1 | /* |
2 | * kmp_lock.h -- lock header file |
3 | */ |
4 | |
5 | //===----------------------------------------------------------------------===// |
6 | // |
7 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
8 | // See https://llvm.org/LICENSE.txt for license information. |
9 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef KMP_LOCK_H |
14 | #define KMP_LOCK_H |
15 | |
16 | #include <limits.h> // CHAR_BIT |
17 | #include <stddef.h> // offsetof |
18 | |
19 | #include "kmp_debug.h" |
20 | #include "kmp_os.h" |
21 | |
22 | #ifdef __cplusplus |
23 | #include <atomic> |
24 | |
25 | extern "C" { |
26 | #endif // __cplusplus |
27 | |
28 | // ---------------------------------------------------------------------------- |
29 | // Have to copy these definitions from kmp.h because kmp.h cannot be included |
30 | // due to circular dependencies. Will undef these at end of file. |
31 | |
32 | #define KMP_PAD(type, sz) \ |
33 | (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1)) |
34 | #define KMP_GTID_DNE (-2) |
35 | |
36 | // Forward declaration of ident and ident_t |
37 | |
38 | struct ident; |
39 | typedef struct ident ident_t; |
40 | |
41 | // End of copied code. |
42 | // ---------------------------------------------------------------------------- |
43 | |
44 | // We need to know the size of the area we can assume that the compiler(s) |
45 | // allocated for objects of type omp_lock_t and omp_nest_lock_t. The Intel |
46 | // compiler always allocates a pointer-sized area, as does visual studio. |
47 | // |
48 | // gcc however, only allocates 4 bytes for regular locks, even on 64-bit |
49 | // intel archs. It allocates at least 8 bytes for nested lock (more on |
50 | // recent versions), but we are bounded by the pointer-sized chunks that |
51 | // the Intel compiler allocates. |
52 | |
53 | #if (KMP_OS_LINUX || KMP_OS_AIX) && defined(KMP_GOMP_COMPAT) |
54 | #define OMP_LOCK_T_SIZE sizeof(int) |
55 | #define OMP_NEST_LOCK_T_SIZE sizeof(void *) |
56 | #else |
57 | #define OMP_LOCK_T_SIZE sizeof(void *) |
58 | #define OMP_NEST_LOCK_T_SIZE sizeof(void *) |
59 | #endif |
60 | |
61 | // The Intel compiler allocates a 32-byte chunk for a critical section. |
62 | // Both gcc and visual studio only allocate enough space for a pointer. |
63 | // Sometimes we know that the space was allocated by the Intel compiler. |
64 | #define OMP_CRITICAL_SIZE sizeof(void *) |
65 | #define INTEL_CRITICAL_SIZE 32 |
66 | |
67 | // lock flags |
68 | typedef kmp_uint32 kmp_lock_flags_t; |
69 | |
70 | #define kmp_lf_critical_section 1 |
71 | |
72 | // When a lock table is used, the indices are of kmp_lock_index_t |
73 | typedef kmp_uint32 kmp_lock_index_t; |
74 | |
75 | // When memory allocated for locks are on the lock pool (free list), |
76 | // it is treated as structs of this type. |
77 | struct kmp_lock_pool { |
78 | union kmp_user_lock *next; |
79 | kmp_lock_index_t index; |
80 | }; |
81 | |
82 | typedef struct kmp_lock_pool kmp_lock_pool_t; |
83 | |
84 | extern void __kmp_validate_locks(void); |
85 | |
86 | // ---------------------------------------------------------------------------- |
87 | // There are 5 lock implementations: |
88 | // 1. Test and set locks. |
89 | // 2. futex locks (Linux* OS on x86 and |
90 | // Intel(R) Many Integrated Core Architecture) |
91 | // 3. Ticket (Lamport bakery) locks. |
92 | // 4. Queuing locks (with separate spin fields). |
93 | // 5. DRPA (Dynamically Reconfigurable Distributed Polling Area) locks |
94 | // |
95 | // and 3 lock purposes: |
96 | // 1. Bootstrap locks -- Used for a few locks available at library |
97 | // startup-shutdown time. |
98 | // These do not require non-negative global thread ID's. |
99 | // 2. Internal RTL locks -- Used everywhere else in the RTL |
100 | // 3. User locks (includes critical sections) |
101 | // ---------------------------------------------------------------------------- |
102 | |
103 | // ============================================================================ |
104 | // Lock implementations. |
105 | // |
106 | // Test and set locks. |
107 | // |
108 | // Non-nested test and set locks differ from the other lock kinds (except |
109 | // futex) in that we use the memory allocated by the compiler for the lock, |
110 | // rather than a pointer to it. |
111 | // |
112 | // On lin32, lin_32e, and win_32, the space allocated may be as small as 4 |
113 | // bytes, so we have to use a lock table for nested locks, and avoid accessing |
114 | // the depth_locked field for non-nested locks. |
115 | // |
116 | // Information normally available to the tools, such as lock location, lock |
117 | // usage (normal lock vs. critical section), etc. is not available with test and |
118 | // set locks. |
119 | // ---------------------------------------------------------------------------- |
120 | |
121 | struct kmp_base_tas_lock { |
122 | // KMP_LOCK_FREE(tas) => unlocked; locked: (gtid+1) of owning thread |
123 | #if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) && \ |
124 | __LP64__ |
125 | // Flip the ordering of the high and low 32-bit member to be consistent |
126 | // with the memory layout of the address in 64-bit big-endian. |
127 | kmp_int32 depth_locked; // depth locked, for nested locks only |
128 | std::atomic<kmp_int32> poll; |
129 | #else |
130 | std::atomic<kmp_int32> poll; |
131 | kmp_int32 depth_locked; // depth locked, for nested locks only |
132 | #endif |
133 | }; |
134 | |
135 | typedef struct kmp_base_tas_lock kmp_base_tas_lock_t; |
136 | |
137 | union kmp_tas_lock { |
138 | kmp_base_tas_lock_t lk; |
139 | kmp_lock_pool_t pool; // make certain struct is large enough |
140 | double lk_align; // use worst case alignment; no cache line padding |
141 | }; |
142 | |
143 | typedef union kmp_tas_lock kmp_tas_lock_t; |
144 | |
145 | // Static initializer for test and set lock variables. Usage: |
146 | // kmp_tas_lock_t xlock = KMP_TAS_LOCK_INITIALIZER( xlock ); |
147 | #define KMP_TAS_LOCK_INITIALIZER(lock) \ |
148 | { \ |
149 | { KMP_LOCK_FREE(tas), 0 } \ |
150 | } |
151 | |
152 | extern int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid); |
153 | extern int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid); |
154 | extern int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid); |
155 | extern void __kmp_init_tas_lock(kmp_tas_lock_t *lck); |
156 | extern void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck); |
157 | |
158 | extern int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid); |
159 | extern int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid); |
160 | extern int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid); |
161 | extern void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck); |
162 | extern void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck); |
163 | |
164 | #define KMP_LOCK_RELEASED 1 |
165 | #define KMP_LOCK_STILL_HELD 0 |
166 | #define KMP_LOCK_ACQUIRED_FIRST 1 |
167 | #define KMP_LOCK_ACQUIRED_NEXT 0 |
168 | #ifndef KMP_USE_FUTEX |
169 | #define KMP_USE_FUTEX \ |
170 | (KMP_OS_LINUX && \ |
