| 1 | /* |
| 2 | Name: imath.c |
| 3 | Purpose: Arbitrary precision integer arithmetic routines. |
| 4 | Author: M. J. Fromberger |
| 5 | |
| 6 | Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved. |
| 7 | |
| 8 | Permission is hereby granted, free of charge, to any person obtaining a copy |
| 9 | of this software and associated documentation files (the "Software"), to deal |
| 10 | in the Software without restriction, including without limitation the rights |
| 11 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 12 | copies of the Software, and to permit persons to whom the Software is |
| 13 | furnished to do so, subject to the following conditions: |
| 14 | |
| 15 | The above copyright notice and this permission notice shall be included in |
| 16 | all copies or substantial portions of the Software. |
| 17 | |
| 18 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 19 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 20 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 21 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 22 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 23 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 24 | SOFTWARE. |
| 25 | */ |
| 26 | |
| 27 | #include "imath.h" |
| 28 | |
| 29 | #include <assert.h> |
| 30 | #include <ctype.h> |
| 31 | #include <stdlib.h> |
| 32 | #include <string.h> |
| 33 | |
| 34 | const mp_result MP_OK = 0; /* no error, all is well */ |
| 35 | const mp_result MP_FALSE = 0; /* boolean false */ |
| 36 | const mp_result MP_TRUE = -1; /* boolean true */ |
| 37 | const mp_result MP_MEMORY = -2; /* out of memory */ |
| 38 | const mp_result MP_RANGE = -3; /* argument out of range */ |
| 39 | const mp_result MP_UNDEF = -4; /* result undefined */ |
| 40 | const mp_result MP_TRUNC = -5; /* output truncated */ |
| 41 | const mp_result MP_BADARG = -6; /* invalid null argument */ |
| 42 | const mp_result MP_MINERR = -6; |
| 43 | |
| 44 | const mp_sign MP_NEG = 1; /* value is strictly negative */ |
| 45 | const mp_sign MP_ZPOS = 0; /* value is non-negative */ |
| 46 | |
| 47 | static const char *s_unknown_err = "unknown result code" ; |
| 48 | static const char *s_error_msg[] = {"error code 0" , "boolean true" , |
| 49 | "out of memory" , "argument out of range" , |
| 50 | "result undefined" , "output truncated" , |
| 51 | "invalid argument" , NULL}; |
| 52 | |
| 53 | /* The ith entry of this table gives the value of log_i(2). |
| 54 | |
| 55 | An integer value n requires ceil(log_i(n)) digits to be represented |
| 56 | in base i. Since it is easy to compute lg(n), by counting bits, we |
| 57 | can compute log_i(n) = lg(n) * log_i(2). |
| 58 | |
| 59 | The use of this table eliminates a dependency upon linkage against |
| 60 | the standard math libraries. |
| 61 | |
| 62 | If MP_MAX_RADIX is increased, this table should be expanded too. |
| 63 | */ |
| 64 | static const double s_log2[] = { |
| 65 | 0.000000000, 0.000000000, 1.000000000, 0.630929754, /* (D)(D) 2 3 */ |
| 66 | 0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4 5 6 7 */ |
| 67 | 0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8 9 10 11 */ |
| 68 | 0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */ |
| 69 | 0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */ |
| 70 | 0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */ |
| 71 | 0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */ |
| 72 | 0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */ |
| 73 | 0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */ |
| 74 | 0.193426404, /* 36 */ |
| 75 | }; |
| 76 | |
| 77 | /* Return the number of digits needed to represent a static value */ |
| 78 | #define MP_VALUE_DIGITS(V) \ |
| 79 | ((sizeof(V) + (sizeof(mp_digit) - 1)) / sizeof(mp_digit)) |
| 80 | |
| 81 | /* Round precision P to nearest word boundary */ |
| 82 | static inline mp_size s_round_prec(mp_size P) { return 2 * ((P + 1) / 2); } |
| 83 | |
| 84 | /* Set array P of S digits to zero */ |
| 85 | static inline void ZERO(mp_digit *P, mp_size S) { |
| 86 | mp_size i__ = S * sizeof(mp_digit); |
| 87 | mp_digit *p__ = P; |
| 88 | memset(s: p__, c: 0, n: i__); |
| 89 | } |
| 90 | |
| 91 | /* Copy S digits from array P to array Q */ |
| 92 | static inline void COPY(mp_digit *P, mp_digit *Q, mp_size S) { |
| 93 | mp_size i__ = S * sizeof(mp_digit); |
| 94 | mp_digit *p__ = P; |
| 95 | mp_digit *q__ = Q; |
| 96 | memcpy(dest: q__, src: p__, n: i__); |
| 97 | } |
| 98 | |
| 99 | /* Reverse N elements of unsigned char in A. */ |
| 100 | static inline void REV(unsigned char *A, int N) { |
| 101 | unsigned char *u_ = A; |
| 102 | unsigned char *v_ = u_ + N - 1; |
| 103 | while (u_ < v_) { |
| 104 | unsigned char xch = *u_; |
| 105 | *u_++ = *v_; |
| 106 | *v_-- = xch; |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | /* Strip leading zeroes from z_ in-place. */ |
| 111 | static inline void CLAMP(mp_int z_) { |
| 112 | mp_size uz_ = MP_USED(Z: z_); |
| 113 | mp_digit *dz_ = MP_DIGITS(Z: z_) + uz_ - 1; |
| 114 | while (uz_ > 1 && (*dz_-- == 0)) --uz_; |
| 115 | z_->used = uz_; |
| 116 | } |
| 117 | |
| 118 | /* Select min/max. */ |
| 119 | static inline int MIN(int A, int B) { return (B < A ? B : A); } |
| 120 | static inline mp_size MAX(mp_size A, mp_size B) { return (B > A ? B : A); } |
| 121 | |
| 122 | /* Exchange lvalues A and B of type T, e.g. |
| 123 | SWAP(int, x, y) where x and y are variables of type int. */ |
| 124 | #define SWAP(T, A, B) \ |
| 125 | do { \ |
| 126 | T t_ = (A); \ |
| 127 | A = (B); \ |
| 128 | B = t_; \ |
| 129 | } while (0) |
| 130 | |
| 131 | /* Declare a block of N temporary mpz_t values. |
| 132 | These values are initialized to zero. |
| 133 | You must add CLEANUP_TEMP() at the end of the function. |
| 134 | Use TEMP(i) to access a pointer to the ith value. |
| 135 | */ |
| 136 | #define DECLARE_TEMP(N) \ |
| 137 | struct { \ |
| 138 | mpz_t value[(N)]; \ |
| 139 | int len; \ |
| 140 | mp_result err; \ |
| 141 | } temp_ = { \ |
| 142 | .len = (N), \ |
| 143 | .err = MP_OK, \ |
| 144 | }; \ |
| 145 | do { \ |
| 146 | for (int i = 0; i < temp_.len; i++) { \ |
| 147 | mp_int_init(TEMP(i)); \ |
| 148 | } \ |
| 149 | } while (0) |
| 150 | |
| 151 | /* Clear all allocated temp values. */ |
| 152 | #define CLEANUP_TEMP() \ |
| 153 | CLEANUP: \ |
| 154 | do { \ |
| 155 | for (int i = 0; i < temp_.len; i++) { \ |
| 156 | mp_int_clear(TEMP(i)); \ |
| 157 | } \ |
| 158 | if (temp_.err != MP_OK) { \ |
| 159 | return temp_.err; \ |
| 160 | } \ |
| 161 | } while (0) |
| 162 | |
| 163 | /* A pointer to the kth temp value. */ |
| 164 | #define TEMP(K) (temp_.value + (K)) |
| 165 | |
| 166 | /* Evaluate E, an expression of type mp_result expected to return MP_OK. If |
| 167 | the value is not MP_OK, the error is cached and control resumes at the |
| 168 | cleanup handler, which returns it. |
| 169 | */ |
| 170 | #define REQUIRE(E) \ |
| 171 | do { \ |
| 172 | temp_.err = (E); \ |
| 173 | if (temp_.err != MP_OK) goto CLEANUP; \ |
| 174 | } while (0) |
| 175 | |
| 176 | /* Compare value to zero. */ |
| 177 | static inline int CMPZ(mp_int Z) { |
| 178 | if (Z->used == 1 && Z->digits[0] == 0) return 0; |
| 179 | return (Z->sign == MP_NEG) ? -1 : 1; |
| 180 | } |
| 181 | |
| 182 | static inline mp_word UPPER_HALF(mp_word W) { return (W >> MP_DIGIT_BIT); } |
| 183 | static inline mp_digit LOWER_HALF(mp_word W) { return (mp_digit)(W); } |
| 184 | |
| 185 | /* Report whether the highest-order bit of W is 1. */ |
| 186 | static inline bool HIGH_BIT_SET(mp_word W) { |
| 187 | return (W >> (MP_WORD_BIT - 1)) != 0; |
| 188 | } |
| 189 | |
| 190 | /* Report whether adding W + V will carry out. */ |
| 191 | static inline bool ADD_WILL_OVERFLOW(mp_word W, mp_word V) { |
| 192 | return ((MP_WORD_MAX - V) < W); |
| 193 | } |
| 194 | |
| 195 | /* Default number of digits allocated to a new mp_int */ |
| 196 | static mp_size default_precision = 8; |
| 197 | |
| 198 | void mp_int_default_precision(mp_size size) { |
| 199 | assert(size > 0); |
| 200 | default_precision = size; |
| 201 | } |
| 202 | |
| 203 | /* Minimum number of digits to invoke recursive multiply */ |
| 204 | static mp_size multiply_threshold = 32; |
| 205 | |
| 206 | void mp_int_multiply_threshold(mp_size thresh) { |
| 207 | assert(thresh >= sizeof(mp_word)); |
| 208 | multiply_threshold = thresh; |
| 209 | } |
| 210 | |
| 211 | /* Allocate a buffer of (at least) num digits, or return |
| 212 | NULL if that couldn't be done. */ |
| 213 | static mp_digit *s_alloc(mp_size num); |
| 214 | |
| 215 | /* Release a buffer of digits allocated by s_alloc(). */ |
| 216 | static void s_free(void *ptr); |
| 217 | |
| 218 | /* Insure that z has at least min digits allocated, resizing if |
| 219 | necessary. Returns true if successful, false if out of memory. */ |
| 220 | static bool s_pad(mp_int z, mp_size min); |
| 221 | |
| 222 | /* Ensure Z has at least N digits allocated. */ |
| 223 | static inline mp_result GROW(mp_int Z, mp_size N) { |
| 224 | return s_pad(z: Z, min: N) ? MP_OK : MP_MEMORY; |
| 225 | } |
| 226 | |
| 227 | /* Fill in a "fake" mp_int on the stack with a given value */ |
| 228 | static void s_fake(mp_int z, mp_small value, mp_digit vbuf[]); |
| 229 | static void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[]); |
| 230 | |
| 231 | /* Compare two runs of digits of given length, returns <0, 0, >0 */ |
| 232 | static int s_cdig(mp_digit *da, mp_digit *db, mp_size len); |
| 233 | |
| 234 | /* Pack the unsigned digits of v into array t */ |
| 235 | static int s_uvpack(mp_usmall v, mp_digit t[]); |
| 236 | |
| 237 | /* Compare magnitudes of a and b, returns <0, 0, >0 */ |
| 238 | static int s_ucmp(mp_int a, mp_int b); |
| 239 | |
| 240 | /* Compare magnitudes of a and v, returns <0, 0, >0 */ |
| 241 | static int s_vcmp(mp_int a, mp_small v); |
| 242 | static int s_uvcmp(mp_int a, mp_usmall uv); |
| 243 | |
| 244 | /* Unsigned magnitude addition; assumes dc is big enough. |
| 245 | Carry out is returned (no memory allocated). */ |
| 246 | static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, |
| 247 | mp_size size_b); |
| 248 | |
| 249 | /* Unsigned magnitude subtraction. Assumes dc is big enough. */ |
| 250 | static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, |
| 251 | mp_size size_b); |
| 252 | |
| 253 | /* Unsigned recursive multiplication. Assumes dc is big enough. */ |
| 254 | static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, |
| 255 | mp_size size_b); |
| 256 | |
| 257 | /* Unsigned magnitude multiplication. Assumes dc is big enough. */ |
| 258 | static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, |
| 259 | mp_size size_b); |
| 260 | |
| 261 | /* Unsigned recursive squaring. Assumes dc is big enough. */ |
| 262 | static int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a); |
| 263 | |
| 264 | /* Unsigned magnitude squaring. Assumes dc is big enough. */ |
| 265 | static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a); |
| 266 | |
| 267 | /* Single digit addition. Assumes a is big enough. */ |
| 268 | static void s_dadd(mp_int a, mp_digit b); |
| 269 | |
| 270 | /* Single digit multiplication. Assumes a is big enough. */ |
| 271 | static void s_dmul(mp_int a, mp_digit b); |
| 272 | |
| 273 | /* Single digit multiplication on buffers; assumes dc is big enough. */ |
| 274 | static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a); |
| 275 | |
| 276 | /* Single digit division. Replaces a with the quotient, |
| 277 | returns the remainder. */ |
| 278 | static mp_digit s_ddiv(mp_int a, mp_digit b); |
| 279 | |
| 280 | /* Quick division by a power of 2, replaces z (no allocation) */ |
| 281 | static void s_qdiv(mp_int z, mp_size p2); |
| 282 | |
| 283 | /* Quick remainder by a power of 2, replaces z (no allocation) */ |
| 284 | static void s_qmod(mp_int z, mp_size p2); |
| 285 | |
