| 1 | /* |
| 2 | * kmp_collapse.cpp -- loop collapse feature |
| 3 | */ |
| 4 | |
| 5 | //===----------------------------------------------------------------------===// |
| 6 | // |
| 7 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 8 | // See https://llvm.org/LICENSE.txt for license information. |
| 9 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "kmp.h" |
| 14 | #include "kmp_error.h" |
| 15 | #include "kmp_i18n.h" |
| 16 | #include "kmp_itt.h" |
| 17 | #include "kmp_stats.h" |
| 18 | #include "kmp_str.h" |
| 19 | #include "kmp_collapse.h" |
| 20 | |
| 21 | #if OMPT_SUPPORT |
| 22 | #include "ompt-specific.h" |
| 23 | #endif |
| 24 | |
| 25 | // OMPTODO: different style of comments (see kmp_sched) |
| 26 | // OMPTODO: OMPT/OMPD |
| 27 | |
| 28 | // avoid inadevertently using a library based abs |
| 29 | template <typename T> T __kmp_abs(const T val) { |
| 30 | return (val < 0) ? -val : val; |
| 31 | } |
| 32 | kmp_uint32 __kmp_abs(const kmp_uint32 val) { return val; } |
| 33 | kmp_uint64 __kmp_abs(const kmp_uint64 val) { return val; } |
| 34 | |
| 35 | //---------------------------------------------------------------------------- |
| 36 | // Common functions for working with rectangular and non-rectangular loops |
| 37 | //---------------------------------------------------------------------------- |
| 38 | |
| 39 | template <typename T> int __kmp_sign(T val) { |
| 40 | return (T(0) < val) - (val < T(0)); |
| 41 | } |
| 42 | |
| 43 | template <typename T> class CollapseAllocator { |
| 44 | typedef T *pT; |
| 45 | |
| 46 | private: |
| 47 | static const size_t allocaSize = 32; // size limit for stack allocations |
| 48 | // (8 bytes x 4 nested loops) |
| 49 | char stackAlloc[allocaSize]; |
| 50 | static constexpr size_t maxElemCount = allocaSize / sizeof(T); |
| 51 | pT pTAlloc; |
| 52 | |
| 53 | public: |
| 54 | CollapseAllocator(size_t n) : pTAlloc(reinterpret_cast<pT>(stackAlloc)) { |
| 55 | if (n > maxElemCount) { |
| 56 | pTAlloc = reinterpret_cast<pT>(__kmp_allocate(n * sizeof(T))); |
| 57 | } |
| 58 | } |
| 59 | ~CollapseAllocator() { |
| 60 | if (pTAlloc != reinterpret_cast<pT>(stackAlloc)) { |
| 61 | __kmp_free(pTAlloc); |
| 62 | } |
| 63 | } |
| 64 | T &operator[](int index) { return pTAlloc[index]; } |
| 65 | operator const pT() { return pTAlloc; } |
| 66 | }; |
| 67 | |
| 68 | //----------Loop canonicalization--------------------------------------------- |
| 69 | |
| 70 | // For loop nest (any shape): |
| 71 | // convert != to < or >; |
| 72 | // switch from using < or > to <= or >=. |
| 73 | // "bounds" array has to be allocated per thread. |
| 74 | // All other internal functions will work only with canonicalized loops. |
| 75 | template <typename T> |
| 76 | void kmp_canonicalize_one_loop_XX( |
| 77 | ident_t *loc, |
| 78 | /*in/out*/ bounds_infoXX_template<T> *bounds) { |
| 79 | |
| 80 | if (__kmp_env_consistency_check) { |
| 81 | if (bounds->step == 0) { |
| 82 | __kmp_error_construct(kmp_i18n_msg_CnsLoopIncrZeroProhibited, ct_pdo, |
| 83 | loc); |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | if (bounds->comparison == comparison_t::comp_not_eq) { |
| 88 | // We can convert this to < or >, depends on the sign of the step: |
| 89 | if (bounds->step > 0) { |
| 90 | bounds->comparison = comparison_t::comp_less; |
| 91 | } else { |
| 92 | bounds->comparison = comparison_t::comp_greater; |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | if (bounds->comparison == comparison_t::comp_less) { |
| 97 | // Note: ub0 can be unsigned. Should be Ok to hit overflow here, |
| 98 | // because ub0 + ub1*j should be still positive (otherwise loop was not |
| 99 | // well formed) |
| 100 | bounds->ub0 -= 1; |
| 101 | bounds->comparison = comparison_t::comp_less_or_eq; |
| 102 | } else if (bounds->comparison == comparison_t::comp_greater) { |
| 103 | bounds->ub0 += 1; |
| 104 | bounds->comparison = comparison_t::comp_greater_or_eq; |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | // Canonicalize loop nest. original_bounds_nest is an array of length n. |
| 109 | void kmp_canonicalize_loop_nest(ident_t *loc, |
| 110 | /*in/out*/ bounds_info_t *original_bounds_nest, |
| 111 | kmp_index_t n) { |
| 112 | |
| 113 | for (kmp_index_t ind = 0; ind < n; ++ind) { |
| 114 | auto bounds = &(original_bounds_nest[ind]); |
| 115 | |
| 116 | switch (bounds->loop_type) { |
| 117 | case loop_type_t::loop_type_int32: |
| 118 | kmp_canonicalize_one_loop_XX<kmp_int32>( |
| 119 | loc, |
| 120 | /*in/out*/ bounds: (bounds_infoXX_template<kmp_int32> *)(bounds)); |
| 121 | break; |
| 122 | case loop_type_t::loop_type_uint32: |
| 123 | kmp_canonicalize_one_loop_XX<kmp_uint32>( |
| 124 | loc, |
| 125 | /*in/out*/ bounds: (bounds_infoXX_template<kmp_uint32> *)(bounds)); |
| 126 | break; |
| 127 | case loop_type_t::loop_type_int64: |
| 128 | kmp_canonicalize_one_loop_XX<kmp_int64>( |
| 129 | loc, |
| 130 | /*in/out*/ bounds: (bounds_infoXX_template<kmp_int64> *)(bounds)); |
| 131 | break; |
| 132 | case loop_type_t::loop_type_uint64: |
| 133 | kmp_canonicalize_one_loop_XX<kmp_uint64>( |
| 134 | loc, |
| 135 | /*in/out*/ bounds: (bounds_infoXX_template<kmp_uint64> *)(bounds)); |
| 136 | break; |
| 137 | default: |
| 138 | KMP_ASSERT(false); |
| 139 | } |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | //----------Calculating trip count on one level------------------------------- |
| 144 | |
| 145 | // Calculate trip count on this loop level. |
| 146 | // We do this either for a rectangular loop nest, |
| 147 | // or after an adjustment bringing the loops to a parallelepiped shape. |
| 148 | // This number should not depend on the value of outer IV |
| 149 | // even if the formular has lb1 and ub1. |
| 150 | // Note: for non-rectangular loops don't use span for this, it's too big. |
| 151 | |
| 152 | template <typename T> |
| 153 | kmp_loop_nest_iv_t kmp_calculate_trip_count_XX( |
| 154 | /*in/out*/ bounds_infoXX_template<T> *bounds) { |
| 155 | |
| 156 | if (bounds->comparison == comparison_t::comp_less_or_eq) { |
| 157 | if (bounds->ub0 < bounds->lb0) { |
| 158 | // Note: after this we don't need to calculate inner loops, |
| 159 | // but that should be an edge case: |
| 160 | bounds->trip_count = 0; |
| 161 | } else { |
| 162 | // ub - lb may exceed signed type range; we need to cast to |
| 163 | // kmp_loop_nest_iv_t anyway |
| 164 | bounds->trip_count = |
| 165 | static_cast<kmp_loop_nest_iv_t>(bounds->ub0 - bounds->lb0) / |
| 166 | __kmp_abs(bounds->step) + |
| 167 | 1; |
| 168 | } |
| 169 | } else if (bounds->comparison == comparison_t::comp_greater_or_eq) { |
| 170 | if (bounds->lb0 < bounds->ub0) { |
| 171 | // Note: after this we don't need to calculate inner loops, |
| 172 | // but that should be an edge case: |
| 173 | bounds->trip_count = 0; |
| 174 | } else { |
| 175 | // lb - ub may exceed signed type range; we need to cast to |
| 176 | // kmp_loop_nest_iv_t anyway |
| 177 | bounds->trip_count = |
| 178 | static_cast<kmp_loop_nest_iv_t>(bounds->lb0 - bounds->ub0) / |
| 179 | __kmp_abs(bounds->step) + |
| 180 | 1; |
| 181 | } |
| 182 | } else { |
| 183 | KMP_ASSERT(false); |
| 184 | } |
| 185 | return bounds->trip_count; |
| 186 | } |
| 187 | |
| 188 | // Calculate trip count on this loop level. |
| 189 | kmp_loop_nest_iv_t kmp_calculate_trip_count(/*in/out*/ bounds_info_t *bounds) { |
| 190 | |
| 191 | kmp_loop_nest_iv_t trip_count = 0; |
| 192 | |
| 193 | switch (bounds->loop_type) { |
| 194 | case loop_type_t::loop_type_int32: |
| 195 | trip_count = kmp_calculate_trip_count_XX<kmp_int32>( |
| 196 | /*in/out*/ bounds: (bounds_infoXX_template<kmp_int32> *)(bounds)); |
| 197 | break; |
| 198 | case loop_type_t::loop_type_uint32: |
| 199 | trip_count = kmp_calculate_trip_count_XX<kmp_uint32>( |
| 200 | /*in/out*/ bounds: (bounds_infoXX_template<kmp_uint32> *)(bounds)); |
| 201 | break; |
| 202 | case loop_type_t::loop_type_int64: |
| 203 | trip_count = kmp_calculate_trip_count_XX<kmp_int64>( |
| 204 | /*in/out*/ bounds: (bounds_infoXX_template<kmp_int64> *)(bounds)); |
| 205 | break; |
| 206 | case loop_type_t::loop_type_uint64: |
| 207 | trip_count = kmp_calculate_trip_count_XX<kmp_uint64>( |
| 208 | /*in/out*/ bounds: (bounds_infoXX_template<kmp_uint64> *)(bounds)); |
| 209 | break; |
| 210 | default: |
| 211 | KMP_ASSERT(false); |
| 212 | } |
| 213 | |
| 214 | return trip_count; |
| 215 | } |
| 216 | |
| 217 | //----------Trim original iv according to its type---------------------------- |
| 218 | |
| 219 | // Trim original iv according to its type. |
| 220 | // Return kmp_uint64 value which can be easily used in all internal calculations |
| 221 | // And can be statically cast back to original type in user code. |
| 222 | kmp_uint64 kmp_fix_iv(loop_type_t loop_iv_type, kmp_uint64 original_iv) { |
| 223 | kmp_uint64 res = 0; |
| 224 | |
| 225 | switch (loop_iv_type) { |
| 226 | case loop_type_t::loop_type_int8: |
| 227 | res = static_cast<kmp_uint64>(static_cast<kmp_int8>(original_iv)); |
| 228 | break; |
| 229 | case loop_type_t::loop_type_uint8: |
| 230 | res = static_cast<kmp_uint64>(static_cast<kmp_uint8>(original_iv)); |
| 231 | break; |
| 232 | case loop_type_t::loop_type_int16: |
| 233 | res = static_cast<kmp_uint64>(static_cast<kmp_int16>(original_iv)); |
| 234 | break; |
| 235 | case loop_type_t::loop_type_uint16: |
| 236 | res = static_cast<kmp_uint64>(static_cast<kmp_uint16>(original_iv)); |
| 237 | break; |
| 238 | case loop_type_t::loop_type_int32: |
| 239 | res = static_cast<kmp_uint64>(static_cast<kmp_int32>(original_iv)); |
| 240 | break; |
| 241 | case loop_type_t::loop_type_uint32: |
| 242 | res = static_cast<kmp_uint64>(static_cast<kmp_uint32>(original_iv)); |
| 243 | break; |
| 244 | case loop_type_t::loop_type_int64: |
| 245 | res = static_cast<kmp_uint64>(static_cast<kmp_int64>(original_iv)); |
| 246 | break; |
| 247 | case loop_type_t::loop_type_uint64: |
| 248 | res = static_cast<kmp_uint64>(original_iv); |
| 249 | break; |
| 250 | default: |
| 251 | KMP_ASSERT(false); |
| 252 | } |
| 253 | |
| 254 | return res; |