171 | (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)) |
172 | #endif |
173 | #if KMP_USE_FUTEX |
174 | |
175 | // ---------------------------------------------------------------------------- |
176 | // futex locks. futex locks are only available on Linux* OS. |
177 | // |
178 | // Like non-nested test and set lock, non-nested futex locks use the memory |
179 | // allocated by the compiler for the lock, rather than a pointer to it. |
180 | // |
181 | // Information normally available to the tools, such as lock location, lock |
182 | // usage (normal lock vs. critical section), etc. is not available with test and |
183 | // set locks. With non-nested futex locks, the lock owner is not even available. |
184 | // ---------------------------------------------------------------------------- |
185 | |
186 | struct kmp_base_futex_lock { |
187 | volatile kmp_int32 poll; // KMP_LOCK_FREE(futex) => unlocked |
188 | // 2*(gtid+1) of owning thread, 0 if unlocked |
189 | // locked: (gtid+1) of owning thread |
190 | kmp_int32 depth_locked; // depth locked, for nested locks only |
191 | }; |
192 | |
193 | typedef struct kmp_base_futex_lock kmp_base_futex_lock_t; |
194 | |
195 | union kmp_futex_lock { |
196 | kmp_base_futex_lock_t lk; |
197 | kmp_lock_pool_t pool; // make certain struct is large enough |
198 | double lk_align; // use worst case alignment |
199 | // no cache line padding |
200 | }; |
201 | |
202 | typedef union kmp_futex_lock kmp_futex_lock_t; |
203 | |
204 | // Static initializer for futex lock variables. Usage: |
205 | // kmp_futex_lock_t xlock = KMP_FUTEX_LOCK_INITIALIZER( xlock ); |
206 | #define KMP_FUTEX_LOCK_INITIALIZER(lock) \ |
207 | { \ |
208 | { KMP_LOCK_FREE(futex), 0 } \ |
209 | } |
210 | |
211 | extern int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid); |
212 | extern int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid); |
213 | extern int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid); |
214 | extern void __kmp_init_futex_lock(kmp_futex_lock_t *lck); |
215 | extern void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck); |
216 | |
217 | extern int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck, |
218 | kmp_int32 gtid); |
219 | extern int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid); |
220 | extern int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck, |
221 | kmp_int32 gtid); |
222 | extern void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck); |
223 | extern void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck); |
224 | |
225 | #endif // KMP_USE_FUTEX |
226 | |
227 | // ---------------------------------------------------------------------------- |
228 | // Ticket locks. |
229 | |
230 | #ifdef __cplusplus |
231 | |
232 | #ifdef _MSC_VER |
233 | // MSVC won't allow use of std::atomic<> in a union since it has non-trivial |
234 | // copy constructor. |
235 | |
236 | struct kmp_base_ticket_lock { |
237 | // `initialized' must be the first entry in the lock data structure! |
238 | std::atomic_bool initialized; |
239 | volatile union kmp_ticket_lock *self; // points to the lock union |
240 | ident_t const *location; // Source code location of omp_init_lock(). |
241 | std::atomic_uint |
242 | next_ticket; // ticket number to give to next thread which acquires |
243 | std::atomic_uint now_serving; // ticket number for thread which holds the lock |
244 | std::atomic_int owner_id; // (gtid+1) of owning thread, 0 if unlocked |
245 | std::atomic_int depth_locked; // depth locked, for nested locks only |
246 | kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock |
247 | }; |
248 | #else |
249 | struct kmp_base_ticket_lock { |
250 | // `initialized' must be the first entry in the lock data structure! |
251 | std::atomic<bool> initialized; |
252 | volatile union kmp_ticket_lock *self; // points to the lock union |
253 | ident_t const *location; // Source code location of omp_init_lock(). |
254 | std::atomic<unsigned> |
255 | next_ticket; // ticket number to give to next thread which acquires |
256 | std::atomic<unsigned> |
257 | now_serving; // ticket number for thread which holds the lock |
258 | std::atomic<int> owner_id; // (gtid+1) of owning thread, 0 if unlocked |
259 | std::atomic<int> depth_locked; // depth locked, for nested locks only |
260 | kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock |
261 | }; |
262 | #endif |
263 | |
264 | #else // __cplusplus |
265 | |
266 | struct kmp_base_ticket_lock; |
267 | |
268 | #endif // !__cplusplus |
269 | |
270 | typedef struct kmp_base_ticket_lock kmp_base_ticket_lock_t; |
271 | |
272 | union KMP_ALIGN_CACHE kmp_ticket_lock { |
273 | kmp_base_ticket_lock_t |
274 | lk; // This field must be first to allow static initializing. |
275 | kmp_lock_pool_t pool; |
276 | double lk_align; // use worst case alignment |
277 | char lk_pad[KMP_PAD(kmp_base_ticket_lock_t, CACHE_LINE)]; |
278 | }; |
279 | |
280 | typedef union kmp_ticket_lock kmp_ticket_lock_t; |
281 | |
282 | // Static initializer for simple ticket lock variables. Usage: |
283 | // kmp_ticket_lock_t xlock = KMP_TICKET_LOCK_INITIALIZER( xlock ); |
284 | // Note the macro argument. It is important to make var properly initialized. |
285 | #define KMP_TICKET_LOCK_INITIALIZER(lock) \ |
286 | { \ |
287 | { true, &(lock), NULL, 0U, 0U, 0, -1 } \ |
288 | } |
289 | |
290 | extern int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid); |
291 | extern int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid); |
292 | extern int __kmp_test_ticket_lock_with_cheks(kmp_ticket_lock_t *lck, |
293 | kmp_int32 gtid); |
294 | extern int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid); |
295 | extern void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck); |
296 | extern void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck); |
297 | |
298 | extern int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck, |
299 | kmp_int32 gtid); |
300 | extern int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck, |
301 | kmp_int32 gtid); |
302 | extern int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck, |
303 | kmp_int32 gtid); |
304 | extern void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck); |
305 | extern void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck); |
306 | |
307 | // ---------------------------------------------------------------------------- |
308 | // Queuing locks. |
309 | |
310 | #if KMP_USE_ADAPTIVE_LOCKS |
311 | |
312 | struct kmp_adaptive_lock_info; |
313 | |
314 | typedef struct kmp_adaptive_lock_info kmp_adaptive_lock_info_t; |
315 | |
316 | #if KMP_DEBUG_ADAPTIVE_LOCKS |
317 | |
318 | struct kmp_adaptive_lock_statistics { |
319 | /* So we can get stats from locks that haven't been destroyed. */ |
320 | kmp_adaptive_lock_info_t *next; |
321 | kmp_adaptive_lock_info_t *prev; |
322 | |
323 | /* Other statistics */ |
324 | kmp_uint32 successfulSpeculations; |
325 | kmp_uint32 hardFailedSpeculations; |
326 | kmp_uint32 softFailedSpeculations; |
327 | kmp_uint32 nonSpeculativeAcquires; |
328 | kmp_uint32 nonSpeculativeAcquireAttempts; |