| 286 | /* Quick multiplication by a power of 2, replaces z. |
| 287 | Allocates if necessary; returns false in case this fails. */ |
| 288 | static int s_qmul(mp_int z, mp_size p2); |
| 289 | |
| 290 | /* Quick subtraction from a power of 2, replaces z. |
| 291 | Allocates if necessary; returns false in case this fails. */ |
| 292 | static int s_qsub(mp_int z, mp_size p2); |
| 293 | |
| 294 | /* Return maximum k such that 2^k divides z. */ |
| 295 | static int s_dp2k(mp_int z); |
| 296 | |
| 297 | /* Return k >= 0 such that z = 2^k, or -1 if there is no such k. */ |
| 298 | static int s_isp2(mp_int z); |
| 299 | |
| 300 | /* Set z to 2^k. May allocate; returns false in case this fails. */ |
| 301 | static int s_2expt(mp_int z, mp_small k); |
| 302 | |
| 303 | /* Normalize a and b for division, returns normalization constant */ |
| 304 | static int s_norm(mp_int a, mp_int b); |
| 305 | |
| 306 | /* Compute constant mu for Barrett reduction, given modulus m, result |
| 307 | replaces z, m is untouched. */ |
| 308 | static mp_result s_brmu(mp_int z, mp_int m); |
| 309 | |
| 310 | /* Reduce a modulo m, using Barrett's algorithm. */ |
| 311 | static int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2); |
| 312 | |
| 313 | /* Modular exponentiation, using Barrett reduction */ |
| 314 | static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c); |
| 315 | |
| 316 | /* Unsigned magnitude division. Assumes |a| > |b|. Allocates temporaries; |
| 317 | overwrites a with quotient, b with remainder. */ |
| 318 | static mp_result s_udiv_knuth(mp_int a, mp_int b); |
| 319 | |
| 320 | /* Compute the number of digits in radix r required to represent the given |
| 321 | value. Does not account for sign flags, terminators, etc. */ |
| 322 | static int s_outlen(mp_int z, mp_size r); |
| 323 | |
| 324 | /* Guess how many digits of precision will be needed to represent a radix r |
| 325 | value of the specified number of digits. Returns a value guaranteed to be |
| 326 | no smaller than the actual number required. */ |
| 327 | static mp_size s_inlen(int len, mp_size r); |
| 328 | |
| 329 | /* Convert a character to a digit value in radix r, or |
| 330 | -1 if out of range */ |
| 331 | static int s_ch2val(char c, int r); |
| 332 | |
| 333 | /* Convert a digit value to a character */ |
| 334 | static char s_val2ch(int v, int caps); |
| 335 | |
| 336 | /* Take 2's complement of a buffer in place */ |
| 337 | static void s_2comp(unsigned char *buf, int len); |
| 338 | |
| 339 | /* Convert a value to binary, ignoring sign. On input, *limpos is the bound on |
| 340 | how many bytes should be written to buf; on output, *limpos is set to the |
| 341 | number of bytes actually written. */ |
| 342 | static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad); |
| 343 | |
| 344 | /* Multiply X by Y into Z, ignoring signs. Requires that Z have enough storage |
| 345 | preallocated to hold the result. */ |
| 346 | static inline void UMUL(mp_int X, mp_int Y, mp_int Z) { |
| 347 | mp_size ua_ = MP_USED(Z: X); |
| 348 | mp_size ub_ = MP_USED(Z: Y); |
| 349 | mp_size o_ = ua_ + ub_; |
| 350 | ZERO(P: MP_DIGITS(Z), S: o_); |
| 351 | (void)s_kmul(da: MP_DIGITS(Z: X), db: MP_DIGITS(Z: Y), dc: MP_DIGITS(Z), size_a: ua_, size_b: ub_); |
| 352 | Z->used = o_; |
| 353 | CLAMP(z_: Z); |
| 354 | } |
| 355 | |
| 356 | /* Square X into Z. Requires that Z have enough storage to hold the result. */ |
| 357 | static inline void USQR(mp_int X, mp_int Z) { |
| 358 | mp_size ua_ = MP_USED(Z: X); |
| 359 | mp_size o_ = ua_ + ua_; |
| 360 | ZERO(P: MP_DIGITS(Z), S: o_); |
| 361 | (void)s_ksqr(da: MP_DIGITS(Z: X), dc: MP_DIGITS(Z), size_a: ua_); |
| 362 | Z->used = o_; |
| 363 | CLAMP(z_: Z); |
| 364 | } |
| 365 | |
| 366 | mp_result mp_int_init(mp_int z) { |
| 367 | if (z == NULL) return MP_BADARG; |
| 368 | |
| 369 | z->single = 0; |
| 370 | z->digits = &(z->single); |
| 371 | z->alloc = 1; |
| 372 | z->used = 1; |
| 373 | z->sign = MP_ZPOS; |
| 374 | |
| 375 | return MP_OK; |
| 376 | } |
| 377 | |
| 378 | mp_int mp_int_alloc(void) { |
| 379 | mp_int out = malloc(size: sizeof(mpz_t)); |
| 380 | |
| 381 | if (out != NULL) mp_int_init(z: out); |
| 382 | |
| 383 | return out; |
| 384 | } |
| 385 | |
| 386 | mp_result mp_int_init_size(mp_int z, mp_size prec) { |
| 387 | assert(z != NULL); |
| 388 | |
| 389 | if (prec == 0) { |
| 390 | prec = default_precision; |
| 391 | } else if (prec == 1) { |
| 392 | return mp_int_init(z); |
| 393 | } else { |
| 394 | prec = s_round_prec(P: prec); |
| 395 | } |
| 396 | |
| 397 | z->digits = s_alloc(num: prec); |
| 398 | if (MP_DIGITS(Z: z) == NULL) return MP_MEMORY; |
| 399 | |
| 400 | z->digits[0] = 0; |
| 401 | z->used = 1; |
| 402 | z->alloc = prec; |
| 403 | z->sign = MP_ZPOS; |
| 404 | |
| 405 | return MP_OK; |
| 406 | } |
| 407 | |
| 408 | mp_result mp_int_init_copy(mp_int z, mp_int old) { |
| 409 | assert(z != NULL && old != NULL); |
| 410 | |
| 411 | mp_size uold = MP_USED(Z: old); |
| 412 | if (uold == 1) { |
| 413 | mp_int_init(z); |
| 414 | } else { |
| 415 | mp_size target = MAX(A: uold, B: default_precision); |
| 416 | mp_result res = mp_int_init_size(z, prec: target); |
| 417 | if (res != MP_OK) return res; |
| 418 | } |
| 419 | |
| 420 | z->used = uold; |
| 421 | z->sign = old->sign; |
| 422 | COPY(P: MP_DIGITS(Z: old), Q: MP_DIGITS(Z: z), S: uold); |
| 423 | |
| 424 | return MP_OK; |
| 425 | } |
| 426 | |
| 427 | mp_result mp_int_init_value(mp_int z, mp_small value) { |
| 428 | mpz_t vtmp; |
| 429 | mp_digit vbuf[MP_VALUE_DIGITS(value)]; |
| 430 | |
| 431 | s_fake(z: &vtmp, value, vbuf); |
| 432 | return mp_int_init_copy(z, old: &vtmp); |
| 433 | } |
| 434 | |
| 435 | mp_result mp_int_init_uvalue(mp_int z, mp_usmall uvalue) { |
| 436 | mpz_t vtmp; |
| 437 | mp_digit vbuf[MP_VALUE_DIGITS(uvalue)]; |
| 438 | |
| 439 | s_ufake(z: &vtmp, value: uvalue, vbuf); |
| 440 | return mp_int_init_copy(z, old: &vtmp); |
| 441 | } |
| 442 | |
| 443 | mp_result mp_int_set_value(mp_int z, mp_small value) { |
| 444 | mpz_t vtmp; |
| 445 | mp_digit vbuf[MP_VALUE_DIGITS(value)]; |
| 446 | |
| 447 | s_fake(z: &vtmp, value, vbuf); |
| 448 | return mp_int_copy(a: &vtmp, c: z); |
| 449 | } |
| 450 | |
| 451 | mp_result mp_int_set_uvalue(mp_int z, mp_usmall uvalue) { |
| 452 | mpz_t vtmp; |
| 453 | mp_digit vbuf[MP_VALUE_DIGITS(uvalue)]; |
| 454 | |
| 455 | s_ufake(z: &vtmp, value: uvalue, vbuf); |
| 456 | return mp_int_copy(a: &vtmp, c: z); |
| 457 | } |
| 458 | |
| 459 | void mp_int_clear(mp_int z) { |
| 460 | if (z == NULL) return; |
| 461 | |
| 462 | if (MP_DIGITS(Z: z) != NULL) { |
| 463 | if (MP_DIGITS(Z: z) != &(z->single)) s_free(ptr: MP_DIGITS(Z: z)); |
| 464 | |
| 465 | z->digits = NULL; |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | void mp_int_free(mp_int z) { |
| 470 | assert(z != NULL); |
| 471 | |
| 472 | mp_int_clear(z); |
| 473 | free(ptr: z); /* note: NOT s_free() */ |
| 474 | } |
| 475 | |
| 476 | mp_result mp_int_copy(mp_int a, mp_int c) { |
| 477 | assert(a != NULL && c != NULL); |
| 478 | |
| 479 | if (a != c) { |
| 480 | mp_size ua = MP_USED(Z: a); |
| 481 | mp_digit *da, *dc; |
| 482 | |
| 483 | if (!s_pad(z: c, min: ua)) return MP_MEMORY; |
| 484 | |
| 485 | da = MP_DIGITS(Z: a); |
| 486 | dc = MP_DIGITS(Z: c); |
| 487 | COPY(P: da, Q: dc, S: ua); |
| 488 | |
| 489 | c->used = ua; |
| 490 | c->sign = a->sign; |
| 491 | } |
| 492 | |
| 493 | return MP_OK; |
| 494 | } |
| 495 | |
| 496 | void mp_int_swap(mp_int a, mp_int c) { |
| 497 | if (a != c) { |
| 498 | mpz_t tmp = *a; |
| 499 | |
| 500 | *a = *c; |
| 501 | *c = tmp; |
| 502 | |
| 503 | if (MP_DIGITS(Z: a) == &(c->single)) a->digits = &(a->single); |
| 504 | if (MP_DIGITS(Z: c) == &(a->single)) c->digits = &(c->single); |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | void mp_int_zero(mp_int z) { |
| 509 | assert(z != NULL); |
| 510 | |
| 511 | z->digits[0] = 0; |
| 512 | z->used = 1; |
| 513 | z->sign = MP_ZPOS; |
| 514 | } |
| 515 | |
| 516 | mp_result mp_int_abs(mp_int a, mp_int c) { |
| 517 | assert(a != NULL && c != NULL); |
| 518 | |
| 519 | mp_result res; |
| 520 | if ((res = mp_int_copy(a, c)) != MP_OK) return res; |
| 521 | |
| 522 | c->sign = MP_ZPOS; |
| 523 | return MP_OK; |
| 524 | } |
| 525 | |
| 526 | mp_result mp_int_neg(mp_int a, mp_int c) { |
| 527 | assert(a != NULL && c != NULL); |
| 528 | |
| 529 | mp_result res; |
| 530 | if ((res = mp_int_copy(a, c)) != MP_OK) return res; |
| 531 | |
| 532 | if (CMPZ(Z: c) != 0) c->sign = 1 - MP_SIGN(Z: a); |
| 533 | |
| 534 | return MP_OK; |
| 535 | } |
| 536 | |
| 537 | mp_result mp_int_add(mp_int a, mp_int b, mp_int c) { |
| 538 | assert(a != NULL && b != NULL && c != NULL); |
| 539 | |
| 540 | mp_size ua = MP_USED(Z: a); |
| 541 | mp_size ub = MP_USED(Z: b); |
| 542 | mp_size max = MAX(A: ua, B: ub); |
| 543 | |
| 544 | if (MP_SIGN(Z: a) == MP_SIGN(Z: b)) { |
| 545 | /* Same sign -- add magnitudes, preserve sign of addends */ |
| 546 | if (!s_pad(z: c, min: max)) return MP_MEMORY; |
| 547 | |
| 548 | mp_digit carry = s_uadd(da: MP_DIGITS(Z: a), db: MP_DIGITS(Z: b), dc: MP_DIGITS(Z: c), size_a: ua, size_b: ub); |
| 549 | mp_size uc = max; |
| 550 | |
| 551 | if (carry) { |
| 552 | if (!s_pad(z: c, min: max + 1)) return MP_MEMORY; |
| 553 | |
| 554 | c->digits[max] = carry; |
| 555 | ++uc; |
| 556 | } |
| 557 | |
| 558 | c->used = uc; |
| 559 | c->sign = a->sign; |
| 560 | |
| 561 | } else { |
| 562 | /* Different signs -- subtract magnitudes, preserve sign of greater */ |
| 563 | int cmp = s_ucmp(a, b); /* magnitude comparison, sign ignored */ |
| 564 | |
| 565 | /* Set x to max(a, b), y to min(a, b) to simplify later code. |
| 566 | A special case yields zero for equal magnitudes. |
| 567 | */ |
| 568 | mp_int x, y; |
| 569 | if (cmp == 0) { |
| 570 | mp_int_zero(z: c); |
| 571 | return MP_OK; |
| 572 | } else if (cmp < 0) { |
| 573 | x = b; |
| 574 | y = a; |
| 575 | } else { |
| 576 | x = a; |
| 577 | y = b; |
| 578 | } |
| 579 | |
| 580 | if (!s_pad(z: c, min: MP_USED(Z: x))) return MP_MEMORY; |
| 581 | |
| 582 | /* Subtract smaller from larger */ |
| 583 | s_usub(da: MP_DIGITS(Z: x), db: MP_DIGITS(Z: y), dc: MP_DIGITS(Z: c), size_a: MP_USED(Z: x), size_b: MP_USED(Z: y)); |
| 584 | c->used = x->used; |
| 585 | CLAMP(z_: c); |
| 586 | |
| 587 | /* Give result the sign of the larger */ |
| 588 | c->sign = x->sign; |
| 589 | } |
| 590 | |
| 591 | return MP_OK; |
| 592 | } |
| 593 | |
| 594 | mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c) { |
| 595 | mpz_t vtmp; |
| 596 | mp_digit vbuf[MP_VALUE_DIGITS(value)]; |
| 597 | |
| 598 | s_fake(z: &vtmp, value, vbuf); |
| 599 | |
| 600 | return mp_int_add(a, b: &vtmp, c); |
| 601 | } |
| 602 | |
| 603 | mp_result mp_int_sub(mp_int a, mp_int b, mp_int c) { |
| 604 | assert(a != NULL && b != NULL && c != NULL); |
| 605 | |
| 606 | mp_size ua = MP_USED(Z: a); |
| 607 | mp_size ub = MP_USED(Z: b); |
| 608 | mp_size max = MAX(A: ua, B: ub); |
| 609 | |
| 610 | if (MP_SIGN(Z: a) != MP_SIGN(Z: b)) { |
| 611 | /* Different signs -- add magnitudes and keep sign of a */ |
| 612 | if (!s_pad(z: c, min: max)) return MP_MEMORY; |
| 613 | |
| 614 | mp_digit carry = s_uadd(da: MP_DIGITS(Z: a), db: MP_DIGITS(Z: b), dc: MP_DIGITS(Z: c), size_a: ua, size_b: ub); |
| 615 | mp_size uc = max; |
| 616 | |
| 617 | if (carry) { |
| 618 | if (!s_pad(z: c, min: max + 1)) return MP_MEMORY; |
| 619 | |
| 620 | c->digits[max] = carry; |
| 621 | ++uc; |
| 622 | } |
| 623 | |
| 624 | c->used = uc; |
| 625 | c->sign = a->sign; |
| 626 | |
| 627 | } else { |
| 628 | /* Same signs -- subtract magnitudes */ |
| 629 | if (!s_pad(z: c, min: max)) return MP_MEMORY; |
| 630 | mp_int x, y; |
| 631 | mp_sign osign; |
| 632 | |
| 633 | int cmp = s_ucmp(a, b); |
| 634 | if (cmp >= 0) { |
| 635 | x = a; |
| 636 | y = b; |
| 637 | osign = MP_ZPOS; |
| 638 | } else { |
| 639 | x = b; |
| 640 | y = a; |
