1/*
2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 *
5 * Use of this software is governed by the MIT license
6 *
7 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
8 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
9 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
10 * B-3001 Leuven, Belgium
11 */
12
13#include <stdlib.h>
14#include <isl_ctx_private.h>
15#include <isl_map_private.h>
16#include <isl_vec_private.h>
17#include <isl_options_private.h>
18#include "isl_basis_reduction.h"
19
20static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
21{
22 int i;
23
24 for (i = 0; i < n; ++i)
25 GBR_lp_get_alpha(lp, first + i, &alpha[i]);
26}
27
28/* Compute a reduced basis for the set represented by the tableau "tab".
29 * tab->basis, which must be initialized by the calling function to an affine
30 * unimodular basis, is updated to reflect the reduced basis.
31 * The first tab->n_zero rows of the basis (ignoring the constant row)
32 * are assumed to correspond to equalities and are left untouched.
33 * tab->n_zero is updated to reflect any additional equalities that
34 * have been detected in the first rows of the new basis.
35 * The final tab->n_unbounded rows of the basis are assumed to correspond
36 * to unbounded directions and are also left untouched.
37 * In particular this means that the remaining rows are assumed to
38 * correspond to bounded directions.
39 *
40 * This function implements the algorithm described in
41 * "An Implementation of the Generalized Basis Reduction Algorithm
42 * for Integer Programming" of Cook el al. to compute a reduced basis.
43 * We use \epsilon = 1/4.
44 *
45 * If ctx->opt->gbr_only_first is set, the user is only interested
46 * in the first direction. In this case we stop the basis reduction when
47 * the width in the first direction becomes smaller than 2.
48 */
49struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
50{
51 unsigned dim;
52 struct isl_ctx *ctx;
53 struct isl_mat *B;
54 int i;
55 GBR_LP *lp = NULL;
56 GBR_type F_old, alpha, F_new;
57 int row;
58 isl_int tmp;
59 struct isl_vec *b_tmp;
60 GBR_type *F = NULL;
61 GBR_type *alpha_buffer[2] = { NULL, NULL };
62 GBR_type *alpha_saved;
63 GBR_type F_saved;
64 int use_saved = 0;
65 isl_int mu[2];
66 GBR_type mu_F[2];
67 GBR_type two;
68 GBR_type one;
69 int empty = 0;
70 int fixed = 0;
71 int fixed_saved = 0;
72 int mu_fixed[2];
73 int n_bounded;
74 int gbr_only_first;
75
76 if (!tab)
77 return NULL;
78
79 if (tab->empty)
80 return tab;
81
82 ctx = tab->mat->ctx;
83 gbr_only_first = ctx->opt->gbr_only_first;
84 dim = tab->n_var;
85 B = tab->basis;
86 if (!B)
87 return tab;
88
89 n_bounded = dim - tab->n_unbounded;
90 if (n_bounded <= tab->n_zero + 1)
91 return tab;
92
93 isl_int_init(tmp);
94 isl_int_init(mu[0]);
95 isl_int_init(mu[1]);
96
97 GBR_init(alpha);
98 GBR_init(F_old);
99 GBR_init(F_new);
100 GBR_init(F_saved);
101 GBR_init(mu_F[0]);
102 GBR_init(mu_F[1]);
103 GBR_init(two);
104 GBR_init(one);
105
106 b_tmp = isl_vec_alloc(ctx, size: dim);
107 if (!b_tmp)
108 goto error;
109
110 F = isl_alloc_array(ctx, GBR_type, n_bounded);
