1/*
2 * kmp_affinity.cpp -- affinity management
3 */
4
5//===----------------------------------------------------------------------===//
6//
7// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8// See https://llvm.org/LICENSE.txt for license information.
9// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10//
11//===----------------------------------------------------------------------===//
12
13#include "kmp.h"
14#include "kmp_affinity.h"
15#include "kmp_i18n.h"
16#include "kmp_io.h"
17#include "kmp_str.h"
18#include "kmp_wrapper_getpid.h"
19#if KMP_USE_HIER_SCHED
20#include "kmp_dispatch_hier.h"
21#endif
22#if KMP_USE_HWLOC
23// Copied from hwloc
24#define HWLOC_GROUP_KIND_INTEL_MODULE 102
25#define HWLOC_GROUP_KIND_INTEL_TILE 103
26#define HWLOC_GROUP_KIND_INTEL_DIE 104
27#define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
28#endif
29#include <ctype.h>
30
31// The machine topology
32kmp_topology_t *__kmp_topology = nullptr;
33// KMP_HW_SUBSET environment variable
34kmp_hw_subset_t *__kmp_hw_subset = nullptr;
35
36// Store the real or imagined machine hierarchy here
37static hierarchy_info machine_hierarchy;
38
39void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
40
41#if KMP_AFFINITY_SUPPORTED
42// Helper class to see if place lists further restrict the fullMask
43class kmp_full_mask_modifier_t {
44 kmp_affin_mask_t *mask;
45
46public:
47 kmp_full_mask_modifier_t() {
48 KMP_CPU_ALLOC(mask);
49 KMP_CPU_ZERO(mask);
50 }
51 ~kmp_full_mask_modifier_t() {
52 KMP_CPU_FREE(mask);
53 mask = nullptr;
54 }
55 void include(const kmp_affin_mask_t *other) { KMP_CPU_UNION(mask, other); }
56 // If the new full mask is different from the current full mask,
57 // then switch them. Returns true if full mask was affected, false otherwise.
58 bool restrict_to_mask() {
59 // See if the new mask further restricts or changes the full mask
60 if (KMP_CPU_EQUAL(__kmp_affin_fullMask, mask) || KMP_CPU_ISEMPTY(mask))
61 return false;
62 return __kmp_topology->restrict_to_mask(mask);
63 }
64};
65
66static inline const char *
67__kmp_get_affinity_env_var(const kmp_affinity_t &affinity,
68 bool for_binding = false) {
69 if (affinity.flags.omp_places) {
70 if (for_binding)
71 return "OMP_PROC_BIND";
72 return "OMP_PLACES";
73 }
74 return affinity.env_var;
75}
76#endif // KMP_AFFINITY_SUPPORTED
77
78void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
79 kmp_uint32 depth;
80 // The test below is true if affinity is available, but set to "none". Need to
81 // init on first use of hierarchical barrier.
82 if (TCR_1(machine_hierarchy.uninitialized))
83 machine_hierarchy.init(num_addrs: nproc);
84
85 // Adjust the hierarchy in case num threads exceeds original
86 if (nproc > machine_hierarchy.base_num_threads)
87 machine_hierarchy.resize(nproc);
88
89 depth = machine_hierarchy.depth;
90 KMP_DEBUG_ASSERT(depth > 0);
91
92 thr_bar->depth = depth;
93 __kmp_type_convert(src: machine_hierarchy.numPerLevel[0] - 1,
94 dest: &(thr_bar->base_leaf_kids));
95 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
96}
97
98static int nCoresPerPkg, nPackages;
99static int __kmp_nThreadsPerCore;
100#ifndef KMP_DFLT_NTH_CORES
101static int __kmp_ncores;
102#endif
103
104const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
105 switch (type) {
106 case KMP_HW_SOCKET:
107 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket));
108 case KMP_HW_DIE:
109 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die));
110 case KMP_HW_MODULE:
111 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module));
112 case KMP_HW_TILE:
113 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile));
114 case KMP_HW_NUMA:
115 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain));
116 case KMP_HW_L3:
117 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache));
118 case KMP_HW_L2:
119 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache));
120 case KMP_HW_L1:
121 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache));
122 case KMP_HW_LLC:
123 return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache));
124 case KMP_HW_CORE:
125 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core));
126 case KMP_HW_THREAD:
127 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread));
128 case KMP_HW_PROC_GROUP:
129 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup));
130 case KMP_HW_UNKNOWN:
131 case KMP_HW_LAST:
132 return KMP_I18N_STR(Unknown);
133 }
134 KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration");
135 KMP_BUILTIN_UNREACHABLE;
136}
137
138const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
139 switch (type) {
140 case KMP_HW_SOCKET:
141 return ((plural) ? "sockets" : "socket");
142 case KMP_HW_DIE:
143 return ((plural) ? "dice" : "die");
144 case KMP_HW_MODULE:
145 return ((plural) ? "modules" : "module");
146 case KMP_HW_TILE:
147 return ((plural) ? "tiles" : "tile");
148 case KMP_HW_NUMA:
149 return ((plural) ? "numa_domains" : "numa_domain");
150 case KMP_HW_L3:
151 return ((plural) ? "l3_caches" : "l3_cache");
152 case KMP_HW_L2:
153 return ((plural) ? "l2_caches" : "l2_cache");
154 case KMP_HW_L1:
155 return ((plural) ? "l1_caches" : "l1_cache");
156 case KMP_HW_LLC:
157 return ((plural) ? "ll_caches" : "ll_cache");
158 case KMP_HW_CORE:
159 return ((plural) ? "cores" : "core");
160 case KMP_HW_THREAD:
161 return ((plural) ? "threads" : "thread");
162 case KMP_HW_PROC_GROUP:
163 return ((plural) ? "proc_groups" : "proc_group");
164 case KMP_HW_UNKNOWN:
165 case KMP_HW_LAST:
166 return ((plural) ? "unknowns" : "unknown");
167 }
168 KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration");
169 KMP_BUILTIN_UNREACHABLE;
170}
171
172const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) {
173 switch (type) {
174 case KMP_HW_CORE_TYPE_UNKNOWN:
175 case KMP_HW_MAX_NUM_CORE_TYPES:
176 return "unknown";
177#if KMP_ARCH_X86 || KMP_ARCH_X86_64
178 case KMP_HW_CORE_TYPE_ATOM:
179 return "Intel Atom(R) processor";
180 case KMP_HW_CORE_TYPE_CORE:
181 return "Intel(R) Core(TM) processor";
182#endif
183 }
184 KMP_ASSERT2(false, "Unhandled kmp_hw_core_type_t enumeration");
185 KMP_BUILTIN_UNREACHABLE;
186}
187
188#if KMP_AFFINITY_SUPPORTED
189// If affinity is supported, check the affinity
190// verbose and warning flags before printing warning
191#define KMP_AFF_WARNING(s, ...) \
192 if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) { \
193 KMP_WARNING(__VA_ARGS__); \
194 }
195#else
196#define KMP_AFF_WARNING(s, ...) KMP_WARNING(__VA_ARGS__)
197#endif
198
199////////////////////////////////////////////////////////////////////////////////
200// kmp_hw_thread_t methods
201int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
202 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
203 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
204 int depth = __kmp_topology->get_depth();
205 for (int level = 0; level < depth; ++level) {
206 // Reverse sort (higher efficiencies earlier in list) cores by core
207 // efficiency if available.
208 if (__kmp_is_hybrid_cpu() &&
209 __kmp_topology->get_type(level) == KMP_HW_CORE &&
210 ahwthread->attrs.is_core_eff_valid() &&
211 bhwthread->attrs.is_core_eff_valid()) {
212 if (ahwthread->attrs.get_core_eff() < bhwthread->attrs.get_core_eff())
213 return 1;
214 if (ahwthread->attrs.get_core_eff() > bhwthread->attrs.get_core_eff())
215 return -1;
216 }
217 if (ahwthread->ids[level] == bhwthread->ids[level])
218 continue;
219 // If the hardware id is unknown for this level, then place hardware thread
220 // further down in the sorted list as it should take last priority
221 if (ahwthread->ids[level] == UNKNOWN_ID)
222 return 1;
223 else if (bhwthread->ids[level] == UNKNOWN_ID)
224 return -1;
225 else if (ahwthread->ids[level] < bhwthread->ids[level])
226 return -1;
227 else if (ahwthread->ids[level] > bhwthread->ids[level])
228 return 1;
229 }
230 if (ahwthread->os_id < bhwthread->os_id)
231 return -1;
232 else if (ahwthread->os_id > bhwthread->os_id)
233 return 1;
234 return 0;
235}
236
237#if KMP_AFFINITY_SUPPORTED
238int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
239 int i;
240 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
241 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
242 int depth = __kmp_topology->get_depth();
243 int compact = __kmp_topology->compact;
244 KMP_DEBUG_ASSERT(compact >= 0);
245 KMP_DEBUG_ASSERT(compact <= depth);
246 for (i = 0; i < compact; i++) {
247 int j = depth - i - 1;
248 if (aa->sub_ids[j] < bb->sub_ids[j])
249 return -1;
250 if (aa->sub_ids[j] > bb->sub_ids[j])
251 return 1;
252 }
253 for (; i < depth; i++) {
254 int j = i - compact;
255 if (aa->sub_ids[j] < bb->sub_ids[j])
256 return -1;
257 if (aa->sub_ids[j] > bb->sub_ids[j])
258 return 1;
259 }
260 return 0;
261}
262#endif
263
264void kmp_hw_thread_t::print() const {
265 int depth = __kmp_topology->get_depth();
266 printf(format: "%4d ", os_id);
267 for (int i = 0; i < depth; ++i) {
268 printf(format: "%4d (%d) ", ids[i], sub_ids[i]);
269 }
270 if (attrs) {
271 if (attrs.is_core_type_valid())
272 printf(format: " (%s)", __kmp_hw_get_core_type_string(type: attrs.get_core_type()));
273 if (attrs.is_core_eff_valid())
274 printf(format: " (eff=%d)", attrs.get_core_eff());
275 }
276 if (leader)
277 printf(format: " (leader)");
278 printf(format: "\n");
279}
280
281////////////////////////////////////////////////////////////////////////////////
282// kmp_topology_t methods
283
284// Add a layer to the topology based on the ids. Assume the topology
285// is perfectly nested (i.e., so no object has more than one parent)
286void kmp_topology_t::insert_layer(kmp_hw_t type, const int *ids) {
287 // Figure out where the layer should go by comparing the ids of the current
288 // layers with the new ids
289 int target_layer;
290 int previous_id = kmp_hw_thread_t::UNKNOWN_ID;
291 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID;
292
293 // Start from the highest layer and work down to find target layer
294 // If new layer is equal to another layer then put the new layer above
295 for (target_layer = 0; target_layer < depth; ++target_layer) {
296 bool layers_equal = true;
297 bool strictly_above_target_layer = false;
298 for (int i = 0; i < num_hw_threads; ++i) {
299 int id = hw_threads[i].ids[target_layer];
300 int new_id = ids[i];
301 if (id != previous_id && new_id == previous_new_id) {
302 // Found the layer we are strictly above
303 strictly_above_target_layer = true;
304 layers_equal = false;
305 break;
306 } else if (id == previous_id && new_id != previous_new_id) {
307 // Found a layer we are below. Move to next layer and check.
308 layers_equal = false;
309 break;
310 }
311 previous_id = id;
312 previous_new_id = new_id;
313 }
314 if (strictly_above_target_layer || layers_equal)
315 break;
316 }
317
318 // Found the layer we are above. Now move everything to accommodate the new
319 // layer. And put the new ids and type into the topology.
320 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
321 types[j] = types[i];
322 types[target_layer] = type;
323 for (int k = 0; k < num_hw_threads; ++k) {
324 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
325 hw_threads[k].ids[j] = hw_threads[k].ids[i];
326 hw_threads[k].ids[target_layer] = ids[k];
327 }
328 equivalent[type] = type;
329 depth++;
330}
331
332#if KMP_GROUP_AFFINITY
333// Insert the Windows Processor Group structure into the topology
334void kmp_topology_t::_insert_windows_proc_groups() {
335 // Do not insert the processor group structure for a single group
336 if (__kmp_num_proc_groups == 1)
337 return;
338 kmp_affin_mask_t *mask;
339 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads);
340 KMP_CPU_ALLOC(mask);
341 for (int i = 0; i < num_hw_threads; ++i) {
342 KMP_CPU_ZERO(mask);
343 KMP_CPU_SET(hw_threads[i].os_id, mask);
344 ids[i] = __kmp_get_proc_group(mask);
345 }
346 KMP_CPU_FREE(mask);
347 insert_layer(KMP_HW_PROC_GROUP, ids);
348 __kmp_free(ids);
349
350 // sort topology after adding proc groups
351 __kmp_topology->sort_ids();
352}
353#endif
354
355// Remove layers that don't add information to the topology.
356// This is done by having the layer take on the id = UNKNOWN_ID (-1)
357void kmp_topology_t::_remove_radix1_layers() {
358 int preference[KMP_HW_LAST];
359 int top_index1, top_index2;
360 // Set up preference associative array
361 preference[KMP_HW_SOCKET] = 110;
362 preference[KMP_HW_PROC_GROUP] = 100;
363 preference[KMP_HW_CORE] = 95;
364 preference[KMP_HW_THREAD] = 90;
365 preference[KMP_HW_NUMA] = 85;
366 preference[KMP_HW_DIE] = 80;
367 preference[KMP_HW_TILE] = 75;
368 preference[KMP_HW_MODULE] = 73;
369 preference[KMP_HW_L3] = 70;
370 preference[KMP_HW_L2] = 65;
371 preference[KMP_HW_L1] = 60;
372 preference[KMP_HW_LLC] = 5;
373 top_index1 = 0;
374 top_index2 = 1;
375 while (top_index1 < depth - 1 && top_index2 < depth) {
376 kmp_hw_t type1 = types[top_index1];
377 kmp_hw_t type2 = types[top_index2];
378 KMP_ASSERT_VALID_HW_TYPE(type1);
379 KMP_ASSERT_VALID_HW_TYPE(type2);
380 // Do not allow the three main topology levels (sockets, cores, threads) to
381 // be compacted down
382 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
383 type1 == KMP_HW_SOCKET) &&
384 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
385 type2 == KMP_HW_SOCKET)) {
386 top_index1 = top_index2++;
387 continue;
388 }
389 bool radix1 = true;
390 bool all_same = true;
391 int id1 = hw_threads[0].ids[top_index1];
392 int id2 = hw_threads[0].ids[top_index2];
393 int pref1 = preference[type1];
394 int pref2 = preference[type2];
395 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
396 if (hw_threads[hwidx].ids[top_index1] == id1 &&
397 hw_threads[hwidx].ids[top_index2] != id2) {
398 radix1 = false;
399 break;
400 }
401 if (hw_threads[hwidx].ids[top_index2] != id2)
402 all_same = false;
403 id1 = hw_threads[hwidx].ids[top_index1];
404 id2 = hw_threads[hwidx].ids[top_index2];
405 }
406 if (radix1) {
407 // Select the layer to remove based on preference
408 kmp_hw_t remove_type, keep_type;
409 int remove_layer, remove_layer_ids;
410 if (pref1 > pref2) {
411 remove_type = type2;
412 remove_layer = remove_layer_ids = top_index2;
413 keep_type = type1;
414 } else {
415 remove_type = type1;
416 remove_layer = remove_layer_ids = top_index1;
417 keep_type = type2;
418 }
419 // If all the indexes for the second (deeper) layer are the same.
420 // e.g., all are zero, then make sure to keep the first layer's ids
421 if (all_same)
422 remove_layer_ids = top_index2;
423 // Remove radix one type by setting the equivalence, removing the id from
424 // the hw threads and removing the layer from types and depth
425 set_equivalent_type(type1: remove_type, type2: keep_type);
426 for (int idx = 0; idx < num_hw_threads; ++idx) {
427 kmp_hw_thread_t &hw_thread = hw_threads[idx];
428 for (int d = remove_layer_ids; d < depth - 1; ++d)
429 hw_thread.ids[d] = hw_thread.ids[d + 1];
430 }
431 for (int idx = remove_layer; idx < depth - 1; ++idx)
432 types[idx] = types[idx + 1];
433 depth--;
434 } else {
435 top_index1 = top_index2++;
436 }
437 }
438 KMP_ASSERT(depth > 0);
439}
440
441void kmp_topology_t::_set_last_level_cache() {
442 if (get_equivalent_type(type: KMP_HW_L3) != KMP_HW_UNKNOWN)
443 set_equivalent_type(type1: KMP_HW_LLC, type2: KMP_HW_L3);
444 else if (get_equivalent_type(type: KMP_HW_L2) != KMP_HW_UNKNOWN)
445 set_equivalent_type(type1: KMP_HW_LLC, type2: KMP_HW_L2);
446#if KMP_MIC_SUPPORTED
447 else if (__kmp_mic_type == mic3) {
448 if (get_equivalent_type(type: KMP_HW_L2) != KMP_HW_UNKNOWN)
449 set_equivalent_type(type1: KMP_HW_LLC, type2: KMP_HW_L2);
450 else if (get_equivalent_type(type: KMP_HW_TILE) != KMP_HW_UNKNOWN)
451 set_equivalent_type(type1: KMP_HW_LLC, type2: KMP_HW_TILE);
452 // L2/Tile wasn't detected so just say L1
453 else
454 set_equivalent_type(type1: KMP_HW_LLC, type2: KMP_HW_L1);
455 }
456#endif
457 else if (get_equivalent_type(type: KMP_HW_L1) != KMP_HW_UNKNOWN)
458 set_equivalent_type(type1: KMP_HW_LLC, type2: KMP_HW_L1);
459 // Fallback is to set last level cache to socket or core
460 if (get_equivalent_type(type: KMP_HW_LLC) == KMP_HW_UNKNOWN) {
461 if (get_equivalent_type(type: KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
462 set_equivalent_type(type1: KMP_HW_LLC, type2: KMP_HW_SOCKET);
463 else if (get_equivalent_type(type: KMP_HW_CORE) != KMP_HW_UNKNOWN)
464 set_equivalent_type(type1: KMP_HW_LLC, type2: KMP_HW_CORE);
465 }
466 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN);
467}
468
469// Gather the count of each topology layer and the ratio
470void kmp_topology_t::_gather_enumeration_information() {
471 int previous_id[KMP_HW_LAST];
472 int max[KMP_HW_LAST];
473
474 for (int i = 0; i < depth; ++i) {
475 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
476 max[i] = 0;
477 count[i] = 0;
478 ratio[i] = 0;
479 }
480 int core_level = get_level(type: KMP_HW_CORE);
481 for (int i = 0; i < num_hw_threads; ++i) {
482 kmp_hw_thread_t &hw_thread = hw_threads[i];
483 for (int layer = 0; layer < depth; ++layer) {
484 int id = hw_thread.ids[layer];
485 if (id != previous_id[layer]) {
486 // Add an additional increment to each count
487 for (int l = layer; l < depth; ++l) {
488 if (hw_thread.ids[l] != kmp_hw_thread_t::UNKNOWN_ID)
489 count[l]++;
490 }
491 // Keep track of topology layer ratio statistics
492 if (hw_thread.ids[layer] != kmp_hw_thread_t::UNKNOWN_ID)
493 max[layer]++;
494 for (int l = layer + 1; l < depth; ++l) {
495 if (max[l] > ratio[l])
496 ratio[l] = max[l];
497 max[l] = 1;
498 }
499 // Figure out the number of different core types
500 // and efficiencies for hybrid CPUs
501 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) {
502 if (hw_thread.attrs.is_core_eff_valid() &&
503 hw_thread.attrs.core_eff >= num_core_efficiencies) {
504 // Because efficiencies can range from 0 to max efficiency - 1,
505 // the number of efficiencies is max efficiency + 1
506 num_core_efficiencies = hw_thread.attrs.core_eff + 1;
507 }
508 if (hw_thread.attrs.is_core_type_valid()) {
509 bool found = false;
510 for (int j = 0; j < num_core_types; ++j) {
511 if (hw_thread.attrs.get_core_type() == core_types[j]) {
512 found = true;
513 break;
514 }
515 }
516 if (!found) {
517 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES);
518 core_types[num_core_types++] = hw_thread.attrs.get_core_type();
519 }
520 }
521 }
522 break;
523 }
524 }
525 for (int layer = 0; layer < depth; ++layer) {
526 previous_id[layer] = hw_thread.ids[layer];
527 }
528 }
529 for (int layer = 0; layer < depth; ++layer) {
530 if (max[layer] > ratio[layer])
531 ratio[layer] = max[layer];
532 }
533}
534
535int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr,
536 int above_level,
537 bool find_all) const {
538 int current, current_max;
539 int previous_id[KMP_HW_LAST];
540 for (int i = 0; i < depth; ++i)
541 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
542 int core_level = get_level(type: KMP_HW_CORE);
543 if (find_all)
544 above_level = -1;
545 KMP_ASSERT(above_level < core_level);
546 current_max = 0;
547 current = 0;
548 for (int i = 0; i < num_hw_threads; ++i) {
549 kmp_hw_thread_t &hw_thread = hw_threads[i];
550 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) {
551 if (current > current_max)
552 current_max = current;
553 current = hw_thread.attrs.contains(other: attr);
554 } else {
555 for (int level = above_level + 1; level <= core_level; ++level) {
556 if (hw_thread.ids[level] != previous_id[level]) {
557 if (hw_thread.attrs.contains(other: attr))
558 current++;
559 break;
560 }
561 }
562 }
563 for (int level = 0; level < depth; ++level)
564 previous_id[level] = hw_thread.ids[level];
565 }
566 if (current > current_max)
567 current_max = current;
568 return current_max;
569}
570
571// Find out if the topology is uniform
572void kmp_topology_t::_discover_uniformity() {
573 int num = 1;
574 for (int level = 0; level < depth; ++level)
575 num *= ratio[level];
576 flags.uniform = (num == count[depth - 1]);
577}
578
579// Set all the sub_ids for each hardware thread
580void kmp_topology_t::_set_sub_ids() {
581 int previous_id[KMP_HW_LAST];
582 int sub_id[KMP_HW_LAST];
583
584 for (int i = 0; i < depth; ++i) {
585 previous_id[i] = -1;
586 sub_id[i] = -1;
587 }
588 for (int i = 0; i < num_hw_threads; ++i) {
589 kmp_hw_thread_t &hw_thread = hw_threads[i];
590 // Setup the sub_id
591 for (int j = 0; j < depth; ++j) {
592 if (hw_thread.ids[j] != previous_id[j]) {
593 sub_id[j]++;
594 for (int k = j + 1; k < depth; ++k) {
595 sub_id[k] = 0;
596 }
597 break;
598 }
599 }
600 // Set previous_id
601 for (int j = 0; j < depth; ++j) {
602 previous_id[j] = hw_thread.ids[j];
603 }
604 // Set the sub_ids field
605 for (int j = 0; j < depth; ++j) {
606 hw_thread.sub_ids[j] = sub_id[j];
607 }
608 }
609}
610
611void kmp_topology_t::_set_globals() {
612 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
613 int core_level, thread_level, package_level;
614 package_level = get_level(type: KMP_HW_SOCKET);
615#if KMP_GROUP_AFFINITY
616 if (package_level == -1)
617 package_level = get_level(KMP_HW_PROC_GROUP);
618#endif
619 core_level = get_level(type: KMP_HW_CORE);
620 thread_level = get_level(type: KMP_HW_THREAD);
621
622 KMP_ASSERT(core_level != -1);
623 KMP_ASSERT(thread_level != -1);
624
625 __kmp_nThreadsPerCore = calculate_ratio(level1: thread_level, level2: core_level);
626 if (package_level != -1) {
627 nCoresPerPkg = calculate_ratio(level1: core_level, level2: package_level);
628 nPackages = get_count(level: package_level);
629 } else {
630 // assume one socket
631 nCoresPerPkg = get_count(level: core_level);
632 nPackages = 1;
633 }
634#ifndef KMP_DFLT_NTH_CORES
635 __kmp_ncores = get_count(level: core_level);
636#endif
637}
638
639kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
640 const kmp_hw_t *types) {
641 kmp_topology_t *retval;
642 // Allocate all data in one large allocation
643 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
644 sizeof(int) * (size_t)KMP_HW_LAST * 3;
645 char *bytes = (char *)__kmp_allocate(size);
646 retval = (kmp_topology_t *)bytes;
647 if (nproc > 0) {
648 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
649 } else {
650 retval->hw_threads = nullptr;
651 }
652 retval->num_hw_threads = nproc;
653 retval->depth = ndepth;
654 int *arr =
655 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
656 retval->types = (kmp_hw_t *)arr;
657 retval->ratio = arr + (size_t)KMP_HW_LAST;
658 retval->count = arr + 2 * (size_t)KMP_HW_LAST;
659 retval->num_core_efficiencies = 0;
660 retval->num_core_types = 0;
661 retval->compact = 0;
662 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i)
663 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN;
664 KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; }
665 for (int i = 0; i < ndepth; ++i) {
666 retval->types[i] = types[i];
667 retval->equivalent[types[i]] = types[i];
668 }
669 return retval;
670}
671
672void kmp_topology_t::deallocate(kmp_topology_t *topology) {
673 if (topology)
674 __kmp_free(topology);
675}
676
677bool kmp_topology_t::check_ids() const {
678 // Assume ids have been sorted
679 if (num_hw_threads == 0)
680 return true;
681 for (int i = 1; i < num_hw_threads; ++i) {
682 kmp_hw_thread_t &current_thread = hw_threads[i];
683 kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
684 bool unique = false;
685 for (int j = 0; j < depth; ++j) {
686 if (previous_thread.ids[j] != current_thread.ids[j]) {
687 unique = true;
688 break;
689 }
690 }
691 if (unique)
692 continue;
693 return false;
694 }
695 return true;
696}
697
698void kmp_topology_t::dump() const {
699 printf(format: "***********************\n");
700 printf(format: "*** __kmp_topology: ***\n");
701 printf(format: "***********************\n");
702 printf(format: "* depth: %d\n", depth);
703
704 printf(format: "* types: ");
705 for (int i = 0; i < depth; ++i)
706 printf(format: "%15s ", __kmp_hw_get_keyword(type: types[i]));
707 printf(format: "\n");
708
709 printf(format: "* ratio: ");
710 for (int i = 0; i < depth; ++i) {
711 printf(format: "%15d ", ratio[i]);
712 }
713 printf(format: "\n");
714
715 printf(format: "* count: ");
716 for (int i = 0; i < depth; ++i) {
717 printf(format: "%15d ", count[i]);
718 }
719 printf(format: "\n");
720
721 printf(format: "* num_core_eff: %d\n", num_core_efficiencies);
722 printf(format: "* num_core_types: %d\n", num_core_types);
723 printf(format: "* core_types: ");
724 for (int i = 0; i < num_core_types; ++i)
725 printf(format: "%3d ", core_types[i]);
726 printf(format: "\n");
727
728 printf(format: "* equivalent map:\n");
729 KMP_FOREACH_HW_TYPE(i) {
730 const char *key = __kmp_hw_get_keyword(type: i);
731 const char *value = __kmp_hw_get_keyword(type: equivalent[i]);
732 printf(format: "%-15s -> %-15s\n", key, value);
733 }
734
735 printf(format: "* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
736
737 printf(format: "* num_hw_threads: %d\n", num_hw_threads);
738 printf(format: "* hw_threads:\n");
739 for (int i = 0; i < num_hw_threads; ++i) {
740 hw_threads[i].print();
741 }
742 printf(format: "***********************\n");
743}
744
745void kmp_topology_t::print(const char *env_var) const {
746 kmp_str_buf_t buf;
747 int print_types_depth;
748 __kmp_str_buf_init(&buf);
749 kmp_hw_t print_types[KMP_HW_LAST + 2];
750
751 // Num Available Threads
752 if (num_hw_threads) {
753 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads);
754 } else {
755 KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc);
756 }
757
758 // Uniform or not
759 if (is_uniform()) {
760 KMP_INFORM(Uniform, env_var);
761 } else {
762 KMP_INFORM(NonUniform, env_var);
763 }
764
765 // Equivalent types
766 KMP_FOREACH_HW_TYPE(type) {
767 kmp_hw_t eq_type = equivalent[type];
768 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
769 KMP_INFORM(AffEqualTopologyTypes, env_var,
770 __kmp_hw_get_catalog_string(type),
771 __kmp_hw_get_catalog_string(eq_type));
772 }
773 }
774
775 // Quick topology
776 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST);
777 // Create a print types array that always guarantees printing
778 // the core and thread level
779 print_types_depth = 0;
780 for (int level = 0; level < depth; ++level)
781 print_types[print_types_depth++] = types[level];
782 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
783 // Force in the core level for quick topology
784 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
785 // Force core before thread e.g., 1 socket X 2 threads/socket
786 // becomes 1 socket X 1 core/socket X 2 threads/socket
787 print_types[print_types_depth - 1] = KMP_HW_CORE;
788 print_types[print_types_depth++] = KMP_HW_THREAD;
789 } else {
790 print_types[print_types_depth++] = KMP_HW_CORE;
791 }
792 }
793 // Always put threads at very end of quick topology
794 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
795 print_types[print_types_depth++] = KMP_HW_THREAD;
796
797 __kmp_str_buf_clear(buffer: &buf);
798 kmp_hw_t numerator_type;
799 kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
800 int core_level = get_level(type: KMP_HW_CORE);
801 int ncores = get_count(level: core_level);
802
803 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
804 int c;
805 bool plural;
806 numerator_type = print_types[plevel];
807 KMP_ASSERT_VALID_HW_TYPE(numerator_type);
808 if (equivalent[numerator_type] != numerator_type)
809 c = 1;
810 else
811 c = get_ratio(level: level++);
812 plural = (c > 1);
813 if (plevel == 0) {
814 __kmp_str_buf_print(buffer: &buf, format: "%d %s", c,
815 __kmp_hw_get_catalog_string(type: numerator_type, plural));
816 } else {
817 __kmp_str_buf_print(buffer: &buf, format: " x %d %s/%s", c,
818 __kmp_hw_get_catalog_string(type: numerator_type, plural),
819 __kmp_hw_get_catalog_string(type: denominator_type));
820 }
821 denominator_type = numerator_type;
822 }
823 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores);
824
825 // Hybrid topology information
826 if (__kmp_is_hybrid_cpu()) {
827 for (int i = 0; i < num_core_types; ++i) {
828 kmp_hw_core_type_t core_type = core_types[i];
829 kmp_hw_attr_t attr;
830 attr.clear();
831 attr.set_core_type(core_type);
832 int ncores = get_ncores_with_attr(attr);
833 if (ncores > 0) {
834 KMP_INFORM(TopologyHybrid, env_var, ncores,
835 __kmp_hw_get_core_type_string(core_type));
836 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS)
837 for (int eff = 0; eff < num_core_efficiencies; ++eff) {
838 attr.set_core_eff(eff);
839 int ncores_with_eff = get_ncores_with_attr(attr);
840 if (ncores_with_eff > 0) {
841 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff);
842 }
843 }
844 }
845 }
846 }
847
848 if (num_hw_threads <= 0) {
849 __kmp_str_buf_free(buffer: &buf);
850 return;
851 }
852
853 // Full OS proc to hardware thread map
854 KMP_INFORM(OSProcToPhysicalThreadMap, env_var);
855 for (int i = 0; i < num_hw_threads; i++) {
856 __kmp_str_buf_clear(buffer: &buf);
857 for (int level = 0; level < depth; ++level) {
858 if (hw_threads[i].ids[level] == kmp_hw_thread_t::UNKNOWN_ID)
859 continue;
860 kmp_hw_t type = types[level];
861 __kmp_str_buf_print(buffer: &buf, format: "%s ", __kmp_hw_get_catalog_string(type));
862 __kmp_str_buf_print(buffer: &buf, format: "%d ", hw_threads[i].ids[level]);
863 }
864 if (__kmp_is_hybrid_cpu())
865 __kmp_str_buf_print(
866 buffer: &buf, format: "(%s)",
867 __kmp_hw_get_core_type_string(type: hw_threads[i].attrs.get_core_type()));
868 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str);
869 }
870
871 __kmp_str_buf_free(buffer: &buf);
872}
873
874#if KMP_AFFINITY_SUPPORTED
875void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const {
876 const char *env_var = __kmp_get_affinity_env_var(affinity);
877 // If requested hybrid CPU attributes for granularity (either OMP_PLACES or
878 // KMP_AFFINITY), but none exist, then reset granularity and have below method
879 // select a granularity and warn user.