| 641 | osign = MP_NEG; |
| 642 | } |
| 643 | |
| 644 | if (MP_SIGN(Z: a) == MP_NEG && cmp != 0) osign = 1 - osign; |
| 645 | |
| 646 | s_usub(da: MP_DIGITS(Z: x), db: MP_DIGITS(Z: y), dc: MP_DIGITS(Z: c), size_a: MP_USED(Z: x), size_b: MP_USED(Z: y)); |
| 647 | c->used = x->used; |
| 648 | CLAMP(z_: c); |
| 649 | |
| 650 | c->sign = osign; |
| 651 | } |
| 652 | |
| 653 | return MP_OK; |
| 654 | } |
| 655 | |
| 656 | mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c) { |
| 657 | mpz_t vtmp; |
| 658 | mp_digit vbuf[MP_VALUE_DIGITS(value)]; |
| 659 | |
| 660 | s_fake(z: &vtmp, value, vbuf); |
| 661 | |
| 662 | return mp_int_sub(a, b: &vtmp, c); |
| 663 | } |
| 664 | |
| 665 | mp_result mp_int_mul(mp_int a, mp_int b, mp_int c) { |
| 666 | assert(a != NULL && b != NULL && c != NULL); |
| 667 | |
| 668 | /* If either input is zero, we can shortcut multiplication */ |
| 669 | if (mp_int_compare_zero(z: a) == 0 || mp_int_compare_zero(z: b) == 0) { |
| 670 | mp_int_zero(z: c); |
| 671 | return MP_OK; |
| 672 | } |
| 673 | |
| 674 | /* Output is positive if inputs have same sign, otherwise negative */ |
| 675 | mp_sign osign = (MP_SIGN(Z: a) == MP_SIGN(Z: b)) ? MP_ZPOS : MP_NEG; |
| 676 | |
| 677 | /* If the output is not identical to any of the inputs, we'll write the |
| 678 | results directly; otherwise, allocate a temporary space. */ |
| 679 | mp_size ua = MP_USED(Z: a); |
| 680 | mp_size ub = MP_USED(Z: b); |
| 681 | mp_size osize = MAX(A: ua, B: ub); |
| 682 | osize = 4 * ((osize + 1) / 2); |
| 683 | |
| 684 | mp_digit *out; |
| 685 | mp_size p = 0; |
| 686 | if (c == a || c == b) { |
| 687 | p = MAX(A: s_round_prec(P: osize), B: default_precision); |
| 688 | |
| 689 | if ((out = s_alloc(num: p)) == NULL) return MP_MEMORY; |
| 690 | } else { |
| 691 | if (!s_pad(z: c, min: osize)) return MP_MEMORY; |
| 692 | |
| 693 | out = MP_DIGITS(Z: c); |
| 694 | } |
| 695 | ZERO(P: out, S: osize); |
| 696 | |
| 697 | if (!s_kmul(da: MP_DIGITS(Z: a), db: MP_DIGITS(Z: b), dc: out, size_a: ua, size_b: ub)) return MP_MEMORY; |
| 698 | |
| 699 | /* If we allocated a new buffer, get rid of whatever memory c was already |
| 700 | using, and fix up its fields to reflect that. |
| 701 | */ |
| 702 | if (out != MP_DIGITS(Z: c)) { |
| 703 | if ((void *)MP_DIGITS(Z: c) != (void *)c) s_free(ptr: MP_DIGITS(Z: c)); |
| 704 | c->digits = out; |
| 705 | c->alloc = p; |
| 706 | } |
| 707 | |
| 708 | c->used = osize; /* might not be true, but we'll fix it ... */ |
| 709 | CLAMP(z_: c); /* ... right here */ |
| 710 | c->sign = osign; |
| 711 | |
| 712 | return MP_OK; |
| 713 | } |
| 714 | |
| 715 | mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c) { |
| 716 | mpz_t vtmp; |
| 717 | mp_digit vbuf[MP_VALUE_DIGITS(value)]; |
| 718 | |
| 719 | s_fake(z: &vtmp, value, vbuf); |
| 720 | |
| 721 | return mp_int_mul(a, b: &vtmp, c); |
| 722 | } |
| 723 | |
| 724 | mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c) { |
| 725 | assert(a != NULL && c != NULL && p2 >= 0); |
| 726 | |
| 727 | mp_result res = mp_int_copy(a, c); |
| 728 | if (res != MP_OK) return res; |
| 729 | |
| 730 | if (s_qmul(z: c, p2: (mp_size)p2)) { |
| 731 | return MP_OK; |
| 732 | } else { |
| 733 | return MP_MEMORY; |
| 734 | } |
| 735 | } |
| 736 | |
| 737 | mp_result mp_int_sqr(mp_int a, mp_int c) { |
| 738 | assert(a != NULL && c != NULL); |
| 739 | |
| 740 | /* Get a temporary buffer big enough to hold the result */ |
| 741 | mp_size osize = (mp_size)4 * ((MP_USED(Z: a) + 1) / 2); |
| 742 | mp_size p = 0; |
| 743 | mp_digit *out; |
| 744 | if (a == c) { |
| 745 | p = s_round_prec(P: osize); |
| 746 | p = MAX(A: p, B: default_precision); |
| 747 | |
| 748 | if ((out = s_alloc(num: p)) == NULL) return MP_MEMORY; |
| 749 | } else { |
| 750 | if (!s_pad(z: c, min: osize)) return MP_MEMORY; |
| 751 | |
| 752 | out = MP_DIGITS(Z: c); |
| 753 | } |
| 754 | ZERO(P: out, S: osize); |
| 755 | |
| 756 | s_ksqr(da: MP_DIGITS(Z: a), dc: out, size_a: MP_USED(Z: a)); |
| 757 | |
| 758 | /* Get rid of whatever memory c was already using, and fix up its fields to |
| 759 | reflect the new digit array it's using |
| 760 | */ |
| 761 | if (out != MP_DIGITS(Z: c)) { |
| 762 | if ((void *)MP_DIGITS(Z: c) != (void *)c) s_free(ptr: MP_DIGITS(Z: c)); |
| 763 | c->digits = out; |
| 764 | c->alloc = p; |
| 765 | } |
| 766 | |
| 767 | c->used = osize; /* might not be true, but we'll fix it ... */ |
| 768 | CLAMP(z_: c); /* ... right here */ |
| 769 | c->sign = MP_ZPOS; |
| 770 | |
| 771 | return MP_OK; |
| 772 | } |
| 773 | |
| 774 | mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r) { |
| 775 | assert(a != NULL && b != NULL && q != r); |
| 776 | |
| 777 | int cmp; |
| 778 | mp_result res = MP_OK; |
| 779 | mp_int qout, rout; |
| 780 | mp_sign sa = MP_SIGN(Z: a); |
| 781 | mp_sign sb = MP_SIGN(Z: b); |
| 782 | if (CMPZ(Z: b) == 0) { |
| 783 | return MP_UNDEF; |
| 784 | } else if ((cmp = s_ucmp(a, b)) < 0) { |
| 785 | /* If |a| < |b|, no division is required: |
| 786 | q = 0, r = a |
| 787 | */ |
| 788 | if (r && (res = mp_int_copy(a, c: r)) != MP_OK) return res; |
| 789 | |
| 790 | if (q) mp_int_zero(z: q); |
| 791 | |
| 792 | return MP_OK; |
| 793 | } else if (cmp == 0) { |
| 794 | /* If |a| = |b|, no division is required: |
| 795 | q = 1 or -1, r = 0 |
| 796 | */ |
| 797 | if (r) mp_int_zero(z: r); |
| 798 | |
| 799 | if (q) { |
| 800 | mp_int_zero(z: q); |
| 801 | q->digits[0] = 1; |
| 802 | |
| 803 | if (sa != sb) q->sign = MP_NEG; |
| 804 | } |
| 805 | |
| 806 | return MP_OK; |
| 807 | } |
| 808 | |
| 809 | /* When |a| > |b|, real division is required. We need someplace to store |
| 810 | quotient and remainder, but q and r are allowed to be NULL or to overlap |
| 811 | with the inputs. |
| 812 | */ |
| 813 | DECLARE_TEMP(2); |
| 814 | int lg; |
| 815 | if ((lg = s_isp2(z: b)) < 0) { |
| 816 | if (q && b != q) { |
| 817 | REQUIRE(mp_int_copy(a, q)); |
| 818 | qout = q; |
| 819 | } else { |
| 820 | REQUIRE(mp_int_copy(a, TEMP(0))); |
| 821 | qout = TEMP(0); |
| 822 | } |
| 823 | |
| 824 | if (r && a != r) { |
| 825 | REQUIRE(mp_int_copy(b, r)); |
| 826 | rout = r; |
| 827 | } else { |
| 828 | REQUIRE(mp_int_copy(b, TEMP(1))); |
| 829 | rout = TEMP(1); |
| 830 | } |
| 831 | |
| 832 | REQUIRE(s_udiv_knuth(qout, rout)); |
| 833 | } else { |
| 834 | if (q) REQUIRE(mp_int_copy(a, q)); |
| 835 | if (r) REQUIRE(mp_int_copy(a, r)); |
| 836 | |
| 837 | if (q) s_qdiv(z: q, p2: (mp_size)lg); |
| 838 | qout = q; |
| 839 | if (r) s_qmod(z: r, p2: (mp_size)lg); |
| 840 | rout = r; |
| 841 | } |
| 842 | |
| 843 | /* Recompute signs for output */ |
| 844 | if (rout) { |
| 845 | rout->sign = sa; |
| 846 | if (CMPZ(Z: rout) == 0) rout->sign = MP_ZPOS; |
| 847 | } |
| 848 | if (qout) { |
| 849 | qout->sign = (sa == sb) ? MP_ZPOS : MP_NEG; |
| 850 | if (CMPZ(Z: qout) == 0) qout->sign = MP_ZPOS; |
| 851 | } |
| 852 | |
| 853 | if (q) REQUIRE(mp_int_copy(qout, q)); |
| 854 | if (r) REQUIRE(mp_int_copy(rout, r)); |
| 855 | CLEANUP_TEMP(); |
| 856 | return res; |
| 857 | } |
| 858 | |
| 859 | mp_result mp_int_mod(mp_int a, mp_int m, mp_int c) { |
| 860 | DECLARE_TEMP(1); |
| 861 | mp_int out = (m == c) ? TEMP(0) : c; |
| 862 | REQUIRE(mp_int_div(a, m, NULL, out)); |
| 863 | if (CMPZ(Z: out) < 0) { |
| 864 | REQUIRE(mp_int_add(out, m, c)); |
| 865 | } else { |
| 866 | REQUIRE(mp_int_copy(out, c)); |
| 867 | } |
| 868 | CLEANUP_TEMP(); |
| 869 | return MP_OK; |
| 870 | } |
| 871 | |
| 872 | mp_result mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small *r) { |
| 873 | mpz_t vtmp; |
| 874 | mp_digit vbuf[MP_VALUE_DIGITS(value)]; |
| 875 | s_fake(z: &vtmp, value, vbuf); |
| 876 | |
| 877 | DECLARE_TEMP(1); |
| 878 | REQUIRE(mp_int_div(a, &vtmp, q, TEMP(0))); |
| 879 | |
| 880 | if (r) (void)mp_int_to_int(TEMP(0), out: r); /* can't fail */ |
| 881 | |
| 882 | CLEANUP_TEMP(); |
| 883 | return MP_OK; |
| 884 | } |
| 885 | |
| 886 | mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r) { |
| 887 | assert(a != NULL && p2 >= 0 && q != r); |
| 888 | |
| 889 | mp_result res = MP_OK; |
| 890 | if (q != NULL && (res = mp_int_copy(a, c: q)) == MP_OK) { |
| 891 | s_qdiv(z: q, p2: (mp_size)p2); |
| 892 | } |
| 893 | |
| 894 | if (res == MP_OK && r != NULL && (res = mp_int_copy(a, c: r)) == MP_OK) { |
| 895 | s_qmod(z: r, p2: (mp_size)p2); |
| 896 | } |
| 897 | |
| 898 | return res; |
| 899 | } |
| 900 | |
| 901 | mp_result mp_int_expt(mp_int a, mp_small b, mp_int c) { |
| 902 | assert(c != NULL); |
| 903 | if (b < 0) return MP_RANGE; |
| 904 | |
| 905 | DECLARE_TEMP(1); |
| 906 | REQUIRE(mp_int_copy(a, TEMP(0))); |
| 907 | |
| 908 | (void)mp_int_set_value(z: c, value: 1); |
| 909 | unsigned int v = labs(x: b); |
| 910 | while (v != 0) { |
| 911 | if (v & 1) { |
| 912 | REQUIRE(mp_int_mul(c, TEMP(0), c)); |
| 913 | } |
| 914 | |
| 915 | v >>= 1; |
| 916 | if (v == 0) break; |
| 917 | |
| 918 | REQUIRE(mp_int_sqr(TEMP(0), TEMP(0))); |
| 919 | } |
| 920 | |
| 921 | CLEANUP_TEMP(); |
| 922 | return MP_OK; |
| 923 | } |
| 924 | |
| 925 | mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c) { |
| 926 | assert(c != NULL); |
| 927 | if (b < 0) return MP_RANGE; |
| 928 | |
| 929 | DECLARE_TEMP(1); |
| 930 | REQUIRE(mp_int_set_value(TEMP(0), a)); |
| 931 | |
| 932 | (void)mp_int_set_value(z: c, value: 1); |
| 933 | unsigned int v = labs(x: b); |
| 934 | while (v != 0) { |
| 935 | if (v & 1) { |
| 936 | REQUIRE(mp_int_mul(c, TEMP(0), c)); |
| 937 | } |
| 938 | |
| 939 | v >>= 1; |
| 940 | if (v == 0) break; |
| 941 | |
| 942 | REQUIRE(mp_int_sqr(TEMP(0), TEMP(0))); |
| 943 | } |
| 944 | |
| 945 | CLEANUP_TEMP(); |
| 946 | return MP_OK; |
| 947 | } |
| 948 | |
| 949 | mp_result mp_int_expt_full(mp_int a, mp_int b, mp_int c) { |
| 950 | assert(a != NULL && b != NULL && c != NULL); |
| 951 | if (MP_SIGN(Z: b) == MP_NEG) return MP_RANGE; |
| 952 | |
| 953 | DECLARE_TEMP(1); |
| 954 | REQUIRE(mp_int_copy(a, TEMP(0))); |
| 955 | |
| 956 | (void)mp_int_set_value(z: c, value: 1); |
| 957 | for (unsigned ix = 0; ix < MP_USED(Z: b); ++ix) { |
| 958 | mp_digit d = b->digits[ix]; |
| 959 | |
| 960 | for (unsigned jx = 0; jx < MP_DIGIT_BIT; ++jx) { |
| 961 | if (d & 1) { |
| 962 | REQUIRE(mp_int_mul(c, TEMP(0), c)); |
| 963 | } |
| 964 | |
| 965 | d >>= 1; |
| 966 | if (d == 0 && ix + 1 == MP_USED(Z: b)) break; |
| 967 | REQUIRE(mp_int_sqr(TEMP(0), TEMP(0))); |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | CLEANUP_TEMP(); |
| 972 | return MP_OK; |
| 973 | } |
| 974 | |
| 975 | int mp_int_compare(mp_int a, mp_int b) { |
| 976 | assert(a != NULL && b != NULL); |
| 977 | |
| 978 | mp_sign sa = MP_SIGN(Z: a); |
| 979 | if (sa == MP_SIGN(Z: b)) { |
| 980 | int cmp = s_ucmp(a, b); |
| 981 | |
| 982 | /* If they're both zero or positive, the normal comparison applies; if both |
| 983 | negative, the sense is reversed. */ |
| 984 | if (sa == MP_ZPOS) { |
| 985 | return cmp; |
| 986 | } else { |
| 987 | return -cmp; |
| 988 | } |
| 989 | } else if (sa == MP_ZPOS) { |
| 990 | return 1; |
| 991 | } else { |
| 992 | return -1; |
| 993 | } |
| 994 | } |
| 995 | |
| 996 | int mp_int_compare_unsigned(mp_int a, mp_int b) { |
| 997 | assert(a != NULL && b != NULL); |
| 998 | |
| 999 | return s_ucmp(a, b); |
| 1000 | } |
| 1001 | |
| 1002 | int mp_int_compare_zero(mp_int z) { |
| 1003 | assert(z != NULL); |
| 1004 | |
| 1005 | if (MP_USED(Z: z) == 1 && z->digits[0] == 0) { |
| 1006 | return 0; |
| 1007 | } else if (MP_SIGN(Z: z) == MP_ZPOS) { |
| 1008 | return 1; |
| 1009 | } else { |
| 1010 | return -1; |
| 1011 | } |
| 1012 | } |
| 1013 | |
| 1014 | int mp_int_compare_value(mp_int z, mp_small value) { |
| 1015 | assert(z != NULL); |
| 1016 | |
| 1017 | mp_sign vsign = (value < 0) ? MP_NEG : MP_ZPOS; |
| 1018 | if (vsign == MP_SIGN(Z: z)) { |
| 1019 | int cmp = s_vcmp(a: z, v: value); |
| 1020 | |
| 1021 | return (vsign == MP_ZPOS) ? cmp : -cmp; |
| 1022 | } else { |
