| 1 | /* |
| 2 | Name: imrat.c |
| 3 | Purpose: Arbitrary precision rational arithmetic routines. |
| 4 | Author: M. J. Fromberger |
| 5 | |
| 6 | Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved. |
| 7 | |
| 8 | Permission is hereby granted, free of charge, to any person obtaining a copy |
| 9 | of this software and associated documentation files (the "Software"), to deal |
| 10 | in the Software without restriction, including without limitation the rights |
| 11 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 12 | copies of the Software, and to permit persons to whom the Software is |
| 13 | furnished to do so, subject to the following conditions: |
| 14 | |
| 15 | The above copyright notice and this permission notice shall be included in |
| 16 | all copies or substantial portions of the Software. |
| 17 | |
| 18 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 19 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 20 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 21 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 22 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 23 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 24 | SOFTWARE. |
| 25 | */ |
| 26 | |
| 27 | #include "imrat.h" |
| 28 | #include <assert.h> |
| 29 | #include <ctype.h> |
| 30 | #include <stdlib.h> |
| 31 | #include <string.h> |
| 32 | |
| 33 | #define MP_NUMER_SIGN(Q) (MP_NUMER_P(Q)->sign) |
| 34 | #define MP_DENOM_SIGN(Q) (MP_DENOM_P(Q)->sign) |
| 35 | |
| 36 | #define TEMP(K) (temp + (K)) |
| 37 | #define SETUP(E, C) \ |
| 38 | do { \ |
| 39 | if ((res = (E)) != MP_OK) goto CLEANUP; \ |
| 40 | ++(C); \ |
| 41 | } while (0) |
| 42 | |
| 43 | /* Reduce the given rational, in place, to lowest terms and canonical form. |
| 44 | Zero is represented as 0/1, one as 1/1. Signs are adjusted so that the sign |
| 45 | of the numerator is definitive. */ |
| 46 | static mp_result s_rat_reduce(mp_rat r); |
| 47 | |
| 48 | /* Common code for addition and subtraction operations on rationals. */ |
| 49 | static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c, |
| 50 | mp_result (*comb_f)(mp_int, mp_int, mp_int)); |
| 51 | |
| 52 | mp_result mp_rat_init(mp_rat r) { |
| 53 | mp_result res; |
| 54 | |
| 55 | if ((res = mp_int_init(z: MP_NUMER_P(Q: r))) != MP_OK) return res; |
| 56 | if ((res = mp_int_init(z: MP_DENOM_P(Q: r))) != MP_OK) { |
| 57 | mp_int_clear(z: MP_NUMER_P(Q: r)); |
| 58 | return res; |
| 59 | } |
| 60 | |
| 61 | return mp_int_set_value(z: MP_DENOM_P(Q: r), value: 1); |
| 62 | } |
| 63 | |
| 64 | mp_rat mp_rat_alloc(void) { |
| 65 | mp_rat out = malloc(size: sizeof(*out)); |
| 66 | |
| 67 | if (out != NULL) { |
| 68 | if (mp_rat_init(r: out) != MP_OK) { |
| 69 | free(ptr: out); |
| 70 | return NULL; |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | return out; |
| 75 | } |
| 76 | |
| 77 | mp_result mp_rat_reduce(mp_rat r) { return s_rat_reduce(r); } |
| 78 | |
| 79 | mp_result mp_rat_init_size(mp_rat r, mp_size n_prec, mp_size d_prec) { |
| 80 | mp_result res; |
| 81 | |
| 82 | if ((res = mp_int_init_size(z: MP_NUMER_P(Q: r), prec: n_prec)) != MP_OK) { |
| 83 | return res; |
| 84 | } |
| 85 | if ((res = mp_int_init_size(z: MP_DENOM_P(Q: r), prec: d_prec)) != MP_OK) { |
| 86 | mp_int_clear(z: MP_NUMER_P(Q: r)); |
| 87 | return res; |
| 88 | } |
| 89 | |
| 90 | return mp_int_set_value(z: MP_DENOM_P(Q: r), value: 1); |
| 91 | } |
| 92 | |
| 93 | mp_result mp_rat_init_copy(mp_rat r, mp_rat old) { |
| 94 | mp_result res; |
| 95 | |
| 96 | if ((res = mp_int_init_copy(z: MP_NUMER_P(Q: r), old: MP_NUMER_P(Q: old))) != MP_OK) { |
| 97 | return res; |
| 98 | } |
| 99 | if ((res = mp_int_init_copy(z: MP_DENOM_P(Q: r), old: MP_DENOM_P(Q: old))) != MP_OK) |
| 100 | mp_int_clear(z: MP_NUMER_P(Q: r)); |
| 101 | |
| 102 | return res; |
| 103 | } |
| 104 | |
| 105 | mp_result mp_rat_set_value(mp_rat r, mp_small numer, mp_small denom) { |
| 106 | mp_result res; |
| 107 | |
| 108 | if (denom == 0) return MP_UNDEF; |
| 109 | |