329 | kmp_uint32 lemmingYields; |
330 | }; |
331 | |
332 | typedef struct kmp_adaptive_lock_statistics kmp_adaptive_lock_statistics_t; |
333 | |
334 | extern void __kmp_print_speculative_stats(); |
335 | extern void __kmp_init_speculative_stats(); |
336 | |
337 | #endif // KMP_DEBUG_ADAPTIVE_LOCKS |
338 | |
339 | struct kmp_adaptive_lock_info { |
340 | /* Values used for adaptivity. |
341 | Although these are accessed from multiple threads we don't access them |
342 | atomically, because if we miss updates it probably doesn't matter much. (It |
343 | just affects our decision about whether to try speculation on the lock). */ |
344 | kmp_uint32 volatile badness; |
345 | kmp_uint32 volatile acquire_attempts; |
346 | /* Parameters of the lock. */ |
347 | kmp_uint32 max_badness; |
348 | kmp_uint32 max_soft_retries; |
349 | |
350 | #if KMP_DEBUG_ADAPTIVE_LOCKS |
351 | kmp_adaptive_lock_statistics_t volatile stats; |
352 | #endif |
353 | }; |
354 | |
355 | #endif // KMP_USE_ADAPTIVE_LOCKS |
356 | |
357 | struct kmp_base_queuing_lock { |
358 | |
359 | // `initialized' must be the first entry in the lock data structure! |
360 | volatile union kmp_queuing_lock |
361 | *initialized; // Points to the lock union if in initialized state. |
362 | |
363 | ident_t const *location; // Source code location of omp_init_lock(). |
364 | |
365 | KMP_ALIGN(8) // tail_id must be 8-byte aligned! |
366 | |
367 | volatile kmp_int32 |
368 | tail_id; // (gtid+1) of thread at tail of wait queue, 0 if empty |
369 | // Must be no padding here since head/tail used in 8-byte CAS |
370 | volatile kmp_int32 |
371 | head_id; // (gtid+1) of thread at head of wait queue, 0 if empty |
372 | // Decl order assumes little endian |
373 | // bakery-style lock |
374 | volatile kmp_uint32 |
375 | next_ticket; // ticket number to give to next thread which acquires |
376 | volatile kmp_uint32 |
377 | now_serving; // ticket number for thread which holds the lock |
378 | volatile kmp_int32 owner_id; // (gtid+1) of owning thread, 0 if unlocked |
379 | kmp_int32 depth_locked; // depth locked, for nested locks only |
380 | |
381 | kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock |
382 | }; |
383 | |
384 | typedef struct kmp_base_queuing_lock kmp_base_queuing_lock_t; |
385 | |
386 | KMP_BUILD_ASSERT(offsetof(kmp_base_queuing_lock_t, tail_id) % 8 == 0); |
387 | |
388 | union KMP_ALIGN_CACHE kmp_queuing_lock { |
389 | kmp_base_queuing_lock_t |
390 | lk; // This field must be first to allow static initializing. |
391 | kmp_lock_pool_t pool; |
392 | double lk_align; // use worst case alignment |
393 | char lk_pad[KMP_PAD(kmp_base_queuing_lock_t, CACHE_LINE)]; |
394 | }; |
395 | |
396 | typedef union kmp_queuing_lock kmp_queuing_lock_t; |
397 | |
398 | extern int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid); |
399 | extern int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid); |
400 | extern int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid); |
401 | extern void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck); |
402 | extern void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck); |
403 | |
404 | extern int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck, |
405 | kmp_int32 gtid); |
406 | extern int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck, |
407 | kmp_int32 gtid); |
408 | extern int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck, |
409 | kmp_int32 gtid); |
410 | extern void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck); |
411 | extern void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck); |
412 | |
413 | #if KMP_USE_ADAPTIVE_LOCKS |
414 | |
415 | // ---------------------------------------------------------------------------- |
416 | // Adaptive locks. |
417 | struct kmp_base_adaptive_lock { |
418 | kmp_base_queuing_lock qlk; |
419 | KMP_ALIGN(CACHE_LINE) |
420 | kmp_adaptive_lock_info_t |
421 | adaptive; // Information for the speculative adaptive lock |
422 | }; |
423 | |
424 | typedef struct kmp_base_adaptive_lock kmp_base_adaptive_lock_t; |
425 | |
426 | union KMP_ALIGN_CACHE kmp_adaptive_lock { |
427 | kmp_base_adaptive_lock_t lk; |
428 | kmp_lock_pool_t pool; |
429 | double lk_align; |
430 | char lk_pad[KMP_PAD(kmp_base_adaptive_lock_t, CACHE_LINE)]; |
431 | }; |
432 | typedef union kmp_adaptive_lock kmp_adaptive_lock_t; |
433 | |
434 | #define GET_QLK_PTR(l) ((kmp_queuing_lock_t *)&(l)->lk.qlk) |
435 | |
436 | #endif // KMP_USE_ADAPTIVE_LOCKS |
437 | |
438 | // ---------------------------------------------------------------------------- |
439 | // DRDPA ticket locks. |
440 | struct kmp_base_drdpa_lock { |
441 | // All of the fields on the first cache line are only written when |
442 | // initializing or reconfiguring the lock. These are relatively rare |
443 | // operations, so data from the first cache line will usually stay resident in |
444 | // the cache of each thread trying to acquire the lock. |
445 | // |
446 | // initialized must be the first entry in the lock data structure! |
447 | KMP_ALIGN_CACHE |
448 | |
449 | volatile union kmp_drdpa_lock |
450 | *initialized; // points to the lock union if in initialized state |
451 | ident_t const *location; // Source code location of omp_init_lock(). |
452 | std::atomic<std::atomic<kmp_uint64> *> polls; |
453 | std::atomic<kmp_uint64> mask; // is 2**num_polls-1 for mod op |
454 | kmp_uint64 cleanup_ticket; // thread with cleanup ticket |
455 | std::atomic<kmp_uint64> *old_polls; // will deallocate old_polls |
456 | kmp_uint32 num_polls; // must be power of 2 |
457 | |
458 | // next_ticket it needs to exist in a separate cache line, as it is |
459 | // invalidated every time a thread takes a new ticket. |
460 | KMP_ALIGN_CACHE |
461 | |
462 | std::atomic<kmp_uint64> next_ticket; |
463 | |
464 | // now_serving is used to store our ticket value while we hold the lock. It |
465 | // has a slightly different meaning in the DRDPA ticket locks (where it is |
466 | // written by the acquiring thread) than it does in the simple ticket locks |
467 | // (where it is written by the releasing thread). |
468 | // |
469 | // Since now_serving is only read and written in the critical section, |
470 | // it is non-volatile, but it needs to exist on a separate cache line, |
471 | // as it is invalidated at every lock acquire. |
472 | // |
473 | // Likewise, the vars used for nested locks (owner_id and depth_locked) are |
474 | // only written by the thread owning the lock, so they are put in this cache |
475 | // line. owner_id is read by other threads, so it must be declared volatile. |
476 | KMP_ALIGN_CACHE |
477 | kmp_uint64 now_serving; // doesn't have to be volatile |
478 | volatile kmp_uint32 owner_id; // (gtid+1) of owning thread, 0 if unlocked |
479 | kmp_int32 depth_locked; // depth locked |
480 | kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock |
481 | }; |
482 | |
483 | typedef struct kmp_base_drdpa_lock kmp_base_drdpa_lock_t; |
484 | |
485 | union KMP_ALIGN_CACHE kmp_drdpa_lock { |
486 | kmp_base_drdpa_lock_t |
