4873 | } |
| 4874 | } |
| 4875 | #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ |
| 4876 | |
| 4877 | #if KMP_OS_LINUX || KMP_OS_AIX |
| 4878 | if (!success) { |
| 4879 | int line = 0; |
| 4880 | success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); |
| 4881 | if (!success && verbose && msg_id != kmp_i18n_null) { |
| 4882 | KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); |
| 4883 | } |
| 4884 | } |
| 4885 | #endif /* KMP_OS_LINUX */ |
| 4886 | |
| 4887 | #if KMP_GROUP_AFFINITY |
| 4888 | if (!success && (__kmp_num_proc_groups > 1)) { |
| 4889 | success = __kmp_affinity_create_proc_group_map(&msg_id); |
| 4890 | if (!success && verbose && msg_id != kmp_i18n_null) { |
| 4891 | KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); |
| 4892 | } |
| 4893 | } |
| 4894 | #endif /* KMP_GROUP_AFFINITY */ |
| 4895 | |
| 4896 | if (!success) { |
| 4897 | success = __kmp_affinity_create_flat_map(&msg_id); |
| 4898 | if (!success && verbose && msg_id != kmp_i18n_null) { |
| 4899 | KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); |
| 4900 | } |
| 4901 | KMP_ASSERT(success); |
| 4902 | } |
| 4903 | } |
| 4904 | |
| 4905 | // If the user has specified that a paricular topology discovery method is to be |
| 4906 | // used, then we abort if that method fails. The exception is group affinity, |
| 4907 | // which might have been implicitly set. |
| 4908 | #if KMP_USE_HWLOC |
| 4909 | else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { |
| 4910 | KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); |
| 4911 | success = __kmp_affinity_create_hwloc_map(&msg_id); |
| 4912 | if (!success) { |
| 4913 | KMP_ASSERT(msg_id != kmp_i18n_null); |
| 4914 | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); |
| 4915 | } |
| 4916 | } |
| 4917 | #endif // KMP_USE_HWLOC |
| 4918 | |
| 4919 | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 |
| 4920 | else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || |
| 4921 | __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { |
| 4922 | success = __kmp_affinity_create_x2apicid_map(&msg_id); |
| 4923 | if (!success) { |
| 4924 | KMP_ASSERT(msg_id != kmp_i18n_null); |
| 4925 | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); |
| 4926 | } |
| 4927 | } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { |
| 4928 | success = __kmp_affinity_create_apicid_map(&msg_id); |
| 4929 | if (!success) { |
| 4930 | KMP_ASSERT(msg_id != kmp_i18n_null); |
| 4931 | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); |
| 4932 | } |
| 4933 | } |
| 4934 | #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ |
| 4935 | |
| 4936 | else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { |
| 4937 | int line = 0; |
| 4938 | success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); |
| 4939 | if (!success) { |
| 4940 | KMP_ASSERT(msg_id != kmp_i18n_null); |
| 4941 | const char *filename = __kmp_cpuinfo_get_filename(); |
| 4942 | if (line > 0) { |
| 4943 | KMP_FATAL(FileLineMsgExiting, filename, line, |
| 4944 | __kmp_i18n_catgets(msg_id)); |
| 4945 | } else { |
| 4946 | KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); |
| 4947 | } |
| 4948 | } |
| 4949 | } |
| 4950 | |
| 4951 | #if KMP_GROUP_AFFINITY |
| 4952 | else if (__kmp_affinity_top_method == affinity_top_method_group) { |
| 4953 | success = __kmp_affinity_create_proc_group_map(&msg_id); |
| 4954 | KMP_ASSERT(success); |
| 4955 | if (!success) { |
| 4956 | KMP_ASSERT(msg_id != kmp_i18n_null); |
| 4957 | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); |
| 4958 | } |
| 4959 | } |
| 4960 | #endif /* KMP_GROUP_AFFINITY */ |
| 4961 | |
| 4962 | else if (__kmp_affinity_top_method == affinity_top_method_flat) { |
| 4963 | success = __kmp_affinity_create_flat_map(&msg_id); |
| 4964 | // should not fail |
| 4965 | KMP_ASSERT(success); |
| 4966 | } |
| 4967 | |
| 4968 | // Early exit if topology could not be created |
| 4969 | if (!__kmp_topology) { |
| 4970 | if (KMP_AFFINITY_CAPABLE()) { |
| 4971 | KMP_AFF_WARNING(affinity, ErrorInitializeAffinity); |
| 4972 | } |
| 4973 | if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 && |
| 4974 | __kmp_ncores > 0) { |
| 4975 | __kmp_topology = kmp_topology_t::allocate(nproc: 0, ndepth: 0, NULL); |
| 4976 | __kmp_topology->canonicalize(npackages: nPackages, ncores_per_pkg: nCoresPerPkg, |
| 4977 | nthreads_per_core: __kmp_nThreadsPerCore, ncores: __kmp_ncores); |
| 4978 | if (verbose) { |
| 4979 | __kmp_topology->print(env_var); |
| 4980 | } |
| 4981 | } |
| 4982 | return false; |
| 4983 | } |
| 4984 | |
| 4985 | // Canonicalize, print (if requested), apply KMP_HW_SUBSET |
| 4986 | __kmp_topology->canonicalize(); |
| 4987 | if (verbose) |
| 4988 | __kmp_topology->print(env_var); |
| 4989 | bool filtered = __kmp_topology->filter_hw_subset(); |
| 4990 | if (filtered && verbose) |
| 4991 | __kmp_topology->print(env_var: "KMP_HW_SUBSET" ); |
| 4992 | return success; |
| 4993 | } |
| 4994 | |
| 4995 | static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) { |
| 4996 | bool is_regular_affinity = (&affinity == &__kmp_affinity); |
| 4997 | bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity); |
| 4998 | const char *env_var = __kmp_get_affinity_env_var(affinity); |
| 4999 | |
| 5000 | if (affinity.flags.initialized) { |
| 5001 | KMP_ASSERT(__kmp_affin_fullMask != NULL); |
| 5002 | return; |
| 5003 | } |
| 5004 | |
| 5005 | if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask)) |
| 5006 | __kmp_aux_affinity_initialize_masks(affinity); |
| 5007 | |
| 5008 | if (is_regular_affinity && !__kmp_topology) { |
| 5009 | bool success = __kmp_aux_affinity_initialize_topology(affinity); |
| 5010 | if (success) { |
| 5011 | KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); |
