1 | /* |
2 | * kmp_collapse.cpp -- loop collapse feature |
3 | */ |
4 | |
5 | //===----------------------------------------------------------------------===// |
6 | // |
7 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
8 | // See https://llvm.org/LICENSE.txt for license information. |
9 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "kmp.h" |
14 | #include "kmp_error.h" |
15 | #include "kmp_i18n.h" |
16 | #include "kmp_itt.h" |
17 | #include "kmp_stats.h" |
18 | #include "kmp_str.h" |
19 | #include "kmp_collapse.h" |
20 | |
21 | #if OMPT_SUPPORT |
22 | #include "ompt-specific.h" |
23 | #endif |
24 | |
25 | // OMPTODO: different style of comments (see kmp_sched) |
26 | // OMPTODO: OMPT/OMPD |
27 | |
28 | // avoid inadevertently using a library based abs |
29 | template <typename T> T __kmp_abs(const T val) { |
30 | return (val < 0) ? -val : val; |
31 | } |
32 | kmp_uint32 __kmp_abs(const kmp_uint32 val) { return val; } |
33 | kmp_uint64 __kmp_abs(const kmp_uint64 val) { return val; } |
34 | |
35 | //---------------------------------------------------------------------------- |
36 | // Common functions for working with rectangular and non-rectangular loops |
37 | //---------------------------------------------------------------------------- |
38 | |
39 | template <typename T> int __kmp_sign(T val) { |
40 | return (T(0) < val) - (val < T(0)); |
41 | } |
42 | |
43 | template <typename T> class CollapseAllocator { |
44 | typedef T *pT; |
45 | |
46 | private: |
47 | static const size_t allocaSize = 32; // size limit for stack allocations |
48 | // (8 bytes x 4 nested loops) |
49 | char stackAlloc[allocaSize]; |
50 | static constexpr size_t maxElemCount = allocaSize / sizeof(T); |
51 | pT pTAlloc; |
52 | |
53 | public: |
54 | CollapseAllocator(size_t n) : pTAlloc(reinterpret_cast<pT>(stackAlloc)) { |
55 | if (n > maxElemCount) { |
56 | pTAlloc = reinterpret_cast<pT>(__kmp_allocate(n * sizeof(T))); |
57 | } |
58 | } |
59 | ~CollapseAllocator() { |
60 | if (pTAlloc != reinterpret_cast<pT>(stackAlloc)) { |
61 | __kmp_free(pTAlloc); |
62 | } |
63 | } |
64 | T &operator[](int index) { return pTAlloc[index]; } |
65 | operator const pT() { return pTAlloc; } |
66 | }; |
67 | |
68 | //----------Loop canonicalization--------------------------------------------- |
69 | |
70 | // For loop nest (any shape): |
71 | // convert != to < or >; |
72 | // switch from using < or > to <= or >=. |
73 | // "bounds" array has to be allocated per thread. |
74 | // All other internal functions will work only with canonicalized loops. |
75 | template <typename T> |
76 | void kmp_canonicalize_one_loop_XX( |
77 | ident_t *loc, |
78 | /*in/out*/ bounds_infoXX_template<T> *bounds) { |
79 | |
80 | if (__kmp_env_consistency_check) { |
81 | if (bounds->step == 0) { |
82 | __kmp_error_construct(kmp_i18n_msg_CnsLoopIncrZeroProhibited, ct_pdo, |
83 | loc); |
84 | } |
85 | } |
86 | |
87 | if (bounds->comparison == comparison_t::comp_not_eq) { |
88 | // We can convert this to < or >, depends on the sign of the step: |
89 | if (bounds->step > 0) { |
90 | bounds->comparison = comparison_t::comp_less; |
91 | } else { |
92 | bounds->comparison = comparison_t::comp_greater; |
93 | } |
94 | } |
95 | |
96 | if (bounds->comparison == comparison_t::comp_less) { |
97 | // Note: ub0 can be unsigned. Should be Ok to hit overflow here, |
98 | // because ub0 + ub1*j should be still positive (otherwise loop was not |
99 | // well formed) |
100 | bounds->ub0 -= 1; |
101 | bounds->comparison = comparison_t::comp_less_or_eq; |
102 | } else if (bounds->comparison == comparison_t::comp_greater) { |
103 | bounds->ub0 += 1; |
104 | bounds->comparison = comparison_t::comp_greater_or_eq; |
105 | } |
106 | } |
107 | |
108 | // Canonicalize loop nest. original_bounds_nest is an array of length n. |
109 | void kmp_canonicalize_loop_nest(ident_t *loc, |
110 | /*in/out*/ bounds_info_t *original_bounds_nest, |
111 | kmp_index_t n) { |
112 | |
113 | for (kmp_index_t ind = 0; ind < n; ++ind) { |
114 | auto bounds = &(original_bounds_nest[ind]); |
115 | |
116 | switch (bounds->loop_type) { |
117 | case loop_type_t::loop_type_int32: |
118 | kmp_canonicalize_one_loop_XX<kmp_int32>( |
119 | loc, |
120 | /*in/out*/ bounds: (bounds_infoXX_template<kmp_int32> *)(bounds)); |
121 | break; |
122 | case loop_type_t::loop_type_uint32: |
123 | kmp_canonicalize_one_loop_XX<kmp_uint32>( |
124 | loc, |
125 | /*in/out*/ bounds: (bounds_infoXX_template<kmp_uint32> *)(bounds)); |
126 | break; |
127 | case loop_type_t::loop_type_int64: |
128 | kmp_canonicalize_one_loop_XX<kmp_int64>( |
129 | loc, |
130 | /*in/out*/ bounds: (bounds_infoXX_template<kmp_int64> *)(bounds)); |
131 | break; |
132 | case loop_type_t::loop_type_uint64: |
133 | kmp_canonicalize_one_loop_XX<kmp_uint64>( |
134 | loc, |
135 | /*in/out*/ bounds: (bounds_infoXX_template<kmp_uint64> *)(bounds)); |
136 | break; |
137 | default: |
138 | KMP_ASSERT(false); |
139 | } |
140 | } |
141 | } |
142 | |
143 | //----------Calculating trip count on one level------------------------------- |
144 | |
145 | // Calculate trip count on this loop level. |
146 | // We do this either for a rectangular loop nest, |
147 | // or after an adjustment bringing the loops to a parallelepiped shape. |
148 | // This number should not depend on the value of outer IV |
149 | // even if the formular has lb1 and ub1. |
150 | // Note: for non-rectangular loops don't use span for this, it's too big. |
151 | |
152 | template <typename T> |
153 | kmp_loop_nest_iv_t kmp_calculate_trip_count_XX( |
154 | /*in/out*/ bounds_infoXX_template<T> *bounds) { |
155 | |
156 | if (bounds->comparison == comparison_t::comp_less_or_eq) { |
157 | if (bounds->ub0 < bounds->lb0) { |
158 | // Note: after this we don't need to calculate inner loops, |
159 | // but that should be an edge case: |
160 | bounds->trip_count = 0; |
161 | } else { |
162 | // ub - lb may exceed signed type range; we need to cast to |
163 | // kmp_loop_nest_iv_t anyway |
164 | bounds->trip_count = |
165 | static_cast<kmp_loop_nest_iv_t>(bounds->ub0 - bounds->lb0) / |
166 | __kmp_abs(bounds->step) + |
167 | 1; |
168 | } |
169 | } else if (bounds->comparison == comparison_t::comp_greater_or_eq) { |
170 | if (bounds->lb0 < bounds->ub0) { |
171 | // Note: after this we don't need to calculate inner loops, |
172 | // but that should be an edge case: |
173 | bounds->trip_count = 0; |
174 | } else { |
175 | // lb - ub may exceed signed type range; we need to cast to |
176 | // kmp_loop_nest_iv_t anyway |
177 | bounds->trip_count = |
178 | static_cast<kmp_loop_nest_iv_t>(bounds->lb0 - bounds->ub0) / |
179 | __kmp_abs(bounds->step) + |
180 | 1; |
181 | } |
182 | } else { |
183 | KMP_ASSERT(false); |
184 | } |
185 | return bounds->trip_count; |
186 | } |
187 | |
188 | // Calculate trip count on this loop level. |
189 | kmp_loop_nest_iv_t kmp_calculate_trip_count(/*in/out*/ bounds_info_t *bounds) { |
190 | |
191 | kmp_loop_nest_iv_t trip_count = 0; |
192 | |
193 | switch (bounds->loop_type) { |
194 | case loop_type_t::loop_type_int32: |
195 | trip_count = kmp_calculate_trip_count_XX<kmp_int32>( |
196 | /*in/out*/ bounds: (bounds_infoXX_template<kmp_int32> *)(bounds)); |
197 | break; |
198 | case loop_type_t::loop_type_uint32: |
199 | trip_count = kmp_calculate_trip_count_XX<kmp_uint32>( |
200 | /*in/out*/ bounds: (bounds_infoXX_template<kmp_uint32> *)(bounds)); |
201 | break; |
202 | case loop_type_t::loop_type_int64: |
203 | trip_count = kmp_calculate_trip_count_XX<kmp_int64>( |
204 | /*in/out*/ bounds: (bounds_infoXX_template<kmp_int64> *)(bounds)); |
205 | break; |
206 | case loop_type_t::loop_type_uint64: |
207 | trip_count = kmp_calculate_trip_count_XX<kmp_uint64>( |
208 | /*in/out*/ bounds: (bounds_infoXX_template<kmp_uint64> *)(bounds)); |
209 | break; |
210 | default: |
211 | KMP_ASSERT(false); |
212 | } |
213 | |
214 | return trip_count; |
215 | } |
216 | |
217 | //----------Trim original iv according to its type---------------------------- |
218 | |
219 | // Trim original iv according to its type. |
220 | // Return kmp_uint64 value which can be easily used in all internal calculations |
221 | // And can be statically cast back to original type in user code. |
222 | kmp_uint64 kmp_fix_iv(loop_type_t loop_iv_type, kmp_uint64 original_iv) { |
223 | kmp_uint64 res = 0; |
224 | |
225 | switch (loop_iv_type) { |
226 | case loop_type_t::loop_type_int8: |
227 | res = static_cast<kmp_uint64>(static_cast<kmp_int8>(original_iv)); |
228 | break; |
229 | case loop_type_t::loop_type_uint8: |
230 | res = static_cast<kmp_uint64>(static_cast<kmp_uint8>(original_iv)); |
231 | break; |
232 | case loop_type_t::loop_type_int16: |
233 | res = static_cast<kmp_uint64>(static_cast<kmp_int16>(original_iv)); |
234 | break; |
235 | case loop_type_t::loop_type_uint16: |
236 | res = static_cast<kmp_uint64>(static_cast<kmp_uint16>(original_iv)); |
237 | break; |
238 | case loop_type_t::loop_type_int32: |
239 | res = static_cast<kmp_uint64>(static_cast<kmp_int32>(original_iv)); |
240 | break; |
241 | case loop_type_t::loop_type_uint32: |
242 | res = static_cast<kmp_uint64>(static_cast<kmp_uint32>(original_iv)); |
243 | break; |
244 | case loop_type_t::loop_type_int64: |
245 | res = static_cast<kmp_uint64>(static_cast<kmp_int64>(original_iv)); |
246 | break; |
247 | case loop_type_t::loop_type_uint64: |
248 | res = static_cast<kmp_uint64>(original_iv); |
249 | break; |
250 | default: |
251 | KMP_ASSERT(false); |
252 | } |
253 | |
254 | return res; |
255 | } |
256 | |
257 | //----------Compare two IVs (remember they have a type)----------------------- |