487 | lk; // This field must be first to allow static initializing. */ |
488 | kmp_lock_pool_t pool; |
489 | double lk_align; // use worst case alignment |
490 | char lk_pad[KMP_PAD(kmp_base_drdpa_lock_t, CACHE_LINE)]; |
491 | }; |
492 | |
493 | typedef union kmp_drdpa_lock kmp_drdpa_lock_t; |
494 | |
495 | extern int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid); |
496 | extern int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid); |
497 | extern int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid); |
498 | extern void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck); |
499 | extern void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck); |
500 | |
501 | extern int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck, |
502 | kmp_int32 gtid); |
503 | extern int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid); |
504 | extern int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck, |
505 | kmp_int32 gtid); |
506 | extern void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck); |
507 | extern void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck); |
508 | |
509 | // ============================================================================ |
510 | // Lock purposes. |
511 | // ============================================================================ |
512 | |
513 | // Bootstrap locks. |
514 | // |
515 | // Bootstrap locks -- very few locks used at library initialization time. |
516 | // Bootstrap locks are currently implemented as ticket locks. |
517 | // They could also be implemented as test and set lock, but cannot be |
518 | // implemented with other lock kinds as they require gtids which are not |
519 | // available at initialization time. |
520 | |
521 | typedef kmp_ticket_lock_t kmp_bootstrap_lock_t; |
522 | |
523 | #define KMP_BOOTSTRAP_LOCK_INITIALIZER(lock) KMP_TICKET_LOCK_INITIALIZER((lock)) |
524 | #define KMP_BOOTSTRAP_LOCK_INIT(lock) \ |
525 | kmp_bootstrap_lock_t lock = KMP_TICKET_LOCK_INITIALIZER(lock) |
526 | |
527 | static inline int __kmp_acquire_bootstrap_lock(kmp_bootstrap_lock_t *lck) { |
528 | return __kmp_acquire_ticket_lock(lck, KMP_GTID_DNE); |
529 | } |
530 | |
531 | static inline int __kmp_test_bootstrap_lock(kmp_bootstrap_lock_t *lck) { |
532 | return __kmp_test_ticket_lock(lck, KMP_GTID_DNE); |
533 | } |
534 | |
535 | static inline void __kmp_release_bootstrap_lock(kmp_bootstrap_lock_t *lck) { |
536 | __kmp_release_ticket_lock(lck, KMP_GTID_DNE); |
537 | } |
538 | |
539 | static inline void __kmp_init_bootstrap_lock(kmp_bootstrap_lock_t *lck) { |
540 | __kmp_init_ticket_lock(lck); |
541 | } |
542 | |
543 | static inline void __kmp_destroy_bootstrap_lock(kmp_bootstrap_lock_t *lck) { |
544 | __kmp_destroy_ticket_lock(lck); |
545 | } |
546 | |
547 | // Internal RTL locks. |
548 | // |
549 | // Internal RTL locks are also implemented as ticket locks, for now. |
550 | // |
551 | // FIXME - We should go through and figure out which lock kind works best for |
552 | // each internal lock, and use the type declaration and function calls for |
553 | // that explicit lock kind (and get rid of this section). |
554 | |
555 | typedef kmp_ticket_lock_t kmp_lock_t; |
556 | |
557 | #define KMP_LOCK_INIT(lock) kmp_lock_t lock = KMP_TICKET_LOCK_INITIALIZER(lock) |
558 | |
559 | static inline int __kmp_acquire_lock(kmp_lock_t *lck, kmp_int32 gtid) { |
560 | return __kmp_acquire_ticket_lock(lck, gtid); |
561 | } |
562 | |
563 | static inline int __kmp_test_lock(kmp_lock_t *lck, kmp_int32 gtid) { |
564 | return __kmp_test_ticket_lock(lck, gtid); |
565 | } |
566 | |
567 | static inline void __kmp_release_lock(kmp_lock_t *lck, kmp_int32 gtid) { |
568 | __kmp_release_ticket_lock(lck, gtid); |
569 | } |
570 | |
571 | static inline void __kmp_init_lock(kmp_lock_t *lck) { |
572 | __kmp_init_ticket_lock(lck); |
573 | } |
574 | |
575 | static inline void __kmp_destroy_lock(kmp_lock_t *lck) { |
576 | __kmp_destroy_ticket_lock(lck); |
577 | } |
578 | |
579 | // User locks. |
580 | // |
581 | // Do not allocate objects of type union kmp_user_lock!!! This will waste space |
582 | // unless __kmp_user_lock_kind == lk_drdpa. Instead, check the value of |
583 | // __kmp_user_lock_kind and allocate objects of the type of the appropriate |
584 | // union member, and cast their addresses to kmp_user_lock_p. |
585 | |
586 | enum kmp_lock_kind { |
587 | lk_default = 0, |
588 | lk_tas, |
589 | #if KMP_USE_FUTEX |
590 | lk_futex, |
591 | #endif |
592 | #if KMP_USE_DYNAMIC_LOCK && KMP_USE_TSX |
593 | lk_hle, |
594 | lk_rtm_queuing, |
595 | lk_rtm_spin, |
596 | #endif |
597 | lk_ticket, |
598 | lk_queuing, |
599 | lk_drdpa, |
600 | #if KMP_USE_ADAPTIVE_LOCKS |
601 | lk_adaptive |
602 | #endif // KMP_USE_ADAPTIVE_LOCKS |
603 | }; |
604 | |
605 | typedef enum kmp_lock_kind kmp_lock_kind_t; |
606 | |
607 | extern kmp_lock_kind_t __kmp_user_lock_kind; |
608 | |
609 | union kmp_user_lock { |
610 | kmp_tas_lock_t tas; |
611 | #if KMP_USE_FUTEX |
612 | kmp_futex_lock_t futex; |
613 | #endif |
614 | kmp_ticket_lock_t ticket; |
615 | kmp_queuing_lock_t queuing; |
616 | kmp_drdpa_lock_t drdpa; |
617 | #if KMP_USE_ADAPTIVE_LOCKS |
618 | kmp_adaptive_lock_t adaptive; |
619 | #endif // KMP_USE_ADAPTIVE_LOCKS |
620 | kmp_lock_pool_t pool; |
621 | }; |
622 | |
623 | typedef union kmp_user_lock *kmp_user_lock_p; |
624 | |
625 | #if !KMP_USE_DYNAMIC_LOCK |
626 | |
627 | extern size_t __kmp_base_user_lock_size; |
628 | extern size_t __kmp_user_lock_size; |
629 | |
630 | extern kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck); |
631 | |
632 | static inline kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck) { |
633 | KMP_DEBUG_ASSERT(__kmp_get_user_lock_owner_ != NULL); |
634 | return (*__kmp_get_user_lock_owner_)(lck); |
635 | } |
636 | |
637 | extern int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck, |
638 | kmp_int32 gtid); |
639 | |
640 | #if KMP_OS_LINUX && \ |
641 | (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) |
642 | |
643 | #define __kmp_acquire_user_lock_with_checks(lck, gtid) \ |
644 | if (__kmp_user_lock_kind == lk_tas) { \ |
645 | if (__kmp_env_consistency_check) { \ |
646 | char const *const func = "omp_set_lock"; \ |
647 | if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && \ |
648 | lck->tas.lk.depth_locked != -1) { \ |
649 | KMP_FATAL(LockNestableUsedAsSimple, func); \ |
650 | } \ |
651 | if ((gtid >= 0) && (lck->tas.lk.poll - 1 == gtid)) { \ |
652 | KMP_FATAL(LockIsAlreadyOwned, func); \ |
653 | } \ |
654 | } \ |
655 | if (lck->tas.lk.poll != 0 || \ |
656 | !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)) { \ |
657 | kmp_uint32 spins; \ |
658 | kmp_uint64 time; \ |
659 | KMP_FSYNC_PREPARE(lck); \ |
660 | KMP_INIT_YIELD(spins); \ |
661 | KMP_INIT_BACKOFF(time); \ |
662 | do { \ |
663 | KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); \ |
664 | } while ( \ |
665 | lck->tas.lk.poll != 0 || \ |
666 | !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)); \ |
667 | } \ |
668 | KMP_FSYNC_ACQUIRED(lck); \ |
669 | } else { \ |
670 | KMP_DEBUG_ASSERT(__kmp_acquire_user_lock_with_checks_ != NULL); \ |