| 1023 | return (value < 0) ? 1 : -1; |
| 1024 | } |
| 1025 | } |
| 1026 | |
| 1027 | int mp_int_compare_uvalue(mp_int z, mp_usmall uv) { |
| 1028 | assert(z != NULL); |
| 1029 | |
| 1030 | if (MP_SIGN(Z: z) == MP_NEG) { |
| 1031 | return -1; |
| 1032 | } else { |
| 1033 | return s_uvcmp(a: z, uv); |
| 1034 | } |
| 1035 | } |
| 1036 | |
| 1037 | mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c) { |
| 1038 | assert(a != NULL && b != NULL && c != NULL && m != NULL); |
| 1039 | |
| 1040 | /* Zero moduli and negative exponents are not considered. */ |
| 1041 | if (CMPZ(Z: m) == 0) return MP_UNDEF; |
| 1042 | if (CMPZ(Z: b) < 0) return MP_RANGE; |
| 1043 | |
| 1044 | mp_size um = MP_USED(Z: m); |
| 1045 | DECLARE_TEMP(3); |
| 1046 | REQUIRE(GROW(TEMP(0), 2 * um)); |
| 1047 | REQUIRE(GROW(TEMP(1), 2 * um)); |
| 1048 | |
| 1049 | mp_int s; |
| 1050 | if (c == b || c == m) { |
| 1051 | REQUIRE(GROW(TEMP(2), 2 * um)); |
| 1052 | s = TEMP(2); |
| 1053 | } else { |
| 1054 | s = c; |
| 1055 | } |
| 1056 | |
| 1057 | REQUIRE(mp_int_mod(a, m, TEMP(0))); |
| 1058 | REQUIRE(s_brmu(TEMP(1), m)); |
| 1059 | REQUIRE(s_embar(TEMP(0), b, m, TEMP(1), s)); |
| 1060 | REQUIRE(mp_int_copy(s, c)); |
| 1061 | |
| 1062 | CLEANUP_TEMP(); |
| 1063 | return MP_OK; |
| 1064 | } |
| 1065 | |
| 1066 | mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c) { |
| 1067 | mpz_t vtmp; |
| 1068 | mp_digit vbuf[MP_VALUE_DIGITS(value)]; |
| 1069 | |
| 1070 | s_fake(z: &vtmp, value, vbuf); |
| 1071 | |
| 1072 | return mp_int_exptmod(a, b: &vtmp, m, c); |
| 1073 | } |
| 1074 | |
| 1075 | mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b, mp_int m, mp_int c) { |
| 1076 | mpz_t vtmp; |
| 1077 | mp_digit vbuf[MP_VALUE_DIGITS(value)]; |
| 1078 | |
| 1079 | s_fake(z: &vtmp, value, vbuf); |
| 1080 | |
| 1081 | return mp_int_exptmod(a: &vtmp, b, m, c); |
| 1082 | } |
| 1083 | |
| 1084 | mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, |
| 1085 | mp_int c) { |
| 1086 | assert(a && b && m && c); |
| 1087 | |
| 1088 | /* Zero moduli and negative exponents are not considered. */ |
| 1089 | if (CMPZ(Z: m) == 0) return MP_UNDEF; |
| 1090 | if (CMPZ(Z: b) < 0) return MP_RANGE; |
| 1091 | |
| 1092 | DECLARE_TEMP(2); |
| 1093 | mp_size um = MP_USED(Z: m); |
| 1094 | REQUIRE(GROW(TEMP(0), 2 * um)); |
| 1095 | |
| 1096 | mp_int s; |
| 1097 | if (c == b || c == m) { |
| 1098 | REQUIRE(GROW(TEMP(1), 2 * um)); |
| 1099 | s = TEMP(1); |
| 1100 | } else { |
| 1101 | s = c; |
| 1102 | } |
| 1103 | |
| 1104 | REQUIRE(mp_int_mod(a, m, TEMP(0))); |
| 1105 | REQUIRE(s_embar(TEMP(0), b, m, mu, s)); |
| 1106 | REQUIRE(mp_int_copy(s, c)); |
| 1107 | |
| 1108 | CLEANUP_TEMP(); |
| 1109 | return MP_OK; |
| 1110 | } |
| 1111 | |
| 1112 | mp_result mp_int_redux_const(mp_int m, mp_int c) { |
| 1113 | assert(m != NULL && c != NULL && m != c); |
| 1114 | |
| 1115 | return s_brmu(z: c, m); |
| 1116 | } |
| 1117 | |
| 1118 | mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c) { |
| 1119 | assert(a != NULL && m != NULL && c != NULL); |
| 1120 | |
| 1121 | if (CMPZ(Z: a) == 0 || CMPZ(Z: m) <= 0) return MP_RANGE; |
| 1122 | |
| 1123 | DECLARE_TEMP(2); |
| 1124 | |
| 1125 | REQUIRE(mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL)); |
| 1126 | |
| 1127 | if (mp_int_compare_value(TEMP(0), value: 1) != 0) { |
| 1128 | REQUIRE(MP_UNDEF); |
| 1129 | } |
| 1130 | |
| 1131 | /* It is first necessary to constrain the value to the proper range */ |
| 1132 | REQUIRE(mp_int_mod(TEMP(1), m, TEMP(1))); |
| 1133 | |
| 1134 | /* Now, if 'a' was originally negative, the value we have is actually the |
| 1135 | magnitude of the negative representative; to get the positive value we |
| 1136 | have to subtract from the modulus. Otherwise, the value is okay as it |
| 1137 | stands. |
| 1138 | */ |
| 1139 | if (MP_SIGN(Z: a) == MP_NEG) { |
| 1140 | REQUIRE(mp_int_sub(m, TEMP(1), c)); |
| 1141 | } else { |
| 1142 | REQUIRE(mp_int_copy(TEMP(1), c)); |
| 1143 | } |
| 1144 | |
| 1145 | CLEANUP_TEMP(); |
| 1146 | return MP_OK; |
| 1147 | } |
| 1148 | |
| 1149 | /* Binary GCD algorithm due to Josef Stein, 1961 */ |
| 1150 | mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c) { |
| 1151 | assert(a != NULL && b != NULL && c != NULL); |
| 1152 | |
| 1153 | int ca = CMPZ(Z: a); |
| 1154 | int cb = CMPZ(Z: b); |
| 1155 | if (ca == 0 && cb == 0) { |
| 1156 | return MP_UNDEF; |
| 1157 | } else if (ca == 0) { |
| 1158 | return mp_int_abs(a: b, c); |
| 1159 | } else if (cb == 0) { |
| 1160 | return mp_int_abs(a, c); |
| 1161 | } |
| 1162 | |
| 1163 | DECLARE_TEMP(3); |
| 1164 | REQUIRE(mp_int_copy(a, TEMP(0))); |
| 1165 | REQUIRE(mp_int_copy(b, TEMP(1))); |
| 1166 | |
| 1167 | TEMP(0)->sign = MP_ZPOS; |
| 1168 | TEMP(1)->sign = MP_ZPOS; |
| 1169 | |
| 1170 | int k = 0; |
| 1171 | { /* Divide out common factors of 2 from u and v */ |
| 1172 | int div2_u = s_dp2k(TEMP(0)); |
| 1173 | int div2_v = s_dp2k(TEMP(1)); |
| 1174 | |
| 1175 | k = MIN(A: div2_u, B: div2_v); |
| 1176 | s_qdiv(TEMP(0), p2: (mp_size)k); |
| 1177 | s_qdiv(TEMP(1), p2: (mp_size)k); |
| 1178 | } |
| 1179 | |
| 1180 | if (mp_int_is_odd(TEMP(0))) { |
| 1181 | REQUIRE(mp_int_neg(TEMP(1), TEMP(2))); |
| 1182 | } else { |
| 1183 | REQUIRE(mp_int_copy(TEMP(0), TEMP(2))); |
| 1184 | } |
| 1185 | |
| 1186 | for (;;) { |
| 1187 | s_qdiv(TEMP(2), p2: s_dp2k(TEMP(2))); |
| 1188 | |
| 1189 | if (CMPZ(TEMP(2)) > 0) { |
| 1190 | REQUIRE(mp_int_copy(TEMP(2), TEMP(0))); |
| 1191 | } else { |
| 1192 | REQUIRE(mp_int_neg(TEMP(2), TEMP(1))); |
| 1193 | } |
| 1194 | |
| 1195 | REQUIRE(mp_int_sub(TEMP(0), TEMP(1), TEMP(2))); |
| 1196 | |
| 1197 | if (CMPZ(TEMP(2)) == 0) break; |
| 1198 | } |
| 1199 | |
| 1200 | REQUIRE(mp_int_abs(TEMP(0), c)); |
| 1201 | if (!s_qmul(z: c, p2: (mp_size)k)) REQUIRE(MP_MEMORY); |
| 1202 | |
| 1203 | CLEANUP_TEMP(); |
| 1204 | return MP_OK; |
| 1205 | } |
| 1206 | |
| 1207 | /* This is the binary GCD algorithm again, but this time we keep track of the |
| 1208 | elementary matrix operations as we go, so we can get values x and y |
| 1209 | satisfying c = ax + by. |
| 1210 | */ |
| 1211 | mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, mp_int x, mp_int y) { |
| 1212 | assert(a != NULL && b != NULL && c != NULL && (x != NULL || y != NULL)); |
| 1213 | |
| 1214 | mp_result res = MP_OK; |
| 1215 | int ca = CMPZ(Z: a); |
| 1216 | int cb = CMPZ(Z: b); |
| 1217 | if (ca == 0 && cb == 0) { |
| 1218 | return MP_UNDEF; |
| 1219 | } else if (ca == 0) { |
| 1220 | if ((res = mp_int_abs(a: b, c)) != MP_OK) return res; |
| 1221 | mp_int_zero(z: x); |
| 1222 | (void)mp_int_set_value(z: y, value: 1); |
| 1223 | return MP_OK; |
| 1224 | } else if (cb == 0) { |
| 1225 | if ((res = mp_int_abs(a, c)) != MP_OK) return res; |
| 1226 | (void)mp_int_set_value(z: x, value: 1); |
| 1227 | mp_int_zero(z: y); |
| 1228 | return MP_OK; |
| 1229 | } |
| 1230 | |
| 1231 | /* Initialize temporaries: |
| 1232 | A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7 */ |
| 1233 | DECLARE_TEMP(8); |
| 1234 | REQUIRE(mp_int_set_value(TEMP(0), 1)); |
| 1235 | REQUIRE(mp_int_set_value(TEMP(3), 1)); |
| 1236 | REQUIRE(mp_int_copy(a, TEMP(4))); |
| 1237 | REQUIRE(mp_int_copy(b, TEMP(5))); |
| 1238 | |
| 1239 | /* We will work with absolute values here */ |
| 1240 | TEMP(4)->sign = MP_ZPOS; |
| 1241 | TEMP(5)->sign = MP_ZPOS; |
| 1242 | |
| 1243 | int k = 0; |
| 1244 | { /* Divide out common factors of 2 from u and v */ |
| 1245 | int div2_u = s_dp2k(TEMP(4)), div2_v = s_dp2k(TEMP(5)); |
| 1246 | |
| 1247 | k = MIN(A: div2_u, B: div2_v); |
| 1248 | s_qdiv(TEMP(4), p2: k); |
| 1249 | s_qdiv(TEMP(5), p2: k); |
| 1250 | } |
| 1251 | |
| 1252 | REQUIRE(mp_int_copy(TEMP(4), TEMP(6))); |
| 1253 | REQUIRE(mp_int_copy(TEMP(5), TEMP(7))); |
| 1254 | |
| 1255 | for (;;) { |
| 1256 | while (mp_int_is_even(TEMP(4))) { |
| 1257 | s_qdiv(TEMP(4), p2: 1); |
| 1258 | |
| 1259 | if (mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1))) { |
| 1260 | REQUIRE(mp_int_add(TEMP(0), TEMP(7), TEMP(0))); |
| 1261 | REQUIRE(mp_int_sub(TEMP(1), TEMP(6), TEMP(1))); |
| 1262 | } |
| 1263 | |
| 1264 | s_qdiv(TEMP(0), p2: 1); |
| 1265 | s_qdiv(TEMP(1), p2: 1); |
| 1266 | } |
| 1267 | |
| 1268 | while (mp_int_is_even(TEMP(5))) { |
| 1269 | s_qdiv(TEMP(5), p2: 1); |
| 1270 | |
| 1271 | if (mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3))) { |
| 1272 | REQUIRE(mp_int_add(TEMP(2), TEMP(7), TEMP(2))); |
| 1273 | REQUIRE(mp_int_sub(TEMP(3), TEMP(6), TEMP(3))); |
| 1274 | } |
| 1275 | |
| 1276 | s_qdiv(TEMP(2), p2: 1); |
| 1277 | s_qdiv(TEMP(3), p2: 1); |
| 1278 | } |
| 1279 | |
| 1280 | if (mp_int_compare(TEMP(4), TEMP(5)) >= 0) { |
| 1281 | REQUIRE(mp_int_sub(TEMP(4), TEMP(5), TEMP(4))); |
| 1282 | REQUIRE(mp_int_sub(TEMP(0), TEMP(2), TEMP(0))); |
| 1283 | REQUIRE(mp_int_sub(TEMP(1), TEMP(3), TEMP(1))); |
| 1284 | } else { |
| 1285 | REQUIRE(mp_int_sub(TEMP(5), TEMP(4), TEMP(5))); |
| 1286 | REQUIRE(mp_int_sub(TEMP(2), TEMP(0), TEMP(2))); |
| 1287 | REQUIRE(mp_int_sub(TEMP(3), TEMP(1), TEMP(3))); |
| 1288 | } |
| 1289 | |
| 1290 | if (CMPZ(TEMP(4)) == 0) { |
| 1291 | if (x) REQUIRE(mp_int_copy(TEMP(2), x)); |
| 1292 | if (y) REQUIRE(mp_int_copy(TEMP(3), y)); |
| 1293 | if (c) { |
| 1294 | if (!s_qmul(TEMP(5), p2: k)) { |
| 1295 | REQUIRE(MP_MEMORY); |
| 1296 | } |
| 1297 | REQUIRE(mp_int_copy(TEMP(5), c)); |
| 1298 | } |
| 1299 | |
| 1300 | break; |
| 1301 | } |
| 1302 | } |
| 1303 | |
| 1304 | CLEANUP_TEMP(); |
| 1305 | return MP_OK; |
| 1306 | } |
| 1307 | |
| 1308 | mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c) { |
| 1309 | assert(a != NULL && b != NULL && c != NULL); |
| 1310 | |
| 1311 | /* Since a * b = gcd(a, b) * lcm(a, b), we can compute |
| 1312 | lcm(a, b) = (a / gcd(a, b)) * b. |
| 1313 | |
| 1314 | This formulation insures everything works even if the input |
| 1315 | variables share space. |
| 1316 | */ |
| 1317 | DECLARE_TEMP(1); |
| 1318 | REQUIRE(mp_int_gcd(a, b, TEMP(0))); |
| 1319 | REQUIRE(mp_int_div(a, TEMP(0), TEMP(0), NULL)); |
| 1320 | REQUIRE(mp_int_mul(TEMP(0), b, TEMP(0))); |
| 1321 | REQUIRE(mp_int_copy(TEMP(0), c)); |
| 1322 | |
| 1323 | CLEANUP_TEMP(); |
| 1324 | return MP_OK; |
| 1325 | } |
| 1326 | |
| 1327 | bool mp_int_divisible_value(mp_int a, mp_small v) { |
| 1328 | mp_small rem = 0; |
| 1329 | |
| 1330 | if (mp_int_div_value(a, value: v, NULL, r: &rem) != MP_OK) { |
| 1331 | return false; |
| 1332 | } |
| 1333 | return rem == 0; |
| 1334 | } |
| 1335 | |
| 1336 | int mp_int_is_pow2(mp_int z) { |
| 1337 | assert(z != NULL); |
| 1338 | |
| 1339 | return s_isp2(z); |
| 1340 | } |
| 1341 | |
| 1342 | /* Implementation of Newton's root finding method, based loosely on a patch |
| 1343 | contributed by Hal Finkel <half@halssoftware.com> |
| 1344 | modified by M. J. Fromberger. |
| 1345 | */ |
| 1346 | mp_result mp_int_root(mp_int a, mp_small b, mp_int c) { |
| 1347 | assert(a != NULL && c != NULL && b > 0); |
| 1348 | |
| 1349 | if (b == 1) { |
| 1350 | return mp_int_copy(a, c); |
| 1351 | } |
| 1352 | bool flips = false; |
| 1353 | if (MP_SIGN(Z: a) == MP_NEG) { |
| 1354 | if (b % 2 == 0) { |
| 1355 | return MP_UNDEF; /* root does not exist for negative a with even b */ |
| 1356 | } else { |
| 1357 | flips = true; |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | DECLARE_TEMP(5); |
| 1362 | REQUIRE(mp_int_copy(a, TEMP(0))); |
| 1363 | REQUIRE(mp_int_copy(a, TEMP(1))); |
| 1364 | TEMP(0)->sign = MP_ZPOS; |
| 1365 | TEMP(1)->sign = MP_ZPOS; |
| 1366 | |
| 1367 | for (;;) { |
| 1368 | REQUIRE(mp_int_expt(TEMP(1), b, TEMP(2))); |
| 1369 | |
| 1370 | if (mp_int_compare_unsigned(TEMP(2), TEMP(0)) <= 0) break; |
| 1371 | |
| 1372 | REQUIRE(mp_int_sub(TEMP(2), TEMP(0), TEMP(2))); |
| 1373 | REQUIRE(mp_int_expt(TEMP(1), b - 1, TEMP(3))); |
| 1374 | REQUIRE(mp_int_mul_value(TEMP(3), b, TEMP(3))); |
| 1375 | REQUIRE(mp_int_div(TEMP(2), TEMP(3), TEMP(4), NULL)); |
