1/*! \file */
2/*
3 * kmp.h -- KPTS runtime header file.
4 */
5
6//===----------------------------------------------------------------------===//
7//
8// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9// See https://llvm.org/LICENSE.txt for license information.
10// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef KMP_H
15#define KMP_H
16
17#include "kmp_config.h"
18
19/* #define BUILD_PARALLEL_ORDERED 1 */
20
21/* This fix replaces gettimeofday with clock_gettime for better scalability on
22 the Altix. Requires user code to be linked with -lrt. */
23//#define FIX_SGI_CLOCK
24
25/* Defines for OpenMP 3.0 tasking and auto scheduling */
26
27#ifndef KMP_STATIC_STEAL_ENABLED
28#define KMP_STATIC_STEAL_ENABLED 1
29#endif
30#define KMP_WEIGHTED_ITERATIONS_SUPPORTED \
31 (KMP_AFFINITY_SUPPORTED && KMP_STATIC_STEAL_ENABLED && \
32 (KMP_ARCH_X86 || KMP_ARCH_X86_64))
33
34#define TASK_CURRENT_NOT_QUEUED 0
35#define TASK_CURRENT_QUEUED 1
36
37#ifdef BUILD_TIED_TASK_STACK
38#define TASK_STACK_EMPTY 0 // entries when the stack is empty
39#define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
40// Number of entries in each task stack array
41#define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
42// Mask for determining index into stack block
43#define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
44#endif // BUILD_TIED_TASK_STACK
45
46#define TASK_NOT_PUSHED 1
47#define TASK_SUCCESSFULLY_PUSHED 0
48#define TASK_TIED 1
49#define TASK_UNTIED 0
50#define TASK_EXPLICIT 1
51#define TASK_IMPLICIT 0
52#define TASK_PROXY 1
53#define TASK_FULL 0
54#define TASK_DETACHABLE 1
55#define TASK_UNDETACHABLE 0
56
57#define KMP_CANCEL_THREADS
58#define KMP_THREAD_ATTR
59
60// Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
61// built on Android
62#if defined(__ANDROID__)
63#undef KMP_CANCEL_THREADS
64#endif
65
66// Some WASI targets (e.g., wasm32-wasi-threads) do not support thread
67// cancellation.
68#if KMP_OS_WASI
69#undef KMP_CANCEL_THREADS
70#endif
71
72#if !KMP_OS_WASI
73#include <signal.h>
74#endif
75#include <stdarg.h>
76#include <stddef.h>
77#include <stdio.h>
78#include <stdlib.h>
79#include <string.h>
80#include <limits>
81#include <type_traits>
82/* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
83 Microsoft library. Some macros provided below to replace these functions */
84#ifndef __ABSOFT_WIN
85#include <sys/types.h>
86#endif
87#include <limits.h>
88#include <time.h>
89
90#include <errno.h>
91
92#include "kmp_os.h"
93
94#include "kmp_safe_c_api.h"
95
96#if KMP_STATS_ENABLED
97class kmp_stats_list;
98#endif
99
100#if KMP_USE_HIER_SCHED
101// Only include hierarchical scheduling if affinity is supported
102#undef KMP_USE_HIER_SCHED
103#define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
104#endif
105
106// OMPD_SKIP_HWLOC used in libompd/omp-icv.cpp to avoid OMPD depending on hwloc
107#if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED && !defined(OMPD_SKIP_HWLOC)
108#include "hwloc.h"
109#ifndef HWLOC_OBJ_NUMANODE
110#define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
111#endif
112#ifndef HWLOC_OBJ_PACKAGE
113#define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
114#endif
115#endif
116
117#if KMP_ARCH_X86 || KMP_ARCH_X86_64
118#include <xmmintrin.h>
119#endif
120
121// The below has to be defined before including "kmp_barrier.h".
122#define KMP_INTERNAL_MALLOC(sz) malloc(sz)
123#define KMP_INTERNAL_FREE(p) free(p)
124#define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
125#define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
126
127#include "kmp_debug.h"
128#include "kmp_lock.h"
129#include "kmp_version.h"
130#include "kmp_barrier.h"
131#if USE_DEBUGGER
132#include "kmp_debugger.h"
133#endif
134#include "kmp_i18n.h"
135
136#define KMP_HANDLE_SIGNALS ((KMP_OS_UNIX && !KMP_OS_WASI) || KMP_OS_WINDOWS)
137
138#include "kmp_wrapper_malloc.h"
139#if KMP_OS_UNIX
140#include <unistd.h>
141#if !defined NSIG && defined _NSIG
142#define NSIG _NSIG
143#endif
144#endif
145
146#if KMP_OS_LINUX
147#pragma weak clock_gettime
148#endif
149
150#if OMPT_SUPPORT
151#include "ompt-internal.h"
152#endif
153
154#if OMPD_SUPPORT
155#include "ompd-specific.h"
156#endif
157
158#ifndef UNLIKELY
159#define UNLIKELY(x) (x)
160#endif
161
162// Affinity format function
163#include "kmp_str.h"
164
165// 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
166// 3 - fast allocation using sync, non-sync free lists of any size, non-self
167// free lists of limited size.
168#ifndef USE_FAST_MEMORY
169#define USE_FAST_MEMORY 3
170#endif
171
172#ifndef KMP_NESTED_HOT_TEAMS
173#define KMP_NESTED_HOT_TEAMS 0
174#define USE_NESTED_HOT_ARG(x)
175#else
176#if KMP_NESTED_HOT_TEAMS
177#define USE_NESTED_HOT_ARG(x) , x
178#else
179#define USE_NESTED_HOT_ARG(x)
180#endif
181#endif
182
183// Assume using BGET compare_exchange instruction instead of lock by default.
184#ifndef USE_CMP_XCHG_FOR_BGET
185#define USE_CMP_XCHG_FOR_BGET 1
186#endif
187
188// Test to see if queuing lock is better than bootstrap lock for bget
189// #ifndef USE_QUEUING_LOCK_FOR_BGET
190// #define USE_QUEUING_LOCK_FOR_BGET
191// #endif
192
193#define KMP_NSEC_PER_SEC 1000000000L
194#define KMP_USEC_PER_SEC 1000000L
195#define KMP_NSEC_PER_USEC 1000L
196
197/*!
198@ingroup BASIC_TYPES
199@{
200*/
201
202/*!
203Values for bit flags used in the ident_t to describe the fields.
204*/
205enum {
206 /*! Use trampoline for internal microtasks */
207 KMP_IDENT_IMB = 0x01,
208 /*! Use c-style ident structure */
209 KMP_IDENT_KMPC = 0x02,
210 /* 0x04 is no longer used */
211 /*! Entry point generated by auto-parallelization */
212 KMP_IDENT_AUTOPAR = 0x08,
213 /*! Compiler generates atomic reduction option for kmpc_reduce* */
214 KMP_IDENT_ATOMIC_REDUCE = 0x10,
215 /*! To mark a 'barrier' directive in user code */
216 KMP_IDENT_BARRIER_EXPL = 0x20,
217 /*! To Mark implicit barriers. */
218 KMP_IDENT_BARRIER_IMPL = 0x0040,
219 KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
220 KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
221 KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
222
223 KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
224 KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
225
226 /*! To mark a static loop in OMPT callbacks */
227 KMP_IDENT_WORK_LOOP = 0x200,
228 /*! To mark a sections directive in OMPT callbacks */
229 KMP_IDENT_WORK_SECTIONS = 0x400,
230 /*! To mark a distribute construct in OMPT callbacks */
231 KMP_IDENT_WORK_DISTRIBUTE = 0x800,
232 /*! Atomic hint; bottom four bits as omp_sync_hint_t. Top four reserved and
233 not currently used. If one day we need more bits, then we can use
234 an invalid combination of hints to mean that another, larger field
235 should be used in a different flag. */
236 KMP_IDENT_ATOMIC_HINT_MASK = 0xFF0000,
237 KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
238 KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
239 KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
240 KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
241 KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
242};
243
244/*!
245 * The ident structure that describes a source location.
246 */
247typedef struct ident {
248 kmp_int32 reserved_1; /**< might be used in Fortran; see above */
249 kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags; KMP_IDENT_KMPC
250 identifies this union member */
251 kmp_int32 reserved_2; /**< not really used in Fortran any more; see above */
252#if USE_ITT_BUILD
253/* but currently used for storing region-specific ITT */
254/* contextual information. */
255#endif /* USE_ITT_BUILD */
256 kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for C++ */
257 char const *psource; /**< String describing the source location.
258 The string is composed of semi-colon separated fields
259 which describe the source file, the function and a pair
260 of line numbers that delimit the construct. */
261 // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
262 kmp_int32 get_openmp_version() {
263 return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
264 }
265} ident_t;
266/*!
267@}
268*/
269
270// Some forward declarations.
271typedef union kmp_team kmp_team_t;
272typedef struct kmp_taskdata kmp_taskdata_t;
273typedef union kmp_task_team kmp_task_team_t;
274typedef union kmp_team kmp_team_p;
275typedef union kmp_info kmp_info_p;
276typedef union kmp_root kmp_root_p;
277
278template <bool C = false, bool S = true> class kmp_flag_32;
279template <bool C = false, bool S = true> class kmp_flag_64;
280template <bool C = false, bool S = true> class kmp_atomic_flag_64;
281class kmp_flag_oncore;
282
283#ifdef __cplusplus
284extern "C" {
285#endif
286
287/* ------------------------------------------------------------------------ */
288
289/* Pack two 32-bit signed integers into a 64-bit signed integer */
290/* ToDo: Fix word ordering for big-endian machines. */
291#define KMP_PACK_64(HIGH_32, LOW_32) \
292 ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
293
294// Generic string manipulation macros. Assume that _x is of type char *
295#define SKIP_WS(_x) \
296 { \
297 while (*(_x) == ' ' || *(_x) == '\t') \
298 (_x)++; \
299 }
300#define SKIP_DIGITS(_x) \
301 { \
302 while (*(_x) >= '0' && *(_x) <= '9') \
303 (_x)++; \
304 }
305#define SKIP_TOKEN(_x) \
306 { \
307 while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
308 (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
309 (_x)++; \
310 }
311#define SKIP_TO(_x, _c) \
312 { \
313 while (*(_x) != '\0' && *(_x) != (_c)) \
314 (_x)++; \
315 }
316
317/* ------------------------------------------------------------------------ */
318
319#define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
320#define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
321
322/* ------------------------------------------------------------------------ */
323/* Enumeration types */
324
325enum kmp_state_timer {
326 ts_stop,
327 ts_start,
328 ts_pause,
329
330 ts_last_state
331};
332
333enum dynamic_mode {
334 dynamic_default,
335#ifdef USE_LOAD_BALANCE
336 dynamic_load_balance,
337#endif /* USE_LOAD_BALANCE */
338 dynamic_random,
339 dynamic_thread_limit,
340 dynamic_max
341};
342
343/* external schedule constants, duplicate enum omp_sched in omp.h in order to
344 * not include it here */
345#ifndef KMP_SCHED_TYPE_DEFINED
346#define KMP_SCHED_TYPE_DEFINED
347typedef enum kmp_sched {
348 kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
349 // Note: need to adjust __kmp_sch_map global array in case enum is changed
350 kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
351 kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
352 kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
353 kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
354 kmp_sched_upper_std = 5, // upper bound for standard schedules
355 kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
356 kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
357#if KMP_STATIC_STEAL_ENABLED
358 kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
359#endif
360 kmp_sched_upper,
361 kmp_sched_default = kmp_sched_static, // default scheduling
362 kmp_sched_monotonic = 0x80000000
363} kmp_sched_t;
364#endif
365
366/*!
367 @ingroup WORK_SHARING
368 * Describes the loop schedule to be used for a parallel for loop.
369 */
370enum sched_type : kmp_int32 {
371 kmp_sch_lower = 32, /**< lower bound for unordered values */
372 kmp_sch_static_chunked = 33,
373 kmp_sch_static = 34, /**< static unspecialized */
374 kmp_sch_dynamic_chunked = 35,
375 kmp_sch_guided_chunked = 36, /**< guided unspecialized */
376 kmp_sch_runtime = 37,
377 kmp_sch_auto = 38, /**< auto */
378 kmp_sch_trapezoidal = 39,
379
380 /* accessible only through KMP_SCHEDULE environment variable */
381 kmp_sch_static_greedy = 40,
382 kmp_sch_static_balanced = 41,
383 /* accessible only through KMP_SCHEDULE environment variable */
384 kmp_sch_guided_iterative_chunked = 42,
385 kmp_sch_guided_analytical_chunked = 43,
386 /* accessible only through KMP_SCHEDULE environment variable */
387 kmp_sch_static_steal = 44,
388
389 /* static with chunk adjustment (e.g., simd) */
390 kmp_sch_static_balanced_chunked = 45,
391 kmp_sch_guided_simd = 46, /**< guided with chunk adjustment */
392 kmp_sch_runtime_simd = 47, /**< runtime with chunk adjustment */
393
394 /* accessible only through KMP_SCHEDULE environment variable */
395 kmp_sch_upper, /**< upper bound for unordered values */
396
397 kmp_ord_lower = 64, /**< lower bound for ordered values, must be power of 2 */
398 kmp_ord_static_chunked = 65,
399 kmp_ord_static = 66, /**< ordered static unspecialized */
400 kmp_ord_dynamic_chunked = 67,
401 kmp_ord_guided_chunked = 68,
402 kmp_ord_runtime = 69,
403 kmp_ord_auto = 70, /**< ordered auto */
404 kmp_ord_trapezoidal = 71,
405 kmp_ord_upper, /**< upper bound for ordered values */
406
407 /* Schedules for Distribute construct */
408 kmp_distribute_static_chunked = 91, /**< distribute static chunked */
409 kmp_distribute_static = 92, /**< distribute static unspecialized */
410
411 /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
412 single iteration/chunk, even if the loop is serialized. For the schedule
413 types listed above, the entire iteration vector is returned if the loop is
414 serialized. This doesn't work for gcc/gcomp sections. */
415 kmp_nm_lower = 160, /**< lower bound for nomerge values */
416
417 kmp_nm_static_chunked =
418 (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
419 kmp_nm_static = 162, /**< static unspecialized */
420 kmp_nm_dynamic_chunked = 163,
421 kmp_nm_guided_chunked = 164, /**< guided unspecialized */
422 kmp_nm_runtime = 165,
423 kmp_nm_auto = 166, /**< auto */
424 kmp_nm_trapezoidal = 167,
425
426 /* accessible only through KMP_SCHEDULE environment variable */
427 kmp_nm_static_greedy = 168,
428 kmp_nm_static_balanced = 169,
429 /* accessible only through KMP_SCHEDULE environment variable */
430 kmp_nm_guided_iterative_chunked = 170,
431 kmp_nm_guided_analytical_chunked = 171,
432 kmp_nm_static_steal =
433 172, /* accessible only through OMP_SCHEDULE environment variable */
434
435 kmp_nm_ord_static_chunked = 193,
436 kmp_nm_ord_static = 194, /**< ordered static unspecialized */
437 kmp_nm_ord_dynamic_chunked = 195,
438 kmp_nm_ord_guided_chunked = 196,
439 kmp_nm_ord_runtime = 197,
440 kmp_nm_ord_auto = 198, /**< auto */
441 kmp_nm_ord_trapezoidal = 199,
442 kmp_nm_upper, /**< upper bound for nomerge values */
443
444 /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
445 we need to distinguish the three possible cases (no modifier, monotonic
446 modifier, nonmonotonic modifier), we need separate bits for each modifier.
447 The absence of monotonic does not imply nonmonotonic, especially since 4.5
448 says that the behaviour of the "no modifier" case is implementation defined
449 in 4.5, but will become "nonmonotonic" in 5.0.
450
451 Since we're passing a full 32 bit value, we can use a couple of high bits
452 for these flags; out of paranoia we avoid the sign bit.