| 255 | } |
| 256 | |
| 257 | //----------Compare two IVs (remember they have a type)----------------------- |
| 258 | |
| 259 | bool kmp_ivs_eq(loop_type_t loop_iv_type, kmp_uint64 original_iv1, |
| 260 | kmp_uint64 original_iv2) { |
| 261 | bool res = false; |
| 262 | |
| 263 | switch (loop_iv_type) { |
| 264 | case loop_type_t::loop_type_int8: |
| 265 | res = static_cast<kmp_int8>(original_iv1) == |
| 266 | static_cast<kmp_int8>(original_iv2); |
| 267 | break; |
| 268 | case loop_type_t::loop_type_uint8: |
| 269 | res = static_cast<kmp_uint8>(original_iv1) == |
| 270 | static_cast<kmp_uint8>(original_iv2); |
| 271 | break; |
| 272 | case loop_type_t::loop_type_int16: |
| 273 | res = static_cast<kmp_int16>(original_iv1) == |
| 274 | static_cast<kmp_int16>(original_iv2); |
| 275 | break; |
| 276 | case loop_type_t::loop_type_uint16: |
| 277 | res = static_cast<kmp_uint16>(original_iv1) == |
| 278 | static_cast<kmp_uint16>(original_iv2); |
| 279 | break; |
| 280 | case loop_type_t::loop_type_int32: |
| 281 | res = static_cast<kmp_int32>(original_iv1) == |
| 282 | static_cast<kmp_int32>(original_iv2); |
| 283 | break; |
| 284 | case loop_type_t::loop_type_uint32: |
| 285 | res = static_cast<kmp_uint32>(original_iv1) == |
| 286 | static_cast<kmp_uint32>(original_iv2); |
| 287 | break; |
| 288 | case loop_type_t::loop_type_int64: |
| 289 | res = static_cast<kmp_int64>(original_iv1) == |
| 290 | static_cast<kmp_int64>(original_iv2); |
| 291 | break; |
| 292 | case loop_type_t::loop_type_uint64: |
| 293 | res = static_cast<kmp_uint64>(original_iv1) == |
| 294 | static_cast<kmp_uint64>(original_iv2); |
| 295 | break; |
| 296 | default: |
| 297 | KMP_ASSERT(false); |
| 298 | } |
| 299 | |
| 300 | return res; |
| 301 | } |
| 302 | |
| 303 | //----------Calculate original iv on one level-------------------------------- |
| 304 | |
| 305 | // Return true if the point fits into upper bounds on this level, |
| 306 | // false otherwise |
| 307 | template <typename T> |
| 308 | bool kmp_iv_is_in_upper_bound_XX(const bounds_infoXX_template<T> *bounds, |
| 309 | const kmp_point_t original_ivs, |
| 310 | kmp_index_t ind) { |
| 311 | |
| 312 | T iv = static_cast<T>(original_ivs[ind]); |
| 313 | T outer_iv = static_cast<T>(original_ivs[bounds->outer_iv]); |
| 314 | |
| 315 | if (((bounds->comparison == comparison_t::comp_less_or_eq) && |
| 316 | (iv > (bounds->ub0 + bounds->ub1 * outer_iv))) || |
| 317 | ((bounds->comparison == comparison_t::comp_greater_or_eq) && |
| 318 | (iv < (bounds->ub0 + bounds->ub1 * outer_iv)))) { |
| 319 | // The calculated point is outside of loop upper boundary: |
| 320 | return false; |
| 321 | } |
| 322 | |
| 323 | return true; |
| 324 | } |
| 325 | |
| 326 | // Calculate one iv corresponding to iteration on the level ind. |
| 327 | // Return true if it fits into lower-upper bounds on this level |
| 328 | // (if not, we need to re-calculate) |
| 329 | template <typename T> |
| 330 | bool kmp_calc_one_iv_XX(const bounds_infoXX_template<T> *bounds, |
| 331 | /*in/out*/ kmp_point_t original_ivs, |
| 332 | const kmp_iterations_t iterations, kmp_index_t ind, |
| 333 | bool start_with_lower_bound, bool checkBounds) { |
| 334 | |
| 335 | kmp_uint64 temp = 0; |
| 336 | T outer_iv = static_cast<T>(original_ivs[bounds->outer_iv]); |
| 337 | |
| 338 | if (start_with_lower_bound) { |
| 339 | // we moved to the next iteration on one of outer loops, should start |
| 340 | // with the lower bound here: |
| 341 | temp = bounds->lb0 + bounds->lb1 * outer_iv; |
| 342 | } else { |
| 343 | auto iteration = iterations[ind]; |
| 344 | temp = bounds->lb0 + bounds->lb1 * outer_iv + iteration * bounds->step; |
| 345 | } |
| 346 | |
| 347 | // Now trim original iv according to its type: |
| 348 | original_ivs[ind] = kmp_fix_iv(bounds->loop_iv_type, temp); |
| 349 | |
| 350 | if (checkBounds) { |
| 351 | return kmp_iv_is_in_upper_bound_XX(bounds, original_ivs, ind); |
| 352 | } else { |
| 353 | return true; |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | bool kmp_calc_one_iv(const bounds_info_t *bounds, |
| 358 | /*in/out*/ kmp_point_t original_ivs, |
| 359 | const kmp_iterations_t iterations, kmp_index_t ind, |
| 360 | bool start_with_lower_bound, bool checkBounds) { |
| 361 | |
| 362 | switch (bounds->loop_type) { |
| 363 | case loop_type_t::loop_type_int32: |
| 364 | return kmp_calc_one_iv_XX<kmp_int32>( |
| 365 | bounds: (bounds_infoXX_template<kmp_int32> *)(bounds), |
| 366 | /*in/out*/ original_ivs, iterations, ind, start_with_lower_bound, |
| 367 | checkBounds); |
| 368 | break; |
| 369 | case loop_type_t::loop_type_uint32: |
| 370 | return kmp_calc_one_iv_XX<kmp_uint32>( |
| 371 | bounds: (bounds_infoXX_template<kmp_uint32> *)(bounds), |
| 372 | /*in/out*/ original_ivs, iterations, ind, start_with_lower_bound, |
| 373 | checkBounds); |
| 374 | break; |
| 375 | case loop_type_t::loop_type_int64: |
| 376 | return kmp_calc_one_iv_XX<kmp_int64>( |
| 377 | bounds: (bounds_infoXX_template<kmp_int64> *)(bounds), |
| 378 | /*in/out*/ original_ivs, iterations, ind, start_with_lower_bound, |
| 379 | checkBounds); |
| 380 | break; |
| 381 | case loop_type_t::loop_type_uint64: |
| 382 | return kmp_calc_one_iv_XX<kmp_uint64>( |
| 383 | bounds: (bounds_infoXX_template<kmp_uint64> *)(bounds), |
| 384 | /*in/out*/ original_ivs, iterations, ind, start_with_lower_bound, |
| 385 | checkBounds); |
| 386 | break; |
| 387 | default: |
| 388 | KMP_ASSERT(false); |
| 389 | return false; |
| 390 | } |
| 391 | } |
| 392 | |
| 393 | //----------Calculate original iv on one level for rectangular loop nest------ |
| 394 | |
| 395 | // Calculate one iv corresponding to iteration on the level ind. |
| 396 | // Return true if it fits into lower-upper bounds on this level |
| 397 | // (if not, we need to re-calculate) |
| 398 | template <typename T> |
| 399 | void kmp_calc_one_iv_rectang_XX(const bounds_infoXX_template<T> *bounds, |
| 400 | /*in/out*/ kmp_uint64 *original_ivs, |
| 401 | const kmp_iterations_t iterations, |
| 402 | kmp_index_t ind) { |
| 403 | |
| 404 | auto iteration = iterations[ind]; |
| 405 | |
| 406 | kmp_uint64 temp = |
| 407 | bounds->lb0 + |
| 408 | bounds->lb1 * static_cast<T>(original_ivs[bounds->outer_iv]) + |
| 409 | iteration * bounds->step; |
| 410 | |
| 411 | // Now trim original iv according to its type: |
| 412 | original_ivs[ind] = kmp_fix_iv(bounds->loop_iv_type, temp); |
| 413 | } |
| 414 | |
| 415 | void kmp_calc_one_iv_rectang(const bounds_info_t *bounds, |
| 416 | /*in/out*/ kmp_uint64 *original_ivs, |
| 417 | const kmp_iterations_t iterations, |
| 418 | kmp_index_t ind) { |
| 419 | |
| 420 | switch (bounds->loop_type) { |
| 421 | case loop_type_t::loop_type_int32: |
| 422 | kmp_calc_one_iv_rectang_XX<kmp_int32>( |
| 423 | bounds: (bounds_infoXX_template<kmp_int32> *)(bounds), |
| 424 | /*in/out*/ original_ivs, iterations, ind); |
| 425 | break; |
| 426 | case loop_type_t::loop_type_uint32: |
| 427 | kmp_calc_one_iv_rectang_XX<kmp_uint32>( |
| 428 | bounds: (bounds_infoXX_template<kmp_uint32> *)(bounds), |
| 429 | /*in/out*/ original_ivs, iterations, ind); |
| 430 | break; |
| 431 | case loop_type_t::loop_type_int64: |
| 432 | kmp_calc_one_iv_rectang_XX<kmp_int64>( |
| 433 | bounds: (bounds_infoXX_template<kmp_int64> *)(bounds), |
| 434 | /*in/out*/ original_ivs, iterations, ind); |
| 435 | break; |
| 436 | case loop_type_t::loop_type_uint64: |
| 437 | kmp_calc_one_iv_rectang_XX<kmp_uint64>( |
| 438 | bounds: (bounds_infoXX_template<kmp_uint64> *)(bounds), |
| 439 | /*in/out*/ original_ivs, iterations, ind); |
| 440 | break; |
| 441 | default: |
| 442 | KMP_ASSERT(false); |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | //---------------------------------------------------------------------------- |
| 447 | // Rectangular loop nest |
| 448 | //---------------------------------------------------------------------------- |
| 449 | |
| 450 | //----------Canonicalize loop nest and calculate trip count------------------- |
| 451 | |
| 452 | // Canonicalize loop nest and calculate overall trip count. |
| 453 | // "bounds_nest" has to be allocated per thread. |
| 454 | // API will modify original bounds_nest array to bring it to a canonical form |
| 455 | // (only <= and >=, no !=, <, >). If the original loop nest was already in a |
| 456 | // canonical form there will be no changes to bounds in bounds_nest array |
| 457 | // (only trip counts will be calculated). |
| 458 | // Returns trip count of overall space. |
| 459 | extern "C" kmp_loop_nest_iv_t |
| 460 | __kmpc_process_loop_nest_rectang(ident_t *loc, kmp_int32 gtid, |
| 461 | /*in/out*/ bounds_info_t *original_bounds_nest, |
| 462 | kmp_index_t n) { |
| 463 | |
| 464 | kmp_canonicalize_loop_nest(loc, /*in/out*/ original_bounds_nest, n); |
| 465 | |
| 466 | kmp_loop_nest_iv_t total = 1; |
| 467 | |
| 468 | for (kmp_index_t ind = 0; ind < n; ++ind) { |
| 469 | auto bounds = &(original_bounds_nest[ind]); |
| 470 | |
| 471 | kmp_loop_nest_iv_t trip_count = kmp_calculate_trip_count(/*in/out*/ bounds); |
| 472 | total *= trip_count; |
| 473 | } |
| 474 | |
| 475 | return total; |
| 476 | } |
| 477 | |
| 478 | //----------Calculate old induction variables--------------------------------- |
| 479 | |
| 480 | // Calculate old induction variables corresponding to overall new_iv. |
| 481 | // Note: original IV will be returned as if it had kmp_uint64 type, |
| 482 | // will have to be converted to original type in user code. |
| 483 | // Note: trip counts should be already calculated by |
| 484 | // __kmpc_process_loop_nest_rectang. |
| 485 | // OMPTODO: special case 2, 3 nested loops: either do different |
| 486 | // interface without array or possibly template this over n |
| 487 | extern "C" void |
| 488 | __kmpc_calc_original_ivs_rectang(ident_t *loc, kmp_loop_nest_iv_t new_iv, |
| 489 | const bounds_info_t *original_bounds_nest, |
| 490 | /*out*/ kmp_uint64 *original_ivs, |
| 491 | kmp_index_t n) { |
| 492 | |
| 493 | CollapseAllocator<kmp_loop_nest_iv_t> iterations(n); |
| 494 | |