258 | |
259 | bool kmp_ivs_eq(loop_type_t loop_iv_type, kmp_uint64 original_iv1, |
260 | kmp_uint64 original_iv2) { |
261 | bool res = false; |
262 | |
263 | switch (loop_iv_type) { |
264 | case loop_type_t::loop_type_int8: |
265 | res = static_cast<kmp_int8>(original_iv1) == |
266 | static_cast<kmp_int8>(original_iv2); |
267 | break; |
268 | case loop_type_t::loop_type_uint8: |
269 | res = static_cast<kmp_uint8>(original_iv1) == |
270 | static_cast<kmp_uint8>(original_iv2); |
271 | break; |
272 | case loop_type_t::loop_type_int16: |
273 | res = static_cast<kmp_int16>(original_iv1) == |
274 | static_cast<kmp_int16>(original_iv2); |
275 | break; |
276 | case loop_type_t::loop_type_uint16: |
277 | res = static_cast<kmp_uint16>(original_iv1) == |
278 | static_cast<kmp_uint16>(original_iv2); |
279 | break; |
280 | case loop_type_t::loop_type_int32: |
281 | res = static_cast<kmp_int32>(original_iv1) == |
282 | static_cast<kmp_int32>(original_iv2); |
283 | break; |
284 | case loop_type_t::loop_type_uint32: |
285 | res = static_cast<kmp_uint32>(original_iv1) == |
286 | static_cast<kmp_uint32>(original_iv2); |
287 | break; |
288 | case loop_type_t::loop_type_int64: |
289 | res = static_cast<kmp_int64>(original_iv1) == |
290 | static_cast<kmp_int64>(original_iv2); |
291 | break; |
292 | case loop_type_t::loop_type_uint64: |
293 | res = static_cast<kmp_uint64>(original_iv1) == |
294 | static_cast<kmp_uint64>(original_iv2); |
295 | break; |
296 | default: |
297 | KMP_ASSERT(false); |
298 | } |
299 | |
300 | return res; |
301 | } |
302 | |
303 | //----------Calculate original iv on one level-------------------------------- |
304 | |
305 | // Return true if the point fits into upper bounds on this level, |
306 | // false otherwise |
307 | template <typename T> |
308 | bool kmp_iv_is_in_upper_bound_XX(const bounds_infoXX_template<T> *bounds, |
309 | const kmp_point_t original_ivs, |
310 | kmp_index_t ind) { |
311 | |
312 | T iv = static_cast<T>(original_ivs[ind]); |
313 | T outer_iv = static_cast<T>(original_ivs[bounds->outer_iv]); |
314 | |
315 | if (((bounds->comparison == comparison_t::comp_less_or_eq) && |
316 | (iv > (bounds->ub0 + bounds->ub1 * outer_iv))) || |
317 | ((bounds->comparison == comparison_t::comp_greater_or_eq) && |
318 | (iv < (bounds->ub0 + bounds->ub1 * outer_iv)))) { |
319 | // The calculated point is outside of loop upper boundary: |
320 | return false; |
321 | } |
322 | |
323 | return true; |
324 | } |
325 | |
326 | // Calculate one iv corresponding to iteration on the level ind. |
327 | // Return true if it fits into lower-upper bounds on this level |
328 | // (if not, we need to re-calculate) |
329 | template <typename T> |
330 | bool kmp_calc_one_iv_XX(const bounds_infoXX_template<T> *bounds, |
331 | /*in/out*/ kmp_point_t original_ivs, |
332 | const kmp_iterations_t iterations, kmp_index_t ind, |
333 | bool start_with_lower_bound, bool checkBounds) { |
334 | |
335 | kmp_uint64 temp = 0; |
336 | T outer_iv = static_cast<T>(original_ivs[bounds->outer_iv]); |
337 | |
338 | if (start_with_lower_bound) { |
339 | // we moved to the next iteration on one of outer loops, should start |
340 | // with the lower bound here: |
341 | temp = bounds->lb0 + bounds->lb1 * outer_iv; |
342 | } else { |
343 | auto iteration = iterations[ind]; |
344 | temp = bounds->lb0 + bounds->lb1 * outer_iv + iteration * bounds->step; |
345 | } |
346 | |
347 | // Now trim original iv according to its type: |
348 | original_ivs[ind] = kmp_fix_iv(bounds->loop_iv_type, temp); |
349 | |
350 | if (checkBounds) { |
351 | return kmp_iv_is_in_upper_bound_XX(bounds, original_ivs, ind); |
352 | } else { |
353 | return true; |
354 | } |
355 | } |
356 | |
357 | bool kmp_calc_one_iv(const bounds_info_t *bounds, |
358 | /*in/out*/ kmp_point_t original_ivs, |
359 | const kmp_iterations_t iterations, kmp_index_t ind, |
360 | bool start_with_lower_bound, bool checkBounds) { |
361 | |
362 | switch (bounds->loop_type) { |
363 | case loop_type_t::loop_type_int32: |
364 | return kmp_calc_one_iv_XX<kmp_int32>( |
365 | bounds: (bounds_infoXX_template<kmp_int32> *)(bounds), |
366 | /*in/out*/ original_ivs, iterations, ind, start_with_lower_bound, |
367 | checkBounds); |
368 | break; |
369 | case loop_type_t::loop_type_uint32: |
370 | return kmp_calc_one_iv_XX<kmp_uint32>( |
371 | bounds: (bounds_infoXX_template<kmp_uint32> *)(bounds), |
372 | /*in/out*/ original_ivs, iterations, ind, start_with_lower_bound, |
373 | checkBounds); |
374 | break; |
375 | case loop_type_t::loop_type_int64: |
376 | return kmp_calc_one_iv_XX<kmp_int64>( |
377 | bounds: (bounds_infoXX_template<kmp_int64> *)(bounds), |
378 | /*in/out*/ original_ivs, iterations, ind, start_with_lower_bound, |
379 | checkBounds); |
380 | break; |
381 | case loop_type_t::loop_type_uint64: |
382 | return kmp_calc_one_iv_XX<kmp_uint64>( |
383 | bounds: (bounds_infoXX_template<kmp_uint64> *)(bounds), |
384 | /*in/out*/ original_ivs, iterations, ind, start_with_lower_bound, |
385 | checkBounds); |
386 | break; |
387 | default: |
388 | KMP_ASSERT(false); |
389 | return false; |
390 | } |
391 | } |
392 | |
393 | //----------Calculate original iv on one level for rectangular loop nest------ |
394 | |
395 | // Calculate one iv corresponding to iteration on the level ind. |
396 | // Return true if it fits into lower-upper bounds on this level |
397 | // (if not, we need to re-calculate) |
398 | template <typename T> |
399 | void kmp_calc_one_iv_rectang_XX(const bounds_infoXX_template<T> *bounds, |
400 | /*in/out*/ kmp_uint64 *original_ivs, |
401 | const kmp_iterations_t iterations, |
402 | kmp_index_t ind) { |
403 | |
404 | auto iteration = iterations[ind]; |
405 | |
406 | kmp_uint64 temp = |
407 | bounds->lb0 + |
408 | bounds->lb1 * static_cast<T>(original_ivs[bounds->outer_iv]) + |
409 | iteration * bounds->step; |
410 | |
411 | // Now trim original iv according to its type: |
412 | original_ivs[ind] = kmp_fix_iv(bounds->loop_iv_type, temp); |
413 | } |
414 | |
415 | void kmp_calc_one_iv_rectang(const bounds_info_t *bounds, |
416 | /*in/out*/ kmp_uint64 *original_ivs, |
417 | const kmp_iterations_t iterations, |
418 | kmp_index_t ind) { |
419 | |
420 | switch (bounds->loop_type) { |
421 | case loop_type_t::loop_type_int32: |
422 | kmp_calc_one_iv_rectang_XX<kmp_int32>( |
423 | bounds: (bounds_infoXX_template<kmp_int32> *)(bounds), |
424 | /*in/out*/ original_ivs, iterations, ind); |
425 | break; |
426 | case loop_type_t::loop_type_uint32: |
427 | kmp_calc_one_iv_rectang_XX<kmp_uint32>( |
428 | bounds: (bounds_infoXX_template<kmp_uint32> *)(bounds), |
429 | /*in/out*/ original_ivs, iterations, ind); |
430 | break; |
431 | case loop_type_t::loop_type_int64: |
432 | kmp_calc_one_iv_rectang_XX<kmp_int64>( |
433 | bounds: (bounds_infoXX_template<kmp_int64> *)(bounds), |
434 | /*in/out*/ original_ivs, iterations, ind); |
435 | break; |
436 | case loop_type_t::loop_type_uint64: |
437 | kmp_calc_one_iv_rectang_XX<kmp_uint64>( |
438 | bounds: (bounds_infoXX_template<kmp_uint64> *)(bounds), |
439 | /*in/out*/ original_ivs, iterations, ind); |
440 | break; |
441 | default: |
442 | KMP_ASSERT(false); |
443 | } |
444 | } |
445 | |
446 | //---------------------------------------------------------------------------- |
447 | // Rectangular loop nest |
448 | //---------------------------------------------------------------------------- |
449 | |
450 | //----------Canonicalize loop nest and calculate trip count------------------- |
451 | |
452 | // Canonicalize loop nest and calculate overall trip count. |
453 | // "bounds_nest" has to be allocated per thread. |
454 | // API will modify original bounds_nest array to bring it to a canonical form |
455 | // (only <= and >=, no !=, <, >). If the original loop nest was already in a |
456 | // canonical form there will be no changes to bounds in bounds_nest array |
457 | // (only trip counts will be calculated). |
458 | // Returns trip count of overall space. |
459 | extern "C" kmp_loop_nest_iv_t |
460 | __kmpc_process_loop_nest_rectang(ident_t *loc, kmp_int32 gtid, |
461 | /*in/out*/ bounds_info_t *original_bounds_nest, |
462 | kmp_index_t n) { |
463 | |
464 | kmp_canonicalize_loop_nest(loc, /*in/out*/ original_bounds_nest, n); |
465 | |
466 | kmp_loop_nest_iv_t total = 1; |
467 | |
468 | for (kmp_index_t ind = 0; ind < n; ++ind) { |
469 | auto bounds = &(original_bounds_nest[ind]); |
470 | |
471 | kmp_loop_nest_iv_t trip_count = kmp_calculate_trip_count(/*in/out*/ bounds); |
472 | total *= trip_count; |
473 | } |
474 | |
475 | return total; |
476 | } |
477 | |
478 | //----------Calculate old induction variables--------------------------------- |
479 | |
480 | // Calculate old induction variables corresponding to overall new_iv. |
481 | // Note: original IV will be returned as if it had kmp_uint64 type, |
482 | // will have to be converted to original type in user code. |
483 | // Note: trip counts should be already calculated by |
484 | // __kmpc_process_loop_nest_rectang. |
485 | // OMPTODO: special case 2, 3 nested loops: either do different |
486 | // interface without array or possibly template this over n |
487 | extern "C" void |
488 | __kmpc_calc_original_ivs_rectang(ident_t *loc, kmp_loop_nest_iv_t new_iv, |
489 | const bounds_info_t *original_bounds_nest, |
490 | /*out*/ kmp_uint64 *original_ivs, |
491 | kmp_index_t n) { |
492 | |
493 | CollapseAllocator<kmp_loop_nest_iv_t> iterations(n); |
494 | |
495 | // First, calc corresponding iteration in every original loop: |
496 | for (kmp_index_t ind = n; ind > 0;) { |
497 | --ind; |