| 5012 | } else { |
| 5013 | affinity.type = affinity_none; |
| 5014 | KMP_AFFINITY_DISABLE(); |
| 5015 | } |
| 5016 | } |
| 5017 | |
| 5018 | // If KMP_AFFINITY=none, then only create the single "none" place |
| 5019 | // which is the process's initial affinity mask or the number of |
| 5020 | // hardware threads depending on respect,norespect |
| 5021 | if (affinity.type == affinity_none) { |
| 5022 | __kmp_create_affinity_none_places(affinity); |
| 5023 | #if KMP_USE_HIER_SCHED |
| 5024 | __kmp_dispatch_set_hierarchy_values(); |
| 5025 | #endif |
| 5026 | affinity.flags.initialized = TRUE; |
| 5027 | return; |
| 5028 | } |
| 5029 | |
| 5030 | __kmp_topology->set_granularity(affinity); |
| 5031 | int depth = __kmp_topology->get_depth(); |
| 5032 | |
| 5033 | // Create the table of masks, indexed by thread Id. |
| 5034 | unsigned numUnique = 0; |
| 5035 | int numAddrs = __kmp_topology->get_num_hw_threads(); |
| 5036 | // If OMP_PLACES=cores:<attribute> specified, then attempt |
| 5037 | // to make OS Id mask table using those attributes |
| 5038 | if (affinity.core_attr_gran.valid) { |
| 5039 | __kmp_create_os_id_masks(numUnique: &numUnique, affinity, find_next: [&](int idx) { |
| 5040 | KMP_ASSERT(idx >= -1); |
| 5041 | for (int i = idx + 1; i < numAddrs; ++i) |
| 5042 | if (__kmp_topology->at(index: i).attrs.contains(attr: affinity.core_attr_gran)) |
| 5043 | return i; |
| 5044 | return numAddrs; |
| 5045 | }); |
| 5046 | if (!affinity.os_id_masks) { |
| 5047 | const char *core_attribute; |
| 5048 | if (affinity.core_attr_gran.core_eff != kmp_hw_attr_t::UNKNOWN_CORE_EFF) |
| 5049 | core_attribute = "core_efficiency" ; |
| 5050 | else |
| 5051 | core_attribute = "core_type" ; |
| 5052 | KMP_AFF_WARNING(affinity, AffIgnoringNotAvailable, env_var, |
| 5053 | core_attribute, |
| 5054 | __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true)) |
| 5055 | } |
| 5056 | } |
| 5057 | // If core attributes did not work, or none were specified, |
| 5058 | // then make OS Id mask table using typical incremental way with |
| 5059 | // checking for validity of each id at granularity level specified. |
| 5060 | if (!affinity.os_id_masks) { |
| 5061 | int gran = affinity.gran_levels; |
| 5062 | int gran_level = depth - 1 - affinity.gran_levels; |
| 5063 | if (gran >= 0 && gran_level >= 0 && gran_level < depth) { |
| 5064 | __kmp_create_os_id_masks( |
| 5065 | numUnique: &numUnique, affinity, find_next: [depth, numAddrs, &affinity](int idx) { |
| 5066 | KMP_ASSERT(idx >= -1); |
| 5067 | int gran = affinity.gran_levels; |
| 5068 | int gran_level = depth - 1 - affinity.gran_levels; |
| 5069 | for (int i = idx + 1; i < numAddrs; ++i) |
| 5070 | if ((gran >= depth) || |
| 5071 | (gran < depth && __kmp_topology->at(index: i).ids[gran_level] != |
| 5072 | kmp_hw_thread_t::UNKNOWN_ID)) |
| 5073 | return i; |
| 5074 | return numAddrs; |
| 5075 | }); |
| 5076 | } |
| 5077 | } |
| 5078 | // Final attempt to make OS Id mask table using typical incremental way. |
| 5079 | if (!affinity.os_id_masks) { |
| 5080 | __kmp_create_os_id_masks(numUnique: &numUnique, affinity, find_next: [](int idx) { |
| 5081 | KMP_ASSERT(idx >= -1); |
| 5082 | return idx + 1; |
| 5083 | }); |
| 5084 | } |
| 5085 | |
| 5086 | switch (affinity.type) { |
| 5087 | |
| 5088 | case affinity_explicit: |
| 5089 | KMP_DEBUG_ASSERT(affinity.proclist != NULL); |
| 5090 | if (is_hidden_helper_affinity || |
| 5091 | __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { |
| 5092 | __kmp_affinity_process_proclist(affinity); |
| 5093 | } else { |
| 5094 | __kmp_affinity_process_placelist(affinity); |
| 5095 | } |
| 5096 | if (affinity.num_masks == 0) { |
| 5097 | KMP_AFF_WARNING(affinity, AffNoValidProcID); |
| 5098 | affinity.type = affinity_none; |
| 5099 | __kmp_create_affinity_none_places(affinity); |
| 5100 | affinity.flags.initialized = TRUE; |
| 5101 | return; |
| 5102 | } |
| 5103 | break; |
| 5104 | |
| 5105 | // The other affinity types rely on sorting the hardware threads according to |
| 5106 | // some permutation of the machine topology tree. Set affinity.compact |
| 5107 | // and affinity.offset appropriately, then jump to a common code |
| 5108 | // fragment to do the sort and create the array of affinity masks. |
| 5109 | case affinity_logical: |
| 5110 | affinity.compact = 0; |
| 5111 | if (affinity.offset) { |
| 5112 | affinity.offset = |
| 5113 | __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc; |
| 5114 | } |
| 5115 | goto sortTopology; |
| 5116 | |
| 5117 | case affinity_physical: |
| 5118 | if (__kmp_nThreadsPerCore > 1) { |
| 5119 | affinity.compact = 1; |
| 5120 | if (affinity.compact >= depth) { |
| 5121 | affinity.compact = 0; |
| 5122 | } |
| 5123 | } else { |
| 5124 | affinity.compact = 0; |
| 5125 | } |
| 5126 | if (affinity.offset) { |
| 5127 | affinity.offset = |
| 5128 | __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc; |
| 5129 | } |
| 5130 | goto sortTopology; |
| 5131 | |
| 5132 | case affinity_scatter: |
| 5133 | if (affinity.compact >= depth) { |
| 5134 | affinity.compact = 0; |
| 5135 | } else { |
| 5136 | affinity.compact = depth - 1 - affinity.compact; |
| 5137 | } |
| 5138 | goto sortTopology; |
| 5139 | |
| 5140 | case affinity_compact: |
| 5141 | if (affinity.compact >= depth) { |
| 5142 | affinity.compact = depth - 1; |
| 5143 | } |
| 5144 | goto sortTopology; |
| 5145 | |
| 5146 | case affinity_balanced: |
| 5147 | if (depth <= 1 || is_hidden_helper_affinity) { |
| 5148 | KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var); |
| 5149 | affinity.type = affinity_none; |
| 5150 | __kmp_create_affinity_none_places(affinity); |
| 5151 | affinity.flags.initialized = TRUE; |
| 5152 | return; |
| 5153 | } else if (!__kmp_topology->is_uniform()) { |