880 if (!__kmp_is_hybrid_cpu()) {
881 if (affinity.core_attr_gran.valid) {
882 // OMP_PLACES with cores:<attribute> but non-hybrid arch, use cores
883 // instead
884 KMP_AFF_WARNING(
885 affinity, AffIgnoringNonHybrid, env_var,
886 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true));
887 affinity.gran = KMP_HW_CORE;
888 affinity.gran_levels = -1;
889 affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN;
890 affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0;
891 } else if (affinity.flags.core_types_gran ||
892 affinity.flags.core_effs_gran) {
893 // OMP_PLACES=core_types|core_effs but non-hybrid, use cores instead
894 if (affinity.flags.omp_places) {
895 KMP_AFF_WARNING(
896 affinity, AffIgnoringNonHybrid, env_var,
897 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true));
898 } else {
899 // KMP_AFFINITY=granularity=core_type|core_eff,...
900 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,
901 "Intel(R) Hybrid Technology core attribute",
902 __kmp_hw_get_catalog_string(KMP_HW_CORE));
903 }
904 affinity.gran = KMP_HW_CORE;
905 affinity.gran_levels = -1;
906 affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN;
907 affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0;
908 }
909 }
910 // Set the number of affinity granularity levels
911 if (affinity.gran_levels < 0) {
912 kmp_hw_t gran_type = get_equivalent_type(type: affinity.gran);
913 // Check if user's granularity request is valid
914 if (gran_type == KMP_HW_UNKNOWN) {
915 // First try core, then thread, then package
916 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
917 for (auto g : gran_types) {
918 if (get_equivalent_type(type: g) != KMP_HW_UNKNOWN) {
919 gran_type = g;
920 break;
921 }
922 }
923 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN);
924 // Warn user what granularity setting will be used instead
925 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,
926 __kmp_hw_get_catalog_string(affinity.gran),
927 __kmp_hw_get_catalog_string(gran_type));
928 affinity.gran = gran_type;
929 }
930#if KMP_GROUP_AFFINITY
931 // If more than one processor group exists, and the level of
932 // granularity specified by the user is too coarse, then the
933 // granularity must be adjusted "down" to processor group affinity
934 // because threads can only exist within one processor group.
935 // For example, if a user sets granularity=socket and there are two
936 // processor groups that cover a socket, then the runtime must
937 // restrict the granularity down to the processor group level.
938 if (__kmp_num_proc_groups > 1) {
939 int gran_depth = get_level(gran_type);
940 int proc_group_depth = get_level(KMP_HW_PROC_GROUP);
941 if (gran_depth >= 0 && proc_group_depth >= 0 &&
942 gran_depth < proc_group_depth) {
943 KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var,
944 __kmp_hw_get_catalog_string(affinity.gran));
945 affinity.gran = gran_type = KMP_HW_PROC_GROUP;
946 }
947 }
948#endif
949 affinity.gran_levels = 0;
950 for (int i = depth - 1; i >= 0 && get_type(level: i) != gran_type; --i)
951 affinity.gran_levels++;
952 }
953}
954#endif
955
956void kmp_topology_t::canonicalize() {
957#if KMP_GROUP_AFFINITY
958 _insert_windows_proc_groups();
959#endif
960 _remove_radix1_layers();
961 _gather_enumeration_information();
962 _discover_uniformity();
963 _set_sub_ids();
964 _set_globals();
965 _set_last_level_cache();
966
967#if KMP_MIC_SUPPORTED
968 // Manually Add L2 = Tile equivalence
969 if (__kmp_mic_type == mic3) {
970 if (get_level(type: KMP_HW_L2) != -1)
971 set_equivalent_type(type1: KMP_HW_TILE, type2: KMP_HW_L2);
972 else if (get_level(type: KMP_HW_TILE) != -1)
973 set_equivalent_type(type1: KMP_HW_L2, type2: KMP_HW_TILE);
974 }
975#endif
976
977 // Perform post canonicalization checking
978 KMP_ASSERT(depth > 0);
979 for (int level = 0; level < depth; ++level) {
980 // All counts, ratios, and types must be valid
981 KMP_ASSERT(count[level] > 0 && ratio[level] > 0);
982 KMP_ASSERT_VALID_HW_TYPE(types[level]);
983 // Detected types must point to themselves
984 KMP_ASSERT(equivalent[types[level]] == types[level]);
985 }
986}
987
988// Canonicalize an explicit packages X cores/pkg X threads/core topology
989void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
990 int nthreads_per_core, int ncores) {
991 int ndepth = 3;
992 depth = ndepth;
993 KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; }
994 for (int level = 0; level < depth; ++level) {
995 count[level] = 0;
996 ratio[level] = 0;
997 }
998 count[0] = npackages;
999 count[1] = ncores;
1000 count[2] = __kmp_xproc;
1001 ratio[0] = npackages;
1002 ratio[1] = ncores_per_pkg;
1003 ratio[2] = nthreads_per_core;
1004 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
1005 equivalent[KMP_HW_CORE] = KMP_HW_CORE;
1006 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
1007 types[0] = KMP_HW_SOCKET;
1008 types[1] = KMP_HW_CORE;
1009 types[2] = KMP_HW_THREAD;
1010 //__kmp_avail_proc = __kmp_xproc;
1011 _discover_uniformity();
1012}
1013
1014#if KMP_AFFINITY_SUPPORTED
1015static kmp_str_buf_t *
1016__kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf,
1017 bool plural) {
1018 __kmp_str_buf_init(buf);
1019 if (attr.is_core_type_valid())
1020 __kmp_str_buf_print(buffer: buf, format: "%s %s",
1021 __kmp_hw_get_core_type_string(type: attr.get_core_type()),
1022 __kmp_hw_get_catalog_string(type: KMP_HW_CORE, plural));
1023 else
1024 __kmp_str_buf_print(buffer: buf, format: "%s eff=%d",
1025 __kmp_hw_get_catalog_string(type: KMP_HW_CORE, plural),
1026 attr.get_core_eff());
1027 return buf;
1028}
1029
1030bool kmp_topology_t::restrict_to_mask(const kmp_affin_mask_t *mask) {
1031 // Apply the filter
1032 bool affected;
1033 int new_index = 0;
1034 for (int i = 0; i < num_hw_threads; ++i) {
1035 int os_id = hw_threads[i].os_id;
1036 if (KMP_CPU_ISSET(os_id, mask)) {
1037 if (i != new_index)
1038 hw_threads[new_index] = hw_threads[i];
1039 new_index++;
1040 } else {
1041 KMP_CPU_CLR(os_id, __kmp_affin_fullMask);
1042 __kmp_avail_proc--;
1043 }
1044 }
1045
1046 KMP_DEBUG_ASSERT(new_index <= num_hw_threads);
1047 affected = (num_hw_threads != new_index);
1048 num_hw_threads = new_index;
1049
1050 // Post hardware subset canonicalization
1051 if (affected) {
1052 _gather_enumeration_information();
1053 _discover_uniformity();
1054 _set_globals();
1055 _set_last_level_cache();
1056#if KMP_OS_WINDOWS
1057 // Copy filtered full mask if topology has single processor group
1058 if (__kmp_num_proc_groups <= 1)
1059#endif
1060 __kmp_affin_origMask->copy(src: __kmp_affin_fullMask);
1061 }
1062 return affected;
1063}
1064
1065// Apply the KMP_HW_SUBSET envirable to the topology
1066// Returns true if KMP_HW_SUBSET filtered any processors
1067// otherwise, returns false
1068bool kmp_topology_t::filter_hw_subset() {
1069 // If KMP_HW_SUBSET wasn't requested, then do nothing.
1070 if (!__kmp_hw_subset)
1071 return false;
1072
1073 // First, sort the KMP_HW_SUBSET items by the machine topology
1074 __kmp_hw_subset->sort();
1075
1076 __kmp_hw_subset->canonicalize(top: __kmp_topology);
1077
1078 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
1079 bool using_core_types = false;
1080 bool using_core_effs = false;
1081 bool is_absolute = __kmp_hw_subset->is_absolute();
1082 int hw_subset_depth = __kmp_hw_subset->get_depth();
1083 kmp_hw_t specified[KMP_HW_LAST];
1084 int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth);
1085 KMP_ASSERT(hw_subset_depth > 0);
1086 KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; }
1087 int core_level = get_level(type: KMP_HW_CORE);
1088 for (int i = 0; i < hw_subset_depth; ++i) {
1089 int max_count;
1090 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(index: i);
1091 int num = item.num[0];
1092 int offset = item.offset[0];
1093 kmp_hw_t type = item.type;
1094 kmp_hw_t equivalent_type = equivalent[type];
1095 int level = get_level(type);
1096 topology_levels[i] = level;
1097
1098 // Check to see if current layer is in detected machine topology
1099 if (equivalent_type != KMP_HW_UNKNOWN) {
1100 __kmp_hw_subset->at(index: i).type = equivalent_type;
1101 } else {
1102 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric,
1103 __kmp_hw_get_catalog_string(type));
1104 return false;
1105 }
1106
1107 // Check to see if current layer has already been
1108 // specified either directly or through an equivalent type
1109 if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
1110 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers,
1111 __kmp_hw_get_catalog_string(type),
1112 __kmp_hw_get_catalog_string(specified[equivalent_type]));
1113 return false;
1114 }
1115 specified[equivalent_type] = type;
1116
1117 // Check to see if each layer's num & offset parameters are valid
1118 max_count = get_ratio(level);
1119 if (!is_absolute) {
1120 if (max_count < 0 ||
1121 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1122 bool plural = (num > 1);
1123 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric,
1124 __kmp_hw_get_catalog_string(type, plural));
1125 return false;
1126 }
1127 }
1128
1129 // Check to see if core attributes are consistent
1130 if (core_level == level) {
1131 // Determine which core attributes are specified
1132 for (int j = 0; j < item.num_attrs; ++j) {
1133 if (item.attr[j].is_core_type_valid())
1134 using_core_types = true;
1135 if (item.attr[j].is_core_eff_valid())
1136 using_core_effs = true;
1137 }
1138
1139 // Check if using a single core attribute on non-hybrid arch.
1140 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute.
1141 //
1142 // Check if using multiple core attributes on non-hyrbid arch.
1143 // Ignore all of KMP_HW_SUBSET if this is the case.
1144 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) {
1145 if (item.num_attrs == 1) {
1146 if (using_core_effs) {
1147 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
1148 "efficiency");
1149 } else {
1150 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
1151 "core_type");
1152 }
1153 using_core_effs = false;
1154 using_core_types = false;
1155 } else {
1156 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid);
1157 return false;
1158 }
1159 }
1160
1161 // Check if using both core types and core efficiencies together
1162 if (using_core_types && using_core_effs) {
1163 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type",
1164 "efficiency");
1165 return false;
1166 }
1167
1168 // Check that core efficiency values are valid
1169 if (using_core_effs) {
1170 for (int j = 0; j < item.num_attrs; ++j) {
1171 if (item.attr[j].is_core_eff_valid()) {
1172 int core_eff = item.attr[j].get_core_eff();
1173 if (core_eff < 0 || core_eff >= num_core_efficiencies) {
1174 kmp_str_buf_t buf;
1175 __kmp_str_buf_init(&buf);
1176 __kmp_str_buf_print(buffer: &buf, format: "%d", item.attr[j].get_core_eff());
1177 __kmp_msg(kmp_ms_warning,
1178 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str),
1179 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1),
1180 __kmp_msg_null);
1181 __kmp_str_buf_free(buffer: &buf);
1182 return false;
1183 }
1184 }
1185 }
1186 }
1187
1188 // Check that the number of requested cores with attributes is valid
1189 if ((using_core_types || using_core_effs) && !is_absolute) {
1190 for (int j = 0; j < item.num_attrs; ++j) {
1191 int num = item.num[j];
1192 int offset = item.offset[j];
1193 int level_above = core_level - 1;
1194 if (level_above >= 0) {
1195 max_count = get_ncores_with_attr_per(attr: item.attr[j], above: level_above);
1196 if (max_count <= 0 ||
1197 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1198 kmp_str_buf_t buf;
1199 __kmp_hw_get_catalog_core_string(attr: item.attr[j], buf: &buf, plural: num > 0);
1200 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str);
1201 __kmp_str_buf_free(buffer: &buf);
1202 return false;
1203 }
1204 }
1205 }
1206 }
1207
1208 if ((using_core_types || using_core_effs) && item.num_attrs > 1) {
1209 for (int j = 0; j < item.num_attrs; ++j) {
1210 // Ambiguous use of specific core attribute + generic core
1211 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1
1212 if (!item.attr[j]) {
1213 kmp_hw_attr_t other_attr;
1214 for (int k = 0; k < item.num_attrs; ++k) {
1215 if (item.attr[k] != item.attr[j]) {
1216 other_attr = item.attr[k];
1217 break;
1218 }
1219 }
1220 kmp_str_buf_t buf;
1221 __kmp_hw_get_catalog_core_string(attr: other_attr, buf: &buf, plural: item.num[j] > 0);
1222 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat,
1223 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str);
1224 __kmp_str_buf_free(buffer: &buf);
1225 return false;
1226 }
1227 // Allow specifying a specific core type or core eff exactly once
1228 for (int k = 0; k < j; ++k) {
1229 if (!item.attr[j] || !item.attr[k])
1230 continue;
1231 if (item.attr[k] == item.attr[j]) {
1232 kmp_str_buf_t buf;
1233 __kmp_hw_get_catalog_core_string(attr: item.attr[j], buf: &buf,
1234 plural: item.num[j] > 0);
1235 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str);
1236 __kmp_str_buf_free(buffer: &buf);
1237 return false;
1238 }
1239 }
1240 }
1241 }
1242 }
1243 }
1244
1245 // For keeping track of sub_ids for an absolute KMP_HW_SUBSET
1246 // or core attributes (core type or efficiency)
1247 int prev_sub_ids[KMP_HW_LAST];
1248 int abs_sub_ids[KMP_HW_LAST];
1249 int core_eff_sub_ids[KMP_HW_MAX_NUM_CORE_EFFS];
1250 int core_type_sub_ids[KMP_HW_MAX_NUM_CORE_TYPES];
1251 for (size_t i = 0; i < KMP_HW_LAST; ++i) {
1252 abs_sub_ids[i] = -1;
1253 prev_sub_ids[i] = -1;
1254 }
1255 for (size_t i = 0; i < KMP_HW_MAX_NUM_CORE_EFFS; ++i)
1256 core_eff_sub_ids[i] = -1;
1257 for (size_t i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i)
1258 core_type_sub_ids[i] = -1;
1259
1260 // Determine which hardware threads should be filtered.
1261
1262 // Helpful to determine if a topology layer is targeted by an absolute subset
1263 auto is_targeted = [&](int level) {
1264 if (is_absolute) {
1265 for (int i = 0; i < hw_subset_depth; ++i)
1266 if (topology_levels[i] == level)
1267 return true;
1268 return false;
1269 }
1270 // If not absolute KMP_HW_SUBSET, then every layer is seen as targeted
1271 return true;
1272 };
1273
1274 // Helpful to index into core type sub Ids array
1275 auto get_core_type_index = [](const kmp_hw_thread_t &t) {
1276 switch (t.attrs.get_core_type()) {
1277 case KMP_HW_CORE_TYPE_UNKNOWN:
1278 case KMP_HW_MAX_NUM_CORE_TYPES:
1279 return 0;
1280#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1281 case KMP_HW_CORE_TYPE_ATOM:
1282 return 1;
1283 case KMP_HW_CORE_TYPE_CORE:
1284 return 2;
1285#endif
1286 }
1287 KMP_ASSERT2(false, "Unhandled kmp_hw_thread_t enumeration");
1288 KMP_BUILTIN_UNREACHABLE;
1289 };
1290
1291 // Helpful to index into core efficiencies sub Ids array
1292 auto get_core_eff_index = [](const kmp_hw_thread_t &t) {
1293 return t.attrs.get_core_eff();
1294 };
1295
1296 int num_filtered = 0;
1297 kmp_affin_mask_t *filtered_mask;
1298 KMP_CPU_ALLOC(filtered_mask);
1299 KMP_CPU_COPY(filtered_mask, __kmp_affin_fullMask);
1300 for (int i = 0; i < num_hw_threads; ++i) {
1301 kmp_hw_thread_t &hw_thread = hw_threads[i];
1302
1303 // Figure out the absolute sub ids and core eff/type sub ids
1304 if (is_absolute || using_core_effs || using_core_types) {
1305 for (int level = 0; level < get_depth(); ++level) {
1306 if (hw_thread.sub_ids[level] != prev_sub_ids[level]) {
1307 bool found_targeted = false;
1308 for (int j = level; j < get_depth(); ++j) {
1309 bool targeted = is_targeted(j);
1310 if (!found_targeted && targeted) {
1311 found_targeted = true;
1312 abs_sub_ids[j]++;
1313 if (j == core_level && using_core_effs)
1314 core_eff_sub_ids[get_core_eff_index(hw_thread)]++;
1315 if (j == core_level && using_core_types)
1316 core_type_sub_ids[get_core_type_index(hw_thread)]++;
1317 } else if (targeted) {
1318 abs_sub_ids[j] = 0;
1319 if (j == core_level && using_core_effs)
1320 core_eff_sub_ids[get_core_eff_index(hw_thread)] = 0;
1321 if (j == core_level && using_core_types)
1322 core_type_sub_ids[get_core_type_index(hw_thread)] = 0;
1323 }
1324 }
1325 break;
1326 }
1327 }
1328 for (int level = 0; level < get_depth(); ++level)
1329 prev_sub_ids[level] = hw_thread.sub_ids[level];
1330 }
1331
1332 // Check to see if this hardware thread should be filtered
1333 bool should_be_filtered = false;
1334 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth;
1335 ++hw_subset_index) {
1336 const auto &hw_subset_item = __kmp_hw_subset->at(index: hw_subset_index);
1337 int level = topology_levels[hw_subset_index];
1338 if (level == -1)
1339 continue;
1340 if ((using_core_effs || using_core_types) && level == core_level) {
1341 // Look for the core attribute in KMP_HW_SUBSET which corresponds
1342 // to this hardware thread's core attribute. Use this num,offset plus
1343 // the running sub_id for the particular core attribute of this hardware
1344 // thread to determine if the hardware thread should be filtered or not.
1345 int attr_idx;
1346 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type();
1347 int core_eff = hw_thread.attrs.get_core_eff();
1348 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) {
1349 if (using_core_types &&
1350 hw_subset_item.attr[attr_idx].get_core_type() == core_type)
1351 break;
1352 if (using_core_effs &&
1353 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff)
1354 break;
1355 }
1356 // This core attribute isn't in the KMP_HW_SUBSET so always filter it.
1357 if (attr_idx == hw_subset_item.num_attrs) {
1358 should_be_filtered = true;
1359 break;
1360 }
1361 int sub_id;
1362 int num = hw_subset_item.num[attr_idx];
1363 int offset = hw_subset_item.offset[attr_idx];
1364 if (using_core_types)
1365 sub_id = core_type_sub_ids[get_core_type_index(hw_thread)];
1366 else
1367 sub_id = core_eff_sub_ids[get_core_eff_index(hw_thread)];
1368 if (sub_id < offset ||
1369 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) {
1370 should_be_filtered = true;
1371 break;
1372 }
1373 } else {
1374 int sub_id;
1375 int num = hw_subset_item.num[0];
1376 int offset = hw_subset_item.offset[0];
1377 if (is_absolute)
1378 sub_id = abs_sub_ids[level];
1379 else
1380 sub_id = hw_thread.sub_ids[level];
1381 if (hw_thread.ids[level] == kmp_hw_thread_t::UNKNOWN_ID ||
1382 sub_id < offset ||
1383 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) {
1384 should_be_filtered = true;
1385 break;
1386 }
1387 }
1388 }
1389 // Collect filtering information
1390 if (should_be_filtered) {
1391 KMP_CPU_CLR(hw_thread.os_id, filtered_mask);
1392 num_filtered++;
1393 }
1394 }
1395
1396 // One last check that we shouldn't allow filtering entire machine
1397 if (num_filtered == num_hw_threads) {
1398 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered);
1399 return false;
1400 }
1401
1402 // Apply the filter
1403 restrict_to_mask(mask: filtered_mask);
1404 return true;
1405}
1406
1407bool kmp_topology_t::is_close(int hwt1, int hwt2,
1408 const kmp_affinity_t &stgs) const {
1409 int hw_level = stgs.gran_levels;
1410 if (hw_level >= depth)
1411 return true;
1412 bool retval = true;
1413 const kmp_hw_thread_t &t1 = hw_threads[hwt1];
1414 const kmp_hw_thread_t &t2 = hw_threads[hwt2];
1415 if (stgs.flags.core_types_gran)
1416 return t1.attrs.get_core_type() == t2.attrs.get_core_type();
1417 if (stgs.flags.core_effs_gran)
1418 return t1.attrs.get_core_eff() == t2.attrs.get_core_eff();
1419 for (int i = 0; i < (depth - hw_level); ++i) {
1420 if (t1.ids[i] != t2.ids[i])
1421 return false;
1422 }
1423 return retval;
1424}
1425
1426////////////////////////////////////////////////////////////////////////////////
1427
1428bool KMPAffinity::picked_api = false;
1429
1430void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
1431void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
1432void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
1433void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
1434void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
1435void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
1436
1437void KMPAffinity::pick_api() {
1438 KMPAffinity *affinity_dispatch;
1439 if (picked_api)
1440 return;
1441#if KMP_USE_HWLOC
1442 // Only use Hwloc if affinity isn't explicitly disabled and
1443 // user requests Hwloc topology method
1444 if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
1445 __kmp_affinity.type != affinity_disabled) {
1446 affinity_dispatch = new KMPHwlocAffinity();
1447 __kmp_hwloc_available = true;
1448 } else
1449#endif
1450 {
1451 affinity_dispatch = new KMPNativeAffinity();
1452 }
1453 __kmp_affinity_dispatch = affinity_dispatch;
1454 picked_api = true;
1455}
1456
1457void KMPAffinity::destroy_api() {
1458 if (__kmp_affinity_dispatch != NULL) {
1459 delete __kmp_affinity_dispatch;
1460 __kmp_affinity_dispatch = NULL;
1461 picked_api = false;
1462 }
1463}
1464
1465#define KMP_ADVANCE_SCAN(scan) \
1466 while (*scan != '\0') { \
1467 scan++; \
1468 }
1469
1470// Print the affinity mask to the character array in a pretty format.
