1 | /* |
2 | * kmp_alloc.cpp -- private/shared dynamic memory allocation and management |
3 | */ |
4 | |
5 | //===----------------------------------------------------------------------===// |
6 | // |
7 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
8 | // See https://llvm.org/LICENSE.txt for license information. |
9 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "kmp.h" |
14 | #include "kmp_io.h" |
15 | #include "kmp_wrapper_malloc.h" |
16 | |
17 | #if KMP_USE_HWLOC |
18 | #if HWLOC_API_VERSION > 0x00020300 |
19 | #define KMP_HWLOC_LOCATION_TYPE_CPUSET HWLOC_LOCATION_TYPE_CPUSET |
20 | #elif HWLOC_API_VERSION == 0x00020300 |
21 | #define KMP_HWLOC_LOCATION_TYPE_CPUSET \ |
22 | hwloc_location::HWLOC_LOCATION_TYPE_CPUSET |
23 | #else |
24 | enum hwloc_memattr_id_e { |
25 | HWLOC_MEMATTR_ID_BANDWIDTH, |
26 | HWLOC_MEMATTR_ID_CAPACITY |
27 | }; |
28 | #endif |
29 | #endif // KMP_USE_HWLOC |
30 | |
31 | // Disable bget when it is not used |
32 | #if KMP_USE_BGET |
33 | |
34 | /* Thread private buffer management code */ |
35 | |
36 | typedef int (*bget_compact_t)(size_t, int); |
37 | typedef void *(*bget_acquire_t)(size_t); |
38 | typedef void (*bget_release_t)(void *); |
39 | |
40 | /* NOTE: bufsize must be a signed datatype */ |
41 | |
42 | #if KMP_OS_WINDOWS |
43 | #if KMP_ARCH_X86 || KMP_ARCH_ARM |
44 | typedef kmp_int32 bufsize; |
45 | #else |
46 | typedef kmp_int64 bufsize; |
47 | #endif |
48 | #else |
49 | typedef ssize_t bufsize; |
50 | #endif // KMP_OS_WINDOWS |
51 | |
52 | /* The three modes of operation are, fifo search, lifo search, and best-fit */ |
53 | |
54 | typedef enum bget_mode { |
55 | bget_mode_fifo = 0, |
56 | bget_mode_lifo = 1, |
57 | bget_mode_best = 2 |
58 | } bget_mode_t; |
59 | |
60 | static void bpool(kmp_info_t *th, void *buffer, bufsize len); |
61 | static void *bget(kmp_info_t *th, bufsize size); |
62 | static void *bgetz(kmp_info_t *th, bufsize size); |
63 | static void *bgetr(kmp_info_t *th, void *buffer, bufsize newsize); |
64 | static void brel(kmp_info_t *th, void *buf); |
65 | static void bectl(kmp_info_t *th, bget_compact_t compact, |
66 | bget_acquire_t acquire, bget_release_t release, |
67 | bufsize pool_incr); |
68 | |
69 | /* BGET CONFIGURATION */ |
70 | /* Buffer allocation size quantum: all buffers allocated are a |
71 | multiple of this size. This MUST be a power of two. */ |
72 | |
73 | /* On IA-32 architecture with Linux* OS, malloc() does not |
74 | ensure 16 byte alignment */ |
75 | |
76 | #if KMP_ARCH_X86 || !KMP_HAVE_QUAD |
77 | |
78 | #define SizeQuant 8 |
79 | #define AlignType double |
80 | |
81 | #else |
82 | |
83 | #define SizeQuant 16 |
84 | #define AlignType _Quad |
85 | |
86 | #endif |
87 | |
88 | // Define this symbol to enable the bstats() function which calculates the |
89 | // total free space in the buffer pool, the largest available buffer, and the |
90 | // total space currently allocated. |
91 | #define BufStats 1 |
92 | |
93 | #ifdef KMP_DEBUG |
94 | |
95 | // Define this symbol to enable the bpoold() function which dumps the buffers |
96 | // in a buffer pool. |
97 | #define BufDump 1 |
98 | |
99 | // Define this symbol to enable the bpoolv() function for validating a buffer |
100 | // pool. |
101 | #define BufValid 1 |
102 | |
103 | // Define this symbol to enable the bufdump() function which allows dumping the |
104 | // contents of an allocated or free buffer. |
105 | #define DumpData 1 |
106 | |
107 | #ifdef NOT_USED_NOW |
108 | |
109 | // Wipe free buffers to a guaranteed pattern of garbage to trip up miscreants |
110 | // who attempt to use pointers into released buffers. |
111 | #define FreeWipe 1 |
112 | |
113 | // Use a best fit algorithm when searching for space for an allocation request. |
114 | // This uses memory more efficiently, but allocation will be much slower. |
115 | #define BestFit 1 |
116 | |
117 | #endif /* NOT_USED_NOW */ |
118 | #endif /* KMP_DEBUG */ |
119 | |
120 | static bufsize bget_bin_size[] = { |
121 | 0, |
122 | // 1 << 6, /* .5 Cache line */ |
123 | 1 << 7, /* 1 Cache line, new */ |
124 | 1 << 8, /* 2 Cache lines */ |
125 | 1 << 9, /* 4 Cache lines, new */ |
126 | 1 << 10, /* 8 Cache lines */ |
127 | 1 << 11, /* 16 Cache lines, new */ |
128 | 1 << 12, 1 << 13, /* new */ |
129 | 1 << 14, 1 << 15, /* new */ |
130 | 1 << 16, 1 << 17, 1 << 18, 1 << 19, 1 << 20, /* 1MB */ |
131 | 1 << 21, /* 2MB */ |
132 | 1 << 22, /* 4MB */ |
133 | 1 << 23, /* 8MB */ |
134 | 1 << 24, /* 16MB */ |
135 | 1 << 25, /* 32MB */ |
136 | }; |
137 | |
138 | #define MAX_BGET_BINS (int)(sizeof(bget_bin_size) / sizeof(bufsize)) |
139 | |
140 | struct bfhead; |
141 | |
142 | // Declare the interface, including the requested buffer size type, bufsize. |
143 | |
144 | /* Queue links */ |
145 | typedef struct qlinks { |
146 | struct bfhead *flink; /* Forward link */ |
147 | struct bfhead *blink; /* Backward link */ |
148 | } qlinks_t; |
149 | |
150 | /* Header in allocated and free buffers */ |
151 | typedef struct bhead2 { |
152 | kmp_info_t *bthr; /* The thread which owns the buffer pool */ |
153 | bufsize prevfree; /* Relative link back to previous free buffer in memory or |
154 | 0 if previous buffer is allocated. */ |
155 | bufsize bsize; /* Buffer size: positive if free, negative if allocated. */ |
156 | } bhead2_t; |
157 | |
158 | /* Make sure the bhead structure is a multiple of SizeQuant in size. */ |
159 | typedef union bhead { |
160 | KMP_ALIGN(SizeQuant) |
161 | AlignType b_align; |
162 | char b_pad[sizeof(bhead2_t) + (SizeQuant - (sizeof(bhead2_t) % SizeQuant))]; |
163 | bhead2_t bb; |
164 | } bhead_t; |
165 | #define BH(p) ((bhead_t *)(p)) |
166 | |
167 | /* Header in directly allocated buffers (by acqfcn) */ |
168 | typedef struct bdhead { |
169 | bufsize tsize; /* Total size, including overhead */ |
170 | bhead_t bh; /* Common header */ |
171 | } bdhead_t; |
172 | #define BDH(p) ((bdhead_t *)(p)) |
173 | |
174 | /* Header in free buffers */ |
175 | typedef struct bfhead { |
176 | bhead_t bh; /* Common allocated/free header */ |
177 | qlinks_t ql; /* Links on free list */ |
178 | } bfhead_t; |
179 | #define BFH(p) ((bfhead_t *)(p)) |
180 | |
181 | typedef struct thr_data { |
182 | bfhead_t freelist[MAX_BGET_BINS]; |
183 | #if BufStats |
184 | size_t totalloc; /* Total space currently allocated */ |
185 | long numget, numrel; /* Number of bget() and brel() calls */ |
186 | long numpblk; /* Number of pool blocks */ |
187 | long numpget, numprel; /* Number of block gets and rels */ |
188 | long numdget, numdrel; /* Number of direct gets and rels */ |
189 | #endif /* BufStats */ |
190 | |
191 | /* Automatic expansion block management functions */ |
192 | bget_compact_t compfcn; |
193 | bget_acquire_t acqfcn; |
194 | bget_release_t relfcn; |
195 | |
196 | bget_mode_t mode; /* what allocation mode to use? */ |
197 | |
198 | bufsize exp_incr; /* Expansion block size */ |
199 | bufsize pool_len; /* 0: no bpool calls have been made |
200 | -1: not all pool blocks are the same size |
201 | >0: (common) block size for all bpool calls made so far |
202 | */ |
203 | bfhead_t *last_pool; /* Last pool owned by this thread (delay deallocation) */ |
204 | } thr_data_t; |
205 | |
206 | /* Minimum allocation quantum: */ |
207 | #define QLSize (sizeof(qlinks_t)) |
208 | #define SizeQ ((SizeQuant > QLSize) ? SizeQuant : QLSize) |
209 | #define MaxSize \ |
210 | (bufsize)( \ |
211 | ~(((bufsize)(1) << (sizeof(bufsize) * CHAR_BIT - 1)) | (SizeQuant - 1))) |
212 | // Maximum for the requested size. |
213 | |
214 | /* End sentinel: value placed in bsize field of dummy block delimiting |
215 | end of pool block. The most negative number which will fit in a |
216 | bufsize, defined in a way that the compiler will accept. */ |
217 | |
218 | #define ESent \ |
219 | ((bufsize)(-(((((bufsize)1) << ((int)sizeof(bufsize) * 8 - 2)) - 1) * 2) - 2)) |
220 | |
221 | /* Thread Data management routines */ |
222 | static int bget_get_bin(bufsize size) { |
223 | // binary chop bins |
224 | int lo = 0, hi = MAX_BGET_BINS - 1; |
225 | |
226 | KMP_DEBUG_ASSERT(size > 0); |
227 | |
228 | while ((hi - lo) > 1) { |
229 | int mid = (lo + hi) >> 1; |
230 | if (size < bget_bin_size[mid]) |
231 | hi = mid - 1; |
232 | else |
233 | lo = mid; |
234 | } |
235 | |
236 | KMP_DEBUG_ASSERT((lo >= 0) && (lo < MAX_BGET_BINS)); |
237 | |
238 | return lo; |
239 | } |
240 | |
241 | static void set_thr_data(kmp_info_t *th) { |
242 | int i; |
243 | thr_data_t *data; |
244 | |
245 | data = (thr_data_t *)((!th->th.th_local.bget_data) |
246 | ? __kmp_allocate(sizeof(*data)) |
247 | : th->th.th_local.bget_data); |
248 | |
249 | memset(s: data, c: '\0', n: sizeof(*data)); |
250 | |
251 | for (i = 0; i < MAX_BGET_BINS; ++i) { |
252 | data->freelist[i].ql.flink = &data->freelist[i]; |
253 | data->freelist[i].ql.blink = &data->freelist[i]; |
254 | } |
255 | |
256 | th->th.th_local.bget_data = data; |
257 | th->th.th_local.bget_list = 0; |
258 | #if !USE_CMP_XCHG_FOR_BGET |
259 | #ifdef USE_QUEUING_LOCK_FOR_BGET |
260 | __kmp_init_lock(&th->th.th_local.bget_lock); |
261 | #else |
262 | __kmp_init_bootstrap_lock(&th->th.th_local.bget_lock); |
263 | #endif /* USE_LOCK_FOR_BGET */ |
264 | #endif /* ! USE_CMP_XCHG_FOR_BGET */ |
265 | } |
266 | |
267 | static thr_data_t *get_thr_data(kmp_info_t *th) { |
268 | thr_data_t *data; |
269 | |
270 | data = (thr_data_t *)th->th.th_local.bget_data; |
271 | |
272 | KMP_DEBUG_ASSERT(data != 0); |
273 | |
274 | return data; |
275 | } |
276 | |
277 | /* Walk the free list and release the enqueued buffers */ |
278 | static void __kmp_bget_dequeue(kmp_info_t *th) { |
279 | void *p = TCR_SYNC_PTR(th->th.th_local.bget_list); |
280 | |
281 | if (p != 0) { |
282 | #if USE_CMP_XCHG_FOR_BGET |
283 | { |
284 | volatile void *old_value = TCR_SYNC_PTR(th->th.th_local.bget_list); |
285 | while (!KMP_COMPARE_AND_STORE_PTR(&th->th.th_local.bget_list, |
286 | CCAST(void *, old_value), nullptr)) { |
287 | KMP_CPU_PAUSE(); |
288 | old_value = TCR_SYNC_PTR(th->th.th_local.bget_list); |
289 | } |
290 | p = CCAST(void *, old_value); |
291 | } |
292 | #else /* ! USE_CMP_XCHG_FOR_BGET */ |
293 | #ifdef USE_QUEUING_LOCK_FOR_BGET |
294 | __kmp_acquire_lock(&th->th.th_local.bget_lock, __kmp_gtid_from_thread(th)); |
295 | #else |
296 | __kmp_acquire_bootstrap_lock(&th->th.th_local.bget_lock); |
297 | #endif /* USE_QUEUING_LOCK_FOR_BGET */ |
298 | |
299 | p = (void *)th->th.th_local.bget_list; |
300 | th->th.th_local.bget_list = 0; |
301 | |
302 | #ifdef USE_QUEUING_LOCK_FOR_BGET |
303 | __kmp_release_lock(&th->th.th_local.bget_lock, __kmp_gtid_from_thread(th)); |
304 | #else |
305 | __kmp_release_bootstrap_lock(&th->th.th_local.bget_lock); |
306 | #endif |
307 | #endif /* USE_CMP_XCHG_FOR_BGET */ |
308 | |
309 | /* Check again to make sure the list is not empty */ |
310 | while (p != 0) { |
311 | void *buf = p; |
312 | bfhead_t *b = BFH(((char *)p) - sizeof(bhead_t)); |
313 | |
314 | KMP_DEBUG_ASSERT(b->bh.bb.bsize != 0); |
315 | KMP_DEBUG_ASSERT(((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) & ~1) == |
316 | (kmp_uintptr_t)th); // clear possible mark |
317 | KMP_DEBUG_ASSERT(b->ql.blink == 0); |
318 | |
319 | p = (void *)b->ql.flink; |
320 | |
321 | brel(th, buf); |
322 | } |
323 | } |
324 | } |
325 | |
326 | /* Chain together the free buffers by using the thread owner field */ |
327 | static void __kmp_bget_enqueue(kmp_info_t *th, void *buf |
328 | #ifdef USE_QUEUING_LOCK_FOR_BGET |
329 | , |
330 | kmp_int32 rel_gtid |
331 | #endif |
332 | ) { |
333 | bfhead_t *b = BFH(((char *)buf) - sizeof(bhead_t)); |
334 | |
335 | KMP_DEBUG_ASSERT(b->bh.bb.bsize != 0); |
336 | KMP_DEBUG_ASSERT(((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) & ~1) == |
337 | (kmp_uintptr_t)th); // clear possible mark |
338 | |
339 | b->ql.blink = 0; |
340 | |
341 | KC_TRACE(10, ("__kmp_bget_enqueue: moving buffer to T#%d list\n" , |
342 | __kmp_gtid_from_thread(th))); |
343 | |
344 | #if USE_CMP_XCHG_FOR_BGET |
345 | { |
346 | volatile void *old_value = TCR_PTR(th->th.th_local.bget_list); |
347 | /* the next pointer must be set before setting bget_list to buf to avoid |
348 | exposing a broken list to other threads, even for an instant. */ |
349 | b->ql.flink = BFH(CCAST(void *, old_value)); |
350 | |
351 | while (!KMP_COMPARE_AND_STORE_PTR(&th->th.th_local.bget_list, |
352 | CCAST(void *, old_value), buf)) { |
353 | KMP_CPU_PAUSE(); |
354 | old_value = TCR_PTR(th->th.th_local.bget_list); |
355 | /* the next pointer must be set before setting bget_list to buf to avoid |
356 | exposing a broken list to other threads, even for an instant. */ |
357 | b->ql.flink = BFH(CCAST(void *, old_value)); |
358 | } |
359 | } |
360 | #else /* ! USE_CMP_XCHG_FOR_BGET */ |
361 | #ifdef USE_QUEUING_LOCK_FOR_BGET |
362 | __kmp_acquire_lock(&th->th.th_local.bget_lock, rel_gtid); |
363 | #else |
364 | __kmp_acquire_bootstrap_lock(&th->th.th_local.bget_lock); |
365 | #endif |
366 | |
367 | b->ql.flink = BFH(th->th.th_local.bget_list); |
368 | th->th.th_local.bget_list = (void *)buf; |
369 | |
370 | #ifdef USE_QUEUING_LOCK_FOR_BGET |
371 | __kmp_release_lock(&th->th.th_local.bget_lock, rel_gtid); |
372 | #else |
373 | __kmp_release_bootstrap_lock(&th->th.th_local.bget_lock); |
374 | #endif |
375 | #endif /* USE_CMP_XCHG_FOR_BGET */ |
376 | } |
377 | |
378 | /* insert buffer back onto a new freelist */ |
379 | static void __kmp_bget_insert_into_freelist(thr_data_t *thr, bfhead_t *b) { |
380 | int bin; |
381 | |
382 | KMP_DEBUG_ASSERT(((size_t)b) % SizeQuant == 0); |
383 | KMP_DEBUG_ASSERT(b->bh.bb.bsize % SizeQuant == 0); |
384 | |
385 | bin = bget_get_bin(size: b->bh.bb.bsize); |
386 | |
387 | KMP_DEBUG_ASSERT(thr->freelist[bin].ql.blink->ql.flink == |
388 | &thr->freelist[bin]); |
389 | KMP_DEBUG_ASSERT(thr->freelist[bin].ql.flink->ql.blink == |
390 | &thr->freelist[bin]); |
391 | |
392 | b->ql.flink = &thr->freelist[bin]; |
393 | b->ql.blink = thr->freelist[bin].ql.blink; |
394 | |
395 | thr->freelist[bin].ql.blink = b; |
396 | b->ql.blink->ql.flink = b; |
397 | } |
398 | |
399 | /* unlink the buffer from the old freelist */ |
400 | static void __kmp_bget_remove_from_freelist(bfhead_t *b) { |
401 | KMP_DEBUG_ASSERT(b->ql.blink->ql.flink == b); |