498 | auto bounds = &(original_bounds_nest[ind]); |
499 | |
500 | // should be optimized to OPDIVREM: |
501 | auto temp = new_iv / bounds->trip_count; |
502 | auto iteration = new_iv % bounds->trip_count; |
503 | new_iv = temp; |
504 | |
505 | iterations[ind] = iteration; |
506 | } |
507 | KMP_ASSERT(new_iv == 0); |
508 | |
509 | for (kmp_index_t ind = 0; ind < n; ++ind) { |
510 | auto bounds = &(original_bounds_nest[ind]); |
511 | |
512 | kmp_calc_one_iv_rectang(bounds, /*in/out*/ original_ivs, iterations, ind); |
513 | } |
514 | } |
515 | |
516 | //---------------------------------------------------------------------------- |
517 | // Non-rectangular loop nest |
518 | //---------------------------------------------------------------------------- |
519 | |
520 | //----------Calculate maximum possible span of iv values on one level--------- |
521 | |
522 | // Calculate span for IV on this loop level for "<=" case. |
523 | // Note: it's for <= on this loop nest level, so lower bound should be smallest |
524 | // value, upper bound should be the biggest value. If the loop won't execute, |
525 | // 'smallest' may be bigger than 'biggest', but we'd better not switch them |
526 | // around. |
527 | template <typename T> |
528 | void kmp_calc_span_lessoreq_XX( |
529 | /* in/out*/ bounds_info_internalXX_template<T> *bounds, |
530 | /* in/out*/ bounds_info_internal_t *bounds_nest) { |
531 | |
532 | typedef typename traits_t<T>::unsigned_t UT; |
533 | // typedef typename traits_t<T>::signed_t ST; |
534 | |
535 | // typedef typename big_span_t span_t; |
536 | typedef T span_t; |
537 | |
538 | auto &bbounds = bounds->b; |
539 | |
540 | if ((bbounds.lb1 != 0) || (bbounds.ub1 != 0)) { |
541 | // This dimention depends on one of previous ones; can't be the outermost |
542 | // one. |
543 | bounds_info_internalXX_template<T> *previous = |
544 | reinterpret_cast<bounds_info_internalXX_template<T> *>( |
545 | &(bounds_nest[bbounds.outer_iv])); |
546 | |
547 | // OMPTODO: assert that T is compatible with loop variable type on |
548 | // 'previous' loop |
549 | |
550 | { |
551 | span_t bound_candidate1 = |
552 | bbounds.lb0 + bbounds.lb1 * previous->span_smallest; |
553 | span_t bound_candidate2 = |
554 | bbounds.lb0 + bbounds.lb1 * previous->span_biggest; |
555 | if (bound_candidate1 < bound_candidate2) { |
556 | bounds->span_smallest = bound_candidate1; |
557 | } else { |
558 | bounds->span_smallest = bound_candidate2; |
559 | } |
560 | } |
561 | |
562 | { |
563 | // We can't adjust the upper bound with respect to step, because |
564 | // lower bound might be off after adjustments |
565 | |
566 | span_t bound_candidate1 = |
567 | bbounds.ub0 + bbounds.ub1 * previous->span_smallest; |
568 | span_t bound_candidate2 = |
569 | bbounds.ub0 + bbounds.ub1 * previous->span_biggest; |
570 | if (bound_candidate1 < bound_candidate2) { |
571 | bounds->span_biggest = bound_candidate2; |
572 | } else { |
573 | bounds->span_biggest = bound_candidate1; |
574 | } |
575 | } |
576 | } else { |
577 | // Rectangular: |
578 | bounds->span_smallest = bbounds.lb0; |
579 | bounds->span_biggest = bbounds.ub0; |
580 | } |
581 | if (!bounds->loop_bounds_adjusted) { |
582 | // Here it's safe to reduce the space to the multiply of step. |
583 | // OMPTODO: check if the formular is correct. |
584 | // Also check if it would be safe to do this if we didn't adjust left side. |
585 | bounds->span_biggest -= |
586 | (static_cast<UT>(bbounds.ub0 - bbounds.lb0)) % bbounds.step; // abs? |
587 | } |
588 | } |
589 | |
590 | // Calculate span for IV on this loop level for ">=" case. |
591 | template <typename T> |
592 | void kmp_calc_span_greateroreq_XX( |
593 | /* in/out*/ bounds_info_internalXX_template<T> *bounds, |
594 | /* in/out*/ bounds_info_internal_t *bounds_nest) { |
595 | |
596 | typedef typename traits_t<T>::unsigned_t UT; |
597 | // typedef typename traits_t<T>::signed_t ST; |
598 | |
599 | // typedef typename big_span_t span_t; |
600 | typedef T span_t; |
601 | |
602 | auto &bbounds = bounds->b; |
603 | |
604 | if ((bbounds.lb1 != 0) || (bbounds.ub1 != 0)) { |
605 | // This dimention depends on one of previous ones; can't be the outermost |
606 | // one. |
607 | bounds_info_internalXX_template<T> *previous = |
608 | reinterpret_cast<bounds_info_internalXX_template<T> *>( |
609 | &(bounds_nest[bbounds.outer_iv])); |
610 | |
611 | // OMPTODO: assert that T is compatible with loop variable type on |
612 | // 'previous' loop |
613 | |
614 | { |
615 | span_t bound_candidate1 = |
616 | bbounds.lb0 + bbounds.lb1 * previous->span_smallest; |
617 | span_t bound_candidate2 = |
618 | bbounds.lb0 + bbounds.lb1 * previous->span_biggest; |
619 | if (bound_candidate1 >= bound_candidate2) { |
620 | bounds->span_smallest = bound_candidate1; |
621 | } else { |
622 | bounds->span_smallest = bound_candidate2; |
623 | } |
624 | } |
625 | |
626 | { |
627 | // We can't adjust the upper bound with respect to step, because |
628 | // lower bound might be off after adjustments |
629 | |
630 | span_t bound_candidate1 = |
631 | bbounds.ub0 + bbounds.ub1 * previous->span_smallest; |
632 | span_t bound_candidate2 = |
633 | bbounds.ub0 + bbounds.ub1 * previous->span_biggest; |
634 | if (bound_candidate1 >= bound_candidate2) { |
635 | bounds->span_biggest = bound_candidate2; |
636 | } else { |
637 | bounds->span_biggest = bound_candidate1; |
638 | } |
639 | } |
640 | |
641 | } else { |
642 | // Rectangular: |
643 | bounds->span_biggest = bbounds.lb0; |
644 | bounds->span_smallest = bbounds.ub0; |
645 | } |
646 | if (!bounds->loop_bounds_adjusted) { |
647 | // Here it's safe to reduce the space to the multiply of step. |
648 | // OMPTODO: check if the formular is correct. |
649 | // Also check if it would be safe to do this if we didn't adjust left side. |
650 | bounds->span_biggest -= |
651 | (static_cast<UT>(bbounds.ub0 - bbounds.lb0)) % bbounds.step; // abs? |
652 | } |
653 | } |
654 | |
655 | // Calculate maximum possible span for IV on this loop level. |
656 | template <typename T> |
657 | void kmp_calc_span_XX( |
658 | /* in/out*/ bounds_info_internalXX_template<T> *bounds, |
659 | /* in/out*/ bounds_info_internal_t *bounds_nest) { |
660 | |
661 | if (bounds->b.comparison == comparison_t::comp_less_or_eq) { |
662 | kmp_calc_span_lessoreq_XX(/* in/out*/ bounds, /* in/out*/ bounds_nest); |
663 | } else { |
664 | KMP_ASSERT(bounds->b.comparison == comparison_t::comp_greater_or_eq); |
665 | kmp_calc_span_greateroreq_XX(/* in/out*/ bounds, /* in/out*/ bounds_nest); |
666 | } |
667 | } |
668 | |
669 | //----------All initial processing of the loop nest--------------------------- |
670 | |
671 | // Calculate new bounds for this loop level. |
672 | // To be able to work with the nest we need to get it to a parallelepiped shape. |
673 | // We need to stay in the original range of values, so that there will be no |
674 | // overflow, for that we'll adjust both upper and lower bounds as needed. |
675 | template <typename T> |
676 | void kmp_calc_new_bounds_XX( |
677 | /* in/out*/ bounds_info_internalXX_template<T> *bounds, |
678 | /* in/out*/ bounds_info_internal_t *bounds_nest) { |
679 | |
680 | auto &bbounds = bounds->b; |
681 | |
682 | if (bbounds.lb1 == bbounds.ub1) { |
683 | // Already parallel, no need to adjust: |
684 | bounds->loop_bounds_adjusted = false; |
685 | } else { |
686 | bounds->loop_bounds_adjusted = true; |
687 | |
688 | T old_lb1 = bbounds.lb1; |
689 | T old_ub1 = bbounds.ub1; |
690 | |
691 | if (__kmp_sign(old_lb1) != __kmp_sign(old_ub1)) { |
692 | // With this shape we can adjust to a rectangle: |
693 | bbounds.lb1 = 0; |
694 | bbounds.ub1 = 0; |
695 | } else { |
696 | // get upper and lower bounds to be parallel |
697 | // with values in the old range. |
698 | // Note: abs didn't work here. |
699 | if (((old_lb1 < 0) && (old_lb1 < old_ub1)) || |
700 | ((old_lb1 > 0) && (old_lb1 > old_ub1))) { |
701 | bbounds.lb1 = old_ub1; |
702 | } else { |
703 | bbounds.ub1 = old_lb1; |
704 | } |
705 | } |
706 | |
707 | // Now need to adjust lb0, ub0, otherwise in some cases space will shrink. |
708 | // The idea here that for this IV we are now getting the same span |
709 | // irrespective of the previous IV value. |
710 | bounds_info_internalXX_template<T> *previous = |
711 | reinterpret_cast<bounds_info_internalXX_template<T> *>( |
712 | &bounds_nest[bbounds.outer_iv]); |
713 | |
714 | if (bbounds.comparison == comparison_t::comp_less_or_eq) { |
715 | if (old_lb1 < bbounds.lb1) { |
716 | KMP_ASSERT(old_lb1 < 0); |
717 | // The length is good on outer_iv biggest number, |
718 | // can use it to find where to move the lower bound: |
719 | |
720 | T sub = (bbounds.lb1 - old_lb1) * previous->span_biggest; |
721 | bbounds.lb0 -= sub; // OMPTODO: what if it'll go out of unsigned space? |
722 | // e.g. it was 0?? (same below) |
723 | } else if (old_lb1 > bbounds.lb1) { |
724 | // still need to move lower bound: |
725 | T add = (old_lb1 - bbounds.lb1) * previous->span_smallest; |
726 | bbounds.lb0 += add; |
727 | } |
728 | |
729 | if (old_ub1 > bbounds.ub1) { |
730 | KMP_ASSERT(old_ub1 > 0); |
731 | // The length is good on outer_iv biggest number, |
732 | // can use it to find where to move upper bound: |
733 | |
734 | T add = (old_ub1 - bbounds.ub1) * previous->span_biggest; |
735 | bbounds.ub0 += add; |
736 | } else if (old_ub1 < bbounds.ub1) { |
737 | // still need to move upper bound: |
738 | T sub = (bbounds.ub1 - old_ub1) * previous->span_smallest; |
739 | bbounds.ub0 -= sub; |
740 | } |
741 | } else { |
742 | KMP_ASSERT(bbounds.comparison == comparison_t::comp_greater_or_eq); |