| 5154 | // Save the depth for further usage |
| 5155 | __kmp_aff_depth = depth; |
| 5156 | |
| 5157 | int core_level = |
| 5158 | __kmp_affinity_find_core_level(nprocs: __kmp_avail_proc, bottom_level: depth - 1); |
| 5159 | int ncores = __kmp_affinity_compute_ncores(nprocs: __kmp_avail_proc, bottom_level: depth - 1, |
| 5160 | core_level); |
| 5161 | int maxprocpercore = __kmp_affinity_max_proc_per_core( |
| 5162 | nprocs: __kmp_avail_proc, bottom_level: depth - 1, core_level); |
| 5163 | |
| 5164 | int nproc = ncores * maxprocpercore; |
| 5165 | if ((nproc < 2) || (nproc < __kmp_avail_proc)) { |
| 5166 | KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var); |
| 5167 | affinity.type = affinity_none; |
| 5168 | __kmp_create_affinity_none_places(affinity); |
| 5169 | affinity.flags.initialized = TRUE; |
| 5170 | return; |
| 5171 | } |
| 5172 | |
| 5173 | procarr = (int *)__kmp_allocate(sizeof(int) * nproc); |
| 5174 | for (int i = 0; i < nproc; i++) { |
| 5175 | procarr[i] = -1; |
| 5176 | } |
| 5177 | |
| 5178 | int lastcore = -1; |
| 5179 | int inlastcore = 0; |
| 5180 | for (int i = 0; i < __kmp_avail_proc; i++) { |
| 5181 | int proc = __kmp_topology->at(index: i).os_id; |
| 5182 | int core = __kmp_affinity_find_core(proc: i, bottom_level: depth - 1, core_level); |
| 5183 | |
| 5184 | if (core == lastcore) { |
| 5185 | inlastcore++; |
| 5186 | } else { |
| 5187 | inlastcore = 0; |
| 5188 | } |
| 5189 | lastcore = core; |
| 5190 | |
| 5191 | procarr[core * maxprocpercore + inlastcore] = proc; |
| 5192 | } |
| 5193 | } |
| 5194 | if (affinity.compact >= depth) { |
| 5195 | affinity.compact = depth - 1; |
| 5196 | } |
| 5197 | |
| 5198 | sortTopology: |
| 5199 | // Allocate the gtid->affinity mask table. |
| 5200 | if (affinity.flags.dups) { |
| 5201 | affinity.num_masks = __kmp_avail_proc; |
| 5202 | } else { |
| 5203 | affinity.num_masks = numUnique; |
| 5204 | } |
| 5205 | |
| 5206 | if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && |
| 5207 | (__kmp_affinity_num_places > 0) && |
| 5208 | ((unsigned)__kmp_affinity_num_places < affinity.num_masks) && |
| 5209 | !is_hidden_helper_affinity) { |
| 5210 | affinity.num_masks = __kmp_affinity_num_places; |
| 5211 | } |
| 5212 | |
| 5213 | KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks); |
| 5214 | |
| 5215 | // Sort the topology table according to the current setting of |
| 5216 | // affinity.compact, then fill out affinity.masks. |
| 5217 | __kmp_topology->sort_compact(affinity); |
| 5218 | { |
| 5219 | int i; |
| 5220 | unsigned j; |
| 5221 | int num_hw_threads = __kmp_topology->get_num_hw_threads(); |
| 5222 | kmp_full_mask_modifier_t full_mask; |
| 5223 | for (i = 0, j = 0; i < num_hw_threads; i++) { |
| 5224 | if ((!affinity.flags.dups) && (!__kmp_topology->at(index: i).leader)) { |
| 5225 | continue; |
| 5226 | } |
| 5227 | int osId = __kmp_topology->at(index: i).os_id; |
| 5228 | |
| 5229 | kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId); |
| 5230 | if (KMP_CPU_ISEMPTY(src)) |
| 5231 | continue; |
| 5232 | kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j); |
| 5233 | KMP_ASSERT(KMP_CPU_ISSET(osId, src)); |
| 5234 | KMP_CPU_COPY(dest, src); |
| 5235 | full_mask.include(other: src); |
| 5236 | if (++j >= affinity.num_masks) { |
| 5237 | break; |
| 5238 | } |
| 5239 | } |
| 5240 | KMP_DEBUG_ASSERT(j == affinity.num_masks); |
| 5241 | // See if the places list further restricts or changes the full mask |
| 5242 | if (full_mask.restrict_to_mask() && affinity.flags.verbose) { |
| 5243 | __kmp_topology->print(env_var); |
| 5244 | } |
| 5245 | } |
| 5246 | // Sort the topology back using ids |
| 5247 | __kmp_topology->sort_ids(); |
| 5248 | break; |
| 5249 | |
| 5250 | default: |
| 5251 | KMP_ASSERT2(0, "Unexpected affinity setting" ); |
| 5252 | } |
| 5253 | __kmp_aux_affinity_initialize_other_data(affinity); |
| 5254 | affinity.flags.initialized = TRUE; |
| 5255 | } |
| 5256 | |
| 5257 | void __kmp_affinity_initialize(kmp_affinity_t &affinity) { |
| 5258 | // Much of the code above was written assuming that if a machine was not |
| 5259 | // affinity capable, then affinity type == affinity_none. |
| 5260 | // We now explicitly represent this as affinity type == affinity_disabled. |
| 5261 | // There are too many checks for affinity type == affinity_none in this code. |
| 5262 | // Instead of trying to change them all, check if |
| 5263 | // affinity type == affinity_disabled, and if so, slam it with affinity_none, |
| 5264 | // call the real initialization routine, then restore affinity type to |
| 5265 | // affinity_disabled. |
| 5266 | int disabled = (affinity.type == affinity_disabled); |
| 5267 | if (!KMP_AFFINITY_CAPABLE()) |
| 5268 | KMP_ASSERT(disabled); |
| 5269 | if (disabled) |
| 5270 | affinity.type = affinity_none; |
| 5271 | __kmp_aux_affinity_initialize(affinity); |
| 5272 | if (disabled) |
| 5273 | affinity.type = affinity_disabled; |
| 5274 | } |
| 5275 | |
| 5276 | void __kmp_affinity_uninitialize(void) { |
| 5277 | for (kmp_affinity_t *affinity : __kmp_affinities) { |
| 5278 | if (affinity->masks != NULL) |
| 5279 | KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks); |
| 5280 | if (affinity->os_id_masks != NULL) |
| 5281 | KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks); |
| 5282 | if (affinity->proclist != NULL) |
| 5283 | __kmp_free(affinity->proclist); |
| 5284 | if (affinity->ids != NULL) |
| 5285 | __kmp_free(affinity->ids); |
| 5286 | if (affinity->attrs != NULL) |
| 5287 | __kmp_free(affinity->attrs); |
| 5288 | *affinity = KMP_AFFINITY_INIT(affinity->env_var); |
| 5289 | } |
| 5290 | if (__kmp_affin_origMask != NULL) { |
| 5291 | if (KMP_AFFINITY_CAPABLE()) { |
| 5292 | #if KMP_OS_AIX |