| 110 | if ((res = mp_int_set_value(z: MP_NUMER_P(Q: r), value: numer)) != MP_OK) { |
| 111 | return res; |
| 112 | } |
| 113 | if ((res = mp_int_set_value(z: MP_DENOM_P(Q: r), value: denom)) != MP_OK) { |
| 114 | return res; |
| 115 | } |
| 116 | |
| 117 | return s_rat_reduce(r); |
| 118 | } |
| 119 | |
| 120 | mp_result mp_rat_set_uvalue(mp_rat r, mp_usmall numer, mp_usmall denom) { |
| 121 | mp_result res; |
| 122 | |
| 123 | if (denom == 0) return MP_UNDEF; |
| 124 | |
| 125 | if ((res = mp_int_set_uvalue(z: MP_NUMER_P(Q: r), uvalue: numer)) != MP_OK) { |
| 126 | return res; |
| 127 | } |
| 128 | if ((res = mp_int_set_uvalue(z: MP_DENOM_P(Q: r), uvalue: denom)) != MP_OK) { |
| 129 | return res; |
| 130 | } |
| 131 | |
| 132 | return s_rat_reduce(r); |
| 133 | } |
| 134 | |
| 135 | void mp_rat_clear(mp_rat r) { |
| 136 | mp_int_clear(z: MP_NUMER_P(Q: r)); |
| 137 | mp_int_clear(z: MP_DENOM_P(Q: r)); |
| 138 | } |
| 139 | |
| 140 | void mp_rat_free(mp_rat r) { |
| 141 | assert(r != NULL); |
| 142 | |
| 143 | if (r->num.digits != NULL) mp_rat_clear(r); |
| 144 | |
| 145 | free(ptr: r); |
| 146 | } |
| 147 | |
| 148 | mp_result mp_rat_numer(mp_rat r, mp_int z) { |
| 149 | return mp_int_copy(a: MP_NUMER_P(Q: r), c: z); |
| 150 | } |
| 151 | |
| 152 | mp_int mp_rat_numer_ref(mp_rat r) { return MP_NUMER_P(Q: r); } |
| 153 | |
| 154 | mp_result mp_rat_denom(mp_rat r, mp_int z) { |
| 155 | return mp_int_copy(a: MP_DENOM_P(Q: r), c: z); |
| 156 | } |
| 157 | |
| 158 | mp_int mp_rat_denom_ref(mp_rat r) { return MP_DENOM_P(Q: r); } |
| 159 | |
| 160 | mp_sign mp_rat_sign(mp_rat r) { return MP_NUMER_SIGN(r); } |
| 161 | |
| 162 | mp_result mp_rat_copy(mp_rat a, mp_rat c) { |
| 163 | mp_result res; |
| 164 | |
| 165 | if ((res = mp_int_copy(a: MP_NUMER_P(Q: a), c: MP_NUMER_P(Q: c))) != MP_OK) { |
| 166 | return res; |
| 167 | } |
| 168 | |
| 169 | res = mp_int_copy(a: MP_DENOM_P(Q: a), c: MP_DENOM_P(Q: c)); |
| 170 | return res; |
| 171 | } |
| 172 | |
| 173 | void mp_rat_zero(mp_rat r) { |
| 174 | mp_int_zero(z: MP_NUMER_P(Q: r)); |
| 175 | mp_int_set_value(z: MP_DENOM_P(Q: r), value: 1); |
| 176 | } |
| 177 | |
| 178 | mp_result mp_rat_abs(mp_rat a, mp_rat c) { |
| 179 | mp_result res; |
| 180 | |
| 181 | if ((res = mp_int_abs(a: MP_NUMER_P(Q: a), c: MP_NUMER_P(Q: c))) != MP_OK) { |
| 182 | return res; |
| 183 | } |
| 184 | |
| 185 | res = mp_int_abs(a: MP_DENOM_P(Q: a), c: MP_DENOM_P(Q: c)); |
| 186 | return res; |
| 187 | } |
| 188 | |
| 189 | mp_result mp_rat_neg(mp_rat a, mp_rat c) { |
| 190 | mp_result res; |
| 191 | |
| 192 | if ((res = mp_int_neg(a: MP_NUMER_P(Q: a), c: MP_NUMER_P(Q: c))) != MP_OK) { |
| 193 | return res; |
| 194 | } |
| 195 | |
| 196 | res = mp_int_copy(a: MP_DENOM_P(Q: a), c: MP_DENOM_P(Q: c)); |
| 197 | return res; |
| 198 | } |
| 199 | |
| 200 | mp_result mp_rat_recip(mp_rat a, mp_rat c) { |
| 201 | mp_result res; |
| 202 | |
| 203 | if (mp_rat_compare_zero(r: a) == 0) return MP_UNDEF; |
| 204 | |
| 205 | if ((res = mp_rat_copy(a, c)) != MP_OK) return res; |
| 206 | |
| 207 | mp_int_swap(a: MP_NUMER_P(Q: c), c: MP_DENOM_P(Q: c)); |
| 208 | |
| 209 | /* Restore the signs of the swapped elements */ |
| 210 | { |
| 211 | mp_sign tmp = MP_NUMER_SIGN(c); |
| 212 | |
| 213 | MP_NUMER_SIGN(c) = MP_DENOM_SIGN(c); |
| 214 | MP_DENOM_SIGN(c) = tmp; |
| 215 | } |
| 216 | |
| 217 | return MP_OK; |
| 218 | } |
| 219 | |
| 220 | mp_result mp_rat_add(mp_rat a, mp_rat b, mp_rat c) { |
| 221 | return s_rat_combine(a, b, c, comb_f: mp_int_add); |
| 222 | } |
| 223 | |
| 224 | mp_result mp_rat_sub(mp_rat a, mp_rat b, mp_rat c) { |
| 225 | return s_rat_combine(a, b, c, comb_f: mp_int_sub); |
| 226 | } |
| 227 | |
| 228 | mp_result mp_rat_mul(mp_rat a, mp_rat b, mp_rat c) { |
| 229 | mp_result res; |
| 230 | |
| 231 | if ((res = mp_int_mul(a: MP_NUMER_P(Q: a), b: MP_NUMER_P(Q: b), c: MP_NUMER_P(Q: c))) != MP_OK) |
| 232 | return res; |
| 233 | |
| 234 | if (mp_int_compare_zero(z: MP_NUMER_P(Q: c)) != 0) { |