| 495 | // First, calc corresponding iteration in every original loop: |
| 496 | for (kmp_index_t ind = n; ind > 0;) { |
| 497 | --ind; |
| 498 | auto bounds = &(original_bounds_nest[ind]); |
| 499 | |
| 500 | // should be optimized to OPDIVREM: |
| 501 | auto temp = new_iv / bounds->trip_count; |
| 502 | auto iteration = new_iv % bounds->trip_count; |
| 503 | new_iv = temp; |
| 504 | |
| 505 | iterations[ind] = iteration; |
| 506 | } |
| 507 | KMP_ASSERT(new_iv == 0); |
| 508 | |
| 509 | for (kmp_index_t ind = 0; ind < n; ++ind) { |
| 510 | auto bounds = &(original_bounds_nest[ind]); |
| 511 | |
| 512 | kmp_calc_one_iv_rectang(bounds, /*in/out*/ original_ivs, iterations, ind); |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | //---------------------------------------------------------------------------- |
| 517 | // Non-rectangular loop nest |
| 518 | //---------------------------------------------------------------------------- |
| 519 | |
| 520 | //----------Calculate maximum possible span of iv values on one level--------- |
| 521 | |
| 522 | // Calculate span for IV on this loop level for "<=" case. |
| 523 | // Note: it's for <= on this loop nest level, so lower bound should be smallest |
| 524 | // value, upper bound should be the biggest value. If the loop won't execute, |
| 525 | // 'smallest' may be bigger than 'biggest', but we'd better not switch them |
| 526 | // around. |
| 527 | template <typename T> |
| 528 | void kmp_calc_span_lessoreq_XX( |
| 529 | /* in/out*/ bounds_info_internalXX_template<T> *bounds, |
| 530 | /* in/out*/ bounds_info_internal_t *bounds_nest) { |
| 531 | |
| 532 | typedef typename traits_t<T>::unsigned_t UT; |
| 533 | // typedef typename traits_t<T>::signed_t ST; |
| 534 | |
| 535 | // typedef typename big_span_t span_t; |
| 536 | typedef T span_t; |
| 537 | |
| 538 | auto &bbounds = bounds->b; |
| 539 | |
| 540 | if ((bbounds.lb1 != 0) || (bbounds.ub1 != 0)) { |
| 541 | // This dimention depends on one of previous ones; can't be the outermost |
| 542 | // one. |
| 543 | bounds_info_internalXX_template<T> *previous = |
| 544 | reinterpret_cast<bounds_info_internalXX_template<T> *>( |
| 545 | &(bounds_nest[bbounds.outer_iv])); |
| 546 | |
| 547 | // OMPTODO: assert that T is compatible with loop variable type on |
| 548 | // 'previous' loop |
| 549 | |
| 550 | { |
| 551 | span_t bound_candidate1 = |
| 552 | bbounds.lb0 + bbounds.lb1 * previous->span_smallest; |
| 553 | span_t bound_candidate2 = |
| 554 | bbounds.lb0 + bbounds.lb1 * previous->span_biggest; |
| 555 | if (bound_candidate1 < bound_candidate2) { |
| 556 | bounds->span_smallest = bound_candidate1; |
| 557 | } else { |
| 558 | bounds->span_smallest = bound_candidate2; |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | { |
| 563 | // We can't adjust the upper bound with respect to step, because |
| 564 | // lower bound might be off after adjustments |
| 565 | |
| 566 | span_t bound_candidate1 = |
| 567 | bbounds.ub0 + bbounds.ub1 * previous->span_smallest; |
| 568 | span_t bound_candidate2 = |
| 569 | bbounds.ub0 + bbounds.ub1 * previous->span_biggest; |
| 570 | if (bound_candidate1 < bound_candidate2) { |
| 571 | bounds->span_biggest = bound_candidate2; |
| 572 | } else { |
| 573 | bounds->span_biggest = bound_candidate1; |
| 574 | } |
| 575 | } |
| 576 | } else { |
| 577 | // Rectangular: |
| 578 | bounds->span_smallest = bbounds.lb0; |
| 579 | bounds->span_biggest = bbounds.ub0; |
| 580 | } |
| 581 | if (!bounds->loop_bounds_adjusted) { |
| 582 | // Here it's safe to reduce the space to the multiply of step. |
| 583 | // OMPTODO: check if the formular is correct. |
| 584 | // Also check if it would be safe to do this if we didn't adjust left side. |
| 585 | bounds->span_biggest -= |
| 586 | (static_cast<UT>(bbounds.ub0 - bbounds.lb0)) % bbounds.step; // abs? |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | // Calculate span for IV on this loop level for ">=" case. |
| 591 | template <typename T> |
| 592 | void kmp_calc_span_greateroreq_XX( |
| 593 | /* in/out*/ bounds_info_internalXX_template<T> *bounds, |
| 594 | /* in/out*/ bounds_info_internal_t *bounds_nest) { |
| 595 | |
| 596 | typedef typename traits_t<T>::unsigned_t UT; |
| 597 | // typedef typename traits_t<T>::signed_t ST; |
| 598 | |
| 599 | // typedef typename big_span_t span_t; |
| 600 | typedef T span_t; |
| 601 | |
| 602 | auto &bbounds = bounds->b; |
| 603 | |
| 604 | if ((bbounds.lb1 != 0) || (bbounds.ub1 != 0)) { |
| 605 | // This dimention depends on one of previous ones; can't be the outermost |
| 606 | // one. |
| 607 | bounds_info_internalXX_template<T> *previous = |
| 608 | reinterpret_cast<bounds_info_internalXX_template<T> *>( |
| 609 | &(bounds_nest[bbounds.outer_iv])); |
| 610 | |
| 611 | // OMPTODO: assert that T is compatible with loop variable type on |
| 612 | // 'previous' loop |
| 613 | |
| 614 | { |
| 615 | span_t bound_candidate1 = |
| 616 | bbounds.lb0 + bbounds.lb1 * previous->span_smallest; |
| 617 | span_t bound_candidate2 = |
| 618 | bbounds.lb0 + bbounds.lb1 * previous->span_biggest; |
| 619 | if (bound_candidate1 >= bound_candidate2) { |
| 620 | bounds->span_smallest = bound_candidate1; |
| 621 | } else { |
| 622 | bounds->span_smallest = bound_candidate2; |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | { |
| 627 | // We can't adjust the upper bound with respect to step, because |
| 628 | // lower bound might be off after adjustments |
| 629 | |
| 630 | span_t bound_candidate1 = |
| 631 | bbounds.ub0 + bbounds.ub1 * previous->span_smallest; |
| 632 | span_t bound_candidate2 = |
| 633 | bbounds.ub0 + bbounds.ub1 * previous->span_biggest; |
| 634 | if (bound_candidate1 >= bound_candidate2) { |
| 635 | bounds->span_biggest = bound_candidate2; |
| 636 | } else { |
| 637 | bounds->span_biggest = bound_candidate1; |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | } else { |
| 642 | // Rectangular: |
| 643 | bounds->span_biggest = bbounds.lb0; |
| 644 | bounds->span_smallest = bbounds.ub0; |
| 645 | } |
| 646 | if (!bounds->loop_bounds_adjusted) { |
| 647 | // Here it's safe to reduce the space to the multiply of step. |
| 648 | // OMPTODO: check if the formular is correct. |
| 649 | // Also check if it would be safe to do this if we didn't adjust left side. |
| 650 | bounds->span_biggest -= |
| 651 | (static_cast<UT>(bbounds.ub0 - bbounds.lb0)) % bbounds.step; // abs? |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | // Calculate maximum possible span for IV on this loop level. |
| 656 | template <typename T> |
| 657 | void kmp_calc_span_XX( |
| 658 | /* in/out*/ bounds_info_internalXX_template<T> *bounds, |
| 659 | /* in/out*/ bounds_info_internal_t *bounds_nest) { |
| 660 | |
| 661 | if (bounds->b.comparison == comparison_t::comp_less_or_eq) { |
| 662 | kmp_calc_span_lessoreq_XX(/* in/out*/ bounds, /* in/out*/ bounds_nest); |
| 663 | } else { |
| 664 | KMP_ASSERT(bounds->b.comparison == comparison_t::comp_greater_or_eq); |
| 665 | kmp_calc_span_greateroreq_XX(/* in/out*/ bounds, /* in/out*/ bounds_nest); |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | //----------All initial processing of the loop nest--------------------------- |
| 670 | |
| 671 | // Calculate new bounds for this loop level. |
| 672 | // To be able to work with the nest we need to get it to a parallelepiped shape. |
| 673 | // We need to stay in the original range of values, so that there will be no |
| 674 | // overflow, for that we'll adjust both upper and lower bounds as needed. |
| 675 | template <typename T> |
| 676 | void kmp_calc_new_bounds_XX( |
| 677 | /* in/out*/ bounds_info_internalXX_template<T> *bounds, |
| 678 | /* in/out*/ bounds_info_internal_t *bounds_nest) { |
| 679 | |
| 680 | auto &bbounds = bounds->b; |
| 681 | |
| 682 | if (bbounds.lb1 == bbounds.ub1) { |
| 683 | // Already parallel, no need to adjust: |
| 684 | bounds->loop_bounds_adjusted = false; |
| 685 | } else { |
| 686 | bounds->loop_bounds_adjusted = true; |
| 687 | |
| 688 | T old_lb1 = bbounds.lb1; |
| 689 | T old_ub1 = bbounds.ub1; |
| 690 | |
| 691 | if (__kmp_sign(old_lb1) != __kmp_sign(old_ub1)) { |
| 692 | // With this shape we can adjust to a rectangle: |
| 693 | bbounds.lb1 = 0; |
| 694 | bbounds.ub1 = 0; |
| 695 | } else { |
| 696 | // get upper and lower bounds to be parallel |
| 697 | // with values in the old range. |
| 698 | // Note: abs didn't work here. |
| 699 | if (((old_lb1 < 0) && (old_lb1 < old_ub1)) || |
| 700 | ((old_lb1 > 0) && (old_lb1 > old_ub1))) { |
| 701 | bbounds.lb1 = old_ub1; |
| 702 | } else { |
| 703 | bbounds.ub1 = old_lb1; |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | // Now need to adjust lb0, ub0, otherwise in some cases space will shrink. |
| 708 | // The idea here that for this IV we are now getting the same span |
| 709 | // irrespective of the previous IV value. |
| 710 | bounds_info_internalXX_template<T> *previous = |
| 711 | reinterpret_cast<bounds_info_internalXX_template<T> *>( |
| 712 | &bounds_nest[bbounds.outer_iv]); |
| 713 | |
| 714 | if (bbounds.comparison == comparison_t::comp_less_or_eq) { |
| 715 | if (old_lb1 < bbounds.lb1) { |
| 716 | KMP_ASSERT(old_lb1 < 0); |
| 717 | // The length is good on outer_iv biggest number, |
| 718 | // can use it to find where to move the lower bound: |
| 719 | |
| 720 | T sub = (bbounds.lb1 - old_lb1) * previous->span_biggest; |
| 721 | bbounds.lb0 -= sub; // OMPTODO: what if it'll go out of unsigned space? |
| 722 | // e.g. it was 0?? (same below) |
| 723 | } else if (old_lb1 > bbounds.lb1) { |
| 724 | // still need to move lower bound: |
| 725 | T add = (old_lb1 - bbounds.lb1) * previous->span_smallest; |
| 726 | bbounds.lb0 += add; |
| 727 | } |
| 728 | |
| 729 | if (old_ub1 > bbounds.ub1) { |
| 730 | KMP_ASSERT(old_ub1 > 0); |
| 731 | // The length is good on outer_iv biggest number, |
| 732 | // can use it to find where to move upper bound: |
| 733 | |
| 734 | T add = (old_ub1 - bbounds.ub1) * previous->span_biggest; |
| 735 | bbounds.ub0 += add; |
| 736 | } else if (old_ub1 < bbounds.ub1) { |