453
454 These modifiers can be or-ed into non-static schedules by the compiler to
455 pass the additional information. They will be stripped early in the
456 processing in __kmp_dispatch_init when setting up schedules, so most of the
457 code won't ever see schedules with these bits set. */
458 kmp_sch_modifier_monotonic =
459 (1 << 29), /**< Set if the monotonic schedule modifier was present */
460 kmp_sch_modifier_nonmonotonic =
461 (1 << 30), /**< Set if the nonmonotonic schedule modifier was present */
462
463#define SCHEDULE_WITHOUT_MODIFIERS(s) \
464 (enum sched_type)( \
465 (s) & ~(kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic))
466#define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
467#define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
468#define SCHEDULE_HAS_NO_MODIFIERS(s) \
469 (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
470#define SCHEDULE_GET_MODIFIERS(s) \
471 ((enum sched_type)( \
472 (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
473#define SCHEDULE_SET_MODIFIERS(s, m) \
474 (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
475#define SCHEDULE_NONMONOTONIC 0
476#define SCHEDULE_MONOTONIC 1
477
478 kmp_sch_default = kmp_sch_static /**< default scheduling algorithm */
479};
480
481// Apply modifiers on internal kind to standard kind
482static inline void
483__kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
484 enum sched_type internal_kind) {
485 if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
486 *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
487 }
488}
489
490// Apply modifiers on standard kind to internal kind
491static inline void
492__kmp_sched_apply_mods_intkind(kmp_sched_t kind,
493 enum sched_type *internal_kind) {
494 if ((int)kind & (int)kmp_sched_monotonic) {
495 *internal_kind = (enum sched_type)((int)*internal_kind |
496 (int)kmp_sch_modifier_monotonic);
497 }
498}
499
500// Get standard schedule without modifiers
501static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
502 return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
503}
504
505/* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
506typedef union kmp_r_sched {
507 struct {
508 enum sched_type r_sched_type;
509 int chunk;
510 };
511 kmp_int64 sched;
512} kmp_r_sched_t;
513
514extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
515// internal schedule types
516
517enum library_type {
518 library_none,
519 library_serial,
520 library_turnaround,
521 library_throughput
522};
523
524#if KMP_OS_LINUX
525enum clock_function_type {
526 clock_function_gettimeofday,
527 clock_function_clock_gettime
528};
529#endif /* KMP_OS_LINUX */
530
531#if KMP_MIC_SUPPORTED
532enum mic_type { non_mic, mic1, mic2, mic3, dummy };
533#endif
534
535/* -- fast reduction stuff ------------------------------------------------ */
536
537#undef KMP_FAST_REDUCTION_BARRIER
538#define KMP_FAST_REDUCTION_BARRIER 1
539
540#undef KMP_FAST_REDUCTION_CORE_DUO
541#if KMP_ARCH_X86 || KMP_ARCH_X86_64
542#define KMP_FAST_REDUCTION_CORE_DUO 1
543#endif
544
545enum _reduction_method {
546 reduction_method_not_defined = 0,
547 critical_reduce_block = (1 << 8),
548 atomic_reduce_block = (2 << 8),
549 tree_reduce_block = (3 << 8),
550 empty_reduce_block = (4 << 8)
551};
552
553// Description of the packed_reduction_method variable:
554// The packed_reduction_method variable consists of two enum types variables
555// that are packed together into 0-th byte and 1-st byte:
556// 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
557// barrier that will be used in fast reduction: bs_plain_barrier or
558// bs_reduction_barrier
559// 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
560// be used in fast reduction;
561// Reduction method is of 'enum _reduction_method' type and it's defined the way
562// so that the bits of 0-th byte are empty, so no need to execute a shift
563// instruction while packing/unpacking
564
565#if KMP_FAST_REDUCTION_BARRIER
566#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
567 ((reduction_method) | (barrier_type))
568
569#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
570 ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
571
572#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
573 ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
574#else
575#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
576 (reduction_method)
577
578#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
579 (packed_reduction_method)
580
581#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
582#endif
583
584#define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
585 ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
586 (which_reduction_block))
587
588#if KMP_FAST_REDUCTION_BARRIER
589#define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
590 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
591
592#define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
593 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
594#endif
595
596typedef int PACKED_REDUCTION_METHOD_T;
597
598/* -- end of fast reduction stuff ----------------------------------------- */
599
600#if KMP_OS_WINDOWS
601#define USE_CBLKDATA
602#if KMP_MSVC_COMPAT
603#pragma warning(push)
604#pragma warning(disable : 271 310)
605#endif
606#include <windows.h>
607#if KMP_MSVC_COMPAT
608#pragma warning(pop)
609#endif
610#endif
611
612#if KMP_OS_UNIX
613#if !KMP_OS_WASI
614#include <dlfcn.h>
615#endif
616#include <pthread.h>
617#endif
618
619enum kmp_hw_t : int {
620 KMP_HW_UNKNOWN = -1,
621 KMP_HW_SOCKET = 0,
622 KMP_HW_PROC_GROUP,
623 KMP_HW_NUMA,
624 KMP_HW_DIE,
625 KMP_HW_LLC,
626 KMP_HW_L3,
627 KMP_HW_TILE,
628 KMP_HW_MODULE,
629 KMP_HW_L2,
630 KMP_HW_L1,
631 KMP_HW_CORE,
632 KMP_HW_THREAD,
633 KMP_HW_LAST
634};
635
636typedef enum kmp_hw_core_type_t {
637 KMP_HW_CORE_TYPE_UNKNOWN = 0x0,
638#if KMP_ARCH_X86 || KMP_ARCH_X86_64
639 KMP_HW_CORE_TYPE_ATOM = 0x20,
640 KMP_HW_CORE_TYPE_CORE = 0x40,
641 KMP_HW_MAX_NUM_CORE_TYPES = 3,
642#else
643 KMP_HW_MAX_NUM_CORE_TYPES = 1,
644#endif
645} kmp_hw_core_type_t;
646
647#define KMP_HW_MAX_NUM_CORE_EFFS 8
648
649#define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \
650 KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
651#define KMP_ASSERT_VALID_HW_TYPE(type) \
652 KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
653
654#define KMP_FOREACH_HW_TYPE(type) \
655 for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
656 type = (kmp_hw_t)((int)type + 1))
657
658const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
659const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
660const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type);
661
662/* Only Linux* OS and Windows* OS support thread affinity. */
663#if KMP_AFFINITY_SUPPORTED
664
665// GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
666#if KMP_OS_WINDOWS
667#if _MSC_VER < 1600 && KMP_MSVC_COMPAT
668typedef struct GROUP_AFFINITY {
669 KAFFINITY Mask;
670 WORD Group;
671 WORD Reserved[3];
672} GROUP_AFFINITY;
673#endif /* _MSC_VER < 1600 */
674#if KMP_GROUP_AFFINITY
675extern int __kmp_num_proc_groups;
676#else
677static const int __kmp_num_proc_groups = 1;
678#endif /* KMP_GROUP_AFFINITY */
679typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
680extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
681
682typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
683extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
684
685typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
686extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
687
688typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
689 GROUP_AFFINITY *);
690extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
691#endif /* KMP_OS_WINDOWS */
692
693#if KMP_USE_HWLOC && !defined(OMPD_SKIP_HWLOC)
694extern hwloc_topology_t __kmp_hwloc_topology;
695extern int __kmp_hwloc_error;
696#endif
697
698extern size_t __kmp_affin_mask_size;
699#define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
700#define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
701#define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
702#define KMP_CPU_SET_ITERATE(i, mask) \
703 for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
704#define KMP_CPU_SET(i, mask) (mask)->set(i)
705#define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
706#define KMP_CPU_CLR(i, mask) (mask)->clear(i)
707#define KMP_CPU_ZERO(mask) (mask)->zero()
708#define KMP_CPU_ISEMPTY(mask) (mask)->empty()
709#define KMP_CPU_COPY(dest, src) (dest)->copy(src)
710#define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
711#define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
712#define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
713#define KMP_CPU_EQUAL(dest, src) (dest)->is_equal(src)
714#define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
715#define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
716#define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
717#define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
718#define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
719#define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
720#define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
721#define KMP_CPU_ALLOC_ARRAY(arr, n) \
722 (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
723#define KMP_CPU_FREE_ARRAY(arr, n) \
724 __kmp_affinity_dispatch->deallocate_mask_array(arr)
725#define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
726#define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
727#define __kmp_get_system_affinity(mask, abort_bool) \
728 (mask)->get_system_affinity(abort_bool)
729#define __kmp_set_system_affinity(mask, abort_bool) \
730 (mask)->set_system_affinity(abort_bool)
731#define __kmp_get_proc_group(mask) (mask)->get_proc_group()
732
733class KMPAffinity {
734public:
735 class Mask {
736 public:
737 void *operator new(size_t n);
738 void operator delete(void *p);
739 void *operator new[](size_t n);
740 void operator delete[](void *p);
741 virtual ~Mask() {}
742 // Set bit i to 1
743 virtual void set(int i) {}
744 // Return bit i
745 virtual bool is_set(int i) const { return false; }
746 // Set bit i to 0
747 virtual void clear(int i) {}
748 // Zero out entire mask
749 virtual void zero() {}
750 // Check whether mask is empty
751 virtual bool empty() const { return true; }
752 // Copy src into this mask
753 virtual void copy(const Mask *src) {}
754 // this &= rhs
755 virtual void bitwise_and(const Mask *rhs) {}
756 // this |= rhs
757 virtual void bitwise_or(const Mask *rhs) {}
758 // this = ~this
759 virtual void bitwise_not() {}
760 // this == rhs
761 virtual bool is_equal(const Mask *rhs) const { return false; }
762 // API for iterating over an affinity mask
763 // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
764 virtual int begin() const { return 0; }
765 virtual int end() const { return 0; }
766 virtual int next(int previous) const { return 0; }
767#if KMP_OS_WINDOWS
768 virtual int set_process_affinity(bool abort_on_error) const { return -1; }
769#endif
770 // Set the system's affinity to this affinity mask's value
771 virtual int set_system_affinity(bool abort_on_error) const { return -1; }
772 // Set this affinity mask to the current system affinity
773 virtual int get_system_affinity(bool abort_on_error) { return -1; }
774 // Only 1 DWORD in the mask should have any procs set.
775 // Return the appropriate index, or -1 for an invalid mask.
776 virtual int get_proc_group() const { return -1; }
777 int get_max_cpu() const {
778 int cpu;
779 int max_cpu = -1;
780 KMP_CPU_SET_ITERATE(cpu, this) {
781 if (cpu > max_cpu)
782 max_cpu = cpu;
783 }
784 return max_cpu;
785 }
786 };
787 void *operator new(size_t n);
788 void operator delete(void *p);
789 // Need virtual destructor
790 virtual ~KMPAffinity() = default;
791 // Determine if affinity is capable
792 virtual void determine_capable(const char *env_var) {}
793 // Bind the current thread to os proc
794 virtual void bind_thread(int proc) {}
795 // Factory functions to allocate/deallocate a mask
796 virtual Mask *allocate_mask() { return nullptr; }
797 virtual void deallocate_mask(Mask *m) {}
798 virtual Mask *allocate_mask_array(int num) { return nullptr; }
799 virtual void deallocate_mask_array(Mask *m) {}
800 virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
801 static void pick_api();
802 static void destroy_api();
803 enum api_type {
804 NATIVE_OS
805#if KMP_USE_HWLOC
806 ,
807 HWLOC
808#endif
809 };
810 virtual api_type get_api_type() const {
811 KMP_ASSERT(0);
812 return NATIVE_OS;
813 }
814
815private:
816 static bool picked_api;
817};
818
819typedef KMPAffinity::Mask kmp_affin_mask_t;
820extern KMPAffinity *__kmp_affinity_dispatch;
821
822#ifndef KMP_OS_AIX
823class kmp_affinity_raii_t {
824 kmp_affin_mask_t *mask;
825 bool restored;
826
827public:
828 kmp_affinity_raii_t(const kmp_affin_mask_t *new_mask = nullptr)
829 : mask(nullptr), restored(false) {
830 if (KMP_AFFINITY_CAPABLE()) {
831 KMP_CPU_ALLOC(mask);
832 KMP_ASSERT(mask != NULL);
833 __kmp_get_system_affinity(mask, /*abort_on_error=*/true);
834 if (new_mask)
835 __kmp_set_system_affinity(new_mask, /*abort_on_error=*/true);
836 }
837 }
838 void restore() {
839 if (mask && KMP_AFFINITY_CAPABLE() && !restored) {
840 __kmp_set_system_affinity(mask, /*abort_on_error=*/true);
841 KMP_CPU_FREE(mask);
842 }
843 restored = true;
844 }
845 ~kmp_affinity_raii_t() { restore(); }
846};
847#endif // !KMP_OS_AIX
848
849// Declare local char buffers with this size for printing debug and info
850// messages, using __kmp_affinity_print_mask().
851#define KMP_AFFIN_MASK_PRINT_LEN 1024
852
853enum affinity_type {
854 affinity_none = 0,
855 affinity_physical,
856 affinity_logical,
857 affinity_compact,
858 affinity_scatter,
859 affinity_explicit,
860 affinity_balanced,
861 affinity_disabled, // not used outsize the env var parser
862 affinity_default
863};
864
865enum affinity_top_method {
866 affinity_top_method_all = 0, // try all (supported) methods, in order
867#if KMP_ARCH_X86 || KMP_ARCH_X86_64
868 affinity_top_method_apicid,
869 affinity_top_method_x2apicid,
870 affinity_top_method_x2apicid_1f,
871#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
872 affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
873#if KMP_GROUP_AFFINITY
874 affinity_top_method_group,
875#endif /* KMP_GROUP_AFFINITY */
876 affinity_top_method_flat,
877#if KMP_USE_HWLOC
878 affinity_top_method_hwloc,
879#endif
880 affinity_top_method_default
881};
882
883#define affinity_respect_mask_default (2)
884
885typedef struct kmp_affinity_flags_t {
886 unsigned dups : 1;
887 unsigned verbose : 1;
888 unsigned warnings : 1;
889 unsigned respect : 2;
890 unsigned reset : 1;
891 unsigned initialized : 1;
892 unsigned core_types_gran : 1;
893 unsigned core_effs_gran : 1;
894 unsigned omp_places : 1;
895 unsigned reserved : 22;
896} kmp_affinity_flags_t;
897KMP_BUILD_ASSERT(sizeof(kmp_affinity_flags_t) == 4);
898
899typedef struct kmp_affinity_ids_t {
900 int os_id;
901 int ids[KMP_HW_LAST];
902} kmp_affinity_ids_t;
903
904typedef struct kmp_affinity_attrs_t {
905 int core_type : 8;
906 int core_eff : 8;
907 unsigned valid : 1;
908 unsigned reserved : 15;
909} kmp_affinity_attrs_t;
910#define KMP_AFFINITY_ATTRS_UNKNOWN \
911 { KMP_HW_CORE_TYPE_UNKNOWN, kmp_hw_attr_t::UNKNOWN_CORE_EFF, 0, 0 }
912
913typedef struct kmp_affinity_t {
914 char *proclist;
915 enum affinity_type type;
916 kmp_hw_t gran;
917 int gran_levels;
918 kmp_affinity_attrs_t core_attr_gran;
919 int compact;
920 int offset;
921 kmp_affinity_flags_t flags;
922 unsigned num_masks;
923 kmp_affin_mask_t *masks;
924 kmp_affinity_ids_t *ids;
925 kmp_affinity_attrs_t *attrs;
926 unsigned num_os_id_masks;
927 kmp_affin_mask_t *os_id_masks;
928 const char *env_var;
929} kmp_affinity_t;
930
931#define KMP_AFFINITY_INIT(env) \
932 { \
933 nullptr, affinity_default, KMP_HW_UNKNOWN, -1, KMP_AFFINITY_ATTRS_UNKNOWN, \
934 0, 0, \
935 {TRUE, FALSE, TRUE, affinity_respect_mask_default, FALSE, FALSE, \
936 FALSE, FALSE, FALSE}, \
937 0, nullptr, nullptr, nullptr, 0, nullptr, env \
938 }
939
940extern enum affinity_top_method __kmp_affinity_top_method;
941extern kmp_affinity_t __kmp_affinity;
942extern kmp_affinity_t __kmp_hh_affinity;
943extern kmp_affinity_t *__kmp_affinities[2];
944
945extern void __kmp_affinity_bind_thread(int which);
946
947extern kmp_affin_mask_t *__kmp_affin_fullMask;
948extern kmp_affin_mask_t *__kmp_affin_origMask;
949extern char *__kmp_cpuinfo_file;
950
951#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
952extern int __kmp_first_osid_with_ecore;
953#endif
954
955#endif /* KMP_AFFINITY_SUPPORTED */
956
957// This needs to be kept in sync with the values in omp.h !!!
958typedef enum kmp_proc_bind_t {
959 proc_bind_false = 0,
960 proc_bind_true,
961 proc_bind_primary,
962 proc_bind_close,
963 proc_bind_spread,
964 proc_bind_intel, // use KMP_AFFINITY interface
965 proc_bind_default
966} kmp_proc_bind_t;
967
968typedef struct kmp_nested_proc_bind_t {
969 kmp_proc_bind_t *bind_types;
970 int size;
971 int used;
972} kmp_nested_proc_bind_t;
973
974extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
975extern kmp_proc_bind_t __kmp_teams_proc_bind;
976
977extern int __kmp_display_affinity;
978extern char *__kmp_affinity_format;
979static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
980#if OMPT_SUPPORT
981extern int __kmp_tool;
982extern char *__kmp_tool_libraries;
983#endif // OMPT_SUPPORT
984
985#if KMP_AFFINITY_SUPPORTED
986#define KMP_PLACE_ALL (-1)
987#define KMP_PLACE_UNDEFINED (-2)
988// Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
989#define KMP_AFFINITY_NON_PROC_BIND \
990 ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
991 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
992 (__kmp_affinity.num_masks > 0 || __kmp_affinity.type == affinity_balanced))
993#endif /* KMP_AFFINITY_SUPPORTED */
994
995extern int __kmp_affinity_num_places;
996
997typedef enum kmp_cancel_kind_t {
998 cancel_noreq = 0,
999 cancel_parallel = 1,
1000 cancel_loop = 2,
1001 cancel_sections = 3,
1002 cancel_taskgroup = 4
1003} kmp_cancel_kind_t;
1004
1005// KMP_HW_SUBSET support:
1006typedef struct kmp_hws_item {
1007 int num;
1008 int offset;
1009} kmp_hws_item_t;
1010
1011extern kmp_hws_item_t __kmp_hws_socket;
1012extern kmp_hws_item_t __kmp_hws_die;
1013extern kmp_hws_item_t __kmp_hws_node;
1014extern kmp_hws_item_t __kmp_hws_tile;
1015extern kmp_hws_item_t __kmp_hws_core;
1016extern kmp_hws_item_t __kmp_hws_proc;
1017extern int __kmp_hws_requested;
1018extern int __kmp_hws_abs_flag; // absolute or per-item number requested
1019
1020/* ------------------------------------------------------------------------ */
1021
1022#define KMP_PAD(type, sz) \
1023 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
1024
1025// We need to avoid using -1 as a GTID as +1 is added to the gtid
1026// when storing it in a lock, and the value 0 is reserved.
1027#define KMP_GTID_DNE (-2) /* Does not exist */
1028#define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
1029#define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
1030#define KMP_GTID_UNKNOWN (-5) /* Is not known */
1031#define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
1032
1033/* OpenMP 5.0 Memory Management support */
1034
1035#ifndef __OMP_H
1036// Duplicate type definitions from omp.h
1037typedef uintptr_t omp_uintptr_t;
1038
1039typedef enum {
1040 omp_atk_sync_hint = 1,
1041 omp_atk_alignment = 2,
1042 omp_atk_access = 3,
1043 omp_atk_pool_size = 4,
1044 omp_atk_fallback = 5,
1045 omp_atk_fb_data = 6,
1046 omp_atk_pinned = 7,
1047 omp_atk_partition = 8
1048} omp_alloctrait_key_t;
1049
1050typedef enum {
1051 omp_atv_false = 0,
1052 omp_atv_true = 1,
1053 omp_atv_contended = 3,
1054 omp_atv_uncontended = 4,
1055 omp_atv_serialized = 5,
1056 omp_atv_sequential = omp_atv_serialized, // (deprecated)
1057 omp_atv_private = 6,
1058 omp_atv_all = 7,
1059 omp_atv_thread = 8,
1060 omp_atv_pteam = 9,
1061 omp_atv_cgroup = 10,
1062 omp_atv_default_mem_fb = 11,
1063 omp_atv_null_fb = 12,
1064 omp_atv_abort_fb = 13,
1065 omp_atv_allocator_fb = 14,
1066 omp_atv_environment = 15,
1067 omp_atv_nearest = 16,
1068 omp_atv_blocked = 17,
1069 omp_atv_interleaved = 18
1070} omp_alloctrait_value_t;
1071#define omp_atv_default ((omp_uintptr_t)-1)
1072
1073typedef void *omp_memspace_handle_t;
1074extern omp_memspace_handle_t const omp_default_mem_space;
1075extern omp_memspace_handle_t const omp_large_cap_mem_space;
1076extern omp_memspace_handle_t const omp_const_mem_space;
1077extern omp_memspace_handle_t const omp_high_bw_mem_space;
1078extern omp_memspace_handle_t const omp_low_lat_mem_space;
1079extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
1080extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
1081extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
1082
1083typedef struct {
1084 omp_alloctrait_key_t key;
1085 omp_uintptr_t value;
1086} omp_alloctrait_t;
1087
1088typedef void *omp_allocator_handle_t;
1089extern omp_allocator_handle_t const omp_null_allocator;
1090extern omp_allocator_handle_t const omp_default_mem_alloc;
1091extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
1092extern omp_allocator_handle_t const omp_const_mem_alloc;
1093extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
1094extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
1095extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
1096extern omp_allocator_handle_t const omp_pteam_mem_alloc;
1097extern omp_allocator_handle_t const omp_thread_mem_alloc;
1098extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
1099extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
1100extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
1101extern omp_allocator_handle_t const kmp_max_mem_alloc;
1102extern omp_allocator_handle_t __kmp_def_allocator;
1103
1104// end of duplicate type definitions from omp.h
1105#endif
1106
1107extern int __kmp_memkind_available;
1108
1109typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
1110
1111typedef struct kmp_allocator_t {
1112 omp_memspace_handle_t memspace;
1113 void **memkind; // pointer to memkind
1114 size_t alignment;
1115 omp_alloctrait_value_t fb;
1116 kmp_allocator_t *fb_data;
1117 kmp_uint64 pool_size;
1118 kmp_uint64 pool_used;
1119 bool pinned;
1120} kmp_allocator_t;
1121
1122extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1123 omp_memspace_handle_t,
1124 int ntraits,
1125 omp_alloctrait_t traits[]);
1126extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1127extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1128extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1129// external interfaces, may be used by compiler
1130extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1131extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz,
1132 omp_allocator_handle_t al);
1133extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1134 omp_allocator_handle_t al);
1135extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1136 omp_allocator_handle_t al,
1137 omp_allocator_handle_t free_al);
1138extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1139// internal interfaces, contain real implementation
1140extern void *__kmp_alloc(int gtid, size_t align, size_t sz,
1141 omp_allocator_handle_t al);
1142extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz,
1143 omp_allocator_handle_t al);
1144extern void *__kmp_realloc(int gtid, void *ptr, size_t sz,
1145 omp_allocator_handle_t al,
1146 omp_allocator_handle_t free_al);
1147extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1148
1149extern void __kmp_init_memkind();
1150extern void __kmp_fini_memkind();
1151extern void __kmp_init_target_mem();
1152
1153/* ------------------------------------------------------------------------ */
1154
1155#if ENABLE_LIBOMPTARGET
1156extern void __kmp_init_target_task();
1157#endif
1158
1159/* ------------------------------------------------------------------------ */
1160
1161#define KMP_UINT64_MAX \
1162 (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1163
1164#define KMP_MIN_NTH 1
1165
1166#ifndef KMP_MAX_NTH
1167#if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1168#define KMP_MAX_NTH PTHREAD_THREADS_MAX
1169#else
1170#ifdef __ve__
1171// VE's pthread supports only up to 64 threads per a VE process.
1172// Please check p. 14 of following documentation for more details.
1173// https://sxauroratsubasa.sakura.ne.jp/documents/veos/en/VEOS_high_level_design.pdf
1174#define KMP_MAX_NTH 64
1175#else
1176#define KMP_MAX_NTH INT_MAX
1177#endif
1178#endif
1179#endif /* KMP_MAX_NTH */
1180
1181#ifdef PTHREAD_STACK_MIN
1182#define KMP_MIN_STKSIZE ((size_t)PTHREAD_STACK_MIN)
1183#else
1184#define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1185#endif
1186
1187#if KMP_OS_AIX && KMP_ARCH_PPC
1188#define KMP_MAX_STKSIZE 0x10000000 /* 256Mb max size on 32-bit AIX */
1189#else
1190#define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1191#endif
1192
1193#if KMP_ARCH_X86
1194#define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1195#elif KMP_ARCH_X86_64
1196#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1197#define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1198#elif KMP_ARCH_VE
1199// Minimum stack size for pthread for VE is 4MB.
1200// https://www.hpc.nec/documents/veos/en/glibc/Difference_Points_glibc.htm
1201#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1202#elif KMP_OS_AIX
1203// The default stack size for worker threads on AIX is 4MB.