671 | (*__kmp_acquire_user_lock_with_checks_)(lck, gtid); \ |
672 | } |
673 | |
674 | #else |
675 | static inline int __kmp_acquire_user_lock_with_checks(kmp_user_lock_p lck, |
676 | kmp_int32 gtid) { |
677 | KMP_DEBUG_ASSERT(__kmp_acquire_user_lock_with_checks_ != NULL); |
678 | return (*__kmp_acquire_user_lock_with_checks_)(lck, gtid); |
679 | } |
680 | #endif |
681 | |
682 | extern int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck, |
683 | kmp_int32 gtid); |
684 | |
685 | #if KMP_OS_LINUX && \ |
686 | (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) |
687 | |
688 | #include "kmp_i18n.h" /* AC: KMP_FATAL definition */ |
689 | extern int __kmp_env_consistency_check; /* AC: copy from kmp.h here */ |
690 | static inline int __kmp_test_user_lock_with_checks(kmp_user_lock_p lck, |
691 | kmp_int32 gtid) { |
692 | if (__kmp_user_lock_kind == lk_tas) { |
693 | if (__kmp_env_consistency_check) { |
694 | char const *const func = "omp_test_lock" ; |
695 | if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && |
696 | lck->tas.lk.depth_locked != -1) { |
697 | KMP_FATAL(LockNestableUsedAsSimple, func); |
698 | } |
699 | } |
700 | return ((lck->tas.lk.poll == 0) && |
701 | __kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)); |
702 | } else { |
703 | KMP_DEBUG_ASSERT(__kmp_test_user_lock_with_checks_ != NULL); |
704 | return (*__kmp_test_user_lock_with_checks_)(lck, gtid); |
705 | } |
706 | } |
707 | #else |
708 | static inline int __kmp_test_user_lock_with_checks(kmp_user_lock_p lck, |
709 | kmp_int32 gtid) { |
710 | KMP_DEBUG_ASSERT(__kmp_test_user_lock_with_checks_ != NULL); |
711 | return (*__kmp_test_user_lock_with_checks_)(lck, gtid); |
712 | } |
713 | #endif |
714 | |
715 | extern int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck, |
716 | kmp_int32 gtid); |
717 | |
718 | static inline void __kmp_release_user_lock_with_checks(kmp_user_lock_p lck, |
719 | kmp_int32 gtid) { |
720 | KMP_DEBUG_ASSERT(__kmp_release_user_lock_with_checks_ != NULL); |
721 | (*__kmp_release_user_lock_with_checks_)(lck, gtid); |
722 | } |
723 | |
724 | extern void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck); |
725 | |
726 | static inline void __kmp_init_user_lock_with_checks(kmp_user_lock_p lck) { |
727 | KMP_DEBUG_ASSERT(__kmp_init_user_lock_with_checks_ != NULL); |
728 | (*__kmp_init_user_lock_with_checks_)(lck); |
729 | } |
730 | |
731 | // We need a non-checking version of destroy lock for when the RTL is |
732 | // doing the cleanup as it can't always tell if the lock is nested or not. |
733 | extern void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck); |
734 | |
735 | static inline void __kmp_destroy_user_lock(kmp_user_lock_p lck) { |
736 | KMP_DEBUG_ASSERT(__kmp_destroy_user_lock_ != NULL); |
737 | (*__kmp_destroy_user_lock_)(lck); |
738 | } |
739 | |
740 | extern void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck); |
741 | |
742 | static inline void __kmp_destroy_user_lock_with_checks(kmp_user_lock_p lck) { |
743 | KMP_DEBUG_ASSERT(__kmp_destroy_user_lock_with_checks_ != NULL); |
744 | (*__kmp_destroy_user_lock_with_checks_)(lck); |
745 | } |
746 | |
747 | extern int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck, |
748 | kmp_int32 gtid); |
749 | |
750 | #if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64) |
751 | |
752 | #define __kmp_acquire_nested_user_lock_with_checks(lck, gtid, depth) \ |
753 | if (__kmp_user_lock_kind == lk_tas) { \ |
754 | if (__kmp_env_consistency_check) { \ |
755 | char const *const func = "omp_set_nest_lock"; \ |
756 | if ((sizeof(kmp_tas_lock_t) <= OMP_NEST_LOCK_T_SIZE) && \ |
757 | lck->tas.lk.depth_locked == -1) { \ |
758 | KMP_FATAL(LockSimpleUsedAsNestable, func); \ |
759 | } \ |
760 | } \ |
761 | if (lck->tas.lk.poll - 1 == gtid) { \ |
762 | lck->tas.lk.depth_locked += 1; \ |
763 | *depth = KMP_LOCK_ACQUIRED_NEXT; \ |
764 | } else { \ |
765 | if ((lck->tas.lk.poll != 0) || \ |
766 | !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)) { \ |
767 | kmp_uint32 spins; \ |
768 | kmp_uint64 time; \ |
769 | KMP_FSYNC_PREPARE(lck); \ |
770 | KMP_INIT_YIELD(spins); \ |
771 | KMP_INIT_BACKOFF(time); \ |
772 | do { \ |
773 | KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); \ |
774 | } while ( \ |
775 | (lck->tas.lk.poll != 0) || \ |
776 | !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)); \ |
777 | } \ |
778 | lck->tas.lk.depth_locked = 1; \ |
779 | *depth = KMP_LOCK_ACQUIRED_FIRST; \ |
780 | } \ |
781 | KMP_FSYNC_ACQUIRED(lck); \ |
782 | } else { \ |
783 | KMP_DEBUG_ASSERT(__kmp_acquire_nested_user_lock_with_checks_ != NULL); \ |
784 | *depth = (*__kmp_acquire_nested_user_lock_with_checks_)(lck, gtid); \ |
785 | } |
786 | |
787 | #else |
788 | static inline void |
789 | __kmp_acquire_nested_user_lock_with_checks(kmp_user_lock_p lck, kmp_int32 gtid, |
790 | int *depth) { |
791 | KMP_DEBUG_ASSERT(__kmp_acquire_nested_user_lock_with_checks_ != NULL); |
792 | *depth = (*__kmp_acquire_nested_user_lock_with_checks_)(lck, gtid); |
793 | } |
794 | #endif |
795 | |
796 | extern int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck, |
797 | kmp_int32 gtid); |
798 | |
799 | #if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64) |
800 | static inline int __kmp_test_nested_user_lock_with_checks(kmp_user_lock_p lck, |
801 | kmp_int32 gtid) { |
802 | if (__kmp_user_lock_kind == lk_tas) { |
803 | int retval; |
804 | if (__kmp_env_consistency_check) { |
805 | char const *const func = "omp_test_nest_lock" ; |
806 | if ((sizeof(kmp_tas_lock_t) <= OMP_NEST_LOCK_T_SIZE) && |
807 | lck->tas.lk.depth_locked == -1) { |
808 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
809 | } |
810 | } |
811 | KMP_DEBUG_ASSERT(gtid >= 0); |
812 | if (lck->tas.lk.poll - 1 == |
813 | gtid) { /* __kmp_get_tas_lock_owner( lck ) == gtid */ |
814 | return ++lck->tas.lk.depth_locked; /* same owner, depth increased */ |
815 | } |
816 | retval = ((lck->tas.lk.poll == 0) && |
817 | __kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)); |
818 | if (retval) { |
819 | KMP_MB(); |
820 | lck->tas.lk.depth_locked = 1; |
821 | } |
822 | return retval; |
823 | } else { |
824 | KMP_DEBUG_ASSERT(__kmp_test_nested_user_lock_with_checks_ != NULL); |
825 | return (*__kmp_test_nested_user_lock_with_checks_)(lck, gtid); |
826 | } |
827 | } |
828 | #else |
829 | static inline int __kmp_test_nested_user_lock_with_checks(kmp_user_lock_p lck, |
830 | kmp_int32 gtid) { |
831 | KMP_DEBUG_ASSERT(__kmp_test_nested_user_lock_with_checks_ != NULL); |
832 | return (*__kmp_test_nested_user_lock_with_checks_)(lck, gtid); |
833 | } |
834 | #endif |
835 | |
836 | extern int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck, |
837 | kmp_int32 gtid); |
838 | |
839 | static inline int |
840 | __kmp_release_nested_user_lock_with_checks(kmp_user_lock_p lck, |
841 | kmp_int32 gtid) { |
842 | KMP_DEBUG_ASSERT(__kmp_release_nested_user_lock_with_checks_ != NULL); |
843 | return (*__kmp_release_nested_user_lock_with_checks_)(lck, gtid); |
844 | } |
845 | |
