1 | /* |
2 | Name: imath.c |
3 | Purpose: Arbitrary precision integer arithmetic routines. |
4 | Author: M. J. Fromberger |
5 | |
6 | Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved. |
7 | |
8 | Permission is hereby granted, free of charge, to any person obtaining a copy |
9 | of this software and associated documentation files (the "Software"), to deal |
10 | in the Software without restriction, including without limitation the rights |
11 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
12 | copies of the Software, and to permit persons to whom the Software is |
13 | furnished to do so, subject to the following conditions: |
14 | |
15 | The above copyright notice and this permission notice shall be included in |
16 | all copies or substantial portions of the Software. |
17 | |
18 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
19 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
20 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
21 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
22 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
23 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
24 | SOFTWARE. |
25 | */ |
26 | |
27 | #include "imath.h" |
28 | |
29 | #include <assert.h> |
30 | #include <ctype.h> |
31 | #include <stdlib.h> |
32 | #include <string.h> |
33 | |
34 | const mp_result MP_OK = 0; /* no error, all is well */ |
35 | const mp_result MP_FALSE = 0; /* boolean false */ |
36 | const mp_result MP_TRUE = -1; /* boolean true */ |
37 | const mp_result MP_MEMORY = -2; /* out of memory */ |
38 | const mp_result MP_RANGE = -3; /* argument out of range */ |
39 | const mp_result MP_UNDEF = -4; /* result undefined */ |
40 | const mp_result MP_TRUNC = -5; /* output truncated */ |
41 | const mp_result MP_BADARG = -6; /* invalid null argument */ |
42 | const mp_result MP_MINERR = -6; |
43 | |
44 | const mp_sign MP_NEG = 1; /* value is strictly negative */ |
45 | const mp_sign MP_ZPOS = 0; /* value is non-negative */ |
46 | |
47 | static const char *s_unknown_err = "unknown result code" ; |
48 | static const char *s_error_msg[] = {"error code 0" , "boolean true" , |
49 | "out of memory" , "argument out of range" , |
50 | "result undefined" , "output truncated" , |
51 | "invalid argument" , NULL}; |
52 | |
53 | /* The ith entry of this table gives the value of log_i(2). |
54 | |
55 | An integer value n requires ceil(log_i(n)) digits to be represented |
56 | in base i. Since it is easy to compute lg(n), by counting bits, we |
57 | can compute log_i(n) = lg(n) * log_i(2). |
58 | |
59 | The use of this table eliminates a dependency upon linkage against |
60 | the standard math libraries. |
61 | |
62 | If MP_MAX_RADIX is increased, this table should be expanded too. |
63 | */ |
64 | static const double s_log2[] = { |
65 | 0.000000000, 0.000000000, 1.000000000, 0.630929754, /* (D)(D) 2 3 */ |
66 | 0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4 5 6 7 */ |
67 | 0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8 9 10 11 */ |
68 | 0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */ |
69 | 0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */ |
70 | 0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */ |
71 | 0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */ |
72 | 0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */ |
73 | 0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */ |
74 | 0.193426404, /* 36 */ |
75 | }; |
76 | |
77 | /* Return the number of digits needed to represent a static value */ |
78 | #define MP_VALUE_DIGITS(V) \ |
79 | ((sizeof(V) + (sizeof(mp_digit) - 1)) / sizeof(mp_digit)) |
80 | |
81 | /* Round precision P to nearest word boundary */ |
82 | static inline mp_size s_round_prec(mp_size P) { return 2 * ((P + 1) / 2); } |
83 | |
84 | /* Set array P of S digits to zero */ |
85 | static inline void ZERO(mp_digit *P, mp_size S) { |
86 | mp_size i__ = S * sizeof(mp_digit); |
87 | mp_digit *p__ = P; |
88 | memset(s: p__, c: 0, n: i__); |
89 | } |
90 | |
91 | /* Copy S digits from array P to array Q */ |
92 | static inline void COPY(mp_digit *P, mp_digit *Q, mp_size S) { |
93 | mp_size i__ = S * sizeof(mp_digit); |
94 | mp_digit *p__ = P; |
95 | mp_digit *q__ = Q; |
96 | memcpy(dest: q__, src: p__, n: i__); |
97 | } |
98 | |
99 | /* Reverse N elements of unsigned char in A. */ |
100 | static inline void REV(unsigned char *A, int N) { |
101 | unsigned char *u_ = A; |
102 | unsigned char *v_ = u_ + N - 1; |
103 | while (u_ < v_) { |
104 | unsigned char xch = *u_; |
105 | *u_++ = *v_; |
106 | *v_-- = xch; |
107 | } |
108 | } |
109 | |
110 | /* Strip leading zeroes from z_ in-place. */ |
111 | static inline void CLAMP(mp_int z_) { |
112 | mp_size uz_ = MP_USED(Z: z_); |
113 | mp_digit *dz_ = MP_DIGITS(Z: z_) + uz_ - 1; |
114 | while (uz_ > 1 && (*dz_-- == 0)) --uz_; |
115 | z_->used = uz_; |
116 | } |
117 | |
118 | /* Select min/max. */ |
119 | static inline int MIN(int A, int B) { return (B < A ? B : A); } |
120 | static inline mp_size MAX(mp_size A, mp_size B) { return (B > A ? B : A); } |
121 | |
122 | /* Exchange lvalues A and B of type T, e.g. |
123 | SWAP(int, x, y) where x and y are variables of type int. */ |
124 | #define SWAP(T, A, B) \ |
125 | do { \ |
126 | T t_ = (A); \ |
127 | A = (B); \ |
128 | B = t_; \ |
129 | } while (0) |
130 | |
131 | /* Declare a block of N temporary mpz_t values. |
132 | These values are initialized to zero. |
133 | You must add CLEANUP_TEMP() at the end of the function. |
134 | Use TEMP(i) to access a pointer to the ith value. |
135 | */ |
136 | #define DECLARE_TEMP(N) \ |
137 | struct { \ |
138 | mpz_t value[(N)]; \ |
139 | int len; \ |
140 | mp_result err; \ |
141 | } temp_ = { \ |
142 | .len = (N), \ |
143 | .err = MP_OK, \ |
144 | }; \ |
145 | do { \ |
146 | for (int i = 0; i < temp_.len; i++) { \ |
147 | mp_int_init(TEMP(i)); \ |
148 | } \ |
149 | } while (0) |
150 | |
151 | /* Clear all allocated temp values. */ |
152 | #define CLEANUP_TEMP() \ |
153 | CLEANUP: \ |
154 | do { \ |
155 | for (int i = 0; i < temp_.len; i++) { \ |
156 | mp_int_clear(TEMP(i)); \ |
157 | } \ |
158 | if (temp_.err != MP_OK) { \ |
159 | return temp_.err; \ |
160 | } \ |
161 | } while (0) |
162 | |
163 | /* A pointer to the kth temp value. */ |
164 | #define TEMP(K) (temp_.value + (K)) |
165 | |
166 | /* Evaluate E, an expression of type mp_result expected to return MP_OK. If |
167 | the value is not MP_OK, the error is cached and control resumes at the |
168 | cleanup handler, which returns it. |
169 | */ |
170 | #define REQUIRE(E) \ |
171 | do { \ |
172 | temp_.err = (E); \ |
173 | if (temp_.err != MP_OK) goto CLEANUP; \ |
174 | } while (0) |
175 | |
176 | /* Compare value to zero. */ |
177 | static inline int CMPZ(mp_int Z) { |
178 | if (Z->used == 1 && Z->digits[0] == 0) return 0; |
179 | return (Z->sign == MP_NEG) ? -1 : 1; |
180 | } |
181 | |
182 | static inline mp_word UPPER_HALF(mp_word W) { return (W >> MP_DIGIT_BIT); } |
183 | static inline mp_digit LOWER_HALF(mp_word W) { return (mp_digit)(W); } |
184 | |
185 | /* Report whether the highest-order bit of W is 1. */ |
186 | static inline bool HIGH_BIT_SET(mp_word W) { |
187 | return (W >> (MP_WORD_BIT - 1)) != 0; |
188 | } |
189 | |
190 | /* Report whether adding W + V will carry out. */ |
191 | static inline bool ADD_WILL_OVERFLOW(mp_word W, mp_word V) { |
192 | return ((MP_WORD_MAX - V) < W); |
193 | } |
194 | |
195 | /* Default number of digits allocated to a new mp_int */ |
196 | static mp_size default_precision = 8; |
197 | |
198 | void mp_int_default_precision(mp_size size) { |
199 | assert(size > 0); |
200 | default_precision = size; |
201 | } |
202 | |
203 | /* Minimum number of digits to invoke recursive multiply */ |
204 | static mp_size multiply_threshold = 32; |
205 | |
206 | void mp_int_multiply_threshold(mp_size thresh) { |
207 | assert(thresh >= sizeof(mp_word)); |
208 | multiply_threshold = thresh; |
209 | } |
210 | |
211 | /* Allocate a buffer of (at least) num digits, or return |
212 | NULL if that couldn't be done. */ |
213 | static mp_digit *s_alloc(mp_size num); |
214 | |
215 | /* Release a buffer of digits allocated by s_alloc(). */ |
216 | static void s_free(void *ptr); |
217 | |
218 | /* Insure that z has at least min digits allocated, resizing if |
219 | necessary. Returns true if successful, false if out of memory. */ |
220 | static bool s_pad(mp_int z, mp_size min); |
221 | |
222 | /* Ensure Z has at least N digits allocated. */ |
223 | static inline mp_result GROW(mp_int Z, mp_size N) { |
224 | return s_pad(z: Z, min: N) ? MP_OK : MP_MEMORY; |
225 | } |
226 | |
227 | /* Fill in a "fake" mp_int on the stack with a given value */ |
228 | static void s_fake(mp_int z, mp_small value, mp_digit vbuf[]); |
229 | static void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[]); |
230 | |
231 | /* Compare two runs of digits of given length, returns <0, 0, >0 */ |
232 | static int s_cdig(mp_digit *da, mp_digit *db, mp_size len); |
233 | |
234 | /* Pack the unsigned digits of v into array t */ |
235 | static int s_uvpack(mp_usmall v, mp_digit t[]); |
236 | |
237 | /* Compare magnitudes of a and b, returns <0, 0, >0 */ |
238 | static int s_ucmp(mp_int a, mp_int b); |
239 | |
240 | /* Compare magnitudes of a and v, returns <0, 0, >0 */ |
241 | static int s_vcmp(mp_int a, mp_small v); |
242 | static int s_uvcmp(mp_int a, mp_usmall uv); |
243 | |
244 | /* Unsigned magnitude addition; assumes dc is big enough. |
245 | Carry out is returned (no memory allocated). */ |
246 | static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, |
247 | mp_size size_b); |
248 | |
249 | /* Unsigned magnitude subtraction. Assumes dc is big enough. */ |
250 | static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, |
251 | mp_size size_b); |
252 | |
253 | /* Unsigned recursive multiplication. Assumes dc is big enough. */ |
254 | static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, |
255 | mp_size size_b); |
256 | |
257 | /* Unsigned magnitude multiplication. Assumes dc is big enough. */ |
258 | static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, |
259 | mp_size size_b); |
260 | |
261 | /* Unsigned recursive squaring. Assumes dc is big enough. */ |
262 | static int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a); |
263 | |
264 | /* Unsigned magnitude squaring. Assumes dc is big enough. */ |
265 | static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a); |
266 | |
267 | /* Single digit addition. Assumes a is big enough. */ |
268 | static void s_dadd(mp_int a, mp_digit b); |
269 | |
270 | /* Single digit multiplication. Assumes a is big enough. */ |
271 | static void s_dmul(mp_int a, mp_digit b); |
272 | |
273 | /* Single digit multiplication on buffers; assumes dc is big enough. */ |
274 | static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a); |
275 | |
276 | /* Single digit division. Replaces a with the quotient, |
277 | returns the remainder. */ |
278 | static mp_digit s_ddiv(mp_int a, mp_digit b); |
279 | |
280 | /* Quick division by a power of 2, replaces z (no allocation) */ |
281 | static void s_qdiv(mp_int z, mp_size p2); |
282 | |