402 | KMP_DEBUG_ASSERT(b->ql.flink->ql.blink == b); |
403 | |
404 | b->ql.blink->ql.flink = b->ql.flink; |
405 | b->ql.flink->ql.blink = b->ql.blink; |
406 | } |
407 | |
408 | /* GET STATS -- check info on free list */ |
409 | static void bcheck(kmp_info_t *th, bufsize *max_free, bufsize *total_free) { |
410 | thr_data_t *thr = get_thr_data(th); |
411 | int bin; |
412 | |
413 | *total_free = *max_free = 0; |
414 | |
415 | for (bin = 0; bin < MAX_BGET_BINS; ++bin) { |
416 | bfhead_t *b, *best; |
417 | |
418 | best = &thr->freelist[bin]; |
419 | b = best->ql.flink; |
420 | |
421 | while (b != &thr->freelist[bin]) { |
422 | *total_free += (b->bh.bb.bsize - sizeof(bhead_t)); |
423 | if ((best == &thr->freelist[bin]) || (b->bh.bb.bsize < best->bh.bb.bsize)) |
424 | best = b; |
425 | |
426 | /* Link to next buffer */ |
427 | b = b->ql.flink; |
428 | } |
429 | |
430 | if (*max_free < best->bh.bb.bsize) |
431 | *max_free = best->bh.bb.bsize; |
432 | } |
433 | |
434 | if (*max_free > (bufsize)sizeof(bhead_t)) |
435 | *max_free -= sizeof(bhead_t); |
436 | } |
437 | |
438 | /* BGET -- Allocate a buffer. */ |
439 | static void *bget(kmp_info_t *th, bufsize requested_size) { |
440 | thr_data_t *thr = get_thr_data(th); |
441 | bufsize size = requested_size; |
442 | bfhead_t *b; |
443 | void *buf; |
444 | int compactseq = 0; |
445 | int use_blink = 0; |
446 | /* For BestFit */ |
447 | bfhead_t *best; |
448 | |
449 | if (size < 0 || size + sizeof(bhead_t) > MaxSize) { |
450 | return NULL; |
451 | } |
452 | |
453 | __kmp_bget_dequeue(th); /* Release any queued buffers */ |
454 | |
455 | if (size < (bufsize)SizeQ) { // Need at least room for the queue links. |
456 | size = SizeQ; |
457 | } |
458 | #if defined(SizeQuant) && (SizeQuant > 1) |
459 | size = (size + (SizeQuant - 1)) & (~(SizeQuant - 1)); |
460 | #endif |
461 | |
462 | size += sizeof(bhead_t); // Add overhead in allocated buffer to size required. |
463 | KMP_DEBUG_ASSERT(size >= 0); |
464 | KMP_DEBUG_ASSERT(size % SizeQuant == 0); |
465 | |
466 | use_blink = (thr->mode == bget_mode_lifo); |
467 | |
468 | /* If a compact function was provided in the call to bectl(), wrap |
469 | a loop around the allocation process to allow compaction to |
470 | intervene in case we don't find a suitable buffer in the chain. */ |
471 | |
472 | for (;;) { |
473 | int bin; |
474 | |
475 | for (bin = bget_get_bin(size); bin < MAX_BGET_BINS; ++bin) { |
476 | /* Link to next buffer */ |
477 | b = (use_blink ? thr->freelist[bin].ql.blink |
478 | : thr->freelist[bin].ql.flink); |
479 | |
480 | if (thr->mode == bget_mode_best) { |
481 | best = &thr->freelist[bin]; |
482 | |
483 | /* Scan the free list searching for the first buffer big enough |
484 | to hold the requested size buffer. */ |
485 | while (b != &thr->freelist[bin]) { |
486 | if (b->bh.bb.bsize >= (bufsize)size) { |
487 | if ((best == &thr->freelist[bin]) || |
488 | (b->bh.bb.bsize < best->bh.bb.bsize)) { |
489 | best = b; |
490 | } |
491 | } |
492 | |
493 | /* Link to next buffer */ |
494 | b = (use_blink ? b->ql.blink : b->ql.flink); |
495 | } |
496 | b = best; |
497 | } |
498 | |
499 | while (b != &thr->freelist[bin]) { |
500 | if ((bufsize)b->bh.bb.bsize >= (bufsize)size) { |
501 | |
502 | // Buffer is big enough to satisfy the request. Allocate it to the |
503 | // caller. We must decide whether the buffer is large enough to split |
504 | // into the part given to the caller and a free buffer that remains |
505 | // on the free list, or whether the entire buffer should be removed |
506 | // from the free list and given to the caller in its entirety. We |
507 | // only split the buffer if enough room remains for a header plus the |
508 | // minimum quantum of allocation. |
509 | if ((b->bh.bb.bsize - (bufsize)size) > |
510 | (bufsize)(SizeQ + (sizeof(bhead_t)))) { |
511 | bhead_t *ba, *bn; |
512 | |
513 | ba = BH(((char *)b) + (b->bh.bb.bsize - (bufsize)size)); |
514 | bn = BH(((char *)ba) + size); |
515 | |
516 | KMP_DEBUG_ASSERT(bn->bb.prevfree == b->bh.bb.bsize); |
517 | |
518 | /* Subtract size from length of free block. */ |
519 | b->bh.bb.bsize -= (bufsize)size; |
520 | |
521 | /* Link allocated buffer to the previous free buffer. */ |
522 | ba->bb.prevfree = b->bh.bb.bsize; |
523 | |
524 | /* Plug negative size into user buffer. */ |
525 | ba->bb.bsize = -size; |
526 | |
527 | /* Mark this buffer as owned by this thread. */ |
528 | TCW_PTR(ba->bb.bthr, |
529 | th); // not an allocated address (do not mark it) |
530 | /* Mark buffer after this one not preceded by free block. */ |
531 | bn->bb.prevfree = 0; |
532 | |
533 | // unlink buffer from old freelist, and reinsert into new freelist |
534 | __kmp_bget_remove_from_freelist(b); |
535 | __kmp_bget_insert_into_freelist(thr, b); |
536 | #if BufStats |
537 | thr->totalloc += (size_t)size; |
538 | thr->numget++; /* Increment number of bget() calls */ |
539 | #endif |
540 | buf = (void *)((((char *)ba) + sizeof(bhead_t))); |
541 | KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0); |
542 | return buf; |
543 | } else { |
544 | bhead_t *ba; |
545 | |
546 | ba = BH(((char *)b) + b->bh.bb.bsize); |
547 | |
548 | KMP_DEBUG_ASSERT(ba->bb.prevfree == b->bh.bb.bsize); |
549 | |
550 | /* The buffer isn't big enough to split. Give the whole |
551 | shebang to the caller and remove it from the free list. */ |
552 | |
553 | __kmp_bget_remove_from_freelist(b); |
554 | #if BufStats |
555 | thr->totalloc += (size_t)b->bh.bb.bsize; |
556 | thr->numget++; /* Increment number of bget() calls */ |
557 | #endif |
558 | /* Negate size to mark buffer allocated. */ |
559 | b->bh.bb.bsize = -(b->bh.bb.bsize); |
560 | |
561 | /* Mark this buffer as owned by this thread. */ |
562 | TCW_PTR(ba->bb.bthr, th); // not an allocated address (do not mark) |
563 | /* Zero the back pointer in the next buffer in memory |
564 | to indicate that this buffer is allocated. */ |
565 | ba->bb.prevfree = 0; |
566 | |
567 | /* Give user buffer starting at queue links. */ |
568 | buf = (void *)&(b->ql); |
569 | KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0); |
570 | return buf; |
571 | } |
572 | } |
573 | |
574 | /* Link to next buffer */ |
575 | b = (use_blink ? b->ql.blink : b->ql.flink); |
576 | } |
577 | } |
578 | |
579 | /* We failed to find a buffer. If there's a compact function defined, |
580 | notify it of the size requested. If it returns TRUE, try the allocation |
581 | again. */ |
582 | |
583 | if ((thr->compfcn == 0) || (!(*thr->compfcn)(size, ++compactseq))) { |
584 | break; |
585 | } |
586 | } |
587 | |
588 | /* No buffer available with requested size free. */ |
589 | |
590 | /* Don't give up yet -- look in the reserve supply. */ |
591 | if (thr->acqfcn != 0) { |
592 | if (size > (bufsize)(thr->exp_incr - sizeof(bhead_t))) { |
593 | /* Request is too large to fit in a single expansion block. |
594 | Try to satisfy it by a direct buffer acquisition. */ |
595 | bdhead_t *bdh; |
596 | |
597 | size += sizeof(bdhead_t) - sizeof(bhead_t); |
598 | |
599 | KE_TRACE(10, ("%%%%%% MALLOC( %d )\n" , (int)size)); |
600 | |
601 | /* richryan */ |
602 | bdh = BDH((*thr->acqfcn)((bufsize)size)); |
603 | if (bdh != NULL) { |
604 | |
605 | // Mark the buffer special by setting size field of its header to zero. |
606 | bdh->bh.bb.bsize = 0; |
607 | |
608 | /* Mark this buffer as owned by this thread. */ |
609 | TCW_PTR(bdh->bh.bb.bthr, th); // don't mark buffer as allocated, |
610 | // because direct buffer never goes to free list |
611 | bdh->bh.bb.prevfree = 0; |
612 | bdh->tsize = size; |
613 | #if BufStats |
614 | thr->totalloc += (size_t)size; |
615 | thr->numget++; /* Increment number of bget() calls */ |
616 | thr->numdget++; /* Direct bget() call count */ |
617 | #endif |
618 | buf = (void *)(bdh + 1); |
619 | KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0); |
620 | return buf; |
621 | } |
622 | |
623 | } else { |
624 | |
625 | /* Try to obtain a new expansion block */ |
626 | void *newpool; |
627 | |
628 | KE_TRACE(10, ("%%%%%% MALLOCB( %d )\n" , (int)thr->exp_incr)); |
629 | |
630 | /* richryan */ |
631 | newpool = (*thr->acqfcn)((bufsize)thr->exp_incr); |
632 | KMP_DEBUG_ASSERT(((size_t)newpool) % SizeQuant == 0); |
633 | if (newpool != NULL) { |
634 | bpool(th, buffer: newpool, len: thr->exp_incr); |
635 | buf = bget( |
636 | th, requested_size); /* This can't, I say, can't get into a loop. */ |
637 | return buf; |
638 | } |
639 | } |
640 | } |
641 | |
642 | /* Still no buffer available */ |
643 | |
644 | return NULL; |
645 | } |
646 | |
647 | /* BGETZ -- Allocate a buffer and clear its contents to zero. We clear |
648 | the entire contents of the buffer to zero, not just the |
649 | region requested by the caller. */ |
650 | |
651 | static void *bgetz(kmp_info_t *th, bufsize size) { |
652 | char *buf = (char *)bget(th, requested_size: size); |
653 | |
654 | if (buf != NULL) { |
655 | bhead_t *b; |
656 | bufsize rsize; |
657 | |
658 | b = BH(buf - sizeof(bhead_t)); |
659 | rsize = -(b->bb.bsize); |
660 | if (rsize == 0) { |
661 | bdhead_t *bd; |
662 | |
663 | bd = BDH(buf - sizeof(bdhead_t)); |
664 | rsize = bd->tsize - (bufsize)sizeof(bdhead_t); |
665 | } else { |
666 | rsize -= sizeof(bhead_t); |
667 | } |
668 | |
669 | KMP_DEBUG_ASSERT(rsize >= size); |
670 | |
671 | (void)memset(s: buf, c: 0, n: (bufsize)rsize); |
672 | } |
673 | return ((void *)buf); |
674 | } |
675 | |
676 | /* BGETR -- Reallocate a buffer. This is a minimal implementation, |
677 | simply in terms of brel() and bget(). It could be |
678 | enhanced to allow the buffer to grow into adjacent free |
679 | blocks and to avoid moving data unnecessarily. */ |
680 | |
681 | static void *bgetr(kmp_info_t *th, void *buf, bufsize size) { |
682 | void *nbuf; |
683 | bufsize osize; /* Old size of buffer */ |
684 | bhead_t *b; |
685 | |
686 | nbuf = bget(th, requested_size: size); |
687 | if (nbuf == NULL) { /* Acquire new buffer */ |
688 | return NULL; |
689 | } |
690 | if (buf == NULL) { |
691 | return nbuf; |
692 | } |
693 | b = BH(((char *)buf) - sizeof(bhead_t)); |
694 | osize = -b->bb.bsize; |
695 | if (osize == 0) { |
696 | /* Buffer acquired directly through acqfcn. */ |
697 | bdhead_t *bd; |
698 | |
699 | bd = BDH(((char *)buf) - sizeof(bdhead_t)); |
700 | osize = bd->tsize - (bufsize)sizeof(bdhead_t); |
701 | } else { |
702 | osize -= sizeof(bhead_t); |
703 | } |
704 | |
705 | KMP_DEBUG_ASSERT(osize > 0); |
706 | |
707 | (void)KMP_MEMCPY(dest: (char *)nbuf, src: (char *)buf, /* Copy the data */ |
708 | n: (size_t)((size < osize) ? size : osize)); |
709 | brel(th, buf); |
710 | |
711 | return nbuf; |
712 | } |
713 | |
714 | /* BREL -- Release a buffer. */ |
715 | static void brel(kmp_info_t *th, void *buf) { |
716 | thr_data_t *thr = get_thr_data(th); |
717 | bfhead_t *b, *bn; |
718 | kmp_info_t *bth; |
719 | |
720 | KMP_DEBUG_ASSERT(buf != NULL); |
721 | KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0); |
722 | |
723 | b = BFH(((char *)buf) - sizeof(bhead_t)); |
724 | |
725 | if (b->bh.bb.bsize == 0) { /* Directly-acquired buffer? */ |
726 | bdhead_t *bdh; |
727 | |
728 | bdh = BDH(((char *)buf) - sizeof(bdhead_t)); |
729 | KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0); |
730 | #if BufStats |
731 | thr->totalloc -= (size_t)bdh->tsize; |
732 | thr->numdrel++; /* Number of direct releases */ |
733 | thr->numrel++; /* Increment number of brel() calls */ |
734 | #endif /* BufStats */ |
735 | #ifdef FreeWipe |
736 | (void)memset((char *)buf, 0x55, (size_t)(bdh->tsize - sizeof(bdhead_t))); |
737 | #endif /* FreeWipe */ |
738 | |
739 | KE_TRACE(10, ("%%%%%% FREE( %p )\n" , (void *)bdh)); |
740 | |
741 | KMP_DEBUG_ASSERT(thr->relfcn != 0); |
742 | (*thr->relfcn)((void *)bdh); /* Release it directly. */ |
743 | return; |
744 | } |
745 | |
746 | bth = (kmp_info_t *)((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) & |
747 | ~1); // clear possible mark before comparison |
748 | if (bth != th) { |
749 | /* Add this buffer to be released by the owning thread later */ |
750 | __kmp_bget_enqueue(th: bth, buf |
751 | #ifdef USE_QUEUING_LOCK_FOR_BGET |
752 | , |
753 | __kmp_gtid_from_thread(th) |
754 | #endif |
755 | ); |
756 | return; |
757 | } |
758 | |
759 | /* Buffer size must be negative, indicating that the buffer is allocated. */ |
760 | if (b->bh.bb.bsize >= 0) { |
761 | bn = NULL; |
762 | } |
763 | KMP_DEBUG_ASSERT(b->bh.bb.bsize < 0); |
764 | |
765 | /* Back pointer in next buffer must be zero, indicating the same thing: */ |
766 | |
767 | KMP_DEBUG_ASSERT(BH((char *)b - b->bh.bb.bsize)->bb.prevfree == 0); |
768 | |
769 | #if BufStats |
770 | thr->numrel++; /* Increment number of brel() calls */ |
771 | thr->totalloc += (size_t)b->bh.bb.bsize; |
772 | #endif |
773 | |
774 | /* If the back link is nonzero, the previous buffer is free. */ |
775 | |
776 | if (b->bh.bb.prevfree != 0) { |
777 | /* The previous buffer is free. Consolidate this buffer with it by adding |
778 | the length of this buffer to the previous free buffer. Note that we |
779 | subtract the size in the buffer being released, since it's negative to |
780 | indicate that the buffer is allocated. */ |
781 | bufsize size = b->bh.bb.bsize; |
782 | |
783 | /* Make the previous buffer the one we're working on. */ |
784 | KMP_DEBUG_ASSERT(BH((char *)b - b->bh.bb.prevfree)->bb.bsize == |
785 | b->bh.bb.prevfree); |
786 | b = BFH(((char *)b) - b->bh.bb.prevfree); |
787 | b->bh.bb.bsize -= size; |
788 | |
789 | /* unlink the buffer from the old freelist */ |
790 | __kmp_bget_remove_from_freelist(b); |
791 | } else { |
792 | /* The previous buffer isn't allocated. Mark this buffer size as positive |
793 | (i.e. free) and fall through to place the buffer on the free list as an |
794 | isolated free block. */ |
795 | b->bh.bb.bsize = -b->bh.bb.bsize; |
796 | } |
797 | |
798 | /* insert buffer back onto a new freelist */ |
799 | __kmp_bget_insert_into_freelist(thr, b); |
800 | |
801 | /* Now we look at the next buffer in memory, located by advancing from |
802 | the start of this buffer by its size, to see if that buffer is |
803 | free. If it is, we combine this buffer with the next one in |
804 | memory, dechaining the second buffer from the free list. */ |