846 | extern void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck); |
847 | |
848 | static inline void |
849 | __kmp_init_nested_user_lock_with_checks(kmp_user_lock_p lck) { |
850 | KMP_DEBUG_ASSERT(__kmp_init_nested_user_lock_with_checks_ != NULL); |
851 | (*__kmp_init_nested_user_lock_with_checks_)(lck); |
852 | } |
853 | |
854 | extern void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck); |
855 | |
856 | static inline void |
857 | __kmp_destroy_nested_user_lock_with_checks(kmp_user_lock_p lck) { |
858 | KMP_DEBUG_ASSERT(__kmp_destroy_nested_user_lock_with_checks_ != NULL); |
859 | (*__kmp_destroy_nested_user_lock_with_checks_)(lck); |
860 | } |
861 | |
862 | // user lock functions which do not necessarily exist for all lock kinds. |
863 | // |
864 | // The "set" functions usually have wrapper routines that check for a NULL set |
865 | // function pointer and call it if non-NULL. |
866 | // |
867 | // In some cases, it makes sense to have a "get" wrapper function check for a |
868 | // NULL get function pointer and return NULL / invalid value / error code if |
869 | // the function pointer is NULL. |
870 | // |
871 | // In other cases, the calling code really should differentiate between an |
872 | // unimplemented function and one that is implemented but returning NULL / |
873 | // invalid value. If this is the case, no get function wrapper exists. |
874 | |
875 | extern int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck); |
876 | |
877 | // no set function; fields set during local allocation |
878 | |
879 | extern const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck); |
880 | |
881 | static inline const ident_t *__kmp_get_user_lock_location(kmp_user_lock_p lck) { |
882 | if (__kmp_get_user_lock_location_ != NULL) { |
883 | return (*__kmp_get_user_lock_location_)(lck); |
884 | } else { |
885 | return NULL; |
886 | } |
887 | } |
888 | |
889 | extern void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck, |
890 | const ident_t *loc); |
891 | |
892 | static inline void __kmp_set_user_lock_location(kmp_user_lock_p lck, |
893 | const ident_t *loc) { |
894 | if (__kmp_set_user_lock_location_ != NULL) { |
895 | (*__kmp_set_user_lock_location_)(lck, loc); |
896 | } |
897 | } |
898 | |
899 | extern kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck); |
900 | |
901 | extern void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck, |
902 | kmp_lock_flags_t flags); |
903 | |
904 | static inline void __kmp_set_user_lock_flags(kmp_user_lock_p lck, |
905 | kmp_lock_flags_t flags) { |
906 | if (__kmp_set_user_lock_flags_ != NULL) { |
907 | (*__kmp_set_user_lock_flags_)(lck, flags); |
908 | } |
909 | } |
910 | |
911 | // The function which sets up all of the vtbl pointers for kmp_user_lock_t. |
912 | extern void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind); |
913 | |
914 | // Macros for binding user lock functions. |
915 | #define KMP_BIND_USER_LOCK_TEMPLATE(nest, kind, suffix) \ |
916 | { \ |
917 | __kmp_acquire##nest##user_lock_with_checks_ = (int (*)( \ |
918 | kmp_user_lock_p, kmp_int32))__kmp_acquire##nest##kind##_##suffix; \ |
919 | __kmp_release##nest##user_lock_with_checks_ = (int (*)( \ |
920 | kmp_user_lock_p, kmp_int32))__kmp_release##nest##kind##_##suffix; \ |
921 | __kmp_test##nest##user_lock_with_checks_ = (int (*)( \ |
922 | kmp_user_lock_p, kmp_int32))__kmp_test##nest##kind##_##suffix; \ |
923 | __kmp_init##nest##user_lock_with_checks_ = \ |
924 | (void (*)(kmp_user_lock_p))__kmp_init##nest##kind##_##suffix; \ |
925 | __kmp_destroy##nest##user_lock_with_checks_ = \ |
926 | (void (*)(kmp_user_lock_p))__kmp_destroy##nest##kind##_##suffix; \ |
927 | } |
928 | |
929 | #define KMP_BIND_USER_LOCK(kind) KMP_BIND_USER_LOCK_TEMPLATE(_, kind, lock) |
930 | #define KMP_BIND_USER_LOCK_WITH_CHECKS(kind) \ |
931 | KMP_BIND_USER_LOCK_TEMPLATE(_, kind, lock_with_checks) |
932 | #define KMP_BIND_NESTED_USER_LOCK(kind) \ |
933 | KMP_BIND_USER_LOCK_TEMPLATE(_nested_, kind, lock) |
934 | #define KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(kind) \ |
935 | KMP_BIND_USER_LOCK_TEMPLATE(_nested_, kind, lock_with_checks) |
936 | |
937 | // User lock table & lock allocation |
938 | /* On 64-bit Linux* OS (and OS X*) GNU compiler allocates only 4 bytems memory |
939 | for lock variable, which is not enough to store a pointer, so we have to use |
940 | lock indexes instead of pointers and maintain lock table to map indexes to |
941 | pointers. |
942 | |
943 | |
944 | Note: The first element of the table is not a pointer to lock! It is a |
945 | pointer to previously allocated table (or NULL if it is the first table). |
946 | |
947 | Usage: |
948 | |
949 | if ( OMP_LOCK_T_SIZE < sizeof( <lock> ) ) { // or OMP_NEST_LOCK_T_SIZE |
950 | Lock table is fully utilized. User locks are indexes, so table is used on |
951 | user lock operation. |
952 | Note: it may be the case (lin_32) that we don't need to use a lock |
953 | table for regular locks, but do need the table for nested locks. |
954 | } |
955 | else { |
956 | Lock table initialized but not actually used. |
957 | } |
958 | */ |
959 | |
960 | struct kmp_lock_table { |
961 | kmp_lock_index_t used; // Number of used elements |
962 | kmp_lock_index_t allocated; // Number of allocated elements |
963 | kmp_user_lock_p *table; // Lock table. |
964 | }; |
965 | |
966 | typedef struct kmp_lock_table kmp_lock_table_t; |
967 | |
968 | extern kmp_lock_table_t __kmp_user_lock_table; |
969 | extern kmp_user_lock_p __kmp_lock_pool; |
970 | |
971 | struct kmp_block_of_locks { |
972 | struct kmp_block_of_locks *next_block; |
973 | void *locks; |
974 | }; |
975 | |
976 | typedef struct kmp_block_of_locks kmp_block_of_locks_t; |
977 | |
978 | extern kmp_block_of_locks_t *__kmp_lock_blocks; |
979 | extern int __kmp_num_locks_in_block; |
980 | |
981 | extern kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock, |
982 | kmp_int32 gtid, |
983 | kmp_lock_flags_t flags); |
984 | extern void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid, |
985 | kmp_user_lock_p lck); |
986 | extern kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock, |
987 | char const *func); |
988 | extern void __kmp_cleanup_user_locks(); |
989 | |
990 | #define KMP_CHECK_USER_LOCK_INIT() \ |
991 | { \ |
992 | if (!TCR_4(__kmp_init_user_locks)) { \ |
993 | __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); \ |
994 | if (!TCR_4(__kmp_init_user_locks)) { \ |
995 | TCW_4(__kmp_init_user_locks, TRUE); \ |
996 | } \ |
997 | __kmp_release_bootstrap_lock(&__kmp_initz_lock); \ |
998 | } \ |
999 | } |
1000 | |
1001 | #endif // KMP_USE_DYNAMIC_LOCK |
1002 | |
1003 | #undef KMP_PAD |
1004 | #undef KMP_GTID_DNE |
1005 | |
1006 | #if KMP_USE_DYNAMIC_LOCK |
1007 | // KMP_USE_DYNAMIC_LOCK enables dynamic dispatch of lock functions without |
1008 | // breaking the current compatibility. Essential functionality of this new code |
1009 | // is dynamic dispatch, but it also implements (or enables implementation of) |
1010 | // hinted user lock and critical section which will be part of OMP 4.5 soon. |
1011 | // |