283 | /* Quick remainder by a power of 2, replaces z (no allocation) */ |
284 | static void s_qmod(mp_int z, mp_size p2); |
285 | |
286 | /* Quick multiplication by a power of 2, replaces z. |
287 | Allocates if necessary; returns false in case this fails. */ |
288 | static int s_qmul(mp_int z, mp_size p2); |
289 | |
290 | /* Quick subtraction from a power of 2, replaces z. |
291 | Allocates if necessary; returns false in case this fails. */ |
292 | static int s_qsub(mp_int z, mp_size p2); |
293 | |
294 | /* Return maximum k such that 2^k divides z. */ |
295 | static int s_dp2k(mp_int z); |
296 | |
297 | /* Return k >= 0 such that z = 2^k, or -1 if there is no such k. */ |
298 | static int s_isp2(mp_int z); |
299 | |
300 | /* Set z to 2^k. May allocate; returns false in case this fails. */ |
301 | static int s_2expt(mp_int z, mp_small k); |
302 | |
303 | /* Normalize a and b for division, returns normalization constant */ |
304 | static int s_norm(mp_int a, mp_int b); |
305 | |
306 | /* Compute constant mu for Barrett reduction, given modulus m, result |
307 | replaces z, m is untouched. */ |
308 | static mp_result s_brmu(mp_int z, mp_int m); |
309 | |
310 | /* Reduce a modulo m, using Barrett's algorithm. */ |
311 | static int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2); |
312 | |
313 | /* Modular exponentiation, using Barrett reduction */ |
314 | static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c); |
315 | |
316 | /* Unsigned magnitude division. Assumes |a| > |b|. Allocates temporaries; |
317 | overwrites a with quotient, b with remainder. */ |
318 | static mp_result s_udiv_knuth(mp_int a, mp_int b); |
319 | |
320 | /* Compute the number of digits in radix r required to represent the given |
321 | value. Does not account for sign flags, terminators, etc. */ |
322 | static int s_outlen(mp_int z, mp_size r); |
323 | |
324 | /* Guess how many digits of precision will be needed to represent a radix r |
325 | value of the specified number of digits. Returns a value guaranteed to be |
326 | no smaller than the actual number required. */ |
327 | static mp_size s_inlen(int len, mp_size r); |
328 | |
329 | /* Convert a character to a digit value in radix r, or |
330 | -1 if out of range */ |
331 | static int s_ch2val(char c, int r); |
332 | |
333 | /* Convert a digit value to a character */ |
334 | static char s_val2ch(int v, int caps); |
335 | |
336 | /* Take 2's complement of a buffer in place */ |
337 | static void s_2comp(unsigned char *buf, int len); |
338 | |
339 | /* Convert a value to binary, ignoring sign. On input, *limpos is the bound on |
340 | how many bytes should be written to buf; on output, *limpos is set to the |
341 | number of bytes actually written. */ |
342 | static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad); |
343 | |
344 | /* Multiply X by Y into Z, ignoring signs. Requires that Z have enough storage |
345 | preallocated to hold the result. */ |
346 | static inline void UMUL(mp_int X, mp_int Y, mp_int Z) { |
347 | mp_size ua_ = MP_USED(Z: X); |
348 | mp_size ub_ = MP_USED(Z: Y); |
349 | mp_size o_ = ua_ + ub_; |
350 | ZERO(P: MP_DIGITS(Z), S: o_); |
351 | (void)s_kmul(da: MP_DIGITS(Z: X), db: MP_DIGITS(Z: Y), dc: MP_DIGITS(Z), size_a: ua_, size_b: ub_); |
352 | Z->used = o_; |
353 | CLAMP(z_: Z); |
354 | } |
355 | |
356 | /* Square X into Z. Requires that Z have enough storage to hold the result. */ |
357 | static inline void USQR(mp_int X, mp_int Z) { |
358 | mp_size ua_ = MP_USED(Z: X); |
359 | mp_size o_ = ua_ + ua_; |
360 | ZERO(P: MP_DIGITS(Z), S: o_); |
361 | (void)s_ksqr(da: MP_DIGITS(Z: X), dc: MP_DIGITS(Z), size_a: ua_); |
362 | Z->used = o_; |
363 | CLAMP(z_: Z); |
364 | } |
365 | |
366 | mp_result mp_int_init(mp_int z) { |
367 | if (z == NULL) return MP_BADARG; |
368 | |
369 | z->single = 0; |
370 | z->digits = &(z->single); |
371 | z->alloc = 1; |
372 | z->used = 1; |
373 | z->sign = MP_ZPOS; |
374 | |
375 | return MP_OK; |
376 | } |
377 | |
378 | mp_int mp_int_alloc(void) { |
379 | mp_int out = malloc(size: sizeof(mpz_t)); |
380 | |
381 | if (out != NULL) mp_int_init(z: out); |
382 | |
383 | return out; |
384 | } |
385 | |
386 | mp_result mp_int_init_size(mp_int z, mp_size prec) { |
387 | assert(z != NULL); |
388 | |
389 | if (prec == 0) { |
390 | prec = default_precision; |
391 | } else if (prec == 1) { |
392 | return mp_int_init(z); |
393 | } else { |
394 | prec = s_round_prec(P: prec); |
395 | } |
396 | |
397 | z->digits = s_alloc(num: prec); |
398 | if (MP_DIGITS(Z: z) == NULL) return MP_MEMORY; |
399 | |
400 | z->digits[0] = 0; |
401 | z->used = 1; |
402 | z->alloc = prec; |
403 | z->sign = MP_ZPOS; |
404 | |
405 | return MP_OK; |
406 | } |
407 | |
408 | mp_result mp_int_init_copy(mp_int z, mp_int old) { |
409 | assert(z != NULL && old != NULL); |
410 | |
411 | mp_size uold = MP_USED(Z: old); |
412 | if (uold == 1) { |
413 | mp_int_init(z); |
414 | } else { |
415 | mp_size target = MAX(A: uold, B: default_precision); |
416 | mp_result res = mp_int_init_size(z, prec: target); |
417 | if (res != MP_OK) return res; |
418 | } |
419 | |
420 | z->used = uold; |
421 | z->sign = old->sign; |
422 | COPY(P: MP_DIGITS(Z: old), Q: MP_DIGITS(Z: z), S: uold); |
423 | |
424 | return MP_OK; |
425 | } |
426 | |
427 | mp_result mp_int_init_value(mp_int z, mp_small value) { |
428 | mpz_t vtmp; |
429 | mp_digit vbuf[MP_VALUE_DIGITS(value)]; |
430 | |
431 | s_fake(z: &vtmp, value, vbuf); |
432 | return mp_int_init_copy(z, old: &vtmp); |
433 | } |
434 | |
435 | mp_result mp_int_init_uvalue(mp_int z, mp_usmall uvalue) { |
436 | mpz_t vtmp; |
437 | mp_digit vbuf[MP_VALUE_DIGITS(uvalue)]; |
438 | |
439 | s_ufake(z: &vtmp, value: uvalue, vbuf); |
440 | return mp_int_init_copy(z, old: &vtmp); |
441 | } |
442 | |
443 | mp_result mp_int_set_value(mp_int z, mp_small value) { |
444 | mpz_t vtmp; |
445 | mp_digit vbuf[MP_VALUE_DIGITS(value)]; |
446 | |
447 | s_fake(z: &vtmp, value, vbuf); |
448 | return mp_int_copy(a: &vtmp, c: z); |
449 | } |
450 | |
451 | mp_result mp_int_set_uvalue(mp_int z, mp_usmall uvalue) { |
452 | mpz_t vtmp; |
453 | mp_digit vbuf[MP_VALUE_DIGITS(uvalue)]; |
454 | |
455 | s_ufake(z: &vtmp, value: uvalue, vbuf); |
456 | return mp_int_copy(a: &vtmp, c: z); |
457 | } |
458 | |
459 | void mp_int_clear(mp_int z) { |
460 | if (z == NULL) return; |
461 | |
462 | if (MP_DIGITS(Z: z) != NULL) { |
463 | if (MP_DIGITS(Z: z) != &(z->single)) s_free(ptr: MP_DIGITS(Z: z)); |
464 | |
465 | z->digits = NULL; |
466 | } |
467 | } |
468 | |
469 | void mp_int_free(mp_int z) { |
470 | assert(z != NULL); |
471 | |
472 | mp_int_clear(z); |
473 | free(ptr: z); /* note: NOT s_free() */ |
474 | } |
475 | |
476 | mp_result mp_int_copy(mp_int a, mp_int c) { |
477 | assert(a != NULL && c != NULL); |
478 | |
479 | if (a != c) { |
480 | mp_size ua = MP_USED(Z: a); |
481 | mp_digit *da, *dc; |
482 | |
483 | if (!s_pad(z: c, min: ua)) return MP_MEMORY; |
484 | |
485 | da = MP_DIGITS(Z: a); |
486 | dc = MP_DIGITS(Z: c); |
487 | COPY(P: da, Q: dc, S: ua); |
488 | |
489 | c->used = ua; |
490 | c->sign = a->sign; |
491 | } |
492 | |
493 | return MP_OK; |
494 | } |
495 | |
496 | void mp_int_swap(mp_int a, mp_int c) { |
497 | if (a != c) { |
498 | mpz_t tmp = *a; |
499 | |
500 | *a = *c; |
501 | *c = tmp; |
502 | |
503 | if (MP_DIGITS(Z: a) == &(c->single)) a->digits = &(a->single); |
504 | if (MP_DIGITS(Z: c) == &(a->single)) c->digits = &(c->single); |
505 | } |
506 | } |
507 | |
508 | void mp_int_zero(mp_int z) { |
509 | assert(z != NULL); |
510 | |
511 | z->digits[0] = 0; |
512 | z->used = 1; |
513 | z->sign = MP_ZPOS; |
514 | } |
515 | |
516 | mp_result mp_int_abs(mp_int a, mp_int c) { |
517 | assert(a != NULL && c != NULL); |
518 | |
519 | mp_result res; |
520 | if ((res = mp_int_copy(a, c)) != MP_OK) return res; |
521 | |
522 | c->sign = MP_ZPOS; |
523 | return MP_OK; |
524 | } |
525 | |
526 | mp_result mp_int_neg(mp_int a, mp_int c) { |
527 | assert(a != NULL && c != NULL); |
528 | |
529 | mp_result res; |
530 | if ((res = mp_int_copy(a, c)) != MP_OK) return res; |
531 | |
532 | if (CMPZ(Z: c) != 0) c->sign = 1 - MP_SIGN(Z: a); |
533 | |
534 | return MP_OK; |
535 | } |
536 | |
537 | mp_result mp_int_add(mp_int a, mp_int b, mp_int c) { |
538 | assert(a != NULL && b != NULL && c != NULL); |
539 | |
540 | mp_size ua = MP_USED(Z: a); |
541 | mp_size ub = MP_USED(Z: b); |
542 | mp_size max = MAX(A: ua, B: ub); |
543 | |
544 | if (MP_SIGN(Z: a) == MP_SIGN(Z: b)) { |
545 | /* Same sign -- add magnitudes, preserve sign of addends */ |
546 | if (!s_pad(z: c, min: max)) return MP_MEMORY; |
547 | |
548 | mp_digit carry = s_uadd(da: MP_DIGITS(Z: a), db: MP_DIGITS(Z: b), dc: MP_DIGITS(Z: c), size_a: ua, size_b: ub); |
549 | mp_size uc = max; |
550 | |
551 | if (carry) { |
552 | if (!s_pad(z: c, min: max + 1)) return MP_MEMORY; |
553 | |
554 | c->digits[max] = carry; |
555 | ++uc; |
556 | } |
557 | |
558 | c->used = uc; |
559 | c->sign = a->sign; |
560 | |
561 | } else { |
562 | /* Different signs -- subtract magnitudes, preserve sign of greater */ |
563 | int cmp = s_ucmp(a, b); /* magnitude comparison, sign ignored */ |
564 | |
565 | /* Set x to max(a, b), y to min(a, b) to simplify later code. |
566 | A special case yields zero for equal magnitudes. |
567 | */ |
568 | mp_int x, y; |
569 | if (cmp == 0) { |
570 | mp_int_zero(z: c); |
571 | return MP_OK; |
572 | } else if (cmp < 0) { |
573 | x = b; |
574 | y = a; |
575 | } else { |
576 | x = a; |
577 | y = b; |
578 | } |
579 | |
580 | if (!s_pad(z: c, min: MP_USED(Z: x))) return MP_MEMORY; |
581 | |
582 | /* Subtract smaller from larger */ |
583 | s_usub(da: MP_DIGITS(Z: x), db: MP_DIGITS(Z: y), dc: MP_DIGITS(Z: c), size_a: MP_USED(Z: x), size_b: MP_USED(Z: y)); |
584 | c->used = x->used; |
585 | CLAMP(z_: c); |
586 | |
587 | /* Give result the sign of the larger */ |
588 | c->sign = x->sign; |
589 | } |
590 | |
591 | return MP_OK; |
592 | } |
593 | |
594 | mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c) { |
595 | mpz_t vtmp; |
596 | mp_digit vbuf[MP_VALUE_DIGITS(value)]; |
597 | |
598 | s_fake(z: &vtmp, value, vbuf); |
599 | |
600 | return mp_int_add(a, b: &vtmp, c); |
601 | } |
602 | |
603 | mp_result mp_int_sub(mp_int a, mp_int b, mp_int c) { |
604 | assert(a != NULL && b != NULL && c != NULL); |
605 | |
606 | mp_size ua = MP_USED(Z: a); |
607 | mp_size ub = MP_USED(Z: b); |
608 | mp_size max = MAX(A: ua, B: ub); |
609 | |
610 | if (MP_SIGN(Z: a) != MP_SIGN(Z: b)) { |
611 | /* Different signs -- add magnitudes and keep sign of a */ |
612 | if (!s_pad(z: c, min: max)) return MP_MEMORY; |
613 | |
614 | mp_digit carry = s_uadd(da: MP_DIGITS(Z: a), db: MP_DIGITS(Z: b), dc: MP_DIGITS(Z: c), size_a: ua, size_b: ub); |
615 | mp_size uc = max; |
616 | |
617 | if (carry) { |
618 | if (!s_pad(z: c, min: max + 1)) return MP_MEMORY; |
619 | |
620 | c->digits[max] = carry; |
621 | ++uc; |
622 | } |
623 | |
624 | c->used = uc; |
625 | c->sign = a->sign; |
626 | |
627 | } else { |
628 | /* Same signs -- subtract magnitudes */ |
629 | if (!s_pad(z: c, min: max)) return MP_MEMORY; |
630 | mp_int x, y; |
631 | mp_sign osign; |
632 | |
633 | int cmp = s_ucmp(a, b); |
634 | if (cmp >= 0) { |
635 | x = a; |