| 737 | // still need to move upper bound: |
| 738 | T sub = (bbounds.ub1 - old_ub1) * previous->span_smallest; |
| 739 | bbounds.ub0 -= sub; |
| 740 | } |
| 741 | } else { |
| 742 | KMP_ASSERT(bbounds.comparison == comparison_t::comp_greater_or_eq); |
| 743 | if (old_lb1 < bbounds.lb1) { |
| 744 | KMP_ASSERT(old_lb1 < 0); |
| 745 | T sub = (bbounds.lb1 - old_lb1) * previous->span_smallest; |
| 746 | bbounds.lb0 -= sub; |
| 747 | } else if (old_lb1 > bbounds.lb1) { |
| 748 | T add = (old_lb1 - bbounds.lb1) * previous->span_biggest; |
| 749 | bbounds.lb0 += add; |
| 750 | } |
| 751 | |
| 752 | if (old_ub1 > bbounds.ub1) { |
| 753 | KMP_ASSERT(old_ub1 > 0); |
| 754 | T add = (old_ub1 - bbounds.ub1) * previous->span_smallest; |
| 755 | bbounds.ub0 += add; |
| 756 | } else if (old_ub1 < bbounds.ub1) { |
| 757 | T sub = (bbounds.ub1 - old_ub1) * previous->span_biggest; |
| 758 | bbounds.ub0 -= sub; |
| 759 | } |
| 760 | } |
| 761 | } |
| 762 | } |
| 763 | |
| 764 | // Do all processing for one canonicalized loop in the nest |
| 765 | // (assuming that outer loops already were processed): |
| 766 | template <typename T> |
| 767 | kmp_loop_nest_iv_t kmp_process_one_loop_XX( |
| 768 | /* in/out*/ bounds_info_internalXX_template<T> *bounds, |
| 769 | /*in/out*/ bounds_info_internal_t *bounds_nest) { |
| 770 | |
| 771 | kmp_calc_new_bounds_XX(/* in/out*/ bounds, /* in/out*/ bounds_nest); |
| 772 | kmp_calc_span_XX(/* in/out*/ bounds, /* in/out*/ bounds_nest); |
| 773 | return kmp_calculate_trip_count_XX(/*in/out*/ &(bounds->b)); |
| 774 | } |
| 775 | |
| 776 | // Non-rectangular loop nest, canonicalized to use <= or >=. |
| 777 | // Process loop nest to have a parallelepiped shape, |
| 778 | // calculate biggest spans for IV's on all levels and calculate overall trip |
| 779 | // count. "bounds_nest" has to be allocated per thread. |
| 780 | // Returns overall trip count (for adjusted space). |
| 781 | kmp_loop_nest_iv_t kmp_process_loop_nest( |
| 782 | /*in/out*/ bounds_info_internal_t *bounds_nest, kmp_index_t n) { |
| 783 | |
| 784 | kmp_loop_nest_iv_t total = 1; |
| 785 | |
| 786 | for (kmp_index_t ind = 0; ind < n; ++ind) { |
| 787 | auto bounds = &(bounds_nest[ind]); |
| 788 | kmp_loop_nest_iv_t trip_count = 0; |
| 789 | |
| 790 | switch (bounds->b.loop_type) { |
| 791 | case loop_type_t::loop_type_int32: |
| 792 | trip_count = kmp_process_one_loop_XX<kmp_int32>( |
| 793 | /*in/out*/ bounds: (bounds_info_internalXX_template<kmp_int32> *)(bounds), |
| 794 | /*in/out*/ bounds_nest); |
| 795 | break; |
| 796 | case loop_type_t::loop_type_uint32: |
| 797 | trip_count = kmp_process_one_loop_XX<kmp_uint32>( |
| 798 | /*in/out*/ bounds: (bounds_info_internalXX_template<kmp_uint32> *)(bounds), |
| 799 | /*in/out*/ bounds_nest); |
| 800 | break; |
| 801 | case loop_type_t::loop_type_int64: |
| 802 | trip_count = kmp_process_one_loop_XX<kmp_int64>( |
| 803 | /*in/out*/ bounds: (bounds_info_internalXX_template<kmp_int64> *)(bounds), |
| 804 | /*in/out*/ bounds_nest); |
| 805 | break; |
| 806 | case loop_type_t::loop_type_uint64: |
| 807 | trip_count = kmp_process_one_loop_XX<kmp_uint64>( |
| 808 | /*in/out*/ bounds: (bounds_info_internalXX_template<kmp_uint64> *)(bounds), |
| 809 | /*in/out*/ bounds_nest); |
| 810 | break; |
| 811 | default: |
| 812 | KMP_ASSERT(false); |
| 813 | } |
| 814 | total *= trip_count; |
| 815 | } |
| 816 | |
| 817 | return total; |
| 818 | } |
| 819 | |
| 820 | //----------Calculate iterations (in the original or updated space)----------- |
| 821 | |
| 822 | // Calculate number of iterations in original or updated space resulting in |
| 823 | // original_ivs[ind] (only on this level, non-negative) |
| 824 | // (not counting initial iteration) |
| 825 | template <typename T> |
| 826 | kmp_loop_nest_iv_t |
| 827 | kmp_calc_number_of_iterations_XX(const bounds_infoXX_template<T> *bounds, |
| 828 | const kmp_point_t original_ivs, |
| 829 | kmp_index_t ind) { |
| 830 | |
| 831 | kmp_loop_nest_iv_t iterations = 0; |
| 832 | |
| 833 | if (bounds->comparison == comparison_t::comp_less_or_eq) { |
| 834 | iterations = |
| 835 | (static_cast<T>(original_ivs[ind]) - bounds->lb0 - |
| 836 | bounds->lb1 * static_cast<T>(original_ivs[bounds->outer_iv])) / |
| 837 | __kmp_abs(bounds->step); |
| 838 | } else { |
| 839 | KMP_DEBUG_ASSERT(bounds->comparison == comparison_t::comp_greater_or_eq); |
| 840 | iterations = (bounds->lb0 + |
| 841 | bounds->lb1 * static_cast<T>(original_ivs[bounds->outer_iv]) - |
| 842 | static_cast<T>(original_ivs[ind])) / |
| 843 | __kmp_abs(bounds->step); |
| 844 | } |
| 845 | |
| 846 | return iterations; |
| 847 | } |
| 848 | |
| 849 | // Calculate number of iterations in the original or updated space resulting in |
| 850 | // original_ivs[ind] (only on this level, non-negative) |
| 851 | kmp_loop_nest_iv_t kmp_calc_number_of_iterations(const bounds_info_t *bounds, |
| 852 | const kmp_point_t original_ivs, |
| 853 | kmp_index_t ind) { |
| 854 | |
| 855 | switch (bounds->loop_type) { |
| 856 | case loop_type_t::loop_type_int32: |
| 857 | return kmp_calc_number_of_iterations_XX<kmp_int32>( |
| 858 | bounds: (bounds_infoXX_template<kmp_int32> *)(bounds), original_ivs, ind); |
| 859 | break; |
| 860 | case loop_type_t::loop_type_uint32: |
| 861 | return kmp_calc_number_of_iterations_XX<kmp_uint32>( |
| 862 | bounds: (bounds_infoXX_template<kmp_uint32> *)(bounds), original_ivs, ind); |
| 863 | break; |
| 864 | case loop_type_t::loop_type_int64: |
| 865 | return kmp_calc_number_of_iterations_XX<kmp_int64>( |
| 866 | bounds: (bounds_infoXX_template<kmp_int64> *)(bounds), original_ivs, ind); |
| 867 | break; |
| 868 | case loop_type_t::loop_type_uint64: |
| 869 | return kmp_calc_number_of_iterations_XX<kmp_uint64>( |
| 870 | bounds: (bounds_infoXX_template<kmp_uint64> *)(bounds), original_ivs, ind); |
| 871 | break; |
| 872 | default: |
| 873 | KMP_ASSERT(false); |
| 874 | return 0; |
| 875 | } |
| 876 | } |
| 877 | |
| 878 | //----------Calculate new iv corresponding to original ivs-------------------- |
| 879 | |
| 880 | // We got a point in the original loop nest. |
| 881 | // Take updated bounds and calculate what new_iv will correspond to this point. |
| 882 | // When we are getting original IVs from new_iv, we have to adjust to fit into |
| 883 | // original loops bounds. Getting new_iv for the adjusted original IVs will help |
| 884 | // with making more chunks non-empty. |
| 885 | kmp_loop_nest_iv_t |
| 886 | kmp_calc_new_iv_from_original_ivs(const bounds_info_internal_t *bounds_nest, |
| 887 | const kmp_point_t original_ivs, |
| 888 | kmp_index_t n) { |
| 889 | |
| 890 | kmp_loop_nest_iv_t new_iv = 0; |
| 891 | |
| 892 | for (kmp_index_t ind = 0; ind < n; ++ind) { |
| 893 | auto bounds = &(bounds_nest[ind].b); |
| 894 | |
| 895 | new_iv = new_iv * bounds->trip_count + |
| 896 | kmp_calc_number_of_iterations(bounds, original_ivs, ind); |
| 897 | } |
| 898 | |
| 899 | return new_iv; |
| 900 | } |
| 901 | |
| 902 | //----------Calculate original ivs for provided iterations-------------------- |
| 903 | |
| 904 | // Calculate original IVs for provided iterations, assuming iterations are |
| 905 | // calculated in the original space. |
| 906 | // Loop nest is in canonical form (with <= / >=). |
| 907 | bool kmp_calc_original_ivs_from_iterations( |
| 908 | const bounds_info_t *original_bounds_nest, kmp_index_t n, |
| 909 | /*in/out*/ kmp_point_t original_ivs, |
| 910 | /*in/out*/ kmp_iterations_t iterations, kmp_index_t ind) { |
| 911 | |
| 912 | kmp_index_t lengthened_ind = n; |
| 913 | |
| 914 | for (; ind < n;) { |
| 915 | auto bounds = &(original_bounds_nest[ind]); |
| 916 | bool good = kmp_calc_one_iv(bounds, /*in/out*/ original_ivs, iterations, |
| 917 | ind, start_with_lower_bound: (lengthened_ind < ind), checkBounds: true); |
| 918 | |
| 919 | if (!good) { |
| 920 | // The calculated iv value is too big (or too small for >=): |
| 921 | if (ind == 0) { |
| 922 | // Space is empty: |
| 923 | return false; |
| 924 | } else { |
| 925 | // Go to next iteration on the outer loop: |
| 926 | --ind; |
| 927 | ++iterations[ind]; |
| 928 | lengthened_ind = ind; |
| 929 | for (kmp_index_t i = ind + 1; i < n; ++i) { |
| 930 | iterations[i] = 0; |
| 931 | } |
| 932 | continue; |
| 933 | } |
| 934 | } |
| 935 | ++ind; |
| 936 | } |
| 937 | |
| 938 | return true; |
| 939 | } |
| 940 | |
| 941 | //----------Calculate original ivs for the beginning of the loop nest--------- |
| 942 | |
| 943 | // Calculate IVs for the beginning of the loop nest. |
| 944 | // Note: lower bounds of all loops may not work - |
| 945 | // if on some of the iterations of the outer loops inner loops are empty. |
| 946 | // Loop nest is in canonical form (with <= / >=). |
| 947 | bool kmp_calc_original_ivs_for_start(const bounds_info_t *original_bounds_nest, |
| 948 | kmp_index_t n, |
| 949 | /*out*/ kmp_point_t original_ivs) { |
| 950 | |
| 951 | // Iterations in the original space, multiplied by step: |
| 952 | CollapseAllocator<kmp_loop_nest_iv_t> iterations(n); |
| 953 | for (kmp_index_t ind = n; ind > 0;) { |
| 954 | --ind; |
| 955 | iterations[ind] = 0; |
| 956 | } |
| 957 | |
| 958 | // Now calculate the point: |
| 959 | bool b = kmp_calc_original_ivs_from_iterations(original_bounds_nest, n, |
| 960 | /*in/out*/ original_ivs, |
| 961 | /*in/out*/ iterations, ind: 0); |
| 962 | return b; |
| 963 | } |
| 964 | |
| 965 | //----------Calculate next point in the original loop space------------------- |
| 966 | |
| 967 | // From current set of original IVs calculate next point. |
| 968 | // Return false if there is no next point in the loop bounds. |
| 969 | bool kmp_calc_next_original_ivs(const bounds_info_t *original_bounds_nest, |
| 970 | kmp_index_t n, const kmp_point_t original_ivs, |
| 971 | /*out*/ kmp_point_t next_original_ivs) { |
| 972 | // Iterations in the original space, multiplied by step (so can be negative): |
| 973 | CollapseAllocator<kmp_loop_nest_iv_t> iterations(n); |
| 974 | // First, calc corresponding iteration in every original loop: |