1204#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1205#else
1206#define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1207#endif
1208
1209#define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1210#define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1211#define KMP_MAX_MALLOC_POOL_INCR \
1212 (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1213
1214#define KMP_MIN_STKOFFSET (0)
1215#define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1216#if KMP_OS_DARWIN
1217#define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1218#else
1219#define KMP_DEFAULT_STKOFFSET CACHE_LINE
1220#endif
1221
1222#define KMP_MIN_STKPADDING (0)
1223#define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1224
1225#define KMP_BLOCKTIME_MULTIPLIER \
1226 (1000000) /* number of blocktime units per second */
1227#define KMP_MIN_BLOCKTIME (0)
1228#define KMP_MAX_BLOCKTIME \
1229 (INT_MAX) /* Must be this for "infinite" setting the work */
1230
1231/* __kmp_blocktime is in microseconds */
1232#define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200000))
1233
1234#if KMP_USE_MONITOR
1235#define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1236#define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1237#define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1238
1239/* Calculate new number of monitor wakeups for a specific block time based on
1240 previous monitor_wakeups. Only allow increasing number of wakeups */
1241#define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1242 (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \
1243 : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \
1244 : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1245 ? (monitor_wakeups) \
1246 : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1247
1248/* Calculate number of intervals for a specific block time based on
1249 monitor_wakeups */
1250#define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1251 (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1252 (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1253#else
1254#define KMP_BLOCKTIME(team, tid) \
1255 (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1256#if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1257// HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1258extern kmp_uint64 __kmp_ticks_per_msec;
1259extern kmp_uint64 __kmp_ticks_per_usec;
1260#if KMP_COMPILER_ICC || KMP_COMPILER_ICX
1261#define KMP_NOW() ((kmp_uint64)_rdtsc())
1262#else
1263#define KMP_NOW() __kmp_hardware_timestamp()
1264#endif
1265#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1266 ((kmp_uint64)KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_usec)
1267#define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1268#else
1269// System time is retrieved sporadically while blocking.
1270extern kmp_uint64 __kmp_now_nsec();
1271#define KMP_NOW() __kmp_now_nsec()
1272#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1273 ((kmp_uint64)KMP_BLOCKTIME(team, tid) * (kmp_uint64)KMP_NSEC_PER_USEC)
1274#define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1275#endif
1276#endif // KMP_USE_MONITOR
1277
1278#define KMP_MIN_STATSCOLS 40
1279#define KMP_MAX_STATSCOLS 4096
1280#define KMP_DEFAULT_STATSCOLS 80
1281
1282#define KMP_MIN_INTERVAL 0
1283#define KMP_MAX_INTERVAL (INT_MAX - 1)
1284#define KMP_DEFAULT_INTERVAL 0
1285
1286#define KMP_MIN_CHUNK 1
1287#define KMP_MAX_CHUNK (INT_MAX - 1)
1288#define KMP_DEFAULT_CHUNK 1
1289
1290#define KMP_MIN_DISP_NUM_BUFF 1
1291#define KMP_DFLT_DISP_NUM_BUFF 7
1292#define KMP_MAX_DISP_NUM_BUFF 4096
1293
1294#define KMP_MAX_ORDERED 8
1295
1296#define KMP_MAX_FIELDS 32
1297
1298#define KMP_MAX_BRANCH_BITS 31
1299
1300#define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1301
1302#define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1303
1304#define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1305
1306/* Minimum number of threads before switch to TLS gtid (experimentally
1307 determined) */
1308/* josh TODO: what about OS X* tuning? */
1309#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1310#define KMP_TLS_GTID_MIN 5
1311#else
1312#define KMP_TLS_GTID_MIN INT_MAX
1313#endif
1314
1315#define KMP_MASTER_TID(tid) (0 == (tid))
1316#define KMP_WORKER_TID(tid) (0 != (tid))
1317
1318#define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1319#define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1320#define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1321
1322#ifndef TRUE
1323#define FALSE 0
1324#define TRUE (!FALSE)
1325#endif
1326
1327/* NOTE: all of the following constants must be even */
1328
1329#if KMP_OS_WINDOWS
1330#define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1331#define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1332#elif KMP_OS_LINUX
1333#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1334#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1335#elif KMP_OS_DARWIN
1336/* TODO: tune for KMP_OS_DARWIN */
1337#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1338#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1339#elif KMP_OS_DRAGONFLY
1340/* TODO: tune for KMP_OS_DRAGONFLY */
1341#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1342#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1343#elif KMP_OS_FREEBSD
1344/* TODO: tune for KMP_OS_FREEBSD */
1345#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1346#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1347#elif KMP_OS_NETBSD
1348/* TODO: tune for KMP_OS_NETBSD */
1349#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1350#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1351#elif KMP_OS_OPENBSD
1352/* TODO: tune for KMP_OS_OPENBSD */
1353#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1354#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1355#elif KMP_OS_HURD
1356/* TODO: tune for KMP_OS_HURD */
1357#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1358#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1359#elif KMP_OS_SOLARIS
1360/* TODO: tune for KMP_OS_SOLARIS */
1361#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1362#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1363#elif KMP_OS_WASI
1364/* TODO: tune for KMP_OS_WASI */
1365#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1366#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1367#elif KMP_OS_AIX
1368/* TODO: tune for KMP_OS_AIX */
1369#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1370#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1371#endif
1372
1373#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1374typedef struct kmp_cpuid {
1375 kmp_uint32 eax;
1376 kmp_uint32 ebx;
1377 kmp_uint32 ecx;
1378 kmp_uint32 edx;
1379} kmp_cpuid_t;
1380
1381typedef struct kmp_cpuinfo_flags_t {
1382 unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise.
1383 unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise.
1384 unsigned hybrid : 1;
1385 unsigned reserved : 29; // Ensure size of 32 bits
1386} kmp_cpuinfo_flags_t;
1387
1388typedef struct kmp_cpuinfo {
1389 int initialized; // If 0, other fields are not initialized.
1390 int signature; // CPUID(1).EAX
1391 int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1392 int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1393 // Model << 4 ) + Model)
1394 int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1395 kmp_cpuinfo_flags_t flags;
1396 int apic_id;
1397 kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1398 char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1399} kmp_cpuinfo_t;
1400
1401extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1402
1403#if KMP_OS_UNIX
1404// subleaf is only needed for cache and topology discovery and can be set to
1405// zero in most cases
1406static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1407 __asm__ __volatile__("cpuid"
1408 : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1409 : "a"(leaf), "c"(subleaf));
1410}
1411// Load p into FPU control word
1412static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1413 __asm__ __volatile__("fldcw %0" : : "m"(*p));
1414}
1415// Store FPU control word into p
1416static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1417 __asm__ __volatile__("fstcw %0" : "=m"(*p));
1418}
1419static inline void __kmp_clear_x87_fpu_status_word() {
1420#if KMP_MIC
1421 // 32-bit protected mode x87 FPU state
1422 struct x87_fpu_state {
1423 unsigned cw;
1424 unsigned sw;
1425 unsigned tw;
1426 unsigned fip;
1427 unsigned fips;
1428 unsigned fdp;
1429 unsigned fds;
1430 };
1431 struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1432 __asm__ __volatile__("fstenv %0\n\t" // store FP env
1433 "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1434 "fldenv %0\n\t" // load FP env back
1435 : "+m"(fpu_state), "+m"(fpu_state.sw));
1436#else
1437 __asm__ __volatile__("fnclex");
1438#endif // KMP_MIC
1439}
1440#if __SSE__
1441static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(i: *p); }
1442static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1443#else
1444static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1445static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1446#endif
1447#else
1448// Windows still has these as external functions in assembly file
1449extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1450extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1451extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1452extern void __kmp_clear_x87_fpu_status_word();
1453static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1454static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1455#endif // KMP_OS_UNIX
1456
1457#define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1458
1459// User-level Monitor/Mwait
1460#if KMP_HAVE_UMWAIT
1461// We always try for UMWAIT first
1462#if KMP_HAVE_WAITPKG_INTRINSICS
1463#if KMP_HAVE_IMMINTRIN_H
1464#include <immintrin.h>
1465#elif KMP_HAVE_INTRIN_H
1466#include <intrin.h>
1467#endif
1468#endif // KMP_HAVE_WAITPKG_INTRINSICS
1469
1470KMP_ATTRIBUTE_TARGET_WAITPKG
1471static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1472#if !KMP_HAVE_WAITPKG_INTRINSICS
1473 uint32_t timeHi = uint32_t(counter >> 32);
1474 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1475 char flag;
1476 __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1477 "setb %0"
1478 // The "=q" restraint means any register accessible as rl
1479 // in 32-bit mode: a, b, c, and d;
1480 // in 64-bit mode: any integer register
1481 : "=q"(flag)
1482 : "a"(timeLo), "d"(timeHi), "c"(hint)
1483 :);
1484 return flag;
1485#else
1486 return _tpause(control: hint, counter: counter);
1487#endif
1488}
1489KMP_ATTRIBUTE_TARGET_WAITPKG
1490static inline void __kmp_umonitor(void *cacheline) {
1491#if !KMP_HAVE_WAITPKG_INTRINSICS
1492 __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1493 :
1494 : "a"(cacheline)
1495 :);
1496#else
1497 _umonitor(address: cacheline);
1498#endif
1499}
1500KMP_ATTRIBUTE_TARGET_WAITPKG
1501static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1502#if !KMP_HAVE_WAITPKG_INTRINSICS
1503 uint32_t timeHi = uint32_t(counter >> 32);
1504 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1505 char flag;
1506 __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1507 "setb %0"
1508 // The "=q" restraint means any register accessible as rl
1509 // in 32-bit mode: a, b, c, and d;
1510 // in 64-bit mode: any integer register
1511 : "=q"(flag)
1512 : "a"(timeLo), "d"(timeHi), "c"(hint)
1513 :);
1514 return flag;
1515#else
1516 return _umwait(control: hint, counter: counter);
1517#endif
1518}
1519#elif KMP_HAVE_MWAIT
1520#if KMP_OS_UNIX
1521#include <pmmintrin.h>
1522#else
1523#include <intrin.h>
1524#endif
1525#if KMP_OS_UNIX
1526__attribute__((target("sse3")))
1527#endif
1528static inline void
1529__kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1530 _mm_monitor(cacheline, extensions, hints);
1531}
1532#if KMP_OS_UNIX
1533__attribute__((target("sse3")))
1534#endif
1535static inline void
1536__kmp_mm_mwait(unsigned extensions, unsigned hints) {
1537 _mm_mwait(extensions, hints);
1538}
1539#endif // KMP_HAVE_UMWAIT
1540
1541#if KMP_ARCH_X86
1542extern void __kmp_x86_pause(void);
1543#elif KMP_MIC
1544// Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1545// regression after removal of extra PAUSE from spin loops. Changing
1546// the delay from 100 to 300 showed even better performance than double PAUSE
1547// on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1548static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1549#else
1550static inline void __kmp_x86_pause(void) { _mm_pause(); }
1551#endif
1552#define KMP_CPU_PAUSE() __kmp_x86_pause()
1553#elif KMP_ARCH_PPC64
1554#define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1555#define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1556#define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1557#define KMP_CPU_PAUSE() \
1558 do { \
1559 KMP_PPC64_PRI_LOW(); \
1560 KMP_PPC64_PRI_MED(); \
1561 KMP_PPC64_PRI_LOC_MB(); \
1562 } while (0)
1563#else
1564#define KMP_CPU_PAUSE() /* nothing to do */
1565#endif
1566
1567#define KMP_INIT_YIELD(count) \
1568 { (count) = __kmp_yield_init; }
1569
1570#define KMP_INIT_BACKOFF(time) \
1571 { (time) = __kmp_pause_init; }
1572
1573#define KMP_OVERSUBSCRIBED \
1574 (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1575
1576#define KMP_TRY_YIELD \
1577 ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1578
1579#define KMP_TRY_YIELD_OVERSUB \
1580 ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1581
1582#define KMP_YIELD(cond) \
1583 { \
1584 KMP_CPU_PAUSE(); \
1585 if ((cond) && (KMP_TRY_YIELD)) \
1586 __kmp_yield(); \
1587 }
1588
1589#define KMP_YIELD_OVERSUB() \
1590 { \
1591 KMP_CPU_PAUSE(); \
1592 if ((KMP_TRY_YIELD_OVERSUB)) \
1593 __kmp_yield(); \
1594 }
1595
1596// Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1597// there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1598#define KMP_YIELD_SPIN(count) \
1599 { \
1600 KMP_CPU_PAUSE(); \
1601 if (KMP_TRY_YIELD) { \
1602 (count) -= 2; \
1603 if (!(count)) { \
1604 __kmp_yield(); \
1605 (count) = __kmp_yield_next; \
1606 } \
1607 } \
1608 }
1609
1610// If TPAUSE is available & enabled, use it. If oversubscribed, use the slower
1611// (C0.2) state, which improves performance of other SMT threads on the same
1612// core, otherwise, use the fast (C0.1) default state, or whatever the user has
1613// requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't
1614// available, fall back to the regular CPU pause and yield combination.
1615#if KMP_HAVE_UMWAIT
1616#define KMP_TPAUSE_MAX_MASK ((kmp_uint64)0xFFFF)
1617#define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1618 { \
1619 if (__kmp_tpause_enabled) { \
1620 if (KMP_OVERSUBSCRIBED) { \
1621 __kmp_tpause(0, (time)); \
1622 } else { \
1623 __kmp_tpause(__kmp_tpause_hint, (time)); \
1624 } \
1625 (time) = (time << 1 | 1) & KMP_TPAUSE_MAX_MASK; \
1626 } else { \
1627 KMP_CPU_PAUSE(); \
1628 if ((KMP_TRY_YIELD_OVERSUB)) { \
1629 __kmp_yield(); \
1630 } else if (__kmp_use_yield == 1) { \
1631 (count) -= 2; \
1632 if (!(count)) { \
1633 __kmp_yield(); \
1634 (count) = __kmp_yield_next; \
1635 } \
1636 } \
1637 } \
1638 }
1639#else
1640#define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1641 { \
1642 KMP_CPU_PAUSE(); \
1643 if ((KMP_TRY_YIELD_OVERSUB)) \
1644 __kmp_yield(); \
1645 else if (__kmp_use_yield == 1) { \
1646 (count) -= 2; \
1647 if (!(count)) { \
1648 __kmp_yield(); \
1649 (count) = __kmp_yield_next; \
1650 } \
1651 } \
1652 }
1653#endif // KMP_HAVE_UMWAIT
1654
1655/* ------------------------------------------------------------------------ */
1656/* Support datatypes for the orphaned construct nesting checks. */
1657/* ------------------------------------------------------------------------ */
1658
1659/* When adding to this enum, add its corresponding string in cons_text_c[]
1660 * array in kmp_error.cpp */
1661enum cons_type {
1662 ct_none,
1663 ct_parallel,
1664 ct_pdo,
1665 ct_pdo_ordered,
1666 ct_psections,
1667 ct_psingle,
1668 ct_critical,
1669 ct_ordered_in_parallel,
1670 ct_ordered_in_pdo,
1671 ct_master,
1672 ct_reduce,
1673 ct_barrier,
1674 ct_masked
1675};
1676
1677#define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1678
1679struct cons_data {
1680 ident_t const *ident;
1681 enum cons_type type;
1682 int prev;
1683 kmp_user_lock_p
1684 name; /* address exclusively for critical section name comparison */
1685};
1686
1687struct cons_header {
1688 int p_top, w_top, s_top;
1689 int stack_size, stack_top;
1690 struct cons_data *stack_data;
1691};
1692
1693struct kmp_region_info {
1694 char *text;
1695 int offset[KMP_MAX_FIELDS];
1696 int length[KMP_MAX_FIELDS];
1697};
1698
1699/* ---------------------------------------------------------------------- */
1700/* ---------------------------------------------------------------------- */
1701
1702#if KMP_OS_WINDOWS
1703typedef HANDLE kmp_thread_t;
1704typedef DWORD kmp_key_t;
1705#endif /* KMP_OS_WINDOWS */
1706
1707#if KMP_OS_UNIX
1708typedef pthread_t kmp_thread_t;
1709typedef pthread_key_t kmp_key_t;
1710#endif
1711
1712extern kmp_key_t __kmp_gtid_threadprivate_key;
1713
1714typedef struct kmp_sys_info {
1715 long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1716 long minflt; /* the number of page faults serviced without any I/O */
1717 long majflt; /* the number of page faults serviced that required I/O */
1718 long nswap; /* the number of times a process was "swapped" out of memory */
1719 long inblock; /* the number of times the file system had to perform input */
1720 long oublock; /* the number of times the file system had to perform output */
1721 long nvcsw; /* the number of times a context switch was voluntarily */
1722 long nivcsw; /* the number of times a context switch was forced */
1723} kmp_sys_info_t;
1724
1725#if USE_ITT_BUILD
1726// We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1727// required type here. Later we will check the type meets requirements.
1728typedef int kmp_itt_mark_t;
1729#define KMP_ITT_DEBUG 0
1730#endif /* USE_ITT_BUILD */
1731
1732typedef kmp_int32 kmp_critical_name[8];
1733
1734/*!
1735@ingroup PARALLEL
1736The type for a microtask which gets passed to @ref __kmpc_fork_call().
1737The arguments to the outlined function are
1738@param global_tid the global thread identity of the thread executing the
1739function.
1740@param bound_tid the local identity of the thread executing the function
1741@param ... pointers to shared variables accessed by the function.
1742*/
1743typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1744typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1745 ...);
1746
1747/*!
1748@ingroup THREADPRIVATE
1749@{
1750*/
1751/* ---------------------------------------------------------------------------
1752 */
1753/* Threadprivate initialization/finalization function declarations */
1754
1755/* for non-array objects: __kmpc_threadprivate_register() */
1756
1757/*!
1758 Pointer to the constructor function.
1759 The first argument is the <tt>this</tt> pointer
1760*/
1761typedef void *(*kmpc_ctor)(void *);
1762
1763/*!
1764 Pointer to the destructor function.
1765 The first argument is the <tt>this</tt> pointer
1766*/
1767typedef void (*kmpc_dtor)(
1768 void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1769 compiler */
1770/*!
1771 Pointer to an alternate constructor.
1772 The first argument is the <tt>this</tt> pointer.
1773*/
1774typedef void *(*kmpc_cctor)(void *, void *);
1775
1776/* for array objects: __kmpc_threadprivate_register_vec() */
1777/* First arg: "this" pointer */
1778/* Last arg: number of array elements */
1779/*!
1780 Array constructor.
1781 First argument is the <tt>this</tt> pointer
1782 Second argument the number of array elements.
1783*/
1784typedef void *(*kmpc_ctor_vec)(void *, size_t);
1785/*!
1786 Pointer to the array destructor function.
1787 The first argument is the <tt>this</tt> pointer
1788 Second argument the number of array elements.
1789*/
1790typedef void (*kmpc_dtor_vec)(void *, size_t);
1791/*!
1792 Array constructor.
1793 First argument is the <tt>this</tt> pointer
1794 Third argument the number of array elements.
1795*/
1796typedef void *(*kmpc_cctor_vec)(void *, void *,
1797 size_t); /* function unused by compiler */
1798
1799/*!
1800@}
1801*/
1802
1803/* keeps tracked of threadprivate cache allocations for cleanup later */
1804typedef struct kmp_cached_addr {
1805 void **addr; /* address of allocated cache */
1806 void ***compiler_cache; /* pointer to compiler's cache */
1807 void *data; /* pointer to global data */
1808 struct kmp_cached_addr *next; /* pointer to next cached address */
1809} kmp_cached_addr_t;
1810
1811struct private_data {
1812 struct private_data *next; /* The next descriptor in the list */
1813 void *data; /* The data buffer for this descriptor */
1814 int more; /* The repeat count for this descriptor */
1815 size_t size; /* The data size for this descriptor */
1816};
1817
1818struct private_common {
1819 struct private_common *next;
1820 struct private_common *link;
1821 void *gbl_addr;
1822 void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1823 size_t cmn_size;
1824};
1825
1826struct shared_common {
1827 struct shared_common *next;
1828 struct private_data *pod_init;
1829 void *obj_init;
1830 void *gbl_addr;
1831 union {
1832 kmpc_ctor ctor;
1833 kmpc_ctor_vec ctorv;
1834 } ct;
1835 union {
1836 kmpc_cctor cctor;
1837 kmpc_cctor_vec cctorv;
1838 } cct;
1839 union {
1840 kmpc_dtor dtor;
1841 kmpc_dtor_vec dtorv;
1842 } dt;
1843 size_t vec_len;
1844 int is_vec;
1845 size_t cmn_size;
1846};
1847
1848#define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1849#define KMP_HASH_TABLE_SIZE \
1850 (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1851#define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1852#define KMP_HASH(x) \
1853 ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1854
1855struct common_table {
1856 struct private_common *data[KMP_HASH_TABLE_SIZE];
1857};
1858
1859struct shared_table {
1860 struct shared_common *data[KMP_HASH_TABLE_SIZE];
1861};
1862
1863/* ------------------------------------------------------------------------ */
1864
1865#if KMP_USE_HIER_SCHED
1866// Shared barrier data that exists inside a single unit of the scheduling
1867// hierarchy
1868typedef struct kmp_hier_private_bdata_t {
1869 kmp_int32 num_active;
1870 kmp_uint64 index;
1871 kmp_uint64 wait_val[2];
1872} kmp_hier_private_bdata_t;
1873#endif
1874
1875typedef struct kmp_sched_flags {
1876 unsigned ordered : 1;
1877 unsigned nomerge : 1;
1878 unsigned contains_last : 1;
1879 unsigned use_hier : 1; // Used in KMP_USE_HIER_SCHED code
1880 unsigned use_hybrid : 1; // Used in KMP_WEIGHTED_ITERATIONS_SUPPORTED code
1881 unsigned unused : 27;
1882} kmp_sched_flags_t;
1883
1884KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1885
1886#if KMP_STATIC_STEAL_ENABLED
1887typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1888 kmp_int32 count;
1889 kmp_int32 ub;
1890 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1891 kmp_int32 lb;
1892 kmp_int32 st;
1893 kmp_int32 tc;
1894 kmp_lock_t *steal_lock; // lock used for chunk stealing
1895
1896 kmp_uint32 ordered_lower;
1897 kmp_uint32 ordered_upper;
1898
1899 // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1900 // a) parm3 is properly aligned and
1901 // b) all parm1-4 are on the same cache line.