805 | bn = BFH(((char *)b) + b->bh.bb.bsize); |
806 | if (bn->bh.bb.bsize > 0) { |
807 | |
808 | /* The buffer is free. Remove it from the free list and add |
809 | its size to that of our buffer. */ |
810 | KMP_DEBUG_ASSERT(BH((char *)bn + bn->bh.bb.bsize)->bb.prevfree == |
811 | bn->bh.bb.bsize); |
812 | |
813 | __kmp_bget_remove_from_freelist(b: bn); |
814 | |
815 | b->bh.bb.bsize += bn->bh.bb.bsize; |
816 | |
817 | /* unlink the buffer from the old freelist, and reinsert it into the new |
818 | * freelist */ |
819 | __kmp_bget_remove_from_freelist(b); |
820 | __kmp_bget_insert_into_freelist(thr, b); |
821 | |
822 | /* Finally, advance to the buffer that follows the newly |
823 | consolidated free block. We must set its backpointer to the |
824 | head of the consolidated free block. We know the next block |
825 | must be an allocated block because the process of recombination |
826 | guarantees that two free blocks will never be contiguous in |
827 | memory. */ |
828 | bn = BFH(((char *)b) + b->bh.bb.bsize); |
829 | } |
830 | #ifdef FreeWipe |
831 | (void)memset(((char *)b) + sizeof(bfhead_t), 0x55, |
832 | (size_t)(b->bh.bb.bsize - sizeof(bfhead_t))); |
833 | #endif |
834 | KMP_DEBUG_ASSERT(bn->bh.bb.bsize < 0); |
835 | |
836 | /* The next buffer is allocated. Set the backpointer in it to point |
837 | to this buffer; the previous free buffer in memory. */ |
838 | |
839 | bn->bh.bb.prevfree = b->bh.bb.bsize; |
840 | |
841 | /* If a block-release function is defined, and this free buffer |
842 | constitutes the entire block, release it. Note that pool_len |
843 | is defined in such a way that the test will fail unless all |
844 | pool blocks are the same size. */ |
845 | if (thr->relfcn != 0 && |
846 | b->bh.bb.bsize == (bufsize)(thr->pool_len - sizeof(bhead_t))) { |
847 | #if BufStats |
848 | if (thr->numpblk != |
849 | 1) { /* Do not release the last buffer until finalization time */ |
850 | #endif |
851 | |
852 | KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0); |
853 | KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.bsize == ESent); |
854 | KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.prevfree == |
855 | b->bh.bb.bsize); |
856 | |
857 | /* Unlink the buffer from the free list */ |
858 | __kmp_bget_remove_from_freelist(b); |
859 | |
860 | KE_TRACE(10, ("%%%%%% FREE( %p )\n" , (void *)b)); |
861 | |
862 | (*thr->relfcn)(b); |
863 | #if BufStats |
864 | thr->numprel++; /* Nr of expansion block releases */ |
865 | thr->numpblk--; /* Total number of blocks */ |
866 | KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel); |
867 | |
868 | // avoid leaving stale last_pool pointer around if it is being dealloced |
869 | if (thr->last_pool == b) |
870 | thr->last_pool = 0; |
871 | } else { |
872 | thr->last_pool = b; |
873 | } |
874 | #endif /* BufStats */ |
875 | } |
876 | } |
877 | |
878 | /* BECTL -- Establish automatic pool expansion control */ |
879 | static void bectl(kmp_info_t *th, bget_compact_t compact, |
880 | bget_acquire_t acquire, bget_release_t release, |
881 | bufsize pool_incr) { |
882 | thr_data_t *thr = get_thr_data(th); |
883 | |
884 | thr->compfcn = compact; |
885 | thr->acqfcn = acquire; |
886 | thr->relfcn = release; |
887 | thr->exp_incr = pool_incr; |
888 | } |
889 | |
890 | /* BPOOL -- Add a region of memory to the buffer pool. */ |
891 | static void bpool(kmp_info_t *th, void *buf, bufsize len) { |
892 | /* int bin = 0; */ |
893 | thr_data_t *thr = get_thr_data(th); |
894 | bfhead_t *b = BFH(buf); |
895 | bhead_t *bn; |
896 | |
897 | __kmp_bget_dequeue(th); /* Release any queued buffers */ |
898 | |
899 | #ifdef SizeQuant |
900 | len &= ~((bufsize)(SizeQuant - 1)); |
901 | #endif |
902 | if (thr->pool_len == 0) { |
903 | thr->pool_len = len; |
904 | } else if (len != thr->pool_len) { |
905 | thr->pool_len = -1; |
906 | } |
907 | #if BufStats |
908 | thr->numpget++; /* Number of block acquisitions */ |
909 | thr->numpblk++; /* Number of blocks total */ |
910 | KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel); |
911 | #endif /* BufStats */ |
912 | |
913 | /* Since the block is initially occupied by a single free buffer, |
914 | it had better not be (much) larger than the largest buffer |
915 | whose size we can store in bhead.bb.bsize. */ |
916 | KMP_DEBUG_ASSERT(len - sizeof(bhead_t) <= -((bufsize)ESent + 1)); |
917 | |
918 | /* Clear the backpointer at the start of the block to indicate that |
919 | there is no free block prior to this one. That blocks |
920 | recombination when the first block in memory is released. */ |
921 | b->bh.bb.prevfree = 0; |
922 | |
923 | /* Create a dummy allocated buffer at the end of the pool. This dummy |
924 | buffer is seen when a buffer at the end of the pool is released and |
925 | blocks recombination of the last buffer with the dummy buffer at |
926 | the end. The length in the dummy buffer is set to the largest |
927 | negative number to denote the end of the pool for diagnostic |
928 | routines (this specific value is not counted on by the actual |
929 | allocation and release functions). */ |
930 | len -= sizeof(bhead_t); |
931 | b->bh.bb.bsize = (bufsize)len; |
932 | /* Set the owner of this buffer */ |
933 | TCW_PTR(b->bh.bb.bthr, |
934 | (kmp_info_t *)((kmp_uintptr_t)th | |
935 | 1)); // mark the buffer as allocated address |
936 | |
937 | /* Chain the new block to the free list. */ |
938 | __kmp_bget_insert_into_freelist(thr, b); |
939 | |
940 | #ifdef FreeWipe |
941 | (void)memset(((char *)b) + sizeof(bfhead_t), 0x55, |
942 | (size_t)(len - sizeof(bfhead_t))); |
943 | #endif |
944 | bn = BH(((char *)b) + len); |
945 | bn->bb.prevfree = (bufsize)len; |
946 | /* Definition of ESent assumes two's complement! */ |
947 | KMP_DEBUG_ASSERT((~0) == -1 && (bn != 0)); |
948 | |
949 | bn->bb.bsize = ESent; |
950 | } |
951 | |
952 | /* BFREED -- Dump the free lists for this thread. */ |
953 | static void bfreed(kmp_info_t *th) { |
954 | int bin = 0, count = 0; |
955 | int gtid = __kmp_gtid_from_thread(thr: th); |
956 | thr_data_t *thr = get_thr_data(th); |
957 | |
958 | #if BufStats |
959 | __kmp_printf_no_lock(format: "__kmp_printpool: T#%d total=%" KMP_UINT64_SPEC |
960 | " get=%" KMP_INT64_SPEC " rel=%" KMP_INT64_SPEC |
961 | " pblk=%" KMP_INT64_SPEC " pget=%" KMP_INT64_SPEC |
962 | " prel=%" KMP_INT64_SPEC " dget=%" KMP_INT64_SPEC |
963 | " drel=%" KMP_INT64_SPEC "\n" , |
964 | gtid, (kmp_uint64)thr->totalloc, (kmp_int64)thr->numget, |
965 | (kmp_int64)thr->numrel, (kmp_int64)thr->numpblk, |
966 | (kmp_int64)thr->numpget, (kmp_int64)thr->numprel, |
967 | (kmp_int64)thr->numdget, (kmp_int64)thr->numdrel); |
968 | #endif |
969 | |
970 | for (bin = 0; bin < MAX_BGET_BINS; ++bin) { |
971 | bfhead_t *b; |
972 | |
973 | for (b = thr->freelist[bin].ql.flink; b != &thr->freelist[bin]; |
974 | b = b->ql.flink) { |
975 | bufsize bs = b->bh.bb.bsize; |
976 | |
977 | KMP_DEBUG_ASSERT(b->ql.blink->ql.flink == b); |
978 | KMP_DEBUG_ASSERT(b->ql.flink->ql.blink == b); |
979 | KMP_DEBUG_ASSERT(bs > 0); |
980 | |
981 | count += 1; |
982 | |
983 | __kmp_printf_no_lock( |
984 | format: "__kmp_printpool: T#%d Free block: 0x%p size %6ld bytes.\n" , gtid, b, |
985 | (long)bs); |
986 | #ifdef FreeWipe |
987 | { |
988 | char *lerr = ((char *)b) + sizeof(bfhead_t); |
989 | if ((bs > sizeof(bfhead_t)) && |
990 | ((*lerr != 0x55) || |
991 | (memcmp(lerr, lerr + 1, (size_t)(bs - (sizeof(bfhead_t) + 1))) != |
992 | 0))) { |
993 | __kmp_printf_no_lock("__kmp_printpool: T#%d (Contents of above " |
994 | "free block have been overstored.)\n" , |
995 | gtid); |
996 | } |
997 | } |
998 | #endif |
999 | } |
1000 | } |
1001 | |
1002 | if (count == 0) |
1003 | __kmp_printf_no_lock(format: "__kmp_printpool: T#%d No free blocks\n" , gtid); |
1004 | } |
1005 | |
1006 | void __kmp_initialize_bget(kmp_info_t *th) { |
1007 | KMP_DEBUG_ASSERT(SizeQuant >= sizeof(void *) && (th != 0)); |
1008 | |
1009 | set_thr_data(th); |
1010 | |
1011 | bectl(th, compact: (bget_compact_t)0, acquire: (bget_acquire_t)malloc, release: (bget_release_t)free, |
1012 | pool_incr: (bufsize)__kmp_malloc_pool_incr); |
1013 | } |
1014 | |
1015 | void __kmp_finalize_bget(kmp_info_t *th) { |
1016 | thr_data_t *thr; |
1017 | bfhead_t *b; |
1018 | |
1019 | KMP_DEBUG_ASSERT(th != 0); |
1020 | |
1021 | #if BufStats |
1022 | thr = (thr_data_t *)th->th.th_local.bget_data; |
1023 | KMP_DEBUG_ASSERT(thr != NULL); |
1024 | b = thr->last_pool; |
1025 | |
1026 | /* If a block-release function is defined, and this free buffer constitutes |
1027 | the entire block, release it. Note that pool_len is defined in such a way |
1028 | that the test will fail unless all pool blocks are the same size. */ |
1029 | |
1030 | // Deallocate the last pool if one exists because we no longer do it in brel() |
1031 | if (thr->relfcn != 0 && b != 0 && thr->numpblk != 0 && |
1032 | b->bh.bb.bsize == (bufsize)(thr->pool_len - sizeof(bhead_t))) { |
1033 | KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0); |
1034 | KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.bsize == ESent); |
1035 | KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.prevfree == |
1036 | b->bh.bb.bsize); |
1037 | |
1038 | /* Unlink the buffer from the free list */ |
1039 | __kmp_bget_remove_from_freelist(b); |
1040 | |
1041 | KE_TRACE(10, ("%%%%%% FREE( %p )\n" , (void *)b)); |
1042 | |
1043 | (*thr->relfcn)(b); |
1044 | thr->numprel++; /* Nr of expansion block releases */ |
1045 | thr->numpblk--; /* Total number of blocks */ |
1046 | KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel); |
1047 | } |
1048 | #endif /* BufStats */ |
1049 | |
1050 | /* Deallocate bget_data */ |
1051 | if (th->th.th_local.bget_data != NULL) { |
1052 | __kmp_free(th->th.th_local.bget_data); |
1053 | th->th.th_local.bget_data = NULL; |
1054 | } |
1055 | } |
1056 | |
1057 | void kmpc_set_poolsize(size_t size) { |
1058 | bectl(__kmp_get_thread(), compact: (bget_compact_t)0, acquire: (bget_acquire_t)malloc, |
1059 | release: (bget_release_t)free, pool_incr: (bufsize)size); |
1060 | } |
1061 | |
1062 | size_t kmpc_get_poolsize(void) { |
1063 | thr_data_t *p; |
1064 | |
1065 | p = get_thr_data(__kmp_get_thread()); |
1066 | |
1067 | return p->exp_incr; |
1068 | } |
1069 | |
1070 | void kmpc_set_poolmode(int mode) { |
1071 | thr_data_t *p; |
1072 | |
1073 | if (mode == bget_mode_fifo || mode == bget_mode_lifo || |
1074 | mode == bget_mode_best) { |
1075 | p = get_thr_data(__kmp_get_thread()); |
1076 | p->mode = (bget_mode_t)mode; |
1077 | } |
1078 | } |
1079 | |
1080 | int kmpc_get_poolmode(void) { |
1081 | thr_data_t *p; |
1082 | |
1083 | p = get_thr_data(__kmp_get_thread()); |
1084 | |
1085 | return p->mode; |
1086 | } |
1087 | |
1088 | void kmpc_get_poolstat(size_t *maxmem, size_t *allmem) { |
1089 | kmp_info_t *th = __kmp_get_thread(); |
1090 | bufsize a, b; |
1091 | |
1092 | __kmp_bget_dequeue(th); /* Release any queued buffers */ |
1093 | |
1094 | bcheck(th, max_free: &a, total_free: &b); |
1095 | |
1096 | *maxmem = a; |
1097 | *allmem = b; |
1098 | } |
1099 | |
1100 | void kmpc_poolprint(void) { |
1101 | kmp_info_t *th = __kmp_get_thread(); |
1102 | |
1103 | __kmp_bget_dequeue(th); /* Release any queued buffers */ |
1104 | |
1105 | bfreed(th); |
1106 | } |
1107 | |
1108 | #endif // #if KMP_USE_BGET |
1109 | |
1110 | void *kmpc_malloc(size_t size) { |
1111 | void *ptr; |
1112 | ptr = bget(th: __kmp_entry_thread(), requested_size: (bufsize)(size + sizeof(ptr))); |
1113 | if (ptr != NULL) { |
1114 | // save allocated pointer just before one returned to user |
1115 | *(void **)ptr = ptr; |
1116 | ptr = (void **)ptr + 1; |
1117 | } |
1118 | return ptr; |
1119 | } |
1120 | |
1121 | #define IS_POWER_OF_TWO(n) (((n) & ((n)-1)) == 0) |
1122 | |
1123 | void *kmpc_aligned_malloc(size_t size, size_t alignment) { |
1124 | void *ptr; |
1125 | void *ptr_allocated; |
1126 | KMP_DEBUG_ASSERT(alignment < 32 * 1024); // Alignment should not be too big |
1127 | if (!IS_POWER_OF_TWO(alignment)) { |
1128 | // AC: do we need to issue a warning here? |
1129 | errno = EINVAL; |
1130 | return NULL; |
1131 | } |
1132 | size = size + sizeof(void *) + alignment; |
1133 | ptr_allocated = bget(th: __kmp_entry_thread(), requested_size: (bufsize)size); |
1134 | if (ptr_allocated != NULL) { |
1135 | // save allocated pointer just before one returned to user |
1136 | ptr = (void *)(((kmp_uintptr_t)ptr_allocated + sizeof(void *) + alignment) & |
1137 | ~(alignment - 1)); |
1138 | *((void **)ptr - 1) = ptr_allocated; |
1139 | } else { |
1140 | ptr = NULL; |
1141 | } |
1142 | return ptr; |
1143 | } |
1144 | |
1145 | void *kmpc_calloc(size_t nelem, size_t elsize) { |
1146 | void *ptr; |
1147 | ptr = bgetz(th: __kmp_entry_thread(), size: (bufsize)(nelem * elsize + sizeof(ptr))); |
1148 | if (ptr != NULL) { |
1149 | // save allocated pointer just before one returned to user |
1150 | *(void **)ptr = ptr; |
1151 | ptr = (void **)ptr + 1; |
1152 | } |
1153 | return ptr; |
1154 | } |
1155 | |
1156 | void *kmpc_realloc(void *ptr, size_t size) { |
1157 | void *result = NULL; |
1158 | if (ptr == NULL) { |
1159 | // If pointer is NULL, realloc behaves like malloc. |
1160 | result = bget(th: __kmp_entry_thread(), requested_size: (bufsize)(size + sizeof(ptr))); |
1161 | // save allocated pointer just before one returned to user |
1162 | if (result != NULL) { |
1163 | *(void **)result = result; |
1164 | result = (void **)result + 1; |
1165 | } |
1166 | } else if (size == 0) { |
1167 | // If size is 0, realloc behaves like free. |
1168 | // The thread must be registered by the call to kmpc_malloc() or |
1169 | // kmpc_calloc() before. |
1170 | // So it should be safe to call __kmp_get_thread(), not |
1171 | // __kmp_entry_thread(). |
1172 | KMP_ASSERT(*((void **)ptr - 1)); |
1173 | brel(__kmp_get_thread(), buf: *((void **)ptr - 1)); |
1174 | } else { |
1175 | result = bgetr(th: __kmp_entry_thread(), buf: *((void **)ptr - 1), |
1176 | size: (bufsize)(size + sizeof(ptr))); |
1177 | if (result != NULL) { |
1178 | *(void **)result = result; |
1179 | result = (void **)result + 1; |
1180 | } |
1181 | } |
1182 | return result; |
1183 | } |
1184 | |
1185 | // NOTE: the library must have already been initialized by a previous allocate |