1471// The format is a comma separated list of non-negative integers or integer
1472// ranges: e.g., 1,2,3-5,7,9-15
1473// The format can also be the string "{<empty>}" if no bits are set in mask
1474char *__kmp_affinity_print_mask(char *buf, int buf_len,
1475 kmp_affin_mask_t *mask) {
1476 int start = 0, finish = 0, previous = 0;
1477 bool first_range;
1478 KMP_ASSERT(buf);
1479 KMP_ASSERT(buf_len >= 40);
1480 KMP_ASSERT(mask);
1481 char *scan = buf;
1482 char *end = buf + buf_len - 1;
1483
1484 // Check for empty set.
1485 if (mask->begin() == mask->end()) {
1486 KMP_SNPRINTF(s: scan, maxlen: end - scan + 1, format: "{<empty>}");
1487 KMP_ADVANCE_SCAN(scan);
1488 KMP_ASSERT(scan <= end);
1489 return buf;
1490 }
1491
1492 first_range = true;
1493 start = mask->begin();
1494 while (1) {
1495 // Find next range
1496 // [start, previous] is inclusive range of contiguous bits in mask
1497 for (finish = mask->next(previous: start), previous = start;
1498 finish == previous + 1 && finish != mask->end();
1499 finish = mask->next(previous: finish)) {
1500 previous = finish;
1501 }
1502
1503 // The first range does not need a comma printed before it, but the rest
1504 // of the ranges do need a comma beforehand
1505 if (!first_range) {
1506 KMP_SNPRINTF(s: scan, maxlen: end - scan + 1, format: "%s", ",");
1507 KMP_ADVANCE_SCAN(scan);
1508 } else {
1509 first_range = false;
1510 }
1511 // Range with three or more contiguous bits in the affinity mask
1512 if (previous - start > 1) {
1513 KMP_SNPRINTF(s: scan, maxlen: end - scan + 1, format: "%u-%u", start, previous);
1514 } else {
1515 // Range with one or two contiguous bits in the affinity mask
1516 KMP_SNPRINTF(s: scan, maxlen: end - scan + 1, format: "%u", start);
1517 KMP_ADVANCE_SCAN(scan);
1518 if (previous - start > 0) {
1519 KMP_SNPRINTF(s: scan, maxlen: end - scan + 1, format: ",%u", previous);
1520 }
1521 }
1522 KMP_ADVANCE_SCAN(scan);
1523 // Start over with new start point
1524 start = finish;
1525 if (start == mask->end())
1526 break;
1527 // Check for overflow
1528 if (end - scan < 2)
1529 break;
1530 }
1531
1532 // Check for overflow
1533 KMP_ASSERT(scan <= end);
1534 return buf;
1535}
1536#undef KMP_ADVANCE_SCAN
1537
1538// Print the affinity mask to the string buffer object in a pretty format
1539// The format is a comma separated list of non-negative integers or integer
1540// ranges: e.g., 1,2,3-5,7,9-15
1541// The format can also be the string "{<empty>}" if no bits are set in mask
1542kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
1543 kmp_affin_mask_t *mask) {
1544 int start = 0, finish = 0, previous = 0;
1545 bool first_range;
1546 KMP_ASSERT(buf);
1547 KMP_ASSERT(mask);
1548
1549 __kmp_str_buf_clear(buffer: buf);
1550
1551 // Check for empty set.
1552 if (mask->begin() == mask->end()) {
1553 __kmp_str_buf_print(buffer: buf, format: "%s", "{<empty>}");
1554 return buf;
1555 }
1556
1557 first_range = true;
1558 start = mask->begin();
1559 while (1) {
1560 // Find next range
1561 // [start, previous] is inclusive range of contiguous bits in mask
1562 for (finish = mask->next(previous: start), previous = start;
1563 finish == previous + 1 && finish != mask->end();
1564 finish = mask->next(previous: finish)) {
1565 previous = finish;
1566 }
1567
1568 // The first range does not need a comma printed before it, but the rest
1569 // of the ranges do need a comma beforehand
1570 if (!first_range) {
1571 __kmp_str_buf_print(buffer: buf, format: "%s", ",");
1572 } else {
1573 first_range = false;
1574 }
1575 // Range with three or more contiguous bits in the affinity mask
1576 if (previous - start > 1) {
1577 __kmp_str_buf_print(buffer: buf, format: "%u-%u", start, previous);
1578 } else {
1579 // Range with one or two contiguous bits in the affinity mask
1580 __kmp_str_buf_print(buffer: buf, format: "%u", start);
1581 if (previous - start > 0) {
1582 __kmp_str_buf_print(buffer: buf, format: ",%u", previous);
1583 }
1584 }
1585 // Start over with new start point
1586 start = finish;
1587 if (start == mask->end())
1588 break;
1589 }
1590 return buf;
1591}
1592
1593static kmp_affin_mask_t *__kmp_parse_cpu_list(const char *path) {
1594 kmp_affin_mask_t *mask;
1595 KMP_CPU_ALLOC(mask);
1596 KMP_CPU_ZERO(mask);
1597#if KMP_OS_LINUX
1598 int n, begin_cpu, end_cpu;
1599 kmp_safe_raii_file_t file;
1600 auto skip_ws = [](FILE *f) {
1601 int c;
1602 do {
1603 c = fgetc(stream: f);
1604 } while (isspace(c));
1605 if (c != EOF)
1606 ungetc(c: c, stream: f);
1607 };
1608 // File contains CSV of integer ranges representing the CPUs
1609 // e.g., 1,2,4-7,9,11-15
1610 int status = file.try_open(filename: path, mode: "r");
1611 if (status != 0)
1612 return mask;
1613 while (!feof(stream: file)) {
1614 skip_ws(file);
1615 n = fscanf(stream: file, format: "%d", &begin_cpu);
1616 if (n != 1)
1617 break;
1618 skip_ws(file);
1619 int c = fgetc(stream: file);
1620 if (c == EOF || c == ',') {
1621 // Just single CPU
1622 end_cpu = begin_cpu;
1623 } else if (c == '-') {
1624 // Range of CPUs
1625 skip_ws(file);
1626 n = fscanf(stream: file, format: "%d", &end_cpu);
1627 if (n != 1)
1628 break;
1629 skip_ws(file);
1630 c = fgetc(stream: file); // skip ','
1631 } else {
1632 // Syntax problem
1633 break;
1634 }
1635 // Ensure a valid range of CPUs
1636 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 ||
1637 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) {
1638 continue;
1639 }
1640 // Insert [begin_cpu, end_cpu] into mask
1641 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) {
1642 KMP_CPU_SET(cpu, mask);
1643 }
1644 }
1645#endif
1646 return mask;
1647}
1648
1649// Return (possibly empty) affinity mask representing the offline CPUs
1650// Caller must free the mask
1651kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() {
1652 return __kmp_parse_cpu_list(path: "/sys/devices/system/cpu/offline");
1653}
1654
1655// Return the number of available procs
1656int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
1657 int avail_proc = 0;
1658 KMP_CPU_ZERO(mask);
1659
1660#if KMP_GROUP_AFFINITY
1661
1662 if (__kmp_num_proc_groups > 1) {
1663 int group;
1664 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
1665 for (group = 0; group < __kmp_num_proc_groups; group++) {
1666 int i;
1667 int num = __kmp_GetActiveProcessorCount(group);
1668 for (i = 0; i < num; i++) {
1669 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
1670 avail_proc++;
1671 }
1672 }
1673 } else
1674
1675#endif /* KMP_GROUP_AFFINITY */
1676
1677 {
1678 int proc;
1679 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus();
1680 for (proc = 0; proc < __kmp_xproc; proc++) {
1681 // Skip offline CPUs
1682 if (KMP_CPU_ISSET(proc, offline_cpus))
1683 continue;
1684 KMP_CPU_SET(proc, mask);
1685 avail_proc++;
1686 }
1687 KMP_CPU_FREE(offline_cpus);
1688 }
1689
1690 return avail_proc;
1691}
1692
1693// All of the __kmp_affinity_create_*_map() routines should allocate the
1694// internal topology object and set the layer ids for it. Each routine
1695// returns a boolean on whether it was successful at doing so.
1696kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
1697// Original mask is a subset of full mask in multiple processor groups topology
1698kmp_affin_mask_t *__kmp_affin_origMask = NULL;
1699
1700#if KMP_USE_HWLOC
1701static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
1702#if HWLOC_API_VERSION >= 0x00020000
1703 return hwloc_obj_type_is_cache(obj->type);
1704#else
1705 return obj->type == HWLOC_OBJ_CACHE;
1706#endif
1707}
1708
1709// Returns KMP_HW_* type derived from HWLOC_* type
1710static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
1711
1712 if (__kmp_hwloc_is_cache_type(obj)) {
1713 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
1714 return KMP_HW_UNKNOWN;
1715 switch (obj->attr->cache.depth) {
1716 case 1:
1717 return KMP_HW_L1;
1718 case 2:
1719#if KMP_MIC_SUPPORTED
1720 if (__kmp_mic_type == mic3) {
1721 return KMP_HW_TILE;
1722 }
1723#endif
1724 return KMP_HW_L2;
1725 case 3:
1726 return KMP_HW_L3;
1727 }
1728 return KMP_HW_UNKNOWN;
1729 }
1730
1731 switch (obj->type) {
1732 case HWLOC_OBJ_PACKAGE:
1733 return KMP_HW_SOCKET;
1734 case HWLOC_OBJ_NUMANODE:
1735 return KMP_HW_NUMA;
1736 case HWLOC_OBJ_CORE:
1737 return KMP_HW_CORE;
1738 case HWLOC_OBJ_PU:
1739 return KMP_HW_THREAD;
1740 case HWLOC_OBJ_GROUP:
1741#if HWLOC_API_VERSION >= 0x00020000
1742 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
1743 return KMP_HW_DIE;
1744 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
1745 return KMP_HW_TILE;
1746 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
1747 return KMP_HW_MODULE;
1748 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
1749 return KMP_HW_PROC_GROUP;
1750#endif
1751 return KMP_HW_UNKNOWN;
1752#if HWLOC_API_VERSION >= 0x00020100
1753 case HWLOC_OBJ_DIE:
1754 return KMP_HW_DIE;
1755#endif
1756 }
1757 return KMP_HW_UNKNOWN;
1758}
1759
1760// Returns the number of objects of type 'type' below 'obj' within the topology
1761// tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
1762// HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
1763// object.
1764static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
1765 hwloc_obj_type_t type) {
1766 int retval = 0;
1767 hwloc_obj_t first;
1768 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
1769 obj->logical_index, type, 0);
1770 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
1771 obj->type, first) == obj;
1772 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
1773 first)) {
1774 ++retval;
1775 }
1776 return retval;
1777}
1778
1779// This gets the sub_id for a lower object under a higher object in the
1780// topology tree
1781static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
1782 hwloc_obj_t lower) {
1783 hwloc_obj_t obj;
1784 hwloc_obj_type_t ltype = lower->type;
1785 int lindex = lower->logical_index - 1;
1786 int sub_id = 0;
1787 // Get the previous lower object
1788 obj = hwloc_get_obj_by_type(t, ltype, lindex);
1789 while (obj && lindex >= 0 &&
1790 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
1791 if (obj->userdata) {
1792 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata));
1793 break;
1794 }
1795 sub_id++;
1796 lindex--;
1797 obj = hwloc_get_obj_by_type(t, ltype, lindex);
1798 }
1799 // store sub_id + 1 so that 0 is differed from NULL
1800 lower->userdata = RCAST(void *, sub_id + 1);
1801 return sub_id;
1802}
1803
1804static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
1805 kmp_hw_t type;
1806 int hw_thread_index, sub_id;
1807 int depth;
1808 hwloc_obj_t pu, obj, root, prev;
1809 kmp_hw_t types[KMP_HW_LAST];
1810 hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
1811
1812 hwloc_topology_t tp = __kmp_hwloc_topology;
1813 *msg_id = kmp_i18n_null;
1814 if (__kmp_affinity.flags.verbose) {
1815 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
1816 }
1817
1818 if (!KMP_AFFINITY_CAPABLE()) {
1819 // Hack to try and infer the machine topology using only the data
1820 // available from hwloc on the current thread, and __kmp_xproc.
1821 KMP_ASSERT(__kmp_affinity.type == affinity_none);
1822 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE
1823 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
1824 if (o != NULL)
1825 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
1826 else
1827 nCoresPerPkg = 1; // no PACKAGE found
1828 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
1829 if (o != NULL)
1830 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
1831 else
1832 __kmp_nThreadsPerCore = 1; // no CORE found
1833 if (__kmp_nThreadsPerCore == 0)
1834 __kmp_nThreadsPerCore = 1;
1835 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1836 if (nCoresPerPkg == 0)
1837 nCoresPerPkg = 1; // to prevent possible division by 0
1838 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1839 return true;
1840 }
1841
1842#if HWLOC_API_VERSION >= 0x00020400
1843 // Handle multiple types of cores if they exist on the system
1844 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0);
1845
1846 typedef struct kmp_hwloc_cpukinds_info_t {
1847 int efficiency;
1848 kmp_hw_core_type_t core_type;
1849 hwloc_bitmap_t mask;
1850 } kmp_hwloc_cpukinds_info_t;
1851 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr;
1852
1853 if (nr_cpu_kinds > 0) {
1854 unsigned nr_infos;
1855 struct hwloc_info_s *infos;
1856 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate(
1857 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds);
1858 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) {
1859 cpukinds[idx].efficiency = -1;
1860 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN;
1861 cpukinds[idx].mask = hwloc_bitmap_alloc();
1862 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask,
1863 &cpukinds[idx].efficiency, &nr_infos, &infos,
1864 0) == 0) {
1865 for (unsigned i = 0; i < nr_infos; ++i) {
1866 if (__kmp_str_match("CoreType", 8, infos[i].name)) {
1867#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1868 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) {
1869 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM;
1870 break;
1871 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) {
1872 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE;
1873 break;
1874 }
1875#endif
1876 }
1877 }
1878 }
1879 }
1880 }
1881#endif
1882
1883 root = hwloc_get_root_obj(tp);
1884
1885 // Figure out the depth and types in the topology
1886 depth = 0;
1887 obj = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
1888 while (obj && obj != root) {
1889#if HWLOC_API_VERSION >= 0x00020000
1890 if (obj->memory_arity) {
1891 hwloc_obj_t memory;
1892 for (memory = obj->memory_first_child; memory;
1893 memory = hwloc_get_next_child(tp, obj, memory)) {
1894 if (memory->type == HWLOC_OBJ_NUMANODE)
1895 break;
1896 }
1897 if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1898 types[depth] = KMP_HW_NUMA;
1899 hwloc_types[depth] = memory->type;
1900 depth++;
1901 }
1902 }
1903#endif
1904 type = __kmp_hwloc_type_2_topology_type(obj);
1905 if (type != KMP_HW_UNKNOWN) {
1906 types[depth] = type;
1907 hwloc_types[depth] = obj->type;
1908 depth++;
1909 }
1910 obj = obj->parent;
1911 }
1912 KMP_ASSERT(depth > 0);
1913
1914 // Get the order for the types correct
1915 for (int i = 0, j = depth - 1; i < j; ++i, --j) {
1916 hwloc_obj_type_t hwloc_temp = hwloc_types[i];
1917 kmp_hw_t temp = types[i];
1918 types[i] = types[j];
1919 types[j] = temp;
1920 hwloc_types[i] = hwloc_types[j];
1921 hwloc_types[j] = hwloc_temp;
1922 }
1923
1924 // Allocate the data structure to be returned.
1925 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1926
1927 hw_thread_index = 0;
1928 pu = NULL;
1929 while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) {
1930 int index = depth - 1;
1931 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask);
1932 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
1933 if (included) {
1934 hw_thread.clear();
1935 hw_thread.ids[index] = pu->logical_index;
1936 hw_thread.os_id = pu->os_index;
1937 hw_thread.original_idx = hw_thread_index;
1938 // If multiple core types, then set that attribute for the hardware thread
1939#if HWLOC_API_VERSION >= 0x00020400
1940 if (cpukinds) {
1941 int cpukind_index = -1;
1942 for (int i = 0; i < nr_cpu_kinds; ++i) {
1943 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) {
1944 cpukind_index = i;
1945 break;
1946 }
1947 }
1948 if (cpukind_index >= 0) {
1949 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type);
1950 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency);
1951 }
1952 }
1953#endif
1954 index--;
1955 }
1956 obj = pu;
1957 prev = obj;
1958 while (obj != root && obj != NULL) {
1959 obj = obj->parent;
1960#if HWLOC_API_VERSION >= 0x00020000
1961 // NUMA Nodes are handled differently since they are not within the
1962 // parent/child structure anymore. They are separate children
1963 // of obj (memory_first_child points to first memory child)
1964 if (obj->memory_arity) {
1965 hwloc_obj_t memory;
1966 for (memory = obj->memory_first_child; memory;
1967 memory = hwloc_get_next_child(tp, obj, memory)) {
1968 if (memory->type == HWLOC_OBJ_NUMANODE)
1969 break;
1970 }
1971 if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1972 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
1973 if (included) {
1974 hw_thread.ids[index] = memory->logical_index;
1975 hw_thread.ids[index + 1] = sub_id;
1976 index--;
1977 }
1978 }
1979 prev = obj;
1980 }
1981#endif
1982 type = __kmp_hwloc_type_2_topology_type(obj);
1983 if (type != KMP_HW_UNKNOWN) {
1984 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
1985 if (included) {
1986 hw_thread.ids[index] = obj->logical_index;
1987 hw_thread.ids[index + 1] = sub_id;
1988 index--;
1989 }
1990 prev = obj;
1991 }
1992 }
1993 if (included)
1994 hw_thread_index++;
1995 }
1996
1997#if HWLOC_API_VERSION >= 0x00020400
1998 // Free the core types information
1999 if (cpukinds) {
2000 for (int idx = 0; idx < nr_cpu_kinds; ++idx)
2001 hwloc_bitmap_free(cpukinds[idx].mask);
2002 __kmp_free(cpukinds);
2003 }
2004#endif
2005 __kmp_topology->sort_ids();
2006 return true;
2007}
2008#endif // KMP_USE_HWLOC
2009
2010// If we don't know how to retrieve the machine's processor topology, or
2011// encounter an error in doing so, this routine is called to form a "flat"
2012// mapping of os thread id's <-> processor id's.
2013static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
2014 *msg_id = kmp_i18n_null;
2015 int depth = 3;
2016 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
2017
2018 if (__kmp_affinity.flags.verbose) {
2019 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY");
2020 }
2021
2022 // Even if __kmp_affinity.type == affinity_none, this routine might still
2023 // be called to set __kmp_ncores, as well as
2024 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2025 if (!KMP_AFFINITY_CAPABLE()) {
2026 KMP_ASSERT(__kmp_affinity.type == affinity_none);
2027 __kmp_ncores = nPackages = __kmp_xproc;
2028 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
2029 return true;
2030 }
2031
2032 // When affinity is off, this routine will still be called to set
2033 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2034 // Make sure all these vars are set correctly, and return now if affinity is
2035 // not enabled.
2036 __kmp_ncores = nPackages = __kmp_avail_proc;
2037 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
2038
2039 // Construct the data structure to be returned.
2040 __kmp_topology = kmp_topology_t::allocate(nproc: __kmp_avail_proc, ndepth: depth, types);
2041 int avail_ct = 0;
2042 int i;
2043 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2044 // Skip this proc if it is not included in the machine model.
2045 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2046 continue;
2047 }
2048 kmp_hw_thread_t &hw_thread = __kmp_topology->at(index: avail_ct);
2049 hw_thread.clear();
2050 hw_thread.os_id = i;
2051 hw_thread.original_idx = avail_ct;
2052 hw_thread.ids[0] = i;
2053 hw_thread.ids[1] = 0;
2054 hw_thread.ids[2] = 0;
2055 avail_ct++;
2056 }
2057 if (__kmp_affinity.flags.verbose) {
2058 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
2059 }
2060 return true;
2061}
2062
2063#if KMP_GROUP_AFFINITY
2064// If multiple Windows* OS processor groups exist, we can create a 2-level
2065// topology map with the groups at level 0 and the individual procs at level 1.
2066// This facilitates letting the threads float among all procs in a group,
2067// if granularity=group (the default when there are multiple groups).
2068static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
2069 *msg_id = kmp_i18n_null;
2070 int depth = 3;
2071 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
2072 const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR);
2073
2074 if (__kmp_affinity.flags.verbose) {
2075 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
2076 }
2077
2078 // If we aren't affinity capable, then use flat topology
2079 if (!KMP_AFFINITY_CAPABLE()) {
2080 KMP_ASSERT(__kmp_affinity.type == affinity_none);
2081 nPackages = __kmp_num_proc_groups;
2082 __kmp_nThreadsPerCore = 1;
2083 __kmp_ncores = __kmp_xproc;
2084 nCoresPerPkg = nPackages / __kmp_ncores;
2085 return true;
2086 }
2087
2088 // Construct the data structure to be returned.
2089 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
2090 int avail_ct = 0;
2091 int i;
2092 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2093 // Skip this proc if it is not included in the machine model.
2094 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2095 continue;
2096 }
2097 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
2098 hw_thread.clear();
2099 hw_thread.os_id = i;
2100 hw_thread.original_idx = avail_ct;
2101 hw_thread.ids[0] = i / BITS_PER_GROUP;
2102 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
2103 avail_ct++;
2104 }
2105 return true;
2106}
2107#endif /* KMP_GROUP_AFFINITY */
2108
2109#if KMP_ARCH_X86 || KMP_ARCH_X86_64
2110
2111template <kmp_uint32 LSB, kmp_uint32 MSB>
2112static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
2113 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
2114 const kmp_uint32 SHIFT_RIGHT = LSB;
2115 kmp_uint32 retval = v;
2116 retval <<= SHIFT_LEFT;
2117 retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
2118 return retval;
2119}
2120
2121static int __kmp_cpuid_mask_width(int count) {
2122 int r = 0;
2123
2124 while ((1 << r) < count)
2125 ++r;
2126 return r;
2127}
2128
2129class apicThreadInfo {
2130public:
2131 unsigned osId; // param to __kmp_affinity_bind_thread
2132 unsigned apicId; // from cpuid after binding
2133 unsigned maxCoresPerPkg; // ""
2134 unsigned maxThreadsPerPkg; // ""
2135 unsigned pkgId; // inferred from above values
2136 unsigned coreId; // ""
2137 unsigned threadId; // ""
2138};
2139
2140static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
2141 const void *b) {
2142 const apicThreadInfo *aa = (const apicThreadInfo *)a;
2143 const apicThreadInfo *bb = (const apicThreadInfo *)b;
2144 if (aa->pkgId < bb->pkgId)
2145 return -1;
2146 if (aa->pkgId > bb->pkgId)
2147 return 1;
2148 if (aa->coreId < bb->coreId)
2149 return -1;
2150 if (aa->coreId > bb->coreId)
2151 return 1;
2152 if (aa->threadId < bb->threadId)
2153 return -1;
2154 if (aa->threadId > bb->threadId)
2155 return 1;
2156 return 0;
2157}
2158
2159class cpuid_cache_info_t {
2160public:
2161 struct info_t {
2162 unsigned level = 0;
2163 unsigned mask = 0;
2164 bool operator==(const info_t &rhs) const {
2165 return level == rhs.level && mask == rhs.mask;
2166 }
2167 bool operator!=(const info_t &rhs) const { return !operator==(rhs); }
2168 };
2169 cpuid_cache_info_t() : depth(0) {
2170 table[MAX_CACHE_LEVEL].level = 0;
2171 table[MAX_CACHE_LEVEL].mask = 0;
2172 }
2173 size_t get_depth() const { return depth; }
2174 info_t &operator[](size_t index) { return table[index]; }
2175 const info_t &operator[](size_t index) const { return table[index]; }
2176 bool operator==(const cpuid_cache_info_t &rhs) const {
2177 if (rhs.depth != depth)
2178 return false;
2179 for (size_t i = 0; i < depth; ++i)
2180 if (table[i] != rhs.table[i])
2181 return false;
2182 return true;
2183 }
2184 bool operator!=(const cpuid_cache_info_t &rhs) const {
2185 return !operator==(rhs);
2186 }
2187 // Get cache information assocaited with L1, L2, L3 cache, etc.
2188 // If level does not exist, then return the "NULL" level (level 0)
2189 const info_t &get_level(unsigned level) const {
2190 for (size_t i = 0; i < depth; ++i) {
2191 if (table[i].level == level)
2192 return table[i];
2193 }
2194 return table[MAX_CACHE_LEVEL];
2195 }
2196
2197 static kmp_hw_t get_topology_type(unsigned level) {
2198 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL);
2199 switch (level) {
2200 case 1:
2201 return KMP_HW_L1;
2202 case 2:
2203 return KMP_HW_L2;
2204 case 3:
2205 return KMP_HW_L3;
2206 }
2207 return KMP_HW_UNKNOWN;
2208 }
2209 void get_leaf4_levels() {
2210 unsigned level = 0;
2211 while (depth < MAX_CACHE_LEVEL) {
2212 unsigned cache_type, max_threads_sharing;
2213 unsigned cache_level, cache_mask_width;
2214 kmp_cpuid buf2;
2215 __kmp_x86_cpuid(leaf: 4, subleaf: level, p: &buf2);
2216 cache_type = __kmp_extract_bits<0, 4>(v: buf2.eax);
2217 if (!cache_type)
2218 break;
2219 // Skip instruction caches
2220 if (cache_type == 2) {
2221 level++;
2222 continue;
2223 }
2224 max_threads_sharing = __kmp_extract_bits<14, 25>(v: buf2.eax) + 1;
2225 cache_mask_width = __kmp_cpuid_mask_width(count: max_threads_sharing);
2226 cache_level = __kmp_extract_bits<5, 7>(v: buf2.eax);
2227 table[depth].level = cache_level;
2228 table[depth].mask = ((-1) << cache_mask_width);
2229 depth++;
2230 level++;
2231 }
2232 }
2233 static const int MAX_CACHE_LEVEL = 3;
2234
2235private:
2236 size_t depth;
2237 info_t table[MAX_CACHE_LEVEL + 1];
2238};
2239
2240// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
2241// an algorithm which cycles through the available os threads, setting
2242// the current thread's affinity mask to that thread, and then retrieves
2243// the Apic Id for each thread context using the cpuid instruction.
2244static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
2245 kmp_cpuid buf;
2246 *msg_id = kmp_i18n_null;
2247
2248 if (__kmp_affinity.flags.verbose) {
2249 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
2250 }
2251
2252 // Check if cpuid leaf 4 is supported.
2253 __kmp_x86_cpuid(leaf: 0, subleaf: 0, p: &buf);
2254 if (buf.eax < 4) {
2255 *msg_id = kmp_i18n_str_NoLeaf4Support;
2256 return false;
2257 }
2258
2259 // The algorithm used starts by setting the affinity to each available thread
2260 // and retrieving info from the cpuid instruction, so if we are not capable of
2261 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
2262 // need to do something else - use the defaults that we calculated from
2263 // issuing cpuid without binding to each proc.
2264 if (!KMP_AFFINITY_CAPABLE()) {
2265 // Hack to try and infer the machine topology using only the data
2266 // available from cpuid on the current thread, and __kmp_xproc.
2267 KMP_ASSERT(__kmp_affinity.type == affinity_none);
2268
2269 // Get an upper bound on the number of threads per package using cpuid(1).
2270 // On some OS/chps combinations where HT is supported by the chip but is
2271 // disabled, this value will be 2 on a single core chip. Usually, it will be
2272 // 2 if HT is enabled and 1 if HT is disabled.