1902 // Because of parm1-4 are used together, performance seems to be better
1903 // if they are on the same cache line (not measured though).
1904
1905 struct KMP_ALIGN(32) {
1906 kmp_int32 parm1;
1907 kmp_int32 parm2;
1908 kmp_int32 parm3;
1909 kmp_int32 parm4;
1910 };
1911
1912#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
1913 kmp_uint32 pchunks;
1914 kmp_uint32 num_procs_with_pcore;
1915 kmp_int32 first_thread_with_ecore;
1916#endif
1917#if KMP_OS_WINDOWS
1918 kmp_int32 last_upper;
1919#endif /* KMP_OS_WINDOWS */
1920} dispatch_private_info32_t;
1921
1922#if CACHE_LINE <= 128
1923KMP_BUILD_ASSERT(sizeof(dispatch_private_info32_t) <= 128);
1924#endif
1925
1926typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1927 kmp_int64 count; // current chunk number for static & static-steal scheduling
1928 kmp_int64 ub; /* upper-bound */
1929 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1930 kmp_int64 lb; /* lower-bound */
1931 kmp_int64 st; /* stride */
1932 kmp_int64 tc; /* trip count (number of iterations) */
1933 kmp_lock_t *steal_lock; // lock used for chunk stealing
1934
1935 kmp_uint64 ordered_lower;
1936 kmp_uint64 ordered_upper;
1937 /* parm[1-4] are used in different ways by different scheduling algorithms */
1938
1939 // KMP_ALIGN(32) ensures ( if the KMP_ALIGN macro is turned on )
1940 // a) parm3 is properly aligned and
1941 // b) all parm1-4 are in the same cache line.
1942 // Because of parm1-4 are used together, performance seems to be better
1943 // if they are in the same line (not measured though).
1944 struct KMP_ALIGN(32) {
1945 kmp_int64 parm1;
1946 kmp_int64 parm2;
1947 kmp_int64 parm3;
1948 kmp_int64 parm4;
1949 };
1950
1951#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
1952 kmp_uint64 pchunks;
1953 kmp_uint64 num_procs_with_pcore;
1954 kmp_int64 first_thread_with_ecore;
1955#endif
1956
1957#if KMP_OS_WINDOWS
1958 kmp_int64 last_upper;
1959#endif /* KMP_OS_WINDOWS */
1960} dispatch_private_info64_t;
1961
1962#if CACHE_LINE <= 128
1963KMP_BUILD_ASSERT(sizeof(dispatch_private_info64_t) <= 128);
1964#endif
1965
1966#else /* KMP_STATIC_STEAL_ENABLED */
1967typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1968 kmp_int32 lb;
1969 kmp_int32 ub;
1970 kmp_int32 st;
1971 kmp_int32 tc;
1972
1973 kmp_int32 parm1;
1974 kmp_int32 parm2;
1975 kmp_int32 parm3;
1976 kmp_int32 parm4;
1977
1978 kmp_int32 count;
1979
1980 kmp_uint32 ordered_lower;
1981 kmp_uint32 ordered_upper;
1982#if KMP_OS_WINDOWS
1983 kmp_int32 last_upper;
1984#endif /* KMP_OS_WINDOWS */
1985} dispatch_private_info32_t;
1986
1987typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1988 kmp_int64 lb; /* lower-bound */
1989 kmp_int64 ub; /* upper-bound */
1990 kmp_int64 st; /* stride */
1991 kmp_int64 tc; /* trip count (number of iterations) */
1992
1993 /* parm[1-4] are used in different ways by different scheduling algorithms */
1994 kmp_int64 parm1;
1995 kmp_int64 parm2;
1996 kmp_int64 parm3;
1997 kmp_int64 parm4;
1998
1999 kmp_int64 count; /* current chunk number for static scheduling */
2000
2001 kmp_uint64 ordered_lower;
2002 kmp_uint64 ordered_upper;
2003#if KMP_OS_WINDOWS
2004 kmp_int64 last_upper;
2005#endif /* KMP_OS_WINDOWS */
2006} dispatch_private_info64_t;
2007#endif /* KMP_STATIC_STEAL_ENABLED */
2008
2009typedef struct KMP_ALIGN_CACHE dispatch_private_info {
2010 union private_info {
2011 dispatch_private_info32_t p32;
2012 dispatch_private_info64_t p64;
2013 } u;
2014 enum sched_type schedule; /* scheduling algorithm */
2015 kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
2016 std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
2017 kmp_int32 ordered_bumped;
2018 // Stack of buffers for nest of serial regions
2019 struct dispatch_private_info *next;
2020 kmp_int32 type_size; /* the size of types in private_info */
2021#if KMP_USE_HIER_SCHED
2022 kmp_int32 hier_id;
2023 void *parent; /* hierarchical scheduling parent pointer */
2024#endif
2025 enum cons_type pushed_ws;
2026} dispatch_private_info_t;
2027
2028typedef struct dispatch_shared_info32 {
2029 /* chunk index under dynamic, number of idle threads under static-steal;
2030 iteration index otherwise */
2031 volatile kmp_uint32 iteration;
2032 volatile kmp_int32 num_done;
2033 volatile kmp_uint32 ordered_iteration;
2034 // Dummy to retain the structure size after making ordered_iteration scalar
2035 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
2036} dispatch_shared_info32_t;
2037
2038typedef struct dispatch_shared_info64 {
2039 /* chunk index under dynamic, number of idle threads under static-steal;
2040 iteration index otherwise */
2041 volatile kmp_uint64 iteration;
2042 volatile kmp_int64 num_done;
2043 volatile kmp_uint64 ordered_iteration;
2044 // Dummy to retain the structure size after making ordered_iteration scalar
2045 kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
2046} dispatch_shared_info64_t;
2047
2048typedef struct dispatch_shared_info {
2049 union shared_info {
2050 dispatch_shared_info32_t s32;
2051 dispatch_shared_info64_t s64;
2052 } u;
2053 volatile kmp_uint32 buffer_index;
2054 volatile kmp_int32 doacross_buf_idx; // teamwise index
2055 volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
2056 kmp_int32 doacross_num_done; // count finished threads
2057#if KMP_USE_HIER_SCHED
2058 void *hier;
2059#endif
2060#if KMP_USE_HWLOC
2061 // When linking with libhwloc, the ORDERED EPCC test slows down on big
2062 // machines (> 48 cores). Performance analysis showed that a cache thrash
2063 // was occurring and this padding helps alleviate the problem.
2064 char padding[64];
2065#endif
2066} dispatch_shared_info_t;
2067
2068typedef struct kmp_disp {
2069 /* Vector for ORDERED SECTION */
2070 void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
2071 /* Vector for END ORDERED SECTION */
2072 void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
2073
2074 dispatch_shared_info_t *th_dispatch_sh_current;
2075 dispatch_private_info_t *th_dispatch_pr_current;
2076
2077 dispatch_private_info_t *th_disp_buffer;
2078 kmp_uint32 th_disp_index;
2079 kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
2080 volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
2081 kmp_int64 *th_doacross_info; // info on loop bounds
2082#if KMP_USE_INTERNODE_ALIGNMENT
2083 char more_padding[INTERNODE_CACHE_LINE];
2084#endif
2085} kmp_disp_t;
2086
2087/* ------------------------------------------------------------------------ */
2088/* Barrier stuff */
2089
2090/* constants for barrier state update */
2091#define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
2092#define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
2093#define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
2094#define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
2095
2096#define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
2097#define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
2098#define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
2099
2100#if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
2101#error "Barrier sleep bit must be smaller than barrier bump bit"
2102#endif
2103#if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
2104#error "Barrier unused bit must be smaller than barrier bump bit"
2105#endif
2106
2107// Constants for release barrier wait state: currently, hierarchical only
2108#define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
2109#define KMP_BARRIER_OWN_FLAG \
2110 1 // Normal state; worker waiting on own b_go flag in release
2111#define KMP_BARRIER_PARENT_FLAG \
2112 2 // Special state; worker waiting on parent's b_go flag in release
2113#define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
2114 3 // Special state; tells worker to shift from parent to own b_go
2115#define KMP_BARRIER_SWITCHING \
2116 4 // Special state; worker resets appropriate flag on wake-up
2117
2118#define KMP_NOT_SAFE_TO_REAP \
2119 0 // Thread th_reap_state: not safe to reap (tasking)
2120#define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
2121
2122// The flag_type describes the storage used for the flag.
2123enum flag_type {
2124 flag32, /**< atomic 32 bit flags */
2125 flag64, /**< 64 bit flags */
2126 atomic_flag64, /**< atomic 64 bit flags */
2127 flag_oncore, /**< special 64-bit flag for on-core barrier (hierarchical) */
2128 flag_unset
2129};
2130
2131enum barrier_type {
2132 bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
2133 barriers if enabled) */
2134 bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
2135#if KMP_FAST_REDUCTION_BARRIER
2136 bs_reduction_barrier, /* 2, All barriers that are used in reduction */
2137#endif // KMP_FAST_REDUCTION_BARRIER
2138 bs_last_barrier /* Just a placeholder to mark the end */
2139};
2140
2141// to work with reduction barriers just like with plain barriers
2142#if !KMP_FAST_REDUCTION_BARRIER
2143#define bs_reduction_barrier bs_plain_barrier
2144#endif // KMP_FAST_REDUCTION_BARRIER
2145
2146typedef enum kmp_bar_pat { /* Barrier communication patterns */
2147 bp_linear_bar =
2148 0, /* Single level (degenerate) tree */
2149 bp_tree_bar =
2150 1, /* Balanced tree with branching factor 2^n */
2151 bp_hyper_bar = 2, /* Hypercube-embedded tree with min
2152 branching factor 2^n */
2153 bp_hierarchical_bar = 3, /* Machine hierarchy tree */
2154 bp_dist_bar = 4, /* Distributed barrier */
2155 bp_last_bar /* Placeholder to mark the end */
2156} kmp_bar_pat_e;
2157
2158#define KMP_BARRIER_ICV_PUSH 1
2159
2160/* Record for holding the values of the internal controls stack records */
2161typedef struct kmp_internal_control {
2162 int serial_nesting_level; /* corresponds to the value of the
2163 th_team_serialized field */
2164 kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
2165 thread) */
2166 kmp_int8
2167 bt_set; /* internal control for whether blocktime is explicitly set */
2168 int blocktime; /* internal control for blocktime */
2169#if KMP_USE_MONITOR
2170 int bt_intervals; /* internal control for blocktime intervals */
2171#endif
2172 int nproc; /* internal control for #threads for next parallel region (per
2173 thread) */
2174 int thread_limit; /* internal control for thread-limit-var */
2175 int task_thread_limit; /* internal control for thread-limit-var of a task*/
2176 int max_active_levels; /* internal control for max_active_levels */
2177 kmp_r_sched_t
2178 sched; /* internal control for runtime schedule {sched,chunk} pair */
2179 kmp_proc_bind_t proc_bind; /* internal control for affinity */
2180 kmp_int32 default_device; /* internal control for default device */
2181 struct kmp_internal_control *next;
2182} kmp_internal_control_t;
2183
2184static inline void copy_icvs(kmp_internal_control_t *dst,
2185 kmp_internal_control_t *src) {
2186 *dst = *src;
2187}
2188
2189/* Thread barrier needs volatile barrier fields */
2190typedef struct KMP_ALIGN_CACHE kmp_bstate {
2191 // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
2192 // uses of it). It is not explicitly aligned below, because we *don't* want
2193 // it to be padded -- instead, we fit b_go into the same cache line with
2194 // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
2195 kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
2196 // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
2197 // same NGO store
2198 volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
2199 KMP_ALIGN_CACHE volatile kmp_uint64
2200 b_arrived; // STATE => task reached synch point.
2201 kmp_uint32 *skip_per_level;
2202 kmp_uint32 my_level;
2203 kmp_int32 parent_tid;
2204 kmp_int32 old_tid;
2205 kmp_uint32 depth;
2206 struct kmp_bstate *parent_bar;
2207 kmp_team_t *team;
2208 kmp_uint64 leaf_state;
2209 kmp_uint32 nproc;
2210 kmp_uint8 base_leaf_kids;
2211 kmp_uint8 leaf_kids;
2212 kmp_uint8 offset;
2213 kmp_uint8 wait_flag;
2214 kmp_uint8 use_oncore_barrier;
2215#if USE_DEBUGGER
2216 // The following field is intended for the debugger solely. Only the worker
2217 // thread itself accesses this field: the worker increases it by 1 when it
2218 // arrives to a barrier.
2219 KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
2220#endif /* USE_DEBUGGER */
2221} kmp_bstate_t;
2222
2223union KMP_ALIGN_CACHE kmp_barrier_union {
2224 double b_align; /* use worst case alignment */
2225 char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
2226 kmp_bstate_t bb;
2227};
2228
2229typedef union kmp_barrier_union kmp_balign_t;
2230
2231/* Team barrier needs only non-volatile arrived counter */
2232union KMP_ALIGN_CACHE kmp_barrier_team_union {
2233 double b_align; /* use worst case alignment */
2234 char b_pad[CACHE_LINE];
2235 struct {
2236 kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2237#if USE_DEBUGGER
2238 // The following two fields are indended for the debugger solely. Only
2239 // primary thread of the team accesses these fields: the first one is
2240 // increased by 1 when the primary thread arrives to a barrier, the second
2241 // one is increased by one when all the threads arrived.
2242 kmp_uint b_master_arrived;
2243 kmp_uint b_team_arrived;
2244#endif
2245 };
2246};
2247
2248typedef union kmp_barrier_team_union kmp_balign_team_t;
2249
2250/* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2251 threads when a condition changes. This is to workaround an NPTL bug where
2252 padding was added to pthread_cond_t which caused the initialization routine
2253 to write outside of the structure if compiled on pre-NPTL threads. */
2254#if KMP_OS_WINDOWS
2255typedef struct kmp_win32_mutex {
2256 /* The Lock */
2257 CRITICAL_SECTION cs;
2258} kmp_win32_mutex_t;
2259
2260typedef struct kmp_win32_cond {
2261 /* Count of the number of waiters. */
2262 int waiters_count_;
2263
2264 /* Serialize access to <waiters_count_> */
2265 kmp_win32_mutex_t waiters_count_lock_;
2266
2267 /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2268 int release_count_;
2269
2270 /* Keeps track of the current "generation" so that we don't allow */
2271 /* one thread to steal all the "releases" from the broadcast. */
2272 int wait_generation_count_;
2273
2274 /* A manual-reset event that's used to block and release waiting threads. */
2275 HANDLE event_;
2276} kmp_win32_cond_t;
2277#endif
2278
2279#if KMP_OS_UNIX
2280
2281union KMP_ALIGN_CACHE kmp_cond_union {
2282 double c_align;
2283 char c_pad[CACHE_LINE];
2284 pthread_cond_t c_cond;
2285};
2286
2287typedef union kmp_cond_union kmp_cond_align_t;
2288
2289union KMP_ALIGN_CACHE kmp_mutex_union {
2290 double m_align;
2291 char m_pad[CACHE_LINE];
2292 pthread_mutex_t m_mutex;
2293};
2294
2295typedef union kmp_mutex_union kmp_mutex_align_t;
2296
2297#endif /* KMP_OS_UNIX */
2298
2299typedef struct kmp_desc_base {
2300 void *ds_stackbase;
2301 size_t ds_stacksize;
2302 int ds_stackgrow;
2303 kmp_thread_t ds_thread;
2304 volatile int ds_tid;
2305 int ds_gtid;
2306#if KMP_OS_WINDOWS
2307 volatile int ds_alive;
2308 DWORD ds_thread_id;
2309/* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2310 However, debugger support (libomp_db) cannot work with handles, because they
2311 uncomparable. For example, debugger requests info about thread with handle h.
2312 h is valid within debugger process, and meaningless within debugee process.
2313 Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2314 within debugee process, but it is a *new* handle which does *not* equal to
2315 any other handle in debugee... The only way to compare handles is convert
2316 them to system-wide ids. GetThreadId() function is available only in
2317 Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2318 on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2319 thread id by call to GetCurrentThreadId() from within the thread and save it
2320 to let libomp_db identify threads. */
2321#endif /* KMP_OS_WINDOWS */
2322} kmp_desc_base_t;
2323
2324typedef union KMP_ALIGN_CACHE kmp_desc {
2325 double ds_align; /* use worst case alignment */
2326 char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2327 kmp_desc_base_t ds;
2328} kmp_desc_t;
2329
2330typedef struct kmp_local {
2331 volatile int this_construct; /* count of single's encountered by thread */
2332 void *reduce_data;
2333#if KMP_USE_BGET
2334 void *bget_data;
2335 void *bget_list;
2336#if !USE_CMP_XCHG_FOR_BGET
2337#ifdef USE_QUEUING_LOCK_FOR_BGET
2338 kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2339#else
2340 kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2341// bootstrap lock so we can use it at library
2342// shutdown.
2343#endif /* USE_LOCK_FOR_BGET */
2344#endif /* ! USE_CMP_XCHG_FOR_BGET */
2345#endif /* KMP_USE_BGET */
2346
2347 PACKED_REDUCTION_METHOD_T
2348 packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2349 __kmpc_end_reduce*() */
2350
2351} kmp_local_t;
2352
2353#define KMP_CHECK_UPDATE(a, b) \
2354 if ((a) != (b)) \
2355 (a) = (b)
2356#define KMP_CHECK_UPDATE_SYNC(a, b) \
2357 if ((a) != (b)) \
2358 TCW_SYNC_PTR((a), (b))
2359
2360#define get__blocktime(xteam, xtid) \
2361 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2362#define get__bt_set(xteam, xtid) \
2363 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2364#if KMP_USE_MONITOR
2365#define get__bt_intervals(xteam, xtid) \
2366 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2367#endif
2368
2369#define get__dynamic_2(xteam, xtid) \
2370 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2371#define get__nproc_2(xteam, xtid) \
2372 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2373#define get__sched_2(xteam, xtid) \
2374 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2375
2376#define set__blocktime_team(xteam, xtid, xval) \
2377 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2378 (xval))
2379
2380#if KMP_USE_MONITOR
2381#define set__bt_intervals_team(xteam, xtid, xval) \
2382 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2383 (xval))
2384#endif
2385
2386#define set__bt_set_team(xteam, xtid, xval) \
2387 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2388
2389#define set__dynamic(xthread, xval) \
2390 (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2391#define get__dynamic(xthread) \
2392 (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2393
2394#define set__nproc(xthread, xval) \
2395 (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2396
2397#define set__thread_limit(xthread, xval) \
2398 (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2399
2400#define set__max_active_levels(xthread, xval) \
2401 (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2402
2403#define get__max_active_levels(xthread) \
2404 ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2405
2406#define set__sched(xthread, xval) \
2407 (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2408
2409#define set__proc_bind(xthread, xval) \
2410 (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2411#define get__proc_bind(xthread) \
2412 ((xthread)->th.th_current_task->td_icvs.proc_bind)
2413
2414// OpenMP tasking data structures
2415
2416typedef enum kmp_tasking_mode {
2417 tskm_immediate_exec = 0,
2418 tskm_extra_barrier = 1,
2419 tskm_task_teams = 2,
2420 tskm_max = 2
2421} kmp_tasking_mode_t;
2422
2423extern kmp_tasking_mode_t
2424 __kmp_tasking_mode; /* determines how/when to execute tasks */
2425extern int __kmp_task_stealing_constraint;
2426extern int __kmp_enable_task_throttling;
2427extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2428// specified, defaults to 0 otherwise
2429// Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2430extern kmp_int32 __kmp_max_task_priority;
2431// Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2432extern kmp_uint64 __kmp_taskloop_min_tasks;
2433
2434/* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2435 taskdata first */
2436#define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2437#define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2438
2439// The tt_found_tasks flag is a signal to all threads in the team that tasks
2440// were spawned and queued since the previous barrier release.