1186 | void kmpc_free(void *ptr) { |
1187 | if (!__kmp_init_serial) { |
1188 | return; |
1189 | } |
1190 | if (ptr != NULL) { |
1191 | kmp_info_t *th = __kmp_get_thread(); |
1192 | __kmp_bget_dequeue(th); /* Release any queued buffers */ |
1193 | // extract allocated pointer and free it |
1194 | KMP_ASSERT(*((void **)ptr - 1)); |
1195 | brel(th, buf: *((void **)ptr - 1)); |
1196 | } |
1197 | } |
1198 | |
1199 | void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL) { |
1200 | void *ptr; |
1201 | KE_TRACE(30, ("-> __kmp_thread_malloc( %p, %d ) called from %s:%d\n" , th, |
1202 | (int)size KMP_SRC_LOC_PARM)); |
1203 | ptr = bget(th, requested_size: (bufsize)size); |
1204 | KE_TRACE(30, ("<- __kmp_thread_malloc() returns %p\n" , ptr)); |
1205 | return ptr; |
1206 | } |
1207 | |
1208 | void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem, |
1209 | size_t elsize KMP_SRC_LOC_DECL) { |
1210 | void *ptr; |
1211 | KE_TRACE(30, ("-> __kmp_thread_calloc( %p, %d, %d ) called from %s:%d\n" , th, |
1212 | (int)nelem, (int)elsize KMP_SRC_LOC_PARM)); |
1213 | ptr = bgetz(th, size: (bufsize)(nelem * elsize)); |
1214 | KE_TRACE(30, ("<- __kmp_thread_calloc() returns %p\n" , ptr)); |
1215 | return ptr; |
1216 | } |
1217 | |
1218 | void *___kmp_thread_realloc(kmp_info_t *th, void *ptr, |
1219 | size_t size KMP_SRC_LOC_DECL) { |
1220 | KE_TRACE(30, ("-> __kmp_thread_realloc( %p, %p, %d ) called from %s:%d\n" , th, |
1221 | ptr, (int)size KMP_SRC_LOC_PARM)); |
1222 | ptr = bgetr(th, buf: ptr, size: (bufsize)size); |
1223 | KE_TRACE(30, ("<- __kmp_thread_realloc() returns %p\n" , ptr)); |
1224 | return ptr; |
1225 | } |
1226 | |
1227 | void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL) { |
1228 | KE_TRACE(30, ("-> __kmp_thread_free( %p, %p ) called from %s:%d\n" , th, |
1229 | ptr KMP_SRC_LOC_PARM)); |
1230 | if (ptr != NULL) { |
1231 | __kmp_bget_dequeue(th); /* Release any queued buffers */ |
1232 | brel(th, buf: ptr); |
1233 | } |
1234 | KE_TRACE(30, ("<- __kmp_thread_free()\n" )); |
1235 | } |
1236 | |
1237 | /* OMP 5.0 Memory Management support */ |
1238 | static const char *kmp_mk_lib_name; |
1239 | static void *h_memkind; |
1240 | /* memkind experimental API: */ |
1241 | // memkind_alloc |
1242 | static void *(*kmp_mk_alloc)(void *k, size_t sz); |
1243 | // memkind_free |
1244 | static void (*kmp_mk_free)(void *kind, void *ptr); |
1245 | // memkind_check_available |
1246 | static int (*kmp_mk_check)(void *kind); |
1247 | // kinds we are going to use |
1248 | static void **mk_default; |
1249 | static void **mk_interleave; |
1250 | static void **mk_hbw; |
1251 | static void **mk_hbw_interleave; |
1252 | static void **mk_hbw_preferred; |
1253 | static void **mk_hugetlb; |
1254 | static void **mk_hbw_hugetlb; |
1255 | static void **mk_hbw_preferred_hugetlb; |
1256 | static void **mk_dax_kmem; |
1257 | static void **mk_dax_kmem_all; |
1258 | static void **mk_dax_kmem_preferred; |
1259 | static void *(*kmp_target_alloc_host)(size_t size, int device); |
1260 | static void *(*kmp_target_alloc_shared)(size_t size, int device); |
1261 | static void *(*kmp_target_alloc_device)(size_t size, int device); |
1262 | static void *(*kmp_target_lock_mem)(void *ptr, size_t size, int device); |
1263 | static void *(*kmp_target_unlock_mem)(void *ptr, int device); |
1264 | static void *(*kmp_target_free_host)(void *ptr, int device); |
1265 | static void *(*kmp_target_free_shared)(void *ptr, int device); |
1266 | static void *(*kmp_target_free_device)(void *ptr, int device); |
1267 | static bool __kmp_target_mem_available; |
1268 | |
1269 | #define KMP_IS_TARGET_MEM_SPACE(MS) \ |
1270 | (MS == llvm_omp_target_host_mem_space || \ |
1271 | MS == llvm_omp_target_shared_mem_space || \ |
1272 | MS == llvm_omp_target_device_mem_space) |
1273 | |
1274 | #define KMP_IS_TARGET_MEM_ALLOC(MA) \ |
1275 | (MA == llvm_omp_target_host_mem_alloc || \ |
1276 | MA == llvm_omp_target_shared_mem_alloc || \ |
1277 | MA == llvm_omp_target_device_mem_alloc) |
1278 | |
1279 | #define KMP_IS_PREDEF_MEM_SPACE(MS) \ |
1280 | (MS == omp_null_mem_space || MS == omp_default_mem_space || \ |
1281 | MS == omp_large_cap_mem_space || MS == omp_const_mem_space || \ |
1282 | MS == omp_high_bw_mem_space || MS == omp_low_lat_mem_space || \ |
1283 | KMP_IS_TARGET_MEM_SPACE(MS)) |
1284 | |
1285 | /// Support OMP 6.0 target memory management |
1286 | /// Expected offload runtime entries. |
1287 | /// |
1288 | /// Returns number of resources and list of unique resource IDs in "resouces". |
1289 | /// Runtime needs to invoke this twice to get the number of resources, allocate |
1290 | /// space for the resource IDs, and finally let offload runtime write resource |
1291 | /// IDs in "resources". |
1292 | /// int __tgt_get_mem_resources(int num_devices, const int *devices, |
1293 | /// int host_access, omp_memspace_handle_t memspace, |
1294 | /// int *resources); |
1295 | /// |
1296 | /// Redirects omp_alloc call to offload runtime. |
1297 | /// void *__tgt_omp_alloc(size_t size, omp_allocator_handle_t allocator); |
1298 | /// |
1299 | /// Redirects omp_free call to offload runtime. |
1300 | /// void __tgt_omp_free(void *ptr, omp_allocator_handle_t); |
1301 | class kmp_tgt_allocator_t { |
1302 | bool supported = false; |
1303 | using get_mem_resources_t = int (*)(int, const int *, int, |
1304 | omp_memspace_handle_t, int *); |
1305 | using omp_alloc_t = void *(*)(size_t, omp_allocator_handle_t); |
1306 | using omp_free_t = void (*)(void *, omp_allocator_handle_t); |
1307 | get_mem_resources_t tgt_get_mem_resources = nullptr; |
1308 | omp_alloc_t tgt_omp_alloc = nullptr; |
1309 | omp_free_t tgt_omp_free = nullptr; |
1310 | |
1311 | public: |
1312 | /// Initialize interface with offload runtime |
1313 | void init() { |
1314 | tgt_get_mem_resources = |
1315 | (get_mem_resources_t)KMP_DLSYM("__tgt_get_mem_resources" ); |
1316 | tgt_omp_alloc = (omp_alloc_t)KMP_DLSYM("__tgt_omp_alloc" ); |
1317 | tgt_omp_free = (omp_free_t)KMP_DLSYM("__tgt_omp_free" ); |
1318 | supported = tgt_get_mem_resources && tgt_omp_alloc && tgt_omp_free; |
1319 | } |
1320 | /// Obtain resource information from offload runtime. We assume offload |
1321 | /// runtime backends maintain a list of unique resource IDS. |
1322 | int get_mem_resources(int ndevs, const int *devs, int host, |
1323 | omp_memspace_handle_t memspace, int *resources) { |
1324 | if (supported) |
1325 | return tgt_get_mem_resources(ndevs, devs, host, memspace, resources); |
1326 | return 0; |
1327 | } |
1328 | /// Invoke offload runtime's memory allocation routine |
1329 | void *omp_alloc(size_t size, omp_allocator_handle_t allocator) { |
1330 | if (supported) |
1331 | return tgt_omp_alloc(size, allocator); |
1332 | return nullptr; |
1333 | } |
1334 | /// Invoke offload runtime's memory deallocation routine |
1335 | void omp_free(void *ptr, omp_allocator_handle_t allocator) { |
1336 | if (supported) |
1337 | tgt_omp_free(ptr, allocator); |
1338 | } |
1339 | } __kmp_tgt_allocator; |
1340 | |
1341 | extern "C" int omp_get_num_devices(void); |
1342 | |
1343 | /// Maintain a list of target memory spaces that are identified with the |
1344 | /// requested information. There will be only one unique memory space object |
1345 | /// that matches the input. |
1346 | class kmp_tgt_memspace_list_t { |
1347 | kmp_memspace_t *memspace_list = nullptr; |
1348 | KMP_LOCK_INIT(mtx); |
1349 | /// Find memory space that matches the provided input |
1350 | kmp_memspace_t *find(int num_resources, const int *resources, |
1351 | omp_memspace_handle_t memspace) { |
1352 | kmp_memspace_t *ms = memspace_list; |
1353 | while (ms) { |
1354 | if (ms->num_resources == num_resources && ms->memspace == memspace && |
1355 | !memcmp(s1: ms->resources, s2: resources, n: sizeof(int) * num_resources)) |
1356 | break; |
1357 | ms = ms->next; |
1358 | } |
1359 | return ms; |
1360 | } |
1361 | /// Return memory space for the provided input. It tries to find existing |
1362 | /// memory space that exactly matches the provided input or create one if |
1363 | /// not found. |
1364 | omp_memspace_handle_t get(int num_resources, const int *resources, |
1365 | omp_memspace_handle_t memspace) { |
1366 | int gtid = __kmp_entry_gtid(); |
1367 | __kmp_acquire_lock(lck: &mtx, gtid); |
1368 | // Sort absolute IDs in the resource list |
1369 | int *sorted_resources = (int *)__kmp_allocate(sizeof(int) * num_resources); |
1370 | KMP_MEMCPY(dest: sorted_resources, src: resources, n: num_resources * sizeof(int)); |
1371 | qsort(base: sorted_resources, nmemb: (size_t)num_resources, size: sizeof(int), |
1372 | compar: [](const void *a, const void *b) { |
1373 | const int val_a = *(const int *)a; |
1374 | const int val_b = *(const int *)b; |
1375 | return (val_a > val_b) ? 1 : ((val_a < val_b) ? -1 : 0); |
1376 | }); |
1377 | kmp_memspace_t *ms = find(num_resources, resources: sorted_resources, memspace); |
1378 | if (ms) { |
1379 | __kmp_free(sorted_resources); |
1380 | __kmp_release_lock(lck: &mtx, gtid); |
1381 | return ms; |
1382 | } |
1383 | ms = (kmp_memspace_t *)__kmp_allocate(sizeof(kmp_memspace_t)); |
1384 | ms->memspace = memspace; |
1385 | ms->num_resources = num_resources; |
1386 | ms->resources = sorted_resources; |
1387 | ms->next = memspace_list; |
1388 | memspace_list = ms; |
1389 | __kmp_release_lock(lck: &mtx, gtid); |
1390 | return ms; |
1391 | } |
1392 | |
1393 | public: |
1394 | /// Initialize memory space list |
1395 | void init() { __kmp_init_lock(lck: &mtx); } |
1396 | /// Release resources for the memory space list |
1397 | void fini() { |
1398 | kmp_memspace_t *ms = memspace_list; |
1399 | while (ms) { |
1400 | if (ms->resources) |
1401 | __kmp_free(ms->resources); |
1402 | kmp_memspace_t *tmp = ms; |
1403 | ms = ms->next; |
1404 | __kmp_free(tmp); |
1405 | } |
1406 | __kmp_destroy_lock(lck: &mtx); |
1407 | } |
1408 | /// Return memory space for the provided input |
1409 | omp_memspace_handle_t get_memspace(int num_devices, const int *devices, |
1410 | int host_access, |
1411 | omp_memspace_handle_t memspace) { |
1412 | int actual_num_devices = num_devices; |
1413 | int *actual_devices = const_cast<int *>(devices); |
1414 | if (actual_num_devices == 0) { |
1415 | actual_num_devices = omp_get_num_devices(); |
1416 | if (actual_num_devices <= 0) |
1417 | return omp_null_mem_space; |
1418 | } |
1419 | if (actual_devices == NULL) { |
1420 | // Prepare list of all devices in this case. |
1421 | actual_devices = (int *)__kmp_allocate(sizeof(int) * actual_num_devices); |
1422 | for (int i = 0; i < actual_num_devices; i++) |
1423 | actual_devices[i] = i; |
1424 | } |
1425 | // Get the number of available resources first |
1426 | int num_resources = __kmp_tgt_allocator.get_mem_resources( |
1427 | ndevs: actual_num_devices, devs: actual_devices, host: host_access, memspace, NULL); |
1428 | if (num_resources <= 0) |
1429 | return omp_null_mem_space; // No available resources |
1430 | |
1431 | omp_memspace_handle_t ms = omp_null_mem_space; |
1432 | if (num_resources > 0) { |
1433 | int *resources = (int *)__kmp_allocate(sizeof(int) * num_resources); |
1434 | // Let offload runtime write the resource IDs |
1435 | num_resources = __kmp_tgt_allocator.get_mem_resources( |
1436 | ndevs: actual_num_devices, devs: actual_devices, host: host_access, memspace, resources); |
1437 | ms = get(num_resources, resources, memspace); |
1438 | __kmp_free(resources); |
1439 | } |
1440 | if (!devices && actual_devices) |
1441 | __kmp_free(actual_devices); |
1442 | return ms; |
1443 | } |
1444 | /// Return sub memory space from the parent memory space |
1445 | omp_memspace_handle_t get_memspace(int num_resources, const int *resources, |
1446 | omp_memspace_handle_t parent) { |
1447 | kmp_memspace_t *ms = (kmp_memspace_t *)parent; |
1448 | return get(num_resources, resources, memspace: ms->memspace); |
1449 | } |
1450 | } __kmp_tgt_memspace_list; |
1451 | |
1452 | #if KMP_OS_UNIX && KMP_DYNAMIC_LIB && !KMP_OS_DARWIN |
1453 | static inline void chk_kind(void ***pkind) { |
1454 | KMP_DEBUG_ASSERT(pkind); |
1455 | if (*pkind) // symbol found |
1456 | if (kmp_mk_check(**pkind)) // kind not available or error |
1457 | *pkind = NULL; |
1458 | } |
1459 | #endif |
1460 | |
1461 | void __kmp_init_memkind() { |
1462 | // as of 2018-07-31 memkind does not support Windows*, exclude it for now |
1463 | #if KMP_OS_UNIX && KMP_DYNAMIC_LIB && !KMP_OS_DARWIN |
1464 | // use of statically linked memkind is problematic, as it depends on libnuma |
1465 | kmp_mk_lib_name = "libmemkind.so" ; |
1466 | h_memkind = dlopen(file: kmp_mk_lib_name, RTLD_LAZY); |
1467 | if (h_memkind) { |
1468 | kmp_mk_check = (int (*)(void *))dlsym(handle: h_memkind, name: "memkind_check_available" ); |
1469 | kmp_mk_alloc = |
1470 | (void *(*)(void *, size_t))dlsym(handle: h_memkind, name: "memkind_malloc" ); |
1471 | kmp_mk_free = (void (*)(void *, void *))dlsym(handle: h_memkind, name: "memkind_free" ); |
1472 | mk_default = (void **)dlsym(handle: h_memkind, name: "MEMKIND_DEFAULT" ); |
1473 | if (kmp_mk_check && kmp_mk_alloc && kmp_mk_free && mk_default && |
1474 | !kmp_mk_check(*mk_default)) { |
1475 | __kmp_memkind_available = 1; |
1476 | mk_interleave = (void **)dlsym(handle: h_memkind, name: "MEMKIND_INTERLEAVE" ); |
1477 | chk_kind(pkind: &mk_interleave); |
1478 | mk_hbw = (void **)dlsym(handle: h_memkind, name: "MEMKIND_HBW" ); |
1479 | chk_kind(pkind: &mk_hbw); |
1480 | mk_hbw_interleave = (void **)dlsym(handle: h_memkind, name: "MEMKIND_HBW_INTERLEAVE" ); |
1481 | chk_kind(pkind: &mk_hbw_interleave); |
1482 | mk_hbw_preferred = (void **)dlsym(handle: h_memkind, name: "MEMKIND_HBW_PREFERRED" ); |
1483 | chk_kind(pkind: &mk_hbw_preferred); |
1484 | mk_hugetlb = (void **)dlsym(handle: h_memkind, name: "MEMKIND_HUGETLB" ); |
1485 | chk_kind(pkind: &mk_hugetlb); |
1486 | mk_hbw_hugetlb = (void **)dlsym(handle: h_memkind, name: "MEMKIND_HBW_HUGETLB" ); |
1487 | chk_kind(pkind: &mk_hbw_hugetlb); |
1488 | mk_hbw_preferred_hugetlb = |
1489 | (void **)dlsym(handle: h_memkind, name: "MEMKIND_HBW_PREFERRED_HUGETLB" ); |
1490 | chk_kind(pkind: &mk_hbw_preferred_hugetlb); |
1491 | mk_dax_kmem = (void **)dlsym(handle: h_memkind, name: "MEMKIND_DAX_KMEM" ); |