2273 __kmp_x86_cpuid(leaf: 1, subleaf: 0, p: &buf);
2274 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2275 if (maxThreadsPerPkg == 0) {
2276 maxThreadsPerPkg = 1;
2277 }
2278
2279 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
2280 // value.
2281 //
2282 // The author of cpu_count.cpp treated this only an upper bound on the
2283 // number of cores, but I haven't seen any cases where it was greater than
2284 // the actual number of cores, so we will treat it as exact in this block of
2285 // code.
2286 //
2287 // First, we need to check if cpuid(4) is supported on this chip. To see if
2288 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
2289 // greater.
2290 __kmp_x86_cpuid(leaf: 0, subleaf: 0, p: &buf);
2291 if (buf.eax >= 4) {
2292 __kmp_x86_cpuid(leaf: 4, subleaf: 0, p: &buf);
2293 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2294 } else {
2295 nCoresPerPkg = 1;
2296 }
2297
2298 // There is no way to reliably tell if HT is enabled without issuing the
2299 // cpuid instruction from every thread, can correlating the cpuid info, so
2300 // if the machine is not affinity capable, we assume that HT is off. We have
2301 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
2302 // does not support HT.
2303 //
2304 // - Older OSes are usually found on machines with older chips, which do not
2305 // support HT.
2306 // - The performance penalty for mistakenly identifying a machine as HT when
2307 // it isn't (which results in blocktime being incorrectly set to 0) is
2308 // greater than the penalty when for mistakenly identifying a machine as
2309 // being 1 thread/core when it is really HT enabled (which results in
2310 // blocktime being incorrectly set to a positive value).
2311 __kmp_ncores = __kmp_xproc;
2312 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2313 __kmp_nThreadsPerCore = 1;
2314 return true;
2315 }
2316
2317 // From here on, we can assume that it is safe to call
2318 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2319 // __kmp_affinity.type = affinity_none.
2320
2321 // Save the affinity mask for the current thread.
2322 kmp_affinity_raii_t previous_affinity;
2323
2324 // Run through each of the available contexts, binding the current thread
2325 // to it, and obtaining the pertinent information using the cpuid instr.
2326 //
2327 // The relevant information is:
2328 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
2329 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
2330 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
2331 // of this field determines the width of the core# + thread# fields in the
2332 // Apic Id. It is also an upper bound on the number of threads per
2333 // package, but it has been verified that situations happen were it is not
2334 // exact. In particular, on certain OS/chip combinations where Intel(R)
2335 // Hyper-Threading Technology is supported by the chip but has been
2336 // disabled, the value of this field will be 2 (for a single core chip).
2337 // On other OS/chip combinations supporting Intel(R) Hyper-Threading
2338 // Technology, the value of this field will be 1 when Intel(R)
2339 // Hyper-Threading Technology is disabled and 2 when it is enabled.
2340 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
2341 // of this field (+1) determines the width of the core# field in the Apic
2342 // Id. The comments in "cpucount.cpp" say that this value is an upper
2343 // bound, but the IA-32 architecture manual says that it is exactly the
2344 // number of cores per package, and I haven't seen any case where it
2345 // wasn't.
2346 //
2347 // From this information, deduce the package Id, core Id, and thread Id,
2348 // and set the corresponding fields in the apicThreadInfo struct.
2349 unsigned i;
2350 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
2351 __kmp_avail_proc * sizeof(apicThreadInfo));
2352 unsigned nApics = 0;
2353 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2354 // Skip this proc if it is not included in the machine model.
2355 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2356 continue;
2357 }
2358 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
2359
2360 __kmp_affinity_dispatch->bind_thread(proc: i);
2361 threadInfo[nApics].osId = i;
2362
2363 // The apic id and max threads per pkg come from cpuid(1).
2364 __kmp_x86_cpuid(leaf: 1, subleaf: 0, p: &buf);
2365 if (((buf.edx >> 9) & 1) == 0) {
2366 __kmp_free(threadInfo);
2367 *msg_id = kmp_i18n_str_ApicNotPresent;
2368 return false;
2369 }
2370 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
2371 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2372 if (threadInfo[nApics].maxThreadsPerPkg == 0) {
2373 threadInfo[nApics].maxThreadsPerPkg = 1;
2374 }
2375
2376 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
2377 // value.
2378 //
2379 // First, we need to check if cpuid(4) is supported on this chip. To see if
2380 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
2381 // or greater.
2382 __kmp_x86_cpuid(leaf: 0, subleaf: 0, p: &buf);
2383 if (buf.eax >= 4) {
2384 __kmp_x86_cpuid(leaf: 4, subleaf: 0, p: &buf);
2385 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2386 } else {
2387 threadInfo[nApics].maxCoresPerPkg = 1;
2388 }
2389
2390 // Infer the pkgId / coreId / threadId using only the info obtained locally.
2391 int widthCT = __kmp_cpuid_mask_width(count: threadInfo[nApics].maxThreadsPerPkg);
2392 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
2393
2394 int widthC = __kmp_cpuid_mask_width(count: threadInfo[nApics].maxCoresPerPkg);
2395 int widthT = widthCT - widthC;
2396 if (widthT < 0) {
2397 // I've never seen this one happen, but I suppose it could, if the cpuid
2398 // instruction on a chip was really screwed up. Make sure to restore the
2399 // affinity mask before the tail call.
2400 __kmp_free(threadInfo);
2401 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2402 return false;
2403 }
2404
2405 int maskC = (1 << widthC) - 1;
2406 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
2407
2408 int maskT = (1 << widthT) - 1;
2409 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
2410
2411 nApics++;
2412 }
2413
2414 // We've collected all the info we need.
2415 // Restore the old affinity mask for this thread.
2416 previous_affinity.restore();
2417
2418 // Sort the threadInfo table by physical Id.
2419 qsort(base: threadInfo, nmemb: nApics, size: sizeof(*threadInfo),
2420 compar: __kmp_affinity_cmp_apicThreadInfo_phys_id);
2421
2422 // The table is now sorted by pkgId / coreId / threadId, but we really don't
2423 // know the radix of any of the fields. pkgId's may be sparsely assigned among
2424 // the chips on a system. Although coreId's are usually assigned
2425 // [0 .. coresPerPkg-1] and threadId's are usually assigned
2426 // [0..threadsPerCore-1], we don't want to make any such assumptions.
2427 //
2428 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2429 // total # packages) are at this point - we want to determine that now. We
2430 // only have an upper bound on the first two figures.
2431 //
2432 // We also perform a consistency check at this point: the values returned by
2433 // the cpuid instruction for any thread bound to a given package had better
2434 // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
2435 nPackages = 1;
2436 nCoresPerPkg = 1;
2437 __kmp_nThreadsPerCore = 1;
2438 unsigned nCores = 1;
2439
2440 unsigned pkgCt = 1; // to determine radii
2441 unsigned lastPkgId = threadInfo[0].pkgId;
2442 unsigned coreCt = 1;
2443 unsigned lastCoreId = threadInfo[0].coreId;
2444 unsigned threadCt = 1;
2445 unsigned lastThreadId = threadInfo[0].threadId;
2446
2447 // intra-pkg consist checks
2448 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
2449 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
2450
2451 for (i = 1; i < nApics; i++) {
2452 if (threadInfo[i].pkgId != lastPkgId) {
2453 nCores++;
2454 pkgCt++;
2455 lastPkgId = threadInfo[i].pkgId;
2456 if ((int)coreCt > nCoresPerPkg)
2457 nCoresPerPkg = coreCt;
2458 coreCt = 1;
2459 lastCoreId = threadInfo[i].coreId;
2460 if ((int)threadCt > __kmp_nThreadsPerCore)
2461 __kmp_nThreadsPerCore = threadCt;
2462 threadCt = 1;
2463 lastThreadId = threadInfo[i].threadId;
2464
2465 // This is a different package, so go on to the next iteration without
2466 // doing any consistency checks. Reset the consistency check vars, though.
2467 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
2468 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
2469 continue;
2470 }
2471
2472 if (threadInfo[i].coreId != lastCoreId) {
2473 nCores++;
2474 coreCt++;
2475 lastCoreId = threadInfo[i].coreId;
2476 if ((int)threadCt > __kmp_nThreadsPerCore)
2477 __kmp_nThreadsPerCore = threadCt;
2478 threadCt = 1;
2479 lastThreadId = threadInfo[i].threadId;
2480 } else if (threadInfo[i].threadId != lastThreadId) {
2481 threadCt++;
2482 lastThreadId = threadInfo[i].threadId;
2483 } else {
2484 __kmp_free(threadInfo);
2485 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2486 return false;
2487 }
2488
2489 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
2490 // fields agree between all the threads bounds to a given package.
2491 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
2492 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
2493 __kmp_free(threadInfo);
2494 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
2495 return false;
2496 }
2497 }
2498 // When affinity is off, this routine will still be called to set
2499 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2500 // Make sure all these vars are set correctly
2501 nPackages = pkgCt;
2502 if ((int)coreCt > nCoresPerPkg)
2503 nCoresPerPkg = coreCt;
2504 if ((int)threadCt > __kmp_nThreadsPerCore)
2505 __kmp_nThreadsPerCore = threadCt;
2506 __kmp_ncores = nCores;
2507 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
2508
2509 // Now that we've determined the number of packages, the number of cores per
2510 // package, and the number of threads per core, we can construct the data
2511 // structure that is to be returned.
2512 int idx = 0;
2513 int pkgLevel = 0;
2514 int coreLevel = 1;
2515 int threadLevel = 2;
2516 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
2517 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
2518 kmp_hw_t types[3];
2519 if (pkgLevel >= 0)
2520 types[idx++] = KMP_HW_SOCKET;
2521 if (coreLevel >= 0)
2522 types[idx++] = KMP_HW_CORE;
2523 if (threadLevel >= 0)
2524 types[idx++] = KMP_HW_THREAD;
2525
2526 KMP_ASSERT(depth > 0);
2527 __kmp_topology = kmp_topology_t::allocate(nproc: nApics, ndepth: depth, types);
2528
2529 for (i = 0; i < nApics; ++i) {
2530 idx = 0;
2531 unsigned os = threadInfo[i].osId;
2532 kmp_hw_thread_t &hw_thread = __kmp_topology->at(index: i);
2533 hw_thread.clear();
2534
2535 if (pkgLevel >= 0) {
2536 hw_thread.ids[idx++] = threadInfo[i].pkgId;
2537 }
2538 if (coreLevel >= 0) {
2539 hw_thread.ids[idx++] = threadInfo[i].coreId;
2540 }
2541 if (threadLevel >= 0) {
2542 hw_thread.ids[idx++] = threadInfo[i].threadId;
2543 }
2544 hw_thread.os_id = os;
2545 hw_thread.original_idx = i;
2546 }
2547
2548 __kmp_free(threadInfo);
2549 __kmp_topology->sort_ids();
2550 if (!__kmp_topology->check_ids()) {
2551 kmp_topology_t::deallocate(topology: __kmp_topology);
2552 __kmp_topology = nullptr;
2553 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2554 return false;
2555 }
2556 return true;
2557}
2558
2559// Hybrid cpu detection using CPUID.1A
2560// Thread should be pinned to processor already
2561static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency,
2562 unsigned *native_model_id) {
2563 kmp_cpuid buf;
2564 __kmp_x86_cpuid(leaf: 0x1a, subleaf: 0, p: &buf);
2565 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(v: buf.eax);
2566 switch (*type) {
2567 case KMP_HW_CORE_TYPE_ATOM:
2568 *efficiency = 0;
2569 break;
2570 case KMP_HW_CORE_TYPE_CORE:
2571 *efficiency = 1;
2572 break;
2573 default:
2574 *efficiency = 0;
2575 }
2576 *native_model_id = __kmp_extract_bits<0, 23>(v: buf.eax);
2577}
2578
2579// Intel(R) microarchitecture code name Nehalem, Dunnington and later
2580// architectures support a newer interface for specifying the x2APIC Ids,
2581// based on CPUID.B or CPUID.1F
2582/*
2583 * CPUID.B or 1F, Input ECX (sub leaf # aka level number)
2584 Bits Bits Bits Bits
2585 31-16 15-8 7-4 4-0
2586---+-----------+--------------+-------------+-----------------+
2587EAX| reserved | reserved | reserved | Bits to Shift |
2588---+-----------|--------------+-------------+-----------------|
2589EBX| reserved | Num logical processors at level (16 bits) |
2590---+-----------|--------------+-------------------------------|
2591ECX| reserved | Level Type | Level Number (8 bits) |
2592---+-----------+--------------+-------------------------------|
2593EDX| X2APIC ID (32 bits) |
2594---+----------------------------------------------------------+
2595*/
2596
2597enum {
2598 INTEL_LEVEL_TYPE_INVALID = 0, // Package level
2599 INTEL_LEVEL_TYPE_SMT = 1,
2600 INTEL_LEVEL_TYPE_CORE = 2,
2601 INTEL_LEVEL_TYPE_MODULE = 3,
2602 INTEL_LEVEL_TYPE_TILE = 4,
2603 INTEL_LEVEL_TYPE_DIE = 5,
2604 INTEL_LEVEL_TYPE_LAST = 6,
2605};
2606KMP_BUILD_ASSERT(INTEL_LEVEL_TYPE_LAST < sizeof(unsigned) * CHAR_BIT);
2607#define KMP_LEAF_1F_KNOWN_LEVELS ((1u << INTEL_LEVEL_TYPE_LAST) - 1u)
2608
2609static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
2610 switch (intel_type) {
2611 case INTEL_LEVEL_TYPE_INVALID:
2612 return KMP_HW_SOCKET;
2613 case INTEL_LEVEL_TYPE_SMT:
2614 return KMP_HW_THREAD;
2615 case INTEL_LEVEL_TYPE_CORE:
2616 return KMP_HW_CORE;
2617 case INTEL_LEVEL_TYPE_TILE:
2618 return KMP_HW_TILE;
2619 case INTEL_LEVEL_TYPE_MODULE:
2620 return KMP_HW_MODULE;
2621 case INTEL_LEVEL_TYPE_DIE:
2622 return KMP_HW_DIE;
2623 }
2624 return KMP_HW_UNKNOWN;
2625}
2626
2627static int __kmp_topology_type_2_intel_type(kmp_hw_t type) {
2628 switch (type) {
2629 case KMP_HW_SOCKET:
2630 return INTEL_LEVEL_TYPE_INVALID;
2631 case KMP_HW_THREAD:
2632 return INTEL_LEVEL_TYPE_SMT;
2633 case KMP_HW_CORE:
2634 return INTEL_LEVEL_TYPE_CORE;
2635 case KMP_HW_TILE:
2636 return INTEL_LEVEL_TYPE_TILE;
2637 case KMP_HW_MODULE:
2638 return INTEL_LEVEL_TYPE_MODULE;
2639 case KMP_HW_DIE:
2640 return INTEL_LEVEL_TYPE_DIE;
2641 default:
2642 return INTEL_LEVEL_TYPE_INVALID;
2643 }
2644}
2645
2646struct cpuid_level_info_t {
2647 unsigned level_type, mask, mask_width, nitems, cache_mask;
2648};
2649
2650class cpuid_topo_desc_t {
2651 unsigned desc = 0;
2652
2653public:
2654 void clear() { desc = 0; }
2655 bool contains(int intel_type) const {
2656 KMP_DEBUG_ASSERT(intel_type >= 0 && intel_type < INTEL_LEVEL_TYPE_LAST);
2657 if ((1u << intel_type) & desc)
2658 return true;
2659 return false;
2660 }
2661 bool contains_topology_type(kmp_hw_t type) const {
2662 KMP_DEBUG_ASSERT(type >= 0 && type < KMP_HW_LAST);
2663 int intel_type = __kmp_topology_type_2_intel_type(type);
2664 return contains(intel_type);
2665 }
2666 bool contains(cpuid_topo_desc_t rhs) const {
2667 return ((desc | rhs.desc) == desc);
2668 }
2669 void add(int intel_type) { desc |= (1u << intel_type); }
2670 void add(cpuid_topo_desc_t rhs) { desc |= rhs.desc; }
2671};
2672
2673struct cpuid_proc_info_t {
2674 // Topology info
2675 int os_id;
2676 unsigned apic_id;
2677 unsigned depth;
2678 // Hybrid info
2679 unsigned native_model_id;
2680 int efficiency;
2681 kmp_hw_core_type_t type;
2682 cpuid_topo_desc_t description;
2683
2684 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
2685};
2686
2687// This function takes the topology leaf, an info pointer to store the levels
2688// detected, and writable descriptors for the total topology.
2689// Returns whether total types, depth, or description were modified.
2690static bool __kmp_x2apicid_get_levels(int leaf, cpuid_proc_info_t *info,
2691 kmp_hw_t total_types[KMP_HW_LAST],
2692 int *total_depth,
2693 cpuid_topo_desc_t *total_description) {
2694 unsigned level, levels_index;
2695 unsigned level_type, mask_width, nitems;
2696 kmp_cpuid buf;
2697 cpuid_level_info_t(&levels)[INTEL_LEVEL_TYPE_LAST] = info->levels;
2698 bool retval = false;
2699
2700 // New algorithm has known topology layers act as highest unknown topology
2701 // layers when unknown topology layers exist.
2702 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
2703 // are unknown topology layers, Then SMT will take the characteristics of
2704 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
2705 // This eliminates unknown portions of the topology while still keeping the
2706 // correct structure.
2707 level = levels_index = 0;
2708 do {
2709 __kmp_x86_cpuid(leaf, subleaf: level, p: &buf);
2710 level_type = __kmp_extract_bits<8, 15>(v: buf.ecx);
2711 mask_width = __kmp_extract_bits<0, 4>(v: buf.eax);
2712 nitems = __kmp_extract_bits<0, 15>(v: buf.ebx);
2713 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) {
2714 info->depth = 0;
2715 return retval;
2716 }
2717
2718 if (KMP_LEAF_1F_KNOWN_LEVELS & (1u << level_type)) {
2719 // Add a new level to the topology
2720 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST);
2721 levels[levels_index].level_type = level_type;
2722 levels[levels_index].mask_width = mask_width;
2723 levels[levels_index].nitems = nitems;
2724 levels_index++;
2725 } else {
2726 // If it is an unknown level, then logically move the previous layer up
2727 if (levels_index > 0) {
2728 levels[levels_index - 1].mask_width = mask_width;
2729 levels[levels_index - 1].nitems = nitems;
2730 }
2731 }
2732 level++;
2733 } while (level_type != INTEL_LEVEL_TYPE_INVALID);
2734 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST);
2735 info->description.clear();
2736 info->depth = levels_index;
2737
2738 // If types, depth, and total_description are uninitialized,
2739 // then initialize them now
2740 if (*total_depth == 0) {
2741 *total_depth = info->depth;
2742 total_description->clear();
2743 for (int i = *total_depth - 1, j = 0; i >= 0; --i, ++j) {
2744 total_types[j] =
2745 __kmp_intel_type_2_topology_type(intel_type: info->levels[i].level_type);
2746 total_description->add(intel_type: info->levels[i].level_type);
2747 }
2748 retval = true;
2749 }
2750
2751 // Ensure the INTEL_LEVEL_TYPE_INVALID (Socket) layer isn't first
2752 if (levels_index == 0 || levels[0].level_type == INTEL_LEVEL_TYPE_INVALID)
2753 return 0;
2754
2755 // Set the masks to & with apicid
2756 for (unsigned i = 0; i < levels_index; ++i) {
2757 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
2758 levels[i].mask = ~((-1) << levels[i].mask_width);
2759 levels[i].cache_mask = (-1) << levels[i].mask_width;
2760 for (unsigned j = 0; j < i; ++j)
2761 levels[i].mask ^= levels[j].mask;
2762 } else {
2763 KMP_DEBUG_ASSERT(i > 0);
2764 levels[i].mask = (-1) << levels[i - 1].mask_width;
2765 levels[i].cache_mask = 0;
2766 }
2767 info->description.add(intel_type: info->levels[i].level_type);
2768 }
2769
2770 // If this processor has level type not on other processors, then make
2771 // sure to include it in total types, depth, and description.
2772 // One assumption here is that the first type, i.e. socket, is known.
2773 // Another assumption is that types array is always large enough to fit any
2774 // new layers since its length is KMP_HW_LAST.
2775 if (!total_description->contains(rhs: info->description)) {
2776 for (int i = info->depth - 1, j = 0; i >= 0; --i, ++j) {
2777 // If this level is known already, then skip it.
2778 if (total_description->contains(intel_type: levels[i].level_type))
2779 continue;
2780 // Unknown level, insert before last known level
2781 kmp_hw_t curr_type =
2782 __kmp_intel_type_2_topology_type(intel_type: levels[i].level_type);
2783 KMP_ASSERT(j != 0 && "Bad APIC Id information");
2784 // Move over all known levels to make room for new level
2785 for (int k = info->depth - 1; k >= j; --k) {
2786 KMP_DEBUG_ASSERT(k + 1 < KMP_HW_LAST);
2787 total_types[k + 1] = total_types[k];
2788 }
2789 // Insert new level
2790 total_types[j] = curr_type;
2791 (*total_depth)++;
2792 }
2793 total_description->add(rhs: info->description);
2794 retval = true;
2795 }
2796 return retval;
2797}
2798
2799static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
2800
2801 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
2802 kmp_cpuid buf;
2803 int topology_leaf, highest_leaf;
2804 int num_leaves;
2805 int depth = 0;
2806 cpuid_topo_desc_t total_description;
2807 static int leaves[] = {0, 0};
2808
2809 // If affinity is disabled, __kmp_avail_proc may be zero
2810 int ninfos = (__kmp_avail_proc > 0 ? __kmp_avail_proc : 1);
2811 cpuid_proc_info_t *proc_info = (cpuid_proc_info_t *)__kmp_allocate(
2812 (sizeof(cpuid_proc_info_t) + sizeof(cpuid_cache_info_t)) * ninfos);
2813 cpuid_cache_info_t *cache_info = (cpuid_cache_info_t *)(proc_info + ninfos);
2814
2815 kmp_i18n_id_t leaf_message_id;
2816
2817 *msg_id = kmp_i18n_null;
2818 if (__kmp_affinity.flags.verbose) {
2819 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
2820 }
2821
2822 // Get the highest cpuid leaf supported
2823 __kmp_x86_cpuid(leaf: 0, subleaf: 0, p: &buf);
2824 highest_leaf = buf.eax;
2825
2826 // If a specific topology method was requested, only allow that specific leaf
2827 // otherwise, try both leaves 31 and 11 in that order
2828 num_leaves = 0;
2829 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
2830 num_leaves = 1;
2831 leaves[0] = 11;
2832 leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2833 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
2834 num_leaves = 1;
2835 leaves[0] = 31;
2836 leaf_message_id = kmp_i18n_str_NoLeaf31Support;
2837 } else {
2838 num_leaves = 2;
2839 leaves[0] = 31;
2840 leaves[1] = 11;
2841 leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2842 }
2843
2844 // Check to see if cpuid leaf 31 or 11 is supported.
2845 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2846 topology_leaf = -1;
2847 for (int i = 0; i < num_leaves; ++i) {
2848 int leaf = leaves[i];
2849 if (highest_leaf < leaf)
2850 continue;
2851 __kmp_x86_cpuid(leaf, subleaf: 0, p: &buf);
2852 if (buf.ebx == 0)
2853 continue;
2854 topology_leaf = leaf;
2855 __kmp_x2apicid_get_levels(leaf, info: &proc_info[0], total_types: types, total_depth: &depth,
2856 total_description: &total_description);
2857 if (depth == 0)
2858 continue;
2859 break;
2860 }
2861 if (topology_leaf == -1 || depth == 0) {
2862 *msg_id = leaf_message_id;
2863 __kmp_free(proc_info);
2864 return false;
2865 }
2866 KMP_ASSERT(depth <= INTEL_LEVEL_TYPE_LAST);
2867
2868 // The algorithm used starts by setting the affinity to each available thread
2869 // and retrieving info from the cpuid instruction, so if we are not capable of
2870 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
2871 // we need to do something else - use the defaults that we calculated from
2872 // issuing cpuid without binding to each proc.
2873 if (!KMP_AFFINITY_CAPABLE()) {
2874 // Hack to try and infer the machine topology using only the data
2875 // available from cpuid on the current thread, and __kmp_xproc.
2876 KMP_ASSERT(__kmp_affinity.type == affinity_none);
2877 for (int i = 0; i < depth; ++i) {
2878 if (proc_info[0].levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
2879 __kmp_nThreadsPerCore = proc_info[0].levels[i].nitems;
2880 } else if (proc_info[0].levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
2881 nCoresPerPkg = proc_info[0].levels[i].nitems;
2882 }
2883 }
2884 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
2885 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2886 __kmp_free(proc_info);
2887 return true;
2888 }
2889
2890 // From here on, we can assume that it is safe to call
2891 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2892 // __kmp_affinity.type = affinity_none.
2893
2894 // Save the affinity mask for the current thread.
2895 kmp_affinity_raii_t previous_affinity;
2896
2897 // Run through each of the available contexts, binding the current thread
2898 // to it, and obtaining the pertinent information using the cpuid instr.
2899 unsigned int proc;
2900 int hw_thread_index = 0;
2901 bool uniform_caches = true;
2902
2903 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
2904 // Skip this proc if it is not included in the machine model.
2905 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
2906 continue;
2907 }
2908 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc);
2909
2910 // Gather topology information
2911 __kmp_affinity_dispatch->bind_thread(proc);
2912 __kmp_x86_cpuid(leaf: topology_leaf, subleaf: 0, p: &buf);
2913 proc_info[hw_thread_index].os_id = proc;
2914 proc_info[hw_thread_index].apic_id = buf.edx;
2915 __kmp_x2apicid_get_levels(leaf: topology_leaf, info: &proc_info[hw_thread_index], total_types: types,
2916 total_depth: &depth, total_description: &total_description);
2917 if (proc_info[hw_thread_index].depth == 0) {
2918 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2919 __kmp_free(proc_info);
2920 return false;
2921 }
2922 // Gather cache information and insert afterwards
2923 cache_info[hw_thread_index].get_leaf4_levels();
2924 if (uniform_caches && hw_thread_index > 0)
2925 if (cache_info[0] != cache_info[hw_thread_index])
2926 uniform_caches = false;
2927 // Hybrid information
2928 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) {
2929 __kmp_get_hybrid_info(type: &proc_info[hw_thread_index].type,
2930 efficiency: &proc_info[hw_thread_index].efficiency,
2931 native_model_id: &proc_info[hw_thread_index].native_model_id);
2932 }
2933 hw_thread_index++;
2934 }
2935 KMP_ASSERT(hw_thread_index > 0);
2936 previous_affinity.restore();
2937
2938 // Allocate the data structure to be returned.