| 235 | res = mp_int_mul(a: MP_DENOM_P(Q: a), b: MP_DENOM_P(Q: b), c: MP_DENOM_P(Q: c)); |
| 236 | if (res != MP_OK) { |
| 237 | return res; |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | return s_rat_reduce(r: c); |
| 242 | } |
| 243 | |
| 244 | mp_result mp_rat_div(mp_rat a, mp_rat b, mp_rat c) { |
| 245 | mp_result res = MP_OK; |
| 246 | |
| 247 | if (mp_rat_compare_zero(r: b) == 0) return MP_UNDEF; |
| 248 | |
| 249 | if (c == a || c == b) { |
| 250 | mpz_t tmp; |
| 251 | |
| 252 | if ((res = mp_int_init(z: &tmp)) != MP_OK) return res; |
| 253 | if ((res = mp_int_mul(a: MP_NUMER_P(Q: a), b: MP_DENOM_P(Q: b), c: &tmp)) != MP_OK) { |
| 254 | goto CLEANUP; |
| 255 | } |
| 256 | if ((res = mp_int_mul(a: MP_DENOM_P(Q: a), b: MP_NUMER_P(Q: b), c: MP_DENOM_P(Q: c))) != |
| 257 | MP_OK) { |
| 258 | goto CLEANUP; |
| 259 | } |
| 260 | res = mp_int_copy(a: &tmp, c: MP_NUMER_P(Q: c)); |
| 261 | |
| 262 | CLEANUP: |
| 263 | mp_int_clear(z: &tmp); |
| 264 | } else { |
| 265 | if ((res = mp_int_mul(a: MP_NUMER_P(Q: a), b: MP_DENOM_P(Q: b), c: MP_NUMER_P(Q: c))) != |
| 266 | MP_OK) { |
| 267 | return res; |
| 268 | } |
| 269 | if ((res = mp_int_mul(a: MP_DENOM_P(Q: a), b: MP_NUMER_P(Q: b), c: MP_DENOM_P(Q: c))) != |
| 270 | MP_OK) { |
| 271 | return res; |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | if (res != MP_OK) { |
| 276 | return res; |
| 277 | } else { |
| 278 | return s_rat_reduce(r: c); |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | mp_result mp_rat_add_int(mp_rat a, mp_int b, mp_rat c) { |
| 283 | mpz_t tmp; |
| 284 | mp_result res; |
| 285 | |
| 286 | if ((res = mp_int_init_copy(z: &tmp, old: b)) != MP_OK) { |
| 287 | return res; |
| 288 | } |
| 289 | if ((res = mp_int_mul(a: &tmp, b: MP_DENOM_P(Q: a), c: &tmp)) != MP_OK) { |
| 290 | goto CLEANUP; |
| 291 | } |
| 292 | if ((res = mp_rat_copy(a, c)) != MP_OK) { |
| 293 | goto CLEANUP; |
| 294 | } |
| 295 | if ((res = mp_int_add(a: MP_NUMER_P(Q: c), b: &tmp, c: MP_NUMER_P(Q: c))) != MP_OK) { |
| 296 | goto CLEANUP; |
| 297 | } |
| 298 | |
| 299 | res = s_rat_reduce(r: c); |
| 300 | |
| 301 | CLEANUP: |
| 302 | mp_int_clear(z: &tmp); |
| 303 | return res; |
| 304 | } |
| 305 | |
| 306 | mp_result mp_rat_sub_int(mp_rat a, mp_int b, mp_rat c) { |
| 307 | mpz_t tmp; |
| 308 | mp_result res; |
| 309 | |
| 310 | if ((res = mp_int_init_copy(z: &tmp, old: b)) != MP_OK) { |
| 311 | return res; |
| 312 | } |
| 313 | if ((res = mp_int_mul(a: &tmp, b: MP_DENOM_P(Q: a), c: &tmp)) != MP_OK) { |
| 314 | goto CLEANUP; |
| 315 | } |
| 316 | if ((res = mp_rat_copy(a, c)) != MP_OK) { |
| 317 | goto CLEANUP; |
| 318 | } |
| 319 | if ((res = mp_int_sub(a: MP_NUMER_P(Q: c), b: &tmp, c: MP_NUMER_P(Q: c))) != MP_OK) { |
| 320 | goto CLEANUP; |
| 321 | } |
| 322 | |
| 323 | res = s_rat_reduce(r: c); |
| 324 | |
| 325 | CLEANUP: |
| 326 | mp_int_clear(z: &tmp); |
| 327 | return res; |
| 328 | } |
| 329 | |
| 330 | mp_result mp_rat_mul_int(mp_rat a, mp_int b, mp_rat c) { |
| 331 | mp_result res; |
| 332 | |
| 333 | if ((res = mp_rat_copy(a, c)) != MP_OK) { |
| 334 | return res; |
| 335 | } |
| 336 | if ((res = mp_int_mul(a: MP_NUMER_P(Q: c), b, c: MP_NUMER_P(Q: c))) != MP_OK) { |
| 337 | return res; |
| 338 | } |
| 339 | |
| 340 | return s_rat_reduce(r: c); |
| 341 | } |
| 342 | |
| 343 | mp_result mp_rat_div_int(mp_rat a, mp_int b, mp_rat c) { |
| 344 | mp_result res; |
| 345 | |
| 346 | if (mp_int_compare_zero(z: b) == 0) { |
| 347 | return MP_UNDEF; |
| 348 | } |
| 349 | if ((res = mp_rat_copy(a, c)) != MP_OK) { |
| 350 | return res; |
| 351 | } |
| 352 | if ((res = mp_int_mul(a: MP_DENOM_P(Q: c), b, c: MP_DENOM_P(Q: c))) != MP_OK) { |
| 353 | return res; |
| 354 | } |
| 355 | |
| 356 | return s_rat_reduce(r: c); |
| 357 | } |
| 358 | |
| 359 | mp_result mp_rat_expt(mp_rat a, mp_small b, mp_rat c) { |
| 360 | mp_result res; |
| 361 | |
| 362 | /* Special cases for easy powers. */ |
| 363 | if (b == 0) { |
| 364 | return mp_rat_set_value(r: c, numer: 1, denom: 1); |
| 365 | } else if (b == 1) { |