743 | if (old_lb1 < bbounds.lb1) { |
744 | KMP_ASSERT(old_lb1 < 0); |
745 | T sub = (bbounds.lb1 - old_lb1) * previous->span_smallest; |
746 | bbounds.lb0 -= sub; |
747 | } else if (old_lb1 > bbounds.lb1) { |
748 | T add = (old_lb1 - bbounds.lb1) * previous->span_biggest; |
749 | bbounds.lb0 += add; |
750 | } |
751 | |
752 | if (old_ub1 > bbounds.ub1) { |
753 | KMP_ASSERT(old_ub1 > 0); |
754 | T add = (old_ub1 - bbounds.ub1) * previous->span_smallest; |
755 | bbounds.ub0 += add; |
756 | } else if (old_ub1 < bbounds.ub1) { |
757 | T sub = (bbounds.ub1 - old_ub1) * previous->span_biggest; |
758 | bbounds.ub0 -= sub; |
759 | } |
760 | } |
761 | } |
762 | } |
763 | |
764 | // Do all processing for one canonicalized loop in the nest |
765 | // (assuming that outer loops already were processed): |
766 | template <typename T> |
767 | kmp_loop_nest_iv_t kmp_process_one_loop_XX( |
768 | /* in/out*/ bounds_info_internalXX_template<T> *bounds, |
769 | /*in/out*/ bounds_info_internal_t *bounds_nest) { |
770 | |
771 | kmp_calc_new_bounds_XX(/* in/out*/ bounds, /* in/out*/ bounds_nest); |
772 | kmp_calc_span_XX(/* in/out*/ bounds, /* in/out*/ bounds_nest); |
773 | return kmp_calculate_trip_count_XX(/*in/out*/ &(bounds->b)); |
774 | } |
775 | |
776 | // Non-rectangular loop nest, canonicalized to use <= or >=. |
777 | // Process loop nest to have a parallelepiped shape, |
778 | // calculate biggest spans for IV's on all levels and calculate overall trip |
779 | // count. "bounds_nest" has to be allocated per thread. |
780 | // Returns overall trip count (for adjusted space). |
781 | kmp_loop_nest_iv_t kmp_process_loop_nest( |
782 | /*in/out*/ bounds_info_internal_t *bounds_nest, kmp_index_t n) { |
783 | |
784 | kmp_loop_nest_iv_t total = 1; |
785 | |
786 | for (kmp_index_t ind = 0; ind < n; ++ind) { |
787 | auto bounds = &(bounds_nest[ind]); |
788 | kmp_loop_nest_iv_t trip_count = 0; |
789 | |
790 | switch (bounds->b.loop_type) { |
791 | case loop_type_t::loop_type_int32: |
792 | trip_count = kmp_process_one_loop_XX<kmp_int32>( |
793 | /*in/out*/ bounds: (bounds_info_internalXX_template<kmp_int32> *)(bounds), |
794 | /*in/out*/ bounds_nest); |
795 | break; |
796 | case loop_type_t::loop_type_uint32: |
797 | trip_count = kmp_process_one_loop_XX<kmp_uint32>( |
798 | /*in/out*/ bounds: (bounds_info_internalXX_template<kmp_uint32> *)(bounds), |
799 | /*in/out*/ bounds_nest); |
800 | break; |
801 | case loop_type_t::loop_type_int64: |
802 | trip_count = kmp_process_one_loop_XX<kmp_int64>( |
803 | /*in/out*/ bounds: (bounds_info_internalXX_template<kmp_int64> *)(bounds), |
804 | /*in/out*/ bounds_nest); |
805 | break; |
806 | case loop_type_t::loop_type_uint64: |
807 | trip_count = kmp_process_one_loop_XX<kmp_uint64>( |
808 | /*in/out*/ bounds: (bounds_info_internalXX_template<kmp_uint64> *)(bounds), |
809 | /*in/out*/ bounds_nest); |
810 | break; |
811 | default: |
812 | KMP_ASSERT(false); |
813 | } |
814 | total *= trip_count; |
815 | } |
816 | |
817 | return total; |
818 | } |
819 | |
820 | //----------Calculate iterations (in the original or updated space)----------- |
821 | |
822 | // Calculate number of iterations in original or updated space resulting in |
823 | // original_ivs[ind] (only on this level, non-negative) |
824 | // (not counting initial iteration) |
825 | template <typename T> |
826 | kmp_loop_nest_iv_t |
827 | kmp_calc_number_of_iterations_XX(const bounds_infoXX_template<T> *bounds, |
828 | const kmp_point_t original_ivs, |
829 | kmp_index_t ind) { |
830 | |
831 | kmp_loop_nest_iv_t iterations = 0; |
832 | |
833 | if (bounds->comparison == comparison_t::comp_less_or_eq) { |
834 | iterations = |
835 | (static_cast<T>(original_ivs[ind]) - bounds->lb0 - |
836 | bounds->lb1 * static_cast<T>(original_ivs[bounds->outer_iv])) / |
837 | __kmp_abs(bounds->step); |
838 | } else { |
839 | KMP_DEBUG_ASSERT(bounds->comparison == comparison_t::comp_greater_or_eq); |
840 | iterations = (bounds->lb0 + |
841 | bounds->lb1 * static_cast<T>(original_ivs[bounds->outer_iv]) - |
842 | static_cast<T>(original_ivs[ind])) / |
843 | __kmp_abs(bounds->step); |
844 | } |
845 | |
846 | return iterations; |
847 | } |
848 | |
849 | // Calculate number of iterations in the original or updated space resulting in |
850 | // original_ivs[ind] (only on this level, non-negative) |
851 | kmp_loop_nest_iv_t kmp_calc_number_of_iterations(const bounds_info_t *bounds, |
852 | const kmp_point_t original_ivs, |
853 | kmp_index_t ind) { |
854 | |
855 | switch (bounds->loop_type) { |
856 | case loop_type_t::loop_type_int32: |
857 | return kmp_calc_number_of_iterations_XX<kmp_int32>( |
858 | bounds: (bounds_infoXX_template<kmp_int32> *)(bounds), original_ivs, ind); |
859 | break; |
860 | case loop_type_t::loop_type_uint32: |
861 | return kmp_calc_number_of_iterations_XX<kmp_uint32>( |
862 | bounds: (bounds_infoXX_template<kmp_uint32> *)(bounds), original_ivs, ind); |
863 | break; |
864 | case loop_type_t::loop_type_int64: |
865 | return kmp_calc_number_of_iterations_XX<kmp_int64>( |
866 | bounds: (bounds_infoXX_template<kmp_int64> *)(bounds), original_ivs, ind); |
867 | break; |
868 | case loop_type_t::loop_type_uint64: |
869 | return kmp_calc_number_of_iterations_XX<kmp_uint64>( |
870 | bounds: (bounds_infoXX_template<kmp_uint64> *)(bounds), original_ivs, ind); |
871 | break; |
872 | default: |
873 | KMP_ASSERT(false); |
874 | return 0; |
875 | } |
876 | } |
877 | |
878 | //----------Calculate new iv corresponding to original ivs-------------------- |
879 | |
880 | // We got a point in the original loop nest. |
881 | // Take updated bounds and calculate what new_iv will correspond to this point. |
882 | // When we are getting original IVs from new_iv, we have to adjust to fit into |
883 | // original loops bounds. Getting new_iv for the adjusted original IVs will help |
884 | // with making more chunks non-empty. |
885 | kmp_loop_nest_iv_t |
886 | kmp_calc_new_iv_from_original_ivs(const bounds_info_internal_t *bounds_nest, |
887 | const kmp_point_t original_ivs, |
888 | kmp_index_t n) { |
889 | |
890 | kmp_loop_nest_iv_t new_iv = 0; |
891 | |
892 | for (kmp_index_t ind = 0; ind < n; ++ind) { |
893 | auto bounds = &(bounds_nest[ind].b); |
894 | |
895 | new_iv = new_iv * bounds->trip_count + |
896 | kmp_calc_number_of_iterations(bounds, original_ivs, ind); |
897 | } |
898 | |
899 | return new_iv; |
900 | } |
901 | |
902 | //----------Calculate original ivs for provided iterations-------------------- |
903 | |
904 | // Calculate original IVs for provided iterations, assuming iterations are |
905 | // calculated in the original space. |
906 | // Loop nest is in canonical form (with <= / >=). |
907 | bool kmp_calc_original_ivs_from_iterations( |
908 | const bounds_info_t *original_bounds_nest, kmp_index_t n, |
909 | /*in/out*/ kmp_point_t original_ivs, |
910 | /*in/out*/ kmp_iterations_t iterations, kmp_index_t ind) { |
911 | |
912 | kmp_index_t lengthened_ind = n; |
913 | |
914 | for (; ind < n;) { |
915 | auto bounds = &(original_bounds_nest[ind]); |
916 | bool good = kmp_calc_one_iv(bounds, /*in/out*/ original_ivs, iterations, |
917 | ind, start_with_lower_bound: (lengthened_ind < ind), checkBounds: true); |
918 | |
919 | if (!good) { |
920 | // The calculated iv value is too big (or too small for >=): |
921 | if (ind == 0) { |
922 | // Space is empty: |
923 | return false; |
924 | } else { |
925 | // Go to next iteration on the outer loop: |
926 | --ind; |
927 | ++iterations[ind]; |
928 | lengthened_ind = ind; |
929 | for (kmp_index_t i = ind + 1; i < n; ++i) { |
930 | iterations[i] = 0; |
931 | } |
932 | continue; |
933 | } |
934 | } |
935 | ++ind; |
936 | } |
937 | |
938 | return true; |
939 | } |
940 | |
941 | //----------Calculate original ivs for the beginning of the loop nest--------- |
942 | |
943 | // Calculate IVs for the beginning of the loop nest. |
944 | // Note: lower bounds of all loops may not work - |
945 | // if on some of the iterations of the outer loops inner loops are empty. |
946 | // Loop nest is in canonical form (with <= / >=). |
947 | bool kmp_calc_original_ivs_for_start(const bounds_info_t *original_bounds_nest, |
948 | kmp_index_t n, |
949 | /*out*/ kmp_point_t original_ivs) { |
950 | |
951 | // Iterations in the original space, multiplied by step: |
952 | CollapseAllocator<kmp_loop_nest_iv_t> iterations(n); |
953 | for (kmp_index_t ind = n; ind > 0;) { |
954 | --ind; |
955 | iterations[ind] = 0; |
956 | } |
957 | |
958 | // Now calculate the point: |
959 | bool b = kmp_calc_original_ivs_from_iterations(original_bounds_nest, n, |
960 | /*in/out*/ original_ivs, |
961 | /*in/out*/ iterations, ind: 0); |
962 | return b; |
963 | } |
964 | |
965 | //----------Calculate next point in the original loop space------------------- |
966 | |
967 | // From current set of original IVs calculate next point. |
968 | // Return false if there is no next point in the loop bounds. |
969 | bool kmp_calc_next_original_ivs(const bounds_info_t *original_bounds_nest, |
970 | kmp_index_t n, const kmp_point_t original_ivs, |
971 | /*out*/ kmp_point_t next_original_ivs) { |
972 | // Iterations in the original space, multiplied by step (so can be negative): |
973 | CollapseAllocator<kmp_loop_nest_iv_t> iterations(n); |
974 | // First, calc corresponding iteration in every original loop: |
975 | for (kmp_index_t ind = 0; ind < n; ++ind) { |
976 | auto bounds = &(original_bounds_nest[ind]); |
977 | iterations[ind] = kmp_calc_number_of_iterations(bounds, original_ivs, ind); |
978 | } |
979 | |
980 | for (kmp_index_t ind = 0; ind < n; ++ind) { |