| 975 | for (kmp_index_t ind = 0; ind < n; ++ind) { |
| 976 | auto bounds = &(original_bounds_nest[ind]); |
| 977 | iterations[ind] = kmp_calc_number_of_iterations(bounds, original_ivs, ind); |
| 978 | } |
| 979 | |
| 980 | for (kmp_index_t ind = 0; ind < n; ++ind) { |
| 981 | next_original_ivs[ind] = original_ivs[ind]; |
| 982 | } |
| 983 | |
| 984 | // Next add one step to the iterations on the inner-most level, and see if we |
| 985 | // need to move up the nest: |
| 986 | kmp_index_t ind = n - 1; |
| 987 | ++iterations[ind]; |
| 988 | |
| 989 | bool b = kmp_calc_original_ivs_from_iterations( |
| 990 | original_bounds_nest, n, /*in/out*/ original_ivs: next_original_ivs, iterations, ind); |
| 991 | |
| 992 | return b; |
| 993 | } |
| 994 | |
| 995 | //----------Calculate chunk end in the original loop space-------------------- |
| 996 | |
| 997 | // For one level calculate old induction variable corresponding to overall |
| 998 | // new_iv for the chunk end. |
| 999 | // Return true if it fits into upper bound on this level |
| 1000 | // (if not, we need to re-calculate) |
| 1001 | template <typename T> |
| 1002 | bool kmp_calc_one_iv_for_chunk_end_XX( |
| 1003 | const bounds_infoXX_template<T> *bounds, |
| 1004 | const bounds_infoXX_template<T> *updated_bounds, |
| 1005 | /*in/out*/ kmp_point_t original_ivs, const kmp_iterations_t iterations, |
| 1006 | kmp_index_t ind, bool start_with_lower_bound, bool compare_with_start, |
| 1007 | const kmp_point_t original_ivs_start) { |
| 1008 | |
| 1009 | // typedef std::conditional<std::is_signed<T>::value, kmp_int64, kmp_uint64> |
| 1010 | // big_span_t; |
| 1011 | |
| 1012 | // OMPTODO: is it good enough, or do we need ST or do we need big_span_t? |
| 1013 | T temp = 0; |
| 1014 | |
| 1015 | T outer_iv = static_cast<T>(original_ivs[bounds->outer_iv]); |
| 1016 | |
| 1017 | if (start_with_lower_bound) { |
| 1018 | // we moved to the next iteration on one of outer loops, may as well use |
| 1019 | // the lower bound here: |
| 1020 | temp = bounds->lb0 + bounds->lb1 * outer_iv; |
| 1021 | } else { |
| 1022 | // Start in expanded space, but: |
| 1023 | // - we need to hit original space lower bound, so need to account for |
| 1024 | // that |
| 1025 | // - we have to go into original space, even if that means adding more |
| 1026 | // iterations than was planned |
| 1027 | // - we have to go past (or equal to) previous point (which is the chunk |
| 1028 | // starting point) |
| 1029 | |
| 1030 | auto iteration = iterations[ind]; |
| 1031 | |
| 1032 | auto step = bounds->step; |
| 1033 | |
| 1034 | // In case of >= it's negative: |
| 1035 | auto accountForStep = |
| 1036 | ((bounds->lb0 + bounds->lb1 * outer_iv) - |
| 1037 | (updated_bounds->lb0 + updated_bounds->lb1 * outer_iv)) % |
| 1038 | step; |
| 1039 | |
| 1040 | temp = updated_bounds->lb0 + updated_bounds->lb1 * outer_iv + |
| 1041 | accountForStep + iteration * step; |
| 1042 | |
| 1043 | if (((bounds->comparison == comparison_t::comp_less_or_eq) && |
| 1044 | (temp < (bounds->lb0 + bounds->lb1 * outer_iv))) || |
| 1045 | ((bounds->comparison == comparison_t::comp_greater_or_eq) && |
| 1046 | (temp > (bounds->lb0 + bounds->lb1 * outer_iv)))) { |
| 1047 | // Too small (or too big), didn't reach the original lower bound. Use |
| 1048 | // heuristic: |
| 1049 | temp = bounds->lb0 + bounds->lb1 * outer_iv + iteration / 2 * step; |
| 1050 | } |
| 1051 | |
| 1052 | if (compare_with_start) { |
| 1053 | |
| 1054 | T start = static_cast<T>(original_ivs_start[ind]); |
| 1055 | |
| 1056 | temp = kmp_fix_iv(bounds->loop_iv_type, temp); |
| 1057 | |
| 1058 | // On all previous levels start of the chunk is same as the end, need to |
| 1059 | // be really careful here: |
| 1060 | if (((bounds->comparison == comparison_t::comp_less_or_eq) && |
| 1061 | (temp < start)) || |
| 1062 | ((bounds->comparison == comparison_t::comp_greater_or_eq) && |
| 1063 | (temp > start))) { |
| 1064 | // End of the chunk can't be smaller (for >= bigger) than it's start. |
| 1065 | // Use heuristic: |
| 1066 | temp = start + iteration / 4 * step; |
| 1067 | } |
| 1068 | } |
| 1069 | } |
| 1070 | |
| 1071 | original_ivs[ind] = temp = kmp_fix_iv(bounds->loop_iv_type, temp); |
| 1072 | |
| 1073 | if (((bounds->comparison == comparison_t::comp_less_or_eq) && |
| 1074 | (temp > (bounds->ub0 + bounds->ub1 * outer_iv))) || |
| 1075 | ((bounds->comparison == comparison_t::comp_greater_or_eq) && |
| 1076 | (temp < (bounds->ub0 + bounds->ub1 * outer_iv)))) { |
| 1077 | // Too big (or too small for >=). |
| 1078 | return false; |
| 1079 | } |
| 1080 | |
| 1081 | return true; |
| 1082 | } |
| 1083 | |
| 1084 | // For one level calculate old induction variable corresponding to overall |
| 1085 | // new_iv for the chunk end. |
| 1086 | bool kmp_calc_one_iv_for_chunk_end(const bounds_info_t *bounds, |
| 1087 | const bounds_info_t *updated_bounds, |
| 1088 | /*in/out*/ kmp_point_t original_ivs, |
| 1089 | const kmp_iterations_t iterations, |
| 1090 | kmp_index_t ind, bool start_with_lower_bound, |
| 1091 | bool compare_with_start, |
| 1092 | const kmp_point_t original_ivs_start) { |
| 1093 | |
| 1094 | switch (bounds->loop_type) { |
| 1095 | case loop_type_t::loop_type_int32: |
| 1096 | return kmp_calc_one_iv_for_chunk_end_XX<kmp_int32>( |
| 1097 | bounds: (bounds_infoXX_template<kmp_int32> *)(bounds), |
| 1098 | updated_bounds: (bounds_infoXX_template<kmp_int32> *)(updated_bounds), |
| 1099 | /*in/out*/ |
| 1100 | original_ivs, iterations, ind, start_with_lower_bound, |
| 1101 | compare_with_start, original_ivs_start); |
| 1102 | break; |
| 1103 | case loop_type_t::loop_type_uint32: |
| 1104 | return kmp_calc_one_iv_for_chunk_end_XX<kmp_uint32>( |
| 1105 | bounds: (bounds_infoXX_template<kmp_uint32> *)(bounds), |
| 1106 | updated_bounds: (bounds_infoXX_template<kmp_uint32> *)(updated_bounds), |
| 1107 | /*in/out*/ |
| 1108 | original_ivs, iterations, ind, start_with_lower_bound, |
| 1109 | compare_with_start, original_ivs_start); |
| 1110 | break; |
| 1111 | case loop_type_t::loop_type_int64: |
| 1112 | return kmp_calc_one_iv_for_chunk_end_XX<kmp_int64>( |
| 1113 | bounds: (bounds_infoXX_template<kmp_int64> *)(bounds), |
| 1114 | updated_bounds: (bounds_infoXX_template<kmp_int64> *)(updated_bounds), |
| 1115 | /*in/out*/ |
| 1116 | original_ivs, iterations, ind, start_with_lower_bound, |
| 1117 | compare_with_start, original_ivs_start); |
| 1118 | break; |
| 1119 | case loop_type_t::loop_type_uint64: |
| 1120 | return kmp_calc_one_iv_for_chunk_end_XX<kmp_uint64>( |
| 1121 | bounds: (bounds_infoXX_template<kmp_uint64> *)(bounds), |
| 1122 | updated_bounds: (bounds_infoXX_template<kmp_uint64> *)(updated_bounds), |
| 1123 | /*in/out*/ |
| 1124 | original_ivs, iterations, ind, start_with_lower_bound, |
| 1125 | compare_with_start, original_ivs_start); |
| 1126 | break; |
| 1127 | default: |
| 1128 | KMP_ASSERT(false); |
| 1129 | return false; |
| 1130 | } |
| 1131 | } |
| 1132 | |
| 1133 | // Calculate old induction variables corresponding to overall new_iv for the |
| 1134 | // chunk end. If due to space extension we are getting old IVs outside of the |
| 1135 | // boundaries, bring them into the boundaries. Need to do this in the runtime, |
| 1136 | // esp. on the lower bounds side. When getting result need to make sure that the |
| 1137 | // new chunk starts at next position to old chunk, not overlaps with it (this is |
| 1138 | // done elsewhere), and need to make sure end of the chunk is further than the |
| 1139 | // beginning of the chunk. We don't need an exact ending point here, just |
| 1140 | // something more-or-less close to the desired chunk length, bigger is fine |
| 1141 | // (smaller would be fine, but we risk going into infinite loop, so do smaller |
| 1142 | // only at the very end of the space). result: false if could not find the |
| 1143 | // ending point in the original loop space. In this case the caller can use |
| 1144 | // original upper bounds as the end of the chunk. Chunk won't be empty, because |
| 1145 | // it'll have at least the starting point, which is by construction in the |
| 1146 | // original space. |
| 1147 | bool kmp_calc_original_ivs_for_chunk_end( |
| 1148 | const bounds_info_t *original_bounds_nest, kmp_index_t n, |
| 1149 | const bounds_info_internal_t *updated_bounds_nest, |
| 1150 | const kmp_point_t original_ivs_start, kmp_loop_nest_iv_t new_iv, |
| 1151 | /*out*/ kmp_point_t original_ivs) { |
| 1152 | |
| 1153 | // Iterations in the expanded space: |
| 1154 | CollapseAllocator<kmp_loop_nest_iv_t> iterations(n); |
| 1155 | // First, calc corresponding iteration in every modified loop: |
| 1156 | for (kmp_index_t ind = n; ind > 0;) { |
| 1157 | --ind; |
| 1158 | auto &updated_bounds = updated_bounds_nest[ind]; |
| 1159 | |
| 1160 | // should be optimized to OPDIVREM: |
| 1161 | auto new_ind = new_iv / updated_bounds.b.trip_count; |
| 1162 | auto iteration = new_iv % updated_bounds.b.trip_count; |
| 1163 | |
| 1164 | new_iv = new_ind; |
| 1165 | iterations[ind] = iteration; |
| 1166 | } |
| 1167 | KMP_DEBUG_ASSERT(new_iv == 0); |
| 1168 | |
| 1169 | kmp_index_t lengthened_ind = n; |
| 1170 | kmp_index_t equal_ind = -1; |
| 1171 | |
| 1172 | // Next calculate the point, but in original loop nest. |
| 1173 | for (kmp_index_t ind = 0; ind < n;) { |
| 1174 | auto bounds = &(original_bounds_nest[ind]); |
| 1175 | auto updated_bounds = &(updated_bounds_nest[ind].b); |
| 1176 | |
| 1177 | bool good = kmp_calc_one_iv_for_chunk_end( |
| 1178 | bounds, updated_bounds, |
| 1179 | /*in/out*/ original_ivs, iterations, ind, start_with_lower_bound: (lengthened_ind < ind), |
| 1180 | compare_with_start: (equal_ind >= ind - 1), original_ivs_start); |
| 1181 | |
| 1182 | if (!good) { |
| 1183 | // Too big (or too small for >=). |
| 1184 | if (ind == 0) { |
| 1185 | // Need to reduce to the end. |
| 1186 | return false; |
| 1187 | } else { |
| 1188 | // Go to next iteration on outer loop: |
| 1189 | --ind; |
| 1190 | ++(iterations[ind]); |
| 1191 | lengthened_ind = ind; |