| 366 | return mp_rat_copy(a, c); |
| 367 | } |
| 368 | |
| 369 | /* Since rationals are always stored in lowest terms, it is not necessary to |
| 370 | reduce again when raising to an integer power. */ |
| 371 | if ((res = mp_int_expt(a: MP_NUMER_P(Q: a), b, c: MP_NUMER_P(Q: c))) != MP_OK) { |
| 372 | return res; |
| 373 | } |
| 374 | |
| 375 | return mp_int_expt(a: MP_DENOM_P(Q: a), b, c: MP_DENOM_P(Q: c)); |
| 376 | } |
| 377 | |
| 378 | int mp_rat_compare(mp_rat a, mp_rat b) { |
| 379 | /* Quick check for opposite signs. Works because the sign of the numerator |
| 380 | is always definitive. */ |
| 381 | if (MP_NUMER_SIGN(a) != MP_NUMER_SIGN(b)) { |
| 382 | if (MP_NUMER_SIGN(a) == MP_ZPOS) { |
| 383 | return 1; |
| 384 | } else { |
| 385 | return -1; |
| 386 | } |
| 387 | } else { |
| 388 | /* Compare absolute magnitudes; if both are positive, the answer stands, |
| 389 | otherwise it needs to be reflected about zero. */ |
| 390 | int cmp = mp_rat_compare_unsigned(a, b); |
| 391 | |
| 392 | if (MP_NUMER_SIGN(a) == MP_ZPOS) { |
| 393 | return cmp; |
| 394 | } else { |
| 395 | return -cmp; |
| 396 | } |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | int mp_rat_compare_unsigned(mp_rat a, mp_rat b) { |
| 401 | /* If the denominators are equal, we can quickly compare numerators without |
| 402 | multiplying. Otherwise, we actually have to do some work. */ |
| 403 | if (mp_int_compare_unsigned(a: MP_DENOM_P(Q: a), b: MP_DENOM_P(Q: b)) == 0) { |
| 404 | return mp_int_compare_unsigned(a: MP_NUMER_P(Q: a), b: MP_NUMER_P(Q: b)); |
| 405 | } |
| 406 | |
| 407 | else { |
| 408 | mpz_t temp[2]; |
| 409 | mp_result res; |
| 410 | int cmp = INT_MAX, last = 0; |
| 411 | |
| 412 | /* t0 = num(a) * den(b), t1 = num(b) * den(a) */ |
| 413 | SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last); |
| 414 | SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last); |
| 415 | |
| 416 | if ((res = mp_int_mul(TEMP(0), b: MP_DENOM_P(Q: b), TEMP(0))) != MP_OK || |
| 417 | (res = mp_int_mul(TEMP(1), b: MP_DENOM_P(Q: a), TEMP(1))) != MP_OK) { |
| 418 | goto CLEANUP; |
| 419 | } |
| 420 | |
| 421 | cmp = mp_int_compare_unsigned(TEMP(0), TEMP(1)); |
| 422 | |
| 423 | CLEANUP: |
| 424 | while (--last >= 0) { |
| 425 | mp_int_clear(TEMP(last)); |
| 426 | } |
| 427 | |
| 428 | return cmp; |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | int mp_rat_compare_zero(mp_rat r) { return mp_int_compare_zero(z: MP_NUMER_P(Q: r)); } |
| 433 | |
| 434 | int mp_rat_compare_value(mp_rat r, mp_small n, mp_small d) { |
| 435 | mpq_t tmp; |
| 436 | mp_result res; |
| 437 | int out = INT_MAX; |
| 438 | |
| 439 | if ((res = mp_rat_init(r: &tmp)) != MP_OK) { |
| 440 | return out; |
| 441 | } |
| 442 | if ((res = mp_rat_set_value(r: &tmp, numer: n, denom: d)) != MP_OK) { |
| 443 | goto CLEANUP; |
| 444 | } |
| 445 | |
| 446 | out = mp_rat_compare(a: r, b: &tmp); |
| 447 | |
| 448 | CLEANUP: |
| 449 | mp_rat_clear(r: &tmp); |
| 450 | return out; |
| 451 | } |
| 452 | |
| 453 | bool mp_rat_is_integer(mp_rat r) { |
| 454 | return (mp_int_compare_value(z: MP_DENOM_P(Q: r), v: 1) == 0); |
| 455 | } |
| 456 | |
| 457 | mp_result mp_rat_to_ints(mp_rat r, mp_small *num, mp_small *den) { |
| 458 | mp_result res; |
| 459 | |
| 460 | if ((res = mp_int_to_int(z: MP_NUMER_P(Q: r), out: num)) != MP_OK) { |
| 461 | return res; |
| 462 | } |
| 463 | |
| 464 | res = mp_int_to_int(z: MP_DENOM_P(Q: r), out: den); |
| 465 | return res; |
| 466 | } |
| 467 | |
| 468 | mp_result mp_rat_to_string(mp_rat r, mp_size radix, char *str, int limit) { |
| 469 | /* Write the numerator. The sign of the rational number is written by the |
| 470 | underlying integer implementation. */ |
| 471 | mp_result res; |
| 472 | if ((res = mp_int_to_string(z: MP_NUMER_P(Q: r), radix, str, limit)) != MP_OK) { |
| 473 | return res; |
| 474 | } |
| 475 | |
| 476 | /* If the value is zero, don't bother writing any denominator */ |
| 477 | if (mp_int_compare_zero(z: MP_NUMER_P(Q: r)) == 0) { |