1012 | // Lock type can be decided at creation time (i.e., lock initialization), and |
1013 | // subsequent lock function call on the created lock object requires type |
1014 | // extraction and call through jump table using the extracted type. This type |
1015 | // information is stored in two different ways depending on the size of the lock |
1016 | // object, and we differentiate lock types by this size requirement - direct and |
1017 | // indirect locks. |
1018 | // |
1019 | // Direct locks: |
1020 | // A direct lock object fits into the space created by the compiler for an |
1021 | // omp_lock_t object, and TAS/Futex lock falls into this category. We use low |
1022 | // one byte of the lock object as the storage for the lock type, and appropriate |
1023 | // bit operation is required to access the data meaningful to the lock |
1024 | // algorithms. Also, to differentiate direct lock from indirect lock, 1 is |
1025 | // written to LSB of the lock object. The newly introduced "hle" lock is also a |
1026 | // direct lock. |
1027 | // |
1028 | // Indirect locks: |
1029 | // An indirect lock object requires more space than the compiler-generated |
1030 | // space, and it should be allocated from heap. Depending on the size of the |
1031 | // compiler-generated space for the lock (i.e., size of omp_lock_t), this |
1032 | // omp_lock_t object stores either the address of the heap-allocated indirect |
1033 | // lock (void * fits in the object) or an index to the indirect lock table entry |
1034 | // that holds the address. Ticket/Queuing/DRDPA/Adaptive lock falls into this |
1035 | // category, and the newly introduced "rtm" lock is also an indirect lock which |
1036 | // was implemented on top of the Queuing lock. When the omp_lock_t object holds |
1037 | // an index (not lock address), 0 is written to LSB to differentiate the lock |
1038 | // from a direct lock, and the remaining part is the actual index to the |
1039 | // indirect lock table. |
1040 | |
1041 | #include <stdint.h> // for uintptr_t |
1042 | |
1043 | // Shortcuts |
1044 | #define KMP_USE_INLINED_TAS \ |
1045 | (KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)) && 1 |
1046 | #define KMP_USE_INLINED_FUTEX KMP_USE_FUTEX && 0 |
1047 | |
1048 | // List of lock definitions; all nested locks are indirect locks. |
1049 | // hle lock is xchg lock prefixed with XACQUIRE/XRELEASE. |
1050 | // All nested locks are indirect lock types. |
1051 | #if KMP_USE_TSX |
1052 | #if KMP_USE_FUTEX |
1053 | #define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(futex, a) m(hle, a) m(rtm_spin, a) |
1054 | #define KMP_FOREACH_I_LOCK(m, a) \ |
1055 | m(ticket, a) m(queuing, a) m(adaptive, a) m(drdpa, a) m(rtm_queuing, a) \ |
1056 | m(nested_tas, a) m(nested_futex, a) m(nested_ticket, a) \ |
1057 | m(nested_queuing, a) m(nested_drdpa, a) |
1058 | #else |
1059 | #define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(hle, a) m(rtm_spin, a) |
1060 | #define KMP_FOREACH_I_LOCK(m, a) \ |
1061 | m(ticket, a) m(queuing, a) m(adaptive, a) m(drdpa, a) m(rtm_queuing, a) \ |
1062 | m(nested_tas, a) m(nested_ticket, a) m(nested_queuing, a) \ |
1063 | m(nested_drdpa, a) |
1064 | #endif // KMP_USE_FUTEX |
1065 | #define KMP_LAST_D_LOCK lockseq_rtm_spin |
1066 | #else |
1067 | #if KMP_USE_FUTEX |
1068 | #define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(futex, a) |
1069 | #define KMP_FOREACH_I_LOCK(m, a) \ |
1070 | m(ticket, a) m(queuing, a) m(drdpa, a) m(nested_tas, a) m(nested_futex, a) \ |
1071 | m(nested_ticket, a) m(nested_queuing, a) m(nested_drdpa, a) |
1072 | #define KMP_LAST_D_LOCK lockseq_futex |
1073 | #else |
1074 | #define KMP_FOREACH_D_LOCK(m, a) m(tas, a) |
1075 | #define KMP_FOREACH_I_LOCK(m, a) \ |
1076 | m(ticket, a) m(queuing, a) m(drdpa, a) m(nested_tas, a) m(nested_ticket, a) \ |
1077 | m(nested_queuing, a) m(nested_drdpa, a) |
1078 | #define KMP_LAST_D_LOCK lockseq_tas |
1079 | #endif // KMP_USE_FUTEX |
1080 | #endif // KMP_USE_TSX |
1081 | |
1082 | // Information used in dynamic dispatch |
1083 | #define KMP_LOCK_SHIFT \ |
1084 | 8 // number of low bits to be used as tag for direct locks |
1085 | #define KMP_FIRST_D_LOCK lockseq_tas |
1086 | #define KMP_FIRST_I_LOCK lockseq_ticket |
1087 | #define KMP_LAST_I_LOCK lockseq_nested_drdpa |
1088 | #define KMP_NUM_I_LOCKS \ |
1089 | (locktag_nested_drdpa + 1) // number of indirect lock types |
1090 | |
1091 | // Base type for dynamic locks. |
1092 | typedef kmp_uint32 kmp_dyna_lock_t; |
1093 | |
1094 | // Lock sequence that enumerates all lock kinds. Always make this enumeration |
1095 | // consistent with kmp_lockseq_t in the include directory. |
1096 | typedef enum { |
1097 | lockseq_indirect = 0, |
1098 | #define expand_seq(l, a) lockseq_##l, |
1099 | KMP_FOREACH_D_LOCK(expand_seq, 0) KMP_FOREACH_I_LOCK(expand_seq, 0) |
1100 | #undef expand_seq |
1101 | } kmp_dyna_lockseq_t; |
1102 | |
1103 | // Enumerates indirect lock tags. |
1104 | typedef enum { |
1105 | #define expand_tag(l, a) locktag_##l, |
1106 | KMP_FOREACH_I_LOCK(expand_tag, 0) |
1107 | #undef expand_tag |
1108 | } kmp_indirect_locktag_t; |
1109 | |
1110 | // Utility macros that extract information from lock sequences. |
1111 | #define KMP_IS_D_LOCK(seq) \ |
1112 | ((seq) >= KMP_FIRST_D_LOCK && (seq) <= KMP_LAST_D_LOCK) |
1113 | #define KMP_IS_I_LOCK(seq) \ |
1114 | ((seq) >= KMP_FIRST_I_LOCK && (seq) <= KMP_LAST_I_LOCK) |
1115 | #define KMP_GET_I_TAG(seq) (kmp_indirect_locktag_t)((seq)-KMP_FIRST_I_LOCK) |
1116 | #define KMP_GET_D_TAG(seq) ((seq) << 1 | 1) |
1117 | |
1118 | // Enumerates direct lock tags starting from indirect tag. |
1119 | typedef enum { |
1120 | #define expand_tag(l, a) locktag_##l = KMP_GET_D_TAG(lockseq_##l), |
1121 | KMP_FOREACH_D_LOCK(expand_tag, 0) |
1122 | #undef expand_tag |
1123 | } kmp_direct_locktag_t; |
1124 | |
1125 | // Indirect lock type |
1126 | typedef struct { |
1127 | kmp_user_lock_p lock; |
1128 | kmp_indirect_locktag_t type; |
1129 | } kmp_indirect_lock_t; |
1130 | |
1131 | // Function tables for direct locks. Set/unset/test differentiate functions |
1132 | // with/without consistency checking. |
1133 | extern void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t); |
1134 | extern void (**__kmp_direct_destroy)(kmp_dyna_lock_t *); |
1135 | extern int (**__kmp_direct_set)(kmp_dyna_lock_t *, kmp_int32); |
1136 | extern int (**__kmp_direct_unset)(kmp_dyna_lock_t *, kmp_int32); |
1137 | extern int (**__kmp_direct_test)(kmp_dyna_lock_t *, kmp_int32); |
1138 | |
1139 | // Function tables for indirect locks. Set/unset/test differentiate functions |
1140 | // with/without consistency checking. |
1141 | extern void (*__kmp_indirect_init[])(kmp_user_lock_p); |
1142 | extern void (**__kmp_indirect_destroy)(kmp_user_lock_p); |
1143 | extern int (**__kmp_indirect_set)(kmp_user_lock_p, kmp_int32); |
1144 | extern int (**__kmp_indirect_unset)(kmp_user_lock_p, kmp_int32); |
1145 | extern int (**__kmp_indirect_test)(kmp_user_lock_p, kmp_int32); |
1146 | |
1147 | // Extracts direct lock tag from a user lock pointer |
1148 | #define (l) \ |