981 | next_original_ivs[ind] = original_ivs[ind]; |
982 | } |
983 | |
984 | // Next add one step to the iterations on the inner-most level, and see if we |
985 | // need to move up the nest: |
986 | kmp_index_t ind = n - 1; |
987 | ++iterations[ind]; |
988 | |
989 | bool b = kmp_calc_original_ivs_from_iterations( |
990 | original_bounds_nest, n, /*in/out*/ original_ivs: next_original_ivs, iterations, ind); |
991 | |
992 | return b; |
993 | } |
994 | |
995 | //----------Calculate chunk end in the original loop space-------------------- |
996 | |
997 | // For one level calculate old induction variable corresponding to overall |
998 | // new_iv for the chunk end. |
999 | // Return true if it fits into upper bound on this level |
1000 | // (if not, we need to re-calculate) |
1001 | template <typename T> |
1002 | bool kmp_calc_one_iv_for_chunk_end_XX( |
1003 | const bounds_infoXX_template<T> *bounds, |
1004 | const bounds_infoXX_template<T> *updated_bounds, |
1005 | /*in/out*/ kmp_point_t original_ivs, const kmp_iterations_t iterations, |
1006 | kmp_index_t ind, bool start_with_lower_bound, bool compare_with_start, |
1007 | const kmp_point_t original_ivs_start) { |
1008 | |
1009 | // typedef std::conditional<std::is_signed<T>::value, kmp_int64, kmp_uint64> |
1010 | // big_span_t; |
1011 | |
1012 | // OMPTODO: is it good enough, or do we need ST or do we need big_span_t? |
1013 | T temp = 0; |
1014 | |
1015 | T outer_iv = static_cast<T>(original_ivs[bounds->outer_iv]); |
1016 | |
1017 | if (start_with_lower_bound) { |
1018 | // we moved to the next iteration on one of outer loops, may as well use |
1019 | // the lower bound here: |
1020 | temp = bounds->lb0 + bounds->lb1 * outer_iv; |
1021 | } else { |
1022 | // Start in expanded space, but: |
1023 | // - we need to hit original space lower bound, so need to account for |
1024 | // that |
1025 | // - we have to go into original space, even if that means adding more |
1026 | // iterations than was planned |
1027 | // - we have to go past (or equal to) previous point (which is the chunk |
1028 | // starting point) |
1029 | |
1030 | auto iteration = iterations[ind]; |
1031 | |
1032 | auto step = bounds->step; |
1033 | |
1034 | // In case of >= it's negative: |
1035 | auto accountForStep = |
1036 | ((bounds->lb0 + bounds->lb1 * outer_iv) - |
1037 | (updated_bounds->lb0 + updated_bounds->lb1 * outer_iv)) % |
1038 | step; |
1039 | |
1040 | temp = updated_bounds->lb0 + updated_bounds->lb1 * outer_iv + |
1041 | accountForStep + iteration * step; |
1042 | |
1043 | if (((bounds->comparison == comparison_t::comp_less_or_eq) && |
1044 | (temp < (bounds->lb0 + bounds->lb1 * outer_iv))) || |
1045 | ((bounds->comparison == comparison_t::comp_greater_or_eq) && |
1046 | (temp > (bounds->lb0 + bounds->lb1 * outer_iv)))) { |
1047 | // Too small (or too big), didn't reach the original lower bound. Use |
1048 | // heuristic: |
1049 | temp = bounds->lb0 + bounds->lb1 * outer_iv + iteration / 2 * step; |
1050 | } |
1051 | |
1052 | if (compare_with_start) { |
1053 | |
1054 | T start = static_cast<T>(original_ivs_start[ind]); |
1055 | |
1056 | temp = kmp_fix_iv(bounds->loop_iv_type, temp); |
1057 | |
1058 | // On all previous levels start of the chunk is same as the end, need to |
1059 | // be really careful here: |
1060 | if (((bounds->comparison == comparison_t::comp_less_or_eq) && |
1061 | (temp < start)) || |
1062 | ((bounds->comparison == comparison_t::comp_greater_or_eq) && |
1063 | (temp > start))) { |
1064 | // End of the chunk can't be smaller (for >= bigger) than it's start. |
1065 | // Use heuristic: |
1066 | temp = start + iteration / 4 * step; |
1067 | } |
1068 | } |
1069 | } |
1070 | |
1071 | original_ivs[ind] = temp = kmp_fix_iv(bounds->loop_iv_type, temp); |
1072 | |
1073 | if (((bounds->comparison == comparison_t::comp_less_or_eq) && |
1074 | (temp > (bounds->ub0 + bounds->ub1 * outer_iv))) || |
1075 | ((bounds->comparison == comparison_t::comp_greater_or_eq) && |
1076 | (temp < (bounds->ub0 + bounds->ub1 * outer_iv)))) { |
1077 | // Too big (or too small for >=). |
1078 | return false; |
1079 | } |
1080 | |
1081 | return true; |
1082 | } |
1083 | |
1084 | // For one level calculate old induction variable corresponding to overall |
1085 | // new_iv for the chunk end. |
1086 | bool kmp_calc_one_iv_for_chunk_end(const bounds_info_t *bounds, |
1087 | const bounds_info_t *updated_bounds, |
1088 | /*in/out*/ kmp_point_t original_ivs, |
1089 | const kmp_iterations_t iterations, |
1090 | kmp_index_t ind, bool start_with_lower_bound, |
1091 | bool compare_with_start, |
1092 | const kmp_point_t original_ivs_start) { |
1093 | |
1094 | switch (bounds->loop_type) { |
1095 | case loop_type_t::loop_type_int32: |
1096 | return kmp_calc_one_iv_for_chunk_end_XX<kmp_int32>( |
1097 | bounds: (bounds_infoXX_template<kmp_int32> *)(bounds), |
1098 | updated_bounds: (bounds_infoXX_template<kmp_int32> *)(updated_bounds), |
1099 | /*in/out*/ |
1100 | original_ivs, iterations, ind, start_with_lower_bound, |
1101 | compare_with_start, original_ivs_start); |
1102 | break; |
1103 | case loop_type_t::loop_type_uint32: |
1104 | return kmp_calc_one_iv_for_chunk_end_XX<kmp_uint32>( |
1105 | bounds: (bounds_infoXX_template<kmp_uint32> *)(bounds), |
1106 | updated_bounds: (bounds_infoXX_template<kmp_uint32> *)(updated_bounds), |
1107 | /*in/out*/ |
1108 | original_ivs, iterations, ind, start_with_lower_bound, |
1109 | compare_with_start, original_ivs_start); |
1110 | break; |
1111 | case loop_type_t::loop_type_int64: |
1112 | return kmp_calc_one_iv_for_chunk_end_XX<kmp_int64>( |
1113 | bounds: (bounds_infoXX_template<kmp_int64> *)(bounds), |
1114 | updated_bounds: (bounds_infoXX_template<kmp_int64> *)(updated_bounds), |
1115 | /*in/out*/ |
1116 | original_ivs, iterations, ind, start_with_lower_bound, |
1117 | compare_with_start, original_ivs_start); |
1118 | break; |
1119 | case loop_type_t::loop_type_uint64: |
1120 | return kmp_calc_one_iv_for_chunk_end_XX<kmp_uint64>( |
1121 | bounds: (bounds_infoXX_template<kmp_uint64> *)(bounds), |
1122 | updated_bounds: (bounds_infoXX_template<kmp_uint64> *)(updated_bounds), |
1123 | /*in/out*/ |
1124 | original_ivs, iterations, ind, start_with_lower_bound, |
1125 | compare_with_start, original_ivs_start); |
1126 | break; |
1127 | default: |
1128 | KMP_ASSERT(false); |
1129 | return false; |
1130 | } |
1131 | } |
1132 | |
1133 | // Calculate old induction variables corresponding to overall new_iv for the |
1134 | // chunk end. If due to space extension we are getting old IVs outside of the |
1135 | // boundaries, bring them into the boundaries. Need to do this in the runtime, |
1136 | // esp. on the lower bounds side. When getting result need to make sure that the |
1137 | // new chunk starts at next position to old chunk, not overlaps with it (this is |
1138 | // done elsewhere), and need to make sure end of the chunk is further than the |
1139 | // beginning of the chunk. We don't need an exact ending point here, just |
1140 | // something more-or-less close to the desired chunk length, bigger is fine |
1141 | // (smaller would be fine, but we risk going into infinite loop, so do smaller |
1142 | // only at the very end of the space). result: false if could not find the |
1143 | // ending point in the original loop space. In this case the caller can use |
1144 | // original upper bounds as the end of the chunk. Chunk won't be empty, because |
1145 | // it'll have at least the starting point, which is by construction in the |
1146 | // original space. |
1147 | bool kmp_calc_original_ivs_for_chunk_end( |
1148 | const bounds_info_t *original_bounds_nest, kmp_index_t n, |
1149 | const bounds_info_internal_t *updated_bounds_nest, |
1150 | const kmp_point_t original_ivs_start, kmp_loop_nest_iv_t new_iv, |
1151 | /*out*/ kmp_point_t original_ivs) { |
1152 | |
1153 | // Iterations in the expanded space: |
1154 | CollapseAllocator<kmp_loop_nest_iv_t> iterations(n); |
1155 | // First, calc corresponding iteration in every modified loop: |
1156 | for (kmp_index_t ind = n; ind > 0;) { |
1157 | --ind; |
1158 | auto &updated_bounds = updated_bounds_nest[ind]; |
1159 | |
1160 | // should be optimized to OPDIVREM: |
1161 | auto new_ind = new_iv / updated_bounds.b.trip_count; |
1162 | auto iteration = new_iv % updated_bounds.b.trip_count; |
1163 | |
1164 | new_iv = new_ind; |
1165 | iterations[ind] = iteration; |
1166 | } |
1167 | KMP_DEBUG_ASSERT(new_iv == 0); |
1168 | |
1169 | kmp_index_t lengthened_ind = n; |
1170 | kmp_index_t equal_ind = -1; |
1171 | |
1172 | // Next calculate the point, but in original loop nest. |
1173 | for (kmp_index_t ind = 0; ind < n;) { |
1174 | auto bounds = &(original_bounds_nest[ind]); |
1175 | auto updated_bounds = &(updated_bounds_nest[ind].b); |
1176 | |
1177 | bool good = kmp_calc_one_iv_for_chunk_end( |
1178 | bounds, updated_bounds, |
1179 | /*in/out*/ original_ivs, iterations, ind, start_with_lower_bound: (lengthened_ind < ind), |
1180 | compare_with_start: (equal_ind >= ind - 1), original_ivs_start); |
1181 | |
1182 | if (!good) { |
1183 | // Too big (or too small for >=). |
1184 | if (ind == 0) { |
1185 | // Need to reduce to the end. |
1186 | return false; |
1187 | } else { |
1188 | // Go to next iteration on outer loop: |
1189 | --ind; |
1190 | ++(iterations[ind]); |
1191 | lengthened_ind = ind; |
1192 | if (equal_ind >= lengthened_ind) { |
1193 | // We've changed the number of iterations here, |
1194 | // can't be same anymore: |
1195 | equal_ind = lengthened_ind - 1; |
1196 | } |