111 alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded);
112 alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded);
113 alpha_saved = alpha_buffer[0];
114
115 if (!F || !alpha_buffer[0] || !alpha_buffer[1])
116 goto error;
117
118 for (i = 0; i < n_bounded; ++i) {
119 GBR_init(F[i]);
120 GBR_init(alpha_buffer[0][i]);
121 GBR_init(alpha_buffer[1][i]);
122 }
123
124 GBR_set_ui(two, 2);
125 GBR_set_ui(one, 1);
126
127 lp = GBR_lp_init(tab);
128 if (!lp)
129 goto error;
130
131 i = tab->n_zero;
132
133 GBR_lp_set_obj(lp, B->row[1+i]+1, dim);
134 ctx->stats->gbr_solved_lps++;
135 if (GBR_lp_solve(lp) < 0)
136 goto error;
137 GBR_lp_get_obj_val(lp, &F[i]);
138
139 if (GBR_lt(F[i], one)) {
140 if (!GBR_is_zero(F[i])) {
141 empty = GBR_lp_cut(lp, B->row[1+i]+1);
142 if (empty)
143 goto done;
144 GBR_set_ui(F[i], 0);
145 }
146 tab->n_zero++;
147 }
148
149 do {
150 if (i+1 == tab->n_zero) {
151 GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
152 ctx->stats->gbr_solved_lps++;
153 if (GBR_lp_solve(lp) < 0)
154 goto error;
155 GBR_lp_get_obj_val(lp, &F_new);
156 fixed = GBR_lp_is_fixed(lp);
157 GBR_set_ui(alpha, 0);
158 } else if (use_saved) {
159 row = GBR_lp_next_row(lp);
160 GBR_set(F_new, F_saved);
161 fixed = fixed_saved;
162 GBR_set(alpha, alpha_saved[i]);
163 } else {
164 row = GBR_lp_add_row(lp, B->row[1+i]+1, dim);
165 GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
166 ctx->stats->gbr_solved_lps++;
167 if (GBR_lp_solve(lp) < 0)
168 goto error;
169 GBR_lp_get_obj_val(lp, &F_new);
170 fixed = GBR_lp_is_fixed(lp);
171
172 GBR_lp_get_alpha(lp, row, &alpha);
173
174 if (i > 0)
175 save_alpha(lp, first: row-i, n: i, alpha: alpha_saved);
176
177 if (GBR_lp_del_row(lp) < 0)
178 goto error;
179 }
180 GBR_set(F[i+1], F_new);
181
182 GBR_floor(mu[0], alpha);
183 GBR_ceil(mu[1], alpha);
184
185 if (isl_int_eq(mu[0], mu[1]))
186 isl_int_set(tmp, mu[0]);
187 else {
188 int j;
189
190 for (j = 0; j <= 1; ++j) {
191 isl_int_set(tmp, mu[j]);
192 isl_seq_combine(dst: b_tmp->el,
193 m1: ctx->one, src1: B->row[1+i+1]+1,
194 m2: tmp, src2: B->row[1+i]+1, len: dim);
195 GBR_lp_set_obj(lp, b_tmp->el, dim);
196 ctx->stats->gbr_solved_lps++;
197 if (GBR_lp_solve(lp) < 0)
198 goto error;
199 GBR_lp_get_obj_val(lp, &mu_F[j]);
200 mu_fixed[j] = GBR_lp_is_fixed(lp);
201 if (i > 0)
202 save_alpha(lp, first: row-i, n: i, alpha: alpha_buffer[j]);
203 }
204
205 if (GBR_lt(mu_F[0], mu_F[1]))
206 j = 0;
207 else
208 j = 1;
209
210 isl_int_set(tmp, mu[j]);
211 GBR_set(F_new, mu_F[j]);
212 fixed = mu_fixed[j];
213 alpha_saved = alpha_buffer[j];
214 }
215 isl_seq_combine(dst: B->row[1+i+1]+1, m1: ctx->one, src1: B->row[1+i+1]+1,
216 m2: tmp, src2: B->row[1+i]+1, len: dim);
217
218 if (i+1 == tab->n_zero && fixed) {
219 if (!GBR_is_zero(F[i+1])) {
220 empty = GBR_lp_cut(lp, B->row[1+i+1]+1);
221 if (empty)
222 goto done;
223 GBR_set_ui(F[i+1], 0);
224 }
225 tab->n_zero++;
226 }
227
228 GBR_set(F_old, F[i]);
229
230 use_saved = 0;
231 /* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
232 GBR_set_ui(mu_F[0], 4);
233 GBR_mul(mu_F[0], mu_F[0], F_new);