| 478 | return MP_OK; |
| 479 | } |
| 480 | |
| 481 | /* Locate the end of the numerator, and make sure we are not going to exceed |
| 482 | the limit by writing a slash. */ |
| 483 | int len = strlen(s: str); |
| 484 | char *start = str + len; |
| 485 | limit -= len; |
| 486 | if (limit == 0) return MP_TRUNC; |
| 487 | |
| 488 | *start++ = '/'; |
| 489 | limit -= 1; |
| 490 | |
| 491 | return mp_int_to_string(z: MP_DENOM_P(Q: r), radix, str: start, limit); |
| 492 | } |
| 493 | |
| 494 | mp_result mp_rat_to_decimal(mp_rat r, mp_size radix, mp_size prec, |
| 495 | mp_round_mode round, char *str, int limit) { |
| 496 | mpz_t temp[3]; |
| 497 | mp_result res; |
| 498 | int last = 0; |
| 499 | |
| 500 | SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(r)), last); |
| 501 | SETUP(mp_int_init(TEMP(last)), last); |
| 502 | SETUP(mp_int_init(TEMP(last)), last); |
| 503 | |
| 504 | /* Get the unsigned integer part by dividing denominator into the absolute |
| 505 | value of the numerator. */ |
| 506 | mp_int_abs(TEMP(0), TEMP(0)); |
| 507 | if ((res = mp_int_div(TEMP(0), b: MP_DENOM_P(Q: r), TEMP(0), TEMP(1))) != MP_OK) { |
| 508 | goto CLEANUP; |
| 509 | } |
| 510 | |
| 511 | /* Now: T0 = integer portion, unsigned; |
| 512 | T1 = remainder, from which fractional part is computed. */ |
| 513 | |
| 514 | /* Count up leading zeroes after the radix point. */ |
| 515 | int zprec = (int)prec; |
| 516 | int lead_0; |
| 517 | for (lead_0 = 0; lead_0 < zprec && mp_int_compare(TEMP(1), b: MP_DENOM_P(Q: r)) < 0; |
| 518 | ++lead_0) { |
| 519 | if ((res = mp_int_mul_value(TEMP(1), value: radix, TEMP(1))) != MP_OK) { |
| 520 | goto CLEANUP; |
| 521 | } |
| 522 | } |
| 523 | |
| 524 | /* Multiply remainder by a power of the radix sufficient to get the right |
| 525 | number of significant figures. */ |
| 526 | if (zprec > lead_0) { |
| 527 | if ((res = mp_int_expt_value(a: radix, b: zprec - lead_0, TEMP(2))) != MP_OK) { |
| 528 | goto CLEANUP; |
| 529 | } |
| 530 | if ((res = mp_int_mul(TEMP(1), TEMP(2), TEMP(1))) != MP_OK) { |
| 531 | goto CLEANUP; |
| 532 | } |
| 533 | } |
| 534 | if ((res = mp_int_div(TEMP(1), b: MP_DENOM_P(Q: r), TEMP(1), TEMP(2))) != MP_OK) { |
| 535 | goto CLEANUP; |
| 536 | } |
| 537 | |
| 538 | /* Now: T1 = significant digits of fractional part; |
| 539 | T2 = leftovers, to use for rounding. |
| 540 | |
| 541 | At this point, what we do depends on the rounding mode. The default is |
| 542 | MP_ROUND_DOWN, for which everything is as it should be already. |
| 543 | */ |
| 544 | switch (round) { |
| 545 | int cmp; |
| 546 | |
| 547 | case MP_ROUND_UP: |
| 548 | if (mp_int_compare_zero(TEMP(2)) != 0) { |
| 549 | if (prec == 0) { |
| 550 | res = mp_int_add_value(TEMP(0), value: 1, TEMP(0)); |
| 551 | } else { |
| 552 | res = mp_int_add_value(TEMP(1), value: 1, TEMP(1)); |
| 553 | } |
| 554 | } |
| 555 | break; |
| 556 | |
| 557 | case MP_ROUND_HALF_UP: |
| 558 | case MP_ROUND_HALF_DOWN: |
| 559 | if ((res = mp_int_mul_pow2(TEMP(2), p2: 1, TEMP(2))) != MP_OK) { |
| 560 | goto CLEANUP; |
| 561 | } |
| 562 | |
| 563 | cmp = mp_int_compare(TEMP(2), b: MP_DENOM_P(Q: r)); |
| 564 | |
| 565 | if (round == MP_ROUND_HALF_UP) cmp += 1; |
| 566 | |
| 567 | if (cmp > 0) { |
| 568 | if (prec == 0) { |
| 569 | res = mp_int_add_value(TEMP(0), value: 1, TEMP(0)); |
| 570 | } else { |
| 571 | res = mp_int_add_value(TEMP(1), value: 1, TEMP(1)); |
| 572 | } |
| 573 | } |
| 574 | break; |
| 575 | |
| 576 | case MP_ROUND_DOWN: |
| 577 | break; /* No action required */ |
| 578 | |
| 579 | default: |
| 580 | return MP_BADARG; /* Invalid rounding specifier */ |
| 581 | } |
| 582 | if (res != MP_OK) { |
| 583 | goto CLEANUP; |
| 584 | } |
| 585 | |
| 586 | /* The sign of the output should be the sign of the numerator, but if all the |
| 587 | displayed digits will be zero due to the precision, a negative shouldn't |
| 588 | be shown. */ |
| 589 | char *start = str; |
| 590 | int left = limit; |
| 591 | if (MP_NUMER_SIGN(r) == MP_NEG && (mp_int_compare_zero(TEMP(0)) != 0 || |