| 1376 | REQUIRE(mp_int_sub(TEMP(1), TEMP(4), TEMP(4))); |
| 1377 | |
| 1378 | if (mp_int_compare_unsigned(TEMP(1), TEMP(4)) == 0) { |
| 1379 | REQUIRE(mp_int_sub_value(TEMP(4), 1, TEMP(4))); |
| 1380 | } |
| 1381 | REQUIRE(mp_int_copy(TEMP(4), TEMP(1))); |
| 1382 | } |
| 1383 | |
| 1384 | REQUIRE(mp_int_copy(TEMP(1), c)); |
| 1385 | |
| 1386 | /* If the original value of a was negative, flip the output sign. */ |
| 1387 | if (flips) (void)mp_int_neg(a: c, c); /* cannot fail */ |
| 1388 | |
| 1389 | CLEANUP_TEMP(); |
| 1390 | return MP_OK; |
| 1391 | } |
| 1392 | |
| 1393 | mp_result mp_int_to_int(mp_int z, mp_small *out) { |
| 1394 | assert(z != NULL); |
| 1395 | |
| 1396 | /* Make sure the value is representable as a small integer */ |
| 1397 | mp_sign sz = MP_SIGN(Z: z); |
| 1398 | if ((sz == MP_ZPOS && mp_int_compare_value(z, MP_SMALL_MAX) > 0) || |
| 1399 | mp_int_compare_value(z, MP_SMALL_MIN) < 0) { |
| 1400 | return MP_RANGE; |
| 1401 | } |
| 1402 | |
| 1403 | mp_usmall uz = MP_USED(Z: z); |
| 1404 | mp_digit *dz = MP_DIGITS(Z: z) + uz - 1; |
| 1405 | mp_small uv = 0; |
| 1406 | while (uz > 0) { |
| 1407 | uv <<= MP_DIGIT_BIT / 2; |
| 1408 | uv = (uv << (MP_DIGIT_BIT / 2)) | *dz--; |
| 1409 | --uz; |
| 1410 | } |
| 1411 | |
| 1412 | if (out) *out = (mp_small)((sz == MP_NEG) ? -uv : uv); |
| 1413 | |
| 1414 | return MP_OK; |
| 1415 | } |
| 1416 | |
| 1417 | mp_result mp_int_to_uint(mp_int z, mp_usmall *out) { |
| 1418 | assert(z != NULL); |
| 1419 | |
| 1420 | /* Make sure the value is representable as an unsigned small integer */ |
| 1421 | mp_size sz = MP_SIGN(Z: z); |
| 1422 | if (sz == MP_NEG || mp_int_compare_uvalue(z, MP_USMALL_MAX) > 0) { |
| 1423 | return MP_RANGE; |
| 1424 | } |
| 1425 | |
| 1426 | mp_size uz = MP_USED(Z: z); |
| 1427 | mp_digit *dz = MP_DIGITS(Z: z) + uz - 1; |
| 1428 | mp_usmall uv = 0; |
| 1429 | |
| 1430 | while (uz > 0) { |
| 1431 | uv <<= MP_DIGIT_BIT / 2; |
| 1432 | uv = (uv << (MP_DIGIT_BIT / 2)) | *dz--; |
| 1433 | --uz; |
| 1434 | } |
| 1435 | |
| 1436 | if (out) *out = uv; |
| 1437 | |
| 1438 | return MP_OK; |
| 1439 | } |
| 1440 | |
| 1441 | mp_result mp_int_to_string(mp_int z, mp_size radix, char *str, int limit) { |
| 1442 | assert(z != NULL && str != NULL && limit >= 2); |
| 1443 | assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX); |
| 1444 | |
| 1445 | int cmp = 0; |
| 1446 | if (CMPZ(Z: z) == 0) { |
| 1447 | *str++ = s_val2ch(v: 0, caps: 1); |
| 1448 | } else { |
| 1449 | mp_result res; |
| 1450 | mpz_t tmp; |
| 1451 | char *h, *t; |
| 1452 | |
| 1453 | if ((res = mp_int_init_copy(z: &tmp, old: z)) != MP_OK) return res; |
| 1454 | |
| 1455 | if (MP_SIGN(Z: z) == MP_NEG) { |
| 1456 | *str++ = '-'; |
| 1457 | --limit; |
| 1458 | } |
| 1459 | h = str; |
| 1460 | |
| 1461 | /* Generate digits in reverse order until finished or limit reached */ |
| 1462 | for (/* */; limit > 0; --limit) { |
| 1463 | mp_digit d; |
| 1464 | |
| 1465 | if ((cmp = CMPZ(Z: &tmp)) == 0) break; |
| 1466 | |
| 1467 | d = s_ddiv(a: &tmp, b: (mp_digit)radix); |
| 1468 | *str++ = s_val2ch(v: d, caps: 1); |
| 1469 | } |
| 1470 | t = str - 1; |
| 1471 | |
| 1472 | /* Put digits back in correct output order */ |
| 1473 | while (h < t) { |
| 1474 | char tc = *h; |
| 1475 | *h++ = *t; |
| 1476 | *t-- = tc; |
| 1477 | } |
| 1478 | |
| 1479 | mp_int_clear(z: &tmp); |
| 1480 | } |
| 1481 | |
| 1482 | *str = '\0'; |
| 1483 | if (cmp == 0) { |
| 1484 | return MP_OK; |
| 1485 | } else { |
| 1486 | return MP_TRUNC; |
| 1487 | } |
| 1488 | } |
| 1489 | |
| 1490 | mp_result mp_int_string_len(mp_int z, mp_size radix) { |
| 1491 | assert(z != NULL); |
| 1492 | assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX); |
| 1493 | |
| 1494 | int len = s_outlen(z, r: radix) + 1; /* for terminator */ |
| 1495 | |
| 1496 | /* Allow for sign marker on negatives */ |
| 1497 | if (MP_SIGN(Z: z) == MP_NEG) len += 1; |
| 1498 | |
| 1499 | return len; |
| 1500 | } |
| 1501 | |
| 1502 | /* Read zero-terminated string into z */ |
| 1503 | mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str) { |
| 1504 | return mp_int_read_cstring(z, radix, str, NULL); |
| 1505 | } |
| 1506 | |
| 1507 | mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, |
| 1508 | char **end) { |
| 1509 | assert(z != NULL && str != NULL); |
| 1510 | assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX); |
| 1511 | |
| 1512 | /* Skip leading whitespace */ |
| 1513 | while (isspace((unsigned char)*str)) ++str; |
| 1514 | |
| 1515 | /* Handle leading sign tag (+/-, positive default) */ |
| 1516 | switch (*str) { |
| 1517 | case '-': |
| 1518 | z->sign = MP_NEG; |
| 1519 | ++str; |
| 1520 | break; |
| 1521 | case '+': |
| 1522 | ++str; /* fallthrough */ |
| 1523 | default: |
| 1524 | z->sign = MP_ZPOS; |
| 1525 | break; |
| 1526 | } |
| 1527 | |
| 1528 | /* Skip leading zeroes */ |
| 1529 | int ch; |
| 1530 | while ((ch = s_ch2val(c: *str, r: radix)) == 0) ++str; |
| 1531 | |
| 1532 | /* Make sure there is enough space for the value */ |
| 1533 | if (!s_pad(z, min: s_inlen(len: strlen(s: str), r: radix))) return MP_MEMORY; |
| 1534 | |
| 1535 | z->used = 1; |
| 1536 | z->digits[0] = 0; |
| 1537 | |
| 1538 | while (*str != '\0' && ((ch = s_ch2val(c: *str, r: radix)) >= 0)) { |
| 1539 | s_dmul(a: z, b: (mp_digit)radix); |
| 1540 | s_dadd(a: z, b: (mp_digit)ch); |
| 1541 | ++str; |
| 1542 | } |
| 1543 | |
| 1544 | CLAMP(z_: z); |
| 1545 | |
| 1546 | /* Override sign for zero, even if negative specified. */ |
| 1547 | if (CMPZ(Z: z) == 0) z->sign = MP_ZPOS; |
| 1548 | |
| 1549 | if (end != NULL) *end = (char *)str; |
| 1550 | |
| 1551 | /* Return a truncation error if the string has unprocessed characters |
| 1552 | remaining, so the caller can tell if the whole string was done */ |
| 1553 | if (*str != '\0') { |
| 1554 | return MP_TRUNC; |
| 1555 | } else { |
| 1556 | return MP_OK; |
| 1557 | } |
| 1558 | } |
| 1559 | |
| 1560 | mp_result mp_int_count_bits(mp_int z) { |
| 1561 | assert(z != NULL); |
| 1562 | |
| 1563 | mp_size uz = MP_USED(Z: z); |
| 1564 | if (uz == 1 && z->digits[0] == 0) return 1; |
| 1565 | |
| 1566 | --uz; |
| 1567 | mp_size nbits = uz * MP_DIGIT_BIT; |
| 1568 | mp_digit d = z->digits[uz]; |
| 1569 | |
| 1570 | while (d != 0) { |
| 1571 | d >>= 1; |
| 1572 | ++nbits; |
| 1573 | } |
| 1574 | |
| 1575 | return nbits; |
| 1576 | } |
| 1577 | |
| 1578 | mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit) { |
| 1579 | static const int PAD_FOR_2C = 1; |
| 1580 | |
| 1581 | assert(z != NULL && buf != NULL); |
| 1582 | |
| 1583 | int limpos = limit; |
| 1584 | mp_result res = s_tobin(z, buf, limpos: &limpos, pad: PAD_FOR_2C); |
| 1585 | |
| 1586 | if (MP_SIGN(Z: z) == MP_NEG) s_2comp(buf, len: limpos); |
| 1587 | |
| 1588 | return res; |
| 1589 | } |
| 1590 | |
| 1591 | mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len) { |
| 1592 | assert(z != NULL && buf != NULL && len > 0); |
| 1593 | |
| 1594 | /* Figure out how many digits are needed to represent this value */ |
| 1595 | mp_size need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT; |
| 1596 | if (!s_pad(z, min: need)) return MP_MEMORY; |
| 1597 | |
| 1598 | mp_int_zero(z); |
| 1599 | |
| 1600 | /* If the high-order bit is set, take the 2's complement before reading the |
| 1601 | value (it will be restored afterward) */ |
| 1602 | if (buf[0] >> (CHAR_BIT - 1)) { |
| 1603 | z->sign = MP_NEG; |
| 1604 | s_2comp(buf, len); |
| 1605 | } |
| 1606 | |
| 1607 | mp_digit *dz = MP_DIGITS(Z: z); |
| 1608 | unsigned char *tmp = buf; |
| 1609 | for (int i = len; i > 0; --i, ++tmp) { |
| 1610 | s_qmul(z, p2: (mp_size)CHAR_BIT); |
| 1611 | *dz |= *tmp; |
| 1612 | } |
| 1613 | |
| 1614 | /* Restore 2's complement if we took it before */ |
| 1615 | if (MP_SIGN(Z: z) == MP_NEG) s_2comp(buf, len); |
| 1616 | |
| 1617 | return MP_OK; |
| 1618 | } |
| 1619 | |
| 1620 | mp_result mp_int_binary_len(mp_int z) { |
| 1621 | mp_result res = mp_int_count_bits(z); |
| 1622 | if (res <= 0) return res; |
| 1623 | |
| 1624 | int bytes = mp_int_unsigned_len(z); |
| 1625 | |
| 1626 | /* If the highest-order bit falls exactly on a byte boundary, we need to pad |
| 1627 | with an extra byte so that the sign will be read correctly when reading it |
| 1628 | back in. */ |
| 1629 | if (bytes * CHAR_BIT == res) ++bytes; |
| 1630 | |
| 1631 | return bytes; |
| 1632 | } |
| 1633 | |
| 1634 | mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit) { |
| 1635 | static const int NO_PADDING = 0; |
| 1636 | |
| 1637 | assert(z != NULL && buf != NULL); |
| 1638 | |
| 1639 | return s_tobin(z, buf, limpos: &limit, pad: NO_PADDING); |
| 1640 | } |
| 1641 | |
| 1642 | mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len) { |
| 1643 | assert(z != NULL && buf != NULL && len > 0); |
| 1644 | |
| 1645 | /* Figure out how many digits are needed to represent this value */ |
| 1646 | mp_size need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT; |
| 1647 | if (!s_pad(z, min: need)) return MP_MEMORY; |
| 1648 | |
| 1649 | mp_int_zero(z); |
| 1650 | |
| 1651 | unsigned char *tmp = buf; |
| 1652 | for (int i = len; i > 0; --i, ++tmp) { |
| 1653 | (void)s_qmul(z, CHAR_BIT); |
| 1654 | *MP_DIGITS(Z: z) |= *tmp; |
| 1655 | } |
| 1656 | |
| 1657 | return MP_OK; |
| 1658 | } |
| 1659 | |
| 1660 | mp_result mp_int_unsigned_len(mp_int z) { |
| 1661 | mp_result res = mp_int_count_bits(z); |
| 1662 | if (res <= 0) return res; |
| 1663 | |
| 1664 | int bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT; |
| 1665 | return bytes; |
| 1666 | } |
| 1667 | |
| 1668 | const char *mp_error_string(mp_result res) { |
| 1669 | if (res > 0) return s_unknown_err; |
| 1670 | |
| 1671 | res = -res; |
| 1672 | int ix; |
| 1673 | for (ix = 0; ix < res && s_error_msg[ix] != NULL; ++ix) |
| 1674 | ; |
| 1675 | |
| 1676 | if (s_error_msg[ix] != NULL) { |
| 1677 | return s_error_msg[ix]; |
| 1678 | } else { |
| 1679 | return s_unknown_err; |
| 1680 | } |
| 1681 | } |
| 1682 | |
| 1683 | /*------------------------------------------------------------------------*/ |
| 1684 | /* Private functions for internal use. These make assumptions. */ |
| 1685 | |
| 1686 | #if DEBUG |
| 1687 | static const mp_digit fill = (mp_digit)0xdeadbeefabad1dea; |
| 1688 | #endif |
| 1689 | |
| 1690 | static mp_digit *s_alloc(mp_size num) { |
| 1691 | mp_digit *out = malloc(size: num * sizeof(mp_digit)); |
| 1692 | assert(out != NULL); |
| 1693 | |
| 1694 | #if DEBUG |
| 1695 | for (mp_size ix = 0; ix < num; ++ix) out[ix] = fill; |
| 1696 | #endif |
| 1697 | return out; |
| 1698 | } |
| 1699 | |
| 1700 | static mp_digit *s_realloc(mp_digit *old, mp_size osize, mp_size nsize) { |
| 1701 | #if DEBUG |
| 1702 | mp_digit *new = s_alloc(nsize); |
| 1703 | assert(new != NULL); |
| 1704 | |
| 1705 | for (mp_size ix = 0; ix < nsize; ++ix) new[ix] = fill; |
| 1706 | memcpy(new, old, osize * sizeof(mp_digit)); |
| 1707 | #else |
| 1708 | mp_digit *new = realloc(ptr: old, size: nsize * sizeof(mp_digit)); |
| 1709 | assert(new != NULL); |
| 1710 | #endif |
| 1711 | |
| 1712 | return new; |
| 1713 | } |
| 1714 | |
| 1715 | static void s_free(void *ptr) { free(ptr: ptr); } |
| 1716 | |
| 1717 | static bool s_pad(mp_int z, mp_size min) { |
| 1718 | if (MP_ALLOC(Z: z) < min) { |
| 1719 | mp_size nsize = s_round_prec(P: min); |
| 1720 | mp_digit *tmp; |
| 1721 | |
| 1722 | if (z->digits == &(z->single)) { |
| 1723 | if ((tmp = s_alloc(num: nsize)) == NULL) return false; |
| 1724 | tmp[0] = z->single; |
| 1725 | } else if ((tmp = s_realloc(old: MP_DIGITS(Z: z), osize: MP_ALLOC(Z: z), nsize)) == NULL) { |
| 1726 | return false; |
| 1727 | } |
| 1728 | |
| 1729 | z->digits = tmp; |
| 1730 | z->alloc = nsize; |
| 1731 | } |
| 1732 | |
| 1733 | return true; |
| 1734 | } |
| 1735 | |
| 1736 | /* Note: This will not work correctly when value == MP_SMALL_MIN */ |