234 GBR_set_ui(mu_F[1], 3);
235 GBR_mul(mu_F[1], mu_F[1], F_old);
236 if (GBR_lt(mu_F[0], mu_F[1])) {
237 B = isl_mat_swap_rows(mat: B, i: 1 + i, j: 1 + i + 1);
238 if (i > tab->n_zero) {
239 use_saved = 1;
240 GBR_set(F_saved, F_new);
241 fixed_saved = fixed;
242 if (GBR_lp_del_row(lp) < 0)
243 goto error;
244 --i;
245 } else {
246 GBR_set(F[tab->n_zero], F_new);
247 if (gbr_only_first && GBR_lt(F[tab->n_zero], two))
248 break;
249
250 if (fixed) {
251 if (!GBR_is_zero(F[tab->n_zero])) {
252 empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1);
253 if (empty)
254 goto done;
255 GBR_set_ui(F[tab->n_zero], 0);
256 }
257 tab->n_zero++;
258 }
259 }
260 } else {
261 GBR_lp_add_row(lp, B->row[1+i]+1, dim);
262 ++i;
263 }
264 } while (i < n_bounded - 1);
265
266 if (0) {
267done:
268 if (empty < 0) {
269error:
270 isl_mat_free(mat: B);
271 B = NULL;
272 }
273 }
274
275 GBR_lp_delete(lp);
276
277 if (alpha_buffer[1])
278 for (i = 0; i < n_bounded; ++i) {
279 GBR_clear(F[i]);
280 GBR_clear(alpha_buffer[0][i]);
281 GBR_clear(alpha_buffer[1][i]);
282 }
283 free(ptr: F);
284 free(ptr: alpha_buffer[0]);
285 free(ptr: alpha_buffer[1]);
286
287 isl_vec_free(vec: b_tmp);
288
289 GBR_clear(alpha);
290 GBR_clear(F_old);
291 GBR_clear(F_new);
292 GBR_clear(F_saved);
293 GBR_clear(mu_F[0]);
294 GBR_clear(mu_F[1]);
295 GBR_clear(two);
296 GBR_clear(one);
297
298 isl_int_clear(tmp);
299 isl_int_clear(mu[0]);
300 isl_int_clear(mu[1]);
301
302 tab->basis = B;
303
304 return tab;
305}
306
307/* Compute an affine form of a reduced basis of the given basic
308 * non-parametric set, which is assumed to be bounded and not
309 * include any integer divisions.
310 * The first column and the first row correspond to the constant term.
311 *
312 * If the input contains any equalities, we first create an initial
313 * basis with the equalities first. Otherwise, we start off with
314 * the identity matrix.
315 */
316__isl_give isl_mat *isl_basic_set_reduced_basis(__isl_keep isl_basic_set *bset)
317{
318 struct isl_mat *basis;
319 struct isl_tab *tab;
320
321 if (isl_basic_set_check_no_locals(bset) < 0 ||
322 isl_basic_set_check_no_params(bset) < 0)
323 return NULL;
324
325 tab = isl_tab_from_basic_set(bset, track: 0);
326 if (!tab)
327 return NULL;
328
329 if (bset->n_eq == 0)
330 tab->basis = isl_mat_identity(ctx: bset->ctx, n_row: 1 + tab->n_var);
331 else {
332 isl_mat *eq;
333 isl_size nvar = isl_basic_set_dim(bset, type: isl_dim_all);
334 if (nvar < 0)
335 goto error;
336 eq = isl_mat_sub_alloc6(ctx: bset->ctx, row: bset->eq, first_row: 0, n_row: bset->n_eq,
337 first_col: 1, n_col: nvar);
338 eq = isl_mat_left_hermite(M: eq, neg: 0, NULL, Q: &tab->basis);
339 tab->basis = isl_mat_lin_to_aff(mat: tab->basis);
340 tab->n_zero = bset->n_eq;
341 isl_mat_free(mat: eq);
342 }
343 tab = isl_tab_compute_reduced_basis(tab);
344 if (!tab)
345 return NULL;
346
347 basis = isl_mat_copy(mat: tab->basis);
348
349 isl_tab_free(tab);
350
351 return basis;
352error:
353 isl_tab_free(tab);
354 return NULL;
355}
356

source code of polly/lib/External/isl/basis_reduction_templ.c