1492 | chk_kind(pkind: &mk_dax_kmem); |
1493 | mk_dax_kmem_all = (void **)dlsym(handle: h_memkind, name: "MEMKIND_DAX_KMEM_ALL" ); |
1494 | chk_kind(pkind: &mk_dax_kmem_all); |
1495 | mk_dax_kmem_preferred = |
1496 | (void **)dlsym(handle: h_memkind, name: "MEMKIND_DAX_KMEM_PREFERRED" ); |
1497 | chk_kind(pkind: &mk_dax_kmem_preferred); |
1498 | KE_TRACE(25, ("__kmp_init_memkind: memkind library initialized\n" )); |
1499 | return; // success |
1500 | } |
1501 | dlclose(handle: h_memkind); // failure |
1502 | } |
1503 | #else // !(KMP_OS_UNIX && KMP_DYNAMIC_LIB) |
1504 | kmp_mk_lib_name = "" ; |
1505 | #endif // !(KMP_OS_UNIX && KMP_DYNAMIC_LIB) |
1506 | h_memkind = NULL; |
1507 | kmp_mk_check = NULL; |
1508 | kmp_mk_alloc = NULL; |
1509 | kmp_mk_free = NULL; |
1510 | mk_default = NULL; |
1511 | mk_interleave = NULL; |
1512 | mk_hbw = NULL; |
1513 | mk_hbw_interleave = NULL; |
1514 | mk_hbw_preferred = NULL; |
1515 | mk_hugetlb = NULL; |
1516 | mk_hbw_hugetlb = NULL; |
1517 | mk_hbw_preferred_hugetlb = NULL; |
1518 | mk_dax_kmem = NULL; |
1519 | mk_dax_kmem_all = NULL; |
1520 | mk_dax_kmem_preferred = NULL; |
1521 | } |
1522 | |
1523 | void __kmp_fini_memkind() { |
1524 | #if KMP_OS_UNIX && KMP_DYNAMIC_LIB |
1525 | if (__kmp_memkind_available) |
1526 | KE_TRACE(25, ("__kmp_fini_memkind: finalize memkind library\n" )); |
1527 | if (h_memkind) { |
1528 | dlclose(handle: h_memkind); |
1529 | h_memkind = NULL; |
1530 | } |
1531 | kmp_mk_check = NULL; |
1532 | kmp_mk_alloc = NULL; |
1533 | kmp_mk_free = NULL; |
1534 | mk_default = NULL; |
1535 | mk_interleave = NULL; |
1536 | mk_hbw = NULL; |
1537 | mk_hbw_interleave = NULL; |
1538 | mk_hbw_preferred = NULL; |
1539 | mk_hugetlb = NULL; |
1540 | mk_hbw_hugetlb = NULL; |
1541 | mk_hbw_preferred_hugetlb = NULL; |
1542 | mk_dax_kmem = NULL; |
1543 | mk_dax_kmem_all = NULL; |
1544 | mk_dax_kmem_preferred = NULL; |
1545 | #endif |
1546 | } |
1547 | |
1548 | #if KMP_USE_HWLOC |
1549 | static bool __kmp_is_hwloc_membind_supported(hwloc_membind_policy_t policy) { |
1550 | #if HWLOC_API_VERSION >= 0x00020300 |
1551 | const hwloc_topology_support *support; |
1552 | support = hwloc_topology_get_support(__kmp_hwloc_topology); |
1553 | if (support) { |
1554 | if (policy == HWLOC_MEMBIND_BIND) |
1555 | return (support->membind->alloc_membind && |
1556 | support->membind->bind_membind); |
1557 | if (policy == HWLOC_MEMBIND_INTERLEAVE) |
1558 | return (support->membind->alloc_membind && |
1559 | support->membind->interleave_membind); |
1560 | } |
1561 | return false; |
1562 | #else |
1563 | return false; |
1564 | #endif |
1565 | } |
1566 | |
1567 | void *__kmp_hwloc_alloc_membind(hwloc_memattr_id_e attr, size_t size, |
1568 | hwloc_membind_policy_t policy) { |
1569 | #if HWLOC_API_VERSION >= 0x00020300 |
1570 | void *ptr = NULL; |
1571 | hwloc_obj_t node; |
1572 | struct hwloc_location initiator; |
1573 | int ret; |
1574 | // TODO: We should make this more efficient by getting rid of the OS syscall |
1575 | // 'hwloc_bitmap_alloc' and 'hwloc_get_cpubind' to get affinity and instead |
1576 | // use th_affin_mask field when it's capable of getting the underlying |
1577 | // mask implementation. |
1578 | hwloc_cpuset_t mask = hwloc_bitmap_alloc(); |
1579 | ret = hwloc_get_cpubind(__kmp_hwloc_topology, mask, HWLOC_CPUBIND_THREAD); |
1580 | if (ret < 0) { |
1581 | hwloc_bitmap_free(mask); |
1582 | return ptr; |
1583 | } |
1584 | initiator.type = KMP_HWLOC_LOCATION_TYPE_CPUSET; |
1585 | initiator.location.cpuset = mask; |
1586 | ret = hwloc_memattr_get_best_target(__kmp_hwloc_topology, attr, &initiator, 0, |
1587 | &node, NULL); |
1588 | if (ret < 0) { |
1589 | return ptr; |
1590 | } |
1591 | return hwloc_alloc_membind(__kmp_hwloc_topology, size, node->nodeset, policy, |
1592 | HWLOC_MEMBIND_BYNODESET); |
1593 | #else |
1594 | return NULL; |
1595 | #endif |
1596 | } |
1597 | |
1598 | void *__kmp_hwloc_membind_policy(omp_memspace_handle_t ms, size_t size, |
1599 | hwloc_membind_policy_t policy) { |
1600 | #if HWLOC_API_VERSION >= 0x00020300 |
1601 | void *ptr = NULL; |
1602 | if (ms == omp_high_bw_mem_space) { |
1603 | ptr = __kmp_hwloc_alloc_membind(HWLOC_MEMATTR_ID_BANDWIDTH, size, policy); |
1604 | } else if (ms == omp_large_cap_mem_space) { |
1605 | ptr = __kmp_hwloc_alloc_membind(HWLOC_MEMATTR_ID_CAPACITY, size, policy); |
1606 | } else { |
1607 | ptr = hwloc_alloc(__kmp_hwloc_topology, size); |
1608 | } |
1609 | return ptr; |
1610 | #else |
1611 | return NULL; |
1612 | #endif |
1613 | } |
1614 | #endif // KMP_USE_HWLOC |
1615 | |
1616 | void __kmp_init_target_mem() { |
1617 | *(void **)(&kmp_target_alloc_host) = KMP_DLSYM("llvm_omp_target_alloc_host" ); |
1618 | *(void **)(&kmp_target_alloc_shared) = |
1619 | KMP_DLSYM("llvm_omp_target_alloc_shared" ); |
1620 | *(void **)(&kmp_target_alloc_device) = |
1621 | KMP_DLSYM("llvm_omp_target_alloc_device" ); |
1622 | *(void **)(&kmp_target_free_host) = KMP_DLSYM("llvm_omp_target_free_host" ); |
1623 | *(void **)(&kmp_target_free_shared) = |
1624 | KMP_DLSYM("llvm_omp_target_free_shared" ); |
1625 | *(void **)(&kmp_target_free_device) = |
1626 | KMP_DLSYM("llvm_omp_target_free_device" ); |
1627 | __kmp_target_mem_available = |
1628 | kmp_target_alloc_host && kmp_target_alloc_shared && |
1629 | kmp_target_alloc_device && kmp_target_free_host && |
1630 | kmp_target_free_shared && kmp_target_free_device; |
1631 | // lock/pin and unlock/unpin target calls |
1632 | *(void **)(&kmp_target_lock_mem) = KMP_DLSYM("llvm_omp_target_lock_mem" ); |
1633 | *(void **)(&kmp_target_unlock_mem) = KMP_DLSYM("llvm_omp_target_unlock_mem" ); |
1634 | __kmp_tgt_allocator.init(); |
1635 | __kmp_tgt_memspace_list.init(); |
1636 | } |
1637 | |
1638 | /// Finalize target memory support |
1639 | void __kmp_fini_target_mem() { __kmp_tgt_memspace_list.fini(); } |
1640 | |
1641 | omp_allocator_handle_t __kmpc_init_allocator(int gtid, omp_memspace_handle_t ms, |
1642 | int ntraits, |
1643 | omp_alloctrait_t traits[]) { |
1644 | kmp_allocator_t *al; |
1645 | int i; |
1646 | al = (kmp_allocator_t *)__kmp_allocate(sizeof(kmp_allocator_t)); // zeroed |
1647 | al->memspace = ms; // not used currently |
1648 | |
1649 | // Assign default values if applicable |
1650 | al->alignment = 1; |
1651 | al->pinned = false; |
1652 | al->partition = omp_atv_environment; |
1653 | al->pin_device = -1; |
1654 | al->preferred_device = -1; |
1655 | al->target_access = omp_atv_single; |
1656 | al->atomic_scope = omp_atv_device; |
1657 | |
1658 | for (i = 0; i < ntraits; ++i) { |
1659 | switch (traits[i].key) { |
1660 | case omp_atk_sync_hint: |
1661 | case omp_atk_access: |
1662 | break; |
1663 | case omp_atk_pinned: |
1664 | al->pinned = true; |
1665 | break; |
1666 | case omp_atk_alignment: |
1667 | __kmp_type_convert(src: traits[i].value, dest: &(al->alignment)); |
1668 | KMP_ASSERT(IS_POWER_OF_TWO(al->alignment)); |
1669 | break; |
1670 | case omp_atk_pool_size: |
1671 | al->pool_size = traits[i].value; |
1672 | break; |
1673 | case omp_atk_fallback: |
1674 | al->fb = (omp_alloctrait_value_t)traits[i].value; |
1675 | KMP_DEBUG_ASSERT( |
1676 | al->fb == omp_atv_default_mem_fb || al->fb == omp_atv_null_fb || |
1677 | al->fb == omp_atv_abort_fb || al->fb == omp_atv_allocator_fb); |
1678 | break; |
1679 | case omp_atk_fb_data: |
1680 | al->fb_data = RCAST(kmp_allocator_t *, traits[i].value); |
1681 | break; |
1682 | case omp_atk_partition: |
1683 | #if KMP_USE_HWLOC |
1684 | al->membind = (omp_alloctrait_value_t)traits[i].value; |
1685 | KMP_DEBUG_ASSERT(al->membind == omp_atv_environment || |
1686 | al->membind == omp_atv_nearest || |
1687 | al->membind == omp_atv_blocked || |
1688 | al->membind == omp_atv_interleaved); |
1689 | #endif |
1690 | al->memkind = RCAST(void **, traits[i].value); |
1691 | break; |
1692 | case omp_atk_pin_device: |
1693 | __kmp_type_convert(src: traits[i].value, dest: &(al->pin_device)); |
1694 | break; |
1695 | case omp_atk_preferred_device: |
1696 | __kmp_type_convert(src: traits[i].value, dest: &(al->preferred_device)); |
1697 | break; |
1698 | case omp_atk_target_access: |
1699 | al->target_access = (omp_alloctrait_value_t)traits[i].value; |
1700 | break; |
1701 | case omp_atk_atomic_scope: |
1702 | al->atomic_scope = (omp_alloctrait_value_t)traits[i].value; |
1703 | break; |
1704 | case omp_atk_part_size: |
1705 | __kmp_type_convert(src: traits[i].value, dest: &(al->part_size)); |
1706 | break; |
1707 | default: |
1708 | KMP_ASSERT2(0, "Unexpected allocator trait" ); |
1709 | } |
1710 | } |
1711 | |
1712 | if (al->memspace > kmp_max_mem_space) { |
1713 | // Memory space has been allocated for targets. |
1714 | return (omp_allocator_handle_t)al; |
1715 | } |
1716 | |
1717 | KMP_DEBUG_ASSERT(KMP_IS_PREDEF_MEM_SPACE(al->memspace)); |
1718 | |
1719 | if (al->fb == 0) { |
1720 | // set default allocator |
1721 | al->fb = omp_atv_default_mem_fb; |
1722 | al->fb_data = (kmp_allocator_t *)omp_default_mem_alloc; |
1723 | } else if (al->fb == omp_atv_allocator_fb) { |
1724 | KMP_ASSERT(al->fb_data != NULL); |
1725 | } else if (al->fb == omp_atv_default_mem_fb) { |
1726 | al->fb_data = (kmp_allocator_t *)omp_default_mem_alloc; |
1727 | } |
1728 | if (__kmp_memkind_available) { |
1729 | // Let's use memkind library if available |
1730 | if (ms == omp_high_bw_mem_space) { |
1731 | if (al->memkind == (void *)omp_atv_interleaved && mk_hbw_interleave) { |
1732 | al->memkind = mk_hbw_interleave; |
1733 | } else if (mk_hbw_preferred) { |
1734 | // AC: do not try to use MEMKIND_HBW for now, because memkind library |
1735 | // cannot reliably detect exhaustion of HBW memory. |
1736 | // It could be possible using hbw_verify_memory_region() but memkind |
1737 | // manual says: "Using this function in production code may result in |
1738 | // serious performance penalty". |
1739 | al->memkind = mk_hbw_preferred; |
1740 | } else { |
1741 | // HBW is requested but not available --> return NULL allocator |
1742 | __kmp_free(al); |
1743 | return omp_null_allocator; |
1744 | } |
1745 | } else if (ms == omp_large_cap_mem_space) { |
1746 | if (mk_dax_kmem_all) { |
1747 | // All pmem nodes are visited |
1748 | al->memkind = mk_dax_kmem_all; |
1749 | } else if (mk_dax_kmem) { |
1750 | // Only closest pmem node is visited |
1751 | al->memkind = mk_dax_kmem; |
1752 | } else { |
1753 | __kmp_free(al); |
1754 | return omp_null_allocator; |
1755 | } |
1756 | } else { |
1757 | if (al->memkind == (void *)omp_atv_interleaved && mk_interleave) { |
1758 | al->memkind = mk_interleave; |
1759 | } else { |
1760 | al->memkind = mk_default; |
1761 | } |
1762 | } |
1763 | } else if (KMP_IS_TARGET_MEM_SPACE(ms) && !__kmp_target_mem_available) { |
1764 | __kmp_free(al); |
1765 | return omp_null_allocator; |
1766 | } else { |
1767 | if (!__kmp_hwloc_available && |
1768 | (ms == omp_high_bw_mem_space || ms == omp_large_cap_mem_space)) { |
1769 | // cannot detect HBW memory presence without memkind library |
1770 | __kmp_free(al); |
1771 | return omp_null_allocator; |
1772 | } |
1773 | } |
1774 | return (omp_allocator_handle_t)al; |
1775 | } |
1776 | |
1777 | void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t allocator) { |
1778 | if (allocator > kmp_max_mem_alloc) |
1779 | __kmp_free(allocator); |
1780 | } |
1781 | |
1782 | void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t allocator) { |
1783 | if (allocator == omp_null_allocator) |
1784 | allocator = omp_default_mem_alloc; |
1785 | __kmp_threads[gtid]->th.th_def_allocator = allocator; |
1786 | } |
1787 | |
1788 | omp_allocator_handle_t __kmpc_get_default_allocator(int gtid) { |
1789 | return __kmp_threads[gtid]->th.th_def_allocator; |
1790 | } |
1791 | |
1792 | omp_memspace_handle_t __kmp_get_devices_memspace(int ndevs, const int *devs, |
1793 | omp_memspace_handle_t memspace, |
1794 | int host) { |
1795 | if (!__kmp_init_serial) |
1796 | __kmp_serial_initialize(); |
1797 | // Only accept valid device description and predefined memory space |
1798 | if (ndevs < 0 || (ndevs > 0 && !devs) || memspace > kmp_max_mem_space) |
1799 | return omp_null_mem_space; |
1800 | |
1801 | return __kmp_tgt_memspace_list.get_memspace(num_devices: ndevs, devices: devs, host_access: host, memspace); |
1802 | } |
1803 | |
1804 | omp_allocator_handle_t |
1805 | __kmp_get_devices_allocator(int ndevs, const int *devs, |
1806 | omp_memspace_handle_t memspace, int host) { |
1807 | if (!__kmp_init_serial) |
1808 | __kmp_serial_initialize(); |
1809 | // Only accept valid device description and predefined memory space |
1810 | if (ndevs < 0 || (ndevs > 0 && !devs) || memspace > kmp_max_mem_space) |
1811 | return omp_null_allocator; |
1812 | |
1813 | omp_memspace_handle_t mspace = |
1814 | __kmp_get_devices_memspace(ndevs, devs, memspace, host); |
1815 | if (mspace == omp_null_mem_space) |
1816 | return omp_null_allocator; |
1817 | |
1818 | return __kmpc_init_allocator(__kmp_entry_gtid(), ms: mspace, ntraits: 0, NULL); |
1819 | } |
1820 | |
1821 | int __kmp_get_memspace_num_resources(omp_memspace_handle_t memspace) { |
1822 | if (!__kmp_init_serial) |
1823 | __kmp_serial_initialize(); |
1824 | if (memspace == omp_null_mem_space) |
1825 | return 0; |
1826 | if (memspace < kmp_max_mem_space) |
1827 | return 1; // return 1 for predefined memory space |
1828 | kmp_memspace_t *ms = (kmp_memspace_t *)memspace; |
1829 | return ms->num_resources; |
1830 | } |
1831 | |
1832 | omp_memspace_handle_t __kmp_get_submemspace(omp_memspace_handle_t memspace, |
1833 | int num_resources, int *resources) { |
1834 | if (!__kmp_init_serial) |
1835 | __kmp_serial_initialize(); |
1836 | if (memspace == omp_null_mem_space || memspace < kmp_max_mem_space) |
1837 | return memspace; // return input memory space for predefined memory space |
1838 | kmp_memspace_t *ms = (kmp_memspace_t *)memspace; |
1839 | if (num_resources == 0 || ms->num_resources < num_resources || !resources) |
1840 | return omp_null_mem_space; // input memory space cannot satisfy the request |
1841 | |
1842 | // The stored resource ID is an absolute ID only known to the offload backend, |
1843 | // and the returned memory space will still keep the property. |
1844 | int *resources_abs = (int *)__kmp_allocate(sizeof(int) * num_resources); |