| 1192 | if (equal_ind >= lengthened_ind) { |
| 1193 | // We've changed the number of iterations here, |
| 1194 | // can't be same anymore: |
| 1195 | equal_ind = lengthened_ind - 1; |
| 1196 | } |
| 1197 | for (kmp_index_t i = ind + 1; i < n; ++i) { |
| 1198 | iterations[i] = 0; |
| 1199 | } |
| 1200 | continue; |
| 1201 | } |
| 1202 | } |
| 1203 | |
| 1204 | if ((equal_ind == ind - 1) && |
| 1205 | (kmp_ivs_eq(loop_iv_type: bounds->loop_iv_type, original_iv1: original_ivs[ind], |
| 1206 | original_iv2: original_ivs_start[ind]))) { |
| 1207 | equal_ind = ind; |
| 1208 | } else if ((equal_ind > ind - 1) && |
| 1209 | !(kmp_ivs_eq(loop_iv_type: bounds->loop_iv_type, original_iv1: original_ivs[ind], |
| 1210 | original_iv2: original_ivs_start[ind]))) { |
| 1211 | equal_ind = ind - 1; |
| 1212 | } |
| 1213 | ++ind; |
| 1214 | } |
| 1215 | |
| 1216 | return true; |
| 1217 | } |
| 1218 | |
| 1219 | //----------Calculate upper bounds for the last chunk------------------------- |
| 1220 | |
| 1221 | // Calculate one upper bound for the end. |
| 1222 | template <typename T> |
| 1223 | void kmp_calc_one_iv_end_XX(const bounds_infoXX_template<T> *bounds, |
| 1224 | /*in/out*/ kmp_point_t original_ivs, |
| 1225 | kmp_index_t ind) { |
| 1226 | |
| 1227 | T temp = bounds->ub0 + |
| 1228 | bounds->ub1 * static_cast<T>(original_ivs[bounds->outer_iv]); |
| 1229 | |
| 1230 | original_ivs[ind] = kmp_fix_iv(bounds->loop_iv_type, temp); |
| 1231 | } |
| 1232 | |
| 1233 | void kmp_calc_one_iv_end(const bounds_info_t *bounds, |
| 1234 | /*in/out*/ kmp_point_t original_ivs, kmp_index_t ind) { |
| 1235 | |
| 1236 | switch (bounds->loop_type) { |
| 1237 | default: |
| 1238 | KMP_ASSERT(false); |
| 1239 | break; |
| 1240 | case loop_type_t::loop_type_int32: |
| 1241 | kmp_calc_one_iv_end_XX<kmp_int32>( |
| 1242 | bounds: (bounds_infoXX_template<kmp_int32> *)(bounds), |
| 1243 | /*in/out*/ original_ivs, ind); |
| 1244 | break; |
| 1245 | case loop_type_t::loop_type_uint32: |
| 1246 | kmp_calc_one_iv_end_XX<kmp_uint32>( |
| 1247 | bounds: (bounds_infoXX_template<kmp_uint32> *)(bounds), |
| 1248 | /*in/out*/ original_ivs, ind); |
| 1249 | break; |
| 1250 | case loop_type_t::loop_type_int64: |
| 1251 | kmp_calc_one_iv_end_XX<kmp_int64>( |
| 1252 | bounds: (bounds_infoXX_template<kmp_int64> *)(bounds), |
| 1253 | /*in/out*/ original_ivs, ind); |
| 1254 | break; |
| 1255 | case loop_type_t::loop_type_uint64: |
| 1256 | kmp_calc_one_iv_end_XX<kmp_uint64>( |
| 1257 | bounds: (bounds_infoXX_template<kmp_uint64> *)(bounds), |
| 1258 | /*in/out*/ original_ivs, ind); |
| 1259 | break; |
| 1260 | } |
| 1261 | } |
| 1262 | |
| 1263 | // Calculate upper bounds for the last loop iteration. Just use original upper |
| 1264 | // bounds (adjusted when canonicalized to use <= / >=). No need to check that |
| 1265 | // this point is in the original space (it's likely not) |
| 1266 | void kmp_calc_original_ivs_for_end( |
| 1267 | const bounds_info_t *const original_bounds_nest, kmp_index_t n, |
| 1268 | /*out*/ kmp_point_t original_ivs) { |
| 1269 | for (kmp_index_t ind = 0; ind < n; ++ind) { |
| 1270 | auto bounds = &(original_bounds_nest[ind]); |
| 1271 | kmp_calc_one_iv_end(bounds, /*in/out*/ original_ivs, ind); |
| 1272 | } |
| 1273 | } |
| 1274 | |
| 1275 | /************************************************************************** |
| 1276 | * Identify nested loop structure - loops come in the canonical form |
| 1277 | * Lower triangle matrix: i = 0; i <= N; i++ {0,0}:{N,0} |
| 1278 | * j = 0; j <= 0/-1+1*i; j++ {0,0}:{0/-1,1} |
| 1279 | * Upper Triangle matrix |
| 1280 | * i = 0; i <= N; i++ {0,0}:{N,0} |
| 1281 | * j = 0+1*i; j <= N; j++ {0,1}:{N,0} |
| 1282 | * ************************************************************************/ |
| 1283 | nested_loop_type_t |
| 1284 | kmp_identify_nested_loop_structure(/*in*/ bounds_info_t *original_bounds_nest, |
| 1285 | /*in*/ kmp_index_t n) { |
| 1286 | // only 2-level nested loops are supported |
| 1287 | if (n != 2) { |
| 1288 | return nested_loop_type_unkown; |
| 1289 | } |
| 1290 | // loops must be canonical |
| 1291 | KMP_ASSERT( |
| 1292 | (original_bounds_nest[0].comparison == comparison_t::comp_less_or_eq) && |
| 1293 | (original_bounds_nest[1].comparison == comparison_t::comp_less_or_eq)); |
| 1294 | // check outer loop bounds: for triangular need to be {0,0}:{N,0} |
| 1295 | kmp_uint64 outer_lb0_u64 = kmp_fix_iv(loop_iv_type: original_bounds_nest[0].loop_iv_type, |
| 1296 | original_iv: original_bounds_nest[0].lb0_u64); |
| 1297 | kmp_uint64 outer_ub0_u64 = kmp_fix_iv(loop_iv_type: original_bounds_nest[0].loop_iv_type, |
| 1298 | original_iv: original_bounds_nest[0].ub0_u64); |
| 1299 | kmp_uint64 outer_lb1_u64 = kmp_fix_iv(loop_iv_type: original_bounds_nest[0].loop_iv_type, |
| 1300 | original_iv: original_bounds_nest[0].lb1_u64); |
| 1301 | kmp_uint64 outer_ub1_u64 = kmp_fix_iv(loop_iv_type: original_bounds_nest[0].loop_iv_type, |
| 1302 | original_iv: original_bounds_nest[0].ub1_u64); |
| 1303 | if (outer_lb0_u64 != 0 || outer_lb1_u64 != 0 || outer_ub1_u64 != 0) { |
| 1304 | return nested_loop_type_unkown; |
| 1305 | } |
| 1306 | // check inner bounds to determine triangle type |
| 1307 | kmp_uint64 inner_lb0_u64 = kmp_fix_iv(loop_iv_type: original_bounds_nest[1].loop_iv_type, |
| 1308 | original_iv: original_bounds_nest[1].lb0_u64); |
| 1309 | kmp_uint64 inner_ub0_u64 = kmp_fix_iv(loop_iv_type: original_bounds_nest[1].loop_iv_type, |
| 1310 | original_iv: original_bounds_nest[1].ub0_u64); |
| 1311 | kmp_uint64 inner_lb1_u64 = kmp_fix_iv(loop_iv_type: original_bounds_nest[1].loop_iv_type, |
| 1312 | original_iv: original_bounds_nest[1].lb1_u64); |
| 1313 | kmp_uint64 inner_ub1_u64 = kmp_fix_iv(loop_iv_type: original_bounds_nest[1].loop_iv_type, |
| 1314 | original_iv: original_bounds_nest[1].ub1_u64); |
| 1315 | // lower triangle loop inner bounds need to be {0,0}:{0/-1,1} |
| 1316 | if (inner_lb0_u64 == 0 && inner_lb1_u64 == 0 && |
| 1317 | (inner_ub0_u64 == 0 || inner_ub0_u64 == -1) && inner_ub1_u64 == 1) { |
| 1318 | return nested_loop_type_lower_triangular_matrix; |
| 1319 | } |
| 1320 | // upper triangle loop inner bounds need to be {0,1}:{N,0} |
| 1321 | if (inner_lb0_u64 == 0 && inner_lb1_u64 == 1 && |
| 1322 | inner_ub0_u64 == outer_ub0_u64 && inner_ub1_u64 == 0) { |
| 1323 | return nested_loop_type_upper_triangular_matrix; |
| 1324 | } |
| 1325 | return nested_loop_type_unkown; |
| 1326 | } |
| 1327 | |
| 1328 | /************************************************************************** |
| 1329 | * SQRT Approximation: https://math.mit.edu/~stevenj/18.335/newton-sqrt.pdf |
| 1330 | * Start point is x so the result is always > sqrt(x) |
| 1331 | * The method has uniform convergence, PRECISION is set to 0.1 |
| 1332 | * ************************************************************************/ |
| 1333 | #define level_of_precision 0.1 |
| 1334 | double sqrt_newton_approx(/*in*/ kmp_uint64 x) { |
| 1335 | double sqrt_old = 0.; |
| 1336 | double sqrt_new = (double)x; |
| 1337 | do { |
| 1338 | sqrt_old = sqrt_new; |
| 1339 | sqrt_new = (sqrt_old + x / sqrt_old) / 2; |
| 1340 | } while ((sqrt_old - sqrt_new) > level_of_precision); |
| 1341 | return sqrt_new; |
| 1342 | } |
| 1343 | |
| 1344 | /************************************************************************** |
| 1345 | * Handle lower triangle matrix in the canonical form |
| 1346 | * i = 0; i <= N; i++ {0,0}:{N,0} |
| 1347 | * j = 0; j <= 0/-1 + 1*i; j++ {0,0}:{0/-1,1} |
| 1348 | * ************************************************************************/ |
| 1349 | void kmp_handle_lower_triangle_matrix( |
| 1350 | /*in*/ kmp_uint32 nth, |
| 1351 | /*in*/ kmp_uint32 tid, |
| 1352 | /*in */ kmp_index_t n, |
| 1353 | /*in/out*/ bounds_info_t *original_bounds_nest, |
| 1354 | /*out*/ bounds_info_t *chunk_bounds_nest) { |
| 1355 | |
| 1356 | // transfer loop types from the original loop to the chunks |
| 1357 | for (kmp_index_t i = 0; i < n; ++i) { |
| 1358 | chunk_bounds_nest[i] = original_bounds_nest[i]; |
| 1359 | } |
| 1360 | // cleanup iv variables |
| 1361 | kmp_uint64 outer_ub0 = kmp_fix_iv(loop_iv_type: original_bounds_nest[0].loop_iv_type, |
| 1362 | original_iv: original_bounds_nest[0].ub0_u64); |
| 1363 | kmp_uint64 outer_lb0 = kmp_fix_iv(loop_iv_type: original_bounds_nest[0].loop_iv_type, |
| 1364 | original_iv: original_bounds_nest[0].lb0_u64); |
| 1365 | kmp_uint64 inner_ub0 = kmp_fix_iv(loop_iv_type: original_bounds_nest[1].loop_iv_type, |
| 1366 | original_iv: original_bounds_nest[1].ub0_u64); |
| 1367 | // calculate the chunk's lower and upper bounds |
| 1368 | // the total number of iterations in the loop is the sum of the arithmetic |
| 1369 | // progression from the outer lower to outer upper bound (inclusive since the |
| 1370 | // loop is canonical) note that less_than inner loops (inner_ub0 = -1) |
| 1371 | // effectively make the progression 1-based making N = (outer_ub0 - inner_lb0 |
| 1372 | // + 1) -> N - 1 |
| 1373 | kmp_uint64 outer_iters = (outer_ub0 - outer_lb0 + 1) + inner_ub0; |
| 1374 | kmp_uint64 iter_total = outer_iters * (outer_iters + 1) / 2; |
| 1375 | // the current thread's number of iterations: |
| 1376 | // each thread gets an equal number of iterations: total number of iterations |
| 1377 | // divided by the number of threads plus, if there's a remainder, |
| 1378 | // the first threads with the number up to the remainder get an additional |
| 1379 | // iteration each to cover it |
| 1380 | kmp_uint64 iter_current = |
| 1381 | iter_total / nth + ((tid < (iter_total % nth)) ? 1 : 0); |
| 1382 | // cumulative number of iterations executed by all the previous threads: |
| 1383 | // threads with the tid below the remainder will have (iter_total/nth+1) |
| 1384 | // elements, and so will all threads before them so the cumulative number of |
| 1385 | // iterations executed by the all previous will be the current thread's number |
| 1386 | // of iterations multiplied by the number of previous threads which is equal |