1197 | for (kmp_index_t i = ind + 1; i < n; ++i) { |
1198 | iterations[i] = 0; |
1199 | } |
1200 | continue; |
1201 | } |
1202 | } |
1203 | |
1204 | if ((equal_ind == ind - 1) && |
1205 | (kmp_ivs_eq(loop_iv_type: bounds->loop_iv_type, original_iv1: original_ivs[ind], |
1206 | original_iv2: original_ivs_start[ind]))) { |
1207 | equal_ind = ind; |
1208 | } else if ((equal_ind > ind - 1) && |
1209 | !(kmp_ivs_eq(loop_iv_type: bounds->loop_iv_type, original_iv1: original_ivs[ind], |
1210 | original_iv2: original_ivs_start[ind]))) { |
1211 | equal_ind = ind - 1; |
1212 | } |
1213 | ++ind; |
1214 | } |
1215 | |
1216 | return true; |
1217 | } |
1218 | |
1219 | //----------Calculate upper bounds for the last chunk------------------------- |
1220 | |
1221 | // Calculate one upper bound for the end. |
1222 | template <typename T> |
1223 | void kmp_calc_one_iv_end_XX(const bounds_infoXX_template<T> *bounds, |
1224 | /*in/out*/ kmp_point_t original_ivs, |
1225 | kmp_index_t ind) { |
1226 | |
1227 | T temp = bounds->ub0 + |
1228 | bounds->ub1 * static_cast<T>(original_ivs[bounds->outer_iv]); |
1229 | |
1230 | original_ivs[ind] = kmp_fix_iv(bounds->loop_iv_type, temp); |
1231 | } |
1232 | |
1233 | void kmp_calc_one_iv_end(const bounds_info_t *bounds, |
1234 | /*in/out*/ kmp_point_t original_ivs, kmp_index_t ind) { |
1235 | |
1236 | switch (bounds->loop_type) { |
1237 | default: |
1238 | KMP_ASSERT(false); |
1239 | break; |
1240 | case loop_type_t::loop_type_int32: |
1241 | kmp_calc_one_iv_end_XX<kmp_int32>( |
1242 | bounds: (bounds_infoXX_template<kmp_int32> *)(bounds), |
1243 | /*in/out*/ original_ivs, ind); |
1244 | break; |
1245 | case loop_type_t::loop_type_uint32: |
1246 | kmp_calc_one_iv_end_XX<kmp_uint32>( |
1247 | bounds: (bounds_infoXX_template<kmp_uint32> *)(bounds), |
1248 | /*in/out*/ original_ivs, ind); |
1249 | break; |
1250 | case loop_type_t::loop_type_int64: |
1251 | kmp_calc_one_iv_end_XX<kmp_int64>( |
1252 | bounds: (bounds_infoXX_template<kmp_int64> *)(bounds), |
1253 | /*in/out*/ original_ivs, ind); |
1254 | break; |
1255 | case loop_type_t::loop_type_uint64: |
1256 | kmp_calc_one_iv_end_XX<kmp_uint64>( |
1257 | bounds: (bounds_infoXX_template<kmp_uint64> *)(bounds), |
1258 | /*in/out*/ original_ivs, ind); |
1259 | break; |
1260 | } |
1261 | } |
1262 | |
1263 | // Calculate upper bounds for the last loop iteration. Just use original upper |
1264 | // bounds (adjusted when canonicalized to use <= / >=). No need to check that |
1265 | // this point is in the original space (it's likely not) |
1266 | void kmp_calc_original_ivs_for_end( |
1267 | const bounds_info_t *const original_bounds_nest, kmp_index_t n, |
1268 | /*out*/ kmp_point_t original_ivs) { |
1269 | for (kmp_index_t ind = 0; ind < n; ++ind) { |
1270 | auto bounds = &(original_bounds_nest[ind]); |
1271 | kmp_calc_one_iv_end(bounds, /*in/out*/ original_ivs, ind); |
1272 | } |
1273 | } |
1274 | |
1275 | /************************************************************************** |
1276 | * Identify nested loop structure - loops come in the canonical form |
1277 | * Lower triangle matrix: i = 0; i <= N; i++ {0,0}:{N,0} |
1278 | * j = 0; j <= 0/-1+1*i; j++ {0,0}:{0/-1,1} |
1279 | * Upper Triangle matrix |
1280 | * i = 0; i <= N; i++ {0,0}:{N,0} |
1281 | * j = 0+1*i; j <= N; j++ {0,1}:{N,0} |
1282 | * ************************************************************************/ |
1283 | nested_loop_type_t |
1284 | kmp_identify_nested_loop_structure(/*in*/ bounds_info_t *original_bounds_nest, |
1285 | /*in*/ kmp_index_t n) { |
1286 | // only 2-level nested loops are supported |
1287 | if (n != 2) { |
1288 | return nested_loop_type_unkown; |
1289 | } |
1290 | // loops must be canonical |
1291 | KMP_ASSERT( |
1292 | (original_bounds_nest[0].comparison == comparison_t::comp_less_or_eq) && |
1293 | (original_bounds_nest[1].comparison == comparison_t::comp_less_or_eq)); |
1294 | // check outer loop bounds: for triangular need to be {0,0}:{N,0} |
1295 | kmp_uint64 outer_lb0_u64 = kmp_fix_iv(loop_iv_type: original_bounds_nest[0].loop_iv_type, |
1296 | original_iv: original_bounds_nest[0].lb0_u64); |
1297 | kmp_uint64 outer_ub0_u64 = kmp_fix_iv(loop_iv_type: original_bounds_nest[0].loop_iv_type, |
1298 | original_iv: original_bounds_nest[0].ub0_u64); |
1299 | kmp_uint64 outer_lb1_u64 = kmp_fix_iv(loop_iv_type: original_bounds_nest[0].loop_iv_type, |
1300 | original_iv: original_bounds_nest[0].lb1_u64); |
1301 | kmp_uint64 outer_ub1_u64 = kmp_fix_iv(loop_iv_type: original_bounds_nest[0].loop_iv_type, |
1302 | original_iv: original_bounds_nest[0].ub1_u64); |
1303 | if (outer_lb0_u64 != 0 || outer_lb1_u64 != 0 || outer_ub1_u64 != 0) { |
1304 | return nested_loop_type_unkown; |
1305 | } |
1306 | // check inner bounds to determine triangle type |
1307 | kmp_uint64 inner_lb0_u64 = kmp_fix_iv(loop_iv_type: original_bounds_nest[1].loop_iv_type, |
1308 | original_iv: original_bounds_nest[1].lb0_u64); |
1309 | kmp_uint64 inner_ub0_u64 = kmp_fix_iv(loop_iv_type: original_bounds_nest[1].loop_iv_type, |
1310 | original_iv: original_bounds_nest[1].ub0_u64); |
1311 | kmp_uint64 inner_lb1_u64 = kmp_fix_iv(loop_iv_type: original_bounds_nest[1].loop_iv_type, |
1312 | original_iv: original_bounds_nest[1].lb1_u64); |
1313 | kmp_uint64 inner_ub1_u64 = kmp_fix_iv(loop_iv_type: original_bounds_nest[1].loop_iv_type, |
1314 | original_iv: original_bounds_nest[1].ub1_u64); |
1315 | // lower triangle loop inner bounds need to be {0,0}:{0/-1,1} |
1316 | if (inner_lb0_u64 == 0 && inner_lb1_u64 == 0 && |
1317 | (inner_ub0_u64 == 0 || inner_ub0_u64 == -1) && inner_ub1_u64 == 1) { |
1318 | return nested_loop_type_lower_triangular_matrix; |
1319 | } |
1320 | // upper triangle loop inner bounds need to be {0,1}:{N,0} |
1321 | if (inner_lb0_u64 == 0 && inner_lb1_u64 == 1 && |
1322 | inner_ub0_u64 == outer_ub0_u64 && inner_ub1_u64 == 0) { |
1323 | return nested_loop_type_upper_triangular_matrix; |
1324 | } |
1325 | return nested_loop_type_unkown; |
1326 | } |
1327 | |
1328 | /************************************************************************** |
1329 | * SQRT Approximation: https://math.mit.edu/~stevenj/18.335/newton-sqrt.pdf |
1330 | * Start point is x so the result is always > sqrt(x) |
1331 | * The method has uniform convergence, PRECISION is set to 0.1 |
1332 | * ************************************************************************/ |
1333 | #define level_of_precision 0.1 |
1334 | double sqrt_newton_approx(/*in*/ kmp_uint64 x) { |
1335 | double sqrt_old = 0.; |
1336 | double sqrt_new = (double)x; |
1337 | do { |
1338 | sqrt_old = sqrt_new; |
1339 | sqrt_new = (sqrt_old + x / sqrt_old) / 2; |
1340 | } while ((sqrt_old - sqrt_new) > level_of_precision); |
1341 | return sqrt_new; |
1342 | } |
1343 | |
1344 | /************************************************************************** |
1345 | * Handle lower triangle matrix in the canonical form |
1346 | * i = 0; i <= N; i++ {0,0}:{N,0} |
1347 | * j = 0; j <= 0/-1 + 1*i; j++ {0,0}:{0/-1,1} |
1348 | * ************************************************************************/ |
1349 | void kmp_handle_lower_triangle_matrix( |
1350 | /*in*/ kmp_uint32 nth, |
1351 | /*in*/ kmp_uint32 tid, |
1352 | /*in */ kmp_index_t n, |
1353 | /*in/out*/ bounds_info_t *original_bounds_nest, |
1354 | /*out*/ bounds_info_t *chunk_bounds_nest) { |
1355 | |
1356 | // transfer loop types from the original loop to the chunks |
1357 | for (kmp_index_t i = 0; i < n; ++i) { |
1358 | chunk_bounds_nest[i] = original_bounds_nest[i]; |
1359 | } |
1360 | // cleanup iv variables |
1361 | kmp_uint64 outer_ub0 = kmp_fix_iv(loop_iv_type: original_bounds_nest[0].loop_iv_type, |
1362 | original_iv: original_bounds_nest[0].ub0_u64); |
1363 | kmp_uint64 outer_lb0 = kmp_fix_iv(loop_iv_type: original_bounds_nest[0].loop_iv_type, |
1364 | original_iv: original_bounds_nest[0].lb0_u64); |
1365 | kmp_uint64 inner_ub0 = kmp_fix_iv(loop_iv_type: original_bounds_nest[1].loop_iv_type, |
1366 | original_iv: original_bounds_nest[1].ub0_u64); |
1367 | // calculate the chunk's lower and upper bounds |
1368 | // the total number of iterations in the loop is the sum of the arithmetic |
1369 | // progression from the outer lower to outer upper bound (inclusive since the |
1370 | // loop is canonical) note that less_than inner loops (inner_ub0 = -1) |
1371 | // effectively make the progression 1-based making N = (outer_ub0 - inner_lb0 |
1372 | // + 1) -> N - 1 |
1373 | kmp_uint64 outer_iters = (outer_ub0 - outer_lb0 + 1) + inner_ub0; |
1374 | kmp_uint64 iter_total = outer_iters * (outer_iters + 1) / 2; |
1375 | // the current thread's number of iterations: |
1376 | // each thread gets an equal number of iterations: total number of iterations |
1377 | // divided by the number of threads plus, if there's a remainder, |
1378 | // the first threads with the number up to the remainder get an additional |
1379 | // iteration each to cover it |
1380 | kmp_uint64 iter_current = |
1381 | iter_total / nth + ((tid < (iter_total % nth)) ? 1 : 0); |
1382 | // cumulative number of iterations executed by all the previous threads: |
1383 | // threads with the tid below the remainder will have (iter_total/nth+1) |
1384 | // elements, and so will all threads before them so the cumulative number of |
1385 | // iterations executed by the all previous will be the current thread's number |
1386 | // of iterations multiplied by the number of previous threads which is equal |
1387 | // to the current thread's tid; threads with the number equal or above the |
1388 | // remainder will have (iter_total/nth) elements so the cumulative number of |