636 | y = b; |
637 | osign = MP_ZPOS; |
638 | } else { |
639 | x = b; |
640 | y = a; |
641 | osign = MP_NEG; |
642 | } |
643 | |
644 | if (MP_SIGN(Z: a) == MP_NEG && cmp != 0) osign = 1 - osign; |
645 | |
646 | s_usub(da: MP_DIGITS(Z: x), db: MP_DIGITS(Z: y), dc: MP_DIGITS(Z: c), size_a: MP_USED(Z: x), size_b: MP_USED(Z: y)); |
647 | c->used = x->used; |
648 | CLAMP(z_: c); |
649 | |
650 | c->sign = osign; |
651 | } |
652 | |
653 | return MP_OK; |
654 | } |
655 | |
656 | mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c) { |
657 | mpz_t vtmp; |
658 | mp_digit vbuf[MP_VALUE_DIGITS(value)]; |
659 | |
660 | s_fake(z: &vtmp, value, vbuf); |
661 | |
662 | return mp_int_sub(a, b: &vtmp, c); |
663 | } |
664 | |
665 | mp_result mp_int_mul(mp_int a, mp_int b, mp_int c) { |
666 | assert(a != NULL && b != NULL && c != NULL); |
667 | |
668 | /* If either input is zero, we can shortcut multiplication */ |
669 | if (mp_int_compare_zero(z: a) == 0 || mp_int_compare_zero(z: b) == 0) { |
670 | mp_int_zero(z: c); |
671 | return MP_OK; |
672 | } |
673 | |
674 | /* Output is positive if inputs have same sign, otherwise negative */ |
675 | mp_sign osign = (MP_SIGN(Z: a) == MP_SIGN(Z: b)) ? MP_ZPOS : MP_NEG; |
676 | |
677 | /* If the output is not identical to any of the inputs, we'll write the |
678 | results directly; otherwise, allocate a temporary space. */ |
679 | mp_size ua = MP_USED(Z: a); |
680 | mp_size ub = MP_USED(Z: b); |
681 | mp_size osize = MAX(A: ua, B: ub); |
682 | osize = 4 * ((osize + 1) / 2); |
683 | |
684 | mp_digit *out; |
685 | mp_size p = 0; |
686 | if (c == a || c == b) { |
687 | p = MAX(A: s_round_prec(P: osize), B: default_precision); |
688 | |
689 | if ((out = s_alloc(num: p)) == NULL) return MP_MEMORY; |
690 | } else { |
691 | if (!s_pad(z: c, min: osize)) return MP_MEMORY; |
692 | |
693 | out = MP_DIGITS(Z: c); |
694 | } |
695 | ZERO(P: out, S: osize); |
696 | |
697 | if (!s_kmul(da: MP_DIGITS(Z: a), db: MP_DIGITS(Z: b), dc: out, size_a: ua, size_b: ub)) return MP_MEMORY; |
698 | |
699 | /* If we allocated a new buffer, get rid of whatever memory c was already |
700 | using, and fix up its fields to reflect that. |
701 | */ |
702 | if (out != MP_DIGITS(Z: c)) { |
703 | if ((void *)MP_DIGITS(Z: c) != (void *)c) s_free(ptr: MP_DIGITS(Z: c)); |
704 | c->digits = out; |
705 | c->alloc = p; |
706 | } |
707 | |
708 | c->used = osize; /* might not be true, but we'll fix it ... */ |
709 | CLAMP(z_: c); /* ... right here */ |
710 | c->sign = osign; |
711 | |
712 | return MP_OK; |
713 | } |
714 | |
715 | mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c) { |
716 | mpz_t vtmp; |
717 | mp_digit vbuf[MP_VALUE_DIGITS(value)]; |
718 | |
719 | s_fake(z: &vtmp, value, vbuf); |
720 | |
721 | return mp_int_mul(a, b: &vtmp, c); |
722 | } |
723 | |
724 | mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c) { |
725 | assert(a != NULL && c != NULL && p2 >= 0); |
726 | |
727 | mp_result res = mp_int_copy(a, c); |
728 | if (res != MP_OK) return res; |
729 | |
730 | if (s_qmul(z: c, p2: (mp_size)p2)) { |
731 | return MP_OK; |
732 | } else { |
733 | return MP_MEMORY; |
734 | } |
735 | } |
736 | |
737 | mp_result mp_int_sqr(mp_int a, mp_int c) { |
738 | assert(a != NULL && c != NULL); |
739 | |
740 | /* Get a temporary buffer big enough to hold the result */ |
741 | mp_size osize = (mp_size)4 * ((MP_USED(Z: a) + 1) / 2); |
742 | mp_size p = 0; |
743 | mp_digit *out; |
744 | if (a == c) { |
745 | p = s_round_prec(P: osize); |
746 | p = MAX(A: p, B: default_precision); |
747 | |
748 | if ((out = s_alloc(num: p)) == NULL) return MP_MEMORY; |
749 | } else { |
750 | if (!s_pad(z: c, min: osize)) return MP_MEMORY; |
751 | |
752 | out = MP_DIGITS(Z: c); |
753 | } |
754 | ZERO(P: out, S: osize); |
755 | |
756 | s_ksqr(da: MP_DIGITS(Z: a), dc: out, size_a: MP_USED(Z: a)); |
757 | |
758 | /* Get rid of whatever memory c was already using, and fix up its fields to |
759 | reflect the new digit array it's using |
760 | */ |
761 | if (out != MP_DIGITS(Z: c)) { |
762 | if ((void *)MP_DIGITS(Z: c) != (void *)c) s_free(ptr: MP_DIGITS(Z: c)); |
763 | c->digits = out; |
764 | c->alloc = p; |
765 | } |
766 | |
767 | c->used = osize; /* might not be true, but we'll fix it ... */ |
768 | CLAMP(z_: c); /* ... right here */ |
769 | c->sign = MP_ZPOS; |
770 | |
771 | return MP_OK; |
772 | } |
773 | |
774 | mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r) { |
775 | assert(a != NULL && b != NULL && q != r); |
776 | |
777 | int cmp; |
778 | mp_result res = MP_OK; |
779 | mp_int qout, rout; |
780 | mp_sign sa = MP_SIGN(Z: a); |
781 | mp_sign sb = MP_SIGN(Z: b); |
782 | if (CMPZ(Z: b) == 0) { |
783 | return MP_UNDEF; |
784 | } else if ((cmp = s_ucmp(a, b)) < 0) { |
785 | /* If |a| < |b|, no division is required: |
786 | q = 0, r = a |
787 | */ |
788 | if (r && (res = mp_int_copy(a, c: r)) != MP_OK) return res; |
789 | |
790 | if (q) mp_int_zero(z: q); |
791 | |
792 | return MP_OK; |
793 | } else if (cmp == 0) { |
794 | /* If |a| = |b|, no division is required: |
795 | q = 1 or -1, r = 0 |
796 | */ |
797 | if (r) mp_int_zero(z: r); |
798 | |
799 | if (q) { |
800 | mp_int_zero(z: q); |
801 | q->digits[0] = 1; |
802 | |
803 | if (sa != sb) q->sign = MP_NEG; |
804 | } |
805 | |
806 | return MP_OK; |
807 | } |
808 | |
809 | /* When |a| > |b|, real division is required. We need someplace to store |
810 | quotient and remainder, but q and r are allowed to be NULL or to overlap |
811 | with the inputs. |
812 | */ |
813 | DECLARE_TEMP(2); |
814 | int lg; |
815 | if ((lg = s_isp2(z: b)) < 0) { |
816 | if (q && b != q) { |
817 | REQUIRE(mp_int_copy(a, q)); |
818 | qout = q; |
819 | } else { |
820 | REQUIRE(mp_int_copy(a, TEMP(0))); |
821 | qout = TEMP(0); |
822 | } |
823 | |
824 | if (r && a != r) { |
825 | REQUIRE(mp_int_copy(b, r)); |
826 | rout = r; |
827 | } else { |
828 | REQUIRE(mp_int_copy(b, TEMP(1))); |
829 | rout = TEMP(1); |
830 | } |
831 | |
832 | REQUIRE(s_udiv_knuth(qout, rout)); |
833 | } else { |
834 | if (q) REQUIRE(mp_int_copy(a, q)); |
835 | if (r) REQUIRE(mp_int_copy(a, r)); |
836 | |
837 | if (q) s_qdiv(z: q, p2: (mp_size)lg); |
838 | qout = q; |
839 | if (r) s_qmod(z: r, p2: (mp_size)lg); |
840 | rout = r; |
841 | } |
842 | |
843 | /* Recompute signs for output */ |
844 | if (rout) { |
845 | rout->sign = sa; |
846 | if (CMPZ(Z: rout) == 0) rout->sign = MP_ZPOS; |
847 | } |
848 | if (qout) { |
849 | qout->sign = (sa == sb) ? MP_ZPOS : MP_NEG; |
850 | if (CMPZ(Z: qout) == 0) qout->sign = MP_ZPOS; |
851 | } |
852 | |
853 | if (q) REQUIRE(mp_int_copy(qout, q)); |
854 | if (r) REQUIRE(mp_int_copy(rout, r)); |
855 | CLEANUP_TEMP(); |
856 | return res; |
857 | } |
858 | |
859 | mp_result mp_int_mod(mp_int a, mp_int m, mp_int c) { |
860 | DECLARE_TEMP(1); |
861 | mp_int out = (m == c) ? TEMP(0) : c; |
862 | REQUIRE(mp_int_div(a, m, NULL, out)); |
863 | if (CMPZ(Z: out) < 0) { |
864 | REQUIRE(mp_int_add(out, m, c)); |
865 | } else { |
866 | REQUIRE(mp_int_copy(out, c)); |
867 | } |
868 | CLEANUP_TEMP(); |
869 | return MP_OK; |
870 | } |
871 | |
872 | mp_result mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small *r) { |
873 | mpz_t vtmp; |
874 | mp_digit vbuf[MP_VALUE_DIGITS(value)]; |
875 | s_fake(z: &vtmp, value, vbuf); |
876 | |
877 | DECLARE_TEMP(1); |
878 | REQUIRE(mp_int_div(a, &vtmp, q, TEMP(0))); |
879 | |
880 | if (r) (void)mp_int_to_int(TEMP(0), out: r); /* can't fail */ |
881 | |
882 | CLEANUP_TEMP(); |
883 | return MP_OK; |
884 | } |
885 | |
886 | mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r) { |
887 | assert(a != NULL && p2 >= 0 && q != r); |
888 | |
889 | mp_result res = MP_OK; |
890 | if (q != NULL && (res = mp_int_copy(a, c: q)) == MP_OK) { |
891 | s_qdiv(z: q, p2: (mp_size)p2); |
892 | } |
893 | |
894 | if (res == MP_OK && r != NULL && (res = mp_int_copy(a, c: r)) == MP_OK) { |
895 | s_qmod(z: r, p2: (mp_size)p2); |
896 | } |
897 | |
898 | return res; |
899 | } |
900 | |
901 | mp_result mp_int_expt(mp_int a, mp_small b, mp_int c) { |
902 | assert(c != NULL); |
903 | if (b < 0) return MP_RANGE; |
904 | |
905 | DECLARE_TEMP(1); |
906 | REQUIRE(mp_int_copy(a, TEMP(0))); |
907 | |
908 | (void)mp_int_set_value(z: c, value: 1); |
909 | unsigned int v = labs(x: b); |
910 | while (v != 0) { |
911 | if (v & 1) { |
912 | REQUIRE(mp_int_mul(c, TEMP(0), c)); |
913 | } |
914 | |
915 | v >>= 1; |
916 | if (v == 0) break; |
917 | |
918 | REQUIRE(mp_int_sqr(TEMP(0), TEMP(0))); |
919 | } |
920 | |
921 | CLEANUP_TEMP(); |
922 | return MP_OK; |
923 | } |
924 | |
925 | mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c) { |
926 | assert(c != NULL); |
927 | if (b < 0) return MP_RANGE; |
928 | |
929 | DECLARE_TEMP(1); |
930 | REQUIRE(mp_int_set_value(TEMP(0), a)); |
931 | |
932 | (void)mp_int_set_value(z: c, value: 1); |
933 | unsigned int v = labs(x: b); |
934 | while (v != 0) { |
935 | if (v & 1) { |
936 | REQUIRE(mp_int_mul(c, TEMP(0), c)); |
937 | } |
938 | |
939 | v >>= 1; |
940 | if (v == 0) break; |
941 | |
942 | REQUIRE(mp_int_sqr(TEMP(0), TEMP(0))); |
943 | } |
944 | |
945 | CLEANUP_TEMP(); |
946 | return MP_OK; |
947 | } |
948 | |
949 | mp_result mp_int_expt_full(mp_int a, mp_int b, mp_int c) { |
950 | assert(a != NULL && b != NULL && c != NULL); |
951 | if (MP_SIGN(Z: b) == MP_NEG) return MP_RANGE; |
952 | |
953 | DECLARE_TEMP(1); |
954 | REQUIRE(mp_int_copy(a, TEMP(0))); |
955 | |
956 | (void)mp_int_set_value(z: c, value: 1); |
957 | for (unsigned ix = 0; ix < MP_USED(Z: b); ++ix) { |
958 | mp_digit d = b->digits[ix]; |
959 | |
960 | for (unsigned jx = 0; jx < MP_DIGIT_BIT; ++jx) { |
961 | if (d & 1) { |
962 | REQUIRE(mp_int_mul(c, TEMP(0), c)); |
963 | } |
964 | |
965 | d >>= 1; |
966 | if (d == 0 && ix + 1 == MP_USED(Z: b)) break; |
967 | REQUIRE(mp_int_sqr(TEMP(0), TEMP(0))); |
968 | } |
969 | } |
970 | |
971 | CLEANUP_TEMP(); |
972 | return MP_OK; |
973 | } |
974 | |
975 | int mp_int_compare(mp_int a, mp_int b) { |
976 | assert(a != NULL && b != NULL); |
977 | |
978 | mp_sign sa = MP_SIGN(Z: a); |
979 | if (sa == MP_SIGN(Z: b)) { |
980 | int cmp = s_ucmp(a, b); |
981 | |
982 | /* If they're both zero or positive, the normal comparison applies; if both |
983 | negative, the sense is reversed. */ |
984 | if (sa == MP_ZPOS) { |
985 | return cmp; |
986 | } else { |
987 | return -cmp; |
988 | } |
989 | } else if (sa == MP_ZPOS) { |
990 | return 1; |
991 | } else { |
992 | return -1; |
993 | } |
994 | } |
995 | |
996 | int mp_int_compare_unsigned(mp_int a, mp_int b) { |
997 | assert(a != NULL && b != NULL); |
998 | |
999 | return s_ucmp(a, b); |
1000 | } |
1001 | |
1002 | int mp_int_compare_zero(mp_int z) { |
1003 | assert(z != NULL); |
1004 | |
1005 | if (MP_USED(Z: z) == 1 && z->digits[0] == 0) { |
1006 | return 0; |
1007 | } else if (MP_SIGN(Z: z) == MP_ZPOS) { |
1008 | return 1; |
1009 | } else { |
1010 | return -1; |
1011 | } |
1012 | } |
1013 | |
1014 | int mp_int_compare_value(mp_int z, mp_small value) { |
1015 | assert(z != NULL); |
1016 | |
1017 | mp_sign vsign = (value < 0) ? MP_NEG : MP_ZPOS; |
1018 | if (vsign == MP_SIGN(Z: z)) { |
1019 | int cmp = s_vcmp(a: z, v: value); |
1020 | |
1021 | return (vsign == MP_ZPOS) ? cmp : -cmp; |