1845 | |
1846 | // Collect absolute resource ID from the relative ID |
1847 | for (int i = 0; i < num_resources; i++) |
1848 | resources_abs[i] = ms->resources[resources[i]]; |
1849 | |
1850 | omp_memspace_handle_t submemspace = __kmp_tgt_memspace_list.get_memspace( |
1851 | num_resources, resources: resources_abs, parent: memspace); |
1852 | __kmp_free(resources_abs); |
1853 | |
1854 | return submemspace; |
1855 | } |
1856 | |
1857 | typedef struct kmp_mem_desc { // Memory block descriptor |
1858 | void *ptr_alloc; // Pointer returned by allocator |
1859 | size_t size_a; // Size of allocated memory block (initial+descriptor+align) |
1860 | size_t size_orig; // Original size requested |
1861 | void *ptr_align; // Pointer to aligned memory, returned |
1862 | kmp_allocator_t *allocator; // allocator |
1863 | } kmp_mem_desc_t; |
1864 | static int alignment = sizeof(void *); // align to pointer size by default |
1865 | |
1866 | // external interfaces are wrappers over internal implementation |
1867 | void *__kmpc_alloc(int gtid, size_t size, omp_allocator_handle_t allocator) { |
1868 | KE_TRACE(25, ("__kmpc_alloc: T#%d (%d, %p)\n" , gtid, (int)size, allocator)); |
1869 | void *ptr = __kmp_alloc(gtid, align: 0, sz: size, al: allocator); |
1870 | KE_TRACE(25, ("__kmpc_alloc returns %p, T#%d\n" , ptr, gtid)); |
1871 | return ptr; |
1872 | } |
1873 | |
1874 | void *__kmpc_aligned_alloc(int gtid, size_t algn, size_t size, |
1875 | omp_allocator_handle_t allocator) { |
1876 | KE_TRACE(25, ("__kmpc_aligned_alloc: T#%d (%d, %d, %p)\n" , gtid, (int)algn, |
1877 | (int)size, allocator)); |
1878 | void *ptr = __kmp_alloc(gtid, align: algn, sz: size, al: allocator); |
1879 | KE_TRACE(25, ("__kmpc_aligned_alloc returns %p, T#%d\n" , ptr, gtid)); |
1880 | return ptr; |
1881 | } |
1882 | |
1883 | void *__kmpc_calloc(int gtid, size_t nmemb, size_t size, |
1884 | omp_allocator_handle_t allocator) { |
1885 | KE_TRACE(25, ("__kmpc_calloc: T#%d (%d, %d, %p)\n" , gtid, (int)nmemb, |
1886 | (int)size, allocator)); |
1887 | void *ptr = __kmp_calloc(gtid, align: 0, nmemb, sz: size, al: allocator); |
1888 | KE_TRACE(25, ("__kmpc_calloc returns %p, T#%d\n" , ptr, gtid)); |
1889 | return ptr; |
1890 | } |
1891 | |
1892 | void *__kmpc_realloc(int gtid, void *ptr, size_t size, |
1893 | omp_allocator_handle_t allocator, |
1894 | omp_allocator_handle_t free_allocator) { |
1895 | KE_TRACE(25, ("__kmpc_realloc: T#%d (%p, %d, %p, %p)\n" , gtid, ptr, (int)size, |
1896 | allocator, free_allocator)); |
1897 | void *nptr = __kmp_realloc(gtid, ptr, sz: size, al: allocator, free_al: free_allocator); |
1898 | KE_TRACE(25, ("__kmpc_realloc returns %p, T#%d\n" , nptr, gtid)); |
1899 | return nptr; |
1900 | } |
1901 | |
1902 | void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t allocator) { |
1903 | KE_TRACE(25, ("__kmpc_free: T#%d free(%p,%p)\n" , gtid, ptr, allocator)); |
1904 | ___kmpc_free(gtid, ptr, al: allocator); |
1905 | KE_TRACE(10, ("__kmpc_free: T#%d freed %p (%p)\n" , gtid, ptr, allocator)); |
1906 | return; |
1907 | } |
1908 | |
1909 | // internal implementation, called from inside the library |
1910 | void *__kmp_alloc(int gtid, size_t algn, size_t size, |
1911 | omp_allocator_handle_t allocator) { |
1912 | void *ptr = NULL; |
1913 | kmp_allocator_t *al; |
1914 | KMP_DEBUG_ASSERT(__kmp_init_serial); |
1915 | if (size == 0) |
1916 | return NULL; |
1917 | if (allocator == omp_null_allocator) |
1918 | allocator = __kmp_threads[gtid]->th.th_def_allocator; |
1919 | kmp_int32 default_device = |
1920 | __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device; |
1921 | |
1922 | al = RCAST(kmp_allocator_t *, allocator); |
1923 | |
1924 | int sz_desc = sizeof(kmp_mem_desc_t); |
1925 | kmp_mem_desc_t desc; |
1926 | kmp_uintptr_t addr; // address returned by allocator |
1927 | kmp_uintptr_t addr_align; // address to return to caller |
1928 | kmp_uintptr_t addr_descr; // address of memory block descriptor |
1929 | size_t align = alignment; // default alignment |
1930 | if (allocator > kmp_max_mem_alloc && al->alignment > align) |
1931 | align = al->alignment; // alignment required by allocator trait |
1932 | if (align < algn) |
1933 | align = algn; // max of allocator trait, parameter and sizeof(void*) |
1934 | desc.size_orig = size; |
1935 | desc.size_a = size + sz_desc + align; |
1936 | bool is_pinned = false; |
1937 | if (allocator > kmp_max_mem_alloc) |
1938 | is_pinned = al->pinned; |
1939 | |
1940 | // Use default allocator if hwloc and libmemkind are not available |
1941 | int use_default_allocator = |
1942 | (!__kmp_hwloc_available && !__kmp_memkind_available); |
1943 | |
1944 | if (al > kmp_max_mem_alloc && al->memspace > kmp_max_mem_space) { |
1945 | // Memspace has been allocated for targets. |
1946 | return __kmp_tgt_allocator.omp_alloc(size, allocator); |
1947 | } |
1948 | |
1949 | if (KMP_IS_TARGET_MEM_ALLOC(allocator)) { |
1950 | // Use size input directly as the memory may not be accessible on host. |
1951 | // Use default device for now. |
1952 | if (__kmp_target_mem_available) { |
1953 | kmp_int32 device = |
1954 | __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device; |
1955 | if (allocator == llvm_omp_target_host_mem_alloc) |
1956 | ptr = kmp_target_alloc_host(size, device); |
1957 | else if (allocator == llvm_omp_target_shared_mem_alloc) |
1958 | ptr = kmp_target_alloc_shared(size, device); |
1959 | else // allocator == llvm_omp_target_device_mem_alloc |
1960 | ptr = kmp_target_alloc_device(size, device); |
1961 | return ptr; |
1962 | } else { |
1963 | KMP_INFORM(TargetMemNotAvailable); |
1964 | } |
1965 | } |
1966 | |
1967 | if (allocator >= kmp_max_mem_alloc && KMP_IS_TARGET_MEM_SPACE(al->memspace)) { |
1968 | if (__kmp_target_mem_available) { |
1969 | kmp_int32 device = |
1970 | __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device; |
1971 | if (al->memspace == llvm_omp_target_host_mem_space) |
1972 | ptr = kmp_target_alloc_host(size, device); |
1973 | else if (al->memspace == llvm_omp_target_shared_mem_space) |
1974 | ptr = kmp_target_alloc_shared(size, device); |
1975 | else // al->memspace == llvm_omp_target_device_mem_space |
1976 | ptr = kmp_target_alloc_device(size, device); |
1977 | return ptr; |
1978 | } else { |
1979 | KMP_INFORM(TargetMemNotAvailable); |
1980 | } |
1981 | } |
1982 | |
1983 | #if KMP_USE_HWLOC |
1984 | if (__kmp_hwloc_available) { |
1985 | if (__kmp_is_hwloc_membind_supported(HWLOC_MEMBIND_BIND)) { |
1986 | if (allocator < kmp_max_mem_alloc) { |
1987 | // pre-defined allocator |
1988 | if (allocator == omp_high_bw_mem_alloc) { |
1989 | ptr = __kmp_hwloc_alloc_membind(HWLOC_MEMATTR_ID_BANDWIDTH, |
1990 | desc.size_a, HWLOC_MEMBIND_BIND); |
1991 | if (ptr == NULL) |
1992 | use_default_allocator = true; |
1993 | } else if (allocator == omp_large_cap_mem_alloc) { |
1994 | ptr = __kmp_hwloc_alloc_membind(HWLOC_MEMATTR_ID_CAPACITY, |
1995 | desc.size_a, HWLOC_MEMBIND_BIND); |
1996 | if (ptr == NULL) |
1997 | use_default_allocator = true; |
1998 | } else { |
1999 | use_default_allocator = true; |
2000 | } |
2001 | if (use_default_allocator) { |
2002 | ptr = hwloc_alloc(__kmp_hwloc_topology, desc.size_a); |
2003 | } |
2004 | } else if (al->pool_size > 0) { |
2005 | // custom allocator with pool size requested |
2006 | kmp_uint64 used = |
2007 | KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, desc.size_a); |
2008 | if (used + desc.size_a > al->pool_size) { |
2009 | // not enough space, need to go fallback path |
2010 | KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a); |
2011 | if (al->fb == omp_atv_default_mem_fb) { |
2012 | al = (kmp_allocator_t *)omp_default_mem_alloc; |
2013 | ptr = hwloc_alloc(__kmp_hwloc_topology, desc.size_a); |
2014 | } else if (al->fb == omp_atv_abort_fb) { |
2015 | KMP_ASSERT(0); // abort fallback requested |
2016 | } else if (al->fb == omp_atv_allocator_fb) { |
2017 | KMP_ASSERT(al != al->fb_data); |
2018 | al = al->fb_data; |
2019 | return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al); |
2020 | } // else ptr == NULL; |
2021 | } else { |
2022 | // pool has enough space |
2023 | if (al->membind == omp_atv_interleaved) { |
2024 | if (__kmp_is_hwloc_membind_supported(HWLOC_MEMBIND_INTERLEAVE)) { |
2025 | ptr = __kmp_hwloc_membind_policy(al->memspace, desc.size_a, |
2026 | HWLOC_MEMBIND_INTERLEAVE); |
2027 | } |
2028 | } else if (al->membind == omp_atv_environment) { |
2029 | ptr = __kmp_hwloc_membind_policy(al->memspace, desc.size_a, |
2030 | HWLOC_MEMBIND_DEFAULT); |
2031 | } else { |
2032 | ptr = hwloc_alloc(__kmp_hwloc_topology, desc.size_a); |
2033 | } |
2034 | if (ptr == NULL) { |
2035 | if (al->fb == omp_atv_default_mem_fb) { |
2036 | al = (kmp_allocator_t *)omp_default_mem_alloc; |
2037 | ptr = hwloc_alloc(__kmp_hwloc_topology, desc.size_a); |
2038 | } else if (al->fb == omp_atv_abort_fb) { |
2039 | KMP_ASSERT(0); // abort fallback requested |
2040 | } else if (al->fb == omp_atv_allocator_fb) { |
2041 | KMP_ASSERT(al != al->fb_data); |
2042 | al = al->fb_data; |
2043 | return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al); |
2044 | } |
2045 | } |
2046 | } |
2047 | } else { |
2048 | // custom allocator, pool size not requested |
2049 | if (al->membind == omp_atv_interleaved) { |
2050 | if (__kmp_is_hwloc_membind_supported(HWLOC_MEMBIND_INTERLEAVE)) { |
2051 | ptr = __kmp_hwloc_membind_policy(al->memspace, desc.size_a, |
2052 | HWLOC_MEMBIND_INTERLEAVE); |
2053 | } |
2054 | } else if (al->membind == omp_atv_environment) { |
2055 | ptr = __kmp_hwloc_membind_policy(al->memspace, desc.size_a, |
2056 | HWLOC_MEMBIND_DEFAULT); |
2057 | } else { |
2058 | ptr = hwloc_alloc(__kmp_hwloc_topology, desc.size_a); |
2059 | } |
2060 | if (ptr == NULL) { |
2061 | if (al->fb == omp_atv_default_mem_fb) { |
2062 | al = (kmp_allocator_t *)omp_default_mem_alloc; |
2063 | ptr = hwloc_alloc(__kmp_hwloc_topology, desc.size_a); |
2064 | } else if (al->fb == omp_atv_abort_fb) { |
2065 | KMP_ASSERT(0); // abort fallback requested |
2066 | } else if (al->fb == omp_atv_allocator_fb) { |
2067 | KMP_ASSERT(al != al->fb_data); |
2068 | al = al->fb_data; |
2069 | return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al); |
2070 | } |
2071 | } |
2072 | } |
2073 | } else { // alloc membind not supported, use hwloc_alloc |
2074 | ptr = hwloc_alloc(__kmp_hwloc_topology, desc.size_a); |
2075 | } |
2076 | } else { |
2077 | #endif |
2078 | if (__kmp_memkind_available) { |
2079 | if (allocator < kmp_max_mem_alloc) { |
2080 | // pre-defined allocator |
2081 | if (allocator == omp_high_bw_mem_alloc && mk_hbw_preferred) { |
2082 | ptr = kmp_mk_alloc(*mk_hbw_preferred, desc.size_a); |
2083 | } else if (allocator == omp_large_cap_mem_alloc && mk_dax_kmem_all) { |
2084 | ptr = kmp_mk_alloc(*mk_dax_kmem_all, desc.size_a); |
2085 | } else { |
2086 | ptr = kmp_mk_alloc(*mk_default, desc.size_a); |
2087 | } |
2088 | } else if (al->pool_size > 0) { |
2089 | // custom allocator with pool size requested |
2090 | kmp_uint64 used = |
2091 | KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, desc.size_a); |
2092 | if (used + desc.size_a > al->pool_size) { |
2093 | // not enough space, need to go fallback path |
2094 | KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a); |
2095 | if (al->fb == omp_atv_default_mem_fb) { |
2096 | al = (kmp_allocator_t *)omp_default_mem_alloc; |
2097 | ptr = kmp_mk_alloc(*mk_default, desc.size_a); |
2098 | } else if (al->fb == omp_atv_abort_fb) { |
2099 | KMP_ASSERT(0); // abort fallback requested |
2100 | } else if (al->fb == omp_atv_allocator_fb) { |
2101 | KMP_ASSERT(al != al->fb_data); |
2102 | al = al->fb_data; |
2103 | ptr = __kmp_alloc(gtid, algn, size, allocator: (omp_allocator_handle_t)al); |
2104 | if (is_pinned && kmp_target_lock_mem) |
2105 | kmp_target_lock_mem(ptr, size, default_device); |
2106 | return ptr; |
2107 | } // else ptr == NULL; |
2108 | } else { |
2109 | // pool has enough space |
2110 | ptr = kmp_mk_alloc(*al->memkind, desc.size_a); |
2111 | if (ptr == NULL) { |
2112 | if (al->fb == omp_atv_default_mem_fb) { |
2113 | al = (kmp_allocator_t *)omp_default_mem_alloc; |
2114 | ptr = kmp_mk_alloc(*mk_default, desc.size_a); |
2115 | } else if (al->fb == omp_atv_abort_fb) { |
2116 | KMP_ASSERT(0); // abort fallback requested |
2117 | } else if (al->fb == omp_atv_allocator_fb) { |
2118 | KMP_ASSERT(al != al->fb_data); |
2119 | al = al->fb_data; |
2120 | ptr = __kmp_alloc(gtid, algn, size, allocator: (omp_allocator_handle_t)al); |
2121 | if (is_pinned && kmp_target_lock_mem) |
2122 | kmp_target_lock_mem(ptr, size, default_device); |
2123 | return ptr; |
2124 | } |
2125 | } |
2126 | } |
2127 | } else { |
2128 | // custom allocator, pool size not requested |
2129 | ptr = kmp_mk_alloc(*al->memkind, desc.size_a); |
2130 | if (ptr == NULL) { |
2131 | if (al->fb == omp_atv_default_mem_fb) { |
2132 | al = (kmp_allocator_t *)omp_default_mem_alloc; |
2133 | ptr = kmp_mk_alloc(*mk_default, desc.size_a); |
2134 | } else if (al->fb == omp_atv_abort_fb) { |
2135 | KMP_ASSERT(0); // abort fallback requested |
2136 | } else if (al->fb == omp_atv_allocator_fb) { |
2137 | KMP_ASSERT(al != al->fb_data); |
2138 | al = al->fb_data; |
2139 | ptr = __kmp_alloc(gtid, algn, size, allocator: (omp_allocator_handle_t)al); |
2140 | if (is_pinned && kmp_target_lock_mem) |
2141 | kmp_target_lock_mem(ptr, size, default_device); |
2142 | return ptr; |
2143 | } |
2144 | } |
2145 | } |
2146 | } else if (allocator < kmp_max_mem_alloc) { |
2147 | // pre-defined allocator |
2148 | if (allocator == omp_high_bw_mem_alloc) { |
2149 | KMP_WARNING(OmpNoAllocator, "omp_high_bw_mem_alloc" ); |
2150 | } else if (allocator == omp_large_cap_mem_alloc) { |
2151 | KMP_WARNING(OmpNoAllocator, "omp_large_cap_mem_alloc" ); |
2152 | } else if (allocator == omp_const_mem_alloc) { |
2153 | KMP_WARNING(OmpNoAllocator, "omp_const_mem_alloc" ); |
2154 | } else if (allocator == omp_low_lat_mem_alloc) { |
2155 | KMP_WARNING(OmpNoAllocator, "omp_low_lat_mem_alloc" ); |
2156 | } else if (allocator == omp_cgroup_mem_alloc) { |
2157 | KMP_WARNING(OmpNoAllocator, "omp_cgroup_mem_alloc" ); |
2158 | } else if (allocator == omp_pteam_mem_alloc) { |
2159 | KMP_WARNING(OmpNoAllocator, "omp_pteam_mem_alloc" ); |