2441#define KMP_TASKING_ENABLED(task_team) \
2442 (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2443/*!
2444@ingroup BASIC_TYPES
2445@{
2446*/
2447
2448/*!
2449 */
2450typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2451
2452typedef union kmp_cmplrdata {
2453 kmp_int32 priority; /**< priority specified by user for the task */
2454 kmp_routine_entry_t
2455 destructors; /* pointer to function to invoke deconstructors of
2456 firstprivate C++ objects */
2457 /* future data */
2458} kmp_cmplrdata_t;
2459
2460/* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2461/*!
2462 */
2463typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2464 void *shareds; /**< pointer to block of pointers to shared vars */
2465 kmp_routine_entry_t
2466 routine; /**< pointer to routine to call for executing task */
2467 kmp_int32 part_id; /**< part id for the task */
2468 kmp_cmplrdata_t
2469 data1; /* Two known optional additions: destructors and priority */
2470 kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2471 /* future data */
2472 /* private vars */
2473} kmp_task_t;
2474
2475/*!
2476@}
2477*/
2478
2479typedef struct kmp_taskgroup {
2480 std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2481 std::atomic<kmp_int32>
2482 cancel_request; // request for cancellation of this taskgroup
2483 struct kmp_taskgroup *parent; // parent taskgroup
2484 // Block of data to perform task reduction
2485 void *reduce_data; // reduction related info
2486 kmp_int32 reduce_num_data; // number of data items to reduce
2487 uintptr_t *gomp_data; // gomp reduction data
2488} kmp_taskgroup_t;
2489
2490// forward declarations
2491typedef union kmp_depnode kmp_depnode_t;
2492typedef struct kmp_depnode_list kmp_depnode_list_t;
2493typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2494
2495// macros for checking dep flag as an integer
2496#define KMP_DEP_IN 0x1
2497#define KMP_DEP_OUT 0x2
2498#define KMP_DEP_INOUT 0x3
2499#define KMP_DEP_MTX 0x4
2500#define KMP_DEP_SET 0x8
2501#define KMP_DEP_ALL 0x80
2502// Compiler sends us this info. Note: some test cases contain an explicit copy
2503// of this struct and should be in sync with any changes here.
2504typedef struct kmp_depend_info {
2505 kmp_intptr_t base_addr;
2506 size_t len;
2507 union {
2508 kmp_uint8 flag; // flag as an unsigned char
2509 struct { // flag as a set of 8 bits
2510#if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
2511 /* Same fields as in the #else branch, but in reverse order */
2512 unsigned all : 1;
2513 unsigned unused : 3;
2514 unsigned set : 1;
2515 unsigned mtx : 1;
2516 unsigned out : 1;
2517 unsigned in : 1;
2518#else
2519 unsigned in : 1;
2520 unsigned out : 1;
2521 unsigned mtx : 1;
2522 unsigned set : 1;
2523 unsigned unused : 3;
2524 unsigned all : 1;
2525#endif
2526 } flags;
2527 };
2528} kmp_depend_info_t;
2529
2530// Internal structures to work with task dependencies:
2531struct kmp_depnode_list {
2532 kmp_depnode_t *node;
2533 kmp_depnode_list_t *next;
2534};
2535
2536// Max number of mutexinoutset dependencies per node
2537#define MAX_MTX_DEPS 4
2538
2539typedef struct kmp_base_depnode {
2540 kmp_depnode_list_t *successors; /* used under lock */
2541 kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2542 kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2543 kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2544 kmp_lock_t lock; /* guards shared fields: task, successors */
2545#if KMP_SUPPORT_GRAPH_OUTPUT
2546 kmp_uint32 id;
2547#endif
2548 std::atomic<kmp_int32> npredecessors;
2549 std::atomic<kmp_int32> nrefs;
2550} kmp_base_depnode_t;
2551
2552union KMP_ALIGN_CACHE kmp_depnode {
2553 double dn_align; /* use worst case alignment */
2554 char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2555 kmp_base_depnode_t dn;
2556};
2557
2558struct kmp_dephash_entry {
2559 kmp_intptr_t addr;
2560 kmp_depnode_t *last_out;
2561 kmp_depnode_list_t *last_set;
2562 kmp_depnode_list_t *prev_set;
2563 kmp_uint8 last_flag;
2564 kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2565 kmp_dephash_entry_t *next_in_bucket;
2566};
2567
2568typedef struct kmp_dephash {
2569 kmp_dephash_entry_t **buckets;
2570 size_t size;
2571 kmp_depnode_t *last_all;
2572 size_t generation;
2573 kmp_uint32 nelements;
2574 kmp_uint32 nconflicts;
2575} kmp_dephash_t;
2576
2577typedef struct kmp_task_affinity_info {
2578 kmp_intptr_t base_addr;
2579 size_t len;
2580 struct {
2581 bool flag1 : 1;
2582 bool flag2 : 1;
2583 kmp_int32 reserved : 30;
2584 } flags;
2585} kmp_task_affinity_info_t;
2586
2587typedef enum kmp_event_type_t {
2588 KMP_EVENT_UNINITIALIZED = 0,
2589 KMP_EVENT_ALLOW_COMPLETION = 1
2590} kmp_event_type_t;
2591
2592typedef struct {
2593 kmp_event_type_t type;
2594 kmp_tas_lock_t lock;
2595 union {
2596 kmp_task_t *task;
2597 } ed;
2598} kmp_event_t;
2599
2600#if OMPX_TASKGRAPH
2601// Initial number of allocated nodes while recording
2602#define INIT_MAPSIZE 50
2603
2604typedef struct kmp_taskgraph_flags { /*This needs to be exactly 32 bits */
2605 unsigned nowait : 1;
2606 unsigned re_record : 1;
2607 unsigned reserved : 30;
2608} kmp_taskgraph_flags_t;
2609
2610/// Represents a TDG node
2611typedef struct kmp_node_info {
2612 kmp_task_t *task; // Pointer to the actual task
2613 kmp_int32 *successors; // Array of the succesors ids
2614 kmp_int32 nsuccessors; // Number of succesors of the node
2615 std::atomic<kmp_int32>
2616 npredecessors_counter; // Number of predessors on the fly
2617 kmp_int32 npredecessors; // Total number of predecessors
2618 kmp_int32 successors_size; // Number of allocated succesors ids
2619 kmp_taskdata_t *parent_task; // Parent implicit task
2620} kmp_node_info_t;
2621
2622/// Represent a TDG's current status
2623typedef enum kmp_tdg_status {
2624 KMP_TDG_NONE = 0,
2625 KMP_TDG_RECORDING = 1,
2626 KMP_TDG_READY = 2
2627} kmp_tdg_status_t;
2628
2629/// Structure that contains a TDG
2630typedef struct kmp_tdg_info {
2631 kmp_int32 tdg_id; // Unique idenfifier of the TDG
2632 kmp_taskgraph_flags_t tdg_flags; // Flags related to a TDG
2633 kmp_int32 map_size; // Number of allocated TDG nodes
2634 kmp_int32 num_roots; // Number of roots tasks int the TDG
2635 kmp_int32 *root_tasks; // Array of tasks identifiers that are roots
2636 kmp_node_info_t *record_map; // Array of TDG nodes
2637 kmp_tdg_status_t tdg_status =
2638 KMP_TDG_NONE; // Status of the TDG (recording, ready...)
2639 std::atomic<kmp_int32> num_tasks; // Number of TDG nodes
2640 kmp_bootstrap_lock_t
2641 graph_lock; // Protect graph attributes when updated via taskloop_recur
2642 // Taskloop reduction related
2643 void *rec_taskred_data; // Data to pass to __kmpc_task_reduction_init or
2644 // __kmpc_taskred_init
2645 kmp_int32 rec_num_taskred;
2646} kmp_tdg_info_t;
2647
2648extern int __kmp_tdg_dot;
2649extern kmp_int32 __kmp_max_tdgs;
2650extern kmp_tdg_info_t **__kmp_global_tdgs;
2651extern kmp_int32 __kmp_curr_tdg_idx;
2652extern kmp_int32 __kmp_successors_size;
2653extern std::atomic<kmp_int32> __kmp_tdg_task_id;
2654extern kmp_int32 __kmp_num_tdg;
2655#endif
2656
2657#ifdef BUILD_TIED_TASK_STACK
2658
2659/* Tied Task stack definitions */
2660typedef struct kmp_stack_block {
2661 kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2662 struct kmp_stack_block *sb_next;
2663 struct kmp_stack_block *sb_prev;
2664} kmp_stack_block_t;
2665
2666typedef struct kmp_task_stack {
2667 kmp_stack_block_t ts_first_block; // first block of stack entries
2668 kmp_taskdata_t **ts_top; // pointer to the top of stack
2669 kmp_int32 ts_entries; // number of entries on the stack
2670} kmp_task_stack_t;
2671
2672#endif // BUILD_TIED_TASK_STACK
2673
2674typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2675#if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
2676 /* Same fields as in the #else branch, but in reverse order */
2677#if OMPX_TASKGRAPH
2678 unsigned reserved31 : 6;
2679 unsigned onced : 1;
2680#else
2681 unsigned reserved31 : 7;
2682#endif
2683 unsigned native : 1;
2684 unsigned freed : 1;
2685 unsigned complete : 1;
2686 unsigned executing : 1;
2687 unsigned started : 1;
2688 unsigned team_serial : 1;
2689 unsigned tasking_ser : 1;
2690 unsigned task_serial : 1;
2691 unsigned tasktype : 1;
2692 unsigned reserved : 8;
2693 unsigned hidden_helper : 1;
2694 unsigned detachable : 1;
2695 unsigned priority_specified : 1;
2696 unsigned proxy : 1;
2697 unsigned destructors_thunk : 1;
2698 unsigned merged_if0 : 1;
2699 unsigned final : 1;
2700 unsigned tiedness : 1;
2701#else
2702 /* Compiler flags */ /* Total compiler flags must be 16 bits */
2703 unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2704 unsigned final : 1; /* task is final(1) so execute immediately */
2705 unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2706 code path */
2707 unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2708 invoke destructors from the runtime */
2709 unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2710 context of the RTL) */
2711 unsigned priority_specified : 1; /* set if the compiler provides priority
2712 setting for the task */
2713 unsigned detachable : 1; /* 1 == can detach */
2714 unsigned hidden_helper : 1; /* 1 == hidden helper task */
2715 unsigned reserved : 8; /* reserved for compiler use */
2716
2717 /* Library flags */ /* Total library flags must be 16 bits */
2718 unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2719 unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2720 unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2721 // (1) or may be deferred (0)
2722 unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2723 // (0) [>= 2 threads]
2724 /* If either team_serial or tasking_ser is set, task team may be NULL */
2725 /* Task State Flags: */
2726 unsigned started : 1; /* 1==started, 0==not started */
2727 unsigned executing : 1; /* 1==executing, 0==not executing */
2728 unsigned complete : 1; /* 1==complete, 0==not complete */
2729 unsigned freed : 1; /* 1==freed, 0==allocated */
2730 unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2731#if OMPX_TASKGRAPH
2732 unsigned onced : 1; /* 1==ran once already, 0==never ran, record & replay purposes */
2733 unsigned reserved31 : 6; /* reserved for library use */
2734#else
2735 unsigned reserved31 : 7; /* reserved for library use */
2736#endif
2737#endif
2738} kmp_tasking_flags_t;
2739
2740typedef struct kmp_target_data {
2741 void *async_handle; // libomptarget async handle for task completion query
2742} kmp_target_data_t;
2743
2744struct kmp_taskdata { /* aligned during dynamic allocation */
2745 kmp_int32 td_task_id; /* id, assigned by debugger */
2746 kmp_tasking_flags_t td_flags; /* task flags */
2747 kmp_team_t *td_team; /* team for this task */
2748 kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2749 /* Currently not used except for perhaps IDB */
2750 kmp_taskdata_t *td_parent; /* parent task */
2751 kmp_int32 td_level; /* task nesting level */
2752 std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2753 ident_t *td_ident; /* task identifier */
2754 // Taskwait data.
2755 ident_t *td_taskwait_ident;
2756 kmp_uint32 td_taskwait_counter;
2757 kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2758 KMP_ALIGN_CACHE kmp_internal_control_t
2759 td_icvs; /* Internal control variables for the task */
2760 KMP_ALIGN_CACHE std::atomic<kmp_int32>
2761 td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2762 deallocated */
2763 std::atomic<kmp_int32>
2764 td_incomplete_child_tasks; /* Child tasks not yet complete */
2765 kmp_taskgroup_t
2766 *td_taskgroup; // Each task keeps pointer to its current taskgroup
2767 kmp_dephash_t
2768 *td_dephash; // Dependencies for children tasks are tracked from here
2769 kmp_depnode_t
2770 *td_depnode; // Pointer to graph node if this task has dependencies
2771 kmp_task_team_t *td_task_team;
2772 size_t td_size_alloc; // Size of task structure, including shareds etc.
2773#if defined(KMP_GOMP_COMPAT)
2774 // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2775 kmp_int32 td_size_loop_bounds;
2776#endif
2777 kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2778#if defined(KMP_GOMP_COMPAT)
2779 // GOMP sends in a copy function for copy constructors
2780 void (*td_copy_func)(void *, void *);
2781#endif
2782 kmp_event_t td_allow_completion_event;
2783#if OMPT_SUPPORT
2784 ompt_task_info_t ompt_task_info;
2785#endif
2786#if OMPX_TASKGRAPH
2787 bool is_taskgraph = 0; // whether the task is within a TDG
2788 kmp_tdg_info_t *tdg; // used to associate task with a TDG
2789#endif
2790 kmp_target_data_t td_target_data;
2791}; // struct kmp_taskdata
2792
2793// Make sure padding above worked
2794KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2795
2796// Data for task team but per thread
2797typedef struct kmp_base_thread_data {
2798 kmp_info_p *td_thr; // Pointer back to thread info
2799 // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2800 // queued?
2801 kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2802 kmp_taskdata_t *
2803 *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2804 kmp_int32 td_deque_size; // Size of deck
2805 kmp_uint32 td_deque_head; // Head of deque (will wrap)
2806 kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2807 kmp_int32 td_deque_ntasks; // Number of tasks in deque
2808 // GEH: shouldn't this be volatile since used in while-spin?
2809 kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2810#ifdef BUILD_TIED_TASK_STACK
2811 kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2812// scheduling constraint
2813#endif // BUILD_TIED_TASK_STACK
2814} kmp_base_thread_data_t;
2815
2816#define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2817#define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2818
2819#define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2820#define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2821
2822typedef union KMP_ALIGN_CACHE kmp_thread_data {
2823 kmp_base_thread_data_t td;
2824 double td_align; /* use worst case alignment */
2825 char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2826} kmp_thread_data_t;
2827
2828typedef struct kmp_task_pri {
2829 kmp_thread_data_t td;
2830 kmp_int32 priority;
2831 kmp_task_pri *next;
2832} kmp_task_pri_t;
2833
2834// Data for task teams which are used when tasking is enabled for the team
2835typedef struct kmp_base_task_team {
2836 kmp_bootstrap_lock_t
2837 tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2838 /* must be bootstrap lock since used at library shutdown*/
2839
2840 // TODO: check performance vs kmp_tas_lock_t
2841 kmp_bootstrap_lock_t tt_task_pri_lock; /* Lock to access priority tasks */
2842 kmp_task_pri_t *tt_task_pri_list;
2843
2844 kmp_task_team_t *tt_next; /* For linking the task team free list */
2845 kmp_thread_data_t
2846 *tt_threads_data; /* Array of per-thread structures for task team */
2847 /* Data survives task team deallocation */
2848 kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2849 executing this team? */
2850 /* TRUE means tt_threads_data is set up and initialized */
2851 kmp_int32 tt_nproc; /* #threads in team */
2852 kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2853 kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2854 kmp_int32 tt_untied_task_encountered;
2855 std::atomic<kmp_int32> tt_num_task_pri; // number of priority tasks enqueued
2856 // There is hidden helper thread encountered in this task team so that we must
2857 // wait when waiting on task team
2858 kmp_int32 tt_hidden_helper_task_encountered;
2859
2860 KMP_ALIGN_CACHE
2861 std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2862
2863 KMP_ALIGN_CACHE
2864 volatile kmp_uint32
2865 tt_active; /* is the team still actively executing tasks */
2866} kmp_base_task_team_t;
2867
2868union KMP_ALIGN_CACHE kmp_task_team {
2869 kmp_base_task_team_t tt;
2870 double tt_align; /* use worst case alignment */
2871 char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2872};
2873
2874#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2875// Free lists keep same-size free memory slots for fast memory allocation
2876// routines
2877typedef struct kmp_free_list {
2878 void *th_free_list_self; // Self-allocated tasks free list
2879 void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2880 // threads
2881 void *th_free_list_other; // Non-self free list (to be returned to owner's
2882 // sync list)
2883} kmp_free_list_t;
2884#endif
2885#if KMP_NESTED_HOT_TEAMS
2886// Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2887// are not put in teams pool, and they don't put threads in threads pool.
2888typedef struct kmp_hot_team_ptr {
2889 kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2890 kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2891} kmp_hot_team_ptr_t;
2892#endif
2893typedef struct kmp_teams_size {
2894 kmp_int32 nteams; // number of teams in a league
2895 kmp_int32 nth; // number of threads in each team of the league
2896} kmp_teams_size_t;
2897
2898// This struct stores a thread that acts as a "root" for a contention
2899// group. Contention groups are rooted at kmp_root threads, but also at
2900// each primary thread of each team created in the teams construct.
2901// This struct therefore also stores a thread_limit associated with
2902// that contention group, and a counter to track the number of threads
2903// active in that contention group. Each thread has a list of these: CG
2904// root threads have an entry in their list in which cg_root refers to
2905// the thread itself, whereas other workers in the CG will have a
2906// single entry where cg_root is same as the entry containing their CG
2907// root. When a thread encounters a teams construct, it will add a new
2908// entry to the front of its list, because it now roots a new CG.