1022 | } else { |
1023 | return (value < 0) ? 1 : -1; |
1024 | } |
1025 | } |
1026 | |
1027 | int mp_int_compare_uvalue(mp_int z, mp_usmall uv) { |
1028 | assert(z != NULL); |
1029 | |
1030 | if (MP_SIGN(Z: z) == MP_NEG) { |
1031 | return -1; |
1032 | } else { |
1033 | return s_uvcmp(a: z, uv); |
1034 | } |
1035 | } |
1036 | |
1037 | mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c) { |
1038 | assert(a != NULL && b != NULL && c != NULL && m != NULL); |
1039 | |
1040 | /* Zero moduli and negative exponents are not considered. */ |
1041 | if (CMPZ(Z: m) == 0) return MP_UNDEF; |
1042 | if (CMPZ(Z: b) < 0) return MP_RANGE; |
1043 | |
1044 | mp_size um = MP_USED(Z: m); |
1045 | DECLARE_TEMP(3); |
1046 | REQUIRE(GROW(TEMP(0), 2 * um)); |
1047 | REQUIRE(GROW(TEMP(1), 2 * um)); |
1048 | |
1049 | mp_int s; |
1050 | if (c == b || c == m) { |
1051 | REQUIRE(GROW(TEMP(2), 2 * um)); |
1052 | s = TEMP(2); |
1053 | } else { |
1054 | s = c; |
1055 | } |
1056 | |
1057 | REQUIRE(mp_int_mod(a, m, TEMP(0))); |
1058 | REQUIRE(s_brmu(TEMP(1), m)); |
1059 | REQUIRE(s_embar(TEMP(0), b, m, TEMP(1), s)); |
1060 | REQUIRE(mp_int_copy(s, c)); |
1061 | |
1062 | CLEANUP_TEMP(); |
1063 | return MP_OK; |
1064 | } |
1065 | |
1066 | mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c) { |
1067 | mpz_t vtmp; |
1068 | mp_digit vbuf[MP_VALUE_DIGITS(value)]; |
1069 | |
1070 | s_fake(z: &vtmp, value, vbuf); |
1071 | |
1072 | return mp_int_exptmod(a, b: &vtmp, m, c); |
1073 | } |
1074 | |
1075 | mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b, mp_int m, mp_int c) { |
1076 | mpz_t vtmp; |
1077 | mp_digit vbuf[MP_VALUE_DIGITS(value)]; |
1078 | |
1079 | s_fake(z: &vtmp, value, vbuf); |
1080 | |
1081 | return mp_int_exptmod(a: &vtmp, b, m, c); |
1082 | } |
1083 | |
1084 | mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, |
1085 | mp_int c) { |
1086 | assert(a && b && m && c); |
1087 | |
1088 | /* Zero moduli and negative exponents are not considered. */ |
1089 | if (CMPZ(Z: m) == 0) return MP_UNDEF; |
1090 | if (CMPZ(Z: b) < 0) return MP_RANGE; |
1091 | |
1092 | DECLARE_TEMP(2); |
1093 | mp_size um = MP_USED(Z: m); |
1094 | REQUIRE(GROW(TEMP(0), 2 * um)); |
1095 | |
1096 | mp_int s; |
1097 | if (c == b || c == m) { |
1098 | REQUIRE(GROW(TEMP(1), 2 * um)); |
1099 | s = TEMP(1); |
1100 | } else { |
1101 | s = c; |
1102 | } |
1103 | |
1104 | REQUIRE(mp_int_mod(a, m, TEMP(0))); |
1105 | REQUIRE(s_embar(TEMP(0), b, m, mu, s)); |
1106 | REQUIRE(mp_int_copy(s, c)); |
1107 | |
1108 | CLEANUP_TEMP(); |
1109 | return MP_OK; |
1110 | } |
1111 | |
1112 | mp_result mp_int_redux_const(mp_int m, mp_int c) { |
1113 | assert(m != NULL && c != NULL && m != c); |
1114 | |
1115 | return s_brmu(z: c, m); |
1116 | } |
1117 | |
1118 | mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c) { |
1119 | assert(a != NULL && m != NULL && c != NULL); |
1120 | |
1121 | if (CMPZ(Z: a) == 0 || CMPZ(Z: m) <= 0) return MP_RANGE; |
1122 | |
1123 | DECLARE_TEMP(2); |
1124 | |
1125 | REQUIRE(mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL)); |
1126 | |
1127 | if (mp_int_compare_value(TEMP(0), value: 1) != 0) { |
1128 | REQUIRE(MP_UNDEF); |
1129 | } |
1130 | |
1131 | /* It is first necessary to constrain the value to the proper range */ |
1132 | REQUIRE(mp_int_mod(TEMP(1), m, TEMP(1))); |
1133 | |
1134 | /* Now, if 'a' was originally negative, the value we have is actually the |
1135 | magnitude of the negative representative; to get the positive value we |
1136 | have to subtract from the modulus. Otherwise, the value is okay as it |
1137 | stands. |
1138 | */ |
1139 | if (MP_SIGN(Z: a) == MP_NEG) { |
1140 | REQUIRE(mp_int_sub(m, TEMP(1), c)); |
1141 | } else { |
1142 | REQUIRE(mp_int_copy(TEMP(1), c)); |
1143 | } |
1144 | |
1145 | CLEANUP_TEMP(); |
1146 | return MP_OK; |
1147 | } |
1148 | |
1149 | /* Binary GCD algorithm due to Josef Stein, 1961 */ |
1150 | mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c) { |
1151 | assert(a != NULL && b != NULL && c != NULL); |
1152 | |
1153 | int ca = CMPZ(Z: a); |
1154 | int cb = CMPZ(Z: b); |
1155 | if (ca == 0 && cb == 0) { |
1156 | return MP_UNDEF; |
1157 | } else if (ca == 0) { |
1158 | return mp_int_abs(a: b, c); |
1159 | } else if (cb == 0) { |
1160 | return mp_int_abs(a, c); |
1161 | } |
1162 | |
1163 | DECLARE_TEMP(3); |
1164 | REQUIRE(mp_int_copy(a, TEMP(0))); |
1165 | REQUIRE(mp_int_copy(b, TEMP(1))); |
1166 | |
1167 | TEMP(0)->sign = MP_ZPOS; |
1168 | TEMP(1)->sign = MP_ZPOS; |
1169 | |
1170 | int k = 0; |
1171 | { /* Divide out common factors of 2 from u and v */ |
1172 | int div2_u = s_dp2k(TEMP(0)); |
1173 | int div2_v = s_dp2k(TEMP(1)); |
1174 | |
1175 | k = MIN(A: div2_u, B: div2_v); |
1176 | s_qdiv(TEMP(0), p2: (mp_size)k); |
1177 | s_qdiv(TEMP(1), p2: (mp_size)k); |
1178 | } |
1179 | |
1180 | if (mp_int_is_odd(TEMP(0))) { |
1181 | REQUIRE(mp_int_neg(TEMP(1), TEMP(2))); |
1182 | } else { |
1183 | REQUIRE(mp_int_copy(TEMP(0), TEMP(2))); |
1184 | } |
1185 | |
1186 | for (;;) { |
1187 | s_qdiv(TEMP(2), p2: s_dp2k(TEMP(2))); |
1188 | |
1189 | if (CMPZ(TEMP(2)) > 0) { |
1190 | REQUIRE(mp_int_copy(TEMP(2), TEMP(0))); |
1191 | } else { |
1192 | REQUIRE(mp_int_neg(TEMP(2), TEMP(1))); |
1193 | } |
1194 | |
1195 | REQUIRE(mp_int_sub(TEMP(0), TEMP(1), TEMP(2))); |
1196 | |
1197 | if (CMPZ(TEMP(2)) == 0) break; |
1198 | } |
1199 | |
1200 | REQUIRE(mp_int_abs(TEMP(0), c)); |
1201 | if (!s_qmul(z: c, p2: (mp_size)k)) REQUIRE(MP_MEMORY); |
1202 | |
1203 | CLEANUP_TEMP(); |
1204 | return MP_OK; |
1205 | } |
1206 | |
1207 | /* This is the binary GCD algorithm again, but this time we keep track of the |
1208 | elementary matrix operations as we go, so we can get values x and y |
1209 | satisfying c = ax + by. |
1210 | */ |
1211 | mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, mp_int x, mp_int y) { |
1212 | assert(a != NULL && b != NULL && c != NULL && (x != NULL || y != NULL)); |
1213 | |
1214 | mp_result res = MP_OK; |
1215 | int ca = CMPZ(Z: a); |
1216 | int cb = CMPZ(Z: b); |
1217 | if (ca == 0 && cb == 0) { |
1218 | return MP_UNDEF; |
1219 | } else if (ca == 0) { |
1220 | if ((res = mp_int_abs(a: b, c)) != MP_OK) return res; |
1221 | mp_int_zero(z: x); |
1222 | (void)mp_int_set_value(z: y, value: 1); |
1223 | return MP_OK; |
1224 | } else if (cb == 0) { |
1225 | if ((res = mp_int_abs(a, c)) != MP_OK) return res; |
1226 | (void)mp_int_set_value(z: x, value: 1); |
1227 | mp_int_zero(z: y); |
1228 | return MP_OK; |
1229 | } |
1230 | |
1231 | /* Initialize temporaries: |
1232 | A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7 */ |
1233 | DECLARE_TEMP(8); |
1234 | REQUIRE(mp_int_set_value(TEMP(0), 1)); |
1235 | REQUIRE(mp_int_set_value(TEMP(3), 1)); |
1236 | REQUIRE(mp_int_copy(a, TEMP(4))); |
1237 | REQUIRE(mp_int_copy(b, TEMP(5))); |
1238 | |
1239 | /* We will work with absolute values here */ |
1240 | TEMP(4)->sign = MP_ZPOS; |
1241 | TEMP(5)->sign = MP_ZPOS; |
1242 | |
1243 | int k = 0; |
1244 | { /* Divide out common factors of 2 from u and v */ |
1245 | int div2_u = s_dp2k(TEMP(4)), div2_v = s_dp2k(TEMP(5)); |
1246 | |
1247 | k = MIN(A: div2_u, B: div2_v); |
1248 | s_qdiv(TEMP(4), p2: k); |
1249 | s_qdiv(TEMP(5), p2: k); |
1250 | } |
1251 | |
1252 | REQUIRE(mp_int_copy(TEMP(4), TEMP(6))); |
1253 | REQUIRE(mp_int_copy(TEMP(5), TEMP(7))); |
1254 | |
1255 | for (;;) { |
1256 | while (mp_int_is_even(TEMP(4))) { |
1257 | s_qdiv(TEMP(4), p2: 1); |
1258 | |
1259 | if (mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1))) { |
1260 | REQUIRE(mp_int_add(TEMP(0), TEMP(7), TEMP(0))); |
1261 | REQUIRE(mp_int_sub(TEMP(1), TEMP(6), TEMP(1))); |
1262 | } |
1263 | |
1264 | s_qdiv(TEMP(0), p2: 1); |
1265 | s_qdiv(TEMP(1), p2: 1); |
1266 | } |
1267 | |
1268 | while (mp_int_is_even(TEMP(5))) { |
1269 | s_qdiv(TEMP(5), p2: 1); |
1270 | |
1271 | if (mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3))) { |
1272 | REQUIRE(mp_int_add(TEMP(2), TEMP(7), TEMP(2))); |
1273 | REQUIRE(mp_int_sub(TEMP(3), TEMP(6), TEMP(3))); |
1274 | } |
1275 | |
1276 | s_qdiv(TEMP(2), p2: 1); |
1277 | s_qdiv(TEMP(3), p2: 1); |
1278 | } |
1279 | |
1280 | if (mp_int_compare(TEMP(4), TEMP(5)) >= 0) { |
1281 | REQUIRE(mp_int_sub(TEMP(4), TEMP(5), TEMP(4))); |
1282 | REQUIRE(mp_int_sub(TEMP(0), TEMP(2), TEMP(0))); |
1283 | REQUIRE(mp_int_sub(TEMP(1), TEMP(3), TEMP(1))); |
1284 | } else { |
1285 | REQUIRE(mp_int_sub(TEMP(5), TEMP(4), TEMP(5))); |
1286 | REQUIRE(mp_int_sub(TEMP(2), TEMP(0), TEMP(2))); |
1287 | REQUIRE(mp_int_sub(TEMP(3), TEMP(1), TEMP(3))); |
1288 | } |
1289 | |
1290 | if (CMPZ(TEMP(4)) == 0) { |
1291 | if (x) REQUIRE(mp_int_copy(TEMP(2), x)); |
1292 | if (y) REQUIRE(mp_int_copy(TEMP(3), y)); |
1293 | if (c) { |
1294 | if (!s_qmul(TEMP(5), p2: k)) { |
1295 | REQUIRE(MP_MEMORY); |
1296 | } |
1297 | REQUIRE(mp_int_copy(TEMP(5), c)); |
1298 | } |
1299 | |
1300 | break; |
1301 | } |
1302 | } |
1303 | |
1304 | CLEANUP_TEMP(); |
1305 | return MP_OK; |
1306 | } |
1307 | |
1308 | mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c) { |
1309 | assert(a != NULL && b != NULL && c != NULL); |
1310 | |
1311 | /* Since a * b = gcd(a, b) * lcm(a, b), we can compute |
1312 | lcm(a, b) = (a / gcd(a, b)) * b. |
1313 | |
1314 | This formulation insures everything works even if the input |
1315 | variables share space. |
1316 | */ |
1317 | DECLARE_TEMP(1); |
1318 | REQUIRE(mp_int_gcd(a, b, TEMP(0))); |
1319 | REQUIRE(mp_int_div(a, TEMP(0), TEMP(0), NULL)); |
1320 | REQUIRE(mp_int_mul(TEMP(0), b, TEMP(0))); |
1321 | REQUIRE(mp_int_copy(TEMP(0), c)); |
1322 | |
1323 | CLEANUP_TEMP(); |
1324 | return MP_OK; |
1325 | } |
1326 | |
1327 | bool mp_int_divisible_value(mp_int a, mp_small v) { |
1328 | mp_small rem = 0; |
1329 | |
1330 | if (mp_int_div_value(a, value: v, NULL, r: &rem) != MP_OK) { |
1331 | return false; |
1332 | } |
1333 | return rem == 0; |
1334 | } |
1335 | |
1336 | int mp_int_is_pow2(mp_int z) { |
1337 | assert(z != NULL); |
1338 | |
1339 | return s_isp2(z); |
1340 | } |
1341 | |
1342 | /* Implementation of Newton's root finding method, based loosely on a patch |
1343 | contributed by Hal Finkel <half@halssoftware.com> |
1344 | modified by M. J. Fromberger. |
1345 | */ |
1346 | mp_result mp_int_root(mp_int a, mp_small b, mp_int c) { |
1347 | assert(a != NULL && c != NULL && b > 0); |
1348 | |
1349 | if (b == 1) { |
1350 | return mp_int_copy(a, c); |
1351 | } |
1352 | bool flips = false; |
1353 | if (MP_SIGN(Z: a) == MP_NEG) { |
1354 | if (b % 2 == 0) { |
1355 | return MP_UNDEF; /* root does not exist for negative a with even b */ |
1356 | } else { |
1357 | flips = true; |
1358 | } |
1359 | } |
1360 | |
1361 | DECLARE_TEMP(5); |
1362 | REQUIRE(mp_int_copy(a, TEMP(0))); |
1363 | REQUIRE(mp_int_copy(a, TEMP(1))); |
1364 | TEMP(0)->sign = MP_ZPOS; |
1365 | TEMP(1)->sign = MP_ZPOS; |
1366 | |
1367 | for (;;) { |
1368 | REQUIRE(mp_int_expt(TEMP(1), b, TEMP(2))); |
1369 | |
1370 | if (mp_int_compare_unsigned(TEMP(2), TEMP(0)) <= 0) break; |
1371 | |
1372 | REQUIRE(mp_int_sub(TEMP(2), TEMP(0), TEMP(2))); |
1373 | REQUIRE(mp_int_expt(TEMP(1), b - 1, TEMP(3))); |
1374 | REQUIRE(mp_int_mul_value(TEMP(3), b, TEMP(3))); |
1375 | REQUIRE(mp_int_div(TEMP(2), TEMP(3), TEMP(4), NULL)); |