2939 __kmp_topology = kmp_topology_t::allocate(nproc: __kmp_avail_proc, ndepth: depth, types);
2940
2941 // Create topology Ids and hybrid types in __kmp_topology
2942 for (int i = 0; i < __kmp_topology->get_num_hw_threads(); ++i) {
2943 kmp_hw_thread_t &hw_thread = __kmp_topology->at(index: i);
2944 hw_thread.clear();
2945 hw_thread.os_id = proc_info[i].os_id;
2946 hw_thread.original_idx = i;
2947 unsigned apic_id = proc_info[i].apic_id;
2948 // Put in topology information
2949 for (int j = 0, idx = depth - 1; j < depth; ++j, --idx) {
2950 if (!(proc_info[i].description.contains_topology_type(
2951 type: __kmp_topology->get_type(level: j)))) {
2952 hw_thread.ids[idx] = kmp_hw_thread_t::UNKNOWN_ID;
2953 } else {
2954 hw_thread.ids[idx] = apic_id & proc_info[i].levels[j].mask;
2955 if (j > 0) {
2956 hw_thread.ids[idx] >>= proc_info[i].levels[j - 1].mask_width;
2957 }
2958 }
2959 }
2960 hw_thread.attrs.set_core_type(proc_info[i].type);
2961 hw_thread.attrs.set_core_eff(proc_info[i].efficiency);
2962 }
2963
2964 __kmp_topology->sort_ids();
2965
2966 // Change Ids to logical Ids
2967 for (int j = 0; j < depth - 1; ++j) {
2968 int new_id = 0;
2969 int prev_id = __kmp_topology->at(index: 0).ids[j];
2970 int curr_id = __kmp_topology->at(index: 0).ids[j + 1];
2971 __kmp_topology->at(index: 0).ids[j + 1] = new_id;
2972 for (int i = 1; i < __kmp_topology->get_num_hw_threads(); ++i) {
2973 kmp_hw_thread_t &hw_thread = __kmp_topology->at(index: i);
2974 if (hw_thread.ids[j] == prev_id && hw_thread.ids[j + 1] == curr_id) {
2975 hw_thread.ids[j + 1] = new_id;
2976 } else if (hw_thread.ids[j] == prev_id &&
2977 hw_thread.ids[j + 1] != curr_id) {
2978 curr_id = hw_thread.ids[j + 1];
2979 hw_thread.ids[j + 1] = ++new_id;
2980 } else {
2981 prev_id = hw_thread.ids[j];
2982 curr_id = hw_thread.ids[j + 1];
2983 hw_thread.ids[j + 1] = ++new_id;
2984 }
2985 }
2986 }
2987
2988 // First check for easy cache placement. This occurs when caches are
2989 // equivalent to a layer in the CPUID leaf 0xb or 0x1f topology.
2990 if (uniform_caches) {
2991 for (size_t i = 0; i < cache_info[0].get_depth(); ++i) {
2992 unsigned cache_mask = cache_info[0][i].mask;
2993 unsigned cache_level = cache_info[0][i].level;
2994 KMP_ASSERT(cache_level <= cpuid_cache_info_t::MAX_CACHE_LEVEL);
2995 kmp_hw_t cache_type = cpuid_cache_info_t::get_topology_type(level: cache_level);
2996 __kmp_topology->set_equivalent_type(type1: cache_type, type2: cache_type);
2997 for (int j = 0; j < depth; ++j) {
2998 unsigned hw_cache_mask = proc_info[0].levels[j].cache_mask;
2999 if (hw_cache_mask == cache_mask && j < depth - 1) {
3000 kmp_hw_t type = __kmp_intel_type_2_topology_type(
3001 intel_type: proc_info[0].levels[j + 1].level_type);
3002 __kmp_topology->set_equivalent_type(type1: cache_type, type2: type);
3003 }
3004 }
3005 }
3006 } else {
3007 // If caches are non-uniform, then record which caches exist.
3008 for (int i = 0; i < __kmp_topology->get_num_hw_threads(); ++i) {
3009 for (size_t j = 0; j < cache_info[i].get_depth(); ++j) {
3010 unsigned cache_level = cache_info[i][j].level;
3011 kmp_hw_t cache_type =
3012 cpuid_cache_info_t::get_topology_type(level: cache_level);
3013 if (__kmp_topology->get_equivalent_type(type: cache_type) == KMP_HW_UNKNOWN)
3014 __kmp_topology->set_equivalent_type(type1: cache_type, type2: cache_type);
3015 }
3016 }
3017 }
3018
3019 // See if any cache level needs to be added manually through cache Ids
3020 bool unresolved_cache_levels = false;
3021 for (unsigned level = 1; level <= cpuid_cache_info_t::MAX_CACHE_LEVEL;
3022 ++level) {
3023 kmp_hw_t cache_type = cpuid_cache_info_t::get_topology_type(level);
3024 // This also filters out caches which may not be in the topology
3025 // since the equivalent type might be KMP_HW_UNKNOWN.
3026 if (__kmp_topology->get_equivalent_type(type: cache_type) == cache_type) {
3027 unresolved_cache_levels = true;
3028 break;
3029 }
3030 }
3031
3032 // Insert unresolved cache layers into machine topology using cache Ids
3033 if (unresolved_cache_levels) {
3034 int num_hw_threads = __kmp_topology->get_num_hw_threads();
3035 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads);
3036 for (unsigned l = 1; l <= cpuid_cache_info_t::MAX_CACHE_LEVEL; ++l) {
3037 kmp_hw_t cache_type = cpuid_cache_info_t::get_topology_type(level: l);
3038 if (__kmp_topology->get_equivalent_type(type: cache_type) != cache_type)
3039 continue;
3040 for (int i = 0; i < num_hw_threads; ++i) {
3041 int original_idx = __kmp_topology->at(index: i).original_idx;
3042 ids[i] = kmp_hw_thread_t::UNKNOWN_ID;
3043 const cpuid_cache_info_t::info_t &info =
3044 cache_info[original_idx].get_level(level: l);
3045 // if cache level not in topology for this processor, then skip
3046 if (info.level == 0)
3047 continue;
3048 ids[i] = info.mask & proc_info[original_idx].apic_id;
3049 }
3050 __kmp_topology->insert_layer(type: cache_type, ids);
3051 }
3052 }
3053
3054 if (!__kmp_topology->check_ids()) {
3055 kmp_topology_t::deallocate(topology: __kmp_topology);
3056 __kmp_topology = nullptr;
3057 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
3058 __kmp_free(proc_info);
3059 return false;
3060 }
3061 __kmp_free(proc_info);
3062 return true;
3063}
3064#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3065
3066#define osIdIndex 0
3067#define threadIdIndex 1
3068#define coreIdIndex 2
3069#define pkgIdIndex 3
3070#define nodeIdIndex 4
3071
3072typedef unsigned *ProcCpuInfo;
3073static unsigned maxIndex = pkgIdIndex;
3074
3075static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
3076 const void *b) {
3077 unsigned i;
3078 const unsigned *aa = *(unsigned *const *)a;
3079 const unsigned *bb = *(unsigned *const *)b;
3080 for (i = maxIndex;; i--) {
3081 if (aa[i] < bb[i])
3082 return -1;
3083 if (aa[i] > bb[i])
3084 return 1;
3085 if (i == osIdIndex)
3086 break;
3087 }
3088 return 0;
3089}
3090
3091#if KMP_USE_HIER_SCHED
3092// Set the array sizes for the hierarchy layers
3093static void __kmp_dispatch_set_hierarchy_values() {
3094 // Set the maximum number of L1's to number of cores
3095 // Set the maximum number of L2's to either number of cores / 2 for
3096 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
3097 // Or the number of cores for Intel(R) Xeon(R) processors
3098 // Set the maximum number of NUMA nodes and L3's to number of packages
3099 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
3100 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
3101 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
3102#if KMP_ARCH_X86_64 && \
3103 (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
3104 KMP_OS_WINDOWS) && \
3105 KMP_MIC_SUPPORTED
3106 if (__kmp_mic_type >= mic3)
3107 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
3108 else
3109#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
3110 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
3111 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
3112 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
3113 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
3114 // Set the number of threads per unit
3115 // Number of hardware threads per L1/L2/L3/NUMA/LOOP
3116 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
3117 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
3118 __kmp_nThreadsPerCore;
3119#if KMP_ARCH_X86_64 && \
3120 (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
3121 KMP_OS_WINDOWS) && \
3122 KMP_MIC_SUPPORTED
3123 if (__kmp_mic_type >= mic3)
3124 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
3125 2 * __kmp_nThreadsPerCore;
3126 else
3127#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
3128 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
3129 __kmp_nThreadsPerCore;
3130 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
3131 nCoresPerPkg * __kmp_nThreadsPerCore;
3132 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
3133 nCoresPerPkg * __kmp_nThreadsPerCore;
3134 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
3135 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
3136}
3137
3138// Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
3139// i.e., this thread's L1 or this thread's L2, etc.
3140int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
3141 int index = type + 1;
3142 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
3143 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
3144 if (type == kmp_hier_layer_e::LAYER_THREAD)
3145 return tid;
3146 else if (type == kmp_hier_layer_e::LAYER_LOOP)
3147 return 0;
3148 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
3149 if (tid >= num_hw_threads)
3150 tid = tid % num_hw_threads;
3151 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
3152}
3153
3154// Return the number of t1's per t2
3155int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
3156 int i1 = t1 + 1;
3157 int i2 = t2 + 1;
3158 KMP_DEBUG_ASSERT(i1 <= i2);
3159 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
3160 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
3161 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
3162 // (nthreads/t2) / (nthreads/t1) = t1 / t2
3163 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
3164}
3165#endif // KMP_USE_HIER_SCHED
3166
3167static inline const char *__kmp_cpuinfo_get_filename() {
3168 const char *filename;
3169 if (__kmp_cpuinfo_file != nullptr)
3170 filename = __kmp_cpuinfo_file;
3171 else
3172 filename = "/proc/cpuinfo";
3173 return filename;
3174}
3175
3176static inline const char *__kmp_cpuinfo_get_envvar() {
3177 const char *envvar = nullptr;
3178 if (__kmp_cpuinfo_file != nullptr)
3179 envvar = "KMP_CPUINFO_FILE";
3180 return envvar;
3181}
3182
3183static bool __kmp_package_id_from_core_siblings_list(unsigned **threadInfo,
3184 unsigned num_avail,
3185 unsigned idx) {
3186 if (!KMP_AFFINITY_CAPABLE())
3187 return false;
3188
3189 char path[256];
3190 KMP_SNPRINTF(s: path, maxlen: sizeof(path),
3191 format: "/sys/devices/system/cpu/cpu%u/topology/core_siblings_list",
3192 threadInfo[idx][osIdIndex]);
3193 kmp_affin_mask_t *siblings = __kmp_parse_cpu_list(path);
3194 for (unsigned i = 0; i < num_avail; ++i) {
3195 unsigned cpu_id = threadInfo[i][osIdIndex];
3196 KMP_ASSERT(cpu_id < __kmp_affin_mask_size * CHAR_BIT);
3197 if (!KMP_CPU_ISSET(cpu_id, siblings))
3198 continue;
3199 if (threadInfo[i][pkgIdIndex] == UINT_MAX) {
3200 // Arbitrarily pick the first index we encounter, it only matters that
3201 // the value is the same for all siblings.
3202 threadInfo[i][pkgIdIndex] = idx;
3203 } else if (threadInfo[i][pkgIdIndex] != idx) {
3204 // Contradictory sibling lists.
3205 KMP_CPU_FREE(siblings);
3206 return false;
3207 }
3208 }
3209 KMP_ASSERT(threadInfo[idx][pkgIdIndex] != UINT_MAX);
3210 KMP_CPU_FREE(siblings);
3211 return true;
3212}
3213
3214// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
3215// affinity map. On AIX, the map is obtained through system SRAD (Scheduler
3216// Resource Allocation Domain).
3217static bool __kmp_affinity_create_cpuinfo_map(int *line,
3218 kmp_i18n_id_t *const msg_id) {
3219 *msg_id = kmp_i18n_null;
3220
3221#if KMP_OS_AIX
3222 unsigned num_records = __kmp_xproc;
3223#else
3224 const char *filename = __kmp_cpuinfo_get_filename();
3225 const char *envvar = __kmp_cpuinfo_get_envvar();
3226
3227 if (__kmp_affinity.flags.verbose) {
3228 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
3229 }
3230
3231 kmp_safe_raii_file_t f(filename, "r", envvar);
3232
3233 // Scan of the file, and count the number of "processor" (osId) fields,
3234 // and find the highest value of <n> for a node_<n> field.
3235 char buf[256];
3236 unsigned num_records = 0;
3237 while (!feof(stream: f)) {
3238 buf[sizeof(buf) - 1] = 1;
3239 if (!fgets(s: buf, n: sizeof(buf), stream: f)) {
3240 // Read errors presumably because of EOF
3241 break;
3242 }
3243
3244 char s1[] = "processor";
3245 if (strncmp(s1: buf, s2: s1, n: sizeof(s1) - 1) == 0) {
3246 num_records++;
3247 continue;
3248 }
3249
3250 // FIXME - this will match "node_<n> <garbage>"
3251 unsigned level;
3252 if (KMP_SSCANF(s: buf, format: "node_%u id", &level) == 1) {
3253 // validate the input fisrt:
3254 if (level > (unsigned)__kmp_xproc) { // level is too big
3255 level = __kmp_xproc;
3256 }
3257 if (nodeIdIndex + level >= maxIndex) {
3258 maxIndex = nodeIdIndex + level;
3259 }
3260 continue;
3261 }
3262 }
3263
3264 // Check for empty file / no valid processor records, or too many. The number
3265 // of records can't exceed the number of valid bits in the affinity mask.
3266 if (num_records == 0) {
3267 *msg_id = kmp_i18n_str_NoProcRecords;
3268 return false;
3269 }
3270 if (num_records > (unsigned)__kmp_xproc) {
3271 *msg_id = kmp_i18n_str_TooManyProcRecords;
3272 return false;
3273 }
3274
3275 // Set the file pointer back to the beginning, so that we can scan the file
3276 // again, this time performing a full parse of the data. Allocate a vector of
3277 // ProcCpuInfo object, where we will place the data. Adding an extra element
3278 // at the end allows us to remove a lot of extra checks for termination
3279 // conditions.
3280 if (fseek(stream: f, off: 0, SEEK_SET) != 0) {
3281 *msg_id = kmp_i18n_str_CantRewindCpuinfo;
3282 return false;
3283 }
3284#endif // KMP_OS_AIX
3285
3286 // Allocate the array of records to store the proc info in. The dummy
3287 // element at the end makes the logic in filling them out easier to code.
3288 unsigned **threadInfo =
3289 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
3290 unsigned i;
3291 for (i = 0; i <= num_records; i++) {
3292 threadInfo[i] =
3293 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3294 }
3295
3296#define CLEANUP_THREAD_INFO \
3297 for (i = 0; i <= num_records; i++) { \
3298 __kmp_free(threadInfo[i]); \
3299 } \
3300 __kmp_free(threadInfo);
3301
3302 // A value of UINT_MAX means that we didn't find the field
3303 unsigned __index;
3304
3305#define INIT_PROC_INFO(p) \
3306 for (__index = 0; __index <= maxIndex; __index++) { \
3307 (p)[__index] = UINT_MAX; \
3308 }
3309
3310 for (i = 0; i <= num_records; i++) {
3311 INIT_PROC_INFO(threadInfo[i]);
3312 }
3313
3314#if KMP_OS_AIX
3315 int smt_threads;
3316 lpar_info_format1_t cpuinfo;
3317 unsigned num_avail = __kmp_xproc;
3318
3319 if (__kmp_affinity.flags.verbose)
3320 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "system info for topology");
3321
3322 // Get the number of SMT threads per core.
3323 smt_threads = syssmt(GET_NUMBER_SMT_SETS, 0, 0, NULL);
3324
3325 // Allocate a resource set containing available system resourses.
3326 rsethandle_t sys_rset = rs_alloc(RS_SYSTEM);
3327 if (sys_rset == NULL) {
3328 CLEANUP_THREAD_INFO;
3329 *msg_id = kmp_i18n_str_UnknownTopology;
3330 return false;
3331 }
3332 // Allocate a resource set for the SRAD info.
3333 rsethandle_t srad = rs_alloc(RS_EMPTY);
3334 if (srad == NULL) {
3335 rs_free(sys_rset);
3336 CLEANUP_THREAD_INFO;
3337 *msg_id = kmp_i18n_str_UnknownTopology;
3338 return false;
3339 }
3340
3341 // Get the SRAD system detail level.
3342 int sradsdl = rs_getinfo(NULL, R_SRADSDL, 0);
3343 if (sradsdl < 0) {
3344 rs_free(sys_rset);
3345 rs_free(srad);
3346 CLEANUP_THREAD_INFO;
3347 *msg_id = kmp_i18n_str_UnknownTopology;
3348 return false;
3349 }
3350 // Get the number of RADs at that SRAD SDL.
3351 int num_rads = rs_numrads(sys_rset, sradsdl, 0);
3352 if (num_rads < 0) {
3353 rs_free(sys_rset);
3354 rs_free(srad);
3355 CLEANUP_THREAD_INFO;
3356 *msg_id = kmp_i18n_str_UnknownTopology;
3357 return false;
3358 }
3359
3360 // Get the maximum number of procs that may be contained in a resource set.
3361 int max_procs = rs_getinfo(NULL, R_MAXPROCS, 0);
3362 if (max_procs < 0) {
3363 rs_free(sys_rset);
3364 rs_free(srad);
3365 CLEANUP_THREAD_INFO;
3366 *msg_id = kmp_i18n_str_UnknownTopology;
3367 return false;
3368 }
3369
3370 int cur_rad = 0;
3371 int num_set = 0;
3372 for (int srad_idx = 0; cur_rad < num_rads && srad_idx < VMI_MAXRADS;
3373 ++srad_idx) {
3374 // Check if the SRAD is available in the RSET.
3375 if (rs_getrad(sys_rset, srad, sradsdl, srad_idx, 0) < 0)
3376 continue;
3377
3378 for (int cpu = 0; cpu < max_procs; cpu++) {
3379 // Set the info for the cpu if it is in the SRAD.
3380 if (rs_op(RS_TESTRESOURCE, srad, NULL, R_PROCS, cpu)) {
3381 threadInfo[cpu][osIdIndex] = cpu;
3382 threadInfo[cpu][pkgIdIndex] = cur_rad;
3383 threadInfo[cpu][coreIdIndex] = cpu / smt_threads;
3384 ++num_set;
3385 if (num_set >= num_avail) {
3386 // Done if all available CPUs have been set.
3387 break;
3388 }
3389 }
3390 }
3391 ++cur_rad;
3392 }
3393 rs_free(sys_rset);
3394 rs_free(srad);
3395
3396 // The topology is already sorted.
3397
3398#else // !KMP_OS_AIX
3399 unsigned num_avail = 0;
3400 *line = 0;
3401#if KMP_ARCH_S390X
3402 bool reading_s390x_sys_info = true;
3403#endif
3404 while (!feof(stream: f)) {
3405 // Create an inner scoping level, so that all the goto targets at the end of
3406 // the loop appear in an outer scoping level. This avoids warnings about
3407 // jumping past an initialization to a target in the same block.
3408 {
3409 buf[sizeof(buf) - 1] = 1;
3410 bool long_line = false;
3411 if (!fgets(s: buf, n: sizeof(buf), stream: f)) {
3412 // Read errors presumably because of EOF
3413 // If there is valid data in threadInfo[num_avail], then fake
3414 // a blank line in ensure that the last address gets parsed.
3415 bool valid = false;
3416 for (i = 0; i <= maxIndex; i++) {
3417 if (threadInfo[num_avail][i] != UINT_MAX) {
3418 valid = true;
3419 }
3420 }
3421 if (!valid) {
3422 break;
3423 }
3424 buf[0] = 0;
3425 } else if (!buf[sizeof(buf) - 1]) {
3426 // The line is longer than the buffer. Set a flag and don't
3427 // emit an error if we were going to ignore the line, anyway.
3428 long_line = true;
3429
3430#define CHECK_LINE \
3431 if (long_line) { \
3432 CLEANUP_THREAD_INFO; \
3433 *msg_id = kmp_i18n_str_LongLineCpuinfo; \
3434 return false; \
3435 }
3436 }
3437 (*line)++;
3438
3439#if KMP_ARCH_LOONGARCH64
3440 // The parsing logic of /proc/cpuinfo in this function highly depends on
3441 // the blank lines between each processor info block. But on LoongArch a
3442 // blank line exists before the first processor info block (i.e. after the
3443 // "system type" line). This blank line was added because the "system
3444 // type" line is unrelated to any of the CPUs. We must skip this line so
3445 // that the original logic works on LoongArch.
3446 if (*buf == '\n' && *line == 2)
3447 continue;
3448#endif
3449#if KMP_ARCH_S390X
3450 // s390x /proc/cpuinfo starts with a variable number of lines containing
3451 // the overall system information. Skip them.
3452 if (reading_s390x_sys_info) {
3453 if (*buf == '\n')
3454 reading_s390x_sys_info = false;
3455 continue;
3456 }
3457#endif
3458
3459#if KMP_ARCH_S390X
3460 char s1[] = "cpu number";
3461#else
3462 char s1[] = "processor";
3463#endif
3464 if (strncmp(s1: buf, s2: s1, n: sizeof(s1) - 1) == 0) {
3465 CHECK_LINE;
3466 char *p = strchr(s: buf + sizeof(s1) - 1, c: ':');
3467 unsigned val;
3468 if ((p == NULL) || (KMP_SSCANF(s: p + 1, format: "%u\n", &val) != 1))
3469 goto no_val;
3470 if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
3471#if KMP_ARCH_AARCH64
3472 // Handle the old AArch64 /proc/cpuinfo layout differently,
3473 // it contains all of the 'processor' entries listed in a
3474 // single 'Processor' section, therefore the normal looking
3475 // for duplicates in that section will always fail.
3476 num_avail++;
3477#else
3478 goto dup_field;
3479#endif
3480 threadInfo[num_avail][osIdIndex] = val;
3481#if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
3482 char path[256];
3483 KMP_SNPRINTF(
3484 path, sizeof(path),
3485 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
3486 threadInfo[num_avail][osIdIndex]);
3487 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
3488
3489#if KMP_ARCH_S390X
3490 // Disambiguate physical_package_id.
3491 unsigned book_id;
3492 KMP_SNPRINTF(path, sizeof(path),
3493 "/sys/devices/system/cpu/cpu%u/topology/book_id",
3494 threadInfo[num_avail][osIdIndex]);
3495 __kmp_read_from_file(path, "%u", &book_id);
3496 threadInfo[num_avail][pkgIdIndex] |= (book_id << 8);
3497
3498 unsigned drawer_id;
3499 KMP_SNPRINTF(path, sizeof(path),
3500 "/sys/devices/system/cpu/cpu%u/topology/drawer_id",
3501 threadInfo[num_avail][osIdIndex]);
3502 __kmp_read_from_file(path, "%u", &drawer_id);
3503 threadInfo[num_avail][pkgIdIndex] |= (drawer_id << 16);
3504#endif
3505
3506 KMP_SNPRINTF(path, sizeof(path),
3507 "/sys/devices/system/cpu/cpu%u/topology/core_id",
3508 threadInfo[num_avail][osIdIndex]);
3509 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
3510 continue;
3511#else
3512 }
3513 char s2[] = "physical id";
3514 if (strncmp(s1: buf, s2: s2, n: sizeof(s2) - 1) == 0) {
3515 CHECK_LINE;
3516 char *p = strchr(s: buf + sizeof(s2) - 1, c: ':');
3517 unsigned val;
3518 if ((p == NULL) || (KMP_SSCANF(s: p + 1, format: "%u\n", &val) != 1))
3519 goto no_val;
3520 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
3521 goto dup_field;
3522 threadInfo[num_avail][pkgIdIndex] = val;
3523 continue;
3524 }
3525 char s3[] = "core id";
3526 if (strncmp(s1: buf, s2: s3, n: sizeof(s3) - 1) == 0) {
3527 CHECK_LINE;
3528 char *p = strchr(s: buf + sizeof(s3) - 1, c: ':');
3529 unsigned val;
3530 if ((p == NULL) || (KMP_SSCANF(s: p + 1, format: "%u\n", &val) != 1))
3531 goto no_val;
3532 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
3533 goto dup_field;
3534 threadInfo[num_avail][coreIdIndex] = val;
3535 continue;
3536#endif // KMP_OS_LINUX && USE_SYSFS_INFO
3537 }
3538 char s4[] = "thread id";
3539 if (strncmp(s1: buf, s2: s4, n: sizeof(s4) - 1) == 0) {
3540 CHECK_LINE;
3541 char *p = strchr(s: buf + sizeof(s4) - 1, c: ':');
3542 unsigned val;
3543 if ((p == NULL) || (KMP_SSCANF(s: p + 1, format: "%u\n", &val) != 1))
3544 goto no_val;
3545 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
3546 goto dup_field;
3547 threadInfo[num_avail][threadIdIndex] = val;
3548 continue;
3549 }
3550 unsigned level;
3551 if (KMP_SSCANF(s: buf, format: "node_%u id", &level) == 1) {
3552 CHECK_LINE;
3553 char *p = strchr(s: buf + sizeof(s4) - 1, c: ':');
3554 unsigned val;
3555 if ((p == NULL) || (KMP_SSCANF(s: p + 1, format: "%u\n", &val) != 1))
3556 goto no_val;
3557 // validate the input before using level:
3558 if (level > (unsigned)__kmp_xproc) { // level is too big
3559 level = __kmp_xproc;
3560 }
3561 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
3562 goto dup_field;
3563 threadInfo[num_avail][nodeIdIndex + level] = val;
3564 continue;
3565 }
3566
3567 // We didn't recognize the leading token on the line. There are lots of
3568 // leading tokens that we don't recognize - if the line isn't empty, go on
3569 // to the next line.
3570 if ((*buf != 0) && (*buf != '\n')) {
3571 // If the line is longer than the buffer, read characters
3572 // until we find a newline.
3573 if (long_line) {
3574 int ch;
3575 while (((ch = fgetc(stream: f)) != EOF) && (ch != '\n'))
3576 ;
3577 }
3578 continue;
3579 }
3580
3581 // A newline has signalled the end of the processor record.
3582 // Check that there aren't too many procs specified.
3583 if ((int)num_avail == __kmp_xproc) {
3584 CLEANUP_THREAD_INFO;
3585 *msg_id = kmp_i18n_str_TooManyEntries;
3586 return false;
3587 }
3588
3589 // Check for missing fields. The osId field must be there. The physical
3590 // id field will be checked later.
3591 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
3592 CLEANUP_THREAD_INFO;
3593 *msg_id = kmp_i18n_str_MissingProcField;
3594 return false;
3595 }
3596
3597 // Skip this proc if it is not included in the machine model.
3598 if (KMP_AFFINITY_CAPABLE() &&
3599 !KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
3600 __kmp_affin_fullMask)) {
3601 INIT_PROC_INFO(threadInfo[num_avail]);
3602 continue;
3603 }
3604
3605 // We have a successful parse of this proc's info.
3606 // Increment the counter, and prepare for the next proc.
3607 num_avail++;
3608 KMP_ASSERT(num_avail <= num_records);
3609 INIT_PROC_INFO(threadInfo[num_avail]);
3610 }
3611 continue;
3612
3613 no_val:
3614 CLEANUP_THREAD_INFO;
3615 *msg_id = kmp_i18n_str_MissingValCpuinfo;
3616 return false;
3617
3618 dup_field:
3619 CLEANUP_THREAD_INFO;
3620 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
3621 return false;
3622 }
3623 *line = 0;
3624
3625 // At least on powerpc, Linux may return -1 for physical_package_id. Try
3626 // to reconstruct topology from core_siblings_list in that case.
3627 for (i = 0; i < num_avail; ++i) {
3628 if (threadInfo[i][pkgIdIndex] == UINT_MAX) {
3629 if (!__kmp_package_id_from_core_siblings_list(threadInfo, num_avail, idx: i)) {
3630 CLEANUP_THREAD_INFO;
3631 *msg_id = kmp_i18n_str_MissingPhysicalIDField;
3632 return false;
3633 }
3634 }
3635 }
3636
3637#if KMP_MIC && REDUCE_TEAM_SIZE
3638 unsigned teamSize = 0;
3639#endif // KMP_MIC && REDUCE_TEAM_SIZE
3640
3641 // check for num_records == __kmp_xproc ???