2909typedef struct kmp_cg_root {
2910 kmp_info_p *cg_root; // "root" thread for a contention group
2911 // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2912 // thread_limit clause for teams primary threads
2913 kmp_int32 cg_thread_limit;
2914 kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2915 struct kmp_cg_root *up; // pointer to higher level CG root in list
2916} kmp_cg_root_t;
2917
2918// OpenMP thread data structures
2919
2920typedef struct KMP_ALIGN_CACHE kmp_base_info {
2921 /* Start with the readonly data which is cache aligned and padded. This is
2922 written before the thread starts working by the primary thread. Uber
2923 masters may update themselves later. Usage does not consider serialized
2924 regions. */
2925 kmp_desc_t th_info;
2926 kmp_team_p *th_team; /* team we belong to */
2927 kmp_root_p *th_root; /* pointer to root of task hierarchy */
2928 kmp_info_p *th_next_pool; /* next available thread in the pool */
2929 kmp_disp_t *th_dispatch; /* thread's dispatch data */
2930 int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2931
2932 /* The following are cached from the team info structure */
2933 /* TODO use these in more places as determined to be needed via profiling */
2934 int th_team_nproc; /* number of threads in a team */
2935 kmp_info_p *th_team_master; /* the team's primary thread */
2936 int th_team_serialized; /* team is serialized */
2937 microtask_t th_teams_microtask; /* save entry address for teams construct */
2938 int th_teams_level; /* save initial level of teams construct */
2939/* it is 0 on device but may be any on host */
2940
2941/* The blocktime info is copied from the team struct to the thread struct */
2942/* at the start of a barrier, and the values stored in the team are used */
2943/* at points in the code where the team struct is no longer guaranteed */
2944/* to exist (from the POV of worker threads). */
2945#if KMP_USE_MONITOR
2946 int th_team_bt_intervals;
2947 int th_team_bt_set;
2948#else
2949 kmp_uint64 th_team_bt_intervals;
2950#endif
2951
2952#if KMP_AFFINITY_SUPPORTED
2953 kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2954 kmp_affinity_ids_t th_topology_ids; /* thread's current topology ids */
2955 kmp_affinity_attrs_t th_topology_attrs; /* thread's current topology attrs */
2956#endif
2957 omp_allocator_handle_t th_def_allocator; /* default allocator */
2958 /* The data set by the primary thread at reinit, then R/W by the worker */
2959 KMP_ALIGN_CACHE int
2960 th_set_nproc; /* if > 0, then only use this request for the next fork */
2961#if KMP_NESTED_HOT_TEAMS
2962 kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2963#endif
2964 kmp_proc_bind_t
2965 th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2966 kmp_teams_size_t
2967 th_teams_size; /* number of teams/threads in teams construct */
2968#if KMP_AFFINITY_SUPPORTED
2969 int th_current_place; /* place currently bound to */
2970 int th_new_place; /* place to bind to in par reg */
2971 int th_first_place; /* first place in partition */
2972 int th_last_place; /* last place in partition */
2973#endif
2974 int th_prev_level; /* previous level for affinity format */
2975 int th_prev_num_threads; /* previous num_threads for affinity format */
2976#if USE_ITT_BUILD
2977 kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2978 kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2979 kmp_uint64 th_frame_time; /* frame timestamp */
2980#endif /* USE_ITT_BUILD */
2981 kmp_local_t th_local;
2982 struct private_common *th_pri_head;
2983
2984 /* Now the data only used by the worker (after initial allocation) */
2985 /* TODO the first serial team should actually be stored in the info_t
2986 structure. this will help reduce initial allocation overhead */
2987 KMP_ALIGN_CACHE kmp_team_p
2988 *th_serial_team; /*serialized team held in reserve*/
2989
2990#if OMPT_SUPPORT
2991 ompt_thread_info_t ompt_thread_info;
2992#endif
2993
2994 /* The following are also read by the primary thread during reinit */
2995 struct common_table *th_pri_common;
2996
2997 volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2998 /* while awaiting queuing lock acquire */
2999
3000 volatile void *th_sleep_loc; // this points at a kmp_flag<T>
3001 flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
3002
3003 ident_t *th_ident;
3004 unsigned th_x; // Random number generator data
3005 unsigned th_a; // Random number generator data
3006
3007 /* Tasking-related data for the thread */
3008 kmp_task_team_t *th_task_team; // Task team struct
3009 kmp_taskdata_t *th_current_task; // Innermost Task being executed
3010 kmp_uint8 th_task_state; // alternating 0/1 for task team identification
3011 kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
3012 // at nested levels
3013 kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
3014 kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
3015 kmp_uint32 th_reap_state; // Non-zero indicates thread is not
3016 // tasking, thus safe to reap
3017
3018 /* More stuff for keeping track of active/sleeping threads (this part is
3019 written by the worker thread) */
3020 kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
3021 int th_active; // ! sleeping; 32 bits for TCR/TCW
3022 std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
3023 // 0 = not used in team; 1 = used in team;
3024 // 2 = transitioning to not used in team; 3 = transitioning to used in team
3025 struct cons_header *th_cons; // used for consistency check
3026#if KMP_USE_HIER_SCHED
3027 // used for hierarchical scheduling
3028 kmp_hier_private_bdata_t *th_hier_bar_data;
3029#endif
3030
3031 /* Add the syncronizing data which is cache aligned and padded. */
3032 KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
3033
3034 KMP_ALIGN_CACHE volatile kmp_int32
3035 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
3036
3037#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
3038#define NUM_LISTS 4
3039 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
3040// allocation routines
3041#endif
3042
3043#if KMP_OS_WINDOWS
3044 kmp_win32_cond_t th_suspend_cv;
3045 kmp_win32_mutex_t th_suspend_mx;
3046 std::atomic<int> th_suspend_init;
3047#endif
3048#if KMP_OS_UNIX
3049 kmp_cond_align_t th_suspend_cv;
3050 kmp_mutex_align_t th_suspend_mx;
3051 std::atomic<int> th_suspend_init_count;
3052#endif
3053
3054#if USE_ITT_BUILD
3055 kmp_itt_mark_t th_itt_mark_single;
3056// alignment ???
3057#endif /* USE_ITT_BUILD */
3058#if KMP_STATS_ENABLED
3059 kmp_stats_list *th_stats;
3060#endif
3061#if KMP_OS_UNIX
3062 std::atomic<bool> th_blocking;
3063#endif
3064 kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
3065} kmp_base_info_t;
3066
3067typedef union KMP_ALIGN_CACHE kmp_info {
3068 double th_align; /* use worst case alignment */
3069 char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
3070 kmp_base_info_t th;
3071} kmp_info_t;
3072
3073// OpenMP thread team data structures
3074
3075typedef struct kmp_base_data {
3076 volatile kmp_uint32 t_value;
3077} kmp_base_data_t;
3078
3079typedef union KMP_ALIGN_CACHE kmp_sleep_team {
3080 double dt_align; /* use worst case alignment */
3081 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3082 kmp_base_data_t dt;
3083} kmp_sleep_team_t;
3084
3085typedef union KMP_ALIGN_CACHE kmp_ordered_team {
3086 double dt_align; /* use worst case alignment */
3087 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3088 kmp_base_data_t dt;
3089} kmp_ordered_team_t;
3090
3091typedef int (*launch_t)(int gtid);
3092
3093/* Minimum number of ARGV entries to malloc if necessary */
3094#define KMP_MIN_MALLOC_ARGV_ENTRIES 100
3095
3096// Set up how many argv pointers will fit in cache lines containing
3097// t_inline_argv. Historically, we have supported at least 96 bytes. Using a
3098// larger value for more space between the primary write/worker read section and
3099// read/write by all section seems to buy more performance on EPCC PARALLEL.
3100#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3101#define KMP_INLINE_ARGV_BYTES \
3102 (4 * CACHE_LINE - \
3103 ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
3104 sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
3105 CACHE_LINE))
3106#else
3107#define KMP_INLINE_ARGV_BYTES \
3108 (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
3109#endif
3110#define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
3111
3112typedef struct KMP_ALIGN_CACHE kmp_base_team {
3113 // Synchronization Data
3114 // ---------------------------------------------------------------------------
3115 KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
3116 kmp_balign_team_t t_bar[bs_last_barrier];
3117 std::atomic<int> t_construct; // count of single directive encountered by team
3118 char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
3119
3120 // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
3121 std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
3122 std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
3123
3124 // Primary thread only
3125 // ---------------------------------------------------------------------------
3126 KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
3127 int t_master_this_cons; // "this_construct" single counter of primary thread
3128 // in parent team
3129 ident_t *t_ident; // if volatile, have to change too much other crud to
3130 // volatile too
3131 kmp_team_p *t_parent; // parent team
3132 kmp_team_p *t_next_pool; // next free team in the team pool
3133 kmp_disp_t *t_dispatch; // thread's dispatch data
3134 kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
3135 kmp_proc_bind_t t_proc_bind; // bind type for par region
3136#if USE_ITT_BUILD
3137 kmp_uint64 t_region_time; // region begin timestamp
3138#endif /* USE_ITT_BUILD */
3139
3140 // Primary thread write, workers read
3141 // --------------------------------------------------------------------------
3142 KMP_ALIGN_CACHE void **t_argv;
3143 int t_argc;
3144 int t_nproc; // number of threads in team
3145 microtask_t t_pkfn;
3146 launch_t t_invoke; // procedure to launch the microtask
3147
3148#if OMPT_SUPPORT
3149 ompt_team_info_t ompt_team_info;
3150 ompt_lw_taskteam_t *ompt_serialized_team_info;
3151#endif
3152
3153#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3154 kmp_int8 t_fp_control_saved;
3155 kmp_int8 t_pad2b;
3156 kmp_int16 t_x87_fpu_control_word; // FP control regs
3157 kmp_uint32 t_mxcsr;
3158#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3159
3160 void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
3161
3162 KMP_ALIGN_CACHE kmp_info_t **t_threads;
3163 kmp_taskdata_t
3164 *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
3165 int t_level; // nested parallel level
3166
3167 KMP_ALIGN_CACHE int t_max_argc;
3168 int t_max_nproc; // max threads this team can handle (dynamically expandable)
3169 int t_serialized; // levels deep of serialized teams
3170 dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
3171 int t_id; // team's id, assigned by debugger.
3172 int t_active_level; // nested active parallel level
3173 kmp_r_sched_t t_sched; // run-time schedule for the team
3174#if KMP_AFFINITY_SUPPORTED
3175 int t_first_place; // first & last place in parent thread's partition.
3176 int t_last_place; // Restore these values to primary thread after par region.
3177#endif // KMP_AFFINITY_SUPPORTED
3178 int t_display_affinity;
3179 int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
3180 // omp_set_num_threads() call
3181 omp_allocator_handle_t t_def_allocator; /* default allocator */
3182
3183// Read/write by workers as well
3184#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
3185 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
3186 // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
3187 // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
3188 // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
3189 char dummy_padding[1024];
3190#endif
3191 // Internal control stack for additional nested teams.
3192 KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
3193 // for SERIALIZED teams nested 2 or more levels deep
3194 // typed flag to store request state of cancellation
3195 std::atomic<kmp_int32> t_cancel_request;
3196 int t_master_active; // save on fork, restore on join
3197 void *t_copypriv_data; // team specific pointer to copyprivate data array
3198#if KMP_OS_WINDOWS
3199 std::atomic<kmp_uint32> t_copyin_counter;
3200#endif
3201#if USE_ITT_BUILD
3202 void *t_stack_id; // team specific stack stitching id (for ittnotify)
3203#endif /* USE_ITT_BUILD */
3204 distributedBarrier *b; // Distributed barrier data associated with team
3205} kmp_base_team_t;
3206
3207union KMP_ALIGN_CACHE kmp_team {
3208 kmp_base_team_t t;
3209 double t_align; /* use worst case alignment */
3210 char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
3211};
3212
3213typedef union KMP_ALIGN_CACHE kmp_time_global {
3214 double dt_align; /* use worst case alignment */
3215 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3216 kmp_base_data_t dt;
3217} kmp_time_global_t;
3218
3219typedef struct kmp_base_global {
3220 /* cache-aligned */
3221 kmp_time_global_t g_time;
3222
3223 /* non cache-aligned */
3224 volatile int g_abort;
3225 volatile int g_done;
3226
3227 int g_dynamic;
3228 enum dynamic_mode g_dynamic_mode;
3229} kmp_base_global_t;
3230
3231typedef union KMP_ALIGN_CACHE kmp_global {
3232 kmp_base_global_t g;
3233 double g_align; /* use worst case alignment */
3234 char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
3235} kmp_global_t;
3236
3237typedef struct kmp_base_root {
3238 // TODO: GEH - combine r_active with r_in_parallel then r_active ==
3239 // (r_in_parallel>= 0)
3240 // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
3241 // the synch overhead or keeping r_active
3242 volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
3243 // keeps a count of active parallel regions per root
3244 std::atomic<int> r_in_parallel;
3245 // GEH: This is misnamed, should be r_active_levels
3246 kmp_team_t *r_root_team;
3247 kmp_team_t *r_hot_team;
3248 kmp_info_t *r_uber_thread;
3249 kmp_lock_t r_begin_lock;
3250 volatile int r_begin;
3251 int r_blocktime; /* blocktime for this root and descendants */
3252#if KMP_AFFINITY_SUPPORTED
3253 int r_affinity_assigned;
3254#endif // KMP_AFFINITY_SUPPORTED
3255} kmp_base_root_t;
3256
3257typedef union KMP_ALIGN_CACHE kmp_root {
3258 kmp_base_root_t r;
3259 double r_align; /* use worst case alignment */
3260 char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
3261} kmp_root_t;
3262
3263struct fortran_inx_info {
3264 kmp_int32 data;
3265};
3266
3267// This list type exists to hold old __kmp_threads arrays so that
3268// old references to them may complete while reallocation takes place when
3269// expanding the array. The items in this list are kept alive until library
3270// shutdown.
3271typedef struct kmp_old_threads_list_t {
3272 kmp_info_t **threads;
3273 struct kmp_old_threads_list_t *next;
3274} kmp_old_threads_list_t;
3275
3276/* ------------------------------------------------------------------------ */
3277
3278extern int __kmp_settings;
3279extern int __kmp_duplicate_library_ok;
3280#if USE_ITT_BUILD
3281extern int __kmp_forkjoin_frames;
3282extern int __kmp_forkjoin_frames_mode;
3283#endif
3284extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
3285extern int __kmp_determ_red;
3286
3287#ifdef KMP_DEBUG
3288extern int kmp_a_debug;
3289extern int kmp_b_debug;
3290extern int kmp_c_debug;
3291extern int kmp_d_debug;
3292extern int kmp_e_debug;
3293extern int kmp_f_debug;
3294#endif /* KMP_DEBUG */
3295
3296/* For debug information logging using rotating buffer */
3297#define KMP_DEBUG_BUF_LINES_INIT 512
3298#define KMP_DEBUG_BUF_LINES_MIN 1
3299
3300#define KMP_DEBUG_BUF_CHARS_INIT 128
3301#define KMP_DEBUG_BUF_CHARS_MIN 2
3302
3303extern int
3304 __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
3305extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
3306extern int
3307 __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
3308extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
3309 entry pointer */
3310
3311extern char *__kmp_debug_buffer; /* Debug buffer itself */
3312extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
3313 printed in buffer so far */
3314extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
3315 recommended in warnings */
3316/* end rotating debug buffer */
3317
3318#ifdef KMP_DEBUG
3319extern int __kmp_par_range; /* +1 => only go par for constructs in range */
3320
3321#define KMP_PAR_RANGE_ROUTINE_LEN 1024
3322extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
3323#define KMP_PAR_RANGE_FILENAME_LEN 1024
3324extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
3325extern int __kmp_par_range_lb;
3326extern int __kmp_par_range_ub;
3327#endif
3328
3329/* For printing out dynamic storage map for threads and teams */
3330extern int
3331 __kmp_storage_map; /* True means print storage map for threads and teams */
3332extern int __kmp_storage_map_verbose; /* True means storage map includes
3333 placement info */
3334extern int __kmp_storage_map_verbose_specified;
3335
3336#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3337extern kmp_cpuinfo_t __kmp_cpuinfo;
3338static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; }
3339#elif KMP_OS_DARWIN && KMP_ARCH_AARCH64
3340static inline bool __kmp_is_hybrid_cpu() { return true; }
3341#else
3342static inline bool __kmp_is_hybrid_cpu() { return false; }
3343#endif
3344
3345extern volatile int __kmp_init_serial;
3346extern volatile int __kmp_init_gtid;
3347extern volatile int __kmp_init_common;
3348extern volatile int __kmp_need_register_serial;
3349extern volatile int __kmp_init_middle;
3350extern volatile int __kmp_init_parallel;
3351#if KMP_USE_MONITOR
3352extern volatile int __kmp_init_monitor;
3353#endif
3354extern volatile int __kmp_init_user_locks;
3355extern volatile int __kmp_init_hidden_helper_threads;
3356extern int __kmp_init_counter;
3357extern int __kmp_root_counter;
3358extern int __kmp_version;
3359
3360/* list of address of allocated caches for commons */
3361extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
3362
3363/* Barrier algorithm types and options */
3364extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
3365extern kmp_uint32 __kmp_barrier_release_bb_dflt;
3366extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
3367extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
3368extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
3369extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
3370extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
3371extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
3372extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
3373extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
3374extern char const *__kmp_barrier_type_name[bs_last_barrier];
3375extern char const *__kmp_barrier_pattern_name[bp_last_bar];
3376
3377/* Global Locks */
3378extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
3379extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3380extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3381extern kmp_bootstrap_lock_t
3382 __kmp_exit_lock; /* exit() is not always thread-safe */
3383#if KMP_USE_MONITOR
3384extern kmp_bootstrap_lock_t
3385 __kmp_monitor_lock; /* control monitor thread creation */
3386#endif
3387extern kmp_bootstrap_lock_t
3388 __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3389 __kmp_threads expansion to co-exist */
3390
3391extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
3392extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
3393extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3394
3395extern enum library_type __kmp_library;
3396
3397extern enum sched_type __kmp_sched; /* default runtime scheduling */
3398extern enum sched_type __kmp_static; /* default static scheduling method */
3399extern enum sched_type __kmp_guided; /* default guided scheduling method */
3400extern enum sched_type __kmp_auto; /* default auto scheduling method */
3401extern int __kmp_chunk; /* default runtime chunk size */
3402extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3403
3404extern size_t __kmp_stksize; /* stack size per thread */
3405#if KMP_USE_MONITOR
3406extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3407#endif
3408extern size_t __kmp_stkoffset; /* stack offset per thread */
3409extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3410
3411extern size_t
3412 __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3413extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3414extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3415extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3416extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3417extern int __kmp_generate_warnings; /* should we issue warnings? */
3418extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3419
3420#ifdef DEBUG_SUSPEND
3421extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3422#endif
3423
3424extern kmp_int32 __kmp_use_yield;
3425extern kmp_int32 __kmp_use_yield_exp_set;
3426extern kmp_uint32 __kmp_yield_init;
3427extern kmp_uint32 __kmp_yield_next;
3428extern kmp_uint64 __kmp_pause_init;
3429
3430/* ------------------------------------------------------------------------- */
3431extern int __kmp_allThreadsSpecified;
3432
3433extern size_t __kmp_align_alloc;
3434/* following data protected by initialization routines */
3435extern int __kmp_xproc; /* number of processors in the system */
3436extern int __kmp_avail_proc; /* number of processors available to the process */
3437extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3438extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3439// maximum total number of concurrently-existing threads on device
3440extern int __kmp_max_nth;
3441// maximum total number of concurrently-existing threads in a contention group
3442extern int __kmp_cg_max_nth;
3443extern int __kmp_task_max_nth; // max threads used in a task
3444extern int __kmp_teams_max_nth; // max threads used in a teams construct
3445extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3446 __kmp_root */
3447extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3448 region a la OMP_NUM_THREADS */
3449extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3450 initialization */
3451extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3452 used (fixed) */
3453extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3454 (__kmpc_threadprivate_cached()) */
3455extern int __kmp_dflt_blocktime; /* number of microseconds to wait before
3456 blocking (env setting) */
3457extern char __kmp_blocktime_units; /* 'm' or 'u' to note units specified */
3458extern bool __kmp_wpolicy_passive; /* explicitly set passive wait policy */
3459
3460// Convert raw blocktime from ms to us if needed.
3461static inline void __kmp_aux_convert_blocktime(int *bt) {
3462 if (__kmp_blocktime_units == 'm') {
3463 if (*bt > INT_MAX / 1000) {
3464 *bt = INT_MAX / 1000;
3465 KMP_INFORM(MaxValueUsing, "kmp_set_blocktime(ms)", bt);
3466 }
3467 *bt = *bt * 1000;
3468 }
3469}
3470
3471#if KMP_USE_MONITOR
3472extern int
3473 __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3474extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3475 blocking */
3476#endif
3477#ifdef KMP_ADJUST_BLOCKTIME
3478extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3479#endif /* KMP_ADJUST_BLOCKTIME */
3480#ifdef KMP_DFLT_NTH_CORES
3481extern int __kmp_ncores; /* Total number of cores for threads placement */
3482#endif
3483/* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3484extern int __kmp_abort_delay;
3485
3486extern int __kmp_need_register_atfork_specified;
3487extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3488 to install fork handler */
3489extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3490 0 - not set, will be set at runtime
3491 1 - using stack search
3492 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3493 X*) or TlsGetValue(Windows* OS))
3494 3 - static TLS (__declspec(thread) __kmp_gtid),
3495 Linux* OS .so only. */
3496extern int
3497 __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3498#ifdef KMP_TDATA_GTID
3499extern KMP_THREAD_LOCAL int __kmp_gtid;
3500#endif
3501extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3502extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3503#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3504extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3505extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3506extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3507#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3508
3509// max_active_levels for nested parallelism enabled by default via
3510// OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3511extern int __kmp_dflt_max_active_levels;
3512// Indicates whether value of __kmp_dflt_max_active_levels was already
3513// explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3514extern bool __kmp_dflt_max_active_levels_set;
3515extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3516 concurrent execution per team */
3517#if KMP_NESTED_HOT_TEAMS
3518extern int __kmp_hot_teams_mode;
3519extern int __kmp_hot_teams_max_level;
3520#endif
3521
3522#if KMP_OS_LINUX
3523extern enum clock_function_type __kmp_clock_function;
3524extern int __kmp_clock_function_param;
3525#endif /* KMP_OS_LINUX */
3526
3527#if KMP_MIC_SUPPORTED
3528extern enum mic_type __kmp_mic_type;
3529#endif
3530
3531#ifdef USE_LOAD_BALANCE
3532extern double __kmp_load_balance_interval; // load balance algorithm interval
3533#endif /* USE_LOAD_BALANCE */
3534
3535// OpenMP 3.1 - Nested num threads array
3536typedef struct kmp_nested_nthreads_t {
3537 int *nth;
3538 int size;
3539 int used;
3540} kmp_nested_nthreads_t;
3541
3542extern kmp_nested_nthreads_t __kmp_nested_nth;
3543
3544#if KMP_USE_ADAPTIVE_LOCKS
3545
3546// Parameters for the speculative lock backoff system.