1376 | REQUIRE(mp_int_sub(TEMP(1), TEMP(4), TEMP(4))); |
1377 | |
1378 | if (mp_int_compare_unsigned(TEMP(1), TEMP(4)) == 0) { |
1379 | REQUIRE(mp_int_sub_value(TEMP(4), 1, TEMP(4))); |
1380 | } |
1381 | REQUIRE(mp_int_copy(TEMP(4), TEMP(1))); |
1382 | } |
1383 | |
1384 | REQUIRE(mp_int_copy(TEMP(1), c)); |
1385 | |
1386 | /* If the original value of a was negative, flip the output sign. */ |
1387 | if (flips) (void)mp_int_neg(a: c, c); /* cannot fail */ |
1388 | |
1389 | CLEANUP_TEMP(); |
1390 | return MP_OK; |
1391 | } |
1392 | |
1393 | mp_result mp_int_to_int(mp_int z, mp_small *out) { |
1394 | assert(z != NULL); |
1395 | |
1396 | /* Make sure the value is representable as a small integer */ |
1397 | mp_sign sz = MP_SIGN(Z: z); |
1398 | if ((sz == MP_ZPOS && mp_int_compare_value(z, MP_SMALL_MAX) > 0) || |
1399 | mp_int_compare_value(z, MP_SMALL_MIN) < 0) { |
1400 | return MP_RANGE; |
1401 | } |
1402 | |
1403 | mp_usmall uz = MP_USED(Z: z); |
1404 | mp_digit *dz = MP_DIGITS(Z: z) + uz - 1; |
1405 | mp_small uv = 0; |
1406 | while (uz > 0) { |
1407 | uv <<= MP_DIGIT_BIT / 2; |
1408 | uv = (uv << (MP_DIGIT_BIT / 2)) | *dz--; |
1409 | --uz; |
1410 | } |
1411 | |
1412 | if (out) *out = (mp_small)((sz == MP_NEG) ? -uv : uv); |
1413 | |
1414 | return MP_OK; |
1415 | } |
1416 | |
1417 | mp_result mp_int_to_uint(mp_int z, mp_usmall *out) { |
1418 | assert(z != NULL); |
1419 | |
1420 | /* Make sure the value is representable as an unsigned small integer */ |
1421 | mp_size sz = MP_SIGN(Z: z); |
1422 | if (sz == MP_NEG || mp_int_compare_uvalue(z, MP_USMALL_MAX) > 0) { |
1423 | return MP_RANGE; |
1424 | } |
1425 | |
1426 | mp_size uz = MP_USED(Z: z); |
1427 | mp_digit *dz = MP_DIGITS(Z: z) + uz - 1; |
1428 | mp_usmall uv = 0; |
1429 | |
1430 | while (uz > 0) { |
1431 | uv <<= MP_DIGIT_BIT / 2; |
1432 | uv = (uv << (MP_DIGIT_BIT / 2)) | *dz--; |
1433 | --uz; |
1434 | } |
1435 | |
1436 | if (out) *out = uv; |
1437 | |
1438 | return MP_OK; |
1439 | } |
1440 | |
1441 | mp_result mp_int_to_string(mp_int z, mp_size radix, char *str, int limit) { |
1442 | assert(z != NULL && str != NULL && limit >= 2); |
1443 | assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX); |
1444 | |
1445 | int cmp = 0; |
1446 | if (CMPZ(Z: z) == 0) { |
1447 | *str++ = s_val2ch(v: 0, caps: 1); |
1448 | } else { |
1449 | mp_result res; |
1450 | mpz_t tmp; |
1451 | char *h, *t; |
1452 | |
1453 | if ((res = mp_int_init_copy(z: &tmp, old: z)) != MP_OK) return res; |
1454 | |
1455 | if (MP_SIGN(Z: z) == MP_NEG) { |
1456 | *str++ = '-'; |
1457 | --limit; |
1458 | } |
1459 | h = str; |
1460 | |
1461 | /* Generate digits in reverse order until finished or limit reached */ |
1462 | for (/* */; limit > 0; --limit) { |
1463 | mp_digit d; |
1464 | |
1465 | if ((cmp = CMPZ(Z: &tmp)) == 0) break; |
1466 | |
1467 | d = s_ddiv(a: &tmp, b: (mp_digit)radix); |
1468 | *str++ = s_val2ch(v: d, caps: 1); |
1469 | } |
1470 | t = str - 1; |
1471 | |
1472 | /* Put digits back in correct output order */ |
1473 | while (h < t) { |
1474 | char tc = *h; |
1475 | *h++ = *t; |
1476 | *t-- = tc; |
1477 | } |
1478 | |
1479 | mp_int_clear(z: &tmp); |
1480 | } |
1481 | |
1482 | *str = '\0'; |
1483 | if (cmp == 0) { |
1484 | return MP_OK; |
1485 | } else { |
1486 | return MP_TRUNC; |
1487 | } |
1488 | } |
1489 | |
1490 | mp_result mp_int_string_len(mp_int z, mp_size radix) { |
1491 | assert(z != NULL); |
1492 | assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX); |
1493 | |
1494 | int len = s_outlen(z, r: radix) + 1; /* for terminator */ |
1495 | |
1496 | /* Allow for sign marker on negatives */ |
1497 | if (MP_SIGN(Z: z) == MP_NEG) len += 1; |
1498 | |
1499 | return len; |
1500 | } |
1501 | |
1502 | /* Read zero-terminated string into z */ |
1503 | mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str) { |
1504 | return mp_int_read_cstring(z, radix, str, NULL); |
1505 | } |
1506 | |
1507 | mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, |
1508 | char **end) { |
1509 | assert(z != NULL && str != NULL); |
1510 | assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX); |
1511 | |
1512 | /* Skip leading whitespace */ |
1513 | while (isspace((unsigned char)*str)) ++str; |
1514 | |
1515 | /* Handle leading sign tag (+/-, positive default) */ |
1516 | switch (*str) { |
1517 | case '-': |
1518 | z->sign = MP_NEG; |
1519 | ++str; |
1520 | break; |
1521 | case '+': |
1522 | ++str; /* fallthrough */ |
1523 | default: |
1524 | z->sign = MP_ZPOS; |
1525 | break; |
1526 | } |
1527 | |
1528 | /* Skip leading zeroes */ |
1529 | int ch; |
1530 | while ((ch = s_ch2val(c: *str, r: radix)) == 0) ++str; |
1531 | |
1532 | /* Make sure there is enough space for the value */ |
1533 | if (!s_pad(z, min: s_inlen(len: strlen(s: str), r: radix))) return MP_MEMORY; |
1534 | |
1535 | z->used = 1; |
1536 | z->digits[0] = 0; |
1537 | |
1538 | while (*str != '\0' && ((ch = s_ch2val(c: *str, r: radix)) >= 0)) { |
1539 | s_dmul(a: z, b: (mp_digit)radix); |
1540 | s_dadd(a: z, b: (mp_digit)ch); |
1541 | ++str; |
1542 | } |
1543 | |
1544 | CLAMP(z_: z); |
1545 | |
1546 | /* Override sign for zero, even if negative specified. */ |
1547 | if (CMPZ(Z: z) == 0) z->sign = MP_ZPOS; |
1548 | |
1549 | if (end != NULL) *end = (char *)str; |
1550 | |
1551 | /* Return a truncation error if the string has unprocessed characters |
1552 | remaining, so the caller can tell if the whole string was done */ |
1553 | if (*str != '\0') { |
1554 | return MP_TRUNC; |
1555 | } else { |
1556 | return MP_OK; |
1557 | } |
1558 | } |
1559 | |
1560 | mp_result mp_int_count_bits(mp_int z) { |
1561 | assert(z != NULL); |
1562 | |
1563 | mp_size uz = MP_USED(Z: z); |
1564 | if (uz == 1 && z->digits[0] == 0) return 1; |
1565 | |
1566 | --uz; |
1567 | mp_size nbits = uz * MP_DIGIT_BIT; |
1568 | mp_digit d = z->digits[uz]; |
1569 | |
1570 | while (d != 0) { |
1571 | d >>= 1; |
1572 | ++nbits; |
1573 | } |
1574 | |
1575 | return nbits; |
1576 | } |
1577 | |
1578 | mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit) { |
1579 | static const int PAD_FOR_2C = 1; |
1580 | |
1581 | assert(z != NULL && buf != NULL); |
1582 | |
1583 | int limpos = limit; |
1584 | mp_result res = s_tobin(z, buf, limpos: &limpos, pad: PAD_FOR_2C); |
1585 | |
1586 | if (MP_SIGN(Z: z) == MP_NEG) s_2comp(buf, len: limpos); |
1587 | |
1588 | return res; |
1589 | } |
1590 | |
1591 | mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len) { |
1592 | assert(z != NULL && buf != NULL && len > 0); |
1593 | |
1594 | /* Figure out how many digits are needed to represent this value */ |
1595 | mp_size need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT; |
1596 | if (!s_pad(z, min: need)) return MP_MEMORY; |
1597 | |
1598 | mp_int_zero(z); |
1599 | |
1600 | /* If the high-order bit is set, take the 2's complement before reading the |
1601 | value (it will be restored afterward) */ |
1602 | if (buf[0] >> (CHAR_BIT - 1)) { |
1603 | z->sign = MP_NEG; |
1604 | s_2comp(buf, len); |
1605 | } |
1606 | |
1607 | mp_digit *dz = MP_DIGITS(Z: z); |
1608 | unsigned char *tmp = buf; |
1609 | for (int i = len; i > 0; --i, ++tmp) { |
1610 | s_qmul(z, p2: (mp_size)CHAR_BIT); |
1611 | *dz |= *tmp; |
1612 | } |
1613 | |
1614 | /* Restore 2's complement if we took it before */ |
1615 | if (MP_SIGN(Z: z) == MP_NEG) s_2comp(buf, len); |
1616 | |
1617 | return MP_OK; |
1618 | } |
1619 | |
1620 | mp_result mp_int_binary_len(mp_int z) { |
1621 | mp_result res = mp_int_count_bits(z); |
1622 | if (res <= 0) return res; |
1623 | |
1624 | int bytes = mp_int_unsigned_len(z); |
1625 | |
1626 | /* If the highest-order bit falls exactly on a byte boundary, we need to pad |
1627 | with an extra byte so that the sign will be read correctly when reading it |
1628 | back in. */ |
1629 | if (bytes * CHAR_BIT == res) ++bytes; |
1630 | |
1631 | return bytes; |
1632 | } |
1633 | |
1634 | mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit) { |
1635 | static const int NO_PADDING = 0; |
1636 | |
1637 | assert(z != NULL && buf != NULL); |
1638 | |
1639 | return s_tobin(z, buf, limpos: &limit, pad: NO_PADDING); |
1640 | } |
1641 | |
1642 | mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len) { |
1643 | assert(z != NULL && buf != NULL && len > 0); |
1644 | |
1645 | /* Figure out how many digits are needed to represent this value */ |
1646 | mp_size need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT; |
1647 | if (!s_pad(z, min: need)) return MP_MEMORY; |
1648 | |
1649 | mp_int_zero(z); |
1650 | |
1651 | unsigned char *tmp = buf; |
1652 | for (int i = len; i > 0; --i, ++tmp) { |
1653 | (void)s_qmul(z, CHAR_BIT); |
1654 | *MP_DIGITS(Z: z) |= *tmp; |
1655 | } |
1656 | |
1657 | return MP_OK; |
1658 | } |
1659 | |
1660 | mp_result mp_int_unsigned_len(mp_int z) { |
1661 | mp_result res = mp_int_count_bits(z); |
1662 | if (res <= 0) return res; |
1663 | |
1664 | int bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT; |
1665 | return bytes; |
1666 | } |
1667 | |
1668 | const char *mp_error_string(mp_result res) { |
1669 | if (res > 0) return s_unknown_err; |
1670 | |
1671 | res = -res; |
1672 | int ix; |
1673 | for (ix = 0; ix < res && s_error_msg[ix] != NULL; ++ix) |
1674 | ; |
1675 | |
1676 | if (s_error_msg[ix] != NULL) { |
1677 | return s_error_msg[ix]; |
1678 | } else { |
1679 | return s_unknown_err; |
1680 | } |
1681 | } |
1682 | |
1683 | /*------------------------------------------------------------------------*/ |
1684 | /* Private functions for internal use. These make assumptions. */ |
1685 | |
1686 | #if DEBUG |
1687 | static const mp_digit fill = (mp_digit)0xdeadbeefabad1dea; |
1688 | #endif |
1689 | |
1690 | static mp_digit *s_alloc(mp_size num) { |
1691 | mp_digit *out = malloc(size: num * sizeof(mp_digit)); |
1692 | assert(out != NULL); |
1693 | |
1694 | #if DEBUG |
1695 | for (mp_size ix = 0; ix < num; ++ix) out[ix] = fill; |
1696 | #endif |
1697 | return out; |
1698 | } |
1699 | |
1700 | static mp_digit *s_realloc(mp_digit *old, mp_size osize, mp_size nsize) { |
1701 | #if DEBUG |
1702 | mp_digit *new = s_alloc(nsize); |
1703 | assert(new != NULL); |
1704 | |
1705 | for (mp_size ix = 0; ix < nsize; ++ix) new[ix] = fill; |
1706 | memcpy(new, old, osize * sizeof(mp_digit)); |
1707 | #else |
1708 | mp_digit *new = realloc(ptr: old, size: nsize * sizeof(mp_digit)); |
1709 | assert(new != NULL); |
1710 | #endif |
1711 | |
1712 | return new; |
1713 | } |
1714 | |
1715 | static void s_free(void *ptr) { free(ptr: ptr); } |
1716 | |
1717 | static bool s_pad(mp_int z, mp_size min) { |
1718 | if (MP_ALLOC(Z: z) < min) { |
1719 | mp_size nsize = s_round_prec(P: min); |
1720 | mp_digit *tmp; |
1721 | |
1722 | if (z->digits == &(z->single)) { |
1723 | if ((tmp = s_alloc(num: nsize)) == NULL) return false; |
1724 | tmp[0] = z->single; |
1725 | } else if ((tmp = s_realloc(old: MP_DIGITS(Z: z), osize: MP_ALLOC(Z: z), nsize)) == NULL) { |
1726 | return false; |
1727 | } |
1728 | |
1729 | z->digits = tmp; |
1730 | z->alloc = nsize; |
1731 | } |
1732 | |
1733 | return true; |
1734 | } |
1735 | |
1736 | /* Note: This will not work correctly when value == MP_SMALL_MIN */ |