3642
3643 // If it is configured to omit the package level when there is only a single
3644 // package, the logic at the end of this routine won't work if there is only a
3645 // single thread
3646 KMP_ASSERT(num_avail > 0);
3647 KMP_ASSERT(num_avail <= num_records);
3648
3649 // Sort the threadInfo table by physical Id.
3650 qsort(base: threadInfo, nmemb: num_avail, size: sizeof(*threadInfo),
3651 compar: __kmp_affinity_cmp_ProcCpuInfo_phys_id);
3652
3653#endif // KMP_OS_AIX
3654
3655 // The table is now sorted by pkgId / coreId / threadId, but we really don't
3656 // know the radix of any of the fields. pkgId's may be sparsely assigned among
3657 // the chips on a system. Although coreId's are usually assigned
3658 // [0 .. coresPerPkg-1] and threadId's are usually assigned
3659 // [0..threadsPerCore-1], we don't want to make any such assumptions.
3660 //
3661 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
3662 // total # packages) are at this point - we want to determine that now. We
3663 // only have an upper bound on the first two figures.
3664 unsigned *counts =
3665 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3666 unsigned *maxCt =
3667 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3668 unsigned *totals =
3669 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3670 unsigned *lastId =
3671 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3672
3673 bool assign_thread_ids = false;
3674 unsigned threadIdCt;
3675 unsigned index;
3676
3677restart_radix_check:
3678 threadIdCt = 0;
3679
3680 // Initialize the counter arrays with data from threadInfo[0].
3681 if (assign_thread_ids) {
3682 if (threadInfo[0][threadIdIndex] == UINT_MAX) {
3683 threadInfo[0][threadIdIndex] = threadIdCt++;
3684 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
3685 threadIdCt = threadInfo[0][threadIdIndex] + 1;
3686 }
3687 }
3688 for (index = 0; index <= maxIndex; index++) {
3689 counts[index] = 1;
3690 maxCt[index] = 1;
3691 totals[index] = 1;
3692 lastId[index] = threadInfo[0][index];
3693 ;
3694 }
3695
3696 // Run through the rest of the OS procs.
3697 for (i = 1; i < num_avail; i++) {
3698 // Find the most significant index whose id differs from the id for the
3699 // previous OS proc.
3700 for (index = maxIndex; index >= threadIdIndex; index--) {
3701 if (assign_thread_ids && (index == threadIdIndex)) {
3702 // Auto-assign the thread id field if it wasn't specified.
3703 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3704 threadInfo[i][threadIdIndex] = threadIdCt++;
3705 }
3706 // Apparently the thread id field was specified for some entries and not
3707 // others. Start the thread id counter off at the next higher thread id.
3708 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3709 threadIdCt = threadInfo[i][threadIdIndex] + 1;
3710 }
3711 }
3712 if (threadInfo[i][index] != lastId[index]) {
3713 // Run through all indices which are less significant, and reset the
3714 // counts to 1. At all levels up to and including index, we need to
3715 // increment the totals and record the last id.
3716 unsigned index2;
3717 for (index2 = threadIdIndex; index2 < index; index2++) {
3718 totals[index2]++;
3719 if (counts[index2] > maxCt[index2]) {
3720 maxCt[index2] = counts[index2];
3721 }
3722 counts[index2] = 1;
3723 lastId[index2] = threadInfo[i][index2];
3724 }
3725 counts[index]++;
3726 totals[index]++;
3727 lastId[index] = threadInfo[i][index];
3728
3729 if (assign_thread_ids && (index > threadIdIndex)) {
3730
3731#if KMP_MIC && REDUCE_TEAM_SIZE
3732 // The default team size is the total #threads in the machine
3733 // minus 1 thread for every core that has 3 or more threads.
3734 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3735#endif // KMP_MIC && REDUCE_TEAM_SIZE
3736
3737 // Restart the thread counter, as we are on a new core.
3738 threadIdCt = 0;
3739
3740 // Auto-assign the thread id field if it wasn't specified.
3741 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3742 threadInfo[i][threadIdIndex] = threadIdCt++;
3743 }
3744
3745 // Apparently the thread id field was specified for some entries and
3746 // not others. Start the thread id counter off at the next higher
3747 // thread id.
3748 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3749 threadIdCt = threadInfo[i][threadIdIndex] + 1;
3750 }
3751 }
3752 break;
3753 }
3754 }
3755 if (index < threadIdIndex) {
3756 // If thread ids were specified, it is an error if they are not unique.
3757 // Also, check that we waven't already restarted the loop (to be safe -
3758 // shouldn't need to).
3759 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
3760 __kmp_free(lastId);
3761 __kmp_free(totals);
3762 __kmp_free(maxCt);
3763 __kmp_free(counts);
3764 CLEANUP_THREAD_INFO;
3765 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3766 return false;
3767 }
3768
3769 // If the thread ids were not specified and we see entries that
3770 // are duplicates, start the loop over and assign the thread ids manually.
3771 assign_thread_ids = true;
3772 goto restart_radix_check;
3773 }
3774 }
3775
3776#if KMP_MIC && REDUCE_TEAM_SIZE
3777 // The default team size is the total #threads in the machine
3778 // minus 1 thread for every core that has 3 or more threads.
3779 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3780#endif // KMP_MIC && REDUCE_TEAM_SIZE
3781
3782 for (index = threadIdIndex; index <= maxIndex; index++) {
3783 if (counts[index] > maxCt[index]) {
3784 maxCt[index] = counts[index];
3785 }
3786 }
3787
3788 __kmp_nThreadsPerCore = maxCt[threadIdIndex];
3789 nCoresPerPkg = maxCt[coreIdIndex];
3790 nPackages = totals[pkgIdIndex];
3791
3792 // When affinity is off, this routine will still be called to set
3793 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
3794 // Make sure all these vars are set correctly, and return now if affinity is
3795 // not enabled.
3796 __kmp_ncores = totals[coreIdIndex];
3797 if (!KMP_AFFINITY_CAPABLE()) {
3798 KMP_ASSERT(__kmp_affinity.type == affinity_none);
3799 return true;
3800 }
3801
3802#if KMP_MIC && REDUCE_TEAM_SIZE
3803 // Set the default team size.
3804 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
3805 __kmp_dflt_team_nth = teamSize;
3806 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
3807 "__kmp_dflt_team_nth = %d\n",
3808 __kmp_dflt_team_nth));
3809 }
3810#endif // KMP_MIC && REDUCE_TEAM_SIZE
3811
3812 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
3813
3814 // Count the number of levels which have more nodes at that level than at the
3815 // parent's level (with there being an implicit root node of the top level).
3816 // This is equivalent to saying that there is at least one node at this level
3817 // which has a sibling. These levels are in the map, and the package level is
3818 // always in the map.
3819 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
3820 for (index = threadIdIndex; index < maxIndex; index++) {
3821 KMP_ASSERT(totals[index] >= totals[index + 1]);
3822 inMap[index] = (totals[index] > totals[index + 1]);
3823 }
3824 inMap[maxIndex] = (totals[maxIndex] > 1);
3825 inMap[pkgIdIndex] = true;
3826 inMap[coreIdIndex] = true;
3827 inMap[threadIdIndex] = true;
3828
3829 int depth = 0;
3830 int idx = 0;
3831 kmp_hw_t types[KMP_HW_LAST];
3832 int pkgLevel = -1;
3833 int coreLevel = -1;
3834 int threadLevel = -1;
3835 for (index = threadIdIndex; index <= maxIndex; index++) {
3836 if (inMap[index]) {
3837 depth++;
3838 }
3839 }
3840 if (inMap[pkgIdIndex]) {
3841 pkgLevel = idx;
3842 types[idx++] = KMP_HW_SOCKET;
3843 }
3844 if (inMap[coreIdIndex]) {
3845 coreLevel = idx;
3846 types[idx++] = KMP_HW_CORE;
3847 }
3848 if (inMap[threadIdIndex]) {
3849 threadLevel = idx;
3850 types[idx++] = KMP_HW_THREAD;
3851 }
3852 KMP_ASSERT(depth > 0);
3853
3854 // Construct the data structure that is to be returned.
3855 __kmp_topology = kmp_topology_t::allocate(nproc: num_avail, ndepth: depth, types);
3856
3857 for (i = 0; i < num_avail; ++i) {
3858 unsigned os = threadInfo[i][osIdIndex];
3859 int src_index;
3860 kmp_hw_thread_t &hw_thread = __kmp_topology->at(index: i);
3861 hw_thread.clear();
3862 hw_thread.os_id = os;
3863 hw_thread.original_idx = i;
3864
3865 idx = 0;
3866 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
3867 if (!inMap[src_index]) {
3868 continue;
3869 }
3870 if (src_index == pkgIdIndex) {
3871 hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
3872 } else if (src_index == coreIdIndex) {
3873 hw_thread.ids[coreLevel] = threadInfo[i][src_index];
3874 } else if (src_index == threadIdIndex) {
3875 hw_thread.ids[threadLevel] = threadInfo[i][src_index];
3876 }
3877 }
3878 }
3879
3880 __kmp_free(inMap);
3881 __kmp_free(lastId);
3882 __kmp_free(totals);
3883 __kmp_free(maxCt);
3884 __kmp_free(counts);
3885 CLEANUP_THREAD_INFO;
3886 __kmp_topology->sort_ids();
3887
3888 int tlevel = __kmp_topology->get_level(type: KMP_HW_THREAD);
3889 if (tlevel > 0) {
3890 // If the thread level does not have ids, then put them in.
3891 if (__kmp_topology->at(index: 0).ids[tlevel] == kmp_hw_thread_t::UNKNOWN_ID) {
3892 __kmp_topology->at(index: 0).ids[tlevel] = 0;
3893 }
3894 for (int i = 1; i < __kmp_topology->get_num_hw_threads(); ++i) {
3895 kmp_hw_thread_t &hw_thread = __kmp_topology->at(index: i);
3896 if (hw_thread.ids[tlevel] != kmp_hw_thread_t::UNKNOWN_ID)
3897 continue;
3898 kmp_hw_thread_t &prev_hw_thread = __kmp_topology->at(index: i - 1);
3899 // Check if socket, core, anything above thread level changed.
3900 // If the ids did change, then restart thread id at 0
3901 // Otherwise, set thread id to prev thread's id + 1
3902 for (int j = 0; j < tlevel; ++j) {
3903 if (hw_thread.ids[j] != prev_hw_thread.ids[j]) {
3904 hw_thread.ids[tlevel] = 0;
3905 break;
3906 }
3907 }
3908 if (hw_thread.ids[tlevel] == kmp_hw_thread_t::UNKNOWN_ID)
3909 hw_thread.ids[tlevel] = prev_hw_thread.ids[tlevel] + 1;
3910 }
3911 }
3912
3913 if (!__kmp_topology->check_ids()) {
3914 kmp_topology_t::deallocate(topology: __kmp_topology);
3915 __kmp_topology = nullptr;
3916 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3917 return false;
3918 }
3919 return true;
3920}
3921
3922// Create and return a table of affinity masks, indexed by OS thread ID.
3923// This routine handles OR'ing together all the affinity masks of threads
3924// that are sufficiently close, if granularity > fine.
3925template <typename FindNextFunctionType>
3926static void __kmp_create_os_id_masks(unsigned *numUnique,
3927 kmp_affinity_t &affinity,
3928 FindNextFunctionType find_next) {
3929 // First form a table of affinity masks in order of OS thread id.
3930 int maxOsId;
3931 int i;
3932 int numAddrs = __kmp_topology->get_num_hw_threads();
3933 int depth = __kmp_topology->get_depth();
3934 const char *env_var = __kmp_get_affinity_env_var(affinity);
3935 KMP_ASSERT(numAddrs);
3936 KMP_ASSERT(depth);
3937
3938 i = find_next(-1);
3939 // If could not find HW thread location that satisfies find_next conditions,
3940 // then return and fallback to increment find_next.
3941 if (i >= numAddrs)
3942 return;
3943
3944 maxOsId = 0;
3945 for (i = numAddrs - 1;; --i) {
3946 int osId = __kmp_topology->at(index: i).os_id;
3947 if (osId > maxOsId) {
3948 maxOsId = osId;
3949 }
3950 if (i == 0)
3951 break;
3952 }
3953 affinity.num_os_id_masks = maxOsId + 1;
3954 KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks);
3955 KMP_ASSERT(affinity.gran_levels >= 0);
3956 if (affinity.flags.verbose && (affinity.gran_levels > 0)) {
3957 KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels);
3958 }
3959 if (affinity.gran_levels >= (int)depth) {
3960 KMP_AFF_WARNING(affinity, AffThreadsMayMigrate);
3961 }
3962
3963 // Run through the table, forming the masks for all threads on each core.
3964 // Threads on the same core will have identical kmp_hw_thread_t objects, not
3965 // considering the last level, which must be the thread id. All threads on a
3966 // core will appear consecutively.
3967 int unique = 0;
3968 int j = 0; // index of 1st thread on core
3969 int leader = 0;
3970 kmp_affin_mask_t *sum;
3971 KMP_CPU_ALLOC_ON_STACK(sum);
3972 KMP_CPU_ZERO(sum);
3973
3974 i = j = leader = find_next(-1);
3975 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3976 kmp_full_mask_modifier_t full_mask;
3977 for (i = find_next(i); i < numAddrs; i = find_next(i)) {
3978 // If this thread is sufficiently close to the leader (within the
3979 // granularity setting), then set the bit for this os thread in the
3980 // affinity mask for this group, and go on to the next thread.
3981 if (__kmp_topology->is_close(hwt1: leader, hwt2: i, stgs: affinity)) {
3982 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3983 continue;
3984 }
3985
3986 // For every thread in this group, copy the mask to the thread's entry in
3987 // the OS Id mask table. Mark the first address as a leader.
3988 for (; j < i; j = find_next(j)) {
3989 int osId = __kmp_topology->at(index: j).os_id;
3990 KMP_DEBUG_ASSERT(osId <= maxOsId);
3991 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
3992 KMP_CPU_COPY(mask, sum);
3993 __kmp_topology->at(index: j).leader = (j == leader);
3994 }
3995 unique++;
3996
3997 // Start a new mask.
3998 leader = i;
3999 full_mask.include(other: sum);
4000 KMP_CPU_ZERO(sum);
4001 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
4002 }
4003
4004 // For every thread in last group, copy the mask to the thread's
4005 // entry in the OS Id mask table.
4006 for (; j < i; j = find_next(j)) {
4007 int osId = __kmp_topology->at(index: j).os_id;
4008 KMP_DEBUG_ASSERT(osId <= maxOsId);
4009 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
4010 KMP_CPU_COPY(mask, sum);
4011 __kmp_topology->at(index: j).leader = (j == leader);
4012 }
4013 full_mask.include(other: sum);
4014 unique++;
4015 KMP_CPU_FREE_FROM_STACK(sum);
4016
4017 // See if the OS Id mask table further restricts or changes the full mask
4018 if (full_mask.restrict_to_mask() && affinity.flags.verbose) {
4019 __kmp_topology->print(env_var);
4020 }
4021
4022 *numUnique = unique;
4023}
4024
4025// Stuff for the affinity proclist parsers. It's easier to declare these vars
4026// as file-static than to try and pass them through the calling sequence of
4027// the recursive-descent OMP_PLACES parser.
4028static kmp_affin_mask_t *newMasks;
4029static int numNewMasks;
4030static int nextNewMask;
4031
4032#define ADD_MASK(_mask) \
4033 { \
4034 if (nextNewMask >= numNewMasks) { \
4035 int i; \
4036 numNewMasks *= 2; \
4037 kmp_affin_mask_t *temp; \
4038 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
4039 for (i = 0; i < numNewMasks / 2; i++) { \
4040 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
4041 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
4042 KMP_CPU_COPY(dest, src); \
4043 } \
4044 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
4045 newMasks = temp; \
4046 } \
4047 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
4048 nextNewMask++; \
4049 }
4050
4051#define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
4052 { \
4053 if (((_osId) > _maxOsId) || \
4054 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
4055 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId); \
4056 } else { \
4057 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
4058 } \
4059 }
4060
4061// Re-parse the proclist (for the explicit affinity type), and form the list
4062// of affinity newMasks indexed by gtid.
4063static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) {
4064 int i;
4065 kmp_affin_mask_t **out_masks = &affinity.masks;
4066 unsigned *out_numMasks = &affinity.num_masks;
4067 const char *proclist = affinity.proclist;
4068 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
4069 int maxOsId = affinity.num_os_id_masks - 1;
4070 const char *scan = proclist;
4071 const char *next = proclist;
4072
4073 // We use malloc() for the temporary mask vector, so that we can use
4074 // realloc() to extend it.
4075 numNewMasks = 2;
4076 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
4077 nextNewMask = 0;
4078 kmp_affin_mask_t *sumMask;
4079 KMP_CPU_ALLOC(sumMask);
4080 int setSize = 0;
4081
4082 for (;;) {
4083 int start, end, stride;
4084
4085 SKIP_WS(scan);
4086 next = scan;
4087 if (*next == '\0') {
4088 break;
4089 }
4090
4091 if (*next == '{') {
4092 int num;
4093 setSize = 0;
4094 next++; // skip '{'
4095 SKIP_WS(next);
4096 scan = next;
4097
4098 // Read the first integer in the set.
4099 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
4100 SKIP_DIGITS(next);
4101 num = __kmp_str_to_int(str: scan, sentinel: *next);
4102 KMP_ASSERT2(num >= 0, "bad explicit proc list");
4103
4104 // Copy the mask for that osId to the sum (union) mask.
4105 if ((num > maxOsId) ||
4106 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
4107 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
4108 KMP_CPU_ZERO(sumMask);
4109 } else {
4110 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
4111 setSize = 1;
4112 }
4113
4114 for (;;) {
4115 // Check for end of set.
4116 SKIP_WS(next);
4117 if (*next == '}') {
4118 next++; // skip '}'
4119 break;
4120 }
4121
4122 // Skip optional comma.
4123 if (*next == ',') {
4124 next++;
4125 }
4126 SKIP_WS(next);
4127
4128 // Read the next integer in the set.
4129 scan = next;
4130 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
4131
4132 SKIP_DIGITS(next);
4133 num = __kmp_str_to_int(str: scan, sentinel: *next);
4134 KMP_ASSERT2(num >= 0, "bad explicit proc list");
4135
4136 // Add the mask for that osId to the sum mask.
4137 if ((num > maxOsId) ||
4138 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
4139 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
4140 } else {
4141 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
4142 setSize++;
4143 }
4144 }
4145 if (setSize > 0) {
4146 ADD_MASK(sumMask);
4147 }
4148
4149 SKIP_WS(next);
4150 if (*next == ',') {
4151 next++;
4152 }
4153 scan = next;
4154 continue;
4155 }
4156
4157 // Read the first integer.
4158 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
4159 SKIP_DIGITS(next);
4160 start = __kmp_str_to_int(str: scan, sentinel: *next);
4161 KMP_ASSERT2(start >= 0, "bad explicit proc list");
4162 SKIP_WS(next);
4163
4164 // If this isn't a range, then add a mask to the list and go on.
4165 if (*next != '-') {
4166 ADD_MASK_OSID(start, osId2Mask, maxOsId);
4167
4168 // Skip optional comma.
4169 if (*next == ',') {
4170 next++;
4171 }
4172 scan = next;
4173 continue;
4174 }
4175
4176 // This is a range. Skip over the '-' and read in the 2nd int.
4177 next++; // skip '-'
4178 SKIP_WS(next);
4179 scan = next;
4180 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
4181 SKIP_DIGITS(next);
4182 end = __kmp_str_to_int(str: scan, sentinel: *next);
4183 KMP_ASSERT2(end >= 0, "bad explicit proc list");
4184
4185 // Check for a stride parameter
4186 stride = 1;
4187 SKIP_WS(next);
4188 if (*next == ':') {
4189 // A stride is specified. Skip over the ':" and read the 3rd int.
4190 int sign = +1;
4191 next++; // skip ':'
4192 SKIP_WS(next);
4193 scan = next;
4194 if (*next == '-') {
4195 sign = -1;
4196 next++;
4197 SKIP_WS(next);
4198 scan = next;
4199 }
4200 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
4201 SKIP_DIGITS(next);
4202 stride = __kmp_str_to_int(str: scan, sentinel: *next);
4203 KMP_ASSERT2(stride >= 0, "bad explicit proc list");
4204 stride *= sign;
4205 }
4206
4207 // Do some range checks.
4208 KMP_ASSERT2(stride != 0, "bad explicit proc list");
4209 if (stride > 0) {
4210 KMP_ASSERT2(start <= end, "bad explicit proc list");
4211 } else {
4212 KMP_ASSERT2(start >= end, "bad explicit proc list");
4213 }
4214 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
4215
4216 // Add the mask for each OS proc # to the list.
4217 if (stride > 0) {
4218 do {
4219 ADD_MASK_OSID(start, osId2Mask, maxOsId);
4220 start += stride;
4221 } while (start <= end);
4222 } else {
4223 do {
4224 ADD_MASK_OSID(start, osId2Mask, maxOsId);
4225 start += stride;
4226 } while (start >= end);
4227 }
4228
4229 // Skip optional comma.
4230 SKIP_WS(next);
4231 if (*next == ',') {
4232 next++;
4233 }
4234 scan = next;
4235 }
4236
4237 *out_numMasks = nextNewMask;
4238 if (nextNewMask == 0) {
4239 *out_masks = NULL;
4240 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4241 return;
4242 }
4243 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
4244 for (i = 0; i < nextNewMask; i++) {
4245 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
4246 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
4247 KMP_CPU_COPY(dest, src);
4248 }
4249 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4250 KMP_CPU_FREE(sumMask);
4251}
4252
4253/*-----------------------------------------------------------------------------
4254Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
4255places. Again, Here is the grammar:
4256
4257place_list := place
4258place_list := place , place_list
4259place := num
4260place := place : num
4261place := place : num : signed
4262place := { subplacelist }
4263place := ! place // (lowest priority)
4264subplace_list := subplace
4265subplace_list := subplace , subplace_list
4266subplace := num
4267subplace := num : num
4268subplace := num : num : signed
4269signed := num
4270signed := + signed
4271signed := - signed
4272-----------------------------------------------------------------------------*/
4273static void __kmp_process_subplace_list(const char **scan,
4274 kmp_affinity_t &affinity, int maxOsId,
4275 kmp_affin_mask_t *tempMask,
4276 int *setSize) {
4277 const char *next;
4278 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
4279
4280 for (;;) {
4281 int start, count, stride, i;
4282
4283 // Read in the starting proc id
4284 SKIP_WS(*scan);
4285 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
4286 next = *scan;
4287 SKIP_DIGITS(next);
4288 start = __kmp_str_to_int(str: *scan, sentinel: *next);
4289 KMP_ASSERT(start >= 0);
4290 *scan = next;
4291
4292 // valid follow sets are ',' ':' and '}'
4293 SKIP_WS(*scan);
4294 if (**scan == '}' || **scan == ',') {
4295 if ((start > maxOsId) ||
4296 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
4297 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
4298 } else {
4299 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
4300 (*setSize)++;
4301 }
4302 if (**scan == '}') {
4303 break;
4304 }
4305 (*scan)++; // skip ','
4306 continue;
4307 }
4308 KMP_ASSERT2(**scan == ':', "bad explicit places list");
4309 (*scan)++; // skip ':'
4310
4311 // Read count parameter
4312 SKIP_WS(*scan);
4313 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
4314 next = *scan;
4315 SKIP_DIGITS(next);
4316 count = __kmp_str_to_int(str: *scan, sentinel: *next);
4317 KMP_ASSERT(count >= 0);
4318 *scan = next;
4319
4320 // valid follow sets are ',' ':' and '}'
4321 SKIP_WS(*scan);
4322 if (**scan == '}' || **scan == ',') {
4323 for (i = 0; i < count; i++) {
4324 if ((start > maxOsId) ||
4325 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
4326 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
4327 break; // don't proliferate warnings for large count
4328 } else {
4329 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
4330 start++;
4331 (*setSize)++;
4332 }
4333 }
4334 if (**scan == '}') {
4335 break;
4336 }
4337 (*scan)++; // skip ','
4338 continue;
4339 }
4340 KMP_ASSERT2(**scan == ':', "bad explicit places list");
4341 (*scan)++; // skip ':'
4342
4343 // Read stride parameter
4344 int sign = +1;
4345 for (;;) {
4346 SKIP_WS(*scan);
4347 if (**scan == '+') {
4348 (*scan)++; // skip '+'
4349 continue;
4350 }
4351 if (**scan == '-') {
4352 sign *= -1;
4353 (*scan)++; // skip '-'
4354 continue;
4355 }
4356 break;
4357 }
4358 SKIP_WS(*scan);
4359 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
4360 next = *scan;
4361 SKIP_DIGITS(next);
4362 stride = __kmp_str_to_int(str: *scan, sentinel: *next);
4363 KMP_ASSERT(stride >= 0);
4364 *scan = next;
4365 stride *= sign;
4366
4367 // valid follow sets are ',' and '}'
4368 SKIP_WS(*scan);
4369 if (**scan == '}' || **scan == ',') {
4370 for (i = 0; i < count; i++) {
4371 if ((start > maxOsId) ||
4372 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
4373 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
4374 break; // don't proliferate warnings for large count
4375 } else {
4376 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
4377 start += stride;
4378 (*setSize)++;
4379 }
4380 }
4381 if (**scan == '}') {
4382 break;
4383 }
4384 (*scan)++; // skip ','
4385 continue;
4386 }
4387
4388 KMP_ASSERT2(0, "bad explicit places list");
4389 }
4390}
4391
4392static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity,
4393 int maxOsId, kmp_affin_mask_t *tempMask,
4394 int *setSize) {
4395 const char *next;
4396 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
4397
4398 // valid follow sets are '{' '!' and num
4399 SKIP_WS(*scan);
4400 if (**scan == '{') {
4401 (*scan)++; // skip '{'
4402 __kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize);
4403 KMP_ASSERT2(**scan == '}', "bad explicit places list");
4404 (*scan)++; // skip '}'
4405 } else if (**scan == '!') {
4406 (*scan)++; // skip '!'