2160 | } else if (allocator == omp_thread_mem_alloc) { |
2161 | KMP_WARNING(OmpNoAllocator, "omp_thread_mem_alloc" ); |
2162 | } else { // default allocator requested |
2163 | use_default_allocator = true; |
2164 | } |
2165 | if (use_default_allocator) { |
2166 | ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a); |
2167 | use_default_allocator = false; |
2168 | } |
2169 | } else if (al->pool_size > 0) { |
2170 | // custom allocator with pool size requested |
2171 | kmp_uint64 used = |
2172 | KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, desc.size_a); |
2173 | if (used + desc.size_a > al->pool_size) { |
2174 | // not enough space, need to go fallback path |
2175 | KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a); |
2176 | if (al->fb == omp_atv_default_mem_fb) { |
2177 | al = (kmp_allocator_t *)omp_default_mem_alloc; |
2178 | ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a); |
2179 | } else if (al->fb == omp_atv_abort_fb) { |
2180 | KMP_ASSERT(0); // abort fallback requested |
2181 | } else if (al->fb == omp_atv_allocator_fb) { |
2182 | KMP_ASSERT(al != al->fb_data); |
2183 | al = al->fb_data; |
2184 | ptr = __kmp_alloc(gtid, algn, size, allocator: (omp_allocator_handle_t)al); |
2185 | if (is_pinned && kmp_target_lock_mem) |
2186 | kmp_target_lock_mem(ptr, size, default_device); |
2187 | return ptr; |
2188 | } // else ptr == NULL |
2189 | } else { |
2190 | // pool has enough space |
2191 | ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a); |
2192 | if (ptr == NULL && al->fb == omp_atv_abort_fb) { |
2193 | KMP_ASSERT(0); // abort fallback requested |
2194 | } // no sense to look for another fallback because of same internal |
2195 | // alloc |
2196 | } |
2197 | } else { |
2198 | // custom allocator, pool size not requested |
2199 | ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a); |
2200 | if (ptr == NULL && al->fb == omp_atv_abort_fb) { |
2201 | KMP_ASSERT(0); // abort fallback requested |
2202 | } // no sense to look for another fallback because of same internal alloc |
2203 | } |
2204 | #if KMP_USE_HWLOC |
2205 | } |
2206 | #endif |
2207 | KE_TRACE(10, ("__kmp_alloc: T#%d %p=alloc(%d)\n" , gtid, ptr, desc.size_a)); |
2208 | if (ptr == NULL) |
2209 | return NULL; |
2210 | |
2211 | if (is_pinned && kmp_target_lock_mem) |
2212 | kmp_target_lock_mem(ptr, desc.size_a, default_device); |
2213 | |
2214 | addr = (kmp_uintptr_t)ptr; |
2215 | addr_align = (addr + sz_desc + align - 1) & ~(align - 1); |
2216 | addr_descr = addr_align - sz_desc; |
2217 | |
2218 | desc.ptr_alloc = ptr; |
2219 | desc.ptr_align = (void *)addr_align; |
2220 | desc.allocator = al; |
2221 | *((kmp_mem_desc_t *)addr_descr) = desc; // save descriptor contents |
2222 | KMP_MB(); |
2223 | |
2224 | return desc.ptr_align; |
2225 | } |
2226 | |
2227 | void *__kmp_calloc(int gtid, size_t algn, size_t nmemb, size_t size, |
2228 | omp_allocator_handle_t allocator) { |
2229 | void *ptr = NULL; |
2230 | kmp_allocator_t *al; |
2231 | KMP_DEBUG_ASSERT(__kmp_init_serial); |
2232 | |
2233 | if (allocator == omp_null_allocator) |
2234 | allocator = __kmp_threads[gtid]->th.th_def_allocator; |
2235 | |
2236 | al = RCAST(kmp_allocator_t *, allocator); |
2237 | |
2238 | if (nmemb == 0 || size == 0) |
2239 | return ptr; |
2240 | |
2241 | if ((SIZE_MAX - sizeof(kmp_mem_desc_t)) / size < nmemb) { |
2242 | if (al->fb == omp_atv_abort_fb) { |
2243 | KMP_ASSERT(0); |
2244 | } |
2245 | return ptr; |
2246 | } |
2247 | |
2248 | ptr = __kmp_alloc(gtid, algn, size: nmemb * size, allocator); |
2249 | |
2250 | if (ptr) { |
2251 | memset(s: ptr, c: 0x00, n: nmemb * size); |
2252 | } |
2253 | return ptr; |
2254 | } |
2255 | |
2256 | void *__kmp_realloc(int gtid, void *ptr, size_t size, |
2257 | omp_allocator_handle_t allocator, |
2258 | omp_allocator_handle_t free_allocator) { |
2259 | void *nptr = NULL; |
2260 | KMP_DEBUG_ASSERT(__kmp_init_serial); |
2261 | |
2262 | if (size == 0) { |
2263 | if (ptr != NULL) |
2264 | ___kmpc_free(gtid, ptr, al: free_allocator); |
2265 | return nptr; |
2266 | } |
2267 | |
2268 | nptr = __kmp_alloc(gtid, algn: 0, size, allocator); |
2269 | |
2270 | if (nptr != NULL && ptr != NULL) { |
2271 | kmp_mem_desc_t desc; |
2272 | kmp_uintptr_t addr_align; // address to return to caller |
2273 | kmp_uintptr_t addr_descr; // address of memory block descriptor |
2274 | |
2275 | addr_align = (kmp_uintptr_t)ptr; |
2276 | addr_descr = addr_align - sizeof(kmp_mem_desc_t); |
2277 | desc = *((kmp_mem_desc_t *)addr_descr); // read descriptor |
2278 | |
2279 | KMP_DEBUG_ASSERT(desc.ptr_align == ptr); |
2280 | KMP_DEBUG_ASSERT(desc.size_orig > 0); |
2281 | KMP_DEBUG_ASSERT(desc.size_orig < desc.size_a); |
2282 | KMP_MEMCPY(dest: (char *)nptr, src: (char *)ptr, |
2283 | n: (size_t)((size < desc.size_orig) ? size : desc.size_orig)); |
2284 | } |
2285 | |
2286 | if (nptr != NULL) { |
2287 | ___kmpc_free(gtid, ptr, al: free_allocator); |
2288 | } |
2289 | |
2290 | return nptr; |
2291 | } |
2292 | |
2293 | void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t allocator) { |
2294 | if (ptr == NULL) |
2295 | return; |
2296 | |
2297 | kmp_allocator_t *al; |
2298 | omp_allocator_handle_t oal; |
2299 | al = RCAST(kmp_allocator_t *, CCAST(omp_allocator_handle_t, allocator)); |
2300 | kmp_mem_desc_t desc; |
2301 | kmp_uintptr_t addr_align; // address to return to caller |
2302 | kmp_uintptr_t addr_descr; // address of memory block descriptor |
2303 | |
2304 | if (al > kmp_max_mem_alloc && al->memspace > kmp_max_mem_space) { |
2305 | __kmp_tgt_allocator.omp_free(ptr, allocator); |
2306 | return; |
2307 | } |
2308 | |
2309 | if (__kmp_target_mem_available && (KMP_IS_TARGET_MEM_ALLOC(allocator) || |
2310 | (allocator > kmp_max_mem_alloc && |
2311 | KMP_IS_TARGET_MEM_SPACE(al->memspace)))) { |
2312 | kmp_int32 device = |
2313 | __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device; |
2314 | if (allocator == llvm_omp_target_host_mem_alloc) { |
2315 | kmp_target_free_host(ptr, device); |
2316 | } else if (allocator == llvm_omp_target_shared_mem_alloc) { |
2317 | kmp_target_free_shared(ptr, device); |
2318 | } else if (allocator == llvm_omp_target_device_mem_alloc) { |
2319 | kmp_target_free_device(ptr, device); |
2320 | } |
2321 | return; |
2322 | } |
2323 | |
2324 | addr_align = (kmp_uintptr_t)ptr; |
2325 | addr_descr = addr_align - sizeof(kmp_mem_desc_t); |
2326 | desc = *((kmp_mem_desc_t *)addr_descr); // read descriptor |
2327 | |
2328 | KMP_DEBUG_ASSERT(desc.ptr_align == ptr); |
2329 | if (allocator) { |
2330 | KMP_DEBUG_ASSERT(desc.allocator == al || desc.allocator == al->fb_data); |
2331 | } |
2332 | al = desc.allocator; |
2333 | oal = (omp_allocator_handle_t)al; // cast to void* for comparisons |
2334 | KMP_DEBUG_ASSERT(al); |
2335 | |
2336 | if (allocator > kmp_max_mem_alloc && kmp_target_unlock_mem && al->pinned) { |
2337 | kmp_int32 device = |
2338 | __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device; |
2339 | kmp_target_unlock_mem(desc.ptr_alloc, device); |
2340 | } |
2341 | |
2342 | #if KMP_USE_HWLOC |
2343 | if (__kmp_hwloc_available) { |
2344 | if (oal > kmp_max_mem_alloc && al->pool_size > 0) { |
2345 | kmp_uint64 used = |
2346 | KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a); |
2347 | (void)used; // to suppress compiler warning |
2348 | KMP_DEBUG_ASSERT(used >= desc.size_a); |
2349 | } |
2350 | hwloc_free(__kmp_hwloc_topology, desc.ptr_alloc, desc.size_a); |
2351 | } else { |
2352 | #endif |
2353 | if (__kmp_memkind_available) { |
2354 | if (oal < kmp_max_mem_alloc) { |
2355 | // pre-defined allocator |
2356 | if (oal == omp_high_bw_mem_alloc && mk_hbw_preferred) { |
2357 | kmp_mk_free(*mk_hbw_preferred, desc.ptr_alloc); |
2358 | } else if (oal == omp_large_cap_mem_alloc && mk_dax_kmem_all) { |
2359 | kmp_mk_free(*mk_dax_kmem_all, desc.ptr_alloc); |
2360 | } else { |
2361 | kmp_mk_free(*mk_default, desc.ptr_alloc); |
2362 | } |
2363 | } else { |
2364 | if (al->pool_size > 0) { // custom allocator with pool size requested |
2365 | kmp_uint64 used = |
2366 | KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a); |
2367 | (void)used; // to suppress compiler warning |
2368 | KMP_DEBUG_ASSERT(used >= desc.size_a); |
2369 | } |
2370 | kmp_mk_free(*al->memkind, desc.ptr_alloc); |
2371 | } |
2372 | } else { |
2373 | if (oal > kmp_max_mem_alloc && al->pool_size > 0) { |
2374 | kmp_uint64 used = |
2375 | KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a); |
2376 | (void)used; // to suppress compiler warning |
2377 | KMP_DEBUG_ASSERT(used >= desc.size_a); |
2378 | } |
2379 | __kmp_thread_free(__kmp_thread_from_gtid(gtid), desc.ptr_alloc); |
2380 | } |
2381 | #if KMP_USE_HWLOC |
2382 | } |
2383 | #endif |
2384 | } |
2385 | |
2386 | /* If LEAK_MEMORY is defined, __kmp_free() will *not* free memory. It causes |
2387 | memory leaks, but it may be useful for debugging memory corruptions, used |
2388 | freed pointers, etc. */ |
2389 | /* #define LEAK_MEMORY */ |
2390 | struct kmp_mem_descr { // Memory block descriptor. |
2391 | void *ptr_allocated; // Pointer returned by malloc(), subject for free(). |
2392 | size_t size_allocated; // Size of allocated memory block. |
2393 | void *ptr_aligned; // Pointer to aligned memory, to be used by client code. |
2394 | size_t size_aligned; // Size of aligned memory block. |
2395 | }; |
2396 | typedef struct kmp_mem_descr kmp_mem_descr_t; |
2397 | |
2398 | /* Allocate memory on requested boundary, fill allocated memory with 0x00. |
2399 | NULL is NEVER returned, __kmp_abort() is called in case of memory allocation |
2400 | error. Must use __kmp_free when freeing memory allocated by this routine! */ |
2401 | static void *___kmp_allocate_align(size_t size, |
2402 | size_t alignment KMP_SRC_LOC_DECL) { |
2403 | /* __kmp_allocate() allocates (by call to malloc()) bigger memory block than |
2404 | requested to return properly aligned pointer. Original pointer returned |
2405 | by malloc() and size of allocated block is saved in descriptor just |
2406 | before the aligned pointer. This information used by __kmp_free() -- it |
2407 | has to pass to free() original pointer, not aligned one. |
2408 | |
2409 | +---------+------------+-----------------------------------+---------+ |
2410 | | padding | descriptor | aligned block | padding | |
2411 | +---------+------------+-----------------------------------+---------+ |
2412 | ^ ^ |
2413 | | | |
2414 | | +- Aligned pointer returned to caller |
2415 | +- Pointer returned by malloc() |
2416 | |
2417 | Aligned block is filled with zeros, paddings are filled with 0xEF. */ |
2418 | |
2419 | kmp_mem_descr_t descr; |
2420 | kmp_uintptr_t addr_allocated; // Address returned by malloc(). |
2421 | kmp_uintptr_t addr_aligned; // Aligned address to return to caller. |
2422 | kmp_uintptr_t addr_descr; // Address of memory block descriptor. |
2423 | |
2424 | KE_TRACE(25, ("-> ___kmp_allocate_align( %d, %d ) called from %s:%d\n" , |
2425 | (int)size, (int)alignment KMP_SRC_LOC_PARM)); |
2426 | |
2427 | KMP_DEBUG_ASSERT(alignment < 32 * 1024); // Alignment should not be too |
2428 | KMP_DEBUG_ASSERT(sizeof(void *) <= sizeof(kmp_uintptr_t)); |
2429 | // Make sure kmp_uintptr_t is enough to store addresses. |
2430 | |
2431 | descr.size_aligned = size; |
2432 | descr.size_allocated = |
2433 | descr.size_aligned + sizeof(kmp_mem_descr_t) + alignment; |
2434 | |
2435 | #if KMP_DEBUG |
2436 | descr.ptr_allocated = _malloc_src_loc(descr.size_allocated, _file_, _line_); |
2437 | #else |
2438 | descr.ptr_allocated = malloc_src_loc(descr.size_allocated KMP_SRC_LOC_PARM); |
2439 | #endif |
2440 | KE_TRACE(10, (" malloc( %d ) returned %p\n" , (int)descr.size_allocated, |
2441 | descr.ptr_allocated)); |
2442 | if (descr.ptr_allocated == NULL) { |
2443 | KMP_FATAL(OutOfHeapMemory); |
2444 | } |
2445 | |
2446 | addr_allocated = (kmp_uintptr_t)descr.ptr_allocated; |
2447 | addr_aligned = |
2448 | (addr_allocated + sizeof(kmp_mem_descr_t) + alignment) & ~(alignment - 1); |
2449 | addr_descr = addr_aligned - sizeof(kmp_mem_descr_t); |
2450 | |
2451 | descr.ptr_aligned = (void *)addr_aligned; |
2452 | |
2453 | KE_TRACE(26, (" ___kmp_allocate_align: " |
2454 | "ptr_allocated=%p, size_allocated=%d, " |
2455 | "ptr_aligned=%p, size_aligned=%d\n" , |
2456 | descr.ptr_allocated, (int)descr.size_allocated, |
2457 | descr.ptr_aligned, (int)descr.size_aligned)); |
2458 | |
2459 | KMP_DEBUG_ASSERT(addr_allocated <= addr_descr); |
2460 | KMP_DEBUG_ASSERT(addr_descr + sizeof(kmp_mem_descr_t) == addr_aligned); |
2461 | KMP_DEBUG_ASSERT(addr_aligned + descr.size_aligned <= |
2462 | addr_allocated + descr.size_allocated); |
2463 | KMP_DEBUG_ASSERT(addr_aligned % alignment == 0); |
2464 | #ifdef KMP_DEBUG |
2465 | memset(s: descr.ptr_allocated, c: 0xEF, n: descr.size_allocated); |
2466 | // Fill allocated memory block with 0xEF. |
2467 | #endif |
2468 | memset(s: descr.ptr_aligned, c: 0x00, n: descr.size_aligned); |
2469 | // Fill the aligned memory block (which is intended for using by caller) with |
2470 | // 0x00. Do not |
2471 | // put this filling under KMP_DEBUG condition! Many callers expect zeroed |
2472 | // memory. (Padding |
2473 | // bytes remain filled with 0xEF in debugging library.) |
2474 | *((kmp_mem_descr_t *)addr_descr) = descr; |
2475 | |
2476 | KMP_MB(); |
2477 | |
2478 | KE_TRACE(25, ("<- ___kmp_allocate_align() returns %p\n" , descr.ptr_aligned)); |
2479 | return descr.ptr_aligned; |
2480 | } // func ___kmp_allocate_align |
2481 | |
2482 | /* Allocate memory on cache line boundary, fill allocated memory with 0x00. |
2483 | Do not call this func directly! Use __kmp_allocate macro instead. |
2484 | NULL is NEVER returned, __kmp_abort() is called in case of memory allocation |
2485 | error. Must use __kmp_free when freeing memory allocated by this routine! */ |
2486 | void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL) { |
2487 | void *ptr; |
2488 | KE_TRACE(25, ("-> __kmp_allocate( %d ) called from %s:%d\n" , |
2489 | (int)size KMP_SRC_LOC_PARM)); |
2490 | ptr = ___kmp_allocate_align(size, alignment: __kmp_align_alloc KMP_SRC_LOC_PARM); |
2491 | KE_TRACE(25, ("<- __kmp_allocate() returns %p\n" , ptr)); |
2492 | return ptr; |
2493 | } // func ___kmp_allocate |