| 1387 | // to the current thread's tid; threads with the number equal or above the |
| 1388 | // remainder will have (iter_total/nth) elements so the cumulative number of |
| 1389 | // iterations previously executed is its number of iterations multipled by the |
| 1390 | // number of previous threads which is again equal to the current thread's tid |
| 1391 | // PLUS all the remainder iterations that will have been executed by the |
| 1392 | // previous threads |
| 1393 | kmp_uint64 iter_before_current = |
| 1394 | tid * iter_current + ((tid < iter_total % nth) ? 0 : (iter_total % nth)); |
| 1395 | // cumulative number of iterations executed with the current thread is |
| 1396 | // the cumulative number executed before it plus its own |
| 1397 | kmp_uint64 iter_with_current = iter_before_current + iter_current; |
| 1398 | // calculate the outer loop lower bound (lbo) which is the max outer iv value |
| 1399 | // that gives the number of iterations that is equal or just below the total |
| 1400 | // number of iterations executed by the previous threads, for less_than |
| 1401 | // (1-based) inner loops (inner_ub0 == -1) it will be i.e. |
| 1402 | // lbo*(lbo-1)/2<=iter_before_current => lbo^2-lbo-2*iter_before_current<=0 |
| 1403 | // for less_than_equal (0-based) inner loops (inner_ub == 0) it will be: |
| 1404 | // i.e. lbo*(lbo+1)/2<=iter_before_current => |
| 1405 | // lbo^2+lbo-2*iter_before_current<=0 both cases can be handled similarily |
| 1406 | // using a parameter to control the equation sign |
| 1407 | kmp_int64 inner_adjustment = 1 + 2 * inner_ub0; |
| 1408 | kmp_uint64 lower_bound_outer = |
| 1409 | (kmp_uint64)(sqrt_newton_approx(x: inner_adjustment * inner_adjustment + |
| 1410 | 8 * iter_before_current) + |
| 1411 | inner_adjustment) / |
| 1412 | 2 - |
| 1413 | inner_adjustment; |
| 1414 | // calculate the inner loop lower bound which is the remaining number of |
| 1415 | // iterations required to hit the total number of iterations executed by the |
| 1416 | // previous threads giving the starting point of this thread |
| 1417 | kmp_uint64 lower_bound_inner = |
| 1418 | iter_before_current - |
| 1419 | ((lower_bound_outer + inner_adjustment) * lower_bound_outer) / 2; |
| 1420 | // calculate the outer loop upper bound using the same approach as for the |
| 1421 | // inner bound except using the total number of iterations executed with the |
| 1422 | // current thread |
| 1423 | kmp_uint64 upper_bound_outer = |
| 1424 | (kmp_uint64)(sqrt_newton_approx(x: inner_adjustment * inner_adjustment + |
| 1425 | 8 * iter_with_current) + |
| 1426 | inner_adjustment) / |
| 1427 | 2 - |
| 1428 | inner_adjustment; |
| 1429 | // calculate the inner loop upper bound which is the remaining number of |
| 1430 | // iterations required to hit the total number of iterations executed after |
| 1431 | // the current thread giving the starting point of the next thread |
| 1432 | kmp_uint64 upper_bound_inner = |
| 1433 | iter_with_current - |
| 1434 | ((upper_bound_outer + inner_adjustment) * upper_bound_outer) / 2; |
| 1435 | // adjust the upper bounds down by 1 element to point at the last iteration of |
| 1436 | // the current thread the first iteration of the next thread |
| 1437 | if (upper_bound_inner == 0) { |
| 1438 | // {n,0} => {n-1,n-1} |
| 1439 | upper_bound_outer -= 1; |
| 1440 | upper_bound_inner = upper_bound_outer; |
| 1441 | } else { |
| 1442 | // {n,m} => {n,m-1} (m!=0) |
| 1443 | upper_bound_inner -= 1; |
| 1444 | } |
| 1445 | |
| 1446 | // assign the values, zeroing out lb1 and ub1 values since the iteration space |
| 1447 | // is now one-dimensional |
| 1448 | chunk_bounds_nest[0].lb0_u64 = lower_bound_outer; |
| 1449 | chunk_bounds_nest[1].lb0_u64 = lower_bound_inner; |
| 1450 | chunk_bounds_nest[0].ub0_u64 = upper_bound_outer; |
| 1451 | chunk_bounds_nest[1].ub0_u64 = upper_bound_inner; |
| 1452 | chunk_bounds_nest[0].lb1_u64 = 0; |
| 1453 | chunk_bounds_nest[0].ub1_u64 = 0; |
| 1454 | chunk_bounds_nest[1].lb1_u64 = 0; |
| 1455 | chunk_bounds_nest[1].ub1_u64 = 0; |
| 1456 | |
| 1457 | #if 0 |
| 1458 | printf("tid/nth = %d/%d : From [%llu, %llu] To [%llu, %llu] : Chunks %llu/%llu\n" , |
| 1459 | tid, nth, chunk_bounds_nest[0].lb0_u64, chunk_bounds_nest[1].lb0_u64, |
| 1460 | chunk_bounds_nest[0].ub0_u64, chunk_bounds_nest[1].ub0_u64, iter_current, iter_total); |
| 1461 | #endif |
| 1462 | } |
| 1463 | |
| 1464 | /************************************************************************** |
| 1465 | * Handle upper triangle matrix in the canonical form |
| 1466 | * i = 0; i <= N; i++ {0,0}:{N,0} |
| 1467 | * j = 0+1*i; j <= N; j++ {0,1}:{N,0} |
| 1468 | * ************************************************************************/ |
| 1469 | void kmp_handle_upper_triangle_matrix( |
| 1470 | /*in*/ kmp_uint32 nth, |
| 1471 | /*in*/ kmp_uint32 tid, |
| 1472 | /*in */ kmp_index_t n, |
| 1473 | /*in/out*/ bounds_info_t *original_bounds_nest, |
| 1474 | /*out*/ bounds_info_t *chunk_bounds_nest) { |
| 1475 | |
| 1476 | // transfer loop types from the original loop to the chunks |
| 1477 | for (kmp_index_t i = 0; i < n; ++i) { |
| 1478 | chunk_bounds_nest[i] = original_bounds_nest[i]; |
| 1479 | } |
| 1480 | // cleanup iv variables |
| 1481 | kmp_uint64 outer_ub0 = kmp_fix_iv(loop_iv_type: original_bounds_nest[0].loop_iv_type, |
| 1482 | original_iv: original_bounds_nest[0].ub0_u64); |
| 1483 | kmp_uint64 outer_lb0 = kmp_fix_iv(loop_iv_type: original_bounds_nest[0].loop_iv_type, |
| 1484 | original_iv: original_bounds_nest[0].lb0_u64); |
| 1485 | [[maybe_unused]] kmp_uint64 inner_ub0 = kmp_fix_iv( |
| 1486 | loop_iv_type: original_bounds_nest[1].loop_iv_type, original_iv: original_bounds_nest[1].ub0_u64); |
| 1487 | // calculate the chunk's lower and upper bounds |
| 1488 | // the total number of iterations in the loop is the sum of the arithmetic |
| 1489 | // progression from the outer lower to outer upper bound (inclusive since the |
| 1490 | // loop is canonical) note that less_than inner loops (inner_ub0 = -1) |
| 1491 | // effectively make the progression 1-based making N = (outer_ub0 - inner_lb0 |
| 1492 | // + 1) -> N - 1 |
| 1493 | kmp_uint64 outer_iters = (outer_ub0 - outer_lb0 + 1); |
| 1494 | kmp_uint64 iter_total = outer_iters * (outer_iters + 1) / 2; |
| 1495 | // the current thread's number of iterations: |
| 1496 | // each thread gets an equal number of iterations: total number of iterations |
| 1497 | // divided by the number of threads plus, if there's a remainder, |
| 1498 | // the first threads with the number up to the remainder get an additional |
| 1499 | // iteration each to cover it |
| 1500 | kmp_uint64 iter_current = |
| 1501 | iter_total / nth + ((tid < (iter_total % nth)) ? 1 : 0); |
| 1502 | // cumulative number of iterations executed by all the previous threads: |
| 1503 | // threads with the tid below the remainder will have (iter_total/nth+1) |
| 1504 | // elements, and so will all threads before them so the cumulative number of |
| 1505 | // iterations executed by the all previous will be the current thread's number |
| 1506 | // of iterations multiplied by the number of previous threads which is equal |
| 1507 | // to the current thread's tid; threads with the number equal or above the |
| 1508 | // remainder will have (iter_total/nth) elements so the cumulative number of |
| 1509 | // iterations previously executed is its number of iterations multipled by the |
| 1510 | // number of previous threads which is again equal to the current thread's tid |
| 1511 | // PLUS all the remainder iterations that will have been executed by the |
| 1512 | // previous threads |
| 1513 | kmp_uint64 iter_before_current = |
| 1514 | tid * iter_current + ((tid < iter_total % nth) ? 0 : (iter_total % nth)); |
| 1515 | // cumulative number of iterations executed with the current thread is |
| 1516 | // the cumulative number executed before it plus its own |
| 1517 | kmp_uint64 iter_with_current = iter_before_current + iter_current; |
| 1518 | // calculate the outer loop lower bound (lbo) which is the max outer iv value |
| 1519 | // that gives the number of iterations that is equal or just below the total |
| 1520 | // number of iterations executed by the previous threads: |
| 1521 | // lbo*(lbo+1)/2<=iter_before_current => |
| 1522 | // lbo^2+lbo-2*iter_before_current<=0 |
| 1523 | kmp_uint64 lower_bound_outer = |
| 1524 | (kmp_uint64)(sqrt_newton_approx(x: 1 + 8 * iter_before_current) + 1) / 2 - 1; |
| 1525 | // calculate the inner loop lower bound which is the remaining number of |
| 1526 | // iterations required to hit the total number of iterations executed by the |
| 1527 | // previous threads giving the starting point of this thread |
| 1528 | kmp_uint64 lower_bound_inner = |
| 1529 | iter_before_current - ((lower_bound_outer + 1) * lower_bound_outer) / 2; |
| 1530 | // calculate the outer loop upper bound using the same approach as for the |
| 1531 | // inner bound except using the total number of iterations executed with the |
| 1532 | // current thread |
| 1533 | kmp_uint64 upper_bound_outer = |
| 1534 | (kmp_uint64)(sqrt_newton_approx(x: 1 + 8 * iter_with_current) + 1) / 2 - 1; |
| 1535 | // calculate the inner loop upper bound which is the remaining number of |
| 1536 | // iterations required to hit the total number of iterations executed after |
| 1537 | // the current thread giving the starting point of the next thread |
| 1538 | kmp_uint64 upper_bound_inner = |
| 1539 | iter_with_current - ((upper_bound_outer + 1) * upper_bound_outer) / 2; |
| 1540 | // adjust the upper bounds down by 1 element to point at the last iteration of |
| 1541 | // the current thread the first iteration of the next thread |
| 1542 | if (upper_bound_inner == 0) { |
| 1543 | // {n,0} => {n-1,n-1} |
| 1544 | upper_bound_outer -= 1; |
| 1545 | upper_bound_inner = upper_bound_outer; |
| 1546 | } else { |
| 1547 | // {n,m} => {n,m-1} (m!=0) |
| 1548 | upper_bound_inner -= 1; |
| 1549 | } |
| 1550 | |
| 1551 | // assign the values, zeroing out lb1 and ub1 values since the iteration space |