4407 __kmp_process_place(scan, affinity, maxOsId, tempMask, setSize);
4408 KMP_CPU_COMPLEMENT(maxOsId, tempMask);
4409 } else if ((**scan >= '0') && (**scan <= '9')) {
4410 next = *scan;
4411 SKIP_DIGITS(next);
4412 int num = __kmp_str_to_int(str: *scan, sentinel: *next);
4413 KMP_ASSERT(num >= 0);
4414 if ((num > maxOsId) ||
4415 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
4416 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
4417 } else {
4418 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
4419 (*setSize)++;
4420 }
4421 *scan = next; // skip num
4422 } else {
4423 KMP_ASSERT2(0, "bad explicit places list");
4424 }
4425}
4426
4427// static void
4428void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) {
4429 int i, j, count, stride, sign;
4430 kmp_affin_mask_t **out_masks = &affinity.masks;
4431 unsigned *out_numMasks = &affinity.num_masks;
4432 const char *placelist = affinity.proclist;
4433 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
4434 int maxOsId = affinity.num_os_id_masks - 1;
4435 const char *scan = placelist;
4436 const char *next = placelist;
4437
4438 numNewMasks = 2;
4439 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
4440 nextNewMask = 0;
4441
4442 // tempMask is modified based on the previous or initial
4443 // place to form the current place
4444 // previousMask contains the previous place
4445 kmp_affin_mask_t *tempMask;
4446 kmp_affin_mask_t *previousMask;
4447 KMP_CPU_ALLOC(tempMask);
4448 KMP_CPU_ZERO(tempMask);
4449 KMP_CPU_ALLOC(previousMask);
4450 KMP_CPU_ZERO(previousMask);
4451 int setSize = 0;
4452
4453 for (;;) {
4454 __kmp_process_place(scan: &scan, affinity, maxOsId, tempMask, setSize: &setSize);
4455
4456 // valid follow sets are ',' ':' and EOL
4457 SKIP_WS(scan);
4458 if (*scan == '\0' || *scan == ',') {
4459 if (setSize > 0) {
4460 ADD_MASK(tempMask);
4461 }
4462 KMP_CPU_ZERO(tempMask);
4463 setSize = 0;
4464 if (*scan == '\0') {
4465 break;
4466 }
4467 scan++; // skip ','
4468 continue;
4469 }
4470
4471 KMP_ASSERT2(*scan == ':', "bad explicit places list");
4472 scan++; // skip ':'
4473
4474 // Read count parameter
4475 SKIP_WS(scan);
4476 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
4477 next = scan;
4478 SKIP_DIGITS(next);
4479 count = __kmp_str_to_int(str: scan, sentinel: *next);
4480 KMP_ASSERT(count >= 0);
4481 scan = next;
4482
4483 // valid follow sets are ',' ':' and EOL
4484 SKIP_WS(scan);
4485 if (*scan == '\0' || *scan == ',') {
4486 stride = +1;
4487 } else {
4488 KMP_ASSERT2(*scan == ':', "bad explicit places list");
4489 scan++; // skip ':'
4490
4491 // Read stride parameter
4492 sign = +1;
4493 for (;;) {
4494 SKIP_WS(scan);
4495 if (*scan == '+') {
4496 scan++; // skip '+'
4497 continue;
4498 }
4499 if (*scan == '-') {
4500 sign *= -1;
4501 scan++; // skip '-'
4502 continue;
4503 }
4504 break;
4505 }
4506 SKIP_WS(scan);
4507 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
4508 next = scan;
4509 SKIP_DIGITS(next);
4510 stride = __kmp_str_to_int(str: scan, sentinel: *next);
4511 KMP_DEBUG_ASSERT(stride >= 0);
4512 scan = next;
4513 stride *= sign;
4514 }
4515
4516 // Add places determined by initial_place : count : stride
4517 for (i = 0; i < count; i++) {
4518 if (setSize == 0) {
4519 break;
4520 }
4521 // Add the current place, then build the next place (tempMask) from that
4522 KMP_CPU_COPY(previousMask, tempMask);
4523 ADD_MASK(previousMask);
4524 KMP_CPU_ZERO(tempMask);
4525 setSize = 0;
4526 KMP_CPU_SET_ITERATE(j, previousMask) {
4527 if (!KMP_CPU_ISSET(j, previousMask)) {
4528 continue;
4529 }
4530 if ((j + stride > maxOsId) || (j + stride < 0) ||
4531 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
4532 (!KMP_CPU_ISSET(j + stride,
4533 KMP_CPU_INDEX(osId2Mask, j + stride)))) {
4534 if (i < count - 1) {
4535 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride);
4536 }
4537 continue;
4538 }
4539 KMP_CPU_SET(j + stride, tempMask);
4540 setSize++;
4541 }
4542 }
4543 KMP_CPU_ZERO(tempMask);
4544 setSize = 0;
4545
4546 // valid follow sets are ',' and EOL
4547 SKIP_WS(scan);
4548 if (*scan == '\0') {
4549 break;
4550 }
4551 if (*scan == ',') {
4552 scan++; // skip ','
4553 continue;
4554 }
4555
4556 KMP_ASSERT2(0, "bad explicit places list");
4557 }
4558
4559 *out_numMasks = nextNewMask;
4560 if (nextNewMask == 0) {
4561 *out_masks = NULL;
4562 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4563 return;
4564 }
4565 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
4566 KMP_CPU_FREE(tempMask);
4567 KMP_CPU_FREE(previousMask);
4568 for (i = 0; i < nextNewMask; i++) {
4569 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
4570 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
4571 KMP_CPU_COPY(dest, src);
4572 }
4573 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4574}
4575
4576#undef ADD_MASK
4577#undef ADD_MASK_OSID
4578
4579// This function figures out the deepest level at which there is at least one
4580// cluster/core with more than one processing unit bound to it.
4581static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
4582 int core_level = 0;
4583
4584 for (int i = 0; i < nprocs; i++) {
4585 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(index: i);
4586 for (int j = bottom_level; j > 0; j--) {
4587 if (hw_thread.ids[j] > 0) {
4588 if (core_level < (j - 1)) {
4589 core_level = j - 1;
4590 }
4591 }
4592 }
4593 }
4594 return core_level;
4595}
4596
4597// This function counts number of clusters/cores at given level.
4598static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
4599 int core_level) {
4600 return __kmp_topology->get_count(level: core_level);
4601}
4602// This function finds to which cluster/core given processing unit is bound.
4603static int __kmp_affinity_find_core(int proc, int bottom_level,
4604 int core_level) {
4605 int core = 0;
4606 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads());
4607 for (int i = 0; i <= proc; ++i) {
4608 if (i + 1 <= proc) {
4609 for (int j = 0; j <= core_level; ++j) {
4610 if (__kmp_topology->at(index: i + 1).sub_ids[j] !=
4611 __kmp_topology->at(index: i).sub_ids[j]) {
4612 core++;
4613 break;
4614 }
4615 }
4616 }
4617 }
4618 return core;
4619}
4620
4621// This function finds maximal number of processing units bound to a
4622// cluster/core at given level.
4623static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
4624 int core_level) {
4625 if (core_level >= bottom_level)
4626 return 1;
4627 int thread_level = __kmp_topology->get_level(type: KMP_HW_THREAD);
4628 return __kmp_topology->calculate_ratio(level1: thread_level, level2: core_level);
4629}
4630
4631static int *procarr = NULL;
4632static int __kmp_aff_depth = 0;
4633static int *__kmp_osid_to_hwthread_map = NULL;
4634
4635static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask,
4636 kmp_affinity_ids_t &ids,
4637 kmp_affinity_attrs_t &attrs) {
4638 if (!KMP_AFFINITY_CAPABLE())
4639 return;
4640
4641 // Initiailze ids and attrs thread data
4642 for (int i = 0; i < KMP_HW_LAST; ++i)
4643 ids.ids[i] = kmp_hw_thread_t::UNKNOWN_ID;
4644 attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
4645
4646 // Iterate through each os id within the mask and determine
4647 // the topology id and attribute information
4648 int cpu;
4649 int depth = __kmp_topology->get_depth();
4650 KMP_CPU_SET_ITERATE(cpu, mask) {
4651 int osid_idx = __kmp_osid_to_hwthread_map[cpu];
4652 ids.os_id = cpu;
4653 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(index: osid_idx);
4654 for (int level = 0; level < depth; ++level) {
4655 kmp_hw_t type = __kmp_topology->get_type(level);
4656 int id = hw_thread.sub_ids[level];
4657 if (ids.ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids.ids[type] == id) {
4658 ids.ids[type] = id;
4659 } else {
4660 // This mask spans across multiple topology units, set it as such
4661 // and mark every level below as such as well.
4662 ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
4663 for (; level < depth; ++level) {
4664 kmp_hw_t type = __kmp_topology->get_type(level);
4665 ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
4666 }
4667 }
4668 }
4669 if (!attrs.valid) {
4670 attrs.core_type = hw_thread.attrs.get_core_type();
4671 attrs.core_eff = hw_thread.attrs.get_core_eff();
4672 attrs.valid = 1;
4673 } else {
4674 // This mask spans across multiple attributes, set it as such
4675 if (attrs.core_type != hw_thread.attrs.get_core_type())
4676 attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN;
4677 if (attrs.core_eff != hw_thread.attrs.get_core_eff())
4678 attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF;
4679 }
4680 }
4681}
4682
4683static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) {
4684 if (!KMP_AFFINITY_CAPABLE())
4685 return;
4686 const kmp_affin_mask_t *mask = th->th.th_affin_mask;
4687 kmp_affinity_ids_t &ids = th->th.th_topology_ids;
4688 kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs;
4689 __kmp_affinity_get_mask_topology_info(mask, ids, attrs);
4690}
4691
4692// Assign the topology information to each place in the place list
4693// A thread can then grab not only its affinity mask, but the topology
4694// information associated with that mask. e.g., Which socket is a thread on
4695static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) {
4696 if (!KMP_AFFINITY_CAPABLE())
4697 return;
4698 if (affinity.type != affinity_none) {
4699 KMP_ASSERT(affinity.num_os_id_masks);
4700 KMP_ASSERT(affinity.os_id_masks);
4701 }
4702 KMP_ASSERT(affinity.num_masks);
4703 KMP_ASSERT(affinity.masks);
4704 KMP_ASSERT(__kmp_affin_fullMask);
4705
4706 int max_cpu = __kmp_affin_fullMask->get_max_cpu();
4707 int num_hw_threads = __kmp_topology->get_num_hw_threads();
4708
4709 // Allocate thread topology information
4710 if (!affinity.ids) {
4711 affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate(
4712 sizeof(kmp_affinity_ids_t) * affinity.num_masks);
4713 }
4714 if (!affinity.attrs) {
4715 affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate(
4716 sizeof(kmp_affinity_attrs_t) * affinity.num_masks);
4717 }
4718 if (!__kmp_osid_to_hwthread_map) {
4719 // Want the +1 because max_cpu should be valid index into map
4720 __kmp_osid_to_hwthread_map =
4721 (int *)__kmp_allocate(sizeof(int) * (max_cpu + 1));
4722 }
4723
4724 // Create the OS proc to hardware thread map
4725 for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread) {
4726 int os_id = __kmp_topology->at(index: hw_thread).os_id;
4727 if (KMP_CPU_ISSET(os_id, __kmp_affin_fullMask))
4728 __kmp_osid_to_hwthread_map[os_id] = hw_thread;
4729 }
4730
4731 for (unsigned i = 0; i < affinity.num_masks; ++i) {
4732 kmp_affinity_ids_t &ids = affinity.ids[i];
4733 kmp_affinity_attrs_t &attrs = affinity.attrs[i];
4734 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i);
4735 __kmp_affinity_get_mask_topology_info(mask, ids, attrs);
4736 }
4737}
4738
4739// Called when __kmp_topology is ready
4740static void __kmp_aux_affinity_initialize_other_data(kmp_affinity_t &affinity) {
4741 // Initialize other data structures which depend on the topology
4742 if (__kmp_topology && __kmp_topology->get_num_hw_threads()) {
4743 machine_hierarchy.init(num_addrs: __kmp_topology->get_num_hw_threads());
4744 __kmp_affinity_get_topology_info(affinity);
4745#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
4746 __kmp_first_osid_with_ecore = __kmp_get_first_osid_with_ecore();
4747#endif
4748 }
4749}
4750
4751// Create a one element mask array (set of places) which only contains the
4752// initial process's affinity mask
4753static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) {
4754 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4755 KMP_ASSERT(affinity.type == affinity_none);
4756 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
4757 affinity.num_masks = 1;
4758 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
4759 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0);
4760 KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4761 __kmp_aux_affinity_initialize_other_data(affinity);
4762}
4763
4764static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) {
4765 // Create the "full" mask - this defines all of the processors that we
4766 // consider to be in the machine model. If respect is set, then it is the
4767 // initialization thread's affinity mask. Otherwise, it is all processors that
4768 // we know about on the machine.
4769 int verbose = affinity.flags.verbose;
4770 const char *env_var = affinity.env_var;
4771
4772 // Already initialized
4773 if (__kmp_affin_fullMask && __kmp_affin_origMask)
4774 return;
4775
4776 if (__kmp_affin_fullMask == NULL) {
4777 KMP_CPU_ALLOC(__kmp_affin_fullMask);
4778 }
4779 if (__kmp_affin_origMask == NULL) {
4780 KMP_CPU_ALLOC(__kmp_affin_origMask);
4781 }
4782 if (KMP_AFFINITY_CAPABLE()) {
4783 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4784 // Make a copy before possible expanding to the entire machine mask
4785 __kmp_affin_origMask->copy(src: __kmp_affin_fullMask);
4786 if (affinity.flags.respect) {
4787 // Count the number of available processors.
4788 unsigned i;
4789 __kmp_avail_proc = 0;
4790 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4791 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4792 continue;
4793 }
4794 __kmp_avail_proc++;
4795 }
4796 if (__kmp_avail_proc > __kmp_xproc) {
4797 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
4798 affinity.type = affinity_none;
4799 KMP_AFFINITY_DISABLE();
4800 return;
4801 }
4802
4803 if (verbose) {
4804 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4805 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4806 mask: __kmp_affin_fullMask);
4807 KMP_INFORM(InitOSProcSetRespect, env_var, buf);
4808 }
4809 } else {
4810 if (verbose) {
4811 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4812 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4813 mask: __kmp_affin_fullMask);
4814 KMP_INFORM(InitOSProcSetNotRespect, env_var, buf);
4815 }
4816 __kmp_avail_proc =
4817 __kmp_affinity_entire_machine_mask(mask: __kmp_affin_fullMask);
4818#if KMP_OS_WINDOWS
4819 if (__kmp_num_proc_groups <= 1) {
4820 // Copy expanded full mask if topology has single processor group
4821 __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4822 }
4823 // Set the process affinity mask since threads' affinity
4824 // masks must be subset of process mask in Windows* OS
4825 __kmp_affin_fullMask->set_process_affinity(true);
4826#endif
4827 }
4828 }
4829}
4830
4831static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) {
4832 bool success = false;
4833 const char *env_var = affinity.env_var;
4834 kmp_i18n_id_t msg_id = kmp_i18n_null;
4835 int verbose = affinity.flags.verbose;
4836
4837 // For backward compatibility, setting KMP_CPUINFO_FILE =>
4838 // KMP_TOPOLOGY_METHOD=cpuinfo
4839 if ((__kmp_cpuinfo_file != NULL) &&
4840 (__kmp_affinity_top_method == affinity_top_method_all)) {
4841 __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4842 }
4843
4844 if (__kmp_affinity_top_method == affinity_top_method_all) {
4845// In the default code path, errors are not fatal - we just try using
4846// another method. We only emit a warning message if affinity is on, or the
4847// verbose flag is set, an the nowarnings flag was not set.
4848#if KMP_USE_HWLOC
4849 if (!success &&
4850 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4851 if (!__kmp_hwloc_error) {
4852 success = __kmp_affinity_create_hwloc_map(&msg_id);
4853 if (!success && verbose) {
4854 KMP_INFORM(AffIgnoringHwloc, env_var);
4855 }
4856 } else if (verbose) {
4857 KMP_INFORM(AffIgnoringHwloc, env_var);
4858 }
4859 }
4860#endif
4861
4862#if KMP_ARCH_X86 || KMP_ARCH_X86_64
4863 if (!success) {
4864 success = __kmp_affinity_create_x2apicid_map(&msg_id);
4865 if (!success && verbose && msg_id != kmp_i18n_null) {
4866 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4867 }
4868 }
4869 if (!success) {
4870 success = __kmp_affinity_create_apicid_map(&msg_id);
4871 if (!success && verbose && msg_id != kmp_i18n_null) {
4872 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4873 }
4874 }
4875#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4876
4877#if KMP_OS_LINUX || KMP_OS_AIX
4878 if (!success) {
4879 int line = 0;
4880 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4881 if (!success && verbose && msg_id != kmp_i18n_null) {
4882 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4883 }
4884 }
4885#endif /* KMP_OS_LINUX */
4886
4887#if KMP_GROUP_AFFINITY
4888 if (!success && (__kmp_num_proc_groups > 1)) {
4889 success = __kmp_affinity_create_proc_group_map(&msg_id);
4890 if (!success && verbose && msg_id != kmp_i18n_null) {
4891 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4892 }
4893 }
4894#endif /* KMP_GROUP_AFFINITY */
4895
4896 if (!success) {
4897 success = __kmp_affinity_create_flat_map(&msg_id);
4898 if (!success && verbose && msg_id != kmp_i18n_null) {
4899 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4900 }
4901 KMP_ASSERT(success);
4902 }
4903 }
4904
4905// If the user has specified that a paricular topology discovery method is to be
4906// used, then we abort if that method fails. The exception is group affinity,
4907// which might have been implicitly set.
4908#if KMP_USE_HWLOC
4909 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4910 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4911 success = __kmp_affinity_create_hwloc_map(&msg_id);
4912 if (!success) {
4913 KMP_ASSERT(msg_id != kmp_i18n_null);
4914 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4915 }
4916 }
4917#endif // KMP_USE_HWLOC
4918
4919#if KMP_ARCH_X86 || KMP_ARCH_X86_64
4920 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
4921 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
4922 success = __kmp_affinity_create_x2apicid_map(&msg_id);
4923 if (!success) {
4924 KMP_ASSERT(msg_id != kmp_i18n_null);
4925 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4926 }
4927 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4928 success = __kmp_affinity_create_apicid_map(&msg_id);
4929 if (!success) {
4930 KMP_ASSERT(msg_id != kmp_i18n_null);
4931 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4932 }
4933 }
4934#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4935
4936 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4937 int line = 0;
4938 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4939 if (!success) {
4940 KMP_ASSERT(msg_id != kmp_i18n_null);
4941 const char *filename = __kmp_cpuinfo_get_filename();
4942 if (line > 0) {
4943 KMP_FATAL(FileLineMsgExiting, filename, line,
4944 __kmp_i18n_catgets(msg_id));
4945 } else {
4946 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4947 }
4948 }
4949 }
4950
4951#if KMP_GROUP_AFFINITY
4952 else if (__kmp_affinity_top_method == affinity_top_method_group) {
4953 success = __kmp_affinity_create_proc_group_map(&msg_id);
4954 KMP_ASSERT(success);
4955 if (!success) {
4956 KMP_ASSERT(msg_id != kmp_i18n_null);
4957 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4958 }
4959 }
4960#endif /* KMP_GROUP_AFFINITY */
4961
4962 else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4963 success = __kmp_affinity_create_flat_map(&msg_id);
4964 // should not fail
4965 KMP_ASSERT(success);
4966 }
4967
4968 // Early exit if topology could not be created
4969 if (!__kmp_topology) {
4970 if (KMP_AFFINITY_CAPABLE()) {
4971 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
4972 }
4973 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
4974 __kmp_ncores > 0) {
4975 __kmp_topology = kmp_topology_t::allocate(nproc: 0, ndepth: 0, NULL);
4976 __kmp_topology->canonicalize(npackages: nPackages, ncores_per_pkg: nCoresPerPkg,
4977 nthreads_per_core: __kmp_nThreadsPerCore, ncores: __kmp_ncores);
4978 if (verbose) {
4979 __kmp_topology->print(env_var);
4980 }
4981 }
4982 return false;
4983 }
4984
4985 // Canonicalize, print (if requested), apply KMP_HW_SUBSET
4986 __kmp_topology->canonicalize();
4987 if (verbose)
4988 __kmp_topology->print(env_var);
4989 bool filtered = __kmp_topology->filter_hw_subset();
4990 if (filtered && verbose)
4991 __kmp_topology->print(env_var: "KMP_HW_SUBSET");
4992 return success;
4993}
4994
4995static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) {
4996 bool is_regular_affinity = (&affinity == &__kmp_affinity);
4997 bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity);
4998 const char *env_var = __kmp_get_affinity_env_var(affinity);
4999
5000 if (affinity.flags.initialized) {
5001 KMP_ASSERT(__kmp_affin_fullMask != NULL);
5002 return;
5003 }
5004
5005 if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask))
5006 __kmp_aux_affinity_initialize_masks(affinity);
5007
5008 if (is_regular_affinity && !__kmp_topology) {
5009 bool success = __kmp_aux_affinity_initialize_topology(affinity);
5010 if (success) {
5011 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
5012 } else {
5013 affinity.type = affinity_none;
5014 KMP_AFFINITY_DISABLE();
5015 }
5016 }
5017
5018 // If KMP_AFFINITY=none, then only create the single "none" place
5019 // which is the process's initial affinity mask or the number of
5020 // hardware threads depending on respect,norespect
5021 if (affinity.type == affinity_none) {
5022 __kmp_create_affinity_none_places(affinity);
5023#if KMP_USE_HIER_SCHED
5024 __kmp_dispatch_set_hierarchy_values();
5025#endif
5026 affinity.flags.initialized = TRUE;
5027 return;
5028 }
5029
5030 __kmp_topology->set_granularity(affinity);
5031 int depth = __kmp_topology->get_depth();
5032
5033 // Create the table of masks, indexed by thread Id.
5034 unsigned numUnique = 0;
5035 int numAddrs = __kmp_topology->get_num_hw_threads();
5036 // If OMP_PLACES=cores:<attribute> specified, then attempt
5037 // to make OS Id mask table using those attributes
5038 if (affinity.core_attr_gran.valid) {
5039 __kmp_create_os_id_masks(numUnique: &numUnique, affinity, find_next: [&](int idx) {
5040 KMP_ASSERT(idx >= -1);
5041 for (int i = idx + 1; i < numAddrs; ++i)
5042 if (__kmp_topology->at(index: i).attrs.contains(attr: affinity.core_attr_gran))
5043 return i;
5044 return numAddrs;
5045 });
5046 if (!affinity.os_id_masks) {
5047 const char *core_attribute;
5048 if (affinity.core_attr_gran.core_eff != kmp_hw_attr_t::UNKNOWN_CORE_EFF)
5049 core_attribute = "core_efficiency";
5050 else
5051 core_attribute = "core_type";
5052 KMP_AFF_WARNING(affinity, AffIgnoringNotAvailable, env_var,
5053 core_attribute,
5054 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true))
5055 }
5056 }
5057 // If core attributes did not work, or none were specified,
5058 // then make OS Id mask table using typical incremental way with
5059 // checking for validity of each id at granularity level specified.
5060 if (!affinity.os_id_masks) {
5061 int gran = affinity.gran_levels;
5062 int gran_level = depth - 1 - affinity.gran_levels;
5063 if (gran >= 0 && gran_level >= 0 && gran_level < depth) {
5064 __kmp_create_os_id_masks(
5065 numUnique: &numUnique, affinity, find_next: [depth, numAddrs, &affinity](int idx) {
5066 KMP_ASSERT(idx >= -1);
5067 int gran = affinity.gran_levels;
5068 int gran_level = depth - 1 - affinity.gran_levels;
5069 for (int i = idx + 1; i < numAddrs; ++i)
5070 if ((gran >= depth) ||
5071 (gran < depth && __kmp_topology->at(index: i).ids[gran_level] !=
5072 kmp_hw_thread_t::UNKNOWN_ID))
5073 return i;
5074 return numAddrs;
5075 });
5076 }
5077 }
5078 // Final attempt to make OS Id mask table using typical incremental way.
5079 if (!affinity.os_id_masks) {
5080 __kmp_create_os_id_masks(numUnique: &numUnique, affinity, find_next: [](int idx) {
5081 KMP_ASSERT(idx >= -1);
5082 return idx + 1;
5083 });
5084 }
5085
5086 switch (affinity.type) {
5087
5088 case affinity_explicit:
5089 KMP_DEBUG_ASSERT(affinity.proclist != NULL);
5090 if (is_hidden_helper_affinity ||
5091 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
5092 __kmp_affinity_process_proclist(affinity);
5093 } else {
5094 __kmp_affinity_process_placelist(affinity);
5095 }
5096 if (affinity.num_masks == 0) {
5097 KMP_AFF_WARNING(affinity, AffNoValidProcID);
5098 affinity.type = affinity_none;
5099 __kmp_create_affinity_none_places(affinity);
5100 affinity.flags.initialized = TRUE;
5101 return;
5102 }
5103 break;
5104
5105 // The other affinity types rely on sorting the hardware threads according to
5106 // some permutation of the machine topology tree. Set affinity.compact
5107 // and affinity.offset appropriately, then jump to a common code
5108 // fragment to do the sort and create the array of affinity masks.
5109 case affinity_logical:
5110 affinity.compact = 0;
5111 if (affinity.offset) {
5112 affinity.offset =
5113 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
5114 }
5115 goto sortTopology;
5116
5117 case affinity_physical:
5118 if (__kmp_nThreadsPerCore > 1) {
5119 affinity.compact = 1;
5120 if (affinity.compact >= depth) {
5121 affinity.compact = 0;
5122 }
5123 } else {
5124 affinity.compact = 0;
5125 }
5126 if (affinity.offset) {
5127 affinity.offset =
5128 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
5129 }
5130 goto sortTopology;
5131
5132 case affinity_scatter:
5133 if (affinity.compact >= depth) {
5134 affinity.compact = 0;
5135 } else {
5136 affinity.compact = depth - 1 - affinity.compact;
5137 }
5138 goto sortTopology;
5139
5140 case affinity_compact:
5141 if (affinity.compact >= depth) {
5142 affinity.compact = depth - 1;
5143 }
5144 goto sortTopology;
5145
5146 case affinity_balanced:
5147 if (depth <= 1 || is_hidden_helper_affinity) {
5148 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
5149 affinity.type = affinity_none;
5150 __kmp_create_affinity_none_places(affinity);
5151 affinity.flags.initialized = TRUE;
5152 return;
5153 } else if (!__kmp_topology->is_uniform()) {
5154 // Save the depth for further usage
5155 __kmp_aff_depth = depth;
5156
5157 int core_level =
5158 __kmp_affinity_find_core_level(nprocs: __kmp_avail_proc, bottom_level: depth - 1);
5159 int ncores = __kmp_affinity_compute_ncores(nprocs: __kmp_avail_proc, bottom_level: depth - 1,
5160 core_level);
5161 int maxprocpercore = __kmp_affinity_max_proc_per_core(
5162 nprocs: __kmp_avail_proc, bottom_level: depth - 1, core_level);
5163
5164 int nproc = ncores * maxprocpercore;
5165 if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
5166 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
5167 affinity.type = affinity_none;
5168 __kmp_create_affinity_none_places(affinity);
5169 affinity.flags.initialized = TRUE;
5170 return;
5171 }
5172
5173 procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5174 for (int i = 0; i < nproc; i++) {
5175 procarr[i] = -1;
5176 }
5177
5178 int lastcore = -1;
5179 int inlastcore = 0;
5180 for (int i = 0; i < __kmp_avail_proc; i++) {
5181 int proc = __kmp_topology->at(index: i).os_id;
5182 int core = __kmp_affinity_find_core(proc: i, bottom_level: depth - 1, core_level);
5183
5184 if (core == lastcore) {
5185 inlastcore++;
5186 } else {
5187 inlastcore = 0;
5188 }
5189 lastcore = core;
5190
5191 procarr[core * maxprocpercore + inlastcore] = proc;
5192 }
5193 }
5194 if (affinity.compact >= depth) {
5195 affinity.compact = depth - 1;
5196 }
5197
5198 sortTopology:
5199 // Allocate the gtid->affinity mask table.