1737 | static void s_fake(mp_int z, mp_small value, mp_digit vbuf[]) { |
1738 | mp_usmall uv = (mp_usmall)(value < 0) ? -value : value; |
1739 | s_ufake(z, value: uv, vbuf); |
1740 | if (value < 0) z->sign = MP_NEG; |
1741 | } |
1742 | |
1743 | static void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[]) { |
1744 | mp_size ndig = (mp_size)s_uvpack(v: value, t: vbuf); |
1745 | |
1746 | z->used = ndig; |
1747 | z->alloc = MP_VALUE_DIGITS(value); |
1748 | z->sign = MP_ZPOS; |
1749 | z->digits = vbuf; |
1750 | } |
1751 | |
1752 | static int s_cdig(mp_digit *da, mp_digit *db, mp_size len) { |
1753 | mp_digit *dat = da + len - 1, *dbt = db + len - 1; |
1754 | |
1755 | for (/* */; len != 0; --len, --dat, --dbt) { |
1756 | if (*dat > *dbt) { |
1757 | return 1; |
1758 | } else if (*dat < *dbt) { |
1759 | return -1; |
1760 | } |
1761 | } |
1762 | |
1763 | return 0; |
1764 | } |
1765 | |
1766 | static int s_uvpack(mp_usmall uv, mp_digit t[]) { |
1767 | int ndig = 0; |
1768 | |
1769 | if (uv == 0) |
1770 | t[ndig++] = 0; |
1771 | else { |
1772 | while (uv != 0) { |
1773 | t[ndig++] = (mp_digit)uv; |
1774 | uv >>= MP_DIGIT_BIT / 2; |
1775 | uv >>= MP_DIGIT_BIT / 2; |
1776 | } |
1777 | } |
1778 | |
1779 | return ndig; |
1780 | } |
1781 | |
1782 | static int s_ucmp(mp_int a, mp_int b) { |
1783 | mp_size ua = MP_USED(Z: a), ub = MP_USED(Z: b); |
1784 | |
1785 | if (ua > ub) { |
1786 | return 1; |
1787 | } else if (ub > ua) { |
1788 | return -1; |
1789 | } else { |
1790 | return s_cdig(da: MP_DIGITS(Z: a), db: MP_DIGITS(Z: b), len: ua); |
1791 | } |
1792 | } |
1793 | |
1794 | static int s_vcmp(mp_int a, mp_small v) { |
1795 | mp_usmall uv = (v < 0) ? -(mp_usmall)v : (mp_usmall)v; |
1796 | return s_uvcmp(a, uv); |
1797 | } |
1798 | |
1799 | static int s_uvcmp(mp_int a, mp_usmall uv) { |
1800 | mpz_t vtmp; |
1801 | mp_digit vdig[MP_VALUE_DIGITS(uv)]; |
1802 | |
1803 | s_ufake(z: &vtmp, value: uv, vbuf: vdig); |
1804 | return s_ucmp(a, b: &vtmp); |
1805 | } |
1806 | |
1807 | static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, |
1808 | mp_size size_b) { |
1809 | mp_size pos; |
1810 | mp_word w = 0; |
1811 | |
1812 | /* Insure that da is the longer of the two to simplify later code */ |
1813 | if (size_b > size_a) { |
1814 | SWAP(mp_digit *, da, db); |
1815 | SWAP(mp_size, size_a, size_b); |
1816 | } |
1817 | |
1818 | /* Add corresponding digits until the shorter number runs out */ |
1819 | for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) { |
1820 | w = w + (mp_word)*da + (mp_word)*db; |
1821 | *dc = LOWER_HALF(W: w); |
1822 | w = UPPER_HALF(W: w); |
1823 | } |
1824 | |
1825 | /* Propagate carries as far as necessary */ |
1826 | for (/* */; pos < size_a; ++pos, ++da, ++dc) { |
1827 | w = w + *da; |
1828 | |
1829 | *dc = LOWER_HALF(W: w); |
1830 | w = UPPER_HALF(W: w); |
1831 | } |
1832 | |
1833 | /* Return carry out */ |
1834 | return (mp_digit)w; |
1835 | } |
1836 | |
1837 | static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, |
1838 | mp_size size_b) { |
1839 | mp_size pos; |
1840 | mp_word w = 0; |
1841 | |
1842 | /* We assume that |a| >= |b| so this should definitely hold */ |
1843 | assert(size_a >= size_b); |
1844 | |
1845 | /* Subtract corresponding digits and propagate borrow */ |
1846 | for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) { |
1847 | w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */ |
1848 | (mp_word)*da) - |
1849 | w - (mp_word)*db; |
1850 | |
1851 | *dc = LOWER_HALF(W: w); |
1852 | w = (UPPER_HALF(W: w) == 0); |
1853 | } |
1854 | |
1855 | /* Finish the subtraction for remaining upper digits of da */ |
1856 | for (/* */; pos < size_a; ++pos, ++da, ++dc) { |
1857 | w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */ |
1858 | (mp_word)*da) - |
1859 | w; |
1860 | |
1861 | *dc = LOWER_HALF(W: w); |
1862 | w = (UPPER_HALF(W: w) == 0); |
1863 | } |
1864 | |
1865 | /* If there is a borrow out at the end, it violates the precondition */ |
1866 | assert(w == 0); |
1867 | } |
1868 | |
1869 | static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, |
1870 | mp_size size_b) { |
1871 | mp_size bot_size; |
1872 | |
1873 | /* Make sure b is the smaller of the two input values */ |
1874 | if (size_b > size_a) { |
1875 | SWAP(mp_digit *, da, db); |
1876 | SWAP(mp_size, size_a, size_b); |
1877 | } |
1878 | |
1879 | /* Insure that the bottom is the larger half in an odd-length split; the code |
1880 | below relies on this being true. |
1881 | */ |
1882 | bot_size = (size_a + 1) / 2; |
1883 | |
1884 | /* If the values are big enough to bother with recursion, use the Karatsuba |
1885 | algorithm to compute the product; otherwise use the normal multiplication |
1886 | algorithm |
1887 | */ |
1888 | if (multiply_threshold && size_a >= multiply_threshold && size_b > bot_size) { |
1889 | mp_digit *t1, *t2, *t3, carry; |
1890 | |
1891 | mp_digit *a_top = da + bot_size; |
1892 | mp_digit *b_top = db + bot_size; |
1893 | |
1894 | mp_size at_size = size_a - bot_size; |
1895 | mp_size bt_size = size_b - bot_size; |
1896 | mp_size buf_size = 2 * bot_size; |
1897 | |
1898 | /* Do a single allocation for all three temporary buffers needed; each |
1899 | buffer must be big enough to hold the product of two bottom halves, and |
1900 | one buffer needs space for the completed product; twice the space is |
1901 | plenty. |
1902 | */ |
1903 | if ((t1 = s_alloc(num: 4 * buf_size)) == NULL) return 0; |
1904 | t2 = t1 + buf_size; |
1905 | t3 = t2 + buf_size; |
1906 | ZERO(P: t1, S: 4 * buf_size); |
1907 | |
1908 | /* t1 and t2 are initially used as temporaries to compute the inner product |
1909 | (a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0 |
1910 | */ |
1911 | carry = s_uadd(da, db: a_top, dc: t1, size_a: bot_size, size_b: at_size); /* t1 = a1 + a0 */ |
1912 | t1[bot_size] = carry; |
1913 | |
1914 | carry = s_uadd(da: db, db: b_top, dc: t2, size_a: bot_size, size_b: bt_size); /* t2 = b1 + b0 */ |
1915 | t2[bot_size] = carry; |
1916 | |
1917 | (void)s_kmul(da: t1, db: t2, dc: t3, size_a: bot_size + 1, size_b: bot_size + 1); /* t3 = t1 * t2 */ |
1918 | |
1919 | /* Now we'll get t1 = a0b0 and t2 = a1b1, and subtract them out so that |
1920 | we're left with only the pieces we want: t3 = a1b0 + a0b1 |
1921 | */ |
1922 | ZERO(P: t1, S: buf_size); |
1923 | ZERO(P: t2, S: buf_size); |
1924 | (void)s_kmul(da, db, dc: t1, size_a: bot_size, size_b: bot_size); /* t1 = a0 * b0 */ |
1925 | (void)s_kmul(da: a_top, db: b_top, dc: t2, size_a: at_size, size_b: bt_size); /* t2 = a1 * b1 */ |
1926 | |
1927 | /* Subtract out t1 and t2 to get the inner product */ |
1928 | s_usub(da: t3, db: t1, dc: t3, size_a: buf_size + 2, size_b: buf_size); |
1929 | s_usub(da: t3, db: t2, dc: t3, size_a: buf_size + 2, size_b: buf_size); |
1930 | |
1931 | /* Assemble the output value */ |
1932 | COPY(P: t1, Q: dc, S: buf_size); |
1933 | carry = s_uadd(da: t3, db: dc + bot_size, dc: dc + bot_size, size_a: buf_size + 1, size_b: buf_size); |
1934 | assert(carry == 0); |
1935 | |
1936 | carry = |
1937 | s_uadd(da: t2, db: dc + 2 * bot_size, dc: dc + 2 * bot_size, size_a: buf_size, size_b: buf_size); |
1938 | assert(carry == 0); |
1939 | |
1940 | s_free(ptr: t1); /* note t2 and t3 are just internal pointers to t1 */ |
1941 | } else { |
1942 | s_umul(da, db, dc, size_a, size_b); |
1943 | } |
1944 | |
1945 | return 1; |
1946 | } |
1947 | |
1948 | static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, |
1949 | mp_size size_b) { |
1950 | mp_size a, b; |
1951 | mp_word w; |
1952 | |
1953 | for (a = 0; a < size_a; ++a, ++dc, ++da) { |
1954 | mp_digit *dct = dc; |
1955 | mp_digit *dbt = db; |
1956 | |
1957 | if (*da == 0) continue; |
1958 | |
1959 | w = 0; |
1960 | for (b = 0; b < size_b; ++b, ++dbt, ++dct) { |
1961 | w = (mp_word)*da * (mp_word)*dbt + w + (mp_word)*dct; |
1962 | |
1963 | *dct = LOWER_HALF(W: w); |
1964 | w = UPPER_HALF(W: w); |
1965 | } |
1966 | |
1967 | *dct = (mp_digit)w; |
1968 | } |
1969 | } |
1970 | |
1971 | static int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a) { |
1972 | if (multiply_threshold && size_a > multiply_threshold) { |
1973 | mp_size bot_size = (size_a + 1) / 2; |
1974 | mp_digit *a_top = da + bot_size; |
1975 | mp_digit *t1, *t2, *t3, carry; |
1976 | mp_size at_size = size_a - bot_size; |
1977 | mp_size buf_size = 2 * bot_size; |
1978 | |
1979 | if ((t1 = s_alloc(num: 4 * buf_size)) == NULL) return 0; |
1980 | t2 = t1 + buf_size; |
1981 | t3 = t2 + buf_size; |
1982 | ZERO(P: t1, S: 4 * buf_size); |
1983 | |
1984 | (void)s_ksqr(da, dc: t1, size_a: bot_size); /* t1 = a0 ^ 2 */ |
1985 | (void)s_ksqr(da: a_top, dc: t2, size_a: at_size); /* t2 = a1 ^ 2 */ |
1986 | |
1987 | (void)s_kmul(da, db: a_top, dc: t3, size_a: bot_size, size_b: at_size); /* t3 = a0 * a1 */ |
1988 | |
1989 | /* Quick multiply t3 by 2, shifting left (can't overflow) */ |
1990 | { |
1991 | int i, top = bot_size + at_size; |
1992 | mp_word w, save = 0; |
1993 | |
1994 | for (i = 0; i < top; ++i) { |
1995 | w = t3[i]; |
1996 | w = (w << 1) | save; |
1997 | t3[i] = LOWER_HALF(W: w); |
1998 | save = UPPER_HALF(W: w); |
1999 | } |
2000 | t3[i] = LOWER_HALF(W: save); |
2001 | } |
2002 | |
2003 | /* Assemble the output value */ |
2004 | COPY(P: t1, Q: dc, S: 2 * bot_size); |
2005 | carry = s_uadd(da: t3, db: dc + bot_size, dc: dc + bot_size, size_a: buf_size + 1, size_b: buf_size); |
2006 | assert(carry == 0); |
2007 | |
2008 | carry = |
2009 | s_uadd(da: t2, db: dc + 2 * bot_size, dc: dc + 2 * bot_size, size_a: buf_size, size_b: buf_size); |
2010 | assert(carry == 0); |
2011 | |
2012 | s_free(ptr: t1); /* note that t2 and t2 are internal pointers only */ |
2013 | |
2014 | } else { |
2015 | s_usqr(da, dc, size_a); |
2016 | } |
2017 | |
2018 | return 1; |
2019 | } |
2020 | |
2021 | static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a) { |
2022 | mp_size i, j; |
2023 | mp_word w; |
2024 | |
2025 | for (i = 0; i < size_a; ++i, dc += 2, ++da) { |
2026 | mp_digit *dct = dc, *dat = da; |
2027 | |
2028 | if (*da == 0) continue; |
2029 | |
2030 | /* Take care of the first digit, no rollover */ |
2031 | w = (mp_word)*dat * (mp_word)*dat + (mp_word)*dct; |
2032 | *dct = LOWER_HALF(W: w); |
2033 | w = UPPER_HALF(W: w); |
2034 | ++dat; |
2035 | ++dct; |
2036 | |
2037 | for (j = i + 1; j < size_a; ++j, ++dat, ++dct) { |
2038 | mp_word t = (mp_word)*da * (mp_word)*dat; |
2039 | mp_word u = w + (mp_word)*dct, ov = 0; |
2040 | |
2041 | /* Check if doubling t will overflow a word */ |
2042 | if (HIGH_BIT_SET(W: t)) ov = 1; |
2043 | |
2044 | w = t + t; |
2045 | |
2046 | /* Check if adding u to w will overflow a word */ |
2047 | if (ADD_WILL_OVERFLOW(W: w, V: u)) ov = 1; |
2048 | |
2049 | w += u; |
2050 | |
2051 | *dct = LOWER_HALF(W: w); |
2052 | w = UPPER_HALF(W: w); |
2053 | if (ov) { |
2054 | w += MP_DIGIT_MAX; /* MP_RADIX */ |
2055 | ++w; |
2056 | } |
2057 | } |
2058 | |
2059 | w = w + *dct; |
2060 | *dct = (mp_digit)w; |
2061 | while ((w = UPPER_HALF(W: w)) != 0) { |
2062 | ++dct; |
2063 | w = w + *dct; |
2064 | *dct = LOWER_HALF(W: w); |
2065 | } |
2066 | |
2067 | assert(w == 0); |
2068 | } |
2069 | } |
2070 | |
2071 | static void s_dadd(mp_int a, mp_digit b) { |
2072 | mp_word w = 0; |