| 5293 | // Uninitialize by unbinding the thread. |
| 5294 | bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY); |
| 5295 | #else |
| 5296 | __kmp_set_system_affinity(__kmp_affin_origMask, FALSE); |
| 5297 | #endif |
| 5298 | } |
| 5299 | KMP_CPU_FREE(__kmp_affin_origMask); |
| 5300 | __kmp_affin_origMask = NULL; |
| 5301 | } |
| 5302 | __kmp_affinity_num_places = 0; |
| 5303 | if (procarr != NULL) { |
| 5304 | __kmp_free(procarr); |
| 5305 | procarr = NULL; |
| 5306 | } |
| 5307 | if (__kmp_osid_to_hwthread_map) { |
| 5308 | __kmp_free(__kmp_osid_to_hwthread_map); |
| 5309 | __kmp_osid_to_hwthread_map = NULL; |
| 5310 | } |
| 5311 | #if KMP_USE_HWLOC |
| 5312 | if (__kmp_hwloc_topology != NULL) { |
| 5313 | hwloc_topology_destroy(__kmp_hwloc_topology); |
| 5314 | __kmp_hwloc_topology = NULL; |
| 5315 | } |
| 5316 | #endif |
| 5317 | if (__kmp_hw_subset) { |
| 5318 | kmp_hw_subset_t::deallocate(subset: __kmp_hw_subset); |
| 5319 | __kmp_hw_subset = nullptr; |
| 5320 | } |
| 5321 | if (__kmp_topology) { |
| 5322 | kmp_topology_t::deallocate(topology: __kmp_topology); |
| 5323 | __kmp_topology = nullptr; |
| 5324 | } |
| 5325 | KMPAffinity::destroy_api(); |
| 5326 | } |
| 5327 | |
| 5328 | static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity, |
| 5329 | int *place, kmp_affin_mask_t **mask) { |
| 5330 | int mask_idx; |
| 5331 | bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); |
| 5332 | if (is_hidden_helper) |
| 5333 | // The first gtid is the regular primary thread, the second gtid is the main |
| 5334 | // thread of hidden team which does not participate in task execution. |
| 5335 | mask_idx = gtid - 2; |
| 5336 | else |
| 5337 | mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); |
| 5338 | KMP_DEBUG_ASSERT(affinity->num_masks > 0); |
| 5339 | *place = (mask_idx + affinity->offset) % affinity->num_masks; |
| 5340 | *mask = KMP_CPU_INDEX(affinity->masks, *place); |
| 5341 | } |
| 5342 | |
| 5343 | // This function initializes the per-thread data concerning affinity including |
| 5344 | // the mask and topology information |
| 5345 | void __kmp_affinity_set_init_mask(int gtid, int isa_root) { |
| 5346 | |
| 5347 | kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); |
| 5348 | |
| 5349 | // Set the thread topology information to default of unknown |
| 5350 | for (int id = 0; id < KMP_HW_LAST; ++id) |
| 5351 | th->th.th_topology_ids.ids[id] = kmp_hw_thread_t::UNKNOWN_ID; |
| 5352 | th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN; |
| 5353 | |
| 5354 | if (!KMP_AFFINITY_CAPABLE()) { |
| 5355 | return; |
| 5356 | } |
| 5357 | |
| 5358 | if (th->th.th_affin_mask == NULL) { |
| 5359 | KMP_CPU_ALLOC(th->th.th_affin_mask); |
| 5360 | } else { |
| 5361 | KMP_CPU_ZERO(th->th.th_affin_mask); |
| 5362 | } |
| 5363 | |
| 5364 | // Copy the thread mask to the kmp_info_t structure. If |
| 5365 | // __kmp_affinity.type == affinity_none, copy the "full" mask, i.e. |
| 5366 | // one that has all of the OS proc ids set, or if |
| 5367 | // __kmp_affinity.flags.respect is set, then the full mask is the |
| 5368 | // same as the mask of the initialization thread. |
| 5369 | kmp_affin_mask_t *mask; |
| 5370 | int i; |
| 5371 | const kmp_affinity_t *affinity; |
| 5372 | bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); |
| 5373 | |
| 5374 | if (is_hidden_helper) |
| 5375 | affinity = &__kmp_hh_affinity; |
| 5376 | else |
| 5377 | affinity = &__kmp_affinity; |
| 5378 | |
| 5379 | if (KMP_AFFINITY_NON_PROC_BIND || is_hidden_helper) { |
| 5380 | if ((affinity->type == affinity_none) || |
| 5381 | (affinity->type == affinity_balanced) || |
| 5382 | KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) { |
| 5383 | #if KMP_GROUP_AFFINITY |
| 5384 | if (__kmp_num_proc_groups > 1) { |
| 5385 | return; |
| 5386 | } |
| 5387 | #endif |
| 5388 | KMP_ASSERT(__kmp_affin_fullMask != NULL); |
| 5389 | i = 0; |
| 5390 | mask = __kmp_affin_fullMask; |
| 5391 | } else { |
| 5392 | __kmp_select_mask_by_gtid(gtid, affinity, place: &i, mask: &mask); |
| 5393 | } |
| 5394 | } else { |
| 5395 | if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) { |
| 5396 | #if KMP_GROUP_AFFINITY |
| 5397 | if (__kmp_num_proc_groups > 1) { |
| 5398 | return; |
| 5399 | } |
| 5400 | #endif |
| 5401 | KMP_ASSERT(__kmp_affin_fullMask != NULL); |
| 5402 | i = KMP_PLACE_ALL; |
| 5403 | mask = __kmp_affin_fullMask; |
| 5404 | } else { |
| 5405 | __kmp_select_mask_by_gtid(gtid, affinity, place: &i, mask: &mask); |
| 5406 | } |
| 5407 | } |
| 5408 | |
| 5409 | th->th.th_current_place = i; |
| 5410 | if (isa_root && !is_hidden_helper) { |
| 5411 | th->th.th_new_place = i; |
| 5412 | th->th.th_first_place = 0; |
| 5413 | th->th.th_last_place = affinity->num_masks - 1; |
| 5414 | } else if (KMP_AFFINITY_NON_PROC_BIND) { |
| 5415 | // When using a Non-OMP_PROC_BIND affinity method, |
| 5416 | // set all threads' place-partition-var to the entire place list |
| 5417 | th->th.th_first_place = 0; |
| 5418 | th->th.th_last_place = affinity->num_masks - 1; |
| 5419 | } |
| 5420 | // Copy topology information associated with the place |
| 5421 | if (i >= 0) { |
| 5422 | th->th.th_topology_ids = __kmp_affinity.ids[i]; |
| 5423 | th->th.th_topology_attrs = __kmp_affinity.attrs[i]; |
| 5424 | } |
| 5425 | |
| 5426 | if (i == KMP_PLACE_ALL) { |
| 5427 | KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to all places\n" , |
| 5428 | gtid)); |
| 5429 | } else { |
| 5430 | KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to place %d\n" , |
| 5431 | gtid, i)); |
| 5432 | } |
| 5433 | |
| 5434 | KMP_CPU_COPY(th->th.th_affin_mask, mask); |
| 5435 | } |
| 5436 | |
| 5437 | void __kmp_affinity_bind_init_mask(int gtid) { |
| 5438 | if (!KMP_AFFINITY_CAPABLE()) { |