| 1737 | static void s_fake(mp_int z, mp_small value, mp_digit vbuf[]) { |
| 1738 | mp_usmall uv = (mp_usmall)(value < 0) ? -value : value; |
| 1739 | s_ufake(z, value: uv, vbuf); |
| 1740 | if (value < 0) z->sign = MP_NEG; |
| 1741 | } |
| 1742 | |
| 1743 | static void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[]) { |
| 1744 | mp_size ndig = (mp_size)s_uvpack(v: value, t: vbuf); |
| 1745 | |
| 1746 | z->used = ndig; |
| 1747 | z->alloc = MP_VALUE_DIGITS(value); |
| 1748 | z->sign = MP_ZPOS; |
| 1749 | z->digits = vbuf; |
| 1750 | } |
| 1751 | |
| 1752 | static int s_cdig(mp_digit *da, mp_digit *db, mp_size len) { |
| 1753 | mp_digit *dat = da + len - 1, *dbt = db + len - 1; |
| 1754 | |
| 1755 | for (/* */; len != 0; --len, --dat, --dbt) { |
| 1756 | if (*dat > *dbt) { |
| 1757 | return 1; |
| 1758 | } else if (*dat < *dbt) { |
| 1759 | return -1; |
| 1760 | } |
| 1761 | } |
| 1762 | |
| 1763 | return 0; |
| 1764 | } |
| 1765 | |
| 1766 | static int s_uvpack(mp_usmall uv, mp_digit t[]) { |
| 1767 | int ndig = 0; |
| 1768 | |
| 1769 | if (uv == 0) |
| 1770 | t[ndig++] = 0; |
| 1771 | else { |
| 1772 | while (uv != 0) { |
| 1773 | t[ndig++] = (mp_digit)uv; |
| 1774 | uv >>= MP_DIGIT_BIT / 2; |
| 1775 | uv >>= MP_DIGIT_BIT / 2; |
| 1776 | } |
| 1777 | } |
| 1778 | |
| 1779 | return ndig; |
| 1780 | } |
| 1781 | |
| 1782 | static int s_ucmp(mp_int a, mp_int b) { |
| 1783 | mp_size ua = MP_USED(Z: a), ub = MP_USED(Z: b); |
| 1784 | |
| 1785 | if (ua > ub) { |
| 1786 | return 1; |
| 1787 | } else if (ub > ua) { |
| 1788 | return -1; |
| 1789 | } else { |
| 1790 | return s_cdig(da: MP_DIGITS(Z: a), db: MP_DIGITS(Z: b), len: ua); |
| 1791 | } |
| 1792 | } |
| 1793 | |
| 1794 | static int s_vcmp(mp_int a, mp_small v) { |
| 1795 | mp_usmall uv = (v < 0) ? -(mp_usmall)v : (mp_usmall)v; |
| 1796 | return s_uvcmp(a, uv); |
| 1797 | } |
| 1798 | |
| 1799 | static int s_uvcmp(mp_int a, mp_usmall uv) { |
| 1800 | mpz_t vtmp; |
| 1801 | mp_digit vdig[MP_VALUE_DIGITS(uv)]; |
| 1802 | |
| 1803 | s_ufake(z: &vtmp, value: uv, vbuf: vdig); |
| 1804 | return s_ucmp(a, b: &vtmp); |
| 1805 | } |
| 1806 | |
| 1807 | static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, |
| 1808 | mp_size size_b) { |
| 1809 | mp_size pos; |
| 1810 | mp_word w = 0; |
| 1811 | |
| 1812 | /* Insure that da is the longer of the two to simplify later code */ |
| 1813 | if (size_b > size_a) { |
| 1814 | SWAP(mp_digit *, da, db); |
| 1815 | SWAP(mp_size, size_a, size_b); |
| 1816 | } |
| 1817 | |
| 1818 | /* Add corresponding digits until the shorter number runs out */ |
| 1819 | for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) { |
| 1820 | w = w + (mp_word)*da + (mp_word)*db; |
| 1821 | *dc = LOWER_HALF(W: w); |
| 1822 | w = UPPER_HALF(W: w); |
| 1823 | } |
| 1824 | |
| 1825 | /* Propagate carries as far as necessary */ |
| 1826 | for (/* */; pos < size_a; ++pos, ++da, ++dc) { |
| 1827 | w = w + *da; |
| 1828 | |
| 1829 | *dc = LOWER_HALF(W: w); |
| 1830 | w = UPPER_HALF(W: w); |
| 1831 | } |
| 1832 | |
| 1833 | /* Return carry out */ |
| 1834 | return (mp_digit)w; |
| 1835 | } |
| 1836 | |
| 1837 | static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, |
| 1838 | mp_size size_b) { |
| 1839 | mp_size pos; |
| 1840 | mp_word w = 0; |
| 1841 | |
| 1842 | /* We assume that |a| >= |b| so this should definitely hold */ |
| 1843 | assert(size_a >= size_b); |
| 1844 | |
| 1845 | /* Subtract corresponding digits and propagate borrow */ |
| 1846 | for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) { |
| 1847 | w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */ |
| 1848 | (mp_word)*da) - |
| 1849 | w - (mp_word)*db; |
| 1850 | |
| 1851 | *dc = LOWER_HALF(W: w); |
| 1852 | w = (UPPER_HALF(W: w) == 0); |
| 1853 | } |
| 1854 | |
| 1855 | /* Finish the subtraction for remaining upper digits of da */ |
| 1856 | for (/* */; pos < size_a; ++pos, ++da, ++dc) { |
| 1857 | w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */ |
| 1858 | (mp_word)*da) - |
| 1859 | w; |
| 1860 | |
| 1861 | *dc = LOWER_HALF(W: w); |
| 1862 | w = (UPPER_HALF(W: w) == 0); |
| 1863 | } |
| 1864 | |
| 1865 | /* If there is a borrow out at the end, it violates the precondition */ |
| 1866 | assert(w == 0); |
| 1867 | } |
| 1868 | |
| 1869 | static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, |
| 1870 | mp_size size_b) { |
| 1871 | mp_size bot_size; |
| 1872 | |
| 1873 | /* Make sure b is the smaller of the two input values */ |
| 1874 | if (size_b > size_a) { |
| 1875 | SWAP(mp_digit *, da, db); |
| 1876 | SWAP(mp_size, size_a, size_b); |
| 1877 | } |
| 1878 | |
| 1879 | /* Insure that the bottom is the larger half in an odd-length split; the code |
| 1880 | below relies on this being true. |
| 1881 | */ |
| 1882 | bot_size = (size_a + 1) / 2; |
| 1883 | |
| 1884 | /* If the values are big enough to bother with recursion, use the Karatsuba |
| 1885 | algorithm to compute the product; otherwise use the normal multiplication |
| 1886 | algorithm |
| 1887 | */ |
| 1888 | if (multiply_threshold && size_a >= multiply_threshold && size_b > bot_size) { |
| 1889 | mp_digit *t1, *t2, *t3, carry; |
| 1890 | |
| 1891 | mp_digit *a_top = da + bot_size; |
| 1892 | mp_digit *b_top = db + bot_size; |
| 1893 | |
| 1894 | mp_size at_size = size_a - bot_size; |
| 1895 | mp_size bt_size = size_b - bot_size; |
| 1896 | mp_size buf_size = 2 * bot_size; |
| 1897 | |
| 1898 | /* Do a single allocation for all three temporary buffers needed; each |
| 1899 | buffer must be big enough to hold the product of two bottom halves, and |
| 1900 | one buffer needs space for the completed product; twice the space is |
| 1901 | plenty. |
| 1902 | */ |
| 1903 | if ((t1 = s_alloc(num: 4 * buf_size)) == NULL) return 0; |
| 1904 | t2 = t1 + buf_size; |
| 1905 | t3 = t2 + buf_size; |
| 1906 | ZERO(P: t1, S: 4 * buf_size); |
| 1907 | |
| 1908 | /* t1 and t2 are initially used as temporaries to compute the inner product |
| 1909 | (a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0 |
| 1910 | */ |
| 1911 | carry = s_uadd(da, db: a_top, dc: t1, size_a: bot_size, size_b: at_size); /* t1 = a1 + a0 */ |
| 1912 | t1[bot_size] = carry; |
| 1913 | |
| 1914 | carry = s_uadd(da: db, db: b_top, dc: t2, size_a: bot_size, size_b: bt_size); /* t2 = b1 + b0 */ |
| 1915 | t2[bot_size] = carry; |
| 1916 | |
| 1917 | (void)s_kmul(da: t1, db: t2, dc: t3, size_a: bot_size + 1, size_b: bot_size + 1); /* t3 = t1 * t2 */ |
| 1918 | |
| 1919 | /* Now we'll get t1 = a0b0 and t2 = a1b1, and subtract them out so that |
| 1920 | we're left with only the pieces we want: t3 = a1b0 + a0b1 |
| 1921 | */ |
| 1922 | ZERO(P: t1, S: buf_size); |
| 1923 | ZERO(P: t2, S: buf_size); |
| 1924 | (void)s_kmul(da, db, dc: t1, size_a: bot_size, size_b: bot_size); /* t1 = a0 * b0 */ |
| 1925 | (void)s_kmul(da: a_top, db: b_top, dc: t2, size_a: at_size, size_b: bt_size); /* t2 = a1 * b1 */ |
| 1926 | |
| 1927 | /* Subtract out t1 and t2 to get the inner product */ |
| 1928 | s_usub(da: t3, db: t1, dc: t3, size_a: buf_size + 2, size_b: buf_size); |
| 1929 | s_usub(da: t3, db: t2, dc: t3, size_a: buf_size + 2, size_b: buf_size); |
| 1930 | |
| 1931 | /* Assemble the output value */ |
| 1932 | COPY(P: t1, Q: dc, S: buf_size); |
| 1933 | carry = s_uadd(da: t3, db: dc + bot_size, dc: dc + bot_size, size_a: buf_size + 1, size_b: buf_size); |
| 1934 | assert(carry == 0); |
| 1935 | |
| 1936 | carry = |
| 1937 | s_uadd(da: t2, db: dc + 2 * bot_size, dc: dc + 2 * bot_size, size_a: buf_size, size_b: buf_size); |
| 1938 | assert(carry == 0); |
| 1939 | |
| 1940 | s_free(ptr: t1); /* note t2 and t3 are just internal pointers to t1 */ |
| 1941 | } else { |
| 1942 | s_umul(da, db, dc, size_a, size_b); |
| 1943 | } |
| 1944 | |
| 1945 | return 1; |
| 1946 | } |
| 1947 | |
| 1948 | static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, |
| 1949 | mp_size size_b) { |
| 1950 | mp_size a, b; |
| 1951 | mp_word w; |
| 1952 | |
| 1953 | for (a = 0; a < size_a; ++a, ++dc, ++da) { |
| 1954 | mp_digit *dct = dc; |
| 1955 | mp_digit *dbt = db; |
| 1956 | |
| 1957 | if (*da == 0) continue; |
| 1958 | |
| 1959 | w = 0; |
| 1960 | for (b = 0; b < size_b; ++b, ++dbt, ++dct) { |
| 1961 | w = (mp_word)*da * (mp_word)*dbt + w + (mp_word)*dct; |
| 1962 | |
| 1963 | *dct = LOWER_HALF(W: w); |
| 1964 | w = UPPER_HALF(W: w); |
| 1965 | } |
| 1966 | |
| 1967 | *dct = (mp_digit)w; |
| 1968 | } |
| 1969 | } |
| 1970 | |
| 1971 | static int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a) { |
| 1972 | if (multiply_threshold && size_a > multiply_threshold) { |
| 1973 | mp_size bot_size = (size_a + 1) / 2; |
| 1974 | mp_digit *a_top = da + bot_size; |
| 1975 | mp_digit *t1, *t2, *t3, carry; |
| 1976 | mp_size at_size = size_a - bot_size; |
| 1977 | mp_size buf_size = 2 * bot_size; |
| 1978 | |
| 1979 | if ((t1 = s_alloc(num: 4 * buf_size)) == NULL) return 0; |
| 1980 | t2 = t1 + buf_size; |
| 1981 | t3 = t2 + buf_size; |
| 1982 | ZERO(P: t1, S: 4 * buf_size); |
| 1983 | |
| 1984 | (void)s_ksqr(da, dc: t1, size_a: bot_size); /* t1 = a0 ^ 2 */ |
| 1985 | (void)s_ksqr(da: a_top, dc: t2, size_a: at_size); /* t2 = a1 ^ 2 */ |
| 1986 | |
| 1987 | (void)s_kmul(da, db: a_top, dc: t3, size_a: bot_size, size_b: at_size); /* t3 = a0 * a1 */ |
| 1988 | |
| 1989 | /* Quick multiply t3 by 2, shifting left (can't overflow) */ |
| 1990 | { |
| 1991 | int i, top = bot_size + at_size; |
| 1992 | mp_word w, save = 0; |
| 1993 | |
| 1994 | for (i = 0; i < top; ++i) { |
| 1995 | w = t3[i]; |
| 1996 | w = (w << 1) | save; |
| 1997 | t3[i] = LOWER_HALF(W: w); |
| 1998 | save = UPPER_HALF(W: w); |
| 1999 | } |
| 2000 | t3[i] = LOWER_HALF(W: save); |
| 2001 | } |
| 2002 | |
| 2003 | /* Assemble the output value */ |
| 2004 | COPY(P: t1, Q: dc, S: 2 * bot_size); |
| 2005 | carry = s_uadd(da: t3, db: dc + bot_size, dc: dc + bot_size, size_a: buf_size + 1, size_b: buf_size); |
| 2006 | assert(carry == 0); |
| 2007 | |
| 2008 | carry = |
| 2009 | s_uadd(da: t2, db: dc + 2 * bot_size, dc: dc + 2 * bot_size, size_a: buf_size, size_b: buf_size); |
| 2010 | assert(carry == 0); |
| 2011 | |
| 2012 | s_free(ptr: t1); /* note that t2 and t2 are internal pointers only */ |
| 2013 | |
| 2014 | } else { |
| 2015 | s_usqr(da, dc, size_a); |
| 2016 | } |
| 2017 | |
| 2018 | return 1; |
| 2019 | } |
| 2020 | |
| 2021 | static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a) { |
| 2022 | mp_size i, j; |
| 2023 | mp_word w; |
| 2024 | |
| 2025 | for (i = 0; i < size_a; ++i, dc += 2, ++da) { |
| 2026 | mp_digit *dct = dc, *dat = da; |
| 2027 | |
| 2028 | if (*da == 0) continue; |
| 2029 | |
| 2030 | /* Take care of the first digit, no rollover */ |
| 2031 | w = (mp_word)*dat * (mp_word)*dat + (mp_word)*dct; |
| 2032 | *dct = LOWER_HALF(W: w); |
| 2033 | w = UPPER_HALF(W: w); |
| 2034 | ++dat; |
| 2035 | ++dct; |
| 2036 | |
| 2037 | for (j = i + 1; j < size_a; ++j, ++dat, ++dct) { |
| 2038 | mp_word t = (mp_word)*da * (mp_word)*dat; |
| 2039 | mp_word u = w + (mp_word)*dct, ov = 0; |
| 2040 | |
| 2041 | /* Check if doubling t will overflow a word */ |
| 2042 | if (HIGH_BIT_SET(W: t)) ov = 1; |
| 2043 | |
| 2044 | w = t + t; |
| 2045 | |
| 2046 | /* Check if adding u to w will overflow a word */ |
| 2047 | if (ADD_WILL_OVERFLOW(W: w, V: u)) ov = 1; |
| 2048 | |
| 2049 | w += u; |
| 2050 | |
| 2051 | *dct = LOWER_HALF(W: w); |
| 2052 | w = UPPER_HALF(W: w); |
| 2053 | if (ov) { |
| 2054 | w += MP_DIGIT_MAX; /* MP_RADIX */ |
| 2055 | ++w; |
| 2056 | } |
| 2057 | } |
| 2058 | |
| 2059 | w = w + *dct; |
| 2060 | *dct = (mp_digit)w; |
| 2061 | while ((w = UPPER_HALF(W: w)) != 0) { |
| 2062 | ++dct; |
| 2063 | w = w + *dct; |
| 2064 | *dct = LOWER_HALF(W: w); |
| 2065 | } |
| 2066 | |
| 2067 | assert(w == 0); |
| 2068 | } |
| 2069 | } |
| 2070 | |
| 2071 | static void s_dadd(mp_int a, mp_digit b) { |
| 2072 | mp_word w = 0; |