3547struct kmp_adaptive_backoff_params_t {
3548 // Number of soft retries before it counts as a hard retry.
3549 kmp_uint32 max_soft_retries;
3550 // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3551 // the right
3552 kmp_uint32 max_badness;
3553};
3554
3555extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3556
3557#if KMP_DEBUG_ADAPTIVE_LOCKS
3558extern const char *__kmp_speculative_statsfile;
3559#endif
3560
3561#endif // KMP_USE_ADAPTIVE_LOCKS
3562
3563extern int __kmp_display_env; /* TRUE or FALSE */
3564extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3565extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3566extern int __kmp_nteams;
3567extern int __kmp_teams_thread_limit;
3568
3569/* ------------------------------------------------------------------------- */
3570
3571/* the following are protected by the fork/join lock */
3572/* write: lock read: anytime */
3573extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3574/* Holds old arrays of __kmp_threads until library shutdown */
3575extern kmp_old_threads_list_t *__kmp_old_threads_list;
3576/* read/write: lock */
3577extern volatile kmp_team_t *__kmp_team_pool;
3578extern volatile kmp_info_t *__kmp_thread_pool;
3579extern kmp_info_t *__kmp_thread_pool_insert_pt;
3580
3581// total num threads reachable from some root thread including all root threads
3582extern volatile int __kmp_nth;
3583/* total number of threads reachable from some root thread including all root
3584 threads, and those in the thread pool */
3585extern volatile int __kmp_all_nth;
3586extern std::atomic<int> __kmp_thread_pool_active_nth;
3587
3588extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3589/* end data protected by fork/join lock */
3590/* ------------------------------------------------------------------------- */
3591
3592#define __kmp_get_gtid() __kmp_get_global_thread_id()
3593#define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3594#define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3595#define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3596#define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3597
3598// AT: Which way is correct?
3599// AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3600// AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3601#define __kmp_get_team_num_threads(gtid) \
3602 (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3603
3604static inline bool KMP_UBER_GTID(int gtid) {
3605 KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3606 KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3607 return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3608 __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3609}
3610
3611static inline int __kmp_tid_from_gtid(int gtid) {
3612 KMP_DEBUG_ASSERT(gtid >= 0);
3613 return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3614}
3615
3616static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3617 KMP_DEBUG_ASSERT(tid >= 0 && team);
3618 return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3619}
3620
3621static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3622 KMP_DEBUG_ASSERT(thr);
3623 return thr->th.th_info.ds.ds_gtid;
3624}
3625
3626static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3627 KMP_DEBUG_ASSERT(gtid >= 0);
3628 return __kmp_threads[gtid];
3629}
3630
3631static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3632 KMP_DEBUG_ASSERT(gtid >= 0);
3633 return __kmp_threads[gtid]->th.th_team;
3634}
3635
3636static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3637 if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3638 KMP_FATAL(ThreadIdentInvalid);
3639}
3640
3641#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3642extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3643extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3644extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3645extern int __kmp_mwait_hints; // Hints to pass in to mwait
3646#endif
3647
3648#if KMP_HAVE_UMWAIT
3649extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists
3650extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE
3651extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE
3652extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero)
3653#endif
3654
3655/* ------------------------------------------------------------------------- */
3656
3657extern kmp_global_t __kmp_global; /* global status */
3658
3659extern kmp_info_t __kmp_monitor;
3660// For Debugging Support Library
3661extern std::atomic<kmp_int32> __kmp_team_counter;
3662// For Debugging Support Library
3663extern std::atomic<kmp_int32> __kmp_task_counter;
3664
3665#if USE_DEBUGGER
3666#define _KMP_GEN_ID(counter) \
3667 (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3668#else
3669#define _KMP_GEN_ID(counter) (~0)
3670#endif /* USE_DEBUGGER */
3671
3672#define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3673#define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3674
3675/* ------------------------------------------------------------------------ */
3676
3677extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3678 size_t size, char const *format, ...);
3679
3680extern void __kmp_serial_initialize(void);
3681extern void __kmp_middle_initialize(void);
3682extern void __kmp_parallel_initialize(void);
3683
3684extern void __kmp_internal_begin(void);
3685extern void __kmp_internal_end_library(int gtid);
3686extern void __kmp_internal_end_thread(int gtid);
3687extern void __kmp_internal_end_atexit(void);
3688extern void __kmp_internal_end_dtor(void);
3689extern void __kmp_internal_end_dest(void *);
3690
3691extern int __kmp_register_root(int initial_thread);
3692extern void __kmp_unregister_root(int gtid);
3693extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3694
3695extern int __kmp_ignore_mppbeg(void);
3696extern int __kmp_ignore_mppend(void);
3697
3698extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3699extern void __kmp_exit_single(int gtid);
3700
3701extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3702extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3703
3704#ifdef USE_LOAD_BALANCE
3705extern int __kmp_get_load_balance(int);
3706#endif
3707
3708extern int __kmp_get_global_thread_id(void);
3709extern int __kmp_get_global_thread_id_reg(void);
3710extern void __kmp_exit_thread(int exit_status);
3711extern void __kmp_abort(char const *format, ...);
3712extern void __kmp_abort_thread(void);
3713KMP_NORETURN extern void __kmp_abort_process(void);
3714extern void __kmp_warn(char const *format, ...);
3715
3716extern void __kmp_set_num_threads(int new_nth, int gtid);
3717
3718extern bool __kmp_detect_shm();
3719extern bool __kmp_detect_tmp();
3720
3721// Returns current thread (pointer to kmp_info_t). Current thread *must* be
3722// registered.
3723static inline kmp_info_t *__kmp_entry_thread() {
3724 int gtid = __kmp_entry_gtid();
3725
3726 return __kmp_threads[gtid];
3727}
3728
3729extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3730extern int __kmp_get_max_active_levels(int gtid);
3731extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3732extern int __kmp_get_team_size(int gtid, int level);
3733extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3734extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3735
3736extern unsigned short __kmp_get_random(kmp_info_t *thread);
3737extern void __kmp_init_random(kmp_info_t *thread);
3738
3739extern kmp_r_sched_t __kmp_get_schedule_global(void);
3740extern void __kmp_adjust_num_threads(int new_nproc);
3741extern void __kmp_check_stksize(size_t *val);
3742
3743extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3744extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3745extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3746#define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3747#define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3748#define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3749
3750#if USE_FAST_MEMORY
3751extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3752 size_t size KMP_SRC_LOC_DECL);
3753extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3754extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3755extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3756#define __kmp_fast_allocate(this_thr, size) \
3757 ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3758#define __kmp_fast_free(this_thr, ptr) \
3759 ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3760#endif
3761
3762extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3763extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3764 size_t elsize KMP_SRC_LOC_DECL);
3765extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3766 size_t size KMP_SRC_LOC_DECL);
3767extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3768#define __kmp_thread_malloc(th, size) \
3769 ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3770#define __kmp_thread_calloc(th, nelem, elsize) \
3771 ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3772#define __kmp_thread_realloc(th, ptr, size) \
3773 ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3774#define __kmp_thread_free(th, ptr) \
3775 ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3776
3777extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3778
3779extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3780 kmp_proc_bind_t proc_bind);
3781extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3782 int num_threads);
3783extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3784 int num_teams_ub, int num_threads);
3785
3786extern void __kmp_yield();
3787
3788extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3789 enum sched_type schedule, kmp_int32 lb,
3790 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3791extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3792 enum sched_type schedule, kmp_uint32 lb,
3793 kmp_uint32 ub, kmp_int32 st,
3794 kmp_int32 chunk);
3795extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3796 enum sched_type schedule, kmp_int64 lb,
3797 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3798extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3799 enum sched_type schedule, kmp_uint64 lb,
3800 kmp_uint64 ub, kmp_int64 st,
3801 kmp_int64 chunk);
3802
3803extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3804 kmp_int32 *p_last, kmp_int32 *p_lb,
3805 kmp_int32 *p_ub, kmp_int32 *p_st);
3806extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3807 kmp_int32 *p_last, kmp_uint32 *p_lb,
3808 kmp_uint32 *p_ub, kmp_int32 *p_st);
3809extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3810 kmp_int32 *p_last, kmp_int64 *p_lb,
3811 kmp_int64 *p_ub, kmp_int64 *p_st);
3812extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3813 kmp_int32 *p_last, kmp_uint64 *p_lb,
3814 kmp_uint64 *p_ub, kmp_int64 *p_st);
3815
3816extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3817extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3818extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3819extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3820
3821#ifdef KMP_GOMP_COMPAT
3822
3823extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3824 enum sched_type schedule, kmp_int32 lb,
3825 kmp_int32 ub, kmp_int32 st,
3826 kmp_int32 chunk, int push_ws);
3827extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3828 enum sched_type schedule, kmp_uint32 lb,
3829 kmp_uint32 ub, kmp_int32 st,
3830 kmp_int32 chunk, int push_ws);
3831extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3832 enum sched_type schedule, kmp_int64 lb,
3833 kmp_int64 ub, kmp_int64 st,
3834 kmp_int64 chunk, int push_ws);
3835extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3836 enum sched_type schedule, kmp_uint64 lb,
3837 kmp_uint64 ub, kmp_int64 st,
3838 kmp_int64 chunk, int push_ws);
3839extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3840extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3841extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3842extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3843
3844#endif /* KMP_GOMP_COMPAT */
3845
3846extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3847extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3848extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3849extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3850extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3851extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3852 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3853 void *obj);
3854extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3855 kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3856
3857extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3858 int final_spin
3859#if USE_ITT_BUILD
3860 ,
3861 void *itt_sync_obj
3862#endif
3863);
3864extern void __kmp_release_64(kmp_flag_64<> *flag);
3865
3866extern void __kmp_infinite_loop(void);
3867
3868extern void __kmp_cleanup(void);
3869
3870#if KMP_HANDLE_SIGNALS
3871extern int __kmp_handle_signals;
3872extern void __kmp_install_signals(int parallel_init);
3873extern void __kmp_remove_signals(void);
3874#endif
3875
3876extern void __kmp_clear_system_time(void);
3877extern void __kmp_read_system_time(double *delta);
3878
3879extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3880
3881extern void __kmp_expand_host_name(char *buffer, size_t size);
3882extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3883
3884#if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && (KMP_ARCH_AARCH64 || KMP_ARCH_ARM))
3885extern void
3886__kmp_initialize_system_tick(void); /* Initialize timer tick value */
3887#endif
3888
3889extern void
3890__kmp_runtime_initialize(void); /* machine specific initialization */
3891extern void __kmp_runtime_destroy(void);
3892
3893#if KMP_AFFINITY_SUPPORTED
3894extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3895 kmp_affin_mask_t *mask);
3896extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3897 kmp_affin_mask_t *mask);
3898extern void __kmp_affinity_initialize(kmp_affinity_t &affinity);
3899extern void __kmp_affinity_uninitialize(void);
3900extern void __kmp_affinity_set_init_mask(
3901 int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3902void __kmp_affinity_bind_init_mask(int gtid);
3903extern void __kmp_affinity_bind_place(int gtid);
3904extern void __kmp_affinity_determine_capable(const char *env_var);
3905extern int __kmp_aux_set_affinity(void **mask);
3906extern int __kmp_aux_get_affinity(void **mask);
3907extern int __kmp_aux_get_affinity_max_proc();
3908extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3909extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3910extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3911extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3912#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
3913extern int __kmp_get_first_osid_with_ecore(void);
3914#endif
3915#if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
3916 KMP_OS_AIX
3917extern int kmp_set_thread_affinity_mask_initial(void);
3918#endif
3919static inline void __kmp_assign_root_init_mask() {
3920 int gtid = __kmp_entry_gtid();
3921 kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3922 if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3923 __kmp_affinity_set_init_mask(gtid, /*isa_root=*/TRUE);
3924 __kmp_affinity_bind_init_mask(gtid);
3925 r->r.r_affinity_assigned = TRUE;
3926 }
3927}
3928static inline void __kmp_reset_root_init_mask(int gtid) {
3929 if (!KMP_AFFINITY_CAPABLE())
3930 return;
3931 kmp_info_t *th = __kmp_threads[gtid];
3932 kmp_root_t *r = th->th.th_root;
3933 if (r->r.r_uber_thread == th && r->r.r_affinity_assigned) {
3934 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
3935 KMP_CPU_COPY(th->th.th_affin_mask, __kmp_affin_origMask);
3936 r->r.r_affinity_assigned = FALSE;
3937 }
3938}
3939#else /* KMP_AFFINITY_SUPPORTED */
3940#define __kmp_assign_root_init_mask() /* Nothing */
3941static inline void __kmp_reset_root_init_mask(int gtid) {}
3942#endif /* KMP_AFFINITY_SUPPORTED */
3943// No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3944// format string is for affinity, so platforms that do not support
3945// affinity can still use the other fields, e.g., %n for num_threads
3946extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3947 kmp_str_buf_t *buffer);
3948extern void __kmp_aux_display_affinity(int gtid, const char *format);
3949
3950extern void __kmp_cleanup_hierarchy();
3951extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3952
3953#if KMP_USE_FUTEX
3954
3955extern int __kmp_futex_determine_capable(void);
3956
3957#endif // KMP_USE_FUTEX
3958
3959extern void __kmp_gtid_set_specific(int gtid);
3960extern int __kmp_gtid_get_specific(void);
3961
3962extern double __kmp_read_cpu_time(void);
3963
3964extern int __kmp_read_system_info(struct kmp_sys_info *info);
3965
3966#if KMP_USE_MONITOR
3967extern void __kmp_create_monitor(kmp_info_t *th);
3968#endif
3969
3970extern void *__kmp_launch_thread(kmp_info_t *thr);
3971
3972extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3973
3974#if KMP_OS_WINDOWS
3975extern int __kmp_still_running(kmp_info_t *th);
3976extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3977extern void __kmp_free_handle(kmp_thread_t tHandle);
3978#endif
3979
3980#if KMP_USE_MONITOR
3981extern void __kmp_reap_monitor(kmp_info_t *th);
3982#endif
3983extern void __kmp_reap_worker(kmp_info_t *th);
3984extern void __kmp_terminate_thread(int gtid);
3985
3986extern int __kmp_try_suspend_mx(kmp_info_t *th);
3987extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3988extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3989
3990extern void __kmp_elapsed(double *);
3991extern void __kmp_elapsed_tick(double *);
3992
3993extern void __kmp_enable(int old_state);
3994extern void __kmp_disable(int *old_state);
3995
3996extern void __kmp_thread_sleep(int millis);
3997
3998extern void __kmp_common_initialize(void);
3999extern void __kmp_common_destroy(void);
4000extern void __kmp_common_destroy_gtid(int gtid);
4001
4002#if KMP_OS_UNIX
4003extern void __kmp_register_atfork(void);
4004#endif
4005extern void __kmp_suspend_initialize(void);
4006extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
4007extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
4008
4009extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
4010 int tid);
4011extern kmp_team_t *
4012__kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
4013#if OMPT_SUPPORT
4014 ompt_data_t ompt_parallel_data,
4015#endif
4016 kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
4017 int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
4018extern void __kmp_free_thread(kmp_info_t *);
4019extern void __kmp_free_team(kmp_root_t *,
4020 kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
4021extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
4022
4023/* ------------------------------------------------------------------------ */
4024
4025extern void __kmp_initialize_bget(kmp_info_t *th);
4026extern void __kmp_finalize_bget(kmp_info_t *th);
4027
4028KMP_EXPORT void *kmpc_malloc(size_t size);
4029KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
4030KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
4031KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
4032KMP_EXPORT void kmpc_free(void *ptr);
4033
4034/* declarations for internal use */
4035
4036extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
4037 size_t reduce_size, void *reduce_data,
4038 void (*reduce)(void *, void *));
4039extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
4040extern int __kmp_barrier_gomp_cancel(int gtid);
4041
4042/*!
4043 * Tell the fork call which compiler generated the fork call, and therefore how
4044 * to deal with the call.
4045 */
4046enum fork_context_e {
4047 fork_context_gnu, /**< Called from GNU generated code, so must not invoke the
4048 microtask internally. */
4049 fork_context_intel, /**< Called from Intel generated code. */
4050 fork_context_last
4051};
4052extern int __kmp_fork_call(ident_t *loc, int gtid,
4053 enum fork_context_e fork_context, kmp_int32 argc,
4054 microtask_t microtask, launch_t invoker,
4055 kmp_va_list ap);
4056
4057extern void __kmp_join_call(ident_t *loc, int gtid
4058#if OMPT_SUPPORT
4059 ,
4060 enum fork_context_e fork_context
4061#endif
4062 ,
4063 int exit_teams = 0);
4064
4065extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
4066extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
4067extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
4068extern int __kmp_invoke_task_func(int gtid);
4069extern void __kmp_run_before_invoked_task(int gtid, int tid,
4070 kmp_info_t *this_thr,
4071 kmp_team_t *team);
4072extern void __kmp_run_after_invoked_task(int gtid, int tid,
4073 kmp_info_t *this_thr,
4074 kmp_team_t *team);
4075
4076// should never have been exported
4077KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
4078extern int __kmp_invoke_teams_master(int gtid);
4079extern void __kmp_teams_master(int gtid);
4080extern int __kmp_aux_get_team_num();
4081extern int __kmp_aux_get_num_teams();
4082extern void __kmp_save_internal_controls(kmp_info_t *thread);
4083extern void __kmp_user_set_library(enum library_type arg);
4084extern void __kmp_aux_set_library(enum library_type arg);
4085extern void __kmp_aux_set_stacksize(size_t arg);
4086extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
4087extern void __kmp_aux_set_defaults(char const *str, size_t len);
4088
4089/* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
4090void kmpc_set_blocktime(int arg);
4091void ompc_set_nested(int flag);
4092void ompc_set_dynamic(int flag);
4093void ompc_set_num_threads(int arg);
4094
4095extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
4096 kmp_team_t *team, int tid);
4097extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
4098extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4099 kmp_tasking_flags_t *flags,
4100 size_t sizeof_kmp_task_t,
4101 size_t sizeof_shareds,
4102 kmp_routine_entry_t task_entry);
4103extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
4104 kmp_team_t *team, int tid,
4105 int set_curr_task);
4106extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
4107extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
4108
4109extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
4110 int gtid,
4111 kmp_task_t *task);
4112extern void __kmp_fulfill_event(kmp_event_t *event);
4113
4114extern void __kmp_free_task_team(kmp_info_t *thread,
4115 kmp_task_team_t *task_team);
4116extern void __kmp_reap_task_teams(void);
4117extern void __kmp_wait_to_unref_task_teams(void);
4118extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
4119 int always);
4120extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
4121extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
4122#if USE_ITT_BUILD
4123 ,
4124 void *itt_sync_obj
4125#endif /* USE_ITT_BUILD */
4126 ,
4127 int wait = 1);
4128extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
4129 int gtid);
4130
4131extern int __kmp_is_address_mapped(void *addr);
4132extern kmp_uint64 __kmp_hardware_timestamp(void);
4133
4134#if KMP_OS_UNIX
4135extern int __kmp_read_from_file(char const *path, char const *format, ...);
4136#endif
4137
4138/* ------------------------------------------------------------------------ */
4139//
4140// Assembly routines that have no compiler intrinsic replacement
4141//
4142
4143extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
4144 void *argv[]
4145#if OMPT_SUPPORT
4146 ,
4147 void **exit_frame_ptr
4148#endif
4149);
4150
4151/* ------------------------------------------------------------------------ */
4152
4153KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
4154KMP_EXPORT void __kmpc_end(ident_t *);
4155
4156KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
4157 kmpc_ctor_vec ctor,
4158 kmpc_cctor_vec cctor,
4159 kmpc_dtor_vec dtor,
4160 size_t vector_length);
4161KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
4162 kmpc_ctor ctor, kmpc_cctor cctor,
4163 kmpc_dtor dtor);
4164KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
4165 void *data, size_t size);
4166
4167KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
4168KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
4169KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
4170KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
4171
4172KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
4173KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
4174 kmpc_micro microtask, ...);
4175KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs,
4176 kmpc_micro microtask, kmp_int32 cond,
4177 void *args);
4178
4179KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
4180KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
4181
4182KMP_EXPORT void __kmpc_flush(ident_t *);
4183KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
4184KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
4185KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
4186KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
4187 kmp_int32 filter);
4188KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
4189KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
4190KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
4191KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
4192 kmp_critical_name *);
4193KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
4194 kmp_critical_name *);
4195KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
4196 kmp_critical_name *, uint32_t hint);
4197
4198KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
4199KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
4200
4201KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
4202 kmp_int32 global_tid);
4203
4204KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
4205KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
4206
4207KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid);
4208KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid,
4209 kmp_int32 numberOfSections);
4210KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid);
4211
4212KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
4213 kmp_int32 schedtype, kmp_int32 *plastiter,
4214 kmp_int *plower, kmp_int *pupper,
4215 kmp_int *pstride, kmp_int incr,
4216 kmp_int chunk);
4217
4218KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
4219
4220KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
4221 size_t cpy_size, void *cpy_data,
4222 void (*cpy_func)(void *, void *),
4223 kmp_int32 didit);
4224
4225KMP_EXPORT void *__kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid,
4226 void *cpy_data);
4227
4228extern void KMPC_SET_NUM_THREADS(int arg);
4229extern void KMPC_SET_DYNAMIC(int flag);
4230extern void KMPC_SET_NESTED(int flag);
4231
4232/* OMP 3.0 tasking interface routines */
4233KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
4234 kmp_task_t *new_task);
4235KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4236 kmp_int32 flags,
4237 size_t sizeof_kmp_task_t,
4238 size_t sizeof_shareds,
4239 kmp_routine_entry_t task_entry);
4240KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
4241 ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
4242 size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
4243KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
4244 kmp_task_t *task);
4245KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
4246 kmp_task_t *task);
4247KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
4248 kmp_task_t *new_task);
4249KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
4250KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
4251 int end_part);
4252
4253#if TASK_UNUSED
4254void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
4255void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
4256 kmp_task_t *task);
4257#endif // TASK_UNUSED
4258
4259/* ------------------------------------------------------------------------ */
4260
4261KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
4262KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
4263
4264KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
4265 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
4266 kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
4267 kmp_depend_info_t *noalias_dep_list);
4268
4269KMP_EXPORT kmp_base_depnode_t *__kmpc_task_get_depnode(kmp_task_t *task);
4270
4271KMP_EXPORT kmp_depnode_list_t *__kmpc_task_get_successors(kmp_task_t *task);
4272
4273KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
4274 kmp_int32 ndeps,
4275 kmp_depend_info_t *dep_list,
4276 kmp_int32 ndeps_noalias,
4277 kmp_depend_info_t *noalias_dep_list);
4278/* __kmpc_omp_taskwait_deps_51 : Function for OpenMP 5.1 nowait clause.