| 5439 | return; |
| 5440 | } |
| 5441 | kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); |
| 5442 | const kmp_affinity_t *affinity; |
| 5443 | const char *env_var; |
| 5444 | bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); |
| 5445 | |
| 5446 | if (is_hidden_helper) |
| 5447 | affinity = &__kmp_hh_affinity; |
| 5448 | else |
| 5449 | affinity = &__kmp_affinity; |
| 5450 | env_var = __kmp_get_affinity_env_var(affinity: *affinity, /*for_binding=*/true); |
| 5451 | /* to avoid duplicate printing (will be correctly printed on barrier) */ |
| 5452 | if (affinity->flags.verbose && (affinity->type == affinity_none || |
| 5453 | (th->th.th_current_place != KMP_PLACE_ALL && |
| 5454 | affinity->type != affinity_balanced)) && |
| 5455 | !KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) { |
| 5456 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 5457 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 5458 | mask: th->th.th_affin_mask); |
| 5459 | KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), |
| 5460 | gtid, buf); |
| 5461 | } |
| 5462 | |
| 5463 | #if KMP_OS_WINDOWS |
| 5464 | // On Windows* OS, the process affinity mask might have changed. If the user |
| 5465 | // didn't request affinity and this call fails, just continue silently. |
| 5466 | // See CQ171393. |
| 5467 | if (affinity->type == affinity_none) { |
| 5468 | __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); |
| 5469 | } else |
| 5470 | #endif |
| 5471 | #if !KMP_OS_AIX |
| 5472 | // Do not set the full mask as the init mask on AIX. |
| 5473 | __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); |
| 5474 | #endif |
| 5475 | } |
| 5476 | |
| 5477 | void __kmp_affinity_bind_place(int gtid) { |
| 5478 | // Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND |
| 5479 | if (!KMP_AFFINITY_CAPABLE() || KMP_HIDDEN_HELPER_THREAD(gtid)) { |
| 5480 | return; |
| 5481 | } |
| 5482 | |
| 5483 | kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); |
| 5484 | |
| 5485 | KA_TRACE(100, ("__kmp_affinity_bind_place: binding T#%d to place %d (current " |
| 5486 | "place = %d)\n" , |
| 5487 | gtid, th->th.th_new_place, th->th.th_current_place)); |
| 5488 | |
| 5489 | // Check that the new place is within this thread's partition. |
| 5490 | KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); |
| 5491 | KMP_ASSERT(th->th.th_new_place >= 0); |
| 5492 | KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks); |
| 5493 | if (th->th.th_first_place <= th->th.th_last_place) { |
| 5494 | KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && |
| 5495 | (th->th.th_new_place <= th->th.th_last_place)); |
| 5496 | } else { |
| 5497 | KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || |
| 5498 | (th->th.th_new_place >= th->th.th_last_place)); |
| 5499 | } |
| 5500 | |
| 5501 | // Copy the thread mask to the kmp_info_t structure, |
| 5502 | // and set this thread's affinity. |
| 5503 | kmp_affin_mask_t *mask = |
| 5504 | KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place); |
| 5505 | KMP_CPU_COPY(th->th.th_affin_mask, mask); |
| 5506 | th->th.th_current_place = th->th.th_new_place; |
| 5507 | |
| 5508 | if (__kmp_affinity.flags.verbose) { |
| 5509 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 5510 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 5511 | mask: th->th.th_affin_mask); |
| 5512 | KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND" , (kmp_int32)getpid(), |
| 5513 | __kmp_gettid(), gtid, buf); |
| 5514 | } |
| 5515 | __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); |
| 5516 | } |
| 5517 | |
| 5518 | int __kmp_aux_set_affinity(void **mask) { |
| 5519 | int gtid; |
| 5520 | kmp_info_t *th; |
| 5521 | int retval; |
| 5522 | |
| 5523 | if (!KMP_AFFINITY_CAPABLE()) { |
| 5524 | return -1; |
| 5525 | } |
| 5526 | |
| 5527 | gtid = __kmp_entry_gtid(); |
| 5528 | KA_TRACE( |
| 5529 | 1000, ("" ); { |
| 5530 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 5531 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 5532 | (kmp_affin_mask_t *)(*mask)); |
| 5533 | __kmp_debug_printf( |
| 5534 | "kmp_set_affinity: setting affinity mask for thread %d = %s\n" , |
| 5535 | gtid, buf); |
| 5536 | }); |
| 5537 | |
| 5538 | if (__kmp_env_consistency_check) { |
| 5539 | if ((mask == NULL) || (*mask == NULL)) { |
| 5540 | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity" ); |
| 5541 | } else { |
| 5542 | unsigned proc; |
| 5543 | int num_procs = 0; |
| 5544 | |
| 5545 | KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { |
| 5546 | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { |
| 5547 | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity" ); |
| 5548 | } |
| 5549 | if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { |
| 5550 | continue; |
| 5551 | } |
| 5552 | num_procs++; |
| 5553 | } |
| 5554 | if (num_procs == 0) { |
| 5555 | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity" ); |
| 5556 | } |
| 5557 | |
| 5558 | #if KMP_GROUP_AFFINITY |
| 5559 | if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { |
| 5560 | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity" ); |
| 5561 | } |
| 5562 | #endif /* KMP_GROUP_AFFINITY */ |
| 5563 | } |
| 5564 | } |
| 5565 | |
| 5566 | th = __kmp_threads[gtid]; |
| 5567 | KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); |
| 5568 | retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); |
| 5569 | if (retval == 0) { |
| 5570 | KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); |
| 5571 | } |
| 5572 | |
| 5573 | th->th.th_current_place = KMP_PLACE_UNDEFINED; |
| 5574 | th->th.th_new_place = KMP_PLACE_UNDEFINED; |
| 5575 | th->th.th_first_place = 0; |
| 5576 | th->th.th_last_place = __kmp_affinity.num_masks - 1; |