| 2073 | mp_digit *da = MP_DIGITS(Z: a); |
| 2074 | mp_size ua = MP_USED(Z: a); |
| 2075 | |
| 2076 | w = (mp_word)*da + b; |
| 2077 | *da++ = LOWER_HALF(W: w); |
| 2078 | w = UPPER_HALF(W: w); |
| 2079 | |
| 2080 | for (ua -= 1; ua > 0; --ua, ++da) { |
| 2081 | w = (mp_word)*da + w; |
| 2082 | |
| 2083 | *da = LOWER_HALF(W: w); |
| 2084 | w = UPPER_HALF(W: w); |
| 2085 | } |
| 2086 | |
| 2087 | if (w) { |
| 2088 | *da = (mp_digit)w; |
| 2089 | a->used += 1; |
| 2090 | } |
| 2091 | } |
| 2092 | |
| 2093 | static void s_dmul(mp_int a, mp_digit b) { |
| 2094 | mp_word w = 0; |
| 2095 | mp_digit *da = MP_DIGITS(Z: a); |
| 2096 | mp_size ua = MP_USED(Z: a); |
| 2097 | |
| 2098 | while (ua > 0) { |
| 2099 | w = (mp_word)*da * b + w; |
| 2100 | *da++ = LOWER_HALF(W: w); |
| 2101 | w = UPPER_HALF(W: w); |
| 2102 | --ua; |
| 2103 | } |
| 2104 | |
| 2105 | if (w) { |
| 2106 | *da = (mp_digit)w; |
| 2107 | a->used += 1; |
| 2108 | } |
| 2109 | } |
| 2110 | |
| 2111 | static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a) { |
| 2112 | mp_word w = 0; |
| 2113 | |
| 2114 | while (size_a > 0) { |
| 2115 | w = (mp_word)*da++ * (mp_word)b + w; |
| 2116 | |
| 2117 | *dc++ = LOWER_HALF(W: w); |
| 2118 | w = UPPER_HALF(W: w); |
| 2119 | --size_a; |
| 2120 | } |
| 2121 | |
| 2122 | if (w) *dc = LOWER_HALF(W: w); |
| 2123 | } |
| 2124 | |
| 2125 | static mp_digit s_ddiv(mp_int a, mp_digit b) { |
| 2126 | mp_word w = 0, qdigit; |
| 2127 | mp_size ua = MP_USED(Z: a); |
| 2128 | mp_digit *da = MP_DIGITS(Z: a) + ua - 1; |
| 2129 | |
| 2130 | for (/* */; ua > 0; --ua, --da) { |
| 2131 | w = (w << MP_DIGIT_BIT) | *da; |
| 2132 | |
| 2133 | if (w >= b) { |
| 2134 | qdigit = w / b; |
| 2135 | w = w % b; |
| 2136 | } else { |
| 2137 | qdigit = 0; |
| 2138 | } |
| 2139 | |
| 2140 | *da = (mp_digit)qdigit; |
| 2141 | } |
| 2142 | |
| 2143 | CLAMP(z_: a); |
| 2144 | return (mp_digit)w; |
| 2145 | } |
| 2146 | |
| 2147 | static void s_qdiv(mp_int z, mp_size p2) { |
| 2148 | mp_size ndig = p2 / MP_DIGIT_BIT, nbits = p2 % MP_DIGIT_BIT; |
| 2149 | mp_size uz = MP_USED(Z: z); |
| 2150 | |
| 2151 | if (ndig) { |
| 2152 | mp_size mark; |
| 2153 | mp_digit *to, *from; |
| 2154 | |
| 2155 | if (ndig >= uz) { |
| 2156 | mp_int_zero(z); |
| 2157 | return; |
| 2158 | } |
| 2159 | |
| 2160 | to = MP_DIGITS(Z: z); |
| 2161 | from = to + ndig; |
| 2162 | |
| 2163 | for (mark = ndig; mark < uz; ++mark) { |
| 2164 | *to++ = *from++; |
| 2165 | } |
| 2166 | |
| 2167 | z->used = uz - ndig; |
| 2168 | } |
| 2169 | |
| 2170 | if (nbits) { |
| 2171 | mp_digit d = 0, *dz, save; |
| 2172 | mp_size up = MP_DIGIT_BIT - nbits; |
| 2173 | |
| 2174 | uz = MP_USED(Z: z); |
| 2175 | dz = MP_DIGITS(Z: z) + uz - 1; |
| 2176 | |
| 2177 | for (/* */; uz > 0; --uz, --dz) { |
| 2178 | save = *dz; |
| 2179 | |
| 2180 | *dz = (*dz >> nbits) | (d << up); |
| 2181 | d = save; |
| 2182 | } |
| 2183 | |
| 2184 | CLAMP(z_: z); |
| 2185 | } |
| 2186 | |
| 2187 | if (MP_USED(Z: z) == 1 && z->digits[0] == 0) z->sign = MP_ZPOS; |
| 2188 | } |
| 2189 | |
| 2190 | static void s_qmod(mp_int z, mp_size p2) { |
| 2191 | mp_size start = p2 / MP_DIGIT_BIT + 1, rest = p2 % MP_DIGIT_BIT; |
| 2192 | mp_size uz = MP_USED(Z: z); |
| 2193 | mp_digit mask = (1u << rest) - 1; |
| 2194 | |
| 2195 | if (start <= uz) { |
| 2196 | z->used = start; |
| 2197 | z->digits[start - 1] &= mask; |
| 2198 | CLAMP(z_: z); |
| 2199 | } |
| 2200 | } |
| 2201 | |
| 2202 | static int s_qmul(mp_int z, mp_size p2) { |
| 2203 | mp_size uz, need, rest, , i; |
| 2204 | mp_digit *from, *to, d; |
| 2205 | |
| 2206 | if (p2 == 0) return 1; |
| 2207 | |
| 2208 | uz = MP_USED(Z: z); |
| 2209 | need = p2 / MP_DIGIT_BIT; |
| 2210 | rest = p2 % MP_DIGIT_BIT; |
| 2211 | |
| 2212 | /* Figure out if we need an extra digit at the top end; this occurs if the |
| 2213 | topmost `rest' bits of the high-order digit of z are not zero, meaning |
| 2214 | they will be shifted off the end if not preserved */ |
| 2215 | extra = 0; |
| 2216 | if (rest != 0) { |
| 2217 | mp_digit *dz = MP_DIGITS(Z: z) + uz - 1; |
| 2218 | |
| 2219 | if ((*dz >> (MP_DIGIT_BIT - rest)) != 0) extra = 1; |
| 2220 | } |
| 2221 | |
| 2222 | if (!s_pad(z, min: uz + need + extra)) return 0; |
| 2223 | |
| 2224 | /* If we need to shift by whole digits, do that in one pass, then |
| 2225 | to back and shift by partial digits. |
| 2226 | */ |
| 2227 | if (need > 0) { |
| 2228 | from = MP_DIGITS(Z: z) + uz - 1; |
| 2229 | to = from + need; |
| 2230 | |
| 2231 | for (i = 0; i < uz; ++i) *to-- = *from--; |
| 2232 | |
| 2233 | ZERO(P: MP_DIGITS(Z: z), S: need); |
| 2234 | uz += need; |
| 2235 | } |
| 2236 | |
| 2237 | if (rest) { |
| 2238 | d = 0; |
| 2239 | for (i = need, from = MP_DIGITS(Z: z) + need; i < uz; ++i, ++from) { |
| 2240 | mp_digit save = *from; |
| 2241 | |
| 2242 | *from = (*from << rest) | (d >> (MP_DIGIT_BIT - rest)); |
| 2243 | d = save; |
| 2244 | } |
| 2245 | |
| 2246 | d >>= (MP_DIGIT_BIT - rest); |
| 2247 | if (d != 0) { |
| 2248 | *from = d; |
| 2249 | uz += extra; |
| 2250 | } |
| 2251 | } |
| 2252 | |
| 2253 | z->used = uz; |
| 2254 | CLAMP(z_: z); |
| 2255 | |
| 2256 | return 1; |
| 2257 | } |
| 2258 | |
| 2259 | /* Compute z = 2^p2 - |z|; requires that 2^p2 >= |z| |
| 2260 | The sign of the result is always zero/positive. |
| 2261 | */ |
| 2262 | static int s_qsub(mp_int z, mp_size p2) { |
| 2263 | mp_digit hi = (1u << (p2 % MP_DIGIT_BIT)), *zp; |
| 2264 | mp_size tdig = (p2 / MP_DIGIT_BIT), pos; |
| 2265 | mp_word w = 0; |
| 2266 | |
| 2267 | if (!s_pad(z, min: tdig + 1)) return 0; |
| 2268 | |
| 2269 | for (pos = 0, zp = MP_DIGITS(Z: z); pos < tdig; ++pos, ++zp) { |
| 2270 | w = ((mp_word)MP_DIGIT_MAX + 1) - w - (mp_word)*zp; |
| 2271 | |
| 2272 | *zp = LOWER_HALF(W: w); |
| 2273 | w = UPPER_HALF(W: w) ? 0 : 1; |
| 2274 | } |
| 2275 | |
| 2276 | w = ((mp_word)MP_DIGIT_MAX + 1 + hi) - w - (mp_word)*zp; |
| 2277 | *zp = LOWER_HALF(W: w); |
| 2278 | |
| 2279 | assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */ |
| 2280 | |
| 2281 | z->sign = MP_ZPOS; |
| 2282 | CLAMP(z_: z); |
| 2283 | |
| 2284 | return 1; |
| 2285 | } |
| 2286 | |
| 2287 | static int s_dp2k(mp_int z) { |
| 2288 | int k = 0; |
| 2289 | mp_digit *dp = MP_DIGITS(Z: z), d; |
| 2290 | |
| 2291 | if (MP_USED(Z: z) == 1 && *dp == 0) return 1; |
| 2292 | |
| 2293 | while (*dp == 0) { |
| 2294 | k += MP_DIGIT_BIT; |
| 2295 | ++dp; |
| 2296 | } |
| 2297 | |
| 2298 | d = *dp; |
| 2299 | while ((d & 1) == 0) { |
| 2300 | d >>= 1; |
| 2301 | ++k; |
| 2302 | } |
| 2303 | |
| 2304 | return k; |
| 2305 | } |
| 2306 | |
| 2307 | static int s_isp2(mp_int z) { |
| 2308 | mp_size uz = MP_USED(Z: z), k = 0; |
| 2309 | mp_digit *dz = MP_DIGITS(Z: z), d; |
| 2310 | |
| 2311 | while (uz > 1) { |
| 2312 | if (*dz++ != 0) return -1; |
| 2313 | k += MP_DIGIT_BIT; |
| 2314 | --uz; |
| 2315 | } |
| 2316 | |
| 2317 | d = *dz; |
| 2318 | while (d > 1) { |
| 2319 | if (d & 1) return -1; |
| 2320 | ++k; |
| 2321 | d >>= 1; |
| 2322 | } |
| 2323 | |
| 2324 | return (int)k; |
| 2325 | } |
| 2326 | |
| 2327 | static int s_2expt(mp_int z, mp_small k) { |
| 2328 | mp_size ndig, rest; |
| 2329 | mp_digit *dz; |
| 2330 | |
| 2331 | ndig = (k + MP_DIGIT_BIT) / MP_DIGIT_BIT; |
| 2332 | rest = k % MP_DIGIT_BIT; |
| 2333 | |
| 2334 | if (!s_pad(z, min: ndig)) return 0; |
| 2335 | |
| 2336 | dz = MP_DIGITS(Z: z); |
| 2337 | ZERO(P: dz, S: ndig); |
| 2338 | *(dz + ndig - 1) = (1u << rest); |
| 2339 | z->used = ndig; |
| 2340 | |
| 2341 | return 1; |
| 2342 | } |
| 2343 | |
| 2344 | static int s_norm(mp_int a, mp_int b) { |
| 2345 | mp_digit d = b->digits[MP_USED(Z: b) - 1]; |
| 2346 | int k = 0; |
| 2347 | |
| 2348 | while (d < (1u << (mp_digit)(MP_DIGIT_BIT - 1))) { /* d < (MP_RADIX / 2) */ |
| 2349 | d <<= 1; |
| 2350 | ++k; |
| 2351 | } |
| 2352 | |
| 2353 | /* These multiplications can't fail */ |
| 2354 | if (k != 0) { |
| 2355 | (void)s_qmul(z: a, p2: (mp_size)k); |
| 2356 | (void)s_qmul(z: b, p2: (mp_size)k); |
| 2357 | } |
| 2358 | |
| 2359 | return k; |
| 2360 | } |
| 2361 | |
| 2362 | static mp_result s_brmu(mp_int z, mp_int m) { |
| 2363 | mp_size um = MP_USED(Z: m) * 2; |
| 2364 | |
| 2365 | if (!s_pad(z, min: um)) return MP_MEMORY; |
| 2366 | |
| 2367 | s_2expt(z, MP_DIGIT_BIT * um); |
| 2368 | return mp_int_div(a: z, b: m, q: z, NULL); |
| 2369 | } |
| 2370 | |
| 2371 | static int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2) { |
| 2372 | mp_size um = MP_USED(Z: m), umb_p1, umb_m1; |
| 2373 | |
| 2374 | umb_p1 = (um + 1) * MP_DIGIT_BIT; |
| 2375 | umb_m1 = (um - 1) * MP_DIGIT_BIT; |
| 2376 | |
| 2377 | if (mp_int_copy(a: x, c: q1) != MP_OK) return 0; |
| 2378 | |
| 2379 | /* Compute q2 = floor((floor(x / b^(k-1)) * mu) / b^(k+1)) */ |
| 2380 | s_qdiv(z: q1, p2: umb_m1); |
| 2381 | UMUL(X: q1, Y: mu, Z: q2); |
| 2382 | s_qdiv(z: q2, p2: umb_p1); |
| 2383 | |
| 2384 | /* Set x = x mod b^(k+1) */ |
| 2385 | s_qmod(z: x, p2: umb_p1); |
| 2386 | |
| 2387 | /* Now, q is a guess for the quotient a / m. |
| 2388 | Compute x - q * m mod b^(k+1), replacing x. This may be off |
| 2389 | by a factor of 2m, but no more than that. |
| 2390 | */ |
| 2391 | UMUL(X: q2, Y: m, Z: q1); |
| 2392 | s_qmod(z: q1, p2: umb_p1); |
| 2393 | (void)mp_int_sub(a: x, b: q1, c: x); /* can't fail */ |
| 2394 | |
| 2395 | /* The result may be < 0; if it is, add b^(k+1) to pin it in the proper |
| 2396 | range. */ |
| 2397 | if ((CMPZ(Z: x) < 0) && !s_qsub(z: x, p2: umb_p1)) return 0; |
| 2398 | |
| 2399 | /* If x > m, we need to back it off until it is in range. This will be |
| 2400 | required at most twice. */ |
| 2401 | if (mp_int_compare(a: x, b: m) >= 0) { |
| 2402 | (void)mp_int_sub(a: x, b: m, c: x); |
| 2403 | if (mp_int_compare(a: x, b: m) >= 0) { |
| 2404 | (void)mp_int_sub(a: x, b: m, c: x); |
| 2405 | } |
| 2406 | } |
| 2407 | |
| 2408 | /* At this point, x has been properly reduced. */ |
| 2409 | return 1; |
| 2410 | } |
| 2411 | |
| 2412 | /* Perform modular exponentiation using Barrett's method, where mu is the |
| 2413 | reduction constant for m. Assumes a < m, b > 0. */ |
| 2414 | static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c) { |
| 2415 | mp_digit umu = MP_USED(Z: mu); |
| 2416 | mp_digit *db = MP_DIGITS(Z: b); |
| 2417 | mp_digit *dbt = db + MP_USED(Z: b) - 1; |
| 2418 | |
| 2419 | DECLARE_TEMP(3); |
| 2420 | REQUIRE(GROW(TEMP(0), 4 * umu)); |
| 2421 | REQUIRE(GROW(TEMP(1), 4 * umu)); |
| 2422 | REQUIRE(GROW(TEMP(2), 4 * umu)); |
| 2423 | ZERO(TEMP(0)->digits, TEMP(0)->alloc); |
| 2424 | ZERO(TEMP(1)->digits, TEMP(1)->alloc); |
| 2425 | ZERO(TEMP(2)->digits, TEMP(2)->alloc); |
| 2426 | |
| 2427 | (void)mp_int_set_value(z: c, value: 1); |
| 2428 | |
| 2429 | /* Take care of low-order digits */ |
| 2430 | while (db < dbt) { |
| 2431 | mp_digit d = *db; |
| 2432 | |
| 2433 | for (int i = MP_DIGIT_BIT; i > 0; --i, d >>= 1) { |
| 2434 | if (d & 1) { |
| 2435 | /* The use of a second temporary avoids allocation */ |
| 2436 | UMUL(X: c, Y: a, TEMP(0)); |
| 2437 | if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) { |
| 2438 | REQUIRE(MP_MEMORY); |
| 2439 | } |
| 2440 | mp_int_copy(TEMP(0), c); |
| 2441 | } |
| 2442 | |
| 2443 | USQR(X: a, TEMP(0)); |
| 2444 | assert(MP_SIGN(TEMP(0)) == MP_ZPOS); |
| 2445 | if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) { |
| 2446 | REQUIRE(MP_MEMORY); |
| 2447 | } |
| 2448 | assert(MP_SIGN(TEMP(0)) == MP_ZPOS); |
| 2449 | mp_int_copy(TEMP(0), c: a); |
| 2450 | } |
| 2451 | |
| 2452 | ++db; |
| 2453 | } |
| 2454 | |
| 2455 | /* Take care of highest-order digit */ |
| 2456 | mp_digit d = *dbt; |
| 2457 | for (;;) { |
| 2458 | if (d & 1) { |
| 2459 | UMUL(X: c, Y: a, TEMP(0)); |
| 2460 | if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) { |
| 2461 | REQUIRE(MP_MEMORY); |
| 2462 | } |
| 2463 | mp_int_copy(TEMP(0), c); |
| 2464 | } |
| 2465 | |
| 2466 | d >>= 1; |
| 2467 | if (!d) break; |