4279 * Placeholder for taskwait with nowait clause.*/
4280KMP_EXPORT void __kmpc_omp_taskwait_deps_51(ident_t *loc_ref, kmp_int32 gtid,
4281 kmp_int32 ndeps,
4282 kmp_depend_info_t *dep_list,
4283 kmp_int32 ndeps_noalias,
4284 kmp_depend_info_t *noalias_dep_list,
4285 kmp_int32 has_no_wait);
4286
4287extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
4288 bool serialize_immediate);
4289
4290KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
4291 kmp_int32 cncl_kind);
4292KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
4293 kmp_int32 cncl_kind);
4294KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
4295KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
4296
4297KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
4298KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
4299KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
4300 kmp_int32 if_val, kmp_uint64 *lb,
4301 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
4302 kmp_int32 sched, kmp_uint64 grainsize,
4303 void *task_dup);
4304KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
4305 kmp_task_t *task, kmp_int32 if_val,
4306 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4307 kmp_int32 nogroup, kmp_int32 sched,
4308 kmp_uint64 grainsize, kmp_int32 modifier,
4309 void *task_dup);
4310KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
4311KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
4312KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
4313KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
4314 int is_ws, int num,
4315 void *data);
4316KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
4317 int num, void *data);
4318KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
4319 int is_ws);
4320KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
4321 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
4322 kmp_task_affinity_info_t *affin_list);
4323KMP_EXPORT void __kmp_set_num_teams(int num_teams);
4324KMP_EXPORT int __kmp_get_max_teams(void);
4325KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
4326KMP_EXPORT int __kmp_get_teams_thread_limit(void);
4327
4328/* Interface target task integration */
4329KMP_EXPORT void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid);
4330KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid);
4331
4332/* Lock interface routines (fast versions with gtid passed in) */
4333KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
4334 void **user_lock);
4335KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
4336 void **user_lock);
4337KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
4338 void **user_lock);
4339KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
4340 void **user_lock);
4341KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4342KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
4343 void **user_lock);
4344KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
4345 void **user_lock);
4346KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
4347 void **user_lock);
4348KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4349KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
4350 void **user_lock);
4351
4352KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4353 void **user_lock, uintptr_t hint);
4354KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4355 void **user_lock,
4356 uintptr_t hint);
4357
4358#if OMPX_TASKGRAPH
4359// Taskgraph's Record & Replay mechanism
4360// __kmp_tdg_is_recording: check whether a given TDG is recording
4361// status: the tdg's current status
4362static inline bool __kmp_tdg_is_recording(kmp_tdg_status_t status) {
4363 return status == KMP_TDG_RECORDING;
4364}
4365
4366KMP_EXPORT kmp_int32 __kmpc_start_record_task(ident_t *loc, kmp_int32 gtid,
4367 kmp_int32 input_flags,
4368 kmp_int32 tdg_id);
4369KMP_EXPORT void __kmpc_end_record_task(ident_t *loc, kmp_int32 gtid,
4370 kmp_int32 input_flags, kmp_int32 tdg_id);
4371#endif
4372/* Interface to fast scalable reduce methods routines */
4373
4374KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
4375 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4376 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4377 kmp_critical_name *lck);
4378KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
4379 kmp_critical_name *lck);
4380KMP_EXPORT kmp_int32 __kmpc_reduce(
4381 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4382 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4383 kmp_critical_name *lck);
4384KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
4385 kmp_critical_name *lck);
4386
4387/* Internal fast reduction routines */
4388
4389extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
4390 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4391 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4392 kmp_critical_name *lck);
4393
4394// this function is for testing set/get/determine reduce method
4395KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
4396
4397KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
4398KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
4399
4400// C++ port
4401// missing 'extern "C"' declarations
4402
4403KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
4404KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
4405KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
4406 kmp_int32 num_threads);
4407
4408KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
4409 int proc_bind);
4410KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
4411 kmp_int32 num_teams,
4412 kmp_int32 num_threads);
4413KMP_EXPORT void __kmpc_set_thread_limit(ident_t *loc, kmp_int32 global_tid,
4414 kmp_int32 thread_limit);
4415/* Function for OpenMP 5.1 num_teams clause */
4416KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
4417 kmp_int32 num_teams_lb,
4418 kmp_int32 num_teams_ub,
4419 kmp_int32 num_threads);
4420KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
4421 kmpc_micro microtask, ...);
4422struct kmp_dim { // loop bounds info casted to kmp_int64
4423 kmp_int64 lo; // lower
4424 kmp_int64 up; // upper
4425 kmp_int64 st; // stride
4426};
4427KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
4428 kmp_int32 num_dims,
4429 const struct kmp_dim *dims);
4430KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
4431 const kmp_int64 *vec);
4432KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
4433 const kmp_int64 *vec);
4434KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
4435
4436KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
4437 void *data, size_t size,
4438 void ***cache);
4439
4440// The routines below are not exported.
4441// Consider making them 'static' in corresponding source files.
4442void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
4443 void *data_addr, size_t pc_size);
4444struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
4445 void *data_addr,
4446 size_t pc_size);
4447void __kmp_threadprivate_resize_cache(int newCapacity);
4448void __kmp_cleanup_threadprivate_caches();
4449
4450// ompc_, kmpc_ entries moved from omp.h.
4451#if KMP_OS_WINDOWS
4452#define KMPC_CONVENTION __cdecl
4453#else
4454#define KMPC_CONVENTION
4455#endif
4456
4457#ifndef __OMP_H
4458typedef enum omp_sched_t {
4459 omp_sched_static = 1,
4460 omp_sched_dynamic = 2,
4461 omp_sched_guided = 3,
4462 omp_sched_auto = 4
4463} omp_sched_t;
4464typedef void *kmp_affinity_mask_t;
4465#endif
4466
4467KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4468KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4469KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4470KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4471KMP_EXPORT int KMPC_CONVENTION
4472kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4473KMP_EXPORT int KMPC_CONVENTION
4474kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4475KMP_EXPORT int KMPC_CONVENTION
4476kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4477
4478KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4479KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4480KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4481KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4482KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4483void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4484size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4485void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4486size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4487 char const *format);
4488
4489enum kmp_target_offload_kind {
4490 tgt_disabled = 0,
4491 tgt_default = 1,
4492 tgt_mandatory = 2
4493};
4494typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4495// Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4496extern kmp_target_offload_kind_t __kmp_target_offload;
4497extern int __kmpc_get_target_offload();
4498
4499// Constants used in libomptarget
4500#define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4501#define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4502
4503// OMP Pause Resource
4504
4505// The following enum is used both to set the status in __kmp_pause_status, and
4506// as the internal equivalent of the externally-visible omp_pause_resource_t.
4507typedef enum kmp_pause_status_t {
4508 kmp_not_paused = 0, // status is not paused, or, requesting resume
4509 kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4510 kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4511} kmp_pause_status_t;
4512
4513// This stores the pause state of the runtime
4514extern kmp_pause_status_t __kmp_pause_status;
4515extern int __kmpc_pause_resource(kmp_pause_status_t level);
4516extern int __kmp_pause_resource(kmp_pause_status_t level);
4517// Soft resume sets __kmp_pause_status, and wakes up all threads.
4518extern void __kmp_resume_if_soft_paused();
4519// Hard resume simply resets the status to not paused. Library will appear to
4520// be uninitialized after hard pause. Let OMP constructs trigger required
4521// initializations.
4522static inline void __kmp_resume_if_hard_paused() {
4523 if (__kmp_pause_status == kmp_hard_paused) {
4524 __kmp_pause_status = kmp_not_paused;
4525 }
4526}
4527
4528extern void __kmp_omp_display_env(int verbose);
4529
4530// 1: it is initializing hidden helper team
4531extern volatile int __kmp_init_hidden_helper;
4532// 1: the hidden helper team is done
4533extern volatile int __kmp_hidden_helper_team_done;
4534// 1: enable hidden helper task
4535extern kmp_int32 __kmp_enable_hidden_helper;
4536// Main thread of hidden helper team
4537extern kmp_info_t *__kmp_hidden_helper_main_thread;
4538// Descriptors for the hidden helper threads
4539extern kmp_info_t **__kmp_hidden_helper_threads;
4540// Number of hidden helper threads
4541extern kmp_int32 __kmp_hidden_helper_threads_num;
4542// Number of hidden helper tasks that have not been executed yet
4543extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4544
4545extern void __kmp_hidden_helper_initialize();
4546extern void __kmp_hidden_helper_threads_initz_routine();
4547extern void __kmp_do_initialize_hidden_helper_threads();
4548extern void __kmp_hidden_helper_threads_initz_wait();
4549extern void __kmp_hidden_helper_initz_release();
4550extern void __kmp_hidden_helper_threads_deinitz_wait();
4551extern void __kmp_hidden_helper_threads_deinitz_release();
4552extern void __kmp_hidden_helper_main_thread_wait();
4553extern void __kmp_hidden_helper_worker_thread_wait();
4554extern void __kmp_hidden_helper_worker_thread_signal();
4555extern void __kmp_hidden_helper_main_thread_release();
4556
4557// Check whether a given thread is a hidden helper thread
4558#define KMP_HIDDEN_HELPER_THREAD(gtid) \
4559 ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4560
4561#define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4562 ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4563
4564#define KMP_HIDDEN_HELPER_MAIN_THREAD(gtid) \
4565 ((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4566
4567#define KMP_HIDDEN_HELPER_TEAM(team) \
4568 (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4569
4570// Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4571// main thread, is skipped.
4572#define KMP_GTID_TO_SHADOW_GTID(gtid) \
4573 ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4574
4575// Return the adjusted gtid value by subtracting from gtid the number
4576// of hidden helper threads. This adjusted value is the gtid the thread would
4577// have received if there were no hidden helper threads.
4578static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4579 int adjusted_gtid = gtid;
4580 if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4581 gtid - __kmp_hidden_helper_threads_num >= 0) {
4582 adjusted_gtid -= __kmp_hidden_helper_threads_num;
4583 }
4584 return adjusted_gtid;
4585}
4586
4587// Support for error directive
4588typedef enum kmp_severity_t {
4589 severity_warning = 1,
4590 severity_fatal = 2
4591} kmp_severity_t;
4592extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4593
4594// Support for scope directive
4595KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4596KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4597
4598#ifdef __cplusplus
4599}
4600#endif
4601
4602template <bool C, bool S>
4603extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4604template <bool C, bool S>
4605extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4606template <bool C, bool S>
4607extern void __kmp_atomic_suspend_64(int th_gtid,
4608 kmp_atomic_flag_64<C, S> *flag);
4609extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4610#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4611template <bool C, bool S>
4612extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4613template <bool C, bool S>
4614extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4615template <bool C, bool S>
4616extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4617extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4618#endif
4619template <bool C, bool S>
4620extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4621template <bool C, bool S>
4622extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4623template <bool C, bool S>
4624extern void __kmp_atomic_resume_64(int target_gtid,
4625 kmp_atomic_flag_64<C, S> *flag);
4626extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4627
4628template <bool C, bool S>
4629int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4630 kmp_flag_32<C, S> *flag, int final_spin,
4631 int *thread_finished,
4632#if USE_ITT_BUILD
4633 void *itt_sync_obj,
4634#endif /* USE_ITT_BUILD */
4635 kmp_int32 is_constrained);
4636template <bool C, bool S>
4637int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4638 kmp_flag_64<C, S> *flag, int final_spin,
4639 int *thread_finished,
4640#if USE_ITT_BUILD
4641 void *itt_sync_obj,
4642#endif /* USE_ITT_BUILD */
4643 kmp_int32 is_constrained);
4644template <bool C, bool S>
4645int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4646 kmp_atomic_flag_64<C, S> *flag,
4647 int final_spin, int *thread_finished,
4648#if USE_ITT_BUILD
4649 void *itt_sync_obj,
4650#endif /* USE_ITT_BUILD */
4651 kmp_int32 is_constrained);
4652int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4653 kmp_flag_oncore *flag, int final_spin,
4654 int *thread_finished,
4655#if USE_ITT_BUILD
4656 void *itt_sync_obj,
4657#endif /* USE_ITT_BUILD */
4658 kmp_int32 is_constrained);
4659
4660extern int __kmp_nesting_mode;
4661extern int __kmp_nesting_mode_nlevels;
4662extern int *__kmp_nesting_nth_level;
4663extern void __kmp_init_nesting_mode();
4664extern void __kmp_set_nesting_mode_threads();
4665
4666/// This class safely opens and closes a C-style FILE* object using RAII
4667/// semantics. There are also methods which allow using stdout or stderr as
4668/// the underlying FILE* object. With the implicit conversion operator to
4669/// FILE*, an object with this type can be used in any function which takes
4670/// a FILE* object e.g., fprintf().
4671/// No close method is needed at use sites.
4672class kmp_safe_raii_file_t {
4673 FILE *f;
4674
4675 void close() {
4676 if (f && f != stdout && f != stderr) {
4677 fclose(stream: f);
4678 f = nullptr;
4679 }
4680 }
4681
4682public:
4683 kmp_safe_raii_file_t() : f(nullptr) {}
4684 kmp_safe_raii_file_t(const char *filename, const char *mode,
4685 const char *env_var = nullptr)
4686 : f(nullptr) {
4687 open(filename, mode, env_var);
4688 }
4689 ~kmp_safe_raii_file_t() { close(); }
4690
4691 /// Open filename using mode. This is automatically closed in the destructor.
4692 /// The env_var parameter indicates the environment variable the filename
4693 /// came from if != nullptr.
4694 void open(const char *filename, const char *mode,
4695 const char *env_var = nullptr) {
4696 KMP_ASSERT(!f);
4697 f = fopen(filename: filename, modes: mode);
4698 if (!f) {
4699 int code = errno;
4700 if (env_var) {
4701 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4702 KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4703 } else {
4704 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4705 __kmp_msg_null);
4706 }
4707 }
4708 }
4709 /// Instead of erroring out, return non-zero when
4710 /// unsuccessful fopen() for any reason
4711 int try_open(const char *filename, const char *mode) {
4712 KMP_ASSERT(!f);
4713 f = fopen(filename: filename, modes: mode);
4714 if (!f)
4715 return errno;
4716 return 0;
4717 }
4718 /// Set the FILE* object to stdout and output there
4719 /// No open call should happen before this call.
4720 void set_stdout() {
4721 KMP_ASSERT(!f);
4722 f = stdout;
4723 }
4724 /// Set the FILE* object to stderr and output there
4725 /// No open call should happen before this call.
4726 void set_stderr() {
4727 KMP_ASSERT(!f);
4728 f = stderr;
4729 }
4730 operator bool() { return bool(f); }
4731 operator FILE *() { return f; }
4732};
4733
4734template <typename SourceType, typename TargetType,
4735 bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4736 bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4737 bool isSourceSigned = std::is_signed<SourceType>::value,
4738 bool isTargetSigned = std::is_signed<TargetType>::value>
4739struct kmp_convert {};
4740
4741// Both types are signed; Source smaller
4742template <typename SourceType, typename TargetType>
4743struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4744 static TargetType to(SourceType src) { return (TargetType)src; }
4745};
4746// Source equal
4747template <typename SourceType, typename TargetType>
4748struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4749 static TargetType to(SourceType src) { return src; }
4750};
4751// Source bigger
4752template <typename SourceType, typename TargetType>
4753struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4754 static TargetType to(SourceType src) {
4755 KMP_ASSERT(src <= static_cast<SourceType>(
4756 (std::numeric_limits<TargetType>::max)()));
4757 KMP_ASSERT(src >= static_cast<SourceType>(
4758 (std::numeric_limits<TargetType>::min)()));
4759 return (TargetType)src;
4760 }
4761};
4762
4763// Source signed, Target unsigned
4764// Source smaller
4765template <typename SourceType, typename TargetType>
4766struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4767 static TargetType to(SourceType src) {
4768 KMP_ASSERT(src >= 0);
4769 return (TargetType)src;
4770 }
4771};
4772// Source equal
4773template <typename SourceType, typename TargetType>
4774struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4775 static TargetType to(SourceType src) {
4776 KMP_ASSERT(src >= 0);
4777 return (TargetType)src;
4778 }
4779};
4780// Source bigger
4781template <typename SourceType, typename TargetType>
4782struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4783 static TargetType to(SourceType src) {
4784 KMP_ASSERT(src >= 0);
4785 KMP_ASSERT(src <= static_cast<SourceType>(
4786 (std::numeric_limits<TargetType>::max)()));
4787 return (TargetType)src;
4788 }
4789};
4790
4791// Source unsigned, Target signed
4792// Source smaller
4793template <typename SourceType, typename TargetType>
4794struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4795 static TargetType to(SourceType src) { return (TargetType)src; }
4796};
4797// Source equal
4798template <typename SourceType, typename TargetType>
4799struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4800 static TargetType to(SourceType src) {
4801 KMP_ASSERT(src <= static_cast<SourceType>(
4802 (std::numeric_limits<TargetType>::max)()));
4803 return (TargetType)src;
4804 }
4805};
4806// Source bigger
4807template <typename SourceType, typename TargetType>
4808struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4809 static TargetType to(SourceType src) {
4810 KMP_ASSERT(src <= static_cast<SourceType>(
4811 (std::numeric_limits<TargetType>::max)()));
4812 return (TargetType)src;
4813 }
4814};
4815
4816// Source unsigned, Target unsigned
4817// Source smaller
4818template <typename SourceType, typename TargetType>
4819struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4820 static TargetType to(SourceType src) { return (TargetType)src; }
4821};
4822// Source equal
4823template <typename SourceType, typename TargetType>
4824struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4825 static TargetType to(SourceType src) { return src; }
4826};
4827// Source bigger
4828template <typename SourceType, typename TargetType>
4829struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4830 static TargetType to(SourceType src) {
4831 KMP_ASSERT(src <= static_cast<SourceType>(
4832 (std::numeric_limits<TargetType>::max)()));
4833 return (TargetType)src;
4834 }
4835};
4836
4837template <typename T1, typename T2>
4838static inline void __kmp_type_convert(T1 src, T2 *dest) {
4839 *dest = kmp_convert<T1, T2>::to(src);
4840}
4841
4842#endif /* KMP_H */
4843

source code of openmp/runtime/src/kmp.h