| 5577 | |
| 5578 | // Turn off 4.0 affinity for the current tread at this parallel level. |
| 5579 | th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; |
| 5580 | |
| 5581 | return retval; |
| 5582 | } |
| 5583 | |
| 5584 | int __kmp_aux_get_affinity(void **mask) { |
| 5585 | int gtid; |
| 5586 | int retval; |
| 5587 | #if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG |
| 5588 | kmp_info_t *th; |
| 5589 | #endif |
| 5590 | if (!KMP_AFFINITY_CAPABLE()) { |
| 5591 | return -1; |
| 5592 | } |
| 5593 | |
| 5594 | gtid = __kmp_entry_gtid(); |
| 5595 | #if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG |
| 5596 | th = __kmp_threads[gtid]; |
| 5597 | #else |
| 5598 | (void)gtid; // unused variable |
| 5599 | #endif |
| 5600 | KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); |
| 5601 | |
| 5602 | KA_TRACE( |
| 5603 | 1000, ("" ); { |
| 5604 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 5605 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 5606 | th->th.th_affin_mask); |
| 5607 | __kmp_printf( |
| 5608 | "kmp_get_affinity: stored affinity mask for thread %d = %s\n" , gtid, |
| 5609 | buf); |
| 5610 | }); |
| 5611 | |
| 5612 | if (__kmp_env_consistency_check) { |
| 5613 | if ((mask == NULL) || (*mask == NULL)) { |
| 5614 | KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity" ); |
| 5615 | } |
| 5616 | } |
| 5617 | |
| 5618 | #if !KMP_OS_WINDOWS && !KMP_OS_AIX |
| 5619 | |
| 5620 | retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); |
| 5621 | KA_TRACE( |
| 5622 | 1000, ("" ); { |
| 5623 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 5624 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 5625 | (kmp_affin_mask_t *)(*mask)); |
| 5626 | __kmp_printf( |
| 5627 | "kmp_get_affinity: system affinity mask for thread %d = %s\n" , gtid, |
| 5628 | buf); |
| 5629 | }); |
| 5630 | return retval; |
| 5631 | |
| 5632 | #else |
| 5633 | (void)retval; |
| 5634 | |
| 5635 | KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); |
| 5636 | return 0; |
| 5637 | |
| 5638 | #endif /* !KMP_OS_WINDOWS && !KMP_OS_AIX */ |
| 5639 | } |
| 5640 | |
| 5641 | int __kmp_aux_get_affinity_max_proc() { |
| 5642 | if (!KMP_AFFINITY_CAPABLE()) { |
| 5643 | return 0; |
| 5644 | } |
| 5645 | #if KMP_GROUP_AFFINITY |
| 5646 | if (__kmp_num_proc_groups > 1) { |
| 5647 | return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); |
| 5648 | } |
| 5649 | #endif |
| 5650 | return __kmp_xproc; |
| 5651 | } |
| 5652 | |
| 5653 | int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { |
| 5654 | if (!KMP_AFFINITY_CAPABLE()) { |
| 5655 | return -1; |
| 5656 | } |
| 5657 | |
| 5658 | KA_TRACE( |
| 5659 | 1000, ("" ); { |
| 5660 | int gtid = __kmp_entry_gtid(); |
| 5661 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 5662 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 5663 | (kmp_affin_mask_t *)(*mask)); |
| 5664 | __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " |
| 5665 | "affinity mask for thread %d = %s\n" , |
| 5666 | proc, gtid, buf); |
| 5667 | }); |
| 5668 | |
| 5669 | if (__kmp_env_consistency_check) { |
| 5670 | if ((mask == NULL) || (*mask == NULL)) { |
| 5671 | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc" ); |
| 5672 | } |
| 5673 | } |
| 5674 | |
| 5675 | if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { |
| 5676 | return -1; |
| 5677 | } |
| 5678 | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { |
| 5679 | return -2; |
| 5680 | } |
| 5681 | |
| 5682 | KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); |
| 5683 | return 0; |
| 5684 | } |
| 5685 | |
| 5686 | int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { |
| 5687 | if (!KMP_AFFINITY_CAPABLE()) { |
| 5688 | return -1; |
| 5689 | } |
| 5690 | |
| 5691 | KA_TRACE( |
| 5692 | 1000, ("" ); { |
| 5693 | int gtid = __kmp_entry_gtid(); |
| 5694 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 5695 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 5696 | (kmp_affin_mask_t *)(*mask)); |
| 5697 | __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " |
| 5698 | "affinity mask for thread %d = %s\n" , |
| 5699 | proc, gtid, buf); |
| 5700 | }); |
| 5701 | |
| 5702 | if (__kmp_env_consistency_check) { |
| 5703 | if ((mask == NULL) || (*mask == NULL)) { |
| 5704 | KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc" ); |
| 5705 | } |
| 5706 | } |
| 5707 | |
| 5708 | if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { |
| 5709 | return -1; |
| 5710 | } |
| 5711 | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { |
| 5712 | return -2; |
| 5713 | } |
| 5714 | |
| 5715 | KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); |
| 5716 | return 0; |
| 5717 | } |
| 5718 | |
| 5719 | int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { |
| 5720 | if (!KMP_AFFINITY_CAPABLE()) { |
| 5721 | return -1; |
| 5722 | } |
| 5723 | |
| 5724 | KA_TRACE( |
| 5725 | 1000, ("" ); { |
| 5726 | int gtid = __kmp_entry_gtid(); |
| 5727 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 5728 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 5729 | (kmp_affin_mask_t *)(*mask)); |
| 5730 | __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " |
| 5731 | "affinity mask for thread %d = %s\n" , |
| 5732 | proc, gtid, buf); |
| 5733 | }); |
| 5734 | |
| 5735 | if (__kmp_env_consistency_check) { |
| 5736 | if ((mask == NULL) || (*mask == NULL)) { |
| 5737 | KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc" ); |
| 5738 | } |
| 5739 | } |
| 5740 | |
| 5741 | if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { |
| 5742 | return -1; |
| 5743 | } |
| 5744 | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { |
| 5745 | return 0; |
| 5746 | } |
| 5747 | |
| 5748 | return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); |