2073 | mp_digit *da = MP_DIGITS(Z: a); |
2074 | mp_size ua = MP_USED(Z: a); |
2075 | |
2076 | w = (mp_word)*da + b; |
2077 | *da++ = LOWER_HALF(W: w); |
2078 | w = UPPER_HALF(W: w); |
2079 | |
2080 | for (ua -= 1; ua > 0; --ua, ++da) { |
2081 | w = (mp_word)*da + w; |
2082 | |
2083 | *da = LOWER_HALF(W: w); |
2084 | w = UPPER_HALF(W: w); |
2085 | } |
2086 | |
2087 | if (w) { |
2088 | *da = (mp_digit)w; |
2089 | a->used += 1; |
2090 | } |
2091 | } |
2092 | |
2093 | static void s_dmul(mp_int a, mp_digit b) { |
2094 | mp_word w = 0; |
2095 | mp_digit *da = MP_DIGITS(Z: a); |
2096 | mp_size ua = MP_USED(Z: a); |
2097 | |
2098 | while (ua > 0) { |
2099 | w = (mp_word)*da * b + w; |
2100 | *da++ = LOWER_HALF(W: w); |
2101 | w = UPPER_HALF(W: w); |
2102 | --ua; |
2103 | } |
2104 | |
2105 | if (w) { |
2106 | *da = (mp_digit)w; |
2107 | a->used += 1; |
2108 | } |
2109 | } |
2110 | |
2111 | static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a) { |
2112 | mp_word w = 0; |
2113 | |
2114 | while (size_a > 0) { |
2115 | w = (mp_word)*da++ * (mp_word)b + w; |
2116 | |
2117 | *dc++ = LOWER_HALF(W: w); |
2118 | w = UPPER_HALF(W: w); |
2119 | --size_a; |
2120 | } |
2121 | |
2122 | if (w) *dc = LOWER_HALF(W: w); |
2123 | } |
2124 | |
2125 | static mp_digit s_ddiv(mp_int a, mp_digit b) { |
2126 | mp_word w = 0, qdigit; |
2127 | mp_size ua = MP_USED(Z: a); |
2128 | mp_digit *da = MP_DIGITS(Z: a) + ua - 1; |
2129 | |
2130 | for (/* */; ua > 0; --ua, --da) { |
2131 | w = (w << MP_DIGIT_BIT) | *da; |
2132 | |
2133 | if (w >= b) { |
2134 | qdigit = w / b; |
2135 | w = w % b; |
2136 | } else { |
2137 | qdigit = 0; |
2138 | } |
2139 | |
2140 | *da = (mp_digit)qdigit; |
2141 | } |
2142 | |
2143 | CLAMP(z_: a); |
2144 | return (mp_digit)w; |
2145 | } |
2146 | |
2147 | static void s_qdiv(mp_int z, mp_size p2) { |
2148 | mp_size ndig = p2 / MP_DIGIT_BIT, nbits = p2 % MP_DIGIT_BIT; |
2149 | mp_size uz = MP_USED(Z: z); |
2150 | |
2151 | if (ndig) { |
2152 | mp_size mark; |
2153 | mp_digit *to, *from; |
2154 | |
2155 | if (ndig >= uz) { |
2156 | mp_int_zero(z); |
2157 | return; |
2158 | } |
2159 | |
2160 | to = MP_DIGITS(Z: z); |
2161 | from = to + ndig; |
2162 | |
2163 | for (mark = ndig; mark < uz; ++mark) { |
2164 | *to++ = *from++; |
2165 | } |
2166 | |
2167 | z->used = uz - ndig; |
2168 | } |
2169 | |
2170 | if (nbits) { |
2171 | mp_digit d = 0, *dz, save; |
2172 | mp_size up = MP_DIGIT_BIT - nbits; |
2173 | |
2174 | uz = MP_USED(Z: z); |
2175 | dz = MP_DIGITS(Z: z) + uz - 1; |
2176 | |
2177 | for (/* */; uz > 0; --uz, --dz) { |
2178 | save = *dz; |
2179 | |
2180 | *dz = (*dz >> nbits) | (d << up); |
2181 | d = save; |
2182 | } |
2183 | |
2184 | CLAMP(z_: z); |
2185 | } |
2186 | |
2187 | if (MP_USED(Z: z) == 1 && z->digits[0] == 0) z->sign = MP_ZPOS; |
2188 | } |
2189 | |
2190 | static void s_qmod(mp_int z, mp_size p2) { |
2191 | mp_size start = p2 / MP_DIGIT_BIT + 1, rest = p2 % MP_DIGIT_BIT; |
2192 | mp_size uz = MP_USED(Z: z); |
2193 | mp_digit mask = (1u << rest) - 1; |
2194 | |
2195 | if (start <= uz) { |
2196 | z->used = start; |
2197 | z->digits[start - 1] &= mask; |
2198 | CLAMP(z_: z); |
2199 | } |
2200 | } |
2201 | |
2202 | static int s_qmul(mp_int z, mp_size p2) { |
2203 | mp_size uz, need, rest, , i; |
2204 | mp_digit *from, *to, d; |
2205 | |
2206 | if (p2 == 0) return 1; |
2207 | |
2208 | uz = MP_USED(Z: z); |
2209 | need = p2 / MP_DIGIT_BIT; |
2210 | rest = p2 % MP_DIGIT_BIT; |
2211 | |
2212 | /* Figure out if we need an extra digit at the top end; this occurs if the |
2213 | topmost `rest' bits of the high-order digit of z are not zero, meaning |
2214 | they will be shifted off the end if not preserved */ |
2215 | extra = 0; |
2216 | if (rest != 0) { |
2217 | mp_digit *dz = MP_DIGITS(Z: z) + uz - 1; |
2218 | |
2219 | if ((*dz >> (MP_DIGIT_BIT - rest)) != 0) extra = 1; |
2220 | } |
2221 | |
2222 | if (!s_pad(z, min: uz + need + extra)) return 0; |
2223 | |
2224 | /* If we need to shift by whole digits, do that in one pass, then |
2225 | to back and shift by partial digits. |
2226 | */ |
2227 | if (need > 0) { |
2228 | from = MP_DIGITS(Z: z) + uz - 1; |
2229 | to = from + need; |
2230 | |
2231 | for (i = 0; i < uz; ++i) *to-- = *from--; |
2232 | |
2233 | ZERO(P: MP_DIGITS(Z: z), S: need); |
2234 | uz += need; |
2235 | } |
2236 | |
2237 | if (rest) { |
2238 | d = 0; |
2239 | for (i = need, from = MP_DIGITS(Z: z) + need; i < uz; ++i, ++from) { |
2240 | mp_digit save = *from; |
2241 | |
2242 | *from = (*from << rest) | (d >> (MP_DIGIT_BIT - rest)); |
2243 | d = save; |
2244 | } |
2245 | |
2246 | d >>= (MP_DIGIT_BIT - rest); |
2247 | if (d != 0) { |
2248 | *from = d; |
2249 | uz += extra; |
2250 | } |
2251 | } |
2252 | |
2253 | z->used = uz; |
2254 | CLAMP(z_: z); |
2255 | |
2256 | return 1; |
2257 | } |
2258 | |
2259 | /* Compute z = 2^p2 - |z|; requires that 2^p2 >= |z| |
2260 | The sign of the result is always zero/positive. |
2261 | */ |
2262 | static int s_qsub(mp_int z, mp_size p2) { |
2263 | mp_digit hi = (1u << (p2 % MP_DIGIT_BIT)), *zp; |
2264 | mp_size tdig = (p2 / MP_DIGIT_BIT), pos; |
2265 | mp_word w = 0; |
2266 | |
2267 | if (!s_pad(z, min: tdig + 1)) return 0; |
2268 | |
2269 | for (pos = 0, zp = MP_DIGITS(Z: z); pos < tdig; ++pos, ++zp) { |
2270 | w = ((mp_word)MP_DIGIT_MAX + 1) - w - (mp_word)*zp; |
2271 | |
2272 | *zp = LOWER_HALF(W: w); |
2273 | w = UPPER_HALF(W: w) ? 0 : 1; |
2274 | } |
2275 | |
2276 | w = ((mp_word)MP_DIGIT_MAX + 1 + hi) - w - (mp_word)*zp; |
2277 | *zp = LOWER_HALF(W: w); |
2278 | |
2279 | assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */ |
2280 | |
2281 | z->sign = MP_ZPOS; |
2282 | CLAMP(z_: z); |
2283 | |
2284 | return 1; |
2285 | } |
2286 | |
2287 | static int s_dp2k(mp_int z) { |
2288 | int k = 0; |
2289 | mp_digit *dp = MP_DIGITS(Z: z), d; |
2290 | |
2291 | if (MP_USED(Z: z) == 1 && *dp == 0) return 1; |
2292 | |
2293 | while (*dp == 0) { |
2294 | k += MP_DIGIT_BIT; |
2295 | ++dp; |
2296 | } |
2297 | |
2298 | d = *dp; |
2299 | while ((d & 1) == 0) { |
2300 | d >>= 1; |
2301 | ++k; |
2302 | } |
2303 | |
2304 | return k; |
2305 | } |
2306 | |
2307 | static int s_isp2(mp_int z) { |
2308 | mp_size uz = MP_USED(Z: z), k = 0; |
2309 | mp_digit *dz = MP_DIGITS(Z: z), d; |
2310 | |
2311 | while (uz > 1) { |
2312 | if (*dz++ != 0) return -1; |
2313 | k += MP_DIGIT_BIT; |
2314 | --uz; |
2315 | } |
2316 | |
2317 | d = *dz; |
2318 | while (d > 1) { |
2319 | if (d & 1) return -1; |
2320 | ++k; |
2321 | d >>= 1; |
2322 | } |
2323 | |
2324 | return (int)k; |
2325 | } |
2326 | |
2327 | static int s_2expt(mp_int z, mp_small k) { |
2328 | mp_size ndig, rest; |
2329 | mp_digit *dz; |
2330 | |
2331 | ndig = (k + MP_DIGIT_BIT) / MP_DIGIT_BIT; |
2332 | rest = k % MP_DIGIT_BIT; |
2333 | |
2334 | if (!s_pad(z, min: ndig)) return 0; |
2335 | |
2336 | dz = MP_DIGITS(Z: z); |
2337 | ZERO(P: dz, S: ndig); |
2338 | *(dz + ndig - 1) = (1u << rest); |
2339 | z->used = ndig; |
2340 | |
2341 | return 1; |
2342 | } |
2343 | |
2344 | static int s_norm(mp_int a, mp_int b) { |
2345 | mp_digit d = b->digits[MP_USED(Z: b) - 1]; |
2346 | int k = 0; |
2347 | |
2348 | while (d < (1u << (mp_digit)(MP_DIGIT_BIT - 1))) { /* d < (MP_RADIX / 2) */ |
2349 | d <<= 1; |
2350 | ++k; |
2351 | } |
2352 | |
2353 | /* These multiplications can't fail */ |
2354 | if (k != 0) { |
2355 | (void)s_qmul(z: a, p2: (mp_size)k); |
2356 | (void)s_qmul(z: b, p2: (mp_size)k); |
2357 | } |
2358 | |
2359 | return k; |
2360 | } |
2361 | |
2362 | static mp_result s_brmu(mp_int z, mp_int m) { |
2363 | mp_size um = MP_USED(Z: m) * 2; |
2364 | |
2365 | if (!s_pad(z, min: um)) return MP_MEMORY; |
2366 | |
2367 | s_2expt(z, MP_DIGIT_BIT * um); |
2368 | return mp_int_div(a: z, b: m, q: z, NULL); |
2369 | } |
2370 | |
2371 | static int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2) { |
2372 | mp_size um = MP_USED(Z: m), umb_p1, umb_m1; |
2373 | |
2374 | umb_p1 = (um + 1) * MP_DIGIT_BIT; |
2375 | umb_m1 = (um - 1) * MP_DIGIT_BIT; |
2376 | |
2377 | if (mp_int_copy(a: x, c: q1) != MP_OK) return 0; |
2378 | |
2379 | /* Compute q2 = floor((floor(x / b^(k-1)) * mu) / b^(k+1)) */ |
2380 | s_qdiv(z: q1, p2: umb_m1); |
2381 | UMUL(X: q1, Y: mu, Z: q2); |
2382 | s_qdiv(z: q2, p2: umb_p1); |
2383 | |
2384 | /* Set x = x mod b^(k+1) */ |
2385 | s_qmod(z: x, p2: umb_p1); |
2386 | |
2387 | /* Now, q is a guess for the quotient a / m. |
2388 | Compute x - q * m mod b^(k+1), replacing x. This may be off |
2389 | by a factor of 2m, but no more than that. |
2390 | */ |
2391 | UMUL(X: q2, Y: m, Z: q1); |
2392 | s_qmod(z: q1, p2: umb_p1); |
2393 | (void)mp_int_sub(a: x, b: q1, c: x); /* can't fail */ |
2394 | |
2395 | /* The result may be < 0; if it is, add b^(k+1) to pin it in the proper |
2396 | range. */ |
2397 | if ((CMPZ(Z: x) < 0) && !s_qsub(z: x, p2: umb_p1)) return 0; |
2398 | |
2399 | /* If x > m, we need to back it off until it is in range. This will be |
2400 | required at most twice. */ |
2401 | if (mp_int_compare(a: x, b: m) >= 0) { |
2402 | (void)mp_int_sub(a: x, b: m, c: x); |
2403 | if (mp_int_compare(a: x, b: m) >= 0) { |
2404 | (void)mp_int_sub(a: x, b: m, c: x); |
2405 | } |
2406 | } |
2407 | |
2408 | /* At this point, x has been properly reduced. */ |
2409 | return 1; |
2410 | } |
2411 | |
2412 | /* Perform modular exponentiation using Barrett's method, where mu is the |
2413 | reduction constant for m. Assumes a < m, b > 0. */ |
2414 | static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c) { |
2415 | mp_digit umu = MP_USED(Z: mu); |
2416 | mp_digit *db = MP_DIGITS(Z: b); |
2417 | mp_digit *dbt = db + MP_USED(Z: b) - 1; |
2418 | |
2419 | DECLARE_TEMP(3); |
2420 | REQUIRE(GROW(TEMP(0), 4 * umu)); |
2421 | REQUIRE(GROW(TEMP(1), 4 * umu)); |
2422 | REQUIRE(GROW(TEMP(2), 4 * umu)); |
2423 | ZERO(TEMP(0)->digits, TEMP(0)->alloc); |
2424 | ZERO(TEMP(1)->digits, TEMP(1)->alloc); |
2425 | ZERO(TEMP(2)->digits, TEMP(2)->alloc); |
2426 | |
2427 | (void)mp_int_set_value(z: c, value: 1); |
2428 | |
2429 | /* Take care of low-order digits */ |
2430 | while (db < dbt) { |
2431 | mp_digit d = *db; |
2432 | |
2433 | for (int i = MP_DIGIT_BIT; i > 0; --i, d >>= 1) { |
2434 | if (d & 1) { |
2435 | /* The use of a second temporary avoids allocation */ |
2436 | UMUL(X: c, Y: a, TEMP(0)); |
2437 | if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) { |
2438 | REQUIRE(MP_MEMORY); |
2439 | } |
2440 | mp_int_copy(TEMP(0), c); |
2441 | } |
2442 | |
2443 | USQR(X: a, TEMP(0)); |
2444 | assert(MP_SIGN(TEMP(0)) == MP_ZPOS); |
2445 | if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) { |
2446 | REQUIRE(MP_MEMORY); |
2447 | } |
2448 | assert(MP_SIGN(TEMP(0)) == MP_ZPOS); |
2449 | mp_int_copy(TEMP(0), c: a); |
2450 | } |
2451 | |
2452 | ++db; |
2453 | } |
2454 | |
2455 | /* Take care of highest-order digit */ |
2456 | mp_digit d = *dbt; |
2457 | for (;;) { |
2458 | if (d & 1) { |
2459 | UMUL(X: c, Y: a, TEMP(0)); |
2460 | if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) { |
2461 | REQUIRE(MP_MEMORY); |
2462 | } |
2463 | mp_int_copy(TEMP(0), c); |
2464 | } |
2465 | |
2466 | d >>= 1; |
2467 | if (!d) break; |
2468 | |
2469 | USQR(X: a, TEMP(0)); |