1389 | // iterations previously executed is its number of iterations multipled by the |
1390 | // number of previous threads which is again equal to the current thread's tid |
1391 | // PLUS all the remainder iterations that will have been executed by the |
1392 | // previous threads |
1393 | kmp_uint64 iter_before_current = |
1394 | tid * iter_current + ((tid < iter_total % nth) ? 0 : (iter_total % nth)); |
1395 | // cumulative number of iterations executed with the current thread is |
1396 | // the cumulative number executed before it plus its own |
1397 | kmp_uint64 iter_with_current = iter_before_current + iter_current; |
1398 | // calculate the outer loop lower bound (lbo) which is the max outer iv value |
1399 | // that gives the number of iterations that is equal or just below the total |
1400 | // number of iterations executed by the previous threads, for less_than |
1401 | // (1-based) inner loops (inner_ub0 == -1) it will be i.e. |
1402 | // lbo*(lbo-1)/2<=iter_before_current => lbo^2-lbo-2*iter_before_current<=0 |
1403 | // for less_than_equal (0-based) inner loops (inner_ub == 0) it will be: |
1404 | // i.e. lbo*(lbo+1)/2<=iter_before_current => |
1405 | // lbo^2+lbo-2*iter_before_current<=0 both cases can be handled similarily |
1406 | // using a parameter to control the equation sign |
1407 | kmp_int64 inner_adjustment = 1 + 2 * inner_ub0; |
1408 | kmp_uint64 lower_bound_outer = |
1409 | (kmp_uint64)(sqrt_newton_approx(x: inner_adjustment * inner_adjustment + |
1410 | 8 * iter_before_current) + |
1411 | inner_adjustment) / |
1412 | 2 - |
1413 | inner_adjustment; |
1414 | // calculate the inner loop lower bound which is the remaining number of |
1415 | // iterations required to hit the total number of iterations executed by the |
1416 | // previous threads giving the starting point of this thread |
1417 | kmp_uint64 lower_bound_inner = |
1418 | iter_before_current - |
1419 | ((lower_bound_outer + inner_adjustment) * lower_bound_outer) / 2; |
1420 | // calculate the outer loop upper bound using the same approach as for the |
1421 | // inner bound except using the total number of iterations executed with the |
1422 | // current thread |
1423 | kmp_uint64 upper_bound_outer = |
1424 | (kmp_uint64)(sqrt_newton_approx(x: inner_adjustment * inner_adjustment + |
1425 | 8 * iter_with_current) + |
1426 | inner_adjustment) / |
1427 | 2 - |
1428 | inner_adjustment; |
1429 | // calculate the inner loop upper bound which is the remaining number of |
1430 | // iterations required to hit the total number of iterations executed after |
1431 | // the current thread giving the starting point of the next thread |
1432 | kmp_uint64 upper_bound_inner = |
1433 | iter_with_current - |
1434 | ((upper_bound_outer + inner_adjustment) * upper_bound_outer) / 2; |
1435 | // adjust the upper bounds down by 1 element to point at the last iteration of |
1436 | // the current thread the first iteration of the next thread |
1437 | if (upper_bound_inner == 0) { |
1438 | // {n,0} => {n-1,n-1} |
1439 | upper_bound_outer -= 1; |
1440 | upper_bound_inner = upper_bound_outer; |
1441 | } else { |
1442 | // {n,m} => {n,m-1} (m!=0) |
1443 | upper_bound_inner -= 1; |
1444 | } |
1445 | |
1446 | // assign the values, zeroing out lb1 and ub1 values since the iteration space |
1447 | // is now one-dimensional |
1448 | chunk_bounds_nest[0].lb0_u64 = lower_bound_outer; |
1449 | chunk_bounds_nest[1].lb0_u64 = lower_bound_inner; |
1450 | chunk_bounds_nest[0].ub0_u64 = upper_bound_outer; |
1451 | chunk_bounds_nest[1].ub0_u64 = upper_bound_inner; |
1452 | chunk_bounds_nest[0].lb1_u64 = 0; |
1453 | chunk_bounds_nest[0].ub1_u64 = 0; |
1454 | chunk_bounds_nest[1].lb1_u64 = 0; |
1455 | chunk_bounds_nest[1].ub1_u64 = 0; |
1456 | |
1457 | #if 0 |
1458 | printf("tid/nth = %d/%d : From [%llu, %llu] To [%llu, %llu] : Chunks %llu/%llu\n" , |
1459 | tid, nth, chunk_bounds_nest[0].lb0_u64, chunk_bounds_nest[1].lb0_u64, |
1460 | chunk_bounds_nest[0].ub0_u64, chunk_bounds_nest[1].ub0_u64, iter_current, iter_total); |
1461 | #endif |
1462 | } |
1463 | |
1464 | /************************************************************************** |
1465 | * Handle upper triangle matrix in the canonical form |
1466 | * i = 0; i <= N; i++ {0,0}:{N,0} |
1467 | * j = 0+1*i; j <= N; j++ {0,1}:{N,0} |
1468 | * ************************************************************************/ |
1469 | void kmp_handle_upper_triangle_matrix( |
1470 | /*in*/ kmp_uint32 nth, |
1471 | /*in*/ kmp_uint32 tid, |
1472 | /*in */ kmp_index_t n, |
1473 | /*in/out*/ bounds_info_t *original_bounds_nest, |
1474 | /*out*/ bounds_info_t *chunk_bounds_nest) { |
1475 | |
1476 | // transfer loop types from the original loop to the chunks |
1477 | for (kmp_index_t i = 0; i < n; ++i) { |
1478 | chunk_bounds_nest[i] = original_bounds_nest[i]; |
1479 | } |
1480 | // cleanup iv variables |
1481 | kmp_uint64 outer_ub0 = kmp_fix_iv(loop_iv_type: original_bounds_nest[0].loop_iv_type, |
1482 | original_iv: original_bounds_nest[0].ub0_u64); |
1483 | kmp_uint64 outer_lb0 = kmp_fix_iv(loop_iv_type: original_bounds_nest[0].loop_iv_type, |
1484 | original_iv: original_bounds_nest[0].lb0_u64); |
1485 | [[maybe_unused]] kmp_uint64 inner_ub0 = kmp_fix_iv( |
1486 | loop_iv_type: original_bounds_nest[1].loop_iv_type, original_iv: original_bounds_nest[1].ub0_u64); |
1487 | // calculate the chunk's lower and upper bounds |
1488 | // the total number of iterations in the loop is the sum of the arithmetic |
1489 | // progression from the outer lower to outer upper bound (inclusive since the |
1490 | // loop is canonical) note that less_than inner loops (inner_ub0 = -1) |
1491 | // effectively make the progression 1-based making N = (outer_ub0 - inner_lb0 |
1492 | // + 1) -> N - 1 |
1493 | kmp_uint64 outer_iters = (outer_ub0 - outer_lb0 + 1); |
1494 | kmp_uint64 iter_total = outer_iters * (outer_iters + 1) / 2; |
1495 | // the current thread's number of iterations: |
1496 | // each thread gets an equal number of iterations: total number of iterations |
1497 | // divided by the number of threads plus, if there's a remainder, |
1498 | // the first threads with the number up to the remainder get an additional |
1499 | // iteration each to cover it |
1500 | kmp_uint64 iter_current = |
1501 | iter_total / nth + ((tid < (iter_total % nth)) ? 1 : 0); |
1502 | // cumulative number of iterations executed by all the previous threads: |
1503 | // threads with the tid below the remainder will have (iter_total/nth+1) |
1504 | // elements, and so will all threads before them so the cumulative number of |
1505 | // iterations executed by the all previous will be the current thread's number |
1506 | // of iterations multiplied by the number of previous threads which is equal |
1507 | // to the current thread's tid; threads with the number equal or above the |
1508 | // remainder will have (iter_total/nth) elements so the cumulative number of |
1509 | // iterations previously executed is its number of iterations multipled by the |
1510 | // number of previous threads which is again equal to the current thread's tid |
1511 | // PLUS all the remainder iterations that will have been executed by the |
1512 | // previous threads |
1513 | kmp_uint64 iter_before_current = |
1514 | tid * iter_current + ((tid < iter_total % nth) ? 0 : (iter_total % nth)); |
1515 | // cumulative number of iterations executed with the current thread is |
1516 | // the cumulative number executed before it plus its own |
1517 | kmp_uint64 iter_with_current = iter_before_current + iter_current; |
1518 | // calculate the outer loop lower bound (lbo) which is the max outer iv value |
1519 | // that gives the number of iterations that is equal or just below the total |
1520 | // number of iterations executed by the previous threads: |
1521 | // lbo*(lbo+1)/2<=iter_before_current => |
1522 | // lbo^2+lbo-2*iter_before_current<=0 |
1523 | kmp_uint64 lower_bound_outer = |
1524 | (kmp_uint64)(sqrt_newton_approx(x: 1 + 8 * iter_before_current) + 1) / 2 - 1; |
1525 | // calculate the inner loop lower bound which is the remaining number of |
1526 | // iterations required to hit the total number of iterations executed by the |
1527 | // previous threads giving the starting point of this thread |
1528 | kmp_uint64 lower_bound_inner = |
1529 | iter_before_current - ((lower_bound_outer + 1) * lower_bound_outer) / 2; |
1530 | // calculate the outer loop upper bound using the same approach as for the |
1531 | // inner bound except using the total number of iterations executed with the |
1532 | // current thread |
1533 | kmp_uint64 upper_bound_outer = |
1534 | (kmp_uint64)(sqrt_newton_approx(x: 1 + 8 * iter_with_current) + 1) / 2 - 1; |
1535 | // calculate the inner loop upper bound which is the remaining number of |
1536 | // iterations required to hit the total number of iterations executed after |
1537 | // the current thread giving the starting point of the next thread |
1538 | kmp_uint64 upper_bound_inner = |
1539 | iter_with_current - ((upper_bound_outer + 1) * upper_bound_outer) / 2; |
1540 | // adjust the upper bounds down by 1 element to point at the last iteration of |
1541 | // the current thread the first iteration of the next thread |
1542 | if (upper_bound_inner == 0) { |
1543 | // {n,0} => {n-1,n-1} |
1544 | upper_bound_outer -= 1; |
1545 | upper_bound_inner = upper_bound_outer; |
1546 | } else { |
1547 | // {n,m} => {n,m-1} (m!=0) |
1548 | upper_bound_inner -= 1; |
1549 | } |
1550 | |
1551 | // assign the values, zeroing out lb1 and ub1 values since the iteration space |