| 5749 | } |
| 5750 | |
| 5751 | #if KMP_WEIGHTED_ITERATIONS_SUPPORTED |
| 5752 | // Returns first os proc id with ATOM core |
| 5753 | int __kmp_get_first_osid_with_ecore(void) { |
| 5754 | int low = 0; |
| 5755 | int high = __kmp_topology->get_num_hw_threads() - 1; |
| 5756 | int mid = 0; |
| 5757 | while (high - low > 1) { |
| 5758 | mid = (high + low) / 2; |
| 5759 | if (__kmp_topology->at(index: mid).attrs.get_core_type() == |
| 5760 | KMP_HW_CORE_TYPE_CORE) { |
| 5761 | low = mid + 1; |
| 5762 | } else { |
| 5763 | high = mid; |
| 5764 | } |
| 5765 | } |
| 5766 | if (__kmp_topology->at(index: mid).attrs.get_core_type() == KMP_HW_CORE_TYPE_ATOM) { |
| 5767 | return mid; |
| 5768 | } |
| 5769 | return -1; |
| 5770 | } |
| 5771 | #endif |
| 5772 | |
| 5773 | // Dynamic affinity settings - Affinity balanced |
| 5774 | void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { |
| 5775 | KMP_DEBUG_ASSERT(th); |
| 5776 | bool fine_gran = true; |
| 5777 | int tid = th->th.th_info.ds.ds_tid; |
| 5778 | const char *env_var = "KMP_AFFINITY" ; |
| 5779 | |
| 5780 | // Do not perform balanced affinity for the hidden helper threads |
| 5781 | if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))) |
| 5782 | return; |
| 5783 | |
| 5784 | switch (__kmp_affinity.gran) { |
| 5785 | case KMP_HW_THREAD: |
| 5786 | break; |
| 5787 | case KMP_HW_CORE: |
| 5788 | if (__kmp_nThreadsPerCore > 1) { |
| 5789 | fine_gran = false; |
| 5790 | } |
| 5791 | break; |
| 5792 | case KMP_HW_SOCKET: |
| 5793 | if (nCoresPerPkg > 1) { |
| 5794 | fine_gran = false; |
| 5795 | } |
| 5796 | break; |
| 5797 | default: |
| 5798 | fine_gran = false; |
| 5799 | } |
| 5800 | |
| 5801 | if (__kmp_topology->is_uniform()) { |
| 5802 | int coreID; |
| 5803 | int threadID; |
| 5804 | // Number of hyper threads per core in HT machine |
| 5805 | int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; |
| 5806 | // Number of cores |
| 5807 | int ncores = __kmp_ncores; |
| 5808 | if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { |
| 5809 | __kmp_nth_per_core = __kmp_avail_proc / nPackages; |
| 5810 | ncores = nPackages; |
| 5811 | } |
| 5812 | // How many threads will be bound to each core |
| 5813 | int chunk = nthreads / ncores; |
| 5814 | // How many cores will have an additional thread bound to it - "big cores" |
| 5815 | int big_cores = nthreads % ncores; |
| 5816 | // Number of threads on the big cores |
| 5817 | int big_nth = (chunk + 1) * big_cores; |
| 5818 | if (tid < big_nth) { |
| 5819 | coreID = tid / (chunk + 1); |
| 5820 | threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; |
| 5821 | } else { // tid >= big_nth |
| 5822 | coreID = (tid - big_cores) / chunk; |
| 5823 | threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; |
| 5824 | } |
| 5825 | KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), |
| 5826 | "Illegal set affinity operation when not capable" ); |
| 5827 | |
| 5828 | kmp_affin_mask_t *mask = th->th.th_affin_mask; |
| 5829 | KMP_CPU_ZERO(mask); |
| 5830 | |
| 5831 | if (fine_gran) { |
| 5832 | int osID = |
| 5833 | __kmp_topology->at(index: coreID * __kmp_nth_per_core + threadID).os_id; |
| 5834 | KMP_CPU_SET(osID, mask); |
| 5835 | } else { |
| 5836 | for (int i = 0; i < __kmp_nth_per_core; i++) { |
| 5837 | int osID; |
| 5838 | osID = __kmp_topology->at(index: coreID * __kmp_nth_per_core + i).os_id; |
| 5839 | KMP_CPU_SET(osID, mask); |
| 5840 | } |
| 5841 | } |
| 5842 | if (__kmp_affinity.flags.verbose) { |
| 5843 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 5844 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); |
| 5845 | KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), |
| 5846 | tid, buf); |
| 5847 | } |
| 5848 | __kmp_affinity_get_thread_topology_info(th); |
| 5849 | __kmp_set_system_affinity(mask, TRUE); |
| 5850 | } else { // Non-uniform topology |
| 5851 | |
| 5852 | kmp_affin_mask_t *mask = th->th.th_affin_mask; |
| 5853 | KMP_CPU_ZERO(mask); |
| 5854 | |
| 5855 | int core_level = |
| 5856 | __kmp_affinity_find_core_level(nprocs: __kmp_avail_proc, bottom_level: __kmp_aff_depth - 1); |
| 5857 | int ncores = __kmp_affinity_compute_ncores(nprocs: __kmp_avail_proc, |
| 5858 | bottom_level: __kmp_aff_depth - 1, core_level); |
| 5859 | int nth_per_core = __kmp_affinity_max_proc_per_core( |
| 5860 | nprocs: __kmp_avail_proc, bottom_level: __kmp_aff_depth - 1, core_level); |
| 5861 | |
| 5862 | // For performance gain consider the special case nthreads == |
| 5863 | // __kmp_avail_proc |
| 5864 | if (nthreads == __kmp_avail_proc) { |
| 5865 | if (fine_gran) { |
| 5866 | int osID = __kmp_topology->at(index: tid).os_id; |
| 5867 | KMP_CPU_SET(osID, mask); |
| 5868 | } else { |
| 5869 | int core = |
| 5870 | __kmp_affinity_find_core(proc: tid, bottom_level: __kmp_aff_depth - 1, core_level); |
| 5871 | for (int i = 0; i < __kmp_avail_proc; i++) { |
| 5872 | int osID = __kmp_topology->at(index: i).os_id; |
| 5873 | if (__kmp_affinity_find_core(proc: i, bottom_level: __kmp_aff_depth - 1, core_level) == |
| 5874 | core) { |
| 5875 | KMP_CPU_SET(osID, mask); |
| 5876 | } |
| 5877 | } |
| 5878 | } |
| 5879 | } else if (nthreads <= ncores) { |
| 5880 | |
| 5881 | int core = 0; |
| 5882 | for (int i = 0; i < ncores; i++) { |
| 5883 | // Check if this core from procarr[] is in the mask |
| 5884 | int in_mask = 0; |
| 5885 | for (int j = 0; j < nth_per_core; j++) { |
| 5886 | if (procarr[i * nth_per_core + j] != -1) { |
| 5887 | in_mask = 1; |
| 5888 | break; |
| 5889 | } |
| 5890 | } |
| 5891 | if (in_mask) { |
| 5892 | if (tid == core) { |
| 5893 | for (int j = 0; j < nth_per_core; j++) { |
| 5894 | int osID = procarr[i * nth_per_core + j]; |
| 5895 | if (osID != -1) { |
| 5896 | KMP_CPU_SET(osID, mask); |