| 2468 | |
| 2469 | USQR(X: a, TEMP(0)); |
| 2470 | if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) { |
| 2471 | REQUIRE(MP_MEMORY); |
| 2472 | } |
| 2473 | (void)mp_int_copy(TEMP(0), c: a); |
| 2474 | } |
| 2475 | |
| 2476 | CLEANUP_TEMP(); |
| 2477 | return MP_OK; |
| 2478 | } |
| 2479 | |
| 2480 | /* Division of nonnegative integers |
| 2481 | |
| 2482 | This function implements division algorithm for unsigned multi-precision |
| 2483 | integers. The algorithm is based on Algorithm D from Knuth's "The Art of |
| 2484 | Computer Programming", 3rd ed. 1998, pg 272-273. |
| 2485 | |
| 2486 | We diverge from Knuth's algorithm in that we do not perform the subtraction |
| 2487 | from the remainder until we have determined that we have the correct |
| 2488 | quotient digit. This makes our algorithm less efficient that Knuth because |
| 2489 | we might have to perform multiple multiplication and comparison steps before |
| 2490 | the subtraction. The advantage is that it is easy to implement and ensure |
| 2491 | correctness without worrying about underflow from the subtraction. |
| 2492 | |
| 2493 | inputs: u a n+m digit integer in base b (b is 2^MP_DIGIT_BIT) |
| 2494 | v a n digit integer in base b (b is 2^MP_DIGIT_BIT) |
| 2495 | n >= 1 |
| 2496 | m >= 0 |
| 2497 | outputs: u / v stored in u |
| 2498 | u % v stored in v |
| 2499 | */ |
| 2500 | static mp_result s_udiv_knuth(mp_int u, mp_int v) { |
| 2501 | /* Force signs to positive */ |
| 2502 | u->sign = MP_ZPOS; |
| 2503 | v->sign = MP_ZPOS; |
| 2504 | |
| 2505 | /* Use simple division algorithm when v is only one digit long */ |
| 2506 | if (MP_USED(Z: v) == 1) { |
| 2507 | mp_digit d, rem; |
| 2508 | d = v->digits[0]; |
| 2509 | rem = s_ddiv(a: u, b: d); |
| 2510 | mp_int_set_value(z: v, value: rem); |
| 2511 | return MP_OK; |
| 2512 | } |
| 2513 | |
| 2514 | /* Algorithm D |
| 2515 | |
| 2516 | The n and m variables are defined as used by Knuth. |
| 2517 | u is an n digit number with digits u_{n-1}..u_0. |
| 2518 | v is an n+m digit number with digits from v_{m+n-1}..v_0. |
| 2519 | We require that n > 1 and m >= 0 |
| 2520 | */ |
| 2521 | mp_size n = MP_USED(Z: v); |
| 2522 | mp_size m = MP_USED(Z: u) - n; |
| 2523 | assert(n > 1); |
| 2524 | /* assert(m >= 0) follows because m is unsigned. */ |
| 2525 | |
| 2526 | /* D1: Normalize. |
| 2527 | The normalization step provides the necessary condition for Theorem B, |
| 2528 | which states that the quotient estimate for q_j, call it qhat |
| 2529 | |
| 2530 | qhat = u_{j+n}u_{j+n-1} / v_{n-1} |
| 2531 | |
| 2532 | is bounded by |
| 2533 | |
| 2534 | qhat - 2 <= q_j <= qhat. |
| 2535 | |
| 2536 | That is, qhat is always greater than the actual quotient digit q, |
| 2537 | and it is never more than two larger than the actual quotient digit. |
| 2538 | */ |
| 2539 | int k = s_norm(a: u, b: v); |
| 2540 | |
| 2541 | /* Extend size of u by one if needed. |
| 2542 | |
| 2543 | The algorithm begins with a value of u that has one more digit of input. |
| 2544 | The normalization step sets u_{m+n}..u_0 = 2^k * u_{m+n-1}..u_0. If the |
| 2545 | multiplication did not increase the number of digits of u, we need to add |
| 2546 | a leading zero here. |
| 2547 | */ |
| 2548 | if (k == 0 || MP_USED(Z: u) != m + n + 1) { |
| 2549 | if (!s_pad(z: u, min: m + n + 1)) return MP_MEMORY; |
| 2550 | u->digits[m + n] = 0; |
| 2551 | u->used = m + n + 1; |
| 2552 | } |
| 2553 | |
| 2554 | /* Add a leading 0 to v. |
| 2555 | |
| 2556 | The multiplication in step D4 multiplies qhat * 0v_{n-1}..v_0. We need to |
| 2557 | add the leading zero to v here to ensure that the multiplication will |
| 2558 | produce the full n+1 digit result. |
| 2559 | */ |
| 2560 | if (!s_pad(z: v, min: n + 1)) return MP_MEMORY; |
| 2561 | v->digits[n] = 0; |
| 2562 | |
| 2563 | /* Initialize temporary variables q and t. |
| 2564 | q allocates space for m+1 digits to store the quotient digits |
| 2565 | t allocates space for n+1 digits to hold the result of q_j*v |
| 2566 | */ |
| 2567 | DECLARE_TEMP(2); |
| 2568 | REQUIRE(GROW(TEMP(0), m + 1)); |
| 2569 | REQUIRE(GROW(TEMP(1), n + 1)); |
| 2570 | |
| 2571 | /* D2: Initialize j */ |
| 2572 | int j = m; |
| 2573 | mpz_t r; |
| 2574 | r.digits = MP_DIGITS(Z: u) + j; /* The contents of r are shared with u */ |
| 2575 | r.used = n + 1; |
| 2576 | r.sign = MP_ZPOS; |
| 2577 | r.alloc = MP_ALLOC(Z: u); |
| 2578 | ZERO(TEMP(1)->digits, TEMP(1)->alloc); |
| 2579 | |
| 2580 | /* Calculate the m+1 digits of the quotient result */ |
| 2581 | for (; j >= 0; j--) { |
| 2582 | /* D3: Calculate q' */ |
| 2583 | /* r->digits is aligned to position j of the number u */ |
| 2584 | mp_word pfx, qhat; |
| 2585 | pfx = r.digits[n]; |
| 2586 | pfx <<= MP_DIGIT_BIT / 2; |
| 2587 | pfx <<= MP_DIGIT_BIT / 2; |
| 2588 | pfx |= r.digits[n - 1]; /* pfx = u_{j+n}{j+n-1} */ |
| 2589 | |
| 2590 | qhat = pfx / v->digits[n - 1]; |
| 2591 | /* Check to see if qhat > b, and decrease qhat if so. |
| 2592 | Theorem B guarantess that qhat is at most 2 larger than the |
| 2593 | actual value, so it is possible that qhat is greater than |
| 2594 | the maximum value that will fit in a digit */ |
| 2595 | if (qhat > MP_DIGIT_MAX) qhat = MP_DIGIT_MAX; |
| 2596 | |
| 2597 | /* D4,D5,D6: Multiply qhat * v and test for a correct value of q |
| 2598 | |
| 2599 | We proceed a bit different than the way described by Knuth. This way is |
| 2600 | simpler but less efficent. Instead of doing the multiply and subtract |
| 2601 | then checking for underflow, we first do the multiply of qhat * v and |
| 2602 | see if it is larger than the current remainder r. If it is larger, we |
| 2603 | decrease qhat by one and try again. We may need to decrease qhat one |
| 2604 | more time before we get a value that is smaller than r. |
| 2605 | |
| 2606 | This way is less efficent than Knuth because we do more multiplies, but |
| 2607 | we do not need to worry about underflow this way. |
| 2608 | */ |
| 2609 | /* t = qhat * v */ |
| 2610 | s_dbmul(da: MP_DIGITS(Z: v), b: (mp_digit)qhat, TEMP(1)->digits, size_a: n + 1); |
| 2611 | TEMP(1)->used = n + 1; |
| 2612 | CLAMP(TEMP(1)); |
| 2613 | |
| 2614 | /* Clamp r for the comparison. Comparisons do not like leading zeros. */ |
| 2615 | CLAMP(z_: &r); |
| 2616 | if (s_ucmp(TEMP(1), b: &r) > 0) { /* would the remainder be negative? */ |
| 2617 | qhat -= 1; /* try a smaller q */ |
| 2618 | s_dbmul(da: MP_DIGITS(Z: v), b: (mp_digit)qhat, TEMP(1)->digits, size_a: n + 1); |
| 2619 | TEMP(1)->used = n + 1; |
| 2620 | CLAMP(TEMP(1)); |
| 2621 | if (s_ucmp(TEMP(1), b: &r) > 0) { /* would the remainder be negative? */ |
| 2622 | assert(qhat > 0); |
| 2623 | qhat -= 1; /* try a smaller q */ |
| 2624 | s_dbmul(da: MP_DIGITS(Z: v), b: (mp_digit)qhat, TEMP(1)->digits, size_a: n + 1); |
| 2625 | TEMP(1)->used = n + 1; |
| 2626 | CLAMP(TEMP(1)); |
| 2627 | } |
| 2628 | assert(s_ucmp(TEMP(1), &r) <= 0 && "The mathematics failed us." ); |
| 2629 | } |
| 2630 | /* Unclamp r. The D algorithm expects r = u_{j+n}..u_j to always be n+1 |
| 2631 | digits long. */ |
| 2632 | r.used = n + 1; |
| 2633 | |
| 2634 | /* D4: Multiply and subtract |
| 2635 | |
| 2636 | Note: The multiply was completed above so we only need to subtract here. |
| 2637 | */ |
| 2638 | s_usub(da: r.digits, TEMP(1)->digits, dc: r.digits, size_a: r.used, TEMP(1)->used); |
| 2639 | |
| 2640 | /* D5: Test remainder |
| 2641 | |
| 2642 | Note: Not needed because we always check that qhat is the correct value |
| 2643 | before performing the subtract. Value cast to mp_digit to prevent |
| 2644 | warning, qhat has been clamped to MP_DIGIT_MAX |
| 2645 | */ |
| 2646 | TEMP(0)->digits[j] = (mp_digit)qhat; |
| 2647 | |
| 2648 | /* D6: Add back |
| 2649 | Note: Not needed because we always check that qhat is the correct value |
| 2650 | before performing the subtract. |
| 2651 | */ |
| 2652 | |
| 2653 | /* D7: Loop on j */ |
| 2654 | r.digits--; |
| 2655 | ZERO(TEMP(1)->digits, TEMP(1)->alloc); |
| 2656 | } |
| 2657 | |
| 2658 | /* Get rid of leading zeros in q */ |
| 2659 | TEMP(0)->used = m + 1; |
| 2660 | CLAMP(TEMP(0)); |
| 2661 | |
| 2662 | /* Denormalize the remainder */ |
| 2663 | CLAMP(z_: u); /* use u here because the r.digits pointer is off-by-one */ |
| 2664 | if (k != 0) s_qdiv(z: u, p2: k); |
| 2665 | |
| 2666 | mp_int_copy(a: u, c: v); /* ok: 0 <= r < v */ |
| 2667 | mp_int_copy(TEMP(0), c: u); /* ok: q <= u */ |
| 2668 | |
| 2669 | CLEANUP_TEMP(); |
| 2670 | return MP_OK; |
| 2671 | } |
| 2672 | |
| 2673 | static int s_outlen(mp_int z, mp_size r) { |
| 2674 | assert(r >= MP_MIN_RADIX && r <= MP_MAX_RADIX); |
| 2675 | |
| 2676 | mp_result bits = mp_int_count_bits(z); |
| 2677 | double raw = (double)bits * s_log2[r]; |
| 2678 | |
| 2679 | return (int)(raw + 0.999999); |
| 2680 | } |
| 2681 | |
| 2682 | static mp_size s_inlen(int len, mp_size r) { |
| 2683 | double raw = (double)len / s_log2[r]; |
| 2684 | mp_size bits = (mp_size)(raw + 0.5); |
| 2685 | |
| 2686 | return (mp_size)((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT) + 1; |
| 2687 | } |
| 2688 | |
| 2689 | static int s_ch2val(char c, int r) { |
| 2690 | int out; |
| 2691 | |
| 2692 | /* |
| 2693 | * In some locales, isalpha() accepts characters outside the range A-Z, |
| 2694 | * producing out<0 or out>=36. The "out >= r" check will always catch |
| 2695 | * out>=36. Though nothing explicitly catches out<0, our caller reacts the |
| 2696 | * same way to every negative return value. |
| 2697 | */ |
| 2698 | if (isdigit((unsigned char)c)) |
| 2699 | out = c - '0'; |
| 2700 | else if (r > 10 && isalpha((unsigned char)c)) |
| 2701 | out = toupper(c: (unsigned char)c) - 'A' + 10; |
| 2702 | else |
| 2703 | return -1; |
| 2704 | |
| 2705 | return (out >= r) ? -1 : out; |
| 2706 | } |
| 2707 | |
| 2708 | static char s_val2ch(int v, int caps) { |
| 2709 | assert(v >= 0); |
| 2710 | |
| 2711 | if (v < 10) { |
| 2712 | return v + '0'; |
| 2713 | } else { |
| 2714 | char out = (v - 10) + 'a'; |
| 2715 | |
| 2716 | if (caps) { |
| 2717 | return toupper(c: (unsigned char)out); |
| 2718 | } else { |
| 2719 | return out; |
| 2720 | } |
| 2721 | } |
| 2722 | } |
| 2723 | |
| 2724 | static void s_2comp(unsigned char *buf, int len) { |
| 2725 | unsigned short s = 1; |
| 2726 | |
| 2727 | for (int i = len - 1; i >= 0; --i) { |
| 2728 | unsigned char c = ~buf[i]; |
| 2729 | |
| 2730 | s = c + s; |
| 2731 | c = s & UCHAR_MAX; |
| 2732 | s >>= CHAR_BIT; |
| 2733 | |
| 2734 | buf[i] = c; |
| 2735 | } |
| 2736 | |
| 2737 | /* last carry out is ignored */ |
| 2738 | } |
| 2739 | |
| 2740 | static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad) { |
| 2741 | int pos = 0, limit = *limpos; |
| 2742 | mp_size uz = MP_USED(Z: z); |
| 2743 | mp_digit *dz = MP_DIGITS(Z: z); |
| 2744 | |
| 2745 | while (uz > 0 && pos < limit) { |
| 2746 | mp_digit d = *dz++; |
| 2747 | int i; |
| 2748 | |
| 2749 | for (i = sizeof(mp_digit); i > 0 && pos < limit; --i) { |
| 2750 | buf[pos++] = (unsigned char)d; |
| 2751 | d >>= CHAR_BIT; |
| 2752 | |
| 2753 | /* Don't write leading zeroes */ |
| 2754 | if (d == 0 && uz == 1) i = 0; /* exit loop without signaling truncation */ |
| 2755 | } |
| 2756 | |
| 2757 | /* Detect truncation (loop exited with pos >= limit) */ |
| 2758 | if (i > 0) break; |
| 2759 | |
| 2760 | --uz; |
| 2761 | } |
| 2762 | |
| 2763 | if (pad != 0 && (buf[pos - 1] >> (CHAR_BIT - 1))) { |
| 2764 | if (pos < limit) { |
| 2765 | buf[pos++] = 0; |
| 2766 | } else { |
| 2767 | uz = 1; |
| 2768 | } |
| 2769 | } |
| 2770 | |
| 2771 | /* Digits are in reverse order, fix that */ |
| 2772 | REV(A: buf, N: pos); |
| 2773 | |
| 2774 | /* Return the number of bytes actually written */ |
| 2775 | *limpos = pos; |
| 2776 | |
| 2777 | return (uz == 0) ? MP_OK : MP_TRUNC; |
| 2778 | } |
| 2779 | |
| 2780 | /* Here there be dragons */ |
| 2781 | |