| 592 | mp_int_compare_zero(TEMP(1)) != 0)) { |
| 593 | *start++ = '-'; |
| 594 | left -= 1; |
| 595 | } |
| 596 | |
| 597 | if ((res = mp_int_to_string(TEMP(0), radix, str: start, limit: left)) != MP_OK) { |
| 598 | goto CLEANUP; |
| 599 | } |
| 600 | |
| 601 | int len = strlen(s: start); |
| 602 | start += len; |
| 603 | left -= len; |
| 604 | |
| 605 | if (prec == 0) goto CLEANUP; |
| 606 | |
| 607 | *start++ = '.'; |
| 608 | left -= 1; |
| 609 | |
| 610 | if (left < zprec + 1) { |
| 611 | res = MP_TRUNC; |
| 612 | goto CLEANUP; |
| 613 | } |
| 614 | |
| 615 | memset(s: start, c: '0', n: lead_0 - 1); |
| 616 | left -= lead_0; |
| 617 | start += lead_0 - 1; |
| 618 | |
| 619 | res = mp_int_to_string(TEMP(1), radix, str: start, limit: left); |
| 620 | |
| 621 | CLEANUP: |
| 622 | while (--last >= 0) mp_int_clear(TEMP(last)); |
| 623 | |
| 624 | return res; |
| 625 | } |
| 626 | |
| 627 | mp_result mp_rat_string_len(mp_rat r, mp_size radix) { |
| 628 | mp_result d_len = 0; |
| 629 | mp_result n_len = mp_int_string_len(z: MP_NUMER_P(Q: r), radix); |
| 630 | |
| 631 | if (mp_int_compare_zero(z: MP_NUMER_P(Q: r)) != 0) { |
| 632 | d_len = mp_int_string_len(z: MP_DENOM_P(Q: r), radix); |
| 633 | } |
| 634 | |
| 635 | /* Though simplistic, this formula is correct. Space for the sign flag is |
| 636 | included in n_len, and the space for the NUL that is counted in n_len |
| 637 | counts for the separator here. The space for the NUL counted in d_len |
| 638 | counts for the final terminator here. */ |
| 639 | |
| 640 | return n_len + d_len; |
| 641 | } |
| 642 | |
| 643 | mp_result mp_rat_decimal_len(mp_rat r, mp_size radix, mp_size prec) { |
| 644 | int f_len; |
| 645 | int z_len = mp_int_string_len(z: MP_NUMER_P(Q: r), radix); |
| 646 | |
| 647 | if (prec == 0) { |
| 648 | f_len = 1; /* terminator only */ |
| 649 | } else { |
| 650 | f_len = 1 + prec + 1; /* decimal point, digits, terminator */ |
| 651 | } |
| 652 | |
| 653 | return z_len + f_len; |
| 654 | } |
| 655 | |
| 656 | mp_result mp_rat_read_string(mp_rat r, mp_size radix, const char *str) { |
| 657 | return mp_rat_read_cstring(r, radix, str, NULL); |
| 658 | } |
| 659 | |
| 660 | mp_result mp_rat_read_cstring(mp_rat r, mp_size radix, const char *str, |
| 661 | char **end) { |
| 662 | mp_result res; |
| 663 | char *endp; |
| 664 | |
| 665 | if ((res = mp_int_read_cstring(z: MP_NUMER_P(Q: r), radix, str, end: &endp)) != MP_OK && |
| 666 | (res != MP_TRUNC)) { |
| 667 | return res; |
| 668 | } |
| 669 | |
| 670 | /* Skip whitespace between numerator and (possible) separator */ |
| 671 | while (isspace((unsigned char)*endp)) { |
| 672 | ++endp; |
| 673 | } |
| 674 | |
| 675 | /* If there is no separator, we will stop reading at this point. */ |
| 676 | if (*endp != '/') { |
| 677 | mp_int_set_value(z: MP_DENOM_P(Q: r), value: 1); |
| 678 | if (end != NULL) *end = endp; |
| 679 | return res; |
| 680 | } |
| 681 | |
| 682 | ++endp; /* skip separator */ |
| 683 | if ((res = mp_int_read_cstring(z: MP_DENOM_P(Q: r), radix, str: endp, end)) != MP_OK) { |
| 684 | return res; |
| 685 | } |
| 686 | |
| 687 | /* Make sure the value is well-defined */ |
| 688 | if (mp_int_compare_zero(z: MP_DENOM_P(Q: r)) == 0) { |
| 689 | return MP_UNDEF; |
| 690 | } |
| 691 | |
| 692 | /* Reduce to lowest terms */ |
| 693 | return s_rat_reduce(r); |
| 694 | } |
| 695 | |
| 696 | /* Read a string and figure out what format it's in. The radix may be supplied |
| 697 | as zero to use "default" behaviour. |
| 698 | |
| 699 | This function will accept either a/b notation or decimal notation. |
| 700 | */ |
| 701 | mp_result mp_rat_read_ustring(mp_rat r, mp_size radix, const char *str, |
| 702 | char **end) { |
| 703 | char *endp = "" ; |
| 704 | mp_result res; |
| 705 | |
| 706 | if (radix == 0) radix = 10; /* default to decimal input */ |
| 707 | |
| 708 | res = mp_rat_read_cstring(r, radix, str, end: &endp); |
| 709 | if (res == MP_TRUNC && *endp == '.') { |