1552 | // is now one-dimensional |
1553 | chunk_bounds_nest[0].lb0_u64 = (outer_iters - 1) - upper_bound_outer; |
1554 | chunk_bounds_nest[1].lb0_u64 = (outer_iters - 1) - upper_bound_inner; |
1555 | chunk_bounds_nest[0].ub0_u64 = (outer_iters - 1) - lower_bound_outer; |
1556 | chunk_bounds_nest[1].ub0_u64 = (outer_iters - 1) - lower_bound_inner; |
1557 | chunk_bounds_nest[0].lb1_u64 = 0; |
1558 | chunk_bounds_nest[0].ub1_u64 = 0; |
1559 | chunk_bounds_nest[1].lb1_u64 = 0; |
1560 | chunk_bounds_nest[1].ub1_u64 = 0; |
1561 | |
1562 | #if 0 |
1563 | printf("tid/nth = %d/%d : From [%llu, %llu] To [%llu, %llu] : Chunks %llu/%llu\n" , |
1564 | tid, nth, chunk_bounds_nest[0].lb0_u64, chunk_bounds_nest[1].lb0_u64, |
1565 | chunk_bounds_nest[0].ub0_u64, chunk_bounds_nest[1].ub0_u64, iter_current, iter_total); |
1566 | #endif |
1567 | } |
1568 | //----------Init API for non-rectangular loops-------------------------------- |
1569 | |
1570 | // Init API for collapsed loops (static, no chunks defined). |
1571 | // "bounds_nest" has to be allocated per thread. |
1572 | // API will modify original bounds_nest array to bring it to a canonical form |
1573 | // (only <= and >=, no !=, <, >). If the original loop nest was already in a |
1574 | // canonical form there will be no changes to bounds in bounds_nest array |
1575 | // (only trip counts will be calculated). Internally API will expand the space |
1576 | // to parallelogram/parallelepiped, calculate total, calculate bounds for the |
1577 | // chunks in terms of the new IV, re-calc them in terms of old IVs (especially |
1578 | // important on the left side, to hit the lower bounds and not step over), and |
1579 | // pick the correct chunk for this thread (so it will calculate chunks up to the |
1580 | // needed one). It could be optimized to calculate just this chunk, potentially |
1581 | // a bit less well distributed among threads. It is designed to make sure that |
1582 | // threads will receive predictable chunks, deterministically (so that next nest |
1583 | // of loops with similar characteristics will get exactly same chunks on same |
1584 | // threads). |
1585 | // Current contract: chunk_bounds_nest has only lb0 and ub0, |
1586 | // lb1 and ub1 are set to 0 and can be ignored. (This may change in the future). |
1587 | extern "C" kmp_int32 |
1588 | __kmpc_for_collapsed_init(ident_t *loc, kmp_int32 gtid, |
1589 | /*in/out*/ bounds_info_t *original_bounds_nest, |
1590 | /*out*/ bounds_info_t *chunk_bounds_nest, |
1591 | kmp_index_t n, /*out*/ kmp_int32 *plastiter) { |
1592 | |
1593 | KMP_DEBUG_ASSERT(plastiter && original_bounds_nest); |
1594 | KE_TRACE(10, ("__kmpc_for_collapsed_init called (%d)\n" , gtid)); |
1595 | |
1596 | if (__kmp_env_consistency_check) { |
1597 | __kmp_push_workshare(gtid, ct: ct_pdo, ident: loc); |
1598 | } |
1599 | |
1600 | kmp_canonicalize_loop_nest(loc, /*in/out*/ original_bounds_nest, n); |
1601 | |
1602 | CollapseAllocator<bounds_info_internal_t> updated_bounds_nest(n); |
1603 | |
1604 | for (kmp_index_t i = 0; i < n; ++i) { |
1605 | updated_bounds_nest[i].b = original_bounds_nest[i]; |
1606 | } |
1607 | |
1608 | kmp_loop_nest_iv_t total = |
1609 | kmp_process_loop_nest(/*in/out*/ bounds_nest: updated_bounds_nest, n); |
1610 | |
1611 | if (plastiter != NULL) { |
1612 | *plastiter = FALSE; |
1613 | } |
1614 | |
1615 | if (total == 0) { |
1616 | // Loop won't execute: |
1617 | return FALSE; |
1618 | } |
1619 | |
1620 | // OMPTODO: DISTRIBUTE is not supported yet |
1621 | __kmp_assert_valid_gtid(gtid); |
1622 | kmp_uint32 tid = __kmp_tid_from_gtid(gtid); |
1623 | |
1624 | kmp_info_t *th = __kmp_threads[gtid]; |
1625 | kmp_team_t *team = th->th.th_team; |
1626 | kmp_uint32 nth = team->t.t_nproc; // Number of threads |
1627 | |
1628 | KMP_DEBUG_ASSERT(tid < nth); |
1629 | |
1630 | // Handle special cases |
1631 | nested_loop_type_t loop_type = |
1632 | kmp_identify_nested_loop_structure(original_bounds_nest, n); |
1633 | if (loop_type == nested_loop_type_lower_triangular_matrix) { |
1634 | kmp_handle_lower_triangle_matrix(nth, tid, n, original_bounds_nest, |
1635 | chunk_bounds_nest); |
1636 | return TRUE; |
1637 | } else if (loop_type == nested_loop_type_upper_triangular_matrix) { |
1638 | kmp_handle_upper_triangle_matrix(nth, tid, n, original_bounds_nest, |
1639 | chunk_bounds_nest); |
1640 | return TRUE; |
1641 | } |
1642 | |
1643 | CollapseAllocator<kmp_uint64> original_ivs_start(n); |
1644 | |
1645 | if (!kmp_calc_original_ivs_for_start(original_bounds_nest, n, |
1646 | /*out*/ original_ivs: original_ivs_start)) { |
1647 | // Loop won't execute: |
1648 | return FALSE; |
1649 | } |
1650 | |
1651 | // Not doing this optimization for one thread: |
1652 | // (1) more to test |
1653 | // (2) without it current contract that chunk_bounds_nest has only lb0 and |
1654 | // ub0, lb1 and ub1 are set to 0 and can be ignored. |
1655 | // if (nth == 1) { |
1656 | // // One thread: |
1657 | // // Copy all info from original_bounds_nest, it'll be good enough. |
1658 | |
1659 | // for (kmp_index_t i = 0; i < n; ++i) { |
1660 | // chunk_bounds_nest[i] = original_bounds_nest[i]; |
1661 | // } |
1662 | |
1663 | // if (plastiter != NULL) { |
1664 | // *plastiter = TRUE; |
1665 | // } |
1666 | // return TRUE; |
1667 | //} |
1668 | |
1669 | kmp_loop_nest_iv_t new_iv = kmp_calc_new_iv_from_original_ivs( |
1670 | bounds_nest: updated_bounds_nest, original_ivs: original_ivs_start, n); |
1671 | |
1672 | bool last_iter = false; |
1673 | |
1674 | for (; nth > 0;) { |
1675 | // We could calculate chunk size once, but this is to compensate that the |
1676 | // original space is not parallelepiped and some threads can be left |
1677 | // without work: |
1678 | KMP_DEBUG_ASSERT(total >= new_iv); |
1679 | |
1680 | kmp_loop_nest_iv_t total_left = total - new_iv; |
1681 | kmp_loop_nest_iv_t chunk_size = total_left / nth; |
1682 | kmp_loop_nest_iv_t remainder = total_left % nth; |
1683 | |
1684 | kmp_loop_nest_iv_t curr_chunk_size = chunk_size; |
1685 | |
1686 | if (remainder > 0) { |
1687 | ++curr_chunk_size; |
1688 | --remainder; |
1689 | } |
1690 | |
1691 | #if defined(KMP_DEBUG) |
1692 | kmp_loop_nest_iv_t new_iv_for_start = new_iv; |
1693 | #endif |
1694 | |
1695 | if (curr_chunk_size > 1) { |
1696 | new_iv += curr_chunk_size - 1; |
1697 | } |
1698 | |
1699 | CollapseAllocator<kmp_uint64> original_ivs_end(n); |
1700 | if ((nth == 1) || (new_iv >= total - 1)) { |
1701 | // Do this one till the end - just in case we miscalculated |
1702 | // and either too much is left to process or new_iv is a bit too big: |
1703 | kmp_calc_original_ivs_for_end(original_bounds_nest, n, |
1704 | /*out*/ original_ivs: original_ivs_end); |
1705 | |
1706 | last_iter = true; |
1707 | } else { |
1708 | // Note: here we make sure it's past (or equal to) the previous point. |
1709 | if (!kmp_calc_original_ivs_for_chunk_end(original_bounds_nest, n, |
1710 | updated_bounds_nest, |
1711 | original_ivs_start, new_iv, |
1712 | /*out*/ original_ivs: original_ivs_end)) { |
1713 | // We could not find the ending point, use the original upper bounds: |
1714 | kmp_calc_original_ivs_for_end(original_bounds_nest, n, |
1715 | /*out*/ original_ivs: original_ivs_end); |
1716 | |
1717 | last_iter = true; |
1718 | } |
1719 | } |
1720 | |
1721 | #if defined(KMP_DEBUG) |
1722 | auto new_iv_for_end = kmp_calc_new_iv_from_original_ivs( |
1723 | bounds_nest: updated_bounds_nest, original_ivs: original_ivs_end, n); |
1724 | KMP_DEBUG_ASSERT(new_iv_for_end >= new_iv_for_start); |
1725 | #endif |
1726 | |
1727 | if (last_iter && (tid != 0)) { |
1728 | // We are done, this was last chunk, but no chunk for current thread was |
1729 | // found: |
1730 | return FALSE; |
1731 | } |
1732 | |
1733 | if (tid == 0) { |
1734 | // We found the chunk for this thread, now we need to check if it's the |
1735 | // last chunk or not: |
1736 | |
1737 | CollapseAllocator<kmp_uint64> original_ivs_next_start(n); |
1738 | if (last_iter || |
1739 | !kmp_calc_next_original_ivs(original_bounds_nest, n, original_ivs: original_ivs_end, |
1740 | /*out*/ next_original_ivs: original_ivs_next_start)) { |
1741 | // no more loop iterations left to process, |
1742 | // this means that currently found chunk is the last chunk: |
1743 | if (plastiter != NULL) { |
1744 | *plastiter = TRUE; |
1745 | } |
1746 | } |
1747 | |
1748 | // Fill in chunk bounds: |
1749 | for (kmp_index_t i = 0; i < n; ++i) { |
1750 | chunk_bounds_nest[i] = |
1751 | original_bounds_nest[i]; // To fill in types, etc. - optional |
1752 | chunk_bounds_nest[i].lb0_u64 = original_ivs_start[i]; |
1753 | chunk_bounds_nest[i].lb1_u64 = 0; |
1754 | |
1755 | chunk_bounds_nest[i].ub0_u64 = original_ivs_end[i]; |
1756 | chunk_bounds_nest[i].ub1_u64 = 0; |
1757 | } |
1758 | |
1759 | return TRUE; |
1760 | } |
1761 | |
1762 | --tid; |
1763 | --nth; |
1764 | |
1765 | bool next_chunk = kmp_calc_next_original_ivs( |
1766 | original_bounds_nest, n, original_ivs: original_ivs_end, /*out*/ next_original_ivs: original_ivs_start); |
1767 | if (!next_chunk) { |
1768 | // no more loop iterations to process, |
1769 | // the prevoius chunk was the last chunk |
1770 | break; |
1771 | } |
1772 | |
1773 | // original_ivs_start is next to previous chunk original_ivs_end, |
1774 | // we need to start new chunk here, so chunks will be one after another |
1775 | // without any gap or overlap: |
1776 | new_iv = kmp_calc_new_iv_from_original_ivs(bounds_nest: updated_bounds_nest, |
1777 | original_ivs: original_ivs_start, n); |
1778 | } |
1779 | |
1780 | return FALSE; |
1781 | } |
1782 | |