2470 | if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) { |
2471 | REQUIRE(MP_MEMORY); |
2472 | } |
2473 | (void)mp_int_copy(TEMP(0), c: a); |
2474 | } |
2475 | |
2476 | CLEANUP_TEMP(); |
2477 | return MP_OK; |
2478 | } |
2479 | |
2480 | /* Division of nonnegative integers |
2481 | |
2482 | This function implements division algorithm for unsigned multi-precision |
2483 | integers. The algorithm is based on Algorithm D from Knuth's "The Art of |
2484 | Computer Programming", 3rd ed. 1998, pg 272-273. |
2485 | |
2486 | We diverge from Knuth's algorithm in that we do not perform the subtraction |
2487 | from the remainder until we have determined that we have the correct |
2488 | quotient digit. This makes our algorithm less efficient that Knuth because |
2489 | we might have to perform multiple multiplication and comparison steps before |
2490 | the subtraction. The advantage is that it is easy to implement and ensure |
2491 | correctness without worrying about underflow from the subtraction. |
2492 | |
2493 | inputs: u a n+m digit integer in base b (b is 2^MP_DIGIT_BIT) |
2494 | v a n digit integer in base b (b is 2^MP_DIGIT_BIT) |
2495 | n >= 1 |
2496 | m >= 0 |
2497 | outputs: u / v stored in u |
2498 | u % v stored in v |
2499 | */ |
2500 | static mp_result s_udiv_knuth(mp_int u, mp_int v) { |
2501 | /* Force signs to positive */ |
2502 | u->sign = MP_ZPOS; |
2503 | v->sign = MP_ZPOS; |
2504 | |
2505 | /* Use simple division algorithm when v is only one digit long */ |
2506 | if (MP_USED(Z: v) == 1) { |
2507 | mp_digit d, rem; |
2508 | d = v->digits[0]; |
2509 | rem = s_ddiv(a: u, b: d); |
2510 | mp_int_set_value(z: v, value: rem); |
2511 | return MP_OK; |
2512 | } |
2513 | |
2514 | /* Algorithm D |
2515 | |
2516 | The n and m variables are defined as used by Knuth. |
2517 | u is an n digit number with digits u_{n-1}..u_0. |
2518 | v is an n+m digit number with digits from v_{m+n-1}..v_0. |
2519 | We require that n > 1 and m >= 0 |
2520 | */ |
2521 | mp_size n = MP_USED(Z: v); |
2522 | mp_size m = MP_USED(Z: u) - n; |
2523 | assert(n > 1); |
2524 | /* assert(m >= 0) follows because m is unsigned. */ |
2525 | |
2526 | /* D1: Normalize. |
2527 | The normalization step provides the necessary condition for Theorem B, |
2528 | which states that the quotient estimate for q_j, call it qhat |
2529 | |
2530 | qhat = u_{j+n}u_{j+n-1} / v_{n-1} |
2531 | |
2532 | is bounded by |
2533 | |
2534 | qhat - 2 <= q_j <= qhat. |
2535 | |
2536 | That is, qhat is always greater than the actual quotient digit q, |
2537 | and it is never more than two larger than the actual quotient digit. |
2538 | */ |
2539 | int k = s_norm(a: u, b: v); |
2540 | |
2541 | /* Extend size of u by one if needed. |
2542 | |
2543 | The algorithm begins with a value of u that has one more digit of input. |
2544 | The normalization step sets u_{m+n}..u_0 = 2^k * u_{m+n-1}..u_0. If the |
2545 | multiplication did not increase the number of digits of u, we need to add |
2546 | a leading zero here. |
2547 | */ |
2548 | if (k == 0 || MP_USED(Z: u) != m + n + 1) { |
2549 | if (!s_pad(z: u, min: m + n + 1)) return MP_MEMORY; |
2550 | u->digits[m + n] = 0; |
2551 | u->used = m + n + 1; |
2552 | } |
2553 | |
2554 | /* Add a leading 0 to v. |
2555 | |
2556 | The multiplication in step D4 multiplies qhat * 0v_{n-1}..v_0. We need to |
2557 | add the leading zero to v here to ensure that the multiplication will |
2558 | produce the full n+1 digit result. |
2559 | */ |
2560 | if (!s_pad(z: v, min: n + 1)) return MP_MEMORY; |
2561 | v->digits[n] = 0; |
2562 | |
2563 | /* Initialize temporary variables q and t. |
2564 | q allocates space for m+1 digits to store the quotient digits |
2565 | t allocates space for n+1 digits to hold the result of q_j*v |
2566 | */ |
2567 | DECLARE_TEMP(2); |
2568 | REQUIRE(GROW(TEMP(0), m + 1)); |
2569 | REQUIRE(GROW(TEMP(1), n + 1)); |
2570 | |
2571 | /* D2: Initialize j */ |
2572 | int j = m; |
2573 | mpz_t r; |
2574 | r.digits = MP_DIGITS(Z: u) + j; /* The contents of r are shared with u */ |
2575 | r.used = n + 1; |
2576 | r.sign = MP_ZPOS; |
2577 | r.alloc = MP_ALLOC(Z: u); |
2578 | ZERO(TEMP(1)->digits, TEMP(1)->alloc); |
2579 | |
2580 | /* Calculate the m+1 digits of the quotient result */ |
2581 | for (; j >= 0; j--) { |
2582 | /* D3: Calculate q' */ |
2583 | /* r->digits is aligned to position j of the number u */ |
2584 | mp_word pfx, qhat; |
2585 | pfx = r.digits[n]; |
2586 | pfx <<= MP_DIGIT_BIT / 2; |
2587 | pfx <<= MP_DIGIT_BIT / 2; |
2588 | pfx |= r.digits[n - 1]; /* pfx = u_{j+n}{j+n-1} */ |
2589 | |
2590 | qhat = pfx / v->digits[n - 1]; |
2591 | /* Check to see if qhat > b, and decrease qhat if so. |
2592 | Theorem B guarantess that qhat is at most 2 larger than the |
2593 | actual value, so it is possible that qhat is greater than |
2594 | the maximum value that will fit in a digit */ |
2595 | if (qhat > MP_DIGIT_MAX) qhat = MP_DIGIT_MAX; |
2596 | |
2597 | /* D4,D5,D6: Multiply qhat * v and test for a correct value of q |
2598 | |
2599 | We proceed a bit different than the way described by Knuth. This way is |
2600 | simpler but less efficent. Instead of doing the multiply and subtract |
2601 | then checking for underflow, we first do the multiply of qhat * v and |
2602 | see if it is larger than the current remainder r. If it is larger, we |
2603 | decrease qhat by one and try again. We may need to decrease qhat one |
2604 | more time before we get a value that is smaller than r. |
2605 | |
2606 | This way is less efficent than Knuth because we do more multiplies, but |
2607 | we do not need to worry about underflow this way. |
2608 | */ |
2609 | /* t = qhat * v */ |
2610 | s_dbmul(da: MP_DIGITS(Z: v), b: (mp_digit)qhat, TEMP(1)->digits, size_a: n + 1); |
2611 | TEMP(1)->used = n + 1; |
2612 | CLAMP(TEMP(1)); |
2613 | |
2614 | /* Clamp r for the comparison. Comparisons do not like leading zeros. */ |
2615 | CLAMP(z_: &r); |
2616 | if (s_ucmp(TEMP(1), b: &r) > 0) { /* would the remainder be negative? */ |
2617 | qhat -= 1; /* try a smaller q */ |
2618 | s_dbmul(da: MP_DIGITS(Z: v), b: (mp_digit)qhat, TEMP(1)->digits, size_a: n + 1); |
2619 | TEMP(1)->used = n + 1; |
2620 | CLAMP(TEMP(1)); |
2621 | if (s_ucmp(TEMP(1), b: &r) > 0) { /* would the remainder be negative? */ |
2622 | assert(qhat > 0); |
2623 | qhat -= 1; /* try a smaller q */ |
2624 | s_dbmul(da: MP_DIGITS(Z: v), b: (mp_digit)qhat, TEMP(1)->digits, size_a: n + 1); |
2625 | TEMP(1)->used = n + 1; |
2626 | CLAMP(TEMP(1)); |
2627 | } |
2628 | assert(s_ucmp(TEMP(1), &r) <= 0 && "The mathematics failed us." ); |
2629 | } |
2630 | /* Unclamp r. The D algorithm expects r = u_{j+n}..u_j to always be n+1 |
2631 | digits long. */ |
2632 | r.used = n + 1; |
2633 | |
2634 | /* D4: Multiply and subtract |
2635 | |
2636 | Note: The multiply was completed above so we only need to subtract here. |
2637 | */ |
2638 | s_usub(da: r.digits, TEMP(1)->digits, dc: r.digits, size_a: r.used, TEMP(1)->used); |
2639 | |
2640 | /* D5: Test remainder |
2641 | |
2642 | Note: Not needed because we always check that qhat is the correct value |
2643 | before performing the subtract. Value cast to mp_digit to prevent |
2644 | warning, qhat has been clamped to MP_DIGIT_MAX |
2645 | */ |
2646 | TEMP(0)->digits[j] = (mp_digit)qhat; |
2647 | |
2648 | /* D6: Add back |
2649 | Note: Not needed because we always check that qhat is the correct value |
2650 | before performing the subtract. |
2651 | */ |
2652 | |
2653 | /* D7: Loop on j */ |
2654 | r.digits--; |
2655 | ZERO(TEMP(1)->digits, TEMP(1)->alloc); |
2656 | } |
2657 | |
2658 | /* Get rid of leading zeros in q */ |
2659 | TEMP(0)->used = m + 1; |
2660 | CLAMP(TEMP(0)); |
2661 | |
2662 | /* Denormalize the remainder */ |
2663 | CLAMP(z_: u); /* use u here because the r.digits pointer is off-by-one */ |
2664 | if (k != 0) s_qdiv(z: u, p2: k); |
2665 | |
2666 | mp_int_copy(a: u, c: v); /* ok: 0 <= r < v */ |
2667 | mp_int_copy(TEMP(0), c: u); /* ok: q <= u */ |
2668 | |
2669 | CLEANUP_TEMP(); |
2670 | return MP_OK; |
2671 | } |
2672 | |
2673 | static int s_outlen(mp_int z, mp_size r) { |
2674 | assert(r >= MP_MIN_RADIX && r <= MP_MAX_RADIX); |
2675 | |
2676 | mp_result bits = mp_int_count_bits(z); |
2677 | double raw = (double)bits * s_log2[r]; |
2678 | |
2679 | return (int)(raw + 0.999999); |
2680 | } |
2681 | |
2682 | static mp_size s_inlen(int len, mp_size r) { |
2683 | double raw = (double)len / s_log2[r]; |
2684 | mp_size bits = (mp_size)(raw + 0.5); |
2685 | |
2686 | return (mp_size)((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT) + 1; |
2687 | } |
2688 | |
2689 | static int s_ch2val(char c, int r) { |
2690 | int out; |
2691 | |
2692 | /* |
2693 | * In some locales, isalpha() accepts characters outside the range A-Z, |
2694 | * producing out<0 or out>=36. The "out >= r" check will always catch |
2695 | * out>=36. Though nothing explicitly catches out<0, our caller reacts the |
2696 | * same way to every negative return value. |
2697 | */ |
2698 | if (isdigit((unsigned char)c)) |
2699 | out = c - '0'; |
2700 | else if (r > 10 && isalpha((unsigned char)c)) |
2701 | out = toupper(c: (unsigned char)c) - 'A' + 10; |
2702 | else |
2703 | return -1; |
2704 | |
2705 | return (out >= r) ? -1 : out; |
2706 | } |
2707 | |
2708 | static char s_val2ch(int v, int caps) { |
2709 | assert(v >= 0); |
2710 | |
2711 | if (v < 10) { |
2712 | return v + '0'; |
2713 | } else { |
2714 | char out = (v - 10) + 'a'; |
2715 | |
2716 | if (caps) { |
2717 | return toupper(c: (unsigned char)out); |
2718 | } else { |
2719 | return out; |
2720 | } |
2721 | } |
2722 | } |
2723 | |
2724 | static void s_2comp(unsigned char *buf, int len) { |
2725 | unsigned short s = 1; |
2726 | |
2727 | for (int i = len - 1; i >= 0; --i) { |
2728 | unsigned char c = ~buf[i]; |
2729 | |
2730 | s = c + s; |
2731 | c = s & UCHAR_MAX; |
2732 | s >>= CHAR_BIT; |
2733 | |
2734 | buf[i] = c; |
2735 | } |
2736 | |
2737 | /* last carry out is ignored */ |
2738 | } |
2739 | |
2740 | static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad) { |
2741 | int pos = 0, limit = *limpos; |
2742 | mp_size uz = MP_USED(Z: z); |
2743 | mp_digit *dz = MP_DIGITS(Z: z); |
2744 | |
2745 | while (uz > 0 && pos < limit) { |
2746 | mp_digit d = *dz++; |
2747 | int i; |
2748 | |
2749 | for (i = sizeof(mp_digit); i > 0 && pos < limit; --i) { |
2750 | buf[pos++] = (unsigned char)d; |
2751 | d >>= CHAR_BIT; |
2752 | |
2753 | /* Don't write leading zeroes */ |
2754 | if (d == 0 && uz == 1) i = 0; /* exit loop without signaling truncation */ |
2755 | } |
2756 | |
2757 | /* Detect truncation (loop exited with pos >= limit) */ |
2758 | if (i > 0) break; |
2759 | |
2760 | --uz; |
2761 | } |
2762 | |
2763 | if (pad != 0 && (buf[pos - 1] >> (CHAR_BIT - 1))) { |
2764 | if (pos < limit) { |
2765 | buf[pos++] = 0; |
2766 | } else { |
2767 | uz = 1; |
2768 | } |
2769 | } |
2770 | |
2771 | /* Digits are in reverse order, fix that */ |
2772 | REV(A: buf, N: pos); |
2773 | |
2774 | /* Return the number of bytes actually written */ |
2775 | *limpos = pos; |
2776 | |
2777 | return (uz == 0) ? MP_OK : MP_TRUNC; |
2778 | } |
2779 | |
2780 | /* Here there be dragons */ |
2781 | |