| 710 | res = mp_rat_read_cdecimal(r, radix, str, end: &endp); |
| 711 | } |
| 712 | if (end != NULL) *end = endp; |
| 713 | return res; |
| 714 | } |
| 715 | |
| 716 | mp_result mp_rat_read_decimal(mp_rat r, mp_size radix, const char *str) { |
| 717 | return mp_rat_read_cdecimal(r, radix, str, NULL); |
| 718 | } |
| 719 | |
| 720 | mp_result mp_rat_read_cdecimal(mp_rat r, mp_size radix, const char *str, |
| 721 | char **end) { |
| 722 | mp_result res; |
| 723 | mp_sign osign; |
| 724 | char *endp; |
| 725 | |
| 726 | while (isspace((unsigned char)*str)) ++str; |
| 727 | |
| 728 | switch (*str) { |
| 729 | case '-': |
| 730 | osign = MP_NEG; |
| 731 | break; |
| 732 | default: |
| 733 | osign = MP_ZPOS; |
| 734 | } |
| 735 | |
| 736 | if ((res = mp_int_read_cstring(z: MP_NUMER_P(Q: r), radix, str, end: &endp)) != MP_OK && |
| 737 | (res != MP_TRUNC)) { |
| 738 | return res; |
| 739 | } |
| 740 | |
| 741 | /* This needs to be here. */ |
| 742 | (void)mp_int_set_value(z: MP_DENOM_P(Q: r), value: 1); |
| 743 | |
| 744 | if (*endp != '.') { |
| 745 | if (end != NULL) *end = endp; |
| 746 | return res; |
| 747 | } |
| 748 | |
| 749 | /* If the character following the decimal point is whitespace or a sign flag, |
| 750 | we will consider this a truncated value. This special case is because |
| 751 | mp_int_read_string() will consider whitespace or sign flags to be valid |
| 752 | starting characters for a value, and we do not want them following the |
| 753 | decimal point. |
| 754 | |
| 755 | Once we have done this check, it is safe to read in the value of the |
| 756 | fractional piece as a regular old integer. |
| 757 | */ |
| 758 | ++endp; |
| 759 | if (*endp == '\0') { |
| 760 | if (end != NULL) *end = endp; |
| 761 | return MP_OK; |
| 762 | } else if (isspace((unsigned char)*endp) || *endp == '-' || *endp == '+') { |
| 763 | return MP_TRUNC; |
| 764 | } else { |
| 765 | mpz_t frac; |
| 766 | mp_result save_res; |
| 767 | char *save = endp; |
| 768 | int num_lz = 0; |
| 769 | |
| 770 | /* Make a temporary to hold the part after the decimal point. */ |
| 771 | if ((res = mp_int_init(z: &frac)) != MP_OK) { |
| 772 | return res; |
| 773 | } |
| 774 | |
| 775 | if ((res = mp_int_read_cstring(z: &frac, radix, str: endp, end: &endp)) != MP_OK && |
| 776 | (res != MP_TRUNC)) { |
| 777 | goto CLEANUP; |
| 778 | } |
| 779 | |
| 780 | /* Save this response for later. */ |
| 781 | save_res = res; |
| 782 | |
| 783 | if (mp_int_compare_zero(z: &frac) == 0) goto FINISHED; |
| 784 | |
| 785 | /* Discard trailing zeroes (somewhat inefficiently) */ |
| 786 | while (mp_int_divisible_value(a: &frac, v: radix)) { |
| 787 | if ((res = mp_int_div_value(a: &frac, value: radix, q: &frac, NULL)) != MP_OK) { |
| 788 | goto CLEANUP; |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | /* Count leading zeros after the decimal point */ |
| 793 | while (save[num_lz] == '0') { |
| 794 | ++num_lz; |
| 795 | } |
| 796 | |
| 797 | /* Find the least power of the radix that is at least as large as the |
| 798 | significant value of the fractional part, ignoring leading zeroes. */ |
| 799 | (void)mp_int_set_value(z: MP_DENOM_P(Q: r), value: radix); |
| 800 | |
| 801 | while (mp_int_compare(a: MP_DENOM_P(Q: r), b: &frac) < 0) { |
| 802 | if ((res = mp_int_mul_value(a: MP_DENOM_P(Q: r), value: radix, c: MP_DENOM_P(Q: r))) != |
| 803 | MP_OK) { |
| 804 | goto CLEANUP; |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | /* Also shift by enough to account for leading zeroes */ |
| 809 | while (num_lz > 0) { |
| 810 | if ((res = mp_int_mul_value(a: MP_DENOM_P(Q: r), value: radix, c: MP_DENOM_P(Q: r))) != |
| 811 | MP_OK) { |
| 812 | goto CLEANUP; |
| 813 | } |
| 814 | |
| 815 | --num_lz; |
| 816 | } |
| 817 | |
| 818 | /* Having found this power, shift the numerator leftward that many, digits, |
| 819 | and add the nonzero significant digits of the fractional part to get the |
| 820 | result. */ |
| 821 | if ((res = mp_int_mul(a: MP_NUMER_P(Q: r), b: MP_DENOM_P(Q: r), c: MP_NUMER_P(Q: r))) != |