5200 if (affinity.flags.dups) {
5201 affinity.num_masks = __kmp_avail_proc;
5202 } else {
5203 affinity.num_masks = numUnique;
5204 }
5205
5206 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
5207 (__kmp_affinity_num_places > 0) &&
5208 ((unsigned)__kmp_affinity_num_places < affinity.num_masks) &&
5209 !is_hidden_helper_affinity) {
5210 affinity.num_masks = __kmp_affinity_num_places;
5211 }
5212
5213 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
5214
5215 // Sort the topology table according to the current setting of
5216 // affinity.compact, then fill out affinity.masks.
5217 __kmp_topology->sort_compact(affinity);
5218 {
5219 int i;
5220 unsigned j;
5221 int num_hw_threads = __kmp_topology->get_num_hw_threads();
5222 kmp_full_mask_modifier_t full_mask;
5223 for (i = 0, j = 0; i < num_hw_threads; i++) {
5224 if ((!affinity.flags.dups) && (!__kmp_topology->at(index: i).leader)) {
5225 continue;
5226 }
5227 int osId = __kmp_topology->at(index: i).os_id;
5228
5229 kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId);
5230 if (KMP_CPU_ISEMPTY(src))
5231 continue;
5232 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j);
5233 KMP_ASSERT(KMP_CPU_ISSET(osId, src));
5234 KMP_CPU_COPY(dest, src);
5235 full_mask.include(other: src);
5236 if (++j >= affinity.num_masks) {
5237 break;
5238 }
5239 }
5240 KMP_DEBUG_ASSERT(j == affinity.num_masks);
5241 // See if the places list further restricts or changes the full mask
5242 if (full_mask.restrict_to_mask() && affinity.flags.verbose) {
5243 __kmp_topology->print(env_var);
5244 }
5245 }
5246 // Sort the topology back using ids
5247 __kmp_topology->sort_ids();
5248 break;
5249
5250 default:
5251 KMP_ASSERT2(0, "Unexpected affinity setting");
5252 }
5253 __kmp_aux_affinity_initialize_other_data(affinity);
5254 affinity.flags.initialized = TRUE;
5255}
5256
5257void __kmp_affinity_initialize(kmp_affinity_t &affinity) {
5258 // Much of the code above was written assuming that if a machine was not
5259 // affinity capable, then affinity type == affinity_none.
5260 // We now explicitly represent this as affinity type == affinity_disabled.
5261 // There are too many checks for affinity type == affinity_none in this code.
5262 // Instead of trying to change them all, check if
5263 // affinity type == affinity_disabled, and if so, slam it with affinity_none,
5264 // call the real initialization routine, then restore affinity type to
5265 // affinity_disabled.
5266 int disabled = (affinity.type == affinity_disabled);
5267 if (!KMP_AFFINITY_CAPABLE())
5268 KMP_ASSERT(disabled);
5269 if (disabled)
5270 affinity.type = affinity_none;
5271 __kmp_aux_affinity_initialize(affinity);
5272 if (disabled)
5273 affinity.type = affinity_disabled;
5274}
5275
5276void __kmp_affinity_uninitialize(void) {
5277 for (kmp_affinity_t *affinity : __kmp_affinities) {
5278 if (affinity->masks != NULL)
5279 KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks);
5280 if (affinity->os_id_masks != NULL)
5281 KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks);
5282 if (affinity->proclist != NULL)
5283 __kmp_free(affinity->proclist);
5284 if (affinity->ids != NULL)
5285 __kmp_free(affinity->ids);
5286 if (affinity->attrs != NULL)
5287 __kmp_free(affinity->attrs);
5288 *affinity = KMP_AFFINITY_INIT(affinity->env_var);
5289 }
5290 if (__kmp_affin_origMask != NULL) {
5291 if (KMP_AFFINITY_CAPABLE()) {
5292#if KMP_OS_AIX
5293 // Uninitialize by unbinding the thread.
5294 bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY);
5295#else
5296 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
5297#endif
5298 }
5299 KMP_CPU_FREE(__kmp_affin_origMask);
5300 __kmp_affin_origMask = NULL;
5301 }
5302 __kmp_affinity_num_places = 0;
5303 if (procarr != NULL) {
5304 __kmp_free(procarr);
5305 procarr = NULL;
5306 }
5307 if (__kmp_osid_to_hwthread_map) {
5308 __kmp_free(__kmp_osid_to_hwthread_map);
5309 __kmp_osid_to_hwthread_map = NULL;
5310 }
5311#if KMP_USE_HWLOC
5312 if (__kmp_hwloc_topology != NULL) {
5313 hwloc_topology_destroy(__kmp_hwloc_topology);
5314 __kmp_hwloc_topology = NULL;
5315 }
5316#endif
5317 if (__kmp_hw_subset) {
5318 kmp_hw_subset_t::deallocate(subset: __kmp_hw_subset);
5319 __kmp_hw_subset = nullptr;
5320 }
5321 if (__kmp_topology) {
5322 kmp_topology_t::deallocate(topology: __kmp_topology);
5323 __kmp_topology = nullptr;
5324 }
5325 KMPAffinity::destroy_api();
5326}
5327
5328static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity,
5329 int *place, kmp_affin_mask_t **mask) {
5330 int mask_idx;
5331 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
5332 if (is_hidden_helper)
5333 // The first gtid is the regular primary thread, the second gtid is the main
5334 // thread of hidden team which does not participate in task execution.
5335 mask_idx = gtid - 2;
5336 else
5337 mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
5338 KMP_DEBUG_ASSERT(affinity->num_masks > 0);
5339 *place = (mask_idx + affinity->offset) % affinity->num_masks;
5340 *mask = KMP_CPU_INDEX(affinity->masks, *place);
5341}
5342
5343// This function initializes the per-thread data concerning affinity including
5344// the mask and topology information
5345void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
5346
5347 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
5348
5349 // Set the thread topology information to default of unknown
5350 for (int id = 0; id < KMP_HW_LAST; ++id)
5351 th->th.th_topology_ids.ids[id] = kmp_hw_thread_t::UNKNOWN_ID;
5352 th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
5353
5354 if (!KMP_AFFINITY_CAPABLE()) {
5355 return;
5356 }
5357
5358 if (th->th.th_affin_mask == NULL) {
5359 KMP_CPU_ALLOC(th->th.th_affin_mask);
5360 } else {
5361 KMP_CPU_ZERO(th->th.th_affin_mask);
5362 }
5363
5364 // Copy the thread mask to the kmp_info_t structure. If
5365 // __kmp_affinity.type == affinity_none, copy the "full" mask, i.e.
5366 // one that has all of the OS proc ids set, or if
5367 // __kmp_affinity.flags.respect is set, then the full mask is the
5368 // same as the mask of the initialization thread.
5369 kmp_affin_mask_t *mask;
5370 int i;
5371 const kmp_affinity_t *affinity;
5372 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
5373
5374 if (is_hidden_helper)
5375 affinity = &__kmp_hh_affinity;
5376 else
5377 affinity = &__kmp_affinity;
5378
5379 if (KMP_AFFINITY_NON_PROC_BIND || is_hidden_helper) {
5380 if ((affinity->type == affinity_none) ||
5381 (affinity->type == affinity_balanced) ||
5382 KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
5383#if KMP_GROUP_AFFINITY
5384 if (__kmp_num_proc_groups > 1) {
5385 return;
5386 }
5387#endif
5388 KMP_ASSERT(__kmp_affin_fullMask != NULL);
5389 i = 0;
5390 mask = __kmp_affin_fullMask;
5391 } else {
5392 __kmp_select_mask_by_gtid(gtid, affinity, place: &i, mask: &mask);
5393 }
5394 } else {
5395 if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) {
5396#if KMP_GROUP_AFFINITY
5397 if (__kmp_num_proc_groups > 1) {
5398 return;
5399 }
5400#endif
5401 KMP_ASSERT(__kmp_affin_fullMask != NULL);
5402 i = KMP_PLACE_ALL;
5403 mask = __kmp_affin_fullMask;
5404 } else {
5405 __kmp_select_mask_by_gtid(gtid, affinity, place: &i, mask: &mask);
5406 }
5407 }
5408
5409 th->th.th_current_place = i;
5410 if (isa_root && !is_hidden_helper) {
5411 th->th.th_new_place = i;
5412 th->th.th_first_place = 0;
5413 th->th.th_last_place = affinity->num_masks - 1;
5414 } else if (KMP_AFFINITY_NON_PROC_BIND) {
5415 // When using a Non-OMP_PROC_BIND affinity method,
5416 // set all threads' place-partition-var to the entire place list
5417 th->th.th_first_place = 0;
5418 th->th.th_last_place = affinity->num_masks - 1;
5419 }
5420 // Copy topology information associated with the place
5421 if (i >= 0) {
5422 th->th.th_topology_ids = __kmp_affinity.ids[i];
5423 th->th.th_topology_attrs = __kmp_affinity.attrs[i];
5424 }
5425
5426 if (i == KMP_PLACE_ALL) {
5427 KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to all places\n",
5428 gtid));
5429 } else {
5430 KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to place %d\n",
5431 gtid, i));
5432 }
5433
5434 KMP_CPU_COPY(th->th.th_affin_mask, mask);
5435}
5436
5437void __kmp_affinity_bind_init_mask(int gtid) {
5438 if (!KMP_AFFINITY_CAPABLE()) {
5439 return;
5440 }
5441 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
5442 const kmp_affinity_t *affinity;
5443 const char *env_var;
5444 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
5445
5446 if (is_hidden_helper)
5447 affinity = &__kmp_hh_affinity;
5448 else
5449 affinity = &__kmp_affinity;
5450 env_var = __kmp_get_affinity_env_var(affinity: *affinity, /*for_binding=*/true);
5451 /* to avoid duplicate printing (will be correctly printed on barrier) */
5452 if (affinity->flags.verbose && (affinity->type == affinity_none ||
5453 (th->th.th_current_place != KMP_PLACE_ALL &&
5454 affinity->type != affinity_balanced)) &&
5455 !KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
5456 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5457 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5458 mask: th->th.th_affin_mask);
5459 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5460 gtid, buf);
5461 }
5462
5463#if KMP_OS_WINDOWS
5464 // On Windows* OS, the process affinity mask might have changed. If the user
5465 // didn't request affinity and this call fails, just continue silently.
5466 // See CQ171393.
5467 if (affinity->type == affinity_none) {
5468 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
5469 } else
5470#endif
5471#if !KMP_OS_AIX
5472 // Do not set the full mask as the init mask on AIX.
5473 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
5474#endif
5475}
5476
5477void __kmp_affinity_bind_place(int gtid) {
5478 // Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND
5479 if (!KMP_AFFINITY_CAPABLE() || KMP_HIDDEN_HELPER_THREAD(gtid)) {
5480 return;
5481 }
5482
5483 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
5484
5485 KA_TRACE(100, ("__kmp_affinity_bind_place: binding T#%d to place %d (current "
5486 "place = %d)\n",
5487 gtid, th->th.th_new_place, th->th.th_current_place));
5488
5489 // Check that the new place is within this thread's partition.
5490 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5491 KMP_ASSERT(th->th.th_new_place >= 0);
5492 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks);
5493 if (th->th.th_first_place <= th->th.th_last_place) {
5494 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
5495 (th->th.th_new_place <= th->th.th_last_place));
5496 } else {
5497 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
5498 (th->th.th_new_place >= th->th.th_last_place));
5499 }
5500
5501 // Copy the thread mask to the kmp_info_t structure,
5502 // and set this thread's affinity.
5503 kmp_affin_mask_t *mask =
5504 KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place);
5505 KMP_CPU_COPY(th->th.th_affin_mask, mask);
5506 th->th.th_current_place = th->th.th_new_place;
5507
5508 if (__kmp_affinity.flags.verbose) {
5509 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5510 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5511 mask: th->th.th_affin_mask);
5512 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
5513 __kmp_gettid(), gtid, buf);
5514 }
5515 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
5516}
5517
5518int __kmp_aux_set_affinity(void **mask) {
5519 int gtid;
5520 kmp_info_t *th;
5521 int retval;
5522
5523 if (!KMP_AFFINITY_CAPABLE()) {
5524 return -1;
5525 }
5526
5527 gtid = __kmp_entry_gtid();
5528 KA_TRACE(
5529 1000, (""); {
5530 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5531 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5532 (kmp_affin_mask_t *)(*mask));
5533 __kmp_debug_printf(
5534 "kmp_set_affinity: setting affinity mask for thread %d = %s\n",
5535 gtid, buf);
5536 });
5537
5538 if (__kmp_env_consistency_check) {
5539 if ((mask == NULL) || (*mask == NULL)) {
5540 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5541 } else {
5542 unsigned proc;
5543 int num_procs = 0;
5544
5545 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
5546 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5547 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5548 }
5549 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
5550 continue;
5551 }
5552 num_procs++;
5553 }
5554 if (num_procs == 0) {
5555 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5556 }
5557
5558#if KMP_GROUP_AFFINITY
5559 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
5560 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5561 }
5562#endif /* KMP_GROUP_AFFINITY */
5563 }
5564 }
5565
5566 th = __kmp_threads[gtid];
5567 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5568 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
5569 if (retval == 0) {
5570 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
5571 }
5572
5573 th->th.th_current_place = KMP_PLACE_UNDEFINED;
5574 th->th.th_new_place = KMP_PLACE_UNDEFINED;
5575 th->th.th_first_place = 0;
5576 th->th.th_last_place = __kmp_affinity.num_masks - 1;
5577
5578 // Turn off 4.0 affinity for the current tread at this parallel level.
5579 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
5580
5581 return retval;
5582}
5583
5584int __kmp_aux_get_affinity(void **mask) {
5585 int gtid;
5586 int retval;
5587#if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG
5588 kmp_info_t *th;
5589#endif
5590 if (!KMP_AFFINITY_CAPABLE()) {
5591 return -1;
5592 }
5593
5594 gtid = __kmp_entry_gtid();
5595#if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG
5596 th = __kmp_threads[gtid];
5597#else
5598 (void)gtid; // unused variable
5599#endif
5600 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5601
5602 KA_TRACE(
5603 1000, (""); {
5604 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5605 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5606 th->th.th_affin_mask);
5607 __kmp_printf(
5608 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,
5609 buf);
5610 });
5611
5612 if (__kmp_env_consistency_check) {
5613 if ((mask == NULL) || (*mask == NULL)) {
5614 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
5615 }
5616 }
5617
5618#if !KMP_OS_WINDOWS && !KMP_OS_AIX
5619
5620 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
5621 KA_TRACE(
5622 1000, (""); {
5623 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5624 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5625 (kmp_affin_mask_t *)(*mask));
5626 __kmp_printf(
5627 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,
5628 buf);
5629 });
5630 return retval;
5631
5632#else
5633 (void)retval;
5634
5635 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
5636 return 0;
5637
5638#endif /* !KMP_OS_WINDOWS && !KMP_OS_AIX */
5639}
5640
5641int __kmp_aux_get_affinity_max_proc() {
5642 if (!KMP_AFFINITY_CAPABLE()) {
5643 return 0;
5644 }
5645#if KMP_GROUP_AFFINITY
5646 if (__kmp_num_proc_groups > 1) {
5647 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
5648 }
5649#endif
5650 return __kmp_xproc;
5651}
5652
5653int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
5654 if (!KMP_AFFINITY_CAPABLE()) {
5655 return -1;
5656 }
5657
5658 KA_TRACE(
5659 1000, (""); {
5660 int gtid = __kmp_entry_gtid();
5661 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5662 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5663 (kmp_affin_mask_t *)(*mask));
5664 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
5665 "affinity mask for thread %d = %s\n",
5666 proc, gtid, buf);
5667 });
5668
5669 if (__kmp_env_consistency_check) {
5670 if ((mask == NULL) || (*mask == NULL)) {
5671 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
5672 }
5673 }
5674
5675 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5676 return -1;
5677 }
5678 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5679 return -2;
5680 }
5681
5682 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
5683 return 0;
5684}
5685
5686int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
5687 if (!KMP_AFFINITY_CAPABLE()) {
5688 return -1;
5689 }
5690
5691 KA_TRACE(
5692 1000, (""); {
5693 int gtid = __kmp_entry_gtid();
5694 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5695 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5696 (kmp_affin_mask_t *)(*mask));
5697 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
5698 "affinity mask for thread %d = %s\n",
5699 proc, gtid, buf);
5700 });
5701
5702 if (__kmp_env_consistency_check) {
5703 if ((mask == NULL) || (*mask == NULL)) {
5704 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
5705 }
5706 }
5707
5708 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5709 return -1;
5710 }
5711 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5712 return -2;
5713 }
5714
5715 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
5716 return 0;
5717}
5718
5719int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
5720 if (!KMP_AFFINITY_CAPABLE()) {
5721 return -1;
5722 }
5723
5724 KA_TRACE(
5725 1000, (""); {
5726 int gtid = __kmp_entry_gtid();
5727 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5728 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5729 (kmp_affin_mask_t *)(*mask));
5730 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
5731 "affinity mask for thread %d = %s\n",
5732 proc, gtid, buf);
5733 });
5734
5735 if (__kmp_env_consistency_check) {
5736 if ((mask == NULL) || (*mask == NULL)) {
5737 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
5738 }
5739 }
5740
5741 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5742 return -1;
5743 }
5744 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5745 return 0;
5746 }
5747
5748 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
5749}
5750
5751#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
5752// Returns first os proc id with ATOM core
5753int __kmp_get_first_osid_with_ecore(void) {
5754 int low = 0;
5755 int high = __kmp_topology->get_num_hw_threads() - 1;
5756 int mid = 0;
5757 while (high - low > 1) {
5758 mid = (high + low) / 2;
5759 if (__kmp_topology->at(index: mid).attrs.get_core_type() ==
5760 KMP_HW_CORE_TYPE_CORE) {
5761 low = mid + 1;
5762 } else {
5763 high = mid;
5764 }
5765 }
5766 if (__kmp_topology->at(index: mid).attrs.get_core_type() == KMP_HW_CORE_TYPE_ATOM) {
5767 return mid;
5768 }
5769 return -1;
5770}
5771#endif
5772
5773// Dynamic affinity settings - Affinity balanced
5774void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
5775 KMP_DEBUG_ASSERT(th);
5776 bool fine_gran = true;
5777 int tid = th->th.th_info.ds.ds_tid;
5778 const char *env_var = "KMP_AFFINITY";
5779
5780 // Do not perform balanced affinity for the hidden helper threads
5781 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th)))
5782 return;
5783
5784 switch (__kmp_affinity.gran) {
5785 case KMP_HW_THREAD:
5786 break;
5787 case KMP_HW_CORE:
5788 if (__kmp_nThreadsPerCore > 1) {
5789 fine_gran = false;
5790 }
5791 break;
5792 case KMP_HW_SOCKET:
5793 if (nCoresPerPkg > 1) {
5794 fine_gran = false;
5795 }
5796 break;
5797 default:
5798 fine_gran = false;
5799 }
5800
5801 if (__kmp_topology->is_uniform()) {
5802 int coreID;
5803 int threadID;
5804 // Number of hyper threads per core in HT machine
5805 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
5806 // Number of cores
5807 int ncores = __kmp_ncores;
5808 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
5809 __kmp_nth_per_core = __kmp_avail_proc / nPackages;
5810 ncores = nPackages;
5811 }
5812 // How many threads will be bound to each core
5813 int chunk = nthreads / ncores;
5814 // How many cores will have an additional thread bound to it - "big cores"
5815 int big_cores = nthreads % ncores;
5816 // Number of threads on the big cores
5817 int big_nth = (chunk + 1) * big_cores;
5818 if (tid < big_nth) {
5819 coreID = tid / (chunk + 1);
5820 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
5821 } else { // tid >= big_nth
5822 coreID = (tid - big_cores) / chunk;
5823 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
5824 }
5825 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
5826 "Illegal set affinity operation when not capable");
5827
5828 kmp_affin_mask_t *mask = th->th.th_affin_mask;
5829 KMP_CPU_ZERO(mask);
5830
5831 if (fine_gran) {
5832 int osID =
5833 __kmp_topology->at(index: coreID * __kmp_nth_per_core + threadID).os_id;
5834 KMP_CPU_SET(osID, mask);
5835 } else {
5836 for (int i = 0; i < __kmp_nth_per_core; i++) {
5837 int osID;
5838 osID = __kmp_topology->at(index: coreID * __kmp_nth_per_core + i).os_id;
5839 KMP_CPU_SET(osID, mask);
5840 }
5841 }
5842 if (__kmp_affinity.flags.verbose) {
5843 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5844 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5845 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5846 tid, buf);
5847 }
5848 __kmp_affinity_get_thread_topology_info(th);
5849 __kmp_set_system_affinity(mask, TRUE);
5850 } else { // Non-uniform topology
5851
5852 kmp_affin_mask_t *mask = th->th.th_affin_mask;
5853 KMP_CPU_ZERO(mask);
5854
5855 int core_level =
5856 __kmp_affinity_find_core_level(nprocs: __kmp_avail_proc, bottom_level: __kmp_aff_depth - 1);
5857 int ncores = __kmp_affinity_compute_ncores(nprocs: __kmp_avail_proc,
5858 bottom_level: __kmp_aff_depth - 1, core_level);
5859 int nth_per_core = __kmp_affinity_max_proc_per_core(
5860 nprocs: __kmp_avail_proc, bottom_level: __kmp_aff_depth - 1, core_level);
5861
5862 // For performance gain consider the special case nthreads ==
5863 // __kmp_avail_proc
5864 if (nthreads == __kmp_avail_proc) {
5865 if (fine_gran) {
5866 int osID = __kmp_topology->at(index: tid).os_id;
5867 KMP_CPU_SET(osID, mask);
5868 } else {
5869 int core =
5870 __kmp_affinity_find_core(proc: tid, bottom_level: __kmp_aff_depth - 1, core_level);
5871 for (int i = 0; i < __kmp_avail_proc; i++) {
5872 int osID = __kmp_topology->at(index: i).os_id;
5873 if (__kmp_affinity_find_core(proc: i, bottom_level: __kmp_aff_depth - 1, core_level) ==
5874 core) {
5875 KMP_CPU_SET(osID, mask);
5876 }
5877 }
5878 }
5879 } else if (nthreads <= ncores) {
5880
5881 int core = 0;
5882 for (int i = 0; i < ncores; i++) {
5883 // Check if this core from procarr[] is in the mask
5884 int in_mask = 0;
5885 for (int j = 0; j < nth_per_core; j++) {
5886 if (procarr[i * nth_per_core + j] != -1) {
5887 in_mask = 1;
5888 break;
5889 }
5890 }
5891 if (in_mask) {
5892 if (tid == core) {
5893 for (int j = 0; j < nth_per_core; j++) {
5894 int osID = procarr[i * nth_per_core + j];
5895 if (osID != -1) {
5896 KMP_CPU_SET(osID, mask);
5897 // For fine granularity it is enough to set the first available
5898 // osID for this core
5899 if (fine_gran) {
5900 break;
5901 }
5902 }
5903 }
5904 break;
5905 } else {
5906 core++;
5907 }
5908 }
5909 }
5910 } else { // nthreads > ncores
5911 // Array to save the number of processors at each core
5912 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5913 // Array to save the number of cores with "x" available processors;
5914 int *ncores_with_x_procs =
5915 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5916 // Array to save the number of cores with # procs from x to nth_per_core
5917 int *ncores_with_x_to_max_procs =
5918 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5919
5920 for (int i = 0; i <= nth_per_core; i++) {
5921 ncores_with_x_procs[i] = 0;
5922 ncores_with_x_to_max_procs[i] = 0;
5923 }
5924
5925 for (int i = 0; i < ncores; i++) {
5926 int cnt = 0;
5927 for (int j = 0; j < nth_per_core; j++) {
5928 if (procarr[i * nth_per_core + j] != -1) {
5929 cnt++;
5930 }
5931 }
5932 nproc_at_core[i] = cnt;
5933 ncores_with_x_procs[cnt]++;
5934 }
5935
5936 for (int i = 0; i <= nth_per_core; i++) {
5937 for (int j = i; j <= nth_per_core; j++) {
5938 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5939 }
5940 }
5941
5942 // Max number of processors
5943 int nproc = nth_per_core * ncores;
5944 // An array to keep number of threads per each context
5945 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5946 for (int i = 0; i < nproc; i++) {
5947 newarr[i] = 0;
5948 }
5949
5950 int nth = nthreads;
5951 int flag = 0;
5952 while (nth > 0) {
5953 for (int j = 1; j <= nth_per_core; j++) {
5954 int cnt = ncores_with_x_to_max_procs[j];
5955 for (int i = 0; i < ncores; i++) {
5956 // Skip the core with 0 processors
5957 if (nproc_at_core[i] == 0) {
5958 continue;
5959 }
5960 for (int k = 0; k < nth_per_core; k++) {
5961 if (procarr[i * nth_per_core + k] != -1) {
5962 if (newarr[i * nth_per_core + k] == 0) {
5963 newarr[i * nth_per_core + k] = 1;
5964 cnt--;
5965 nth--;
5966 break;
5967 } else {
5968 if (flag != 0) {
5969 newarr[i * nth_per_core + k]++;
5970 cnt--;
5971 nth--;
5972 break;
5973 }
5974 }
5975 }
5976 }
5977 if (cnt == 0 || nth == 0) {
5978 break;
5979 }
5980 }
5981 if (nth == 0) {
5982 break;
5983 }
5984 }
5985 flag = 1;
5986 }
5987 int sum = 0;
5988 for (int i = 0; i < nproc; i++) {
5989 sum += newarr[i];
5990 if (sum > tid) {
5991 if (fine_gran) {
5992 int osID = procarr[i];
5993 KMP_CPU_SET(osID, mask);
5994 } else {
5995 int coreID = i / nth_per_core;
5996 for (int ii = 0; ii < nth_per_core; ii++) {
5997 int osID = procarr[coreID * nth_per_core + ii];
5998 if (osID != -1) {
5999 KMP_CPU_SET(osID, mask);
6000 }
6001 }
6002 }
6003 break;
6004 }
6005 }
6006 __kmp_free(newarr);
6007 }
6008
6009 if (__kmp_affinity.flags.verbose) {
6010 char buf[KMP_AFFIN_MASK_PRINT_LEN];
6011 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
6012 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
6013 tid, buf);
6014 }
6015 __kmp_affinity_get_thread_topology_info(th);
6016 __kmp_set_system_affinity(mask, TRUE);
6017 }
6018}
6019
6020#if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
6021 KMP_OS_AIX
6022// We don't need this entry for Windows because
6023// there is GetProcessAffinityMask() api
6024//
6025// The intended usage is indicated by these steps:
6026// 1) The user gets the current affinity mask
6027// 2) Then sets the affinity by calling this function
6028// 3) Error check the return value
6029// 4) Use non-OpenMP parallelization
6030// 5) Reset the affinity to what was stored in step 1)
6031#ifdef __cplusplus
6032extern "C"
6033#endif
6034 int
6035 kmp_set_thread_affinity_mask_initial()
6036// the function returns 0 on success,
6037// -1 if we cannot bind thread
6038// >0 (errno) if an error happened during binding
6039{
6040 int gtid = __kmp_get_gtid();
6041 if (gtid < 0) {
6042 // Do not touch non-omp threads
6043 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
6044 "non-omp thread, returning\n"));
6045 return -1;
6046 }
6047 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
6048 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
6049 "affinity not initialized, returning\n"));
6050 return -1;
6051 }
6052 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
6053 "set full mask for thread %d\n",
6054 gtid));
6055 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
6056#if KMP_OS_AIX
6057 return bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY);
6058#else
6059 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
6060#endif
6061}
6062#endif
6063
6064#endif // KMP_AFFINITY_SUPPORTED
6065

source code of openmp/runtime/src/kmp_affinity.cpp