| 1552 | // is now one-dimensional |
| 1553 | chunk_bounds_nest[0].lb0_u64 = (outer_iters - 1) - upper_bound_outer; |
| 1554 | chunk_bounds_nest[1].lb0_u64 = (outer_iters - 1) - upper_bound_inner; |
| 1555 | chunk_bounds_nest[0].ub0_u64 = (outer_iters - 1) - lower_bound_outer; |
| 1556 | chunk_bounds_nest[1].ub0_u64 = (outer_iters - 1) - lower_bound_inner; |
| 1557 | chunk_bounds_nest[0].lb1_u64 = 0; |
| 1558 | chunk_bounds_nest[0].ub1_u64 = 0; |
| 1559 | chunk_bounds_nest[1].lb1_u64 = 0; |
| 1560 | chunk_bounds_nest[1].ub1_u64 = 0; |
| 1561 | |
| 1562 | #if 0 |
| 1563 | printf("tid/nth = %d/%d : From [%llu, %llu] To [%llu, %llu] : Chunks %llu/%llu\n" , |
| 1564 | tid, nth, chunk_bounds_nest[0].lb0_u64, chunk_bounds_nest[1].lb0_u64, |
| 1565 | chunk_bounds_nest[0].ub0_u64, chunk_bounds_nest[1].ub0_u64, iter_current, iter_total); |
| 1566 | #endif |
| 1567 | } |
| 1568 | //----------Init API for non-rectangular loops-------------------------------- |
| 1569 | |
| 1570 | // Init API for collapsed loops (static, no chunks defined). |
| 1571 | // "bounds_nest" has to be allocated per thread. |
| 1572 | // API will modify original bounds_nest array to bring it to a canonical form |
| 1573 | // (only <= and >=, no !=, <, >). If the original loop nest was already in a |
| 1574 | // canonical form there will be no changes to bounds in bounds_nest array |
| 1575 | // (only trip counts will be calculated). Internally API will expand the space |
| 1576 | // to parallelogram/parallelepiped, calculate total, calculate bounds for the |
| 1577 | // chunks in terms of the new IV, re-calc them in terms of old IVs (especially |
| 1578 | // important on the left side, to hit the lower bounds and not step over), and |
| 1579 | // pick the correct chunk for this thread (so it will calculate chunks up to the |
| 1580 | // needed one). It could be optimized to calculate just this chunk, potentially |
| 1581 | // a bit less well distributed among threads. It is designed to make sure that |
| 1582 | // threads will receive predictable chunks, deterministically (so that next nest |
| 1583 | // of loops with similar characteristics will get exactly same chunks on same |
| 1584 | // threads). |
| 1585 | // Current contract: chunk_bounds_nest has only lb0 and ub0, |
| 1586 | // lb1 and ub1 are set to 0 and can be ignored. (This may change in the future). |
| 1587 | extern "C" kmp_int32 |
| 1588 | __kmpc_for_collapsed_init(ident_t *loc, kmp_int32 gtid, |
| 1589 | /*in/out*/ bounds_info_t *original_bounds_nest, |
| 1590 | /*out*/ bounds_info_t *chunk_bounds_nest, |
| 1591 | kmp_index_t n, /*out*/ kmp_int32 *plastiter) { |
| 1592 | |
| 1593 | KMP_DEBUG_ASSERT(plastiter && original_bounds_nest); |
| 1594 | KE_TRACE(10, ("__kmpc_for_collapsed_init called (%d)\n" , gtid)); |
| 1595 | |
| 1596 | if (__kmp_env_consistency_check) { |
| 1597 | __kmp_push_workshare(gtid, ct: ct_pdo, ident: loc); |
| 1598 | } |
| 1599 | |
| 1600 | kmp_canonicalize_loop_nest(loc, /*in/out*/ original_bounds_nest, n); |
| 1601 | |
| 1602 | CollapseAllocator<bounds_info_internal_t> updated_bounds_nest(n); |
| 1603 | |
| 1604 | for (kmp_index_t i = 0; i < n; ++i) { |
| 1605 | updated_bounds_nest[i].b = original_bounds_nest[i]; |
| 1606 | } |
| 1607 | |
| 1608 | kmp_loop_nest_iv_t total = |
| 1609 | kmp_process_loop_nest(/*in/out*/ bounds_nest: updated_bounds_nest, n); |
| 1610 | |
| 1611 | if (plastiter != NULL) { |
| 1612 | *plastiter = FALSE; |
| 1613 | } |
| 1614 | |
| 1615 | if (total == 0) { |
| 1616 | // Loop won't execute: |
| 1617 | return FALSE; |
| 1618 | } |
| 1619 | |
| 1620 | // OMPTODO: DISTRIBUTE is not supported yet |
| 1621 | __kmp_assert_valid_gtid(gtid); |
| 1622 | kmp_uint32 tid = __kmp_tid_from_gtid(gtid); |
| 1623 | |
| 1624 | kmp_info_t *th = __kmp_threads[gtid]; |
| 1625 | kmp_team_t *team = th->th.th_team; |
| 1626 | kmp_uint32 nth = team->t.t_nproc; // Number of threads |
| 1627 | |
| 1628 | KMP_DEBUG_ASSERT(tid < nth); |
| 1629 | |
| 1630 | // Handle special cases |
| 1631 | nested_loop_type_t loop_type = |
| 1632 | kmp_identify_nested_loop_structure(original_bounds_nest, n); |
| 1633 | if (loop_type == nested_loop_type_lower_triangular_matrix) { |
| 1634 | kmp_handle_lower_triangle_matrix(nth, tid, n, original_bounds_nest, |
| 1635 | chunk_bounds_nest); |
| 1636 | return TRUE; |
| 1637 | } else if (loop_type == nested_loop_type_upper_triangular_matrix) { |
| 1638 | kmp_handle_upper_triangle_matrix(nth, tid, n, original_bounds_nest, |
| 1639 | chunk_bounds_nest); |
| 1640 | return TRUE; |
| 1641 | } |
| 1642 | |
| 1643 | CollapseAllocator<kmp_uint64> original_ivs_start(n); |
| 1644 | |
| 1645 | if (!kmp_calc_original_ivs_for_start(original_bounds_nest, n, |
| 1646 | /*out*/ original_ivs: original_ivs_start)) { |
| 1647 | // Loop won't execute: |
| 1648 | return FALSE; |
| 1649 | } |
| 1650 | |
| 1651 | // Not doing this optimization for one thread: |
| 1652 | // (1) more to test |
| 1653 | // (2) without it current contract that chunk_bounds_nest has only lb0 and |
| 1654 | // ub0, lb1 and ub1 are set to 0 and can be ignored. |
| 1655 | // if (nth == 1) { |
| 1656 | // // One thread: |
| 1657 | // // Copy all info from original_bounds_nest, it'll be good enough. |
| 1658 | |
| 1659 | // for (kmp_index_t i = 0; i < n; ++i) { |
| 1660 | // chunk_bounds_nest[i] = original_bounds_nest[i]; |
| 1661 | // } |
| 1662 | |
| 1663 | // if (plastiter != NULL) { |
| 1664 | // *plastiter = TRUE; |
| 1665 | // } |
| 1666 | // return TRUE; |
| 1667 | //} |
| 1668 | |
| 1669 | kmp_loop_nest_iv_t new_iv = kmp_calc_new_iv_from_original_ivs( |
| 1670 | bounds_nest: updated_bounds_nest, original_ivs: original_ivs_start, n); |
| 1671 | |
| 1672 | bool last_iter = false; |
| 1673 | |
| 1674 | for (; nth > 0;) { |
| 1675 | // We could calculate chunk size once, but this is to compensate that the |
| 1676 | // original space is not parallelepiped and some threads can be left |
| 1677 | // without work: |
| 1678 | KMP_DEBUG_ASSERT(total >= new_iv); |
| 1679 | |
| 1680 | kmp_loop_nest_iv_t total_left = total - new_iv; |
| 1681 | kmp_loop_nest_iv_t chunk_size = total_left / nth; |
| 1682 | kmp_loop_nest_iv_t remainder = total_left % nth; |
| 1683 | |
| 1684 | kmp_loop_nest_iv_t curr_chunk_size = chunk_size; |
| 1685 | |
| 1686 | if (remainder > 0) { |
| 1687 | ++curr_chunk_size; |
| 1688 | --remainder; |
| 1689 | } |
| 1690 | |
| 1691 | #if defined(KMP_DEBUG) |
| 1692 | kmp_loop_nest_iv_t new_iv_for_start = new_iv; |
| 1693 | #endif |
| 1694 | |
| 1695 | if (curr_chunk_size > 1) { |
| 1696 | new_iv += curr_chunk_size - 1; |
| 1697 | } |
| 1698 | |
| 1699 | CollapseAllocator<kmp_uint64> original_ivs_end(n); |
| 1700 | if ((nth == 1) || (new_iv >= total - 1)) { |
| 1701 | // Do this one till the end - just in case we miscalculated |
| 1702 | // and either too much is left to process or new_iv is a bit too big: |
| 1703 | kmp_calc_original_ivs_for_end(original_bounds_nest, n, |
| 1704 | /*out*/ original_ivs: original_ivs_end); |
| 1705 | |
| 1706 | last_iter = true; |
| 1707 | } else { |
| 1708 | // Note: here we make sure it's past (or equal to) the previous point. |
| 1709 | if (!kmp_calc_original_ivs_for_chunk_end(original_bounds_nest, n, |
| 1710 | updated_bounds_nest, |
| 1711 | original_ivs_start, new_iv, |
| 1712 | /*out*/ original_ivs: original_ivs_end)) { |
| 1713 | // We could not find the ending point, use the original upper bounds: |
| 1714 | kmp_calc_original_ivs_for_end(original_bounds_nest, n, |
| 1715 | /*out*/ original_ivs: original_ivs_end); |
| 1716 | |
| 1717 | last_iter = true; |
| 1718 | } |
| 1719 | } |
| 1720 | |
| 1721 | #if defined(KMP_DEBUG) |
| 1722 | auto new_iv_for_end = kmp_calc_new_iv_from_original_ivs( |
| 1723 | bounds_nest: updated_bounds_nest, original_ivs: original_ivs_end, n); |
| 1724 | KMP_DEBUG_ASSERT(new_iv_for_end >= new_iv_for_start); |
| 1725 | #endif |
| 1726 | |
| 1727 | if (last_iter && (tid != 0)) { |
| 1728 | // We are done, this was last chunk, but no chunk for current thread was |
| 1729 | // found: |
| 1730 | return FALSE; |
| 1731 | } |
| 1732 | |
| 1733 | if (tid == 0) { |
| 1734 | // We found the chunk for this thread, now we need to check if it's the |
| 1735 | // last chunk or not: |
| 1736 | |
| 1737 | CollapseAllocator<kmp_uint64> original_ivs_next_start(n); |
| 1738 | if (last_iter || |
| 1739 | !kmp_calc_next_original_ivs(original_bounds_nest, n, original_ivs: original_ivs_end, |
| 1740 | /*out*/ next_original_ivs: original_ivs_next_start)) { |
| 1741 | // no more loop iterations left to process, |
| 1742 | // this means that currently found chunk is the last chunk: |
| 1743 | if (plastiter != NULL) { |
| 1744 | *plastiter = TRUE; |
| 1745 | } |
| 1746 | } |
| 1747 | |
| 1748 | // Fill in chunk bounds: |
| 1749 | for (kmp_index_t i = 0; i < n; ++i) { |
| 1750 | chunk_bounds_nest[i] = |
| 1751 | original_bounds_nest[i]; // To fill in types, etc. - optional |
| 1752 | chunk_bounds_nest[i].lb0_u64 = original_ivs_start[i]; |
| 1753 | chunk_bounds_nest[i].lb1_u64 = 0; |
| 1754 | |
| 1755 | chunk_bounds_nest[i].ub0_u64 = original_ivs_end[i]; |
| 1756 | chunk_bounds_nest[i].ub1_u64 = 0; |
| 1757 | } |
| 1758 | |
| 1759 | return TRUE; |
| 1760 | } |
| 1761 | |
| 1762 | --tid; |
| 1763 | --nth; |
| 1764 | |
| 1765 | bool next_chunk = kmp_calc_next_original_ivs( |
| 1766 | original_bounds_nest, n, original_ivs: original_ivs_end, /*out*/ next_original_ivs: original_ivs_start); |
| 1767 | if (!next_chunk) { |
| 1768 | // no more loop iterations to process, |
| 1769 | // the prevoius chunk was the last chunk |
| 1770 | break; |
| 1771 | } |
| 1772 | |
| 1773 | // original_ivs_start is next to previous chunk original_ivs_end, |
| 1774 | // we need to start new chunk here, so chunks will be one after another |
| 1775 | // without any gap or overlap: |
| 1776 | new_iv = kmp_calc_new_iv_from_original_ivs(bounds_nest: updated_bounds_nest, |
| 1777 | original_ivs: original_ivs_start, n); |
| 1778 | } |
| 1779 | |
| 1780 | return FALSE; |
| 1781 | } |
| 1782 | |