| 5897 | // For fine granularity it is enough to set the first available |
| 5898 | // osID for this core |
| 5899 | if (fine_gran) { |
| 5900 | break; |
| 5901 | } |
| 5902 | } |
| 5903 | } |
| 5904 | break; |
| 5905 | } else { |
| 5906 | core++; |
| 5907 | } |
| 5908 | } |
| 5909 | } |
| 5910 | } else { // nthreads > ncores |
| 5911 | // Array to save the number of processors at each core |
| 5912 | int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); |
| 5913 | // Array to save the number of cores with "x" available processors; |
| 5914 | int *ncores_with_x_procs = |
| 5915 | (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); |
| 5916 | // Array to save the number of cores with # procs from x to nth_per_core |
| 5917 | int *ncores_with_x_to_max_procs = |
| 5918 | (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); |
| 5919 | |
| 5920 | for (int i = 0; i <= nth_per_core; i++) { |
| 5921 | ncores_with_x_procs[i] = 0; |
| 5922 | ncores_with_x_to_max_procs[i] = 0; |
| 5923 | } |
| 5924 | |
| 5925 | for (int i = 0; i < ncores; i++) { |
| 5926 | int cnt = 0; |
| 5927 | for (int j = 0; j < nth_per_core; j++) { |
| 5928 | if (procarr[i * nth_per_core + j] != -1) { |
| 5929 | cnt++; |
| 5930 | } |
| 5931 | } |
| 5932 | nproc_at_core[i] = cnt; |
| 5933 | ncores_with_x_procs[cnt]++; |
| 5934 | } |
| 5935 | |
| 5936 | for (int i = 0; i <= nth_per_core; i++) { |
| 5937 | for (int j = i; j <= nth_per_core; j++) { |
| 5938 | ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; |
| 5939 | } |
| 5940 | } |
| 5941 | |
| 5942 | // Max number of processors |
| 5943 | int nproc = nth_per_core * ncores; |
| 5944 | // An array to keep number of threads per each context |
| 5945 | int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); |
| 5946 | for (int i = 0; i < nproc; i++) { |
| 5947 | newarr[i] = 0; |
| 5948 | } |
| 5949 | |
| 5950 | int nth = nthreads; |
| 5951 | int flag = 0; |
| 5952 | while (nth > 0) { |
| 5953 | for (int j = 1; j <= nth_per_core; j++) { |
| 5954 | int cnt = ncores_with_x_to_max_procs[j]; |
| 5955 | for (int i = 0; i < ncores; i++) { |
| 5956 | // Skip the core with 0 processors |
| 5957 | if (nproc_at_core[i] == 0) { |
| 5958 | continue; |
| 5959 | } |
| 5960 | for (int k = 0; k < nth_per_core; k++) { |
| 5961 | if (procarr[i * nth_per_core + k] != -1) { |
| 5962 | if (newarr[i * nth_per_core + k] == 0) { |
| 5963 | newarr[i * nth_per_core + k] = 1; |
| 5964 | cnt--; |
| 5965 | nth--; |
| 5966 | break; |
| 5967 | } else { |
| 5968 | if (flag != 0) { |
| 5969 | newarr[i * nth_per_core + k]++; |
| 5970 | cnt--; |
| 5971 | nth--; |
| 5972 | break; |
| 5973 | } |
| 5974 | } |
| 5975 | } |
| 5976 | } |
| 5977 | if (cnt == 0 || nth == 0) { |
| 5978 | break; |
| 5979 | } |
| 5980 | } |
| 5981 | if (nth == 0) { |
| 5982 | break; |
| 5983 | } |
| 5984 | } |
| 5985 | flag = 1; |
| 5986 | } |
| 5987 | int sum = 0; |
| 5988 | for (int i = 0; i < nproc; i++) { |
| 5989 | sum += newarr[i]; |
| 5990 | if (sum > tid) { |
| 5991 | if (fine_gran) { |
| 5992 | int osID = procarr[i]; |
| 5993 | KMP_CPU_SET(osID, mask); |
| 5994 | } else { |
| 5995 | int coreID = i / nth_per_core; |
| 5996 | for (int ii = 0; ii < nth_per_core; ii++) { |
| 5997 | int osID = procarr[coreID * nth_per_core + ii]; |
| 5998 | if (osID != -1) { |
| 5999 | KMP_CPU_SET(osID, mask); |
| 6000 | } |
| 6001 | } |
| 6002 | } |
| 6003 | break; |
| 6004 | } |
| 6005 | } |
| 6006 | __kmp_free(newarr); |
| 6007 | } |
| 6008 | |
| 6009 | if (__kmp_affinity.flags.verbose) { |
| 6010 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 6011 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); |
| 6012 | KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), |
| 6013 | tid, buf); |
| 6014 | } |
| 6015 | __kmp_affinity_get_thread_topology_info(th); |
| 6016 | __kmp_set_system_affinity(mask, TRUE); |
| 6017 | } |
| 6018 | } |
| 6019 | |
| 6020 | #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \ |
| 6021 | KMP_OS_AIX |
| 6022 | // We don't need this entry for Windows because |
| 6023 | // there is GetProcessAffinityMask() api |
| 6024 | // |
| 6025 | // The intended usage is indicated by these steps: |
| 6026 | // 1) The user gets the current affinity mask |
| 6027 | // 2) Then sets the affinity by calling this function |
| 6028 | // 3) Error check the return value |
| 6029 | // 4) Use non-OpenMP parallelization |
| 6030 | // 5) Reset the affinity to what was stored in step 1) |
| 6031 | #ifdef __cplusplus |
| 6032 | extern "C" |
| 6033 | #endif |
| 6034 | int |
| 6035 | kmp_set_thread_affinity_mask_initial() |
| 6036 | // the function returns 0 on success, |
| 6037 | // -1 if we cannot bind thread |
| 6038 | // >0 (errno) if an error happened during binding |
| 6039 | { |
| 6040 | int gtid = __kmp_get_gtid(); |
| 6041 | if (gtid < 0) { |
| 6042 | // Do not touch non-omp threads |
| 6043 | KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " |
| 6044 | "non-omp thread, returning\n" )); |
| 6045 | return -1; |
| 6046 | } |
| 6047 | if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { |
| 6048 | KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " |
| 6049 | "affinity not initialized, returning\n" )); |
| 6050 | return -1; |
| 6051 | } |
| 6052 | KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " |
| 6053 | "set full mask for thread %d\n" , |
| 6054 | gtid)); |
| 6055 | KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); |
| 6056 | #if KMP_OS_AIX |
| 6057 | return bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY); |
| 6058 | #else |
| 6059 | return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); |
| 6060 | #endif |
| 6061 | } |
| 6062 | #endif |
| 6063 | |
| 6064 | #endif // KMP_AFFINITY_SUPPORTED |
| 6065 | |