2494 | |
2495 | /* Allocate memory on page boundary, fill allocated memory with 0x00. |
2496 | Does not call this func directly! Use __kmp_page_allocate macro instead. |
2497 | NULL is NEVER returned, __kmp_abort() is called in case of memory allocation |
2498 | error. Must use __kmp_free when freeing memory allocated by this routine! */ |
2499 | void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL) { |
2500 | int page_size = 8 * 1024; |
2501 | void *ptr; |
2502 | |
2503 | KE_TRACE(25, ("-> __kmp_page_allocate( %d ) called from %s:%d\n" , |
2504 | (int)size KMP_SRC_LOC_PARM)); |
2505 | ptr = ___kmp_allocate_align(size, alignment: page_size KMP_SRC_LOC_PARM); |
2506 | KE_TRACE(25, ("<- __kmp_page_allocate( %d ) returns %p\n" , (int)size, ptr)); |
2507 | return ptr; |
2508 | } // ___kmp_page_allocate |
2509 | |
2510 | /* Free memory allocated by __kmp_allocate() and __kmp_page_allocate(). |
2511 | In debug mode, fill the memory block with 0xEF before call to free(). */ |
2512 | void ___kmp_free(void *ptr KMP_SRC_LOC_DECL) { |
2513 | kmp_mem_descr_t descr; |
2514 | #if KMP_DEBUG |
2515 | kmp_uintptr_t addr_allocated; // Address returned by malloc(). |
2516 | kmp_uintptr_t addr_aligned; // Aligned address passed by caller. |
2517 | #endif |
2518 | KE_TRACE(25, |
2519 | ("-> __kmp_free( %p ) called from %s:%d\n" , ptr KMP_SRC_LOC_PARM)); |
2520 | KMP_ASSERT(ptr != NULL); |
2521 | |
2522 | descr = *(kmp_mem_descr_t *)((kmp_uintptr_t)ptr - sizeof(kmp_mem_descr_t)); |
2523 | |
2524 | KE_TRACE(26, (" __kmp_free: " |
2525 | "ptr_allocated=%p, size_allocated=%d, " |
2526 | "ptr_aligned=%p, size_aligned=%d\n" , |
2527 | descr.ptr_allocated, (int)descr.size_allocated, |
2528 | descr.ptr_aligned, (int)descr.size_aligned)); |
2529 | #if KMP_DEBUG |
2530 | addr_allocated = (kmp_uintptr_t)descr.ptr_allocated; |
2531 | addr_aligned = (kmp_uintptr_t)descr.ptr_aligned; |
2532 | KMP_DEBUG_ASSERT(addr_aligned % CACHE_LINE == 0); |
2533 | KMP_DEBUG_ASSERT(descr.ptr_aligned == ptr); |
2534 | KMP_DEBUG_ASSERT(addr_allocated + sizeof(kmp_mem_descr_t) <= addr_aligned); |
2535 | KMP_DEBUG_ASSERT(descr.size_aligned < descr.size_allocated); |
2536 | KMP_DEBUG_ASSERT(addr_aligned + descr.size_aligned <= |
2537 | addr_allocated + descr.size_allocated); |
2538 | memset(s: descr.ptr_allocated, c: 0xEF, n: descr.size_allocated); |
2539 | // Fill memory block with 0xEF, it helps catch using freed memory. |
2540 | #endif |
2541 | |
2542 | #ifndef LEAK_MEMORY |
2543 | KE_TRACE(10, (" free( %p )\n" , descr.ptr_allocated)); |
2544 | #ifdef KMP_DEBUG |
2545 | _free_src_loc(descr.ptr_allocated, _file_, _line_); |
2546 | #else |
2547 | free_src_loc(descr.ptr_allocated KMP_SRC_LOC_PARM); |
2548 | #endif |
2549 | #endif |
2550 | KMP_MB(); |
2551 | KE_TRACE(25, ("<- __kmp_free() returns\n" )); |
2552 | } // func ___kmp_free |
2553 | |
2554 | #if USE_FAST_MEMORY == 3 |
2555 | // Allocate fast memory by first scanning the thread's free lists |
2556 | // If a chunk the right size exists, grab it off the free list. |
2557 | // Otherwise allocate normally using kmp_thread_malloc. |
2558 | |
2559 | // AC: How to choose the limit? Just get 16 for now... |
2560 | #define KMP_FREE_LIST_LIMIT 16 |
2561 | |
2562 | // Always use 128 bytes for determining buckets for caching memory blocks |
2563 | #define DCACHE_LINE 128 |
2564 | |
2565 | void *___kmp_fast_allocate(kmp_info_t *this_thr, size_t size KMP_SRC_LOC_DECL) { |
2566 | void *ptr; |
2567 | size_t num_lines, idx; |
2568 | int index; |
2569 | void *alloc_ptr; |
2570 | size_t alloc_size; |
2571 | kmp_mem_descr_t *descr; |
2572 | |
2573 | KE_TRACE(25, ("-> __kmp_fast_allocate( T#%d, %d ) called from %s:%d\n" , |
2574 | __kmp_gtid_from_thread(this_thr), (int)size KMP_SRC_LOC_PARM)); |
2575 | |
2576 | num_lines = (size + DCACHE_LINE - 1) / DCACHE_LINE; |
2577 | idx = num_lines - 1; |
2578 | KMP_DEBUG_ASSERT(idx >= 0); |
2579 | if (idx < 2) { |
2580 | index = 0; // idx is [ 0, 1 ], use first free list |
2581 | num_lines = 2; // 1, 2 cache lines or less than cache line |
2582 | } else if ((idx >>= 2) == 0) { |
2583 | index = 1; // idx is [ 2, 3 ], use second free list |
2584 | num_lines = 4; // 3, 4 cache lines |
2585 | } else if ((idx >>= 2) == 0) { |
2586 | index = 2; // idx is [ 4, 15 ], use third free list |
2587 | num_lines = 16; // 5, 6, ..., 16 cache lines |
2588 | } else if ((idx >>= 2) == 0) { |
2589 | index = 3; // idx is [ 16, 63 ], use fourth free list |
2590 | num_lines = 64; // 17, 18, ..., 64 cache lines |
2591 | } else { |
2592 | goto alloc_call; // 65 or more cache lines ( > 8KB ), don't use free lists |
2593 | } |
2594 | |
2595 | ptr = this_thr->th.th_free_lists[index].th_free_list_self; |
2596 | if (ptr != NULL) { |
2597 | // pop the head of no-sync free list |
2598 | this_thr->th.th_free_lists[index].th_free_list_self = *((void **)ptr); |
2599 | KMP_DEBUG_ASSERT(this_thr == ((kmp_mem_descr_t *)((kmp_uintptr_t)ptr - |
2600 | sizeof(kmp_mem_descr_t))) |
2601 | ->ptr_aligned); |
2602 | goto end; |
2603 | } |
2604 | ptr = TCR_SYNC_PTR(this_thr->th.th_free_lists[index].th_free_list_sync); |
2605 | if (ptr != NULL) { |
2606 | // no-sync free list is empty, use sync free list (filled in by other |
2607 | // threads only) |
2608 | // pop the head of the sync free list, push NULL instead |
2609 | while (!KMP_COMPARE_AND_STORE_PTR( |
2610 | &this_thr->th.th_free_lists[index].th_free_list_sync, ptr, nullptr)) { |
2611 | KMP_CPU_PAUSE(); |
2612 | ptr = TCR_SYNC_PTR(this_thr->th.th_free_lists[index].th_free_list_sync); |
2613 | } |
2614 | // push the rest of chain into no-sync free list (can be NULL if there was |
2615 | // the only block) |
2616 | this_thr->th.th_free_lists[index].th_free_list_self = *((void **)ptr); |
2617 | KMP_DEBUG_ASSERT(this_thr == ((kmp_mem_descr_t *)((kmp_uintptr_t)ptr - |
2618 | sizeof(kmp_mem_descr_t))) |
2619 | ->ptr_aligned); |
2620 | goto end; |
2621 | } |
2622 | |
2623 | alloc_call: |
2624 | // haven't found block in the free lists, thus allocate it |
2625 | size = num_lines * DCACHE_LINE; |
2626 | |
2627 | alloc_size = size + sizeof(kmp_mem_descr_t) + DCACHE_LINE; |
2628 | KE_TRACE(25, ("__kmp_fast_allocate: T#%d Calling __kmp_thread_malloc with " |
2629 | "alloc_size %d\n" , |
2630 | __kmp_gtid_from_thread(this_thr), alloc_size)); |
2631 | alloc_ptr = bget(th: this_thr, requested_size: (bufsize)alloc_size); |
2632 | |
2633 | // align ptr to DCACHE_LINE |
2634 | ptr = (void *)((((kmp_uintptr_t)alloc_ptr) + sizeof(kmp_mem_descr_t) + |
2635 | DCACHE_LINE) & |
2636 | ~(DCACHE_LINE - 1)); |
2637 | descr = (kmp_mem_descr_t *)(((kmp_uintptr_t)ptr) - sizeof(kmp_mem_descr_t)); |
2638 | |
2639 | descr->ptr_allocated = alloc_ptr; // remember allocated pointer |
2640 | // we don't need size_allocated |
2641 | descr->ptr_aligned = (void *)this_thr; // remember allocating thread |
2642 | // (it is already saved in bget buffer, |
2643 | // but we may want to use another allocator in future) |
2644 | descr->size_aligned = size; |
2645 | |
2646 | end: |
2647 | KE_TRACE(25, ("<- __kmp_fast_allocate( T#%d ) returns %p\n" , |
2648 | __kmp_gtid_from_thread(this_thr), ptr)); |
2649 | return ptr; |
2650 | } // func __kmp_fast_allocate |
2651 | |
2652 | // Free fast memory and place it on the thread's free list if it is of |
2653 | // the correct size. |
2654 | void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL) { |
2655 | kmp_mem_descr_t *descr; |
2656 | kmp_info_t *alloc_thr; |
2657 | size_t size; |
2658 | size_t idx; |
2659 | int index; |
2660 | |
2661 | KE_TRACE(25, ("-> __kmp_fast_free( T#%d, %p ) called from %s:%d\n" , |
2662 | __kmp_gtid_from_thread(this_thr), ptr KMP_SRC_LOC_PARM)); |
2663 | KMP_ASSERT(ptr != NULL); |
2664 | |
2665 | descr = (kmp_mem_descr_t *)(((kmp_uintptr_t)ptr) - sizeof(kmp_mem_descr_t)); |
2666 | |
2667 | KE_TRACE(26, (" __kmp_fast_free: size_aligned=%d\n" , |
2668 | (int)descr->size_aligned)); |
2669 | |
2670 | size = descr->size_aligned; // 2, 4, 16, 64, 65, 66, ... cache lines |
2671 | |
2672 | idx = DCACHE_LINE * 2; // 2 cache lines is minimal size of block |
2673 | if (idx == size) { |
2674 | index = 0; // 2 cache lines |
2675 | } else if ((idx <<= 1) == size) { |
2676 | index = 1; // 4 cache lines |
2677 | } else if ((idx <<= 2) == size) { |
2678 | index = 2; // 16 cache lines |
2679 | } else if ((idx <<= 2) == size) { |
2680 | index = 3; // 64 cache lines |
2681 | } else { |
2682 | KMP_DEBUG_ASSERT(size > DCACHE_LINE * 64); |
2683 | goto free_call; // 65 or more cache lines ( > 8KB ) |
2684 | } |
2685 | |
2686 | alloc_thr = (kmp_info_t *)descr->ptr_aligned; // get thread owning the block |
2687 | if (alloc_thr == this_thr) { |
2688 | // push block to self no-sync free list, linking previous head (LIFO) |
2689 | *((void **)ptr) = this_thr->th.th_free_lists[index].th_free_list_self; |
2690 | this_thr->th.th_free_lists[index].th_free_list_self = ptr; |
2691 | } else { |
2692 | void *head = this_thr->th.th_free_lists[index].th_free_list_other; |
2693 | if (head == NULL) { |
2694 | // Create new free list |
2695 | this_thr->th.th_free_lists[index].th_free_list_other = ptr; |
2696 | *((void **)ptr) = NULL; // mark the tail of the list |
2697 | descr->size_allocated = (size_t)1; // head of the list keeps its length |
2698 | } else { |
2699 | // need to check existed "other" list's owner thread and size of queue |
2700 | kmp_mem_descr_t *dsc = |
2701 | (kmp_mem_descr_t *)((char *)head - sizeof(kmp_mem_descr_t)); |
2702 | // allocating thread, same for all queue nodes |
2703 | kmp_info_t *q_th = (kmp_info_t *)(dsc->ptr_aligned); |
2704 | size_t q_sz = |
2705 | dsc->size_allocated + 1; // new size in case we add current task |
2706 | if (q_th == alloc_thr && q_sz <= KMP_FREE_LIST_LIMIT) { |
2707 | // we can add current task to "other" list, no sync needed |
2708 | *((void **)ptr) = head; |
2709 | descr->size_allocated = q_sz; |
2710 | this_thr->th.th_free_lists[index].th_free_list_other = ptr; |
2711 | } else { |
2712 | // either queue blocks owner is changing or size limit exceeded |
2713 | // return old queue to allocating thread (q_th) synchronously, |
2714 | // and start new list for alloc_thr's tasks |
2715 | void *old_ptr; |
2716 | void *tail = head; |
2717 | void *next = *((void **)head); |
2718 | while (next != NULL) { |
2719 | KMP_DEBUG_ASSERT( |
2720 | // queue size should decrease by 1 each step through the list |
2721 | ((kmp_mem_descr_t *)((char *)next - sizeof(kmp_mem_descr_t))) |
2722 | ->size_allocated + |
2723 | 1 == |
2724 | ((kmp_mem_descr_t *)((char *)tail - sizeof(kmp_mem_descr_t))) |
2725 | ->size_allocated); |
2726 | tail = next; // remember tail node |
2727 | next = *((void **)next); |
2728 | } |
2729 | KMP_DEBUG_ASSERT(q_th != NULL); |
2730 | // push block to owner's sync free list |
2731 | old_ptr = TCR_PTR(q_th->th.th_free_lists[index].th_free_list_sync); |
2732 | /* the next pointer must be set before setting free_list to ptr to avoid |
2733 | exposing a broken list to other threads, even for an instant. */ |
2734 | *((void **)tail) = old_ptr; |
2735 | |
2736 | while (!KMP_COMPARE_AND_STORE_PTR( |
2737 | &q_th->th.th_free_lists[index].th_free_list_sync, old_ptr, head)) { |
2738 | KMP_CPU_PAUSE(); |
2739 | old_ptr = TCR_PTR(q_th->th.th_free_lists[index].th_free_list_sync); |
2740 | *((void **)tail) = old_ptr; |
2741 | } |
2742 | |
2743 | // start new list of not-selt tasks |
2744 | this_thr->th.th_free_lists[index].th_free_list_other = ptr; |
2745 | *((void **)ptr) = NULL; |
2746 | descr->size_allocated = (size_t)1; // head of queue keeps its length |
2747 | } |
2748 | } |
2749 | } |
2750 | goto end; |
2751 | |
2752 | free_call: |
2753 | KE_TRACE(25, ("__kmp_fast_free: T#%d Calling __kmp_thread_free for size %d\n" , |
2754 | __kmp_gtid_from_thread(this_thr), size)); |
2755 | __kmp_bget_dequeue(th: this_thr); /* Release any queued buffers */ |
2756 | brel(th: this_thr, buf: descr->ptr_allocated); |
2757 | |
2758 | end: |
2759 | KE_TRACE(25, ("<- __kmp_fast_free() returns\n" )); |
2760 | |
2761 | } // func __kmp_fast_free |
2762 | |
2763 | // Initialize the thread free lists related to fast memory |
2764 | // Only do this when a thread is initially created. |
2765 | void __kmp_initialize_fast_memory(kmp_info_t *this_thr) { |
2766 | KE_TRACE(10, ("__kmp_initialize_fast_memory: Called from th %p\n" , this_thr)); |
2767 | |
2768 | memset(s: this_thr->th.th_free_lists, c: 0, NUM_LISTS * sizeof(kmp_free_list_t)); |
2769 | } |
2770 | |
2771 | // Free the memory in the thread free lists related to fast memory |
2772 | // Only do this when a thread is being reaped (destroyed). |
2773 | void __kmp_free_fast_memory(kmp_info_t *th) { |
2774 | // Suppose we use BGET underlying allocator, walk through its structures... |
2775 | int bin; |
2776 | thr_data_t *thr = get_thr_data(th); |
2777 | void **lst = NULL; |
2778 | |
2779 | KE_TRACE( |
2780 | 5, ("__kmp_free_fast_memory: Called T#%d\n" , __kmp_gtid_from_thread(th))); |
2781 | |
2782 | __kmp_bget_dequeue(th); // Release any queued buffers |
2783 | |
2784 | // Dig through free lists and extract all allocated blocks |
2785 | for (bin = 0; bin < MAX_BGET_BINS; ++bin) { |
2786 | bfhead_t *b = thr->freelist[bin].ql.flink; |
2787 | while (b != &thr->freelist[bin]) { |
2788 | if ((kmp_uintptr_t)b->bh.bb.bthr & 1) { // the buffer is allocated address |
2789 | *((void **)b) = |
2790 | lst; // link the list (override bthr, but keep flink yet) |
2791 | lst = (void **)b; // push b into lst |
2792 | } |
2793 | b = b->ql.flink; // get next buffer |
2794 | } |
2795 | } |
2796 | while (lst != NULL) { |
2797 | void *next = *lst; |
2798 | KE_TRACE(10, ("__kmp_free_fast_memory: freeing %p, next=%p th %p (%d)\n" , |
2799 | lst, next, th, __kmp_gtid_from_thread(th))); |
2800 | (*thr->relfcn)(lst); |
2801 | #if BufStats |
2802 | // count blocks to prevent problems in __kmp_finalize_bget() |
2803 | thr->numprel++; /* Nr of expansion block releases */ |
2804 | thr->numpblk--; /* Total number of blocks */ |
2805 | #endif |
2806 | lst = (void **)next; |
2807 | } |
2808 | |
2809 | KE_TRACE( |
2810 | 5, ("__kmp_free_fast_memory: Freed T#%d\n" , __kmp_gtid_from_thread(th))); |
2811 | } |
2812 | |
2813 | #endif // USE_FAST_MEMORY |
2814 | |