1149 | ((kmp_dyna_lock_t)((kmp_base_tas_lock_t *)(l))->poll & \ |
1150 | ((1 << KMP_LOCK_SHIFT) - 1) & \ |
1151 | -((kmp_dyna_lock_t)((kmp_tas_lock_t *)(l))->lk.poll & 1)) |
1152 | |
1153 | // Extracts indirect lock index from a user lock pointer |
1154 | #define (l) \ |
1155 | ((kmp_lock_index_t)((kmp_base_tas_lock_t *)(l))->poll >> 1) |
1156 | |
1157 | // Returns function pointer to the direct lock function with l (kmp_dyna_lock_t |
1158 | // *) and op (operation type). |
1159 | #define KMP_D_LOCK_FUNC(l, op) __kmp_direct_##op[KMP_EXTRACT_D_TAG(l)] |
1160 | |
1161 | // Returns function pointer to the indirect lock function with l |
1162 | // (kmp_indirect_lock_t *) and op (operation type). |
1163 | #define KMP_I_LOCK_FUNC(l, op) \ |
1164 | __kmp_indirect_##op[((kmp_indirect_lock_t *)(l))->type] |
1165 | |
1166 | // Initializes a direct lock with the given lock pointer and lock sequence. |
1167 | #define KMP_INIT_D_LOCK(l, seq) \ |
1168 | __kmp_direct_init[KMP_GET_D_TAG(seq)]((kmp_dyna_lock_t *)l, seq) |
1169 | |
1170 | // Initializes an indirect lock with the given lock pointer and lock sequence. |
1171 | #define KMP_INIT_I_LOCK(l, seq) \ |
1172 | __kmp_direct_init[0]((kmp_dyna_lock_t *)(l), seq) |
1173 | |
1174 | // Returns "free" lock value for the given lock type. |
1175 | #define KMP_LOCK_FREE(type) (locktag_##type) |
1176 | |
1177 | // Returns "busy" lock value for the given lock teyp. |
1178 | #define KMP_LOCK_BUSY(v, type) ((v) << KMP_LOCK_SHIFT | locktag_##type) |
1179 | |
1180 | // Returns lock value after removing (shifting) lock tag. |
1181 | #define KMP_LOCK_STRIP(v) ((v) >> KMP_LOCK_SHIFT) |
1182 | |
1183 | // Initializes global states and data structures for managing dynamic user |
1184 | // locks. |
1185 | extern void __kmp_init_dynamic_user_locks(); |
1186 | |
1187 | // Allocates and returns an indirect lock with the given indirect lock tag. |
1188 | extern kmp_indirect_lock_t * |
1189 | __kmp_allocate_indirect_lock(void **, kmp_int32, kmp_indirect_locktag_t); |
1190 | |
1191 | // Cleans up global states and data structures for managing dynamic user locks. |
1192 | extern void __kmp_cleanup_indirect_user_locks(); |
1193 | |
1194 | // Default user lock sequence when not using hinted locks. |
1195 | extern kmp_dyna_lockseq_t __kmp_user_lock_seq; |
1196 | |
1197 | // Jump table for "set lock location", available only for indirect locks. |
1198 | extern void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p, |
1199 | const ident_t *); |
1200 | #define KMP_SET_I_LOCK_LOCATION(lck, loc) \ |
1201 | { \ |
1202 | if (__kmp_indirect_set_location[(lck)->type] != NULL) \ |
1203 | __kmp_indirect_set_location[(lck)->type]((lck)->lock, loc); \ |
1204 | } |
1205 | |
1206 | // Jump table for "set lock flags", available only for indirect locks. |
1207 | extern void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p, |
1208 | kmp_lock_flags_t); |
1209 | #define KMP_SET_I_LOCK_FLAGS(lck, flag) \ |
1210 | { \ |
1211 | if (__kmp_indirect_set_flags[(lck)->type] != NULL) \ |
1212 | __kmp_indirect_set_flags[(lck)->type]((lck)->lock, flag); \ |
1213 | } |
1214 | |
1215 | // Jump table for "get lock location", available only for indirect locks. |
1216 | extern const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])( |
1217 | kmp_user_lock_p); |
1218 | #define KMP_GET_I_LOCK_LOCATION(lck) \ |
1219 | (__kmp_indirect_get_location[(lck)->type] != NULL \ |
1220 | ? __kmp_indirect_get_location[(lck)->type]((lck)->lock) \ |
1221 | : NULL) |
1222 | |
1223 | // Jump table for "get lock flags", available only for indirect locks. |
1224 | extern kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])( |
1225 | kmp_user_lock_p); |
1226 | #define KMP_GET_I_LOCK_FLAGS(lck) \ |
1227 | (__kmp_indirect_get_flags[(lck)->type] != NULL \ |
1228 | ? __kmp_indirect_get_flags[(lck)->type]((lck)->lock) \ |
1229 | : NULL) |
1230 | |
1231 | // number of kmp_indirect_lock_t objects to be allocated together |
1232 | #define KMP_I_LOCK_CHUNK 1024 |
1233 | // Keep at a power of 2 since it is used in multiplication & division |
1234 | KMP_BUILD_ASSERT(KMP_I_LOCK_CHUNK % 2 == 0); |
1235 | // number of row entries in the initial lock table |
1236 | #define KMP_I_LOCK_TABLE_INIT_NROW_PTRS 8 |
1237 | |
1238 | // Lock table for indirect locks. |
1239 | typedef struct kmp_indirect_lock_table { |
1240 | kmp_indirect_lock_t **table; // blocks of indirect locks allocated |
1241 | kmp_uint32 nrow_ptrs; // number *table pointer entries in table |
1242 | kmp_lock_index_t next; // index to the next lock to be allocated |
1243 | struct kmp_indirect_lock_table *next_table; |
1244 | } kmp_indirect_lock_table_t; |
1245 | |
1246 | extern kmp_indirect_lock_table_t __kmp_i_lock_table; |
1247 | |
1248 | // Returns the indirect lock associated with the given index. |
1249 | // Returns nullptr if no lock at given index |
1250 | static inline kmp_indirect_lock_t *__kmp_get_i_lock(kmp_lock_index_t idx) { |
1251 | kmp_indirect_lock_table_t *lock_table = &__kmp_i_lock_table; |
1252 | while (lock_table) { |
1253 | kmp_lock_index_t max_locks = lock_table->nrow_ptrs * KMP_I_LOCK_CHUNK; |
1254 | if (idx < max_locks) { |
1255 | kmp_lock_index_t row = idx / KMP_I_LOCK_CHUNK; |
1256 | kmp_lock_index_t col = idx % KMP_I_LOCK_CHUNK; |
1257 | if (!lock_table->table[row] || idx >= lock_table->next) |
1258 | break; |
1259 | return &lock_table->table[row][col]; |
1260 | } |
1261 | idx -= max_locks; |
1262 | lock_table = lock_table->next_table; |
1263 | } |
1264 | return nullptr; |
1265 | } |
1266 | |
1267 | // Number of locks in a lock block, which is fixed to "1" now. |
1268 | // TODO: No lock block implementation now. If we do support, we need to manage |
1269 | // lock block data structure for each indirect lock type. |
1270 | extern int __kmp_num_locks_in_block; |
1271 | |
1272 | // Fast lock table lookup without consistency checking |
1273 | #define KMP_LOOKUP_I_LOCK(l) \ |
1274 | ((OMP_LOCK_T_SIZE < sizeof(void *)) \ |
1275 | ? __kmp_get_i_lock(KMP_EXTRACT_I_INDEX(l)) \ |
1276 | : *((kmp_indirect_lock_t **)(l))) |
1277 | |
1278 | // Used once in kmp_error.cpp |
1279 | extern kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p, kmp_uint32); |
1280 | |
1281 | #else // KMP_USE_DYNAMIC_LOCK |
1282 | |
1283 | #define KMP_LOCK_BUSY(v, type) (v) |
1284 | #define KMP_LOCK_FREE(type) 0 |
1285 | #define KMP_LOCK_STRIP(v) (v) |
1286 | |
1287 | #endif // KMP_USE_DYNAMIC_LOCK |
1288 | |
1289 | // data structure for using backoff within spin locks. |
1290 | typedef struct { |
1291 | kmp_uint32 step; // current step |
1292 | kmp_uint32 max_backoff; // upper bound of outer delay loop |
1293 | kmp_uint32 min_tick; // size of inner delay loop in ticks (machine-dependent) |
1294 | } kmp_backoff_t; |
1295 | |
1296 | // Runtime's default backoff parameters |
1297 | extern kmp_backoff_t __kmp_spin_backoff_params; |
1298 | |
1299 | // Backoff function |
1300 | extern void __kmp_spin_backoff(kmp_backoff_t *); |
1301 | |
1302 | #ifdef __cplusplus |
1303 | } // extern "C" |
1304 | #endif // __cplusplus |
1305 | |
1306 | #endif /* KMP_LOCK_H */ |
1307 | |