| 822 | MP_OK) { |
| 823 | goto CLEANUP; |
| 824 | } |
| 825 | |
| 826 | { /* This addition needs to be unsigned. */ |
| 827 | MP_NUMER_SIGN(r) = MP_ZPOS; |
| 828 | if ((res = mp_int_add(a: MP_NUMER_P(Q: r), b: &frac, c: MP_NUMER_P(Q: r))) != MP_OK) { |
| 829 | goto CLEANUP; |
| 830 | } |
| 831 | |
| 832 | MP_NUMER_SIGN(r) = osign; |
| 833 | } |
| 834 | if ((res = s_rat_reduce(r)) != MP_OK) goto CLEANUP; |
| 835 | |
| 836 | /* At this point, what we return depends on whether reading the fractional |
| 837 | part was truncated or not. That information is saved from when we |
| 838 | called mp_int_read_string() above. */ |
| 839 | FINISHED: |
| 840 | res = save_res; |
| 841 | if (end != NULL) *end = endp; |
| 842 | |
| 843 | CLEANUP: |
| 844 | mp_int_clear(z: &frac); |
| 845 | |
| 846 | return res; |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | /* Private functions for internal use. Make unchecked assumptions about format |
| 851 | and validity of inputs. */ |
| 852 | |
| 853 | static mp_result s_rat_reduce(mp_rat r) { |
| 854 | mpz_t gcd; |
| 855 | mp_result res = MP_OK; |
| 856 | |
| 857 | if (mp_int_compare_zero(z: MP_NUMER_P(Q: r)) == 0) { |
| 858 | mp_int_set_value(z: MP_DENOM_P(Q: r), value: 1); |
| 859 | return MP_OK; |
| 860 | } |
| 861 | |
| 862 | /* If the greatest common divisor of the numerator and denominator is greater |
| 863 | than 1, divide it out. */ |
| 864 | if ((res = mp_int_init(z: &gcd)) != MP_OK) return res; |
| 865 | |
| 866 | if ((res = mp_int_gcd(a: MP_NUMER_P(Q: r), b: MP_DENOM_P(Q: r), c: &gcd)) != MP_OK) { |
| 867 | goto CLEANUP; |
| 868 | } |
| 869 | |
| 870 | if (mp_int_compare_value(z: &gcd, v: 1) != 0) { |
| 871 | if ((res = mp_int_div(a: MP_NUMER_P(Q: r), b: &gcd, q: MP_NUMER_P(Q: r), NULL)) != MP_OK) { |
| 872 | goto CLEANUP; |
| 873 | } |
| 874 | if ((res = mp_int_div(a: MP_DENOM_P(Q: r), b: &gcd, q: MP_DENOM_P(Q: r), NULL)) != MP_OK) { |
| 875 | goto CLEANUP; |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | /* Fix up the signs of numerator and denominator */ |
| 880 | if (MP_NUMER_SIGN(r) == MP_DENOM_SIGN(r)) { |
| 881 | MP_NUMER_SIGN(r) = MP_DENOM_SIGN(r) = MP_ZPOS; |
| 882 | } else { |
| 883 | MP_NUMER_SIGN(r) = MP_NEG; |
| 884 | MP_DENOM_SIGN(r) = MP_ZPOS; |
| 885 | } |
| 886 | |
| 887 | CLEANUP: |
| 888 | mp_int_clear(z: &gcd); |
| 889 | |
| 890 | return res; |
| 891 | } |
| 892 | |
| 893 | static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c, |
| 894 | mp_result (*comb_f)(mp_int, mp_int, mp_int)) { |
| 895 | mp_result res; |
| 896 | |
| 897 | /* Shortcut when denominators are already common */ |
| 898 | if (mp_int_compare(a: MP_DENOM_P(Q: a), b: MP_DENOM_P(Q: b)) == 0) { |
| 899 | if ((res = (comb_f)(MP_NUMER_P(Q: a), MP_NUMER_P(Q: b), MP_NUMER_P(Q: c))) != |
| 900 | MP_OK) { |
| 901 | return res; |
| 902 | } |
| 903 | if ((res = mp_int_copy(a: MP_DENOM_P(Q: a), c: MP_DENOM_P(Q: c))) != MP_OK) { |
| 904 | return res; |
| 905 | } |
| 906 | |
| 907 | return s_rat_reduce(r: c); |
| 908 | } else { |
| 909 | mpz_t temp[2]; |
| 910 | int last = 0; |
| 911 | |
| 912 | SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last); |
| 913 | SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last); |
| 914 | |
| 915 | if ((res = mp_int_mul(TEMP(0), b: MP_DENOM_P(Q: b), TEMP(0))) != MP_OK) { |
| 916 | goto CLEANUP; |
| 917 | } |
| 918 | if ((res = mp_int_mul(TEMP(1), b: MP_DENOM_P(Q: a), TEMP(1))) != MP_OK) { |
| 919 | goto CLEANUP; |
| 920 | } |
| 921 | if ((res = (comb_f)(TEMP(0), TEMP(1), MP_NUMER_P(Q: c))) != MP_OK) { |
| 922 | goto CLEANUP; |
| 923 | } |
| 924 | |
| 925 | res = mp_int_mul(a: MP_DENOM_P(Q: a), b: MP_DENOM_P(Q: b), c: MP_DENOM_P(Q: c)); |
| 926 | |
| 927 | CLEANUP: |
| 928 | while (--last >= 0) { |
| 929 | mp_int_clear(TEMP(last)); |
| 930 | } |
| 931 | |
| 932 | if (res == MP_OK) { |
| 933 | return s_rat_reduce(r: c); |
| 934 | } else { |
| 935 | return res; |
| 936 | } |
| 937 | } |
| 938 | } |
| 939 | |
| 940 | /* Here there be dragons